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ABSTRACT
€’/c in a Pseudo Manifestly Left-Right Hand Symmetric

Model

Yuren Sun

CP-violation in the neutral kaon system is investigated in
some detail. €'/ € is calculated to lowest order for the
low energy case using Feynman diagrams in the Standard Model
as well as in a Pseudo-manifestly Left-Right Hand Symmetric

Model.
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INTRODUCTION

In particle physics one studies three interactions:strong,
electromagnetic and weak. The theory of these interactions
is understood on the basis of symmetries. But experimental
data has shown that some important symmetries, for instance,
charge conjugation and parity symmetry (CP), are violated in
processes 1involving weak interaction. As a result,
CP-violation becomes an important feature of weak processes.
But the origin of CP-violation remains mysterious. It is ,
therefore, of basic importance theoretically to solve this
puzzle and many phenomenological models have attempted to do
SO. In view of the great success of the Standard Model in
describing weak interactions, the various extensions of the
Standard Model get considerable attention. An attractive
one 1is the Left-Right Symmetric Model, candidate for
explaining parity violation, which is a natural extension of
Standard Model and hence, contains all advantages of the
latter. In this thesis we shall discuss CP-violation in
the Left-Right Model.

Apart from smallness, a remarkable feature of CP-violation
is that it has been till now seen only in neutral kaon
system. CP-violation can be described by two parameters ¢’
and £ which are expressed relative to observables (Mo M)
as well to model parameters (such as §, x B1 and so on).
Thus £’/ ¢ is important to select out correct models.

The aim of this thesis is to calculate the CP-violation

parameters € and ¢’/ & for the kaon system. The work is



organized as follows:

Some background material on the Standard Model and
Left-Right Symmetric Model have been provided in chapter 1
and 2 respectively. 1In chapter 3 we discuss CP-violation in
the kaon system. The CP-violation parameters ¢’/ ¢ are
calculated to the lowest order for the low energy case in
the Standard Model in chapter 4 and in the Pseudo-manifest
Left-Right Symmetric Model in chapter 5, respectively. The
notation and conventions used throughout the thesis are

given in the Appendix.



Chapter 1

The Standard Model

The Standard Model has two distinct parts, the standard
electroweak model and QCD. They are all non-Abelian gauge
field theories. The latter deals with the color SU(3)
interaction between quarks and gluons, which is believed to
responsible for the strong interaction. The former unifiers
the weak and electromagnetic interactions using the
SU(2)-U(1) gauge group. Major experimental support for the
model came with the observation of weak neutral currents in
1973, followed by the discovery of the weak gauge bosons
themselves (wt and Z2) in 1983. The model has proved to be
very successful phenomenologically and is in detailed
agreement with all observed electroweak phenomena.

In this chapter we give a brief survey of some of the
basic aspects of the Standard Model. More complete

treatments may be found in references [1-8].

1.1 Quantum Electrodynamics (QED)
1.1.1 The Lagrangian

In Nature there exist four fundamental interactions. They
are widely believed to be described by gauge field theories
which are of a particular kind of field theories based on

the gauge principle. The gauge principle is the requirement



that the theory be invariant under local gauge
transformations.

A prototypical example of gauge field theory is the
electrodynamics of a charged particle. Starting with
Maxwell’s equations for the electromagnetic fields and the
Dirac equation, such a theory is crmstructed. The theory is
constrained to obey Lorentz invariance, invariance under
space inversion and time reversal, and renormalizability(see
subsection 1.2.2), as well as invariance under the following

Abelian local gauge transformations:

W———aexp(—ieﬂ(x))@,A“————4A“+—%—6“ﬁ(x),(1.1)

with ¢ depending on x. Then a Lagrangian (density) which
describes Quantum Electrodynamics has the following form:
L=—(l/4)FuVFuv+w[ivu(au+ieAu)-m]w

=-1/4F""F +i(iz¥D -m), (1.2)

where Yy is the charged fermion field corresponding to
Fermi-Dirac particles with charge e (e > 0) and bare mass m,

Fuv is the electromagnetic field tensor

F, = 0A-0A, (1.3)

Du is the covariant derivative

= a + i 1'4
Du i 1QeAu, ( )

and A“ is a vector gauge field describing a massless field
quantum which couples to the Fermi-Dirac particle.

Defining an electromagnetic current by

i =9 My, (1.5)



it is easily shown that j“ is a conserved current. That is
a*5 = o0 (1.6)
And hence the electric charge
e = Ijo a’x; (1.7)

is conserved. 1In terms of j“, the interaction term in eq.

(1.2) may be written as
N

The other two terms in eqg. (1.2) ar», respectively,

= —1/4 FMV&

L, = -1/4 FF, (1.9)
which describes the radiation itself, and

L = w(iw“au- my, (1.10)

which describes the fermion field.

Noting that LF is invariant under global but not local U(1)
gauge transforuations, we see that both Au and LI are the
natural consequences of the requirement of the gauge
principle.

We have to quantize the gauge field theory to obtain a
consistent gquantum theory of the gauge field. Quantization
is not a unique procedure and a variety of quantization
methods exist which lead to the same physical prediction.
There are three well-known ways of quantization which are
equivalent to each other:

(1) Caronical operator formalism’;

(2) Functional-integral formalism'®;



(3) Stochastic formalism''.

In the +traditional canonical operator formalism, one
regards fields as operators and sets up canonical
commutation relations for them. All the Green functions
which characterize the quantum theory of fields may be
calculated as vacuum expectation values of the product of
the field operators. In the Feynman functional-integral
formalism, the fields are c-numbers and the Lagrangian is of
the classical form. The Green functions are obtained by
integrating the product of the fields over all of their
possible functicnal forms with a suitable weight. In the
stochastic formalism, one notes the similarity between the
functional-integral expressions of Green functions in
Euclidian space and statistical averaging, and regards the
field as a stochastic variable. The Green functions are
then given by the statistical average of the product of the
fields in equilibrium.

When we quantize the gauge theory we shall be in
trouble. For example, if we try to quantize the theory in
canonical formalism for the LR of (1.9), then we shall
obtain a vanishing canonical momentum. The difficulty
arises from the frcedom of gauge transformations. One way
of getting rid of the difficulty is to eliminate this
freedom by fixing the gauge. For instance in the Lorentz

gauge (or covariant gauge), we set the covariant constraint

aqu = 0. (1.11)



The following noncovariant gauges are also frequently used:
Coulomb (radiation) gauge aiA? = 0, axial gauge Ai = 0 and
temporal gauge Ai = 0. Note that the physical predictions
stemming from the Lagrangian are gauge-independent.

After fixing the gauge the Lagrangian will in general
be modified. For example, 1in the Lorentz gauge the
Lagrangian of eq. (1.2) is modified to

L = L+L+L - -;3 (a“Au)z. (1.12)
where a is a constant called the gauge parameter.

As mentioned above, physical predictions are independent

of the values of a. One often fixes a, for example, a = 1

(Feynman gauge) and o« = 0 (Landau gauge).

1.2 Quantum Chromodynamics (QCD)
1.2.1 The Lagrangian

The Lagrangian for QED is based on the Abelian local gauge
group U(l)o, where the electric charge Q is the group
generator. In an analogous way, but with the U(1l) gauge
group replaced by the non-Abelian color group SU(3), we can
develop the theory of QCD which deals with the color
interactions of quarks and gluons. Under the SU(3) group of
color transformations, three colored quarks transform as the
fundamental (3) representation and eight massless gauge

bosons calledgluons transform as the adjoint (8)



a

representation of the group. The generators T , a =
1,2,...,8 satisfy
(7*,T°] = if**°r°, (1.13)

where the structure constant r>°°

is a totally antisymmetric
tensor, and the summation on repeated indices is understood.

Thus the gauge transformation reads

v, = U ¥, U= exp(-iT*¥%), (1.14)

where ¥ is a quark field. and the subscripts i,j are color
indices that assume the values of 1,2,3, 9" are phase
angles which depend on x. The covariant derivative in the
fundamental representation is defined by

a

(D) 55 = 855 8,-ig le AL, (1.15)
and the gluon field-strength tensor is defined by
sz =3, A’ -8, Au +g £ a z AS, (1.16)
where g is the strong coupling constant.
Thus,the classical Lagrangian of QCD is given by
L=-1/4 F Fa‘“’ U baioH D, L mka”) wi , (1.17)

where the summation on k runs over all quark flavors. This
Lagrangian is invariant under the gauge transformation (eq.
1.14), provided that the eight gluon field potentials AZ
transform according to

AZ — A; + £r° abA; - % auﬁ". (1.18)

The generators T° are frequently represented by the

Gell-Mann matrices A%, which are traceless Hermitian 3.3



matrices satisfying the Lie algebra
[A 2] =2i £ A. (1.19)

A remarkable feature of the Lagrangian of eq. (1.7) is
that as a consequence of the non-Abelian nature of the
theory, it ~contains both trilinear and quadrilinear
self-couplings of the gluon fields. This self-coupling is
the main source of asymptotic freedom in QCD see eq. (1.24)
and 1s also the most crucial difference between QCD and QED.

The Feynman rules for tree-level graphs can be
deduced from the Lagrangian found in eq. (1.17).

As mentioned before, the gluon fields can be expressed in
a variety of gauges. Graphs involving gluon loops , and in
particular helicity O contributions, introduce some new
problems, which lead to a potential violation of unitarity.
Unitarity can be restored by introducing into the theory
negative metric "particles" (ghosts) which are scalars, but
which obey Fermi statistics. For a covariant gluon gauge
the contribution of the ghost must be added to every
gauge-field 1loop graph in order to obtain the correct
result. But in a physical or axial gauge, which has a more
complicated gluon’ propagator but only helicity 1
contributions, these ghosts do not appear. Such problems do
not arise in QED.

Including the ghost fields %, an effective guantum

Lagrangian (for one species of quarks) is

L=L +L_+L,+L, (1.20)



L =-1/4 szFa“V, (1.21)
o = " (a“A;)z, (1.22)
L = (aux"') Dzb x°, (1.23)
L = ot ivM D:lj -mstty yd, (1.24)

where Dzb is the covariant derivative in the adjoint

representation, defined by

ab ab abc c
=& 8 - r . .
DH u g Au (1.25)
The suffixes stand for "gauge", "gauge fixing", "ghost(FP)"

and "fermion" terms respectively. The above Lagrangian of
eqd.{(1.20) forms the basis of QCD (for one species of quarks).

The general set of Feyvnman rules for QCD can be
conveniently derived from this Lagrangian. One finds that,
although the rules depend on the particular choice of gauge,
all physical results are gauge-invariant. So, the ghost
fields, though they must be encountered at intermediate

stages, play no role in the final results'?.

1.2.2 Renormalization

A major obstacle to the application of gquantum field
theories is that naively they predict that all physical
observable quantities such as charge, mass, etc., are
infinite. Physically, these infinities are consequences of
naive definitions of charge, mass, etc.; Mathematically,

they arise from divergent loop diagram integrations. The

10



solution to the problem is reparametrization or
renormalization. A renormalization prescription consists,
in general, of the three following parts:
(i) Regularization

Regularization is a procedure which makes the divergent
integrals to be mathematically manageable, and has no
physical consequences. There are a variety of
regularization schemes. The most common one is dimensional
regularization, in which all the 1loop integrals are
evaluated in (4-¢) dimensions and the results are continued
analytically to £ -— 0, whereupon the divergences can be
readily identified. For example, for one-loop quark
self-energy in an arbitrary covariant gauge «, using

dimensional regularization we obtain the following results

Z(p) = -a(gl/12n")p"7 (2 -7+1+ln(4m)-1n(-p°/u’)+0(e),

p’7,5* (p)+0(e), (1.26)

where for simplicity we have taken quark mass m = 0. Here ¥
= 0.57721...is the Euler constant and u is an arbitrary mass

scale such that
2 2 €
g = goll ’ (1.27)

where g, is a dimensionless gauge coupling constant. The
new gauge coupling constant g is no longer dimensionless.

To implement dimensional regqgularization the following
definitions are needed:

a) The d-dimensional space-~time has the metric

11



gU.V = (+I-I"'I_)’

b) The Dirac matrix satisfies the anticommutation

relations
{W“JV} = Zg“v- (1.28)

¢) Tr[1] = 4 in the space of the y-matrices.

d) The integral measure is Iddk/(2n)2.

e) v, is an object which satisfies (75,7“) = 0. (1.29)
Since in dimensional regularization nothing has been
violated except that space-time is not 4-dimensional, all
the physical requirements are preserved. Hence, this
regularized theory 1is Lorentz invariant, gauge invariant,

13,14 . . .
. In this sense dimensional

unitary, etc.
regularization is the most suitable renormalization for

gauge theories.

(ii) Renormalization Scheme

The prescription for subtracting divergences in Green
functions 1is called the renormalization scheme. Two
different renormalization schemes are always connected ny a
finite renormalization.

Let us consider the quark propagator S”(p) with m = 0,

= - u 2
8,,(p) = -8 /p ¥ [1+0(P") ], (1.30)
where
o(p°) = T'(p) + 0(g,), (1.31)

with terms of order ¢ set equal to zero, and use of

12



ed.(1.26) has been made to write eq. (1.30).
We renormalize S”(p) by a multiplicative factor 2,

-1
S,,(P) = 2;' S, (p). (1.32)

we expand Z_ inpowers of 9, and write
4
z2,=1-2,+0(g,), (1.33)
with z, the term of order gz which 1is assumed to be
divergent. Substituting eq. (1.33) for z, in eq. (1.32) and

using eq. (1.30) we obtain to order gs,
s, . (p) = -8 /Pty [1+0(p%)-2] (1.34)
Ri} 1) u 27" '

Since SR” is the renormalized propagator, it should be
free of divergences and hence cr(pz)-z2 has to be finite.
Thus the divergence in cr(pz) should be cancelled by that of
z,- This requirement determines the constant z, up to a
finite addive constant. In order to fix this arbitrary
finite constant in z,, We need an additional requirement
which sets up a renormalization scheme. There are a variety
of renormalizati-n schemes depending on the choice of the
above additional requirement. For example,

a) On-shell subtraction: Z, is determined on the mass shell

of quarks, i.e., by the condition
S (p) ~ & /(m-p“'y ) for p“w ~ m. (1.35)
Ri ) 1 U u

b) Off-shell subtraction (or MOM): we require that

- H 2 L o2
Sy (P) Su/p ¥, forp A < 0. (1.36)

c) Minimal subtraction (MS):

13

S . -



2)3.

z, = -a(g/12m (1.37)

Note here that this scheme may be converted to the MOM scheme by
setting A® = 4ne' Yy,

d) Modified minimal subtraction (MS):we require that
2, = ' (p) - 1. (1.38)

The above four different renormalization schemes provide
different forms for the renormalized propagator. In
general the form of the Green functions varies from scheme
to scheme.

Whether an interaction is renormalizable or not may be
determined by power-counting (see, for example, [7]). For a
renormalizable interaction, we have to redefine the coupling
g, mass m, and all fields (wave- functions) AL, x‘:, x; and

Y, for example, by

a a a - = a = =1
Au = Vz3 Ar“, X, , = ¢z3 X 0,00 Y »/zzw, (1.39)

g=2 g, a=Zaa, m=mer, (1.40)

and then remove divergences order by order through
subtracting counter terms which contain divergent pieces.
Here, in egs. (1.39) and (1.40), the subscript r denotes a
renormalized gquantity.

QCD theory is renormalizable, which can be rigorously
proved (see, for example, [7]).

Starting with eq.(1.29) after applying egs. (1.39) and
(1.40), we obtain the renormalized Lagrangian for QCD as

follows

14



L =

where Lr

if the quantities A;, x

L +L, (1.41)

r c
is precisely equal to the Lagrangian of eq.(1.20)

1 o¢ ¥/ 9, @ and m are replaced by

the corresponding renormalized ones respectively. The

couter-term Lagrangian L is given by

L =

Here, the

_ _av 1 a _ a HyaV__V,all)
(2,-1) 7(8,A] -8 A" ) (8"A -5 A
‘_ PR VIR -1 a - =1, . M - i
+(2,/-1)1(87%]) (8,25 )+ (2,1 (49" 8, -m ) Y
-1 i
-(Zzzm_l)mr wr wr

- 3/72_ 1 abc a _ a bl ,cV
(ZqZ3 1)2 gr f (8“Arv 8VA”1) Ar Ar

- 2g2__\1 2 abe cde a b cd ,dV
(2:2,-1)7 9 f A S S N

[+

1pl72_ . abc M a b
-(ZgZ3Z3 1) 1 g, f (8 xlr) X, Aru

172_ <1 a2 m ot oLa
+(22,2.%-1) g 9 T "yl A (1.42)

renormalization constants,za,zs,zz,zm and Zg should

be determined by adjusting L so as to cancel overall

divergences appearing in higher-order Feynman amplitudes.

Of course a suitable renormalization scheme is to be chosen

to carry

out this process.

The renormalized Feynman rules for QCD may be derived from

eqg.(1.41).

1.2.3.Renormalization Group Equation (RGE)

In subtracting the divergences we inevitably introduce an

N - ] . +
arbitrary mass scale u. Therefore, renormalization is

15



u~dependent. For example, the truncated connected Green

function I

(pl:m,g), which corresponds to the Feynman
amplitude, can be written

{n)

_ ?ﬁ m -n/2 (n)
FB (pilmBlgBIA) = [Z¢(“r 19) ]

r™(p,img), (1.43)

where A is some parameter such that the result is finite as

A—x, The subscript ¢ shows corresponds to the ¢‘ theory

which is used here for simplicity, B denotes "bare", and P,

represents the set of n particle momenta. The arguments of

Z¢ have been written as ratios, since Z¢ is dimensionless.
If u change to u’, then I''™ change to I''"’,

, ' )
I"(") = z(u ,u)l"(n , (1.44)

where z(u',u) = [Z,(K)/24(1") 177, (1.45)

which is finite since the divergent part in 2(u’) is
cancelled out by that of 2(u) owing to its multiplicative
nature. Eg.(1.45) defines a set of finite renormalizations
{z(u’',u)) for varying renormalization scales p’ and u. This
set is, in fact an Abelian group, called the renormalization
group. Physics 1is invariant under the renormalization
group. This renormalization symmetry is the basis of RGE
which is a differential equation expressing the response of
Green functions and parameters (e.g.,coupling constants and
masses) to the change of the scale p. In the present case,
the RGE can be obtained by differentiating eq. (1.43) with
respect to u,

dm 8 {n)

3 8 _
(hgg + Ba;" ny + ugy m) =0, (1.46)

16



where

u

-1,d _
5 24 (qa2¢) = 3 an (1.47)

B=ug—3, 7 =
The quantities f and 7 are, in fact, finite as A—w» and,
since they are dimensionless, do not depend on u after
taking this limit; so that g = B(g) and ¥ = 7v(9g).

Introducing a scaling factor for the momenta, o, so that
by varying o the momenta can be taken to arbitrarily large
values, for the massless case (since QCD is massless) we

obtain the following solution for eq. (1.46)

r' (o pig,u) = " "Fr™ (p :§(g,t) 1), (1.48)
where t = 1ln o, 5 is the value of g at t = 0 (or ¢ = 1),

F = exp{-nf, ¥[g(g,t’)] dt’}. (1.49)

Egqn. (1.48) is a powerful result; it relates the value of

(n)
r

, evaluated at a momentum scale op, but with the latter
computed using the effective coupling constant g.

In QCD the situation is somewhat more complicated,
novertheless, features similar to those of the ¢° theory
emerge. A similar RGE is found, but it has two 7-functions,
e and Tpr for the quarks and gluons in the fundamental (F)
and adjoint(A) representations respectively.

1.2.4. Coupling Constant

Using the RGE we can obtain the coupling constaint. For

example, for the effective ggg vertex coupling 5, we have

17



g°(@%) = §° () /11+2a &7 (u®) 1n(Q°/u?)), (1.50)

where A is calculable, Q° = -q2 with g denoting the gluon

momentum.
The evolution of the coupling constaint depends critically
on the form of B. At the one-loop level, calculations give

the fol lowing15 :

QED: B = +(e’/1zn°) + 0(e®) (1.51)
¢4: B = (3g2/161r2) + O(g3), (1.52)
QCD: B = -(g>/16m°) [11-2n_/31 + 0(g°) . (1.53)

For QED, the calculation of g is that of the vacuum
polarization term for the photon propagator. 1In QCD there
are additional propagator contributions from gluon (and
ghost) loops. Here, n is the number of quark fla rors.

The main difference between QCD and QED (or a ¢4 theory)
is that B(g) is negative (provided n_ < 17 ), and so g
decreases with increasing t, leading to asymptotic (t—w)
freedom. In this 1limit we obtain (perturbatively) the
zeroth c¢rder amplitude and, at finite t, there are
corrections to this "free particle" amplitude of the form
indicated by eq. (1.48). The evolution of g with some large
scale Q2(=02u2, with g = g for o = e'= 1) 1is given by

eqg.(1.50). With the aid of eq.(1.53), we find
2
A= 30/3211 ¢ B, = (33-—2nf)/3. (1.54)

It is customary to quote the QCD coupling constant in terms
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of a, = 62/ 47t From (1.50) and (1.54) we obtain the

leading order expression
as(Q"’) = 12n/[ (33—2nF)1n(Q2/A2) 1, (1.55)

where the scale A is defined by A = u exp {-4m/[BJ%(u2)]},
whose value is determined from experiment. In addition, A is
no. the same in the different renormalization schemes, and
roughly Amm/AEV%MS ~ 5.5/2.7/1.0. Eq.(1.55) is valid for

Q2 » AZ.

1.3. Standard Electroweak Theory (GWS Model)
1.3.1.The SU(2)xU(1) invariant Lagrangian

The standard theory of electroweak interactions is based
on the gauge group SU(2)xU(l) and 1is known as the
Glashow-Weinberg-Salam (GWS) model. Glashow originally
unified the weak and electromagnetic interactions using this
gauge groupm, and Weinberg and Salam showed how the weak
gauge bosons could acquire their mass without
destroying the renormalizability of the theorylmie.

The group SU(2)xU(l) has four vector fields, three
associated with the adjoint representation of SU(2), which
we denote WL with + = 1,2 3, and one with U(1) denoted by

B“ The covariant derivative is defined as

_ , 1 .y
D = au+1g T1 W + ig

u M (1.56)

where g,g’ and T“Y/z are the couplings and generators of

the SU(2) and U(1), respectively. The 7t satisfy the SU(2)
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algebra

[T,.T] = ie T, (1.57)
where ) is the antisymmetric permutation tensor. Y/2
satisfies

Q = T +v/2, (1.58)

where Q is the charge operator, and the factor 1/2 is purely
conventional. T‘ and Y are referred to as the weak isospin
and weak hyper-charge generators, respectively, and their
eigenvalues for fermion fields are listed in Table 1.

Table 1 Weak isospin, hypercharge and electric charge

values of left- and right-hand leptons and quarks

L T3 Q Y R T3 Q Y
v, 1/2 0 -1 v, 0 0 0

e -1/2 -1 -1 e 0 -1 -2

u 1/2 2/3 1/3 u, 0 2/3 a/3
a’ -1/2 -1/3 1/3 a’ 0 -1/3 -2/3

c, 1/2 2/3 1/3 c, 0 2/3 a/3

Parity violation is incorporated by assigning the left- and
right-handed components of the fermions to different group
representations. All the left-handed ‘ermions are taken to
transform as doublets under SU(2), while the right-handed
fermions are singlets. For example, the first generation of

leptons and gquarks belong to the SU(2) multiplets
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[“),e;,[“], u, d (1.59)

e a’

and so the SU(2) generator act as follows:

1
TY =T Y, TY <o (1.60)

where the T, are the 2x2 Pauli matrices,

1 5 )
b = S0, Y = S(1-r0) Y, (1.61)
The d and s quarks occur in the multiplets in the "rotated"

form

dl

d cos? +s sinﬁc,

s’ -d sinﬂc+s cos®_, (1.62)
where 9 is the Cabibbo angle (see section 1.3.4). The data
give sim?c ~ 0,22. Similar assignments are made for the
other generations of fermions like vu,u',c,s'.....

The group structure permits an arbitrary hypercharge
assignment for each left-handed doublet and each
right-handed singlet, and so we have chosen Y to give the
correct electric charges according to eq.(1.58). Evidently,
charge quantization must be put in by hand in this
SU(2)=xU(1) theory. The local ©phase transformations

corresponding to the weak hypercharge (Ul) and weak isospin

(Uz) are
U, = exp[-ig'38(x)], U, = exp[-igi-a(x)], (1.63)

where U1 and U, correspond to the U(l) group and SU(2)

group, respectively. The combined SU(2)xU(1) transformation
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U=uy = exp(-i[gg-a(x)+g'§ I 9(x)]). (1.64)
With the inclusion of the gauge boson kinetic energy

terms, the SU(2)xU(1) invariant Lagrangian takes the form

— F oM, -“'_11
L1 = ;[fLw (1Du)fL+fR7 (1au g 2B“)fR]

- Lyl wHv. 1g gV
; W, W= B, B, (1.65)

where the sum 1is over all left- and right-handed fermion
fields (fL and fR,respectively). The corresponding gauge
transformations are
wH = wt + gt + 8H3, (1.66)
B'H = " + ats. (1.67)
The field strength tensors of the SU(2) and U(l) gauge

fields are given by

i k

- v v 3
Wy, = 8,W, -84 -ge W W, (1.68)
B, = 9,8, = 8,8, (1.69)
1.3.2.The Higgs Mechanism
The Lagrangian (1.65) describes massless fermions. This

is not a realistic theory. Therefore, we must modify it so
that gauge-bosons and fermions become massive and the photon
remains massless without destroying the renormalizability of
the theory. To do this, we introduce elementary scalar
(Higgs) fields ¢. We have to add to L the following two

Lagrangians for the scalar fields. The first term is
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L, =L + L, (1.70)

where LD = (Du¢)*(Du¢), (1.71)

which is produced by gauge-invariantly coupling ¢ to the

gauge bosons through the covariant derivative Du: and

L, = -V(¢) with v(¢) = -u*(¢"4)+a(s"9)%, (1.72)

Note that L contains a self-interaction between the Higgs
fields. Here A must be positive for V(¢) to be bounded from

below. The second term is

L= - G[(9) v, + U (¢) ¥ ] (1.73)

3
which couples ¢ to the fermions through so-called "Yukawa"
couplings.
To keep L3 gauge invariant, ¢ must belong to a SU(2)xU(1)
multiplet. The most economical choice is to arrange ¢ in an

isospin doublet with Y=1 and T=1/2:

¢'=r (8,+ 14,)

. (1.74)
0= (9% i9,)

¢ = ( :; ], where

with ¢i real, while the Hermitian conjugate doublet ¢*
describes the antiparticles ¢ and 60. The charge
assignments of the components of ¢ follow from eq. (1.73).
We require the coefficient of ¢*¢ to be positive. Indeed,
with p°® and 2 positive the Higgs potential V(¢) is at its
minimum when ¢'¢ = u?/2x.

We choose the minimum that has the vacuum expectation

values
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<0|¢ |0> =0, 1i=1,24,
J 2
<0|¢ |0> = v = du/A. (1.75)

The particle quanta of the theory correspond to gquantum
fluctuations of ¢3(x) about the value ¢, = v, rather than to
¢3(x) itself, that is, to

H(x) = ¢3(x)-v. (1.76)

It is therefore desirable to re-express the Lagrangian in
terms of H rather than ¢y We then find that LD and L

contain boson and fermion mass terms of the form
(gv)? wuw“ and (Gv)Py. (1.77)

By choosing the nonvanishing expectation value to be that of
the natural field ¢3, we ensure that the vacuum is invariant
under U(l)em of QED, and that the photon remain massless.

Then eq.(1.74) gives

<¢> =2 (1)- (1.78)
Because rl<¢> = 0, ¥Y<¢> = 0, (1.79)
both SU(2) and U(l)Y are broken, but

Q<p> = (T /2 + ¥/2)<¢> = = () °)() = o, (1.80)

and hence the vacuum remains invariant under u(1),, 9auge
transformations. We therefore expect three massive gauge
bosons and one massless gauge boson.

To obtain all the interactions and masses generated by the

Higgs mechanism, we need only substitute
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¢(x) = 7% ( V+LX))' (1.81)
(as in (1.76)) into the Lagrangian for the Higgs sector,
which is the sum of L, and L. We then find that of the
four scalar fields ¢’(x) of (1.74), the only one that
remains is H(x). The other three fields are spurious and we
can remove all trace of them from the Lagrangian. To see

this, we write ¢(x) in terms of H(x) and three new fields

0’(x), with 1 = 1,2,3, defined by
¢(x) = = explito(x)vi( .0 . (1.82)
V2 VHH(X)

The ¥, and H fully parametrize all possible deaviations from
the vacuum. Given this form, we can use the gauge freedom
to set 3 = 0. This choice is known as the "unitary" gauge.
(This choice 1is equivalent to the condition found 1in
egs. (1.75) & (1.76)). However, we cannot have just lost
three degrees of freedom as a result of spontaneously
breaking the symmetry and translating the field variables.
What has happened is that in generating masses for the three
weak bosons we have increased their polarization degrees of
freedom from 2 to 3. They can now have longitudinal
polarization, too. The phase ﬁi of three of the Higgs
fileds have been surrendered tc make the gauge fields
assive. The gauge bosons Wt, Z (see next subsection) become
massive by '"eating" three of +the ‘'"would-be-massless"
Goldstone bosons, ¢t and ivé(ftﬁo), out of the four in the

original compex doublet.
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1.3.3.The Gauge Boson Masses, Mixing, and Couplings
The masses of the gauge boson can be found by substituting

(1.78) into (1.71). The relevent term in L, is
| (ig [z, /2] w‘L‘1 + i [g’ /2] YBu)<¢>|2

2

1.2 a__, 2 )3 2,1 + . -u
=3 v (gW“ q Bu) +0 (g W“+gBu) +(2 vg) WuW ' (1.83)

+ 1 1_...2
where W = 7 (WFiWw5). (1.84)

The mass matrix of the neutral fields is off-diagonal in the
(W3,B) basis. As expected, one of the mass eigenvalues is
zero, and we have displayed this in eqg. (1.83) with the
orthogonal combination of fields to that in the first term.

The normalized neutral mass eigenstates are thus

= 3_ 2, ,2,172
z, = [gW,-9’B 1/[9"+g"")
— 13 - :
= WucosﬂH Bus1nﬂw,
3 2 2.1/2
= ‘W4 +g’
A, = [9'W+gB 1/19%+g""]

WZsinﬂw+Bucosﬂw, (1.85)

where 8, is the Weinberg or weak mixing angle, defined by

1/2 ,2,1/2

’ 4 ’ 2
cos9, = g/(g°+g’?)'"?, sing, = g’'/(g*g'H)"%. (1.86)
Thus we see that
2, ,2.1/2
M = vg, M, = 2 v(gg'H)% M=o, (1.87)
and so Mw/Mz = cosd, . (1.88)

The inequality M, * M is due to the mixing between the WZ

and Bu fields.

26




We can rewrite the fermion-gauge boson electroweak
interaction terms in L in terms of the physical fields Wi,
Z, and A in the form
,2

I/ZJJU. A

- _1 Moo+ ut - - , 2
L, =733 W, + I W )-[99"/(g+g"") enfu

-(g2+g'2)1/2J‘:cZu. (1.89)

Defining the SU(2) and U(1l) currents J, and J, by

Ko M1 R
J=9y Ty, I =9 7Yy, (1.90)
respectively, we can identify the physical currents as linear

combinations of Jl and Jv' Thus

TR G ) G
J 23 +i3th) (1.91)

cc

is seen to be the weak charge-current which couples to the

W' boson. The coupling g is therefore related to the Fermi
coupling G, by

g° = a2 M G, (1.92)

Hence, we can determine the vacuum expectation value of the

Higgs field,

v=2M/g = (‘/éc;F)"’2 = 246 Gev, (1.93)

using G, = 1.16637(2)x10"° Gev -, (1.94)
The current in the second term of eq. (1.89) is
e | S 1
Jem =95 v I, =¥ 7 Qy, (1.95)
and so by construction is Jjust the usual electromagnetic

current. Hence, the electromagnetic charge is
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)1/

e = gg'/(gz+g’2 ? = gsind, 6 = g’'cosd . (1.96)

Finally, we identify the weak neutral-current coupling to

the Z boson in Le as

W

g4 = gH

nc 3

cainl Hoo_ o2 M 1. S o .2
sin z?w Jem vy [2(1 ] )T3 sin 19H Qly

b 7 e, -c7)y, (1.97)

where cf = T§—2Qfsin2ﬂ“, cf =T (1.98)
the values of which are listed for the various fermions in
Table 2. Note that, unlike J_.1J, . couples to both right-
and left-handed fermions.

Table 2.Vector and axial-vector couplings of leptons

and quarks to the weak neutral current

£ Q c; cf
v 0 1/2 1/2
2

e -1 -1/2  -1/2+2sin"9, = -0.04

« 2
g(u-type) 2/3 1/2 1/2-(4/3)sin 9, = 0.19

2
q(d-type) -1/3 -1/2 -1/2+(2/3)51n1a‘= -0.35

(using sinvun 0.23)

It is customary to introduce the parameter

2,02 2
o MH/(M2 cos™3), (1.99)
which specifies the relative strength of the neutral-
and charge-current weak interactions. The GWS model with a

single Higgs doublet has p=1, which 1is 1in excellent

agreement with experiment.
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In the minimal model, we have

=1 =1 i —lz
MH =3 Vg > Ve(51n0u) 80 Gev,
M, =M“/cosﬂw = 90 Gev, (1.100)
using sirww = 0.23. These predictions are in excellent

agreement with the masses of the w* and Z bosons that were
subsequently discovered.

As for the Higgs particle, we have
M = 2av® = 2%, (1.101)

But the mass of the Higgs is not predicted, since neither p?
nor A is determined, only their ratio v, On the other
hand, the Higgs couplings to other bosons 1is completely
determined. For instance, we can find

g(H W W) =gM and g(HHW W) = g°/4, (1.102)

when we substitute (1.81) into L.

1.3.4.Fermion Masses, Mixing, and Couplings

The Higgs-fermion couplings give masses to the fermi ns.
For example, substituting (1.81) for the electron doublet in
L3, we obtain

e
Y

L

1 - -
_VEGe(V+H)(eLeR+ eReL)

- 1 -
-me(ee) -y me(eeH), (1.103)
revealing that the electron’s mass and coupling are

m, = gm_ / 2M,,. (1.104)

<[

- 1 = -
m, = VGGeV’ and g(eeH) =
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Since G is arbitrary, the mg not predicted, but its Higgs
coupling is specified and, being proportional to m, / M, is
very small,

The quark masses (and couplings) are generated in
analogous manner. However, eq.(1.81) gives a mass only to
the lower member of the fermion doublet, and to generate a
mass for the upper member we must construct from ¢ a new
Higgs doublet with a neutral upper member, viz.,

=0

¢ = it ¢ = ( _g_

) 1( V'Hl(X)).

breaking V2 0 (1.105)

Owing to the special properties of SU(2), ¢_ transforms
identically to ¢, but has opposite weak hypercharge,
Y(¢c) = 1. The most general SU(2)xU(1l) invariant Yukawa

terms for the (u,d) gquark doublet are then
u . ¢! - 0’
L = - rsd(u,a)L ( ¢o) a - Gu(u,a)L( _¢-) u + h.c.,

which, on substitution of (1.81) and (1.105), reveals that

the mass and ggH coupling terms are

= - 3 0 R
LY = (nhdd + n%uu)(l + V), (1.106)

where m o= ;%qu, and h.c. denotes hermitian conjugate.

We must dist i nquish carefully between the gauge
interaction states, which we have denoted by d’, s’, etc.,
and the mass eigenstates of a given flavor 4, s, etc. (for
which we will here use the notation d=d1, s=d2, and so on),
because there is mixing between quark fields of the same

charge. Suppose there are N quark doublets “ﬂ'dﬂ with
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1=1,2,..., N corresponding to the different generations of

quarks. The Yukawa terms can then take the form

= - ] d ’ ] u ’ ﬁ
L (a“_MU djR + u“_MU uJR) (1 +2) + h.c., (1.107)

where in the gauge eigenstate basis, q’, the qgquark mass
matrices M® and M' need not be diagonal, or indeed symmetric
or hermitian. However,each matrix M can be made real and
diagonal by making suitable unitary transformations, UL and
U, of the 1left- and right-handed components of the
appropriate quark fields, respectively. Thus for the u type

guarks we take

o u - u

u, = UL u, u, = UR u, (1.108)
and similarly for the 4 type quarks, such that

-'-

U MU =m, (1.109)

L R

where m is a diagonal matrix that has positive mass
eigenvalues. For M' these eigenvalues are mu,mc,...,and
similarly on diagonalizing M we get M, M, «uue

It is apparent from (1.107) that the Hgg couplings are
diagonalized simultaneously with the quark masses, and that

they are

g(Hqq) m, /v = gm, / M. (1.110)
Moreover, it is evident that the neutral currents, which
were flavor-diagonal in the interaction basis (qi), remain

flavor-diagonal in the masis basis (ql) , since for, example,

= M = n u Mo = 1 u
urtu u ULW Ul_uL uru. (1.111)
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So, in the minimal model (with a single Higgs doublet and
with the dguarks arranged in doublets) there are no
flavor-changing currents like d—s.

However, there exists mixing in the charged-current in the

mass basis:

u o=, My, _ - 9} u, ..d
Jee W7 =u 7 (UFU) 4
- - M T
= (u,c,...)L v (d,s,...)L, (1.112)
where T denotes transpose, V = Uﬁ-Ui is a unitary NxN

matrix that can be determined by observing flavor-changing
weak processes.

A unitary matrix V has N? real, independent elements, but
of these (2N-1) phases can be absorbed into the definition
of the 2N quark fields g Lof different flavor and so are

unmeasurable. The matrix V therefore contains
2 2
N"=(2N-1) = (N-1) (1.113)

observables. Now an orthogonal NxN matrix has only N(N-1)/2

real parameters and V must also contain
(N-1)%-N(N-1) /2 = (N-1) (N-2) /2 (1.114)

phase factors. So, it is not possible, for the case of
N > 2 to make V real by redefining the quark phases.

The (N—l)2 parameters of V have to be determined empirically.
For N=2 we have only one parameter, the Cabibbo anglew.

Hence
cosdy sinyg
C

u
( -sim?c cosﬂC ) ) (1.115)

= .9 + e
Lcc = 75 WIJ- (ulcr)LV
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Since the coupling constants are all real, the lagrangian is

CP conserving. For N=3

Vud Vus Vub ad
Lcc = —Vg WL (ﬁ,é,f:)J“ Ved Ves Veb s + h.c
Vtd Vis Veb b

(1.116)
The matrix V has four parameters; three rotation angles CA
(i=1,2,3), and one phase §. This matrix can be written in

the form (KM)Z®°

C s C S S

1 1 3 1 3
_ ) _ . + ,
\Y s,C, €,C,C ~ S,S exp (id) C,C, S, szc3exp(16) ’
_ _ . _ + ,
s, s, ¢ s.c. czszexp(za) c,s,s, czcaexp(ls)
(1.117)
where c, = cosY and s, = sinﬂ’. CP invariance implies

V=V', thus & is the phase that measures CP violation.Hence
CP violation can be described by the standard model with
three generations. Note that there is no CP violation in
either the electromagnetic or weak neutral currents.

The KM matrix (1.117) can be obtained by the following

product of three rotational and one phase matricesm;

1 0 0 c, s 0 1 0 0 1 0 o©
V= c2 52 -s1 c1 0 0 0 0 c3 5
0 -s ¢ o o0 1 o o ei° 0 -s ¢
2 2 3 3
(1.118)
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Other parameterizations of V exist®®?.

The Lagrangian of the Higgs coupling to a lepton pair for
three generations of leptons can be formulated in a similar
way to that for quarks allowing, in general, for transitions
between generations. The resulting consequences include the
possibility of neutrino oscillations. We assume here that
the weak and physical bases of the leptons are the sane
(this freedom exists provided the neutrino are massless), so

that

L = =(1 + 3)(21 m

" 11y, (1.119)

1
where l=e,u,t,ve,vu,vt. Here we assumed the existence of a
right-handed -~ unlike the GWS model. Note that each mass
term in (1.119) 1is arbitrary, and thus represents an
additional parameter in the standard model.

The standard model contains a considerable number of
parameters:g,g’,mH,A,ZN quark masses and (N—l)2 mixing
angles and phases for N quark generations and a similar
number for N lepton generations if the neutrino masses are
taken to be non-zero. Thus we have, in total,
2(N%&)+4 = 2N°+6 parameters. For N=3, this means that we
have a total of 24 free parameters (or 17 if we assume
massless neutrinos). Of these only two (g and g’) are not
associated with the Higys field. Hence the introduction of
a fundamental scalar solves the mass generation problem only

at the expense of introducing many arbitrary parameters.
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1.3.5.The Final Lagrangian
The complete Lagrangian is

1 Y

_ 1 w1 T T = M. Y
L A . B, +L 7" ip L +Re" (18 -9'S B)R
+ |113u¢|2 - V(¢) - (6,I¢R + GI$R + h.c.). (1.120)

The standard GWS model is renormalizable, so that meaningful
perturbative calculations can be carried out. The important
proof that the theory is renormalizable (using the general

R. rather than the unitary gauge) was given by ‘t Hooft?,

3

More details on this topic <can be found in, for

example Talor?.
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Chapter 2.

Left-Right Hand Symmetric Model and CP-Violation

2.1.The Chief Limitations of The Standard Model

Although the standard model of the particle theory is a
great success (indeed there no confirmed experimental
results that contradict it), it contains undoubtedly some
theoretical deficencies. 1Its chief limitations are 1listed
briefly as follows:
1). It does not include gravity.
2). The gauge group SU(3)CxSU(2)xU(1)y is a product of
three disconnected sets of gauge transformations, and hence
has three independent coupling constants, o, g and g’'. It
offers a glimpse of unification in the breakdown of
SU(2)><U(1)Y — U(1)0, but this does not take us very far, or
in another words, it is not really unified theory.
3). It is strange that one of these factor groups, SU(2),
distinguishes between left and right handed states. Thus
both the P- and CP-violation are put in by hand, and hence
no deep insight is gained into the origin of CP- violation.
4) ., The Higgs mechanism, which is crucial to the success of
the standard model, requires an inelegant and arbitrary
addition to the Lagrangian.
5). The theory offers no explanation for family
replication. The old question of "who ordered the muon",
has changed into why are there three (or more) families, but

it still remains unanswered.
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6). Related to the above (5) is the origin of the
parameters in the mass matrix. The number of free
parameters in the standard model totals 19 (including AQCD
and 9, for more details on the latter, see, for example,
[15, 27]) for three families of fermions. There will be
even more parameters if the neutrinos have finite masses and
mixing. So many parameters make a theorist uncomfortable.
Although the question of how many free parameters one should
"expect" in the theory of everything belongs more to
philosophy than to physics, the object of physics is to
explain as much as possible with as little arbitrary input
as possible. Hence, any model that might explain or relate
some of the above parameters is worth considering.

It is reasonable to conclude therefore that the standard
model can not be the final theory and we must loock beyond it
for answers to these questions. Several avenues have been
explored in this search for physics beyond the standard
model: Technicolor, Supersymmetry, Compositeness, Grand-
unification and Left-Right Symmetry. Each approach
addresses a particular aspect of this search and is not
necessarily in conflict with the others. In what follows
our attention will be concentrated on the left-right

32 which has been the focus of a great

symmetric theories
deal of theoretical as well as experimental activity in

recent years.



2.2,Why Left-Right Symmetry?
The original motivation for the introduction of left-right

. 30,31
symmetric models

based on an SU(2)LxSU(2)RxU(1) gauge
group was to provide an understanding of the origin of
parity violation in weak interactions. According to this
point of view, the weak interaction Lagrangian prior to
breaking of gauge symmetries respects all spacetime
symmetries, as do the other forces of nature - the strong,
electromagnetic and gravitational interactions. The
observed parity violation at low energies is then attributed

. . 30,31
to non-invariance of the vacuum '’

under parity. The most
interesting feature of this scenario is that it reproduces
all the features of SU(2)3U(1) models at low energies and
as we move up in energy, new effects associated with the
parity invariance of the original Lagrangian are supposed to
appear.

There exist several other considerations having to do
with the weak interaction that find their place naturally in
a left- right symmetrical model rather than the stadard
model. Foremost among them is the neutrino mass. We do not
know whether the neutrino has a mass. Laboratory
experiments involving tritium decay, which indicate end
point behavior of the decay spectrum characteristic of a
non-vanishing neutrino mass are controversial. There exist

. . ; 33,34
astrophysical considerations

having to do with missing
mass of the universe, galactic clusters and galaxy formation

etc., which are easily understood if the neutrino has a
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non-vanishing mass in the electron volt range. The most
natural framework to understand a non-zero neutrino mass is
the left-right symmetric models.

Secondly, if weak interaction symmetries are to arise out
of a more fundamental substructure of gquarks and leptons,
and if the forces at the substructure level are assumed to
be similar to those operating in nuclear physics, i.e. QCD,
then, convincing arguments exist%, which imply that
SU(2)LxSU(2)RxU(1)B_L rather than SU(Z)LxU(l) is the weak
interaction symmetry group.

Another deficiency of the standard model is the lack of
any physical meaning of the U(1)Y generator, which in the
left-right symmetric models becomes the (B - L) quantum
number>°. All the weak interaction symmetry generators then
have a physical meaning. As if suggesting a deeper symmetry
structure in the SU(Z)LxU(l)Y model, the only anomaly free
quantum number left un-gauged by the Standard Model is B - L
and once B - 1L is included as a gauge generator, the weak
gauge dgroup becomes SU(Z)LXSU(Z)RXU(l)Bd. and the electric

charge is given by36

(2.1)

where B and L are the baryon and 1lepton numbers
respectively. Finally, we have to consider the status of
CP-violation in gauge theories. It is interesting to note
that in the standard model, three generations are required

in order to have nontrivial CP-violation and CP-violation is
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parameterized by only one phase, anu’ the Kobayashi-Maskawa
phase. But the model provides no hint as to why the
observed CP-violation has milli-weak strength. The
left-right models provide a more appealing alternativexn
where the smallness of CP-violation is related to the

suppression of V+A currents, i.e.,

(W) (W) 2
n, = M7/ M7

-

sind. (2.2)

If both parity and CP-violations owe their origin to
spontaneous breakdown of gauge symmetries, eq.(2.2) can then
be proved3%38, for three generations and becomes valid

regardless of the contribution of the Higgs sector.

2,.3.The Standard Left-Right Symmetric Model (L-R Model)
Spontaneous P and CP violation together with the minimal
number of two scalar doublets lead directly to the standard

L-R modelamqo

with gauge group SU(Z)LxSU(Z)RxU(l)B_L.

A brief summary of CP-violation in this model is given
below. For more details, see, for example, references
[28-31, 41, 42].

The Standard L-R model is based on the gauge group
SU(2M}SU(2)§dM1)B_L with quarks and leptons being assigned
to irreducible representations of the gauge dgroup as
follows:

The gquantum number  assignments for Fermions 1in

SU(Z)LxSU(2)RxU(1)B_L are as follows:
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L d .
u 1 1
QR=(d)n (0, 5+ 3)
WL = ( v_ ) (';' 10, =1 ). (2.3)
e L

where the family index on the Q and ¢ has been omitted.

The gauge invariant Lagrangian for Q and ¥y has the form
_ig4 (5 ;
L=739 {Q Wu? Q tY, Wu? wL} ﬁL ’

Lo, Qoo+, v, Ty W, (2.4)

+ =
2

o' 7, V) B,

1o [

+(;9 07, Q-

where WL, WR and B are the gauge bosons corresponding to the
groups SU(2)L, SU(2)R and U(l)B_Lrespectively; ? are the
Pauli matrices.

We now require that the theory be invariant under parity

operation, P under which fields transform as follows:

W oo . (2.5)

v R ' 'L R

LHwR and QL > Q

This requires that g, = 9, reducing the number of arbitrary
gauge coupling constants to two as in the standard model.

The electric charge formula (eqn., 2.1) then implies that,
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1 _ 2 1
e g g
where g = 9, = 9 Therefore, as in the standard model, we

can parameterize g and g’ in terms of two parameters: the
electric charge of the electron, e and the Weinberg angle,

sim?w, with
.2 2 2
sin®s = e / g (2.7)
From egqns.(2.6) and (2.7) it follows that
,2 2
g° =€ / cos2d, . (2.8)

In order to break the gauge symmetry down to U(1)em and to
maintain left-right symmetry, we must <choose Higgs
multiplets, which are 1left-right symmetric. There are
various ways to achieve this goal. In the early days of the
development of the left-right symmetry, the breaking of the

28-32, 41

gauge symmetry , Wwas implemented by choosing the

Higgs multiplets:

N =

X, (5010, (0,5,1) and ¢ = (3,7,0) (2.9)

43,44

In 1980, it was shown that, in order to understand the

smallness of the neutrino mass, it is preferable to

introduce the following set of Higgs multiplets:
A= (1,0,2); A = (0,1,2) and ¢ (%,%,0). (2.10)

In what follows, we will work with the second set of Higgs

multiplets. The conclusions concerning CP-violation will be
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independent of this choice.

The gauge symmetry breaking proceeds in two stages. In
the first stage, the electrically neutral component of the
AR-multiplet denoted by Ag acquires a vev:

<Ag> =v, (2.11)
and breaks the gauge symmetry down to SU(2)L><U(1)Y where Y/2
= JGR + (B-L)/2. The parity symmetry breaks down at this

stage. The second stage of the breaking is caused by the

electrically neutral components in ¢. Writing ¢ explicitly

as
o}
% 4
¢ = [ . 0 J, (2.12)
¢, ¢,
we choose the vacuum expection values of ¢ as:
- k 0
<gp> = [ 0 k' ] (2.13)
with k, «k’ « V- This choice of <¢> breaks the gauge

symmetry down to U(l)em. Here we have chosen k and k’ to be
real for simplicity.

At the first stage, the charged right handed gauge bosons
w: and a neutral gauge boson zZ, acquire masses propori:ional
to v and become much heavier than the usual left-handed Wf
and zi-bosons which pick up masses proportional to k and «k’
only at the second stage. In general there is mixing

between the different gauge bosons. W W and B mixing

L’
is described by a 3x3 mass matrix. The 2x2 charged gauge

boson matrix is given by
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+ +

W W
L R
g2 2,2 2 2
W = (k+k’ "+2v) Kk’
L ( 2 ( L 9 ), (2.14)
- 2 g 2 2 2
W kk’ = (k +k’ “e2
R g 3 (x "+ + VR)

where VL denotes the vev of Az which is much smaller than

K,k’. The eigenstates of this matrix are

W1 = WLcosc + WRs;an,
W2 = - WLsmc + WRcosC, (2.15)
where tanf =~ kk’ / Vi. (2.16)

We will assume in what follows that k' « k, so that the
mixing parameter { is very small (i.e. W= W and W, = W
to a good approximation) and the masses of Wl’2 are given by
m?(w ) = gz(k2+k'2) ;o mi(W) = gz(kz-vk'zozt’z) . (2.17)
1 2 2 2 R
The charged current weak interactions can be written as

(suppressing the gereration indices)

cc _ g y + g9, - +
L —‘/E(uLarudL + VL'arut-:eL)wL +\/£(un7udn + vR'arMeR)WR
+ kKWW 2
g KK WLWR + h.c. (2.18)

It is clear that for m(w;;) » m(w:), the charged current weak
interactions will appear to be almost maximally parity
violating at 1low energies. Any deviation from the pure

left-handed (or V-A) strcture of charged weak current will
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constitute evidence for the right-handed currents and
therefore a left-right symmetric structure of weak
interactions.

The mass matrix for the neutral weak bosons WmJP%R and B

is given by

W W B
aL 3R
2 2
g 2 12 2 g 2 ,2 7 2
= (k +k’ +4 -= (k + ) -2 14
a | 3¢ V) 2 (kK 99 ¥y
P 2 ,2 .2 2
- —-% (k°ex’ ) 2 (k ax’ vy 209’V
4
2 2 2 2
-299’V 3g' TV V)
B 997 9 WV *Vp

(2.19)
In the approximation of v, o« K, K’ « Voo the eigenstates of

this matrix are given by:

A = 51nﬂu(wu.+ w“) + VcostSH B,

Z1 = cosﬁw waL - s:.m&w tam9w w3R - tanﬂu\/coszﬂu B,
z, = [\/coszﬂw /cosﬂw] W, - tarn?w B, (2.20)

with masses:

m =0, “F(Zx) = (gz,/ 20050")(K2 + K'Z), and

mz(Zz) = 2(q° + g’z)vs. (2.21)
The field Au corresponds to the photon. Note that m(wL) and
m(Zl) satisfy the mass relation m(wL) = m(Zl) cosd, of the
standard model. The interactions of W and Z, also reduce
to those of the standard model in the limit of m(WR) and

M(Z) — o. The interaction of 2, and 2, is given as

follows:
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g

L = Z. (3
WK cosﬁw e

.2 2
cw'n(snx 0“ JLu + cos 19" JR 1]

u M

9
.2 2
+ Z_ (sin™ J + cos™_ J_ ),
coss,z?w VcosZﬁH 2l "o ¥Rl
(2.22)

= .2
where JL’R uc Zit f17“(13L,R - Qsin 19H]f‘. (2.23)
I, denotes weak isospin, 71 = [m(WL)/m(WR)]Z and c_ is a

parameter depending on the Weinberg angle and is of order
1/4. i is the generation index.

We are now ready to discuss the bounds on the masses of
the W, and Z 2 bosons as well as the left-right mixing
parameter (. The most model independent limit is on the
mass of the Zz-boson. This 1is obtained by analyzing
neutrino neutral current data, where one searches for
deviations from the predictions of GWS model. The present
experimental accuracy in the neutral current data implies
that®®

M(z,) = 275 Gev. (2.24)
To obtain limits on m(WR) and {, an obvious thing to do is
to look for deviations from the predictions of V-A theory
for muon decay. The most stringent limits at this moment
come from the measurement of the £-parameter in u-decay at
TRIUMF*® using 100 % stopped polarized muons and the limits

are:
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m(wR) z 400 Gev for arbitrary (

{ = 0.041 for m(W) — o. (2.25)

In general these two bounds are correlated and one gets
elliptical regions in the m(WR)—C plane which give the
allowed and forbidden values for the above parameters.

For values of the right-handed Majorana neutrino mass
close to but larger than the mass of the muon, the above
analysis does not shed 1light on the strength of the
right-handed current interactions and one must look at weak
processes involving only hadrons. There are two methods of
approach. In one procedure K — 31 decays are analyzed47 to
search for deviations from current algebra results for K —
3n decay parameters such as the slope in the Dalitz plot in
the presence of right-handed currents. It is found that,
making plausible assumptions about hadronic matrix elements,

one can obtain®’
m(W ) = 325 Gev and { = 4x10°°, (2.26)

In obtaining this bound as well as the bounds from the
nu-decay, it is assumed that the quark (and lepton) mixing

angles in the left- and right-handed charged currents are

equal. It must be also be emphasized that the bounds in
eq. (2.26) are more model dependent than the ones in
eq.(2.21)

In the second approach, Beall and others'® observed that a
much more improved bound on m(wR) can be obtained by

analyzing the contributions of the right-handed currents to
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KI-K2 mass difference. For the case of equal left- and
right-handed mixing angles, the following result is

obtained:

[m(W,) / m(W )1 < o35 or m(W) = 1.6 Tev. (2.27)

2.4.Fermion Mass Matrices and CP-Violation

In gauge theories, the primordial gauge interactions are
always CP- conserving. From discussions of the standard
model, we know that CP-violation can arise either from
intrinsically complex coupling parameters involving Higgs
fields (such as Yukawa or ¢4-type couplings) or from complex
vacuum expectation values of the Higgs fields in the theory.
The former case is generally labled as hard CP-violation.
The term Soft CP-violation is not only used for the latter
case but also used to describe situations where a
dimensional coupling is complex in a gauge theory.
Accordingly, CP-vioclation in L-R models can also be devided
into two categories: 1.Hard CP-violation and 2.Soft
CP-violation.

The first step in discussion of CP-violation is to obtain
the mass matrices for quarks and leptons: nﬂh%, for up and
down quarks respectively and b&,MV for charged lepton and
neutrino sectors respectively. The mass matrices are a
combination of Yukawa couplings and nontrivial phases in

vev’s of Higgs field. The Mu and M, are then diagonalized
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by choosing a new basis for quarks:

S +t
UMV =D and VMV  =D. (2.28)

substituting these in the charged current weak interactions

given in egn. (2.18), we obtain

c

c _ g,= - + g,= - +
L —ﬁ(pLWMUNL + VL’a‘uKLEL)WL +‘/2-(pR',)"“LVI\1R + VR})VMKRER)WR

+ h.c. (2.29)
where
P = (uc,t,...), N= (d,s,b,...), v = (ve,vu,vt,...)‘
¥ ¥
E= (e,,T;..), U= ULVL, vV = ULVL. (2.30)

The forms of KL’R are more complicated and depend on whether
the neutrinos are Dirac or Majorana particles. Note that if
Mu.d are complex then U and V are unitary matrices with
complex phases in them. This leads to CP-violation in weak
interactions. The question of under what conditions these
complex phases can arise and when they are genuine depends

on the properties of the Yukawa couplings under parity and

CP operations

2.4.1. Constraits of Parity Invariance on Yukawa Couplings
The Yukawa couplings, hab and Eab, for quarks can be
written for the case of a single Higgs field of type

¢(2,2,0) as follows:
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- o

Wt f)abQLaq& Q.1 + h.c. (2.31)

where ¢ = T_ ¢ T (2.32)

2
and a and b label the generation indices. To study
constraints of parity invariance”, let us define the parity

transformation of quarks and Higgs fields as follows:
P: Q < Q and ¢ — a¢" + B3, (2.33)

Substituting eq.(2.33) in eq.(2.32), we find that in order
for the theory to be parity invariant, we must have

hA + hB "= n' ana mB + BA" = B! (2.34)

Applying these transformations to the kinetic energy term

for ¢ , we find that its parity invariance implies

|A]? + |B|® = 1 and AB = 0. (2.35)
In other words, either (a) A = ela, B=20, or (b)) A=20, B=
el®. 1In case (a), we have,

h =ei%" and /i = %R’ (2.36)

. : 32
and in case (b), we find ™,

h = e2®h" and i = %' (2.37)

To see what this implies for up and down quark mass matrices
we assume that ¢ has the following vev’s:
- |« O o = k'’ o,
<¢p> = [ 0 k' ] and <@p> = [ 0 K ), (2.38)

where k and k‘ are complex. From eq.(2.31), we then find

M = hk + hk’’ and My = hk’ + Ak (2.39)
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In case (b), eq.(2.37) implies that,

~ioxt

yot %t -~
= e h k'’ + hk .

Mu = e h k + hk and Md

This implies that

(2.40)

This is unacceptable since it implies that up and down quark
masses are equal. Thus, for the minimal model with one set
of ¢ and ¢ Higgs multiplet, the parity transformation case
(b) is unacceptable. O0f course, if there are more than one
¢, this can be acceptable and in general leads to unequal
mixing angles in the 1left- and right-handed currents. In
what follows, we will consider the parity transformation
properties corresponding to case (a) and ensuing constraints
eq.(2.36) on the Yukawa couplings. It is now worth pointing
out that by redefining ¢ — eia/%¢, eq.(2.36) simplifies to:
h=nhn"and b = &' (2.41)

Due to this possibility of redefining the phase the
definition of parity transformation for all values of « is
identical. Note, however, that the phase of ¢ (and @) is no
longer arbitrary.

An important consequence of eq.(2.41) is that, if k and k’

are real, the up and down quark mass matrices are hermitian.

This implies that, in eq. (2.28),
UL= UR and VL==VR and U = V, (2.42)

which leads to the physically important result that, if <¢>

is real, parity invariance implies the equality of the
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quark mixing angles in the left- and right-handed sector.

2.4.2.Constraints of CP-Invariance on the Yukawa Couplings

Let us define the CP-transformation properties of the
quark(Q) and Higgs field ¢ which leaves the gauge
interaction invariant:

3 =T
Q (x,x)) — Ucp ¥, CQ o

cqQ

QR(?'XO) — ch L R\

— (-1 B W (Fx) T,

L0
Bu(i?,xo) — (~1) B“(-i?,xo). (2.43)

For simplicity we will choose Ucp and ch to be diagonal
unitary matrices. For the ¢ transformation we find that,

(dropping space time dependence)

(#)—u(?) (2.08)
¢ @
with
_ ( eiB 0
(a). H = Lo e-iB (2.45a)
(o eiB
or (b). H = , ] (2.45b)
[ e71B

Invariance of the Yukawa coupling in eq.(2.31) under the
CP~transformation leads to the following constraints on h

and h:

t *

Case (a): elBV hTU. = h, e-J‘ﬁV Ru" = R'. (2.46)
cp cp cp cp
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u'-

*oemBy 7Tyt = n'. (2.47)
cp cp

case (b):elPv n'u" = h
cp cp

In case (b), eq.(2.47) implies that

e 1B v, M; v:p = M. (2.48)
EqQ.(2.48) is unacceptable since this implies that mmm...
= mmm... which is in conflict with experiments for values
of m = 30—40 Gev. We will, therefore, focus on case (a)
only. In this case, we see that if we choose

U =1and Vv = e'lB, we find
cp cp

h' = h and A" = &P . (2.49)
In particular for g = n / 2, we find h is real and symmetric
whereas h is imaginary and antisymmetric. This case is of
phenomenological interest®.
In general, eq. (2.49) implies that the matrix h has the

following form:

0 ae 1B peTiB .
aelP 0 ce 1B
L i (2.50)
bng celB 0 .

H H H
. . .
H H H

where a,b,c,...are real. To study the implications of this
case for CP-violation, we need to know the phase of the
vev’s xy and ¥'. It can be proved that in the minimal model
the vev’s acquire phase such that the mass matrices become
real leading to a completely CP-conserving theoryu.

It is further worth pointing out that 8 = 0 is a special

case, which differs from the 8 = 0 case in the that the
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number of arbitrary parameters increases by Nq and the model
loses all predictivity.

For the case of arbitrary Ucp and Vqﬂ CP-invariance
implies an infinite sequence of constraints on h and h as

follows:

T2P, _T2P_ T2P_ _T2P 2P, 2p_ 2P_ _2p

Trth ‘R *n *hR Y1=rch*h*n’h Y.

(2.51)

Violation of any of these constraints would imply the
existence of genuine CP-violation in the Yukawa couplings.
The nontriviality of this result is that, even for complex h
and h, the theory may be CP-conserving if eq.(2.51) is
satisfied. The number of independent equations of type
(2.51) is identical with the number of independent CP phases
in the model®?.

It must, however, be emphasized that the conditions in
eq. (2.51) guarantee CP-conservation only prior to
spontaneous breakdown of symmetry. Subsequent to
spontaneous breakdown, genuine CP-violation can appear if
the <¢> breaks the CP-transformation law in eq.(2.44), i.e.,

if it has a form other than the following:

<¢> = eiB/z[ £ 0 ] (2.52)

KI

(k,k’ are real).
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2,5.Counting Genuine CP-Phases in L-R Models

An important prelude to the phenomenological study of
CP-violation in a gauge model is to identify the number of
genuine CP- phases in the weak currents. The general
strategy is to first diagonalize complex mass matrices to
obtain the unitary mixing matrices that appear in weak
currents such as the ones in eq. (2.30) and then, to see how
many of the phases in them can be absorbed into quark field
redefinitions while at the same time Kkeeping quark masses
real.

To carry out this procedure, we need to know the structure
of the mass matrices'”® in the left-right symmetric
theories. We, therefore, start from the Yukawa coupling
given in eq. (2.31) and distinguish the two cases: (1)
intrinsic and (2) spontaneous CP-violation. In the first
case (refered to earlier as hard CP-vioclation), we will
simply impose the left-right symmetry constraints on the
Yukawa couplings and no constraints of CP-invariance will be
assumed. Then, in case (1), we must have

h=nh" ana b = &' (2.53)

On the other hand, in the case of spontaneous CP-violation,
we will assume the Lagrangian to be both CP and P invariant
and specialize to the case, where Uq)= Vq)= 1l and B = 0 in
eg. (2.43) and (2.44) respectively. We, then, have for case

(2), in addition to eq.(2.53)

h=~h and h = R (2.54)
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i.e. all elements of the matrices h and h are real.

To obtain the mass matrices, we need the vev’s of the
field ¢. Depending on whether <¢> is real or complex, case
(1) leads to two kinds of mass matrices discussed below in

case (1) and case (3) respectively.

Case (1): Manifest Left-Right Symmetry

<¢p> = [ g 2, ], k and k'’ are real. The up and down quark

mass matrices are hermitian, i.e.,

_ ~ o, _ at s A |
Mu = hk + hk’' = Mu, Md = hk' + hk = Md' (2.55)
This implies that,
* r
U Mu U = Du and V Md VvV = Dd' (2.56)

This, in turn, leads to the result that the unitary mixing
matrices that appear in the left- and right-handed charged
weak currents are the same. Thus, in this case, known in
the literature as manifest left-right symmetry, both the
left- and right-handed mixing angles as well as the phases
are equal (i.e. ﬂi = 6;and 6i= 6;).

The counting of non-trivial CP-phases in this case is the

same as in the standard model and one has for the number of

nontrivial CP-phases, NP, the result:

N, =(Ng - 1)(Ng -2) /2. (2.57)

Case (2): Pseudo-Manifest Left-Right Symmetry

In the case of spontaneous CP-violation, to obtain CP-

56



violation, we would require <¢> to be complex, i.e.

<p> = el ( k0 ] (2.58)

(The vacuum expectation value can be written in this form by
an appropriate gauge SU(2) rotation). We then get,
1ol , il ia

M, = hke!® +hc'e 1® and My = hk’e +hke %, (2.59)

M'd are therefore complex and symmetric matrices. They can
in general be diagonalized as follows'’:

v M u's =D anav M, v'5, =D, (2.60)
This implies that

|p,> = 3 .U |P0> and N> = JV'|N°> (2.61)
where |P°> and |N°> represent column vectors that denote the
up-quark and down-quark weak eigenstates respectively.
Substituting this in the weak current (2.29) we get the
following relation between the left- and right-handed mixing
angles: V = J_ v J;. (2.62)

We can now count the number of non-trivial CP-phases N, by

adding to the standard model result, the new phases that
parameterize J, and J; (remembering that de are diagonal

unitary matrices), i.e.

N =N_ +N_ +N. (2.63)
For Ng generations, Nero =(Ng - 1)(Ng -2) /2 (2.64)
and NJu + Nm = 2Nq-— 1. (2.65)

An important implication of this case is that while there
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are new phases from right handed sector, the mixing angles
between the left- and right-handed sectors are the same.
This is important because for CP-conserving processes the
only new parameters one has to deal with are m(wn) and the

WL--WR mixing (.

Case (3):Non-Manifest Left-Right Symmetry

In this case the mass matrix is neither hermitian nor
symmetric so that in general u = U and v o= v leading to
different mixing angles as well as phases for the left- and
right-handed sector. The number of non-trivial CP-phases

are:

N, =N_ + N = (Ng—l)(Ng-Z) /2+Nq(Nq+1)/2.

(2.66)
Theoretically, this situation arises®® from case (1), if
<¢> is complex or if there are more than one ¢ with parity

transformation taking ¢ — @ .
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Chapter 3.

CP-Violation in the Neutral Kaon System

3.1 Introduction
Since the beginning of physics, symmetry considerations
have provided an extremely powerful and useful tool in the
effort to understand nature. Gradually they have become the
backbone of the theoretical formulation of physical laws.
There are four groups of symmetries, or broken symmetries,

that are found to be of importance in physics:

1. Permutation symmetry:Bose-Einstein and Fermi-Dirac
statistics.
2. Continuous space-time symmetries, such as

translation, rotation, acceleration, etc.
3. Discrete symmetries, such as parity, time reversal,
particle-anti-particle conjugation, etc.
4. Unitary symmetries, which include
Ul—symmetries such as those related to conservation of
charge, baryon number, lepton number, etc.
SUZ(isospin)-symmetry,
SUs(color)-symmetry,
and

SUn(flavor)-symmetry.
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Among these,the first two groups,together with some of the
Ui-symmetries and perhaps the SU3(color)-symmetry in the
last group,are believed to be exact. All the rest seem to
be broken. We are interested here in three discrete
symmetries which relate a given state or process to one
other state or process; these are:

P:Parity, or the inversion of all spatial coordinates,

T:Time-reversal, the replacement of t by -t,

C:Particle-antiparticle conjugation, the replacement of
all particles by their antiparticles. In the first
instance, these symmetries were discovered as symmetries of
established physical laws. Thus wigner54 discovered that P
and T are symmetries of the Schrodinger equation applied to
atomic and molecular systems. Similarly, C was discovered
as a symmetry of quantum electrodynamicssa

Nuclear physics required the introduction of two
interactions:the weak interaction to describe beta-decay,
and the strong interaction for nuclear forces. Because these
interactions had no classical analogs, they had to be
invented ab initio. Then, it became natural to assume that
the same symmetries held for the new interactions. However,
the consequences of making these assumptions were not
analyzed in any systematic fashion for a long time. An
important point made by Luders in 1954°° was that if
P-symmetry 1is assumed, then the consequences of
C-invariance are identical to those of T invariance. A way

of stating this result is that, although it is easy to
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construct theories that violate ., P or T symmetry, every
relativistic local quantum field theory is invariant under
the combined symmetry operation CPT.

It was puinted out by Lee and Yang in 1956 that no
experiments involving weak interactions tested the parity
symmetry P. This led to the discovery in 1957°% that parity
symmetry was violated maximully in nuclear beta-decay as
well as in pion and muon decay. The resulting V-A theory
that became established after these discoveries involved a
maximal violation of both € and P but retained invariance
under the CP and the T transformations. This possibility
was first emphasized by Landau and others® after the
Lee-Yang paper but before the experiments.

Even before P violation was discovered, Lee et al.%
looked at possible ways of testing the C and T symmetries
subject to the overall CPT invariance. They found that x°
decay was of particular interest. Their analysis is in
terms of C violation, but the gquantities they discuss(a and
the charge asymmetry r) are equally measures of
CP-violation. (To say this in another way, the C-violating
observables discussed do not involve any P violation so they
are also CP -violating.) Once it was realized that C was
violated in the weak interactions, it was important to test
the CP symmetry within the K° system.

If CP invariance is assumed, the K° states with definite
masses and lifetimes are K and K wr ich are even and odd

under CP. It then follows that only K1 can decay into two
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pions while K, would decay into three pions. This
prediction, originally made by Gell-Mann and Pais®, was
verified with the observation of two types of decay, a
short-lived Ks going to m'm or n°n® and a long-lived KL
going to three pions. In 1964, Christenson et al.°
discovered that K had a small branching ratio into n'n”.
This decay, indicated at the same time in an experiment by
Abashian et a163, strongly suggested that CP invariance was
not an exact symmetry. On the other hand, because the CPT
theorem has been shown to hold in the neutral K systemﬁ4 a
violation of time-reversal invariance is demonstrated in
these experiments. 1In other words, CP violation is telling
us that not only is there is a fundamental asymmetry between
matter and antimatter, but also at some tiny level,
interactions will show an asymmetry under the reversal of
time.

Contrary to the violation of parity and charge conjugation
which were maximal, the observed CP violation was "small".
The immediate questions were then:Is CP violated in any
other process? What is the origin of CP violation? Why is it
small? Consequently, a very active field of experimental as
well as theoretical research, devoted to the study of CP
violation, come into being. It is interesting to note that
soon after the discovery of CP violation many possible
"explanations" were put forward, such as

the superweak interaction (see 3.4),

electromagnetic CP violation (see 3.4),
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and so on. Some propositions were much more drastic such as
the abolition of the superposition principle or the
existence of a '"shadow world".

Looking at the present literature, one will immediately
realize that the CP scenarios of today have very little in
common with those eof two decades ago. The reason is not
only because experiments have succeeded in ruling out most
of the early models of CP violation but, much more
importantly, because of the revolutionary developments in
particle physics. The concept of local gauge symmetry has,
by now, become a deep rooted foundation on which all the
modern theories stand. In particular, the Standard Model is
indispensable in our present understanding of physics in
general and thus also CP violation. The Electroweak Model
works so well that one is compelled to explore the problem
of CP violation in its framework or "beyond".

Many speculations have been offered since 1964 on the
possible origins of CP violation in KS decay. Despite the
high precision of the experimental results, few models have
been ruled out. One difficulty in testing models is that CP
violation has been seen only in the neutral Kkaon system.
Future measurements of the neutral charmed meson systenm,
and especially the neutral bottom quark meson, may shed
light on the matter, but the experimental problems are

formidable.
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3.2 CP violation in K° decay

The valence quark composition of the K' and K mesons is
us and us respectively. It is thus natural to assign the
valence quark composition ds and ds to their corresponding
neutral counterparts, K° and K°. That is, the neutral kaons
created in a strong, electromagnetic or weak process have,
at the moment of creation (proper time t=0 ), definite
strangeness. The K° and K° have S=1 and -1 respectively.
Since strangeness is conserved in the strong and
electromagnetic interactions, and since the kaon is the
lightest strange particle, the K° and K° can only decay
weakly and both lead to a uudd final state in the lowest
order decay processes.

According to the GWS model, the W only couples to
left-handed fermions or right-handed antifermions. The
operation of charge conjugation C turns a left-handed quark
into a left-handed antiquark, which has no coupling to the
W. Subsequent operation of the parity transformation P
gives a right-handed antiquark (P changes r — -r, p — -~p,
but o=rxp — rxp ), which can couple to the W. Thus weak
decays are expected to be eigenstates of CP. Now, the K’
and K° particles are not eigenstates of CP, but are

transformed into one another by this operation. Taking the

convention that
cP|K’>=|K’>, cP|K’>=|K’>, (3.1)

we can construct the following linear combinations of K’ and
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K°, which are CP eigenstates

|K>= Z[|K>+|K’>], CP=+1 (3.2a)

|K>= > [|K*>=|K’>], CP=-1 (3.2b)

Alternatively, we can express the strangeness eigenstates in

terms of the states of definite CP

|K%>=|ds>= [ |K3+|K3] (3.3a)

|R°>=|sa>=v,é-[|1(2>-—|l<g>;, (3.3b)

The possible hadronic final states for neutral kaon decay
are 2n and 3n. These states have CP eigenvalues +1 and -1
respectively. This can be seen as follows. In the pion the
guark and antiquark have zero orbital angular momentum 1 and

also zero net spin. The "intrinsic" parity of the pion is
Pn=(-1)1”= -1. The 2n system is invariant under C and has

zero orbital angular momentum, hence CP(2n) = (Pn)2 =1, 1In
the 3n system, the pions are in states of zero relative
orbital angular momentum. Hence, CP(311)=(PH)3=-1. Thus,
the final states are eigenstates of CP, but the initial
states K° and K° are not. For CP-conserving decays, it is
the K? and KZ components which will decay and with which we
can associate specific lifetimes.

The phase space factors for the 2m and 3nm decay medes of
the kaon are substantially different. The K—3nm phase space
integral is much less than that for K—2m. Hence, it is

expected that the KZ component has a substantially longer

65



lifetime than that of K?. Experimentally, short (KQ and
long (KL) lived components are indeed observed, with
lifetimes ts=0.892xlod°s and tL=5.18x10'as respectively.

If CP was conserved, then, after sufficiently long time,
neutral decays to two pions would no longer occur. However,
in 1964 it was observed °°that Kﬁ—wfn' indeed occured, and
with a rate, about 2x107°, Thus, Cronin, Fitch and
co-workers had discovered that CP was violated in this
decay. This important observation has been confirmed in
this and other decay modes of the K° system. However, no
evidence for CP violation in other hadron decays has so far
been found.

Let us consider the time evolution of a neutral kaon
system, allowing for the possibility of CP violation. At

time t we have, in general,

|y (t)>=a(t) |K*>+a(t) |K>. (3.4)
The time evolution is given, for this coupled two-channel
system, by

H H
11 12

iGF U (t)> = H|y(t)> = [H o ] lu(e)>, (3.5)

21 22

where the Hamiltonian H,in analogy with the single-component

case,can be expressed as
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[ M - ir /2 M, - il /2 ]
H=M-1iT/ 2= M - ir,/2 M, - il /2]

e e e (3, 6)
where M and ' are called the mass and decay matrices
respectively. Since they represent observable quantities,
these matrices are Hermitian;hence M _= M;1 and r .= I‘;l.
However, H is not Hermitian, otherwise the K° would not
decay. The CP-conserving strong and electromagnetic
interactions do not cause K°— K° transitions, nor K° decay,
and hence contribute only to the diagonal elements of M.

Thus, if H represents the weak Hamiltonian, then the mass

matrix can be written

M, =n(K) +<K’|H| K°>+Z | <K’ |H|n>|?/[m(K") -E ],
—0 - - - -
M =m(K°) +<K’|H| K°>+Z| <K°|H|n> | °/[m(K°) -E ], (3.7)

. 0 =0 0
M =M =ZI<K |[H|n><n|H|K">/[m(K")-E ],

where the sum extends to the n possible zero-strangeness

intermediate states of energy E . CPT invariance implies
0, _ 50 _ ’ _

that m(k)=m(K}, and that H“—Hza (1.e., Mn—Mzz,

“=F22) . In the discussion below it is assumed that the

strong and electromagnetic interactions conserve CPT.

The term <K°|H|I_<°> has been omitted from M _, since direct

|AS|=2 transitions are not allowed in the standard model.
The decay matrix I’ can be expressed as a sum of the

contributions corresponding to distinct S=0 physical states.
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Conservation of probability implies that

gt_<w|w> = -2m ¥ p_|<F|H|y>| |, (3.8)

where F is the final state, and P. is the density of final
states. From egs. (3.5) and (3.6) we can write

%f <Yly> = <P|y>+<y P> = =<y |T/2-iM|yY>-<y|T/2+iM]|y>

= —<y|T|y>. (3.9)

Hence, from eqgs. (3.8) and (3.9), we have

<Y|T|y> = 2n % pF|<F|H|w>|2, F=o2m X pF|<l=‘|I*I|I(°>|2

Lyl 0} 2 hd o_* =0
,» = 20 E p |<FIH|K'>|%, T = =21 ¥ p<F|H|K> <F|H|K">.

(3.10)
If H is invariant under CPT, then
(o] -1 (¢}
<F|H|K’>=<F| (CPT) “'H(CPT) |K’>
0 b9 o/ 50 *
=<K |H|F’>=<F’' |H|K'> , (3.11)

where ¥ is the charge conjugate of final state F, but with
the spins reversed. CPT invariance of H thus implies that

r =r

e P since the sum in (3.10) is over all possible final

states F. If T invariance holds for H, then the

off-diagonal elements are real and equal, and so M12=M21=M12

and 1“12=l"21=1“:2. If CPT and CP (or T ) invariance both

hold, then M11=M22' r =r

11 22’ M12—M21 and I‘12"r‘21'

An alternative way to derive these relationships for the
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mass and decay matrices is to write
M-iT/ 2 = aI + aoc +ag, + ag , (3.12)

where o, are the Pauli matrices. For the phase convention
(3.1), the operator for CP is CP=01. The operator for time
reversal is T = K, the complex conjugation operator.
Thus, if R = CPT, then CPT invariance implies that RHR™? =
H*, where the form of the right-hand side follows from the
anti-unitary nature of K. Application of this to (3.12),
and consideration of the equivalent operations for T and CP,
gives a, = 0 (CPT), a, = 0 (T) and a,=a, = 0 (cP).

In general we can express l(s and KL as follows(cf. (3.2a))

|k >=(p|K’>+q|K>) /[ |p]*+]q]|*)""?,

|KL>=(r|K°>+s|1—<°>}/[|r|2+|s|2]“2. (3.13)

The mass and widths of the physical (decaying) states
correspond to the eigenvalues of the matrix H, given by
(3.6) or (3.12) ,namely
iy R
atia, a-a_  ||q 5149
with similar equations for AL (with r and s replacing p and
q). The eigenvalues of (3.14) are A = a_ * a, so that As =

(o)

2, 2,172 .
+a_) . Using

2
a +aand A = a_-a, where a = (a‘+a
) L 1 2 3

0

these results, together with (3.6), we obtain

a = (M“+ Mzz)/ 2 - 1(r‘u+ 1‘22)/ 4

= (M+ M)/ 2- i(T+T)/ a4,
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a = ReM_ - iRe 1‘12/ 2,
a,=-ImnM_+1i Iml"lz/z,
a3 = (Mll B MZZ)/ 2 - l(rll - FZZ)/ 4'

a= (M -M)/2~-i(T,~T)/ 4 ~a, (3.15)

where the latter approximation follows from the fact that
azand a, are small.
The eigenvectors p, q, r and s in (3.13) can now be found

from (3.15) and its equivalent for K. This gives
p/a = (a-ia )/(a-a)) = 1-ia/a +a/a ,
r/s = -(ai-iaz)/(a1+a3) = -(l-iae/ai-aj/al).

Defining ¢ = -iaZ/(Zal) and A = a3/(2a1)(i.e. both small),

we obtain, to a good approximation,
[k > = [(1+e+8) |[KO>+(1-e-4) |R>]/ 272,
[K> = [(1+e=-8) |K*>-(1-e+8) |K*>)/ 2772, (3.16)

where the parameters £€ and A are, from (3.15),

%]
[

[=In M _+iIm T /2] /[(T,-T))/ 2+i (MM ),

>
I

- [i(Mn-MzaH(ru-Fzz)/ 21/ 2[(r5—rL)/ 2+i(Ms-ML)]'
(3.17)
Note that if CPT is conserved, then a, = 0, and hence A = 0;
so that (3.16) is then specified by the single parameter c.
Thus, a non-zero value of A (i.e.non-diagonal mass matrix)

would indicate that CPT was violated. T invariance gives
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a, = 0, and ¢ = 0. If CP is conserved, then (3.16) takes
the form of (3.2). The overlap of the eigenstates for

K and K, is given by

<KL|KS> = 2(Re € + i Im A). (3.18)

3.3 Isospin Decomposition

Because of the definite CP eigenvalues of the final state
pions, the decay modes K{—wfn' and Bi—an%f) are CP
violating. The <quantities which «c¢an be extracted

experimentally are

<n'n|H|K > / <n'm |H|K> = [n _|exp(ig, ),

n

+-

(3.19)

3
I

00
(3.20)

From Bose symmetry, the mn state must have I = 0 or 2. The
n'n” and npno states are related to the states of definite

isospin by the usual Clebsch-Gordan coefficients

(1/3)"3<1 = 2[+(2/3)"%1 = 0], (3.21)

+ -
<n T

It
o

]

. (3.22)

L

<n’n® (2/3)'3<1 = 2|=-(1/3) V%1

The decay system 1is specified by four weak decay

amplitudes, namely

<I|H|K®> = A exp (is)), <I|H|K’> = A exp(is)), (3.23)
where I = 0 or 2. The phase shifts 60 and 82 arise from
final state interactions amongst the pions. If CPT
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invariance holds, then KI= A: and, since the overall phase
is unobservable, we can choose A to be real. If CPT is
violated then Xb # Ab, but one can still choose Ao and Ko to
have the same phase with KU/ Ao real. A measure of CPT
violation for I = 0 is given by

A, = (KO-AO)/(KO+AO). (3.24)
The corresponding parameter A, is complex. Note that the
amplitude A, violates the |AI| = 1/2 rule, and is thus only
about 4% of A . If we let z = (A2+52)/(A0+1-\0), then using

eq. (3.19), together with egs. (3.16), (3.21) and (3.23), we

obtain

n_ = co+c’ (3.25)
where

e, = e-A-Ao,

e = 272 (a-R,)-2(A =B ) 1 (A +A ) “Texp[1(8,-5.) 1.

(3.26)

Similarly, for the n°n’° decay mode

Moo = co-ze’. (3.27)
For the case of CPT invariance, A = So and A = A = 0, so
that

e, =€, € =1 27V/? Al Im A exp[i(5,-3,)]- (3.28)

Note that n,_ and n, can be non-zero, even if there is no
K&J{ mixing (¢ = «;. Such direct CP violation would give a
non-zero value of ¢’.

The quantity €, called the CP impurity parameter, measures
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the departure of the mass eigenstates Kﬁ and K: from being
CP eigenstates. We can get the usually used form of it from

eq.(3.17). Let

Am

m(K)-m(K) = ~2 Re M_, (3.29)

Ar

r;-T =2 Rel . (3.30)

where the above approximations are obtained from the fact
the phases of M.12 and rlz are small because of the smallness
of CP violation. From eq. (3.10) and the |AI| = 1/2 rule,
our phase convention (Xo/ A = 1) implies that
r_ =TI_, real. (3.31)
12 21
Noting that due to the experimental relationship5

AM =~ -AT / 2, (3.32)

eq. (3.17) becomes
e = 272 exp[in/4] Im M, / AM. (3.33)

The parameter €', characterizes the "direct" CP violation
giving rise to different phases for the weak amplitudes for
A and A, respectively will pick up a phase factor.

The reason is as follows. If we start with the conventional
choice of quark field phases and the K-M matrix (where the
weak couplings among light quarks are real), A is not real
since the effective hamiltonian for AS = 1 weak decay
contains CP violating terms. These arise from "penguin"
diagrams involving virtual c and t quarks generated when
strong interaction corrections to the weak interaction

hamiltonian are taken into account. 1In this case, A picks
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up a small imaginary part. We can restore the standargd
phase convention where A is real simply by redefining the

phase of the K° and K° states:

|K°> — et |K°> and |K°> — e'é |R°>, (3.34)
so that
-1§ -
(Ao)quark — € (Ao)quark - AO' (3.35)

At the same time the previously (in the quark basis) real
amplitude A, picks up a phase exp[-if] and is complex in the
basis where A is real. Thus from (3.28), we obtain

ler] = 27% |g| |a, / A]- (3.36)
Similarly, in the quark bases( (3.34) ),

Im <K°|M|K’> — Im ('€ <K°|M|R%>)
~ Im <K°|M|R°>+2¢ Re <K°|MIR’>  (3.37)
gives
In M / AM — Inm M, / AM + &, (3.38)

using eq. (3.29). Thus, from eq.(3.33), we obtain

S V7
le] = 2 |e +2€], (3.39)
where
- AT/ 172
e = e Im M / (27°°AM), (3.40)
and
€=1ImA / ReaA. (3.41)

Egs.(3.39) and (3.36) will be bases of our calculations
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of € and €’ later.

3.4 Modes of CP-Violation

Since CP violation has so far only been observed in the
neu .ral kaon system, it has proven difficult to rule out
entirely most proposed models of CP violation. The relative
strength of the CP violating interaction in any model can
usually be adjusted to give the correct magnitude of cCP
violation in K° decays. Some of {’.e various suggested
origins of CP violation are as follows (for a detailed
review see reference [65]):

i). CP violation in electromagnetic interactions.

If the origin of the CP violation is in the
electromagnetic interaction, then the required violation is
large(~ 0.1). However, the experimental limits on C, P and
T violations in electromagnetic interactions are better than
107'?. A non-zero neutron electric dipole moment (dn), can
only arise 1if both P and T are violated. If the
electromagnetic interaction is T-violating and P-conserving,

then the normal T-conserving and P-violating weak

interaction is needed to generate dn. Very roughly, one
might expect d - 10°° e cm , or, with a more sophisticated
treatment, a -~ 10 e cm. The current experimental limit

is dn < 6:10°% e en''l.

ii). Millistrong interaction.

A small (~104) violation of CP in the strong interaction
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is needed, with the KS — 2m occurring via a second order
transition in this CP-violating interaction. Since P is
conserved to better than 107> in strong interactions, there
must be C ( and T ) violation in strong interactions of
about 10™°. An electric dipole moment for the neutron of dn
~ 10" e cm is expected.

iii). Milliweak interactions.

In this model there is, in addition to the CP-conserving
weak interaction, a small (-~ 104) CP-violating piece,
giving first-order CP-violating effects. No direct evidence
has been found in any weak process for T violation; however,

it is difficult, in general, to turn these 1limits into

rigorous limits on a possible milliweak interaction. A

-23

value of dn ~ 10 e cm is expected in this model.
iv). Superweak interaction.

In this model®® a AS = 2 interaction is postulated, which
causes K° «—> RO, and hence Ki «—> K:' transitions. These

transitions are first order in the superweak interaction,
which has some coupling strength F, F ~ 107° G.. The CP
violation arises entirely from the mass matrix, and not from
the ordinary weak interactions which give rise to the K—2n
transitions. Hence Kz= A, so that e’= 0 and, further, a, is

real. Thus the model predicts that

-1
m,_=10,,=¢€, ¢ _=¢, = tan (2Am/FS). (3.37)

However the non-zero value of £’, suggested by the recent

data, would imply that the superweak model is not the only
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source of CP violation. Note that the superweak theory
implies that any effects outside the K’ system are very
small, for example, dn < 107 e cnm.
v). Standard model.
In the six-quark scheme depicted by the KM matrix, the phase
é represents CP violation. The neutron dipole moment can be
predicted in this model. Estimates give® da < 107" e cm;
however, these are sensitive to the input
parameters (e.q. mt), and many estimates give dn<10 "% . cm.
The discussion of £ and €’ in this model will be left to
the next chapter.
The above general formalism treating the CP violation in

the neutral kaon system can be found, for example, in any of

references [1, 4-6].
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Chapter 4.

€'/e In The Mini Standard Model

4.1. A Brief Review
As mentioned in Chapter 3, the two  sets of

CP-violation parameters {n,_, m,) and (g€, t¢’') are related

0o
to each other by the following relationships

m_ = eg+e’ and L e~-2¢’. (3.25)&(3.27)
Therefore, they are approximately equivalent to each other.
The former are experimental observables; the latter have the
advantage of separating direct CP-violation from impure
CP-violation. In addition, their values depend on the model
used, i.e., they are also, in general, functions of model
parameters. Thus, £ and €’ are important in selecting the
correct model. In theoretical calculations, they are
determined by the box and penguin diagrams (that will be
seen later).

In the Standard Model, the imaginary parts of both box and
penguin diagrams are proportional to sindé, the non-trivial
phase in the KM matrix. Thus the standard model
accommodates CP violation but does not predict it, since
sind is arbitrary. Moreover, if the mass matrix CP

violation (eg) is of Standard Model origin, i.e.is due to a

KM matrix with a non-zero phase, then (barring "accidental"
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cancellations), €’/e is non-zero, i.e.,there is direct CP
violation as well. The task at hand in determining ¢’'/e
consists of a) overcoming calculational difficulties and b)
determining (or at least constraining) siné from other
experimental and theoretical inputs.

The evolution of the theoretical outlook and expectations
for €’/c can roughly be divided into two periods: the
phenomenological era (1973-1983) and the era of the
Electrowveak penguin (1989-present). The followings is a
brief survey in chronological order. For more detailed

review, see [67].

4.1.1.Phenomenological Era

In 1973 Kobayashi and Maskawa"’ showed that four quarks
(and minimal gauge bosons, Higgses, etc.) were insufficient
to produce CP-violation, i.e., that extra fields are needed.
They suggested, among other scenarios, a six quark model.
They made no prediction for e’ /e.

Following the discovery of the charm quark (or rather the
J/W)“n in 1976 Weinberg69 proposes a model with extra
Higgses that could account for CP violation (see 1981)
solely in the Higgs sector, with no phases in the quark mass
matrix. This was particularly interesting before six quarks
were known to exist, since if there are six yuarks there is
no particular reason for the mass matrix phase to be zero.

In the same year, Ellis, Gaillard and Nanopouloém have

penguins (not by name, ) but estimate them to have magnitude
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similar to the W loop diagram that results if one neglects
the gluon in the penguin diagram. The resultant l/M:
suppression led them to estimate |e’'/e| = 1/450. In
September Penguins get named; bottom (or rather the Upsilon)
gets discovered’'.

Three years later, Gilman and Wise published two papers.
In the first papef72 the ratio of the imaginary and real
parts of the penguin amplitude are calculated to the lowest
order. The calculation depends on 9, = tanq(vw/vm)
[these days expected to be in the range 1-5°], u (a light
hadron mass scale) and m . The phase siné is fixed by using
the measured value of €. They estimated |[e'/e| = 1/13 to
1/100. The first number comes from taking m = 15 Gev, u =
0.2 Gev, and 9, = 15°. |e'/e| decreases as m, m/u and 9,
increase. In the second Gilman and Wise'" paper the ratio
of the imaginary and real parts of the penguin amplitude is
calculated by doing an all orders 1leading logarithm
calculation using successively W boson very heavy; top quark
very heavy; bottom gquark very heavy: charm quark very heavy.
The parameters are ﬂz and m, again, and the QCD scale
parameter A in eq.(1.55). In addition a. evaluated at the
scale of light hadrons was varied between 0.75 and 1.25.
with A®> = 0.1 Gev®, |e'/e| = 1/50 to 1/150 for m = 15-30
Gev, ® = 15°; with A® = 0.01Gev®, |e'/e| = 1 / 200 to 1/350
for m = 15-30 Gev, 9, = 15°.

In 1981, Deshpandé74 and Sanda’° rule out Weinberg’s

CP-violation model by calculating the penguin to get |e’/c|
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# 0.045 (this number might be modified by the inclusion of
non-gluonic penguin diagrams).

After this period of establishing how to <calculate
a penguin diagram, a somewhat more phenomenological era was
entered, from about 1983 to 1987. During this time period
changes in the theoretical estimation of |e’/e| came more
from the incorporation of bounds or improved values for
input parameters in the calculation than any changes in the
way the penguins were calculated.

In 1983, Gilman and Hagelir{76 used bounds from Ri — uu,
as well as the experimentally measured value of £, to come
up with the bound

le’/e| > 2x107° (0.33/B,) x penguin uncertainties.

(4.1)

The same year Gilman and Hageliﬁ", and Buras et aim., used
measurements of the b 1lifetime along with bounds on
I'(b—u) /T (b—sc) to get bounds such as

|e’/e| > 0.005 to 0.01. (4.2)
These bounds, however, are only good for m, in the then
expected range 30 to 50 Gev, and drop sharply for large m .

We conclude the discussion of this phenomenological era by
showing the situation in 1987. With gluonic penguins
recalculated for large m and BB mixing constraints taken
into account, the value

107 < e’ fe| < 7x107° (4.3)

. 79 .
was considered ° representative.
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4.1.2.The Era of the Electroweak Penguin

The main differences between 1981 and 1991 is as follows.

First, there now exist more / different information on input
parameters. In particular m is expected to be high and we
have more information from I'(b—)/T (b—c) limits, and from
the measurement of BB mixing. As a result, the Standard
Model expectations for €‘/c have moved from a range of 1/50
to 1/200 to a few x10"°, probably > 1210,
Second, as a conseqgquence of m, being large, photon, and
most importantly, z° penguins, are not negligible. Also the
2° contribution tends towards canceling the gluonic
contribution. While the photon and 2° contributions are
c::z/c::zS suppressed, they are AO/A2 enhanced, since they can
contribute to the AI = 3/2 amplitude as well as to the Al =
1/2 amplitude, unlike the gluonic contribution.

The Standard Model expectations for €’/e then move to a
range of =-0.3 to 2x10° depending on m, . This is
particularly notable in that ¢’/e being identically zero is
not excluded in the Standard Model, contrary to the beliefs
held for many years now.

In 1989, Flynn and Randall® calculated the effects of the
photon and 2° penguins. The photon penguin increases ¢’ /e,
and for this reason was generally more or less ignored in
past calculations, since it tends to cancel the effects due
to isospin breaking corrections from n° mixing with 7n and
n’, which are estimated to decrease £’/e by about 25 to 45%.

But the dominant effects is the decrease due to the Z0
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contribution, for m, greater than about 100 Gev.

A similar calculation was done shortly afterwards by
Buchalla et al.®’. Their results are in good agreement with
those of Flynn and Randall, and we present some of their

phenomenoclogical results here.

1.5 T T T

e'le (1073)

50 100 150 200 250
m, (GeV)

Fig.4.1 Penguin dependence of 8'/ £ versus mt , from Ref.
[B1], see text for detalls.
Figure 4.1 summarizes the effect of adding a z° penguin on
e‘/e. A central set of values is used:B = 0.75, R = I'(b —

0.02, s, ~ V_ = 0.05, A = 0.2

ue” v) / I'(b — ce V)
Gev, and m, = 175 Mev. Curve 1) is the pure QCD case, the

inclusion of gluonic penguins alone, or setting %o 0.

Curve 2) shows the result of including the nonn' effects and
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the photonic penguins, without the 2° penguins, showing that
these diagrams do indeed cancel to good approximation.
Curve 3) is the full analysis of Ref.81, including 2°
penguins, W box diagrams, and using the 1/N approach to
estimate matrix elements. Curve 4), for comparison, is the
same calculation using the vacuum insertion approximation to

estimate mass matrix elements.

Re(e'fe)
35 e ML Ay SR S BN S S S S R A S
4: ‘,‘ -
1
25 | : i
" |, -
11
1S T it *, .
R HE '
t : t: . T 1 A
5 1 1 i -
s - e ..n..:.... :' x E Lé *E
- T " f"‘l
5 | | _
-15 r .
25 B ]
-35 T BT S BT BT NP 1

1670 1973 1976 1979 1982 1985 1988 199}

Flg.4.2 Experimental measurenents of Re (E ’/c ) (in units of
-3
10 ) from the last two decades (sollid), along with

evolution of the theoretical expectation for C'/C (dashed).
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Figure 4.2 consists of the evolutions of both the
experimental measurement and the theoretical expectation for
€’ /c over the last two decades.

The experimental results shown, in chronological order,

82

are:1972, Banner et al., Brookhaveq/Princeton; 1972,

83 84

Holder et al., CERN; 1979, Christenson et al.,
Brookhaven/NYU; 1985, Black et al.,°°Brookhaven/Yale; 1985,

Bernstein et al?s,Fermilab/U.Chicago/Saclay (E731); 1788,

87 88

Woods et al., E731; 1988, Burkhardt et al., CERN (NA31);

9 7

1990, Patterson et al.,> E731; 1990, latest NA31 result.®
Note that not all measurements from the same experiment are
independent, e.g., the 1latest NA31] number quoted above
includes the 1988 number averaged in.

The latest measurements (both from 1990) are those of
E731 and NA31l

-0.4%1.4:0.6x107° (E731); 2.7%0.9x10°° (NA31). (4.4)

From fig.4.2 we see a trend of convergence, and that e’ [e
is once more expected to be smaller than previous
expectations. While the theoretical picture of €’/e has
clearly undergone much evolution over the past two decades,
there are still many missing pieces. The values of some of
these (e.g., m, R, and BB mixing) will hopefully be
clarified by experiments in the near future, especially the
next generation of €’/c measurements.

As an exercise and a preparation we calculate £'/e to the
lowest order under the condition of mo«M in the Standard

Model.
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4.2. ¢€'/e in the Standard Model

4.2.1.The Box Diagrams and ¢

The K° «» K transition matrix M, is given by the

following box graphs:

(=3
Ot
Lol }

§ ——pr—~v——1 s —e — 3
W
o =0 o - =0
K uct J Juect K + K TR K
w
d —m o~ > s d > ¥ s
u,c,t

Fig.4.3 the box-graphs that contributes to E
m

If we neglect all the external momenta associated with the
external quark lines in comparison with the W-mass, then

the usual Feynman rules give

d4k
M_ = 2f —— (=2
12 (2n)4 V3

4
- g d x 1l 2 = o =V
=+ 3 J ( o s7 kav ¥,Ld sy k

4',2 2 "BwuLd
(2m) k—mu H

B

Vlsvldvjsvjd

’
vy () (F-m)

where Vlj is a matrix element of the KM matrix (see
eq.(1.117)). In obtaining the above last line, use nas bheen

made of the following relationships:
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5 5
. - +
=1L, RL =0, (7u,75} = 0, with Ls‘2—7’,and Rs‘—él.

From the KM matrix we have

vV V VvV V v V

is id Js Jd 1s id,2

2 2 2 2 = (Z 2 2 )
vy (Kem) (Km) o a (Kem))

isé id
=(clslc%—sicz(c.:ic?_ca s_s,e )¢—slcz(clszc5+czsge ))2
k*-m® x2-m? kZ-m’

u [+ Cc

s F(kz;mf). (4.5)

Noting that all external momenta have been neglected, we

have

4

- 9 = a - V. B_U
M12 = - swuw 7VL d sy vy vrLad IaB' (4.6)

d4k

(am)® (k*-n)®

kakB

where 1 J

aB

F(k"‘,-mf). (4.7)

The integral (4.6) is safely convergent even in the absence

of the W propagators, sc we assume mf « m: and set the W

2 . 2 2
propagators to = 1/mw. We will also assume mo,>m and
’

set m =~ 0. The pole term in the integral, in the above

approximation which is F(kz;mz), can be written as

scc. ¢ n’ s® m° s, s_C_s els(mz-mz)
171732 ¢ 2 Tt 172 273 t ¢, 2
P 2 2 2 + 2 2] + 2 2 2 2 )+ (4.8)
k k -m_ k -m, (k -mc)(k —mt)

¢on the other hand, IaB has the form of gaBI' Therefore, the

coefficient multiplying I in eq.(4.6) has the form
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4

-9 g eV X M
3 swuzava d sy ¥y "L 4.

It can be simplified to
-24* sy L d S7"L g, (4.9)

using the Dirac algebra

Mo v Ho_V

aMy%yV = gHOYY 4 UV H L v e g HoVB, B

: HovB — —gin B
with ¢ anuvv = 61757 .

Finally, we obtain

) o
M, = <K[H|K>

= =24 <R°|§7uLd|0><0|§?r“Ld|Ko> I

1
z 9

R

4f:mK I, (4.10)

where fK is the kaon decay constant and m, the kaon mass.
In the second line we inserted the vacuum intermediate
states, and in the third 1line the term fimi / 2mK is
identified with the |K>——|0> current.
In the approximation of eq.(4.8) we have
S S_C_Ss sina(mf-mi) s, c,¢c

ImM _ = A[2fd’k( 2223 ) o

12 (kz-mf) (kz-mf) k2-m
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S C, s _Cm
11

2
2

2

X’s s_c_s_coss (mz—mz)

t + 1 2 2 3 t c
2 2 2 _2
(k®-n) (k*-m?)

-+

31 (4.11)

o~ N{w

KA -m

2 2 2 2 2
-Am = 2ReM__ = A[2fa'k{-——3[—2-5 + 2 4%,
12 K2 kz-mi k?=m2

2 2 2 2. 2 2.2
2s ¢cs c sc cosd(mM-m) cCm s_m
11 2 2 3 3 t c 2 ¢ 2 ¢
M 2 2 2 2 [ > 2 ' L
(k —mc)(k -mt) k -m_ k -m,
2. 2.2 2 2 2 2.2
K's' s’ c s cos28(m -m)
+ 1 2 2 3 t c

7. (4.12)

(k*-m?) (k*-m?)

Using Feynman parameters and the Feynman integral formula,we

find after some calculation

y 2
Im”m 2 2 _2 2. 2 mi m
= 2slciszczsac35in6(mt—mc)(c mc[—-———;—zln—— -
AM (m=m”)" m’
t c [
n? n?
1 2_2 1
-1 + s m [.—-——.—c_———.ln_i 1}
2 2 2t 2 2,2 2 2 2
moom, (mt—mc) m mm
x H (4.13)
2 2 2.2 2
2s8"c’mnm m
22 2. 4.2 4 2 2 2 t ¢ c
scc [cm” +sm + ———— 1ln—
17173 2 ¢ 2t 2 2 2
m"-m m
t c t

where we have dropped from both the numerator and

denominator terms which are relatively small due to sz « C

won
.

Since cosa{: ~ 0.9481:0.004 by comparing nuclear f-decay
with p-decay, while sim&c = 0,23020.003 from semileptonic
decays of baryons, we find coszﬁa+sin20csl.00110.004

experimentally. Allowing one standard deviation, this
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implies that in the KM model (see egn.(1.117)) there must
be a small "leakage" of the weak coupling of the u quark to
the b quark :sfsi < 0.003, since sf = sinzﬂc = 0.05, and

therefore,si < 0.06.

Let 7 = mi/mf, and defining 7' = 7/(1-m),then eq.(4.13)
becomes
[Im Mm/AMl = 252czsasin6 F(m), (4.14)
where

s:(1+n'1nn)-c:(n+n'1nn)

F(m) = . (4,15)
c.c (c" +st-25%c?y'1n )
1 3 Zn 2 2 ZT' K

The parameters in the eq.(4.14) are rather poorly known, but
the predicted value of ¢ (|e|=ImMm/AM) is about the correct
magnitude.

However, there are some problems in calculating the
box-graph. The first one is how to make the s and d quarks
into a K?, and the s and d quarks into a K°. To solve this
problem we used the vacuum insertion approximation
(eqn.4.10). By convention the parameter BK is defined to
gauge differences between this value of (4.10) and other
theoretical models. Langacker has shown that theoretical
calculations of BK have large variations®. Another problem
is that there are contributions to AM other than the box
diagram. These are so-called "long distance" effects which
arise out of the virtual transitions KLeano(n), nganngl.
The "long distance" effects are large and have not been

accurately calculated. However, the imaginary part of the
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box diagram is not expected to be affected.

The calculations of this subsection are for 2nd-order
processes. As mentioned before there are also possible
lst-order diagrams, for example, the so-called penguin
diagrams, which contribute to ¢‘. We shall consider it in

next subsection.

4.2.2.The Penguin Diagrams and ¢’

In the quark basis of (3.34) we have
’ -1/2
e | = 22|l |a s ] (3.36)

Thus the calculations of &’ or the ratio |e’/e| attributed
to that of the phase of ¢’, i.e., £, and £ can be determined

by the so-called penguin diagrams of Fig.4.4.(a

W

S ——-——)—KN.‘\ o~ d
uct
gluon
q - — g
Fig.4.4 (a), Penguin diagrams that contribute for Asa
processes.
s d s > > d
uct T  uct »
uct
— gqgluon gluon
u(d) u(d) o
Fig.4.4(b). Fig.4.4(c).

In the case of low energy, M: » ki, where k, is the
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mome itum transferred by the W particle, we can then reduce
the graph in fig.4.4(a) to the four-fermion point
interaction (see fig.4.4(b)). The gap in the four-fermion
vertex in fig.4.4(b) separates two white V-A currents found

in parentheses in the expression ( for |AS|=1)

G .

F -0l B .k =yl , U, 3 .m

—;vrdvfs(d (0 ) o & ka)(f (07)y 87 Sgm)+ (4.16)
where Ou = 7u(1-75), Vrd’ st are elements of KM matrix,

f=u,c,t, Greek letters denote Dirac indices (0,1,2,3), and
Latin letters denote color indices (1,2,3). The calculation
can be simplified by the Fierz transformation: the operators
f and £ are now in one bracket, and d and s in the other one

(see fig.4.4(c)). By using the relations

B,A4yS _ _ 8, AM\B
(0,0 (075 = =(0,),(07)0

K.m m_k m.k
aial Sial + Aill

’

[l e

!
3
and taking into account that fermion operators anticommute,

we obtain
do ffoMs = lfo fdoMs + ifo affdoMass (4.17)
u 3 U 27 .

The vertex (emission of a gluon) is gf%wvf. We have to find
the trace over Dirac and color indices, hence, the first
term of eq. (4.17) gives zero. For the loop in second tern,
by making the approximation m,oo> mc,t » m, Wwe have,

ignoring m :
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a.b 4
—Tr%%fdk4Tr7u 1771)1{3
(2m) (k+q)a7 kB'J
ab
=12 (g, - q,q,1 (4.18)
2 uy u=v’ o’ *

The loop in question is exactly the same (with the exception
of additional color matrices) as that found in QED in the
case Of vacuum polarization calculations. Up to a
dimensionless factor I, the form of the integral is
determined by the transversality condition, which demands,
in particular, that the quadratic divergence be absent.

In order to find I, multiply the left- and right-hand
parts by g“v. This gives

4

3q210 = -8 k4 Tr 7, ____1____a_ oM 1 2
(am) (k+q) ¥ K, 7
o [£]
4
=J-._d k4Tr7u 1an7A lpqa70 11: ,{u 1(3
(am) ka'ar kp7 k,car kB’J
4
= 2= T .'L& N 1pq07015
(am) K kpw k
8 a’x 2 22
= ; J— [2(k:q)” - kq7]
(am) k
—4q2 a’x _ q2 K’
= 4..r roln -———EJ"—-Z—. (4.19)
(2m) } 4 4an Kk
n?
Finally, I =- 1 5 ln—é ’ (4.20)
12n

where the upper integration limit is chosen to be mf for
f-quark 1loop. (If the glceon momentum transfer c;[2 is much

larger than all the quark masses entering in the gqguark loop,
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then the penguin graphs vanish, since their contribution is

dV + thVts = 0.)

However, for problems involving strange particle decay q2 «

proportional to V + Vc

ud us
mi,mf and the cancellation is not complete. This 1is
essentially the crucial observation of Shiftman et.al.”
The lower integration limit is chosen to be u® because the
free quark propagator must be modified at k® < p® due to

confinement. As a result the contribution becomes

2
G 2 m ab b b
v v 9 1n-—£ [avu(l-ws)has]%—[u';“% u + dar"lA d]

\/5 fd fslznz v

2
o m

s r .= 5y, 4 = u,a = U a
= vafs 1nE [dvu(l r)ATs][uyAau + dy A"d4d].

(4.21)
Neglecting m . and noting that s, and s, are treated as

cp s 92
small quantities™ ,we have

2 2
G d m m
penguln . _F [s c In—< + is sc s sins ln—c- +
effective ‘/— 1211 2 u
2 2
2 mt. mt
+ s s8” In— - is s c.s_ sind In—]x
1 2 2 1 22 3 2
M M
x[ayu(l-ws)las][ﬁwuhau + dr*a%a + ...] + h.c.  (4.22)

Gilman and Wise’® were the first to propose to parameterize
the result by the fractional contribution, f (not to be too

far from 1), of the real part of the HZ to K — 2n(I=0),

94



ImA InmH® In
£ = = f < = fs,c s, sins n

p 2 2, 2 2 2,2
ReA ReH_ czln(mc/u )‘w-saln(mt/u )

Inm
1n(mi/u2)-szlnn

i

fsc,s siné (4.23)

The disadvantage of this method is that neither the
denominator of eq.(4.23) nor f is reliably known. Thus the
predictive power is lessened because of lack of knowledge.

Guberina and Peccei®’® first advocated another approach
proceeding through direct calculation of ImA in a quark
model by means of the operator product expansion and
renormalization group techniques, and then taking the ReA
from experiment, their results are

<n’n” |05|K°>

£ = =0.11s_s, siné —
0.43 GeV’
where O, is the penguin operator. Their calculation is
guite complicated. They wroduced a smaller £ than Gilman

and Wise, and probably more realistic.
The above calculation is a typical one representing the
treatment of €’/¢ in the first period as mentioned before.

The key point is the assumption of "m o« m".
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Chapter 5

€’/e in Left-Right Symmetric Models

5.1. Introduction

As mentioned in Chapter 2, CP-violation is put in by hand
in the Standard Model. It is with the goal of understanding
the deeper meaning of CP-violation that the left-right
symmetric models of CP-violation were first proposed”.
Therefore,it is important to calculate €’/e in left-right
models and then to compare the result with experiments. 1In
what follows we shall calculate €’/e for the pseudo-manifest
case in the left~right model. For convenience, the

definitions of €’ and ¢ are as follows:

le’| = 2'1/2|€|°|A2/AO|. (3.36)

le| = 272 le +2€], (3.39)
where

£ = e'™* 1m Mo/ (2%, (3.40)
and

£=1InA /Rea. (3.41)

The pseudo-manifest, Left-Right Model has six CP-violation
phases ( see eqn.2.65). For this case, 1left- and

right-handed quark mixing angles are same. We can take®®
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(o S C & 8

1 1 3 1 3
L
U- =V= -s. C c - i + s i
S5 , C,C5~ S 8. exp (id) c,C,s, —’acanP(lé) ,
s s ~C - i - + ]
.S, , 8,6, ¢ s.exp (id) c.s,5, czcaexp(w)

where V is the KM matrix, and

o iB,
e e
10 i3 .
o= e ° A e ° el?
-1 (a1+a2) -1 ([3‘+{32)
e e
i(a +8,) i(a +8,)
c. e -s ce
. i(a_+8.) , i(a_+.)
=e'?l sce 2 (ccc—ssela)e 2 e
11 1 2 3 2 3
-i(a +a_ =B ) s -i(a 4o =)
s s_e o2l (csc+cse16)e 1o e
172 17273 273
i(a =B -B))
-sce 1 71 e
13
.o i(a_-B -B))
-ié 2 71 T2
(c1c233+szsae e . (5.1)
, -1 +o_+f3 +
(c.s.s_-c.c e'la)e oy e tR, TR
17273 7273

In order to simplify writing, let

a2 = UU* . A = oV = L *R

= U (5.2
1 1s 1d! i ts 1d’ "1 1s 1d’ { )

with X = L,R, 1 = c,t.
Noting that 5, and s, are small quantities and neglecting

relative small quantities, we then have

L 2, . : L 2 . .
ac = S1c2+15152c253 s1né, at = S'IS2 15132C253 sind,
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R 1.e 1(61_62) L* 1(31-32)
a = a'e : a =a e ;
c 4 t (3
. —i(a +B +7) p i(a +B +7)
A = aLe 22 H A = aL e 21 ;
[+ [ c c
, 1o o =B _-7) , -i(a +a =B ~7)
)\t = at e 1 2 2 : At = altj e 1 2 1 .

..... (5.3)

In the calculations of Chapter 4 we assumed m>» m>» m>
mo>»m = 0. But, as menticned before, m = may be heavy.
Indeed, the recent results® of the CDF group at the
Tevatron and the UA2 group suggest that mt>60 GeV. On the
other hand, the minimal Higgs model®® for m>» m gives m <
200 GeV,1 and we have at present, in spite of rather loose,
experimental lower bounds on the mass of WR, nanmely, moz

300 Gev™®. So, it is reasonable to base our calculation on

the following assumptions:

<
m,2m,mm sm, m,m,m »>m »>m = 0. (5.4)

LI

5.2.The Leading Contributicns of Box Graphs:e:m

E.—.)-_.-\, —_ L.‘\ > d ;__.)__A_’-\,I—:‘v-\ﬁ__)_d
uct uct
W W
a——)—-~'\— \L -~ > ;—-—)-‘-—A"\-"'H;/\"L')——
) S
(a) (b)
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s R d s R d
B i Wi Wohe N\ S i - ~N N y——
uct uct
W W
A~ R
——neenl o oy - T TN
d s d s
(b’) (c)
Fig.5.1, S-channel diagrams of the box-graphs that

contribute to the mass matrix of KL_K? system.

The main contributions to €~ are coming from the box
diagrams in Fig.5.1 and the corresponding t-channel
diagrams. The leading correction to the result obtained
in the standard model arises from the diagrams in Fig.5.1(b)
and (b‘) and their t-channel counterparts which give the
same contribution. Let the free quark amplitude be A=L,
(effective Lagrangian) = Hﬁ(effective Hamiltonian). Thus,
in the limit where the external quark momenta are assumed to

be negligible compared to the loop momenta, we obtain, in

the 't Hooft-Feynman gauge (color indices are already

omitted)
o
4 ' q. v +m
_ g, 4 dq - o j
A =4 (=) —= T AA sy L —— 5 Rd-
LR V3 (2n)4 (1,3%c,t) 17y u qz_ mi v
B, 3 v
T LA VS - - i
SVpL z U 2 .2 2 2,/
q°- m (q"-M;) (a°-M7)

=2 (-9* o
2 (ME) Or 1%y MmAAMT (5.5)

where the factor 4 before the integral indicates that the

contributions from counterparts have been included, and
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L= 1:75, R = 1'2'75,
0, = (57,7 Rd) (5o'y"1q), (5.6)
I =4 d41 1 :
. (2m)* (g~ m) (@®- w) (1) (a1
i B1np ellnc1
- [ + +
M, L (1-8) (e, -B) (¢ ~B)  (1-€,)(B-€ ) (e -c )
£ lne
s Ll ] (5.7)
(1-c,) (B¢ ) (€ =¢ )
where B= Mi / M: ) €, E mf / M: . (5.8)

Introducing new parameters m, mf / ME ,noting that € = Bn‘

we can rewrite (5.7) as follows

+ +
(1-R) (n,-1) (n -1) (1-Bn ) (1-n)) (0 -n,)

in [ Ing m, (1nB + lnnl)

1) 4H2M4
L

+ (5.7)"

nj(lnli’ +1n'nj) ].

- (1- -
(1-8n ) (1-7m,) (n,=n))
Noting that I” is invariant under i«»j, furthermore,that

B « 1 (see eq.2,27),and that n_ <« 1, n,o> M, we have

55 1ngn_ +
t (m, -1) (1-fm )

ig [ n Inn + Bn 1InB ]

t t 2.4
¢ ¢ (4 ML
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_iB
I =

2.4
¢ an°M
L

[ lnnc + 1 ],

I = .

ip 1 [ 1ng 1+ln13nt (1-2Bnt)nt1nf3nL ]

tt 2,,.4 2
s ML 1 n, l—nt 1-{3nt (l-nt)(l-Bnt)
(5.9)
On the other hand,noting that
MV = gV - igtY, and ¥PMV = oMVyS = % gBuY g
we can prove that
0 = (57 7y RA) (57*7¥Ld) = 4 0 (5.10)
LR uwv LR ! *
with o = (sLd) (SRd) . In addition to 5u‘ we need to

evaluate the following two operators which we encounter in

calculations of Au'and Amﬁ

A
o
LL

(s7, 7.7 _La) (s7%7"7M1a) ,ara
[V s &

A

- - o Vv U
BR (swuszaRd)(sw ¥ ¥ Rd).

Similarly we can prove that

0,=40, ,and0, =40, , (5.11)

with 0 = (§7“Ld)(§7“Ld). (5.12)

The equations (5.11) hold, because we cannot distinguish
between Q¢ and Om‘in the case of pure left-handed or pure
right-handed current. Moreover, we have to evaluate the
. - 0 0 = 70 0
matrix elements M = <K'|j0 |K> and M _ = <K'|O |K>,

which can be done with the aid of wvacuum saturation

101



48,70,99
as follows :

2 2 2
M =M <2 fin / 2m (5.13)

where fk is the decay constant of kaon.

Using the divergence equation:

JIVSWZ = -iau(ﬁlwuwswz)/(m1+m2),

we obtain

vac 1 2 2 1 2 2
Ma = Mg =30 / (mAm)® + =] rem / 2m,

vac

~ 7.7M°°, (5.14)

where we have used the current-mass
mS = 150 MeV and n% = 7 MeV.

Substituting the above results into eqgn.(5.5), we obtain

’ 2 2 . -
{8x7.7) G. M_ O 61(31 B,)

L,2
ALR - n® { lacI nc(1+lnnc)-
ok n, (108 1+1nBn, _ (3=287n ) m  1nm )
t 2
1-m, 1-m, 1- 37, (1-7,)(1=B7,)
iI(a +2a)) n
L Le 1 2 c
(ac a e + c.C.) \/'ncnt [ T lnB'nc -

t

lnnL + Bntlnﬁ
- ] ). (5.15)
(1-m.) (1-B7n,)

Similarly, we can get
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2 .2
GFMO

. LL L 2 L L1
w = 5 ((ac) (1 + 2nc lnnc) + 2 a_ a a x
n t
2
1 n =1
x[niln%-—%—-i» 2(77flm1’~— t )] +
c (T)t-l) 2
L
(a))®
+ ——— (n, =27 1lnm -1}, (5.16)
3 t t t
(n,-1)
A »l:;fiijﬁifii "2(1 + 287 1n + 2
— > B ((a))( Bn_ 1nfn ) »
n Bn,
1
2 .2 2 _2
x[=2 B" m_In(Bn) - 1+ 5 (2 87 m In(Bn) -
(1-8n,)
2 2 (a;:)z 2 _2
- B8] + 1)) - ———[B° n] - 2 g m In(Bn)-1]).
(1-8n )
(5.17)
Thus total amplitude is
At = ALL + ARR + ALR . (5.18)

This sum omits two classes of box graphs whose contributions

are small. First are the graphs, allowed under the
assumption of mixing between W and W - These are
proportional to tanzc < (0.06)2 ( because WL = wicos( -
-Wzsin(, WR = Wlsinc + chos( ). Because of our choice of

gauge , there is also the set of graphs wherein one or both

of the W’s are replaced by unphysical scalars. These graphs,

however, are suppressed by the mass-dependent scalar
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couplings .
In what follows we shall calculate the corrections to the
Standard Model. Noting that ImA / Am should be the result

in Standard Model, thus we have

ImM12
£ =2
" Am
=0 0 50 0 0 0
Im<K™|A [K™> Im<K"|A _|K'>  Im<K™[A _[K™>
= 2] + +
Am Am Am
=’ (1+p+p), (5.19)
Im<K’|A_|K> Im<K’|A_ [K'>
with p = , and p’ = . (5.20)

Im<K°| Al K°> Im<K°| Al K>

Omitting the relatively small quantities, we have

B c,c, sin2(B,-B,) (2c’An_In(@n ) + (l-Bnt)'Z(l-—czﬁ‘ﬂt)i

a 2s_c.s_ sind (¢%n Inm + (1-1.) %(c®n® -7 - s?) -
2 23 27, L* My 2Ty ~ M 2

* 2s2 gn, In(Bn) (1-8n, ) °(1-c%em,)) (5.21)
-(1-n) "7 (1 -cin, + s2))

, 2 4

o (8~7.7)R8 51n(f31-{32) clca{ s,c.c, ( c,n_ (1 + lnnc] —X
, 2 -2, 2.2 2

2szc25'3 siné (cz'r;c 1nnc + (1—nt) (ca'r;L i sz) -

- S;nt(l-nt)'z(l-ﬁnt)'z[-l + (1-glng)m, - B(l-lnB)nf -

X

-(1-m) "7 (1 -cin, + sD))
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2 2 2
X— (1L — Bnt Bnt)lnnt]) - 2[S1C1szca cos(a1 + 2a2) .

; . -1 -1
- s, siné sin(a, + 2a,)] V7 7"1 (L -m) (1 -8n) -

X P

[B(nlnn_ - Ing)w_ + (In@ + 1nm)(1 = m)m_ - n.1nn])

X .

(5.22)
It is apparently that p and p’ depend on the mass of the
top quark . In what follows we shall consider several

extreme cases:

i.e. . = 1. 1In this case, we have

1).mt o ML, .

_ B c,c, sin2(B,-6,) ([1+ 2¢jn In(Bn)] + (2R (s]Ing -

»

P 3
ZSzc?_s3 sindé nc(l + lnnc)

2 2 2 .2 2
- c,)]n, - [2s,c, B lnB]nt}' (5.23)

(8x7.7)B Si"(B1-Bz) CICB{ sfclc3 ( c;'nc (1 + lnnc] -

p’' = ”
3 .
252c253 sind nc(l + 1nnc)

4 11 15 1l 2
=z s,[- 7 + —§(1 - BInB)n, - gBR(11 - 351n@)n’]) - Van, /
2 2 . . 2
(S1C1Szc3 cos(oz1 + 2a2) - 53451n8 szn(oc1 + 2a2)][6B (nc

e
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1mnc - lnﬁ)nf - 2,‘3[4nclnnc - 21nB + 1]77t + [ncln(an + 13)

’ .

e e (50 24)

Noting that m_~ 0.00035, B ~ 0.0023, thus o(|Ing|) ~

~ O(llnncl) ~ 0(1), and that s: « cz , Wwe can further

simplify egns.(5.23) and (5.24) as follows:
. 2 2 2,2 2
B c,c, 51n2([31-f32) {1 ~ 2c2{3nt - 252CZB 1nf n, }

p = 3 . !
232c253 sind 'nc(l + lnnc)

o e (5,23)

) , _ 2 4 . _
(8x7.7)RB szn({i’1 132) clca( slc]c3 ( c,m, [1 + 1nnc]

pl ~ X
3 ,
ZSzczs3 sindé nc(l + lnnc)

4 11 15 1 2
— S- 15t g M~ gh(11l - 35InB)n ) + 2vam

b X

2 2 . . 2
[slclszc3 cos:(oz1 + 2a2) - s, sind 51n(011 + 2cx2)][3{3 1n{3x

m.+ B (1 - 2InB) m, - 2])
N . (5.24)"

It is easy seen that the dependence of p and p’ on the top
quark mass 1is based on a power series and is not

logarithmic.
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ii). MR »m > ML, il.e. 1 » 1 but ﬁnt « 1 .

B c,c,sin2(B-B,) (1 - 2cigm,)

p = 3 X ’ (5'25)
2s2czs3 sing
, 2 4
o - (8x7.7)B sun(f.?1 Bz) C1C3( s,¢,¢, ( c,m. (1 + 1nnc] _>\
3 ,
Zszczs3 sind 'nc(1+ 1nnc)
- S:[l - Bn, (1 - Ing = 1nn)]) - 2B vVan -
X X

2.2 , .
[sSc.s_c_ cos(a, + 2a_) = s_ sind sin(a, + 2a )]
11273 1 2 3 1 2

. (5.26)

iii). m = MR, i.e., Bnt = 1,

B c,c, sin2(B -B,) [c; + 2n_ 1n(Bn )]
o = : , (5.77)
2$2C25’3 sindé

, 2 4
o = (8x7.7)R 51n([31—[32) C,Ca{ S1C1c3 ( cz'nC [1+ lnnc] +/
2s_c_s siné
2 2 o

a,_ 15 1 59 292
+ 5,[~ =5 B m, + §B(11 + 3InB) + (=5 - 8InR)E"™]) -

X 4

2 2 " .
- + - sind sin(u, +
[slclszc3 cos(oz1 2a2) s, si1 in( . 2a2)]

Ve

-
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B° v, lng (-387° + 21 -1))
, . (5.28)

From eq. (5.16), we have

. 2 2
ST _ Ili2 3 2325'3 sind cz(l + 2nc1nnc) + [2c2(1 lnnt) 3

m ReM
12

3 2 2 2 2 2 3
n, - 2(c2 - 2521nnt)n( +o2c + sz]/[Znt(nt 1)7] )

x

o (5.29)

5.3.The Contribution of Penquin Graphs:c’ or £
When the mass of the top quark is heavy, as mentioned
before,y-penguin and Zo-penguin have to be taken into

account. Thus £ will be determined by the following penguin

graphsqﬂgaz
p’ WL R k p p’ uct k P
] -y d s ¢ € < d
uct uct WL R
k-p’ ! p-k
, | x =gluon, , Ix = ¥,2°
= - i = -n 4
q=p -p | v, 2° q=p pi
q | “q g | g
Fig.5.2 (a) (b)
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The 1loop integral 1is, in general, divergent. After
renormalization the divergent part will be absorbed into the
renormalization parameters and the finite difference of the
loop integral will remain. The effective hamiltonian
corresponding to the process will be determined only by the
finite difference. Therefore we introduce symbol Fin I that
denotes the finite difference of the loop integral after
renormalization.

As in section 4.2, we shall work in the Feynman gauge and
neglect the unphysical field as well as the mixing between
left- and right-handed currents. Because the right-handed 2
particle z, is very heavy, the contribution coming from
%;penguin graphs is assumed to be negligible compared to
that from the left-handed Z (that is Zo) penguin graphs. In
addition, we shall also omit all external momenta and u
quark contribution.

At lcw energy case, for any 4-momentum p = (po,g) we have

ps » 82. Noting that nf » m: , we obtain
2 , 2 2
qQ =(p" -p) =m, (5.30)
1 1 5 5
> S T 3 (Mz » q) (5.31)
qa-M, M,

where q2 is the momentum transferred by the propagator
x(=gluon, or photon, or Zo-boson).
Let x, = m- / M, i=c,t. (5.32)
i i L’ !

For simplicity, we shall write F(xi) in the form Fj(x) or
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FJ(x). In what follows we shall calculate the lowest order

radiative correction.

For figure (a), in the case of x = 7 and left-handed

current, the loop integral is

s, VL0 7P + m)y (khw + m; yrHL

I=—-eg22a"._rdk
- i em! (kz- n$)? (k* - )
T 2
1 Z[(x v v )k, Kk +m ¥ 1L
=2eg2afdkfdza ot2 ;;v gsa
i 4 (2n) (k® + MP-m%)z - M%)
L o j L
- 2 L .J
= 2eg>J; a; I(x).

With the aid of dimensional reqularization, we can find the
J 2
finite part of Ia(x) (cut off at the scale ML) .

j ,_2 1
. in Xz
Fin I _(x) = ¥ L J dz{zln[(x~1)z+1] - ——o—7=—5)
@ z(zn)4 o o (x=1)z+1
in®
= ¥, L A (x),
2(211)4 @ J
3-5X xZ
where A.(x) = + Inx. 5.33
300 T Y T (5.33)
Thus we obtain
ieg2 L
Fin I = ¥ LT a, A,(x)
L 16m° i J '
a \/'a L
H (L) =— G M 37 Ld f7 f¥Xa, A.(x), (5.34)
7 mn i ,
;
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a Ve 2 = = a R
HW(R) -;\?1; GFML swaLd fy f f aj Aj(Bx), (5.35)
S

In view of the parity invariance in the L-R model, we have
replaced §7aRd with EzraLd in eq. (5.33) ( Noting that they
are all pure left- or right-handed current). Here A(x) is a
dimensionless function.

Similarly , and taking the trace over color space,

a2 Ab 1
Tr S T3 sab , we obtain for gluon-penguins

a asGFMlz. - .U L

H (L) =——— sy 1d fy £ £ a; A,(x), (5.36)
g e [

H(R) = *,Gel; sy 1d 2% = ab A.(Bx) (5.37)
9 vamen ¢ j ' '

s

For the Zo-penguin, the loop integration in the case of

the left-handed current is

p
4 7“L(kp7 + mj)wa(CLL+CRR)

X

2 2 2

2
I = ——<c9 s a- f - .
i 7 (e2n) (K* - m%) % (k

L 2sing cosd, _Mi)
A H
x(k,¥" + mj)w L

n v 2
¢, Z[CTY Y k“kv+ Cm, 7 ] L

2 1
ze L d k Rja
= — a, Jdz S
smﬁwcosﬂw F J 5 (2n)4 [k2+ (Mi_mj')z - Mi]a
zeg2 L J
= = ¥ a.; I7(X%).
smm&wcosﬂw j Jj Ta
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2

1 Csz

. j _in ;
Fin I7(x) = v L J dz(Czln[(x-1)2z+1l] = o0—~ors)
o 2(2n)4 o o L (x-1)z+1
iy L
o
= > Bj(x)l
327
(3-x)CL - 4xCR x(Cx - 1)
with Bj(x) = YR, + o 1nx, (5.38)
=1.2 ¢gip? = - 2gin®
where CL = 5 Sin 0" and CR 5sin ﬁw. (5.39)
Thus we obtain
, 0 M0 M, )
HZ(L) = - — — saraLd f'x'(CLL+CRR)f zZ a, B.(x)
n"cos™® M Jj J J
Wz
26MC, M
= = ——— — sy Ld £y £ T a, B.(X). (5.40)
2 2 2 o PR e |
n-cos ﬂw Mz J

In the last step we
the L in the Fy*Lf.

2

used parity conservation, and omitted

Similarly, we have

2,2
2G M C M
HI(R) = - —2 L R L gy 1a 7% = a° B, (Bx), (5.41)
z 2 2 2 a A |
m cos 9 M J
Wz
(3-Bx)C_ - 4BxC_ Bx[(Bx-2)C_+2C ]
with C.(Bx) = + 3 InBx .
J 4 (Bx -1) 2(Bx - 1)
............ e 2 (5,42)
In what follows we consider figure (b). For the

y-penguin, in the case of left-handed current, Feynman rules

give
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P My - [0 4
2 4 7uL(kp7 + Tj)wv L [g  (2k-p’'-p) +

N d k

v '
&% p-mt + g p-Kk)”

2 s, -2k, " (2k-p’ -p)* + (P’ k), K

p

N

4 2 _2 2 2 , 2 2
(2m)® (k*-n) [(p=K)° - M1[(p'-K) - M)

Py

=229 z a5 =~
j

»

7 emt e’ el ® - MO TPt k) B- M)

o p A
+ ¥ K ¥ (p-K)7
X P A L

, 2 ,
=189 5 5% 1t .
2 . ] Ta
J
Omitting p’ and p in the denominator and using

parameterization, we obtain

o 2120 % %k kv L

d Kk
3
]

’

. 1
J - -
Ia = =4 [ dz [

0 (2m)* [k

m
2__2 2
- (M°=m%)z - m5

(M, =m5) m;

Feynman

where the dots denote the term linear in k, which vanishes

when integrated over k. Also we used the relation,

phvh 7“ + WapAWA. Thus

. i37aL 1
Fin 17 = J dz (z In[x-(x~1)z])
o 2
8n 0
iy L
o
= > Dj(x)r
8n
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2

. 3(1-3X) 3x )
with D,(x) = — + lnx. (5.43)
J 4(x=1)  2(x-1)® )
2
1.8 -
1.6 |
1.4
1.2 -
1+
0.8 ~
0’6 o
0.4 -
02+
]
-0.2
-0.4
=061 P
~0.8 ! 1 1 | | ! 1 1 L1 | 1 i L i l 1 1
50 70 80 110 130 180 170 190 210 230 250
) Tep quark mass (GeV)
0 Alx) + Blx) o 3
Flg.5.3, A(Xt), a(xt) and D(Xt) as functions of mt for
M, = 80 CeV.
Finally, we obtain
P _Vza W = = o L
(L) ==— G sy Id fy £ X a; D.(x), (5.44)
7 2 F L a S B
m_m J
P r) =% G ® 57 1d F% T a® D.(gx) (5.45)
¥ 2 F L o . J T J ! :
m J
A
H‘?(L) = - — svuLd £ty £ T a; Dj(x). (5.46)

114




2GM'C M

o~
o]
~

il

1

- N
nNice N

o

[ andil V]

- svaLd fy £ Z aJ. DJ.(Bx). (5.47)
[ M j
z
_ .- 2 - =«

Thus the contributions from the above penguins are as

follows:
o L
H =H +H=—"1y3z[a"A(x) + (L—RXxX—fx)].
g g 9 ‘/EmZ j ] ]
s

=+
]

a a
HO(L) + HO(R) + H?(L) + H?(R)

|

-‘/anil{al‘.

2 A

[A,(x) + D.(X)] + (L — R,x — BX )}.
m j J J

. 2 2 _ 2
Noting that M / M, = cos™® , we have

H, = Hi(L) + Hz(R) + H?(L) + HS(R)

2G
=-—fy2 (aL.C [B.(x)+coszz9 D.(x)]+(L — R, Xx — Bx)}.
o j J v LA |
Htot =H + H + Hz
o +ao 2G 2G
=y'£{a".[ 52 A, (x) -CL—-E Bj(x) + (—‘/—‘g—q‘--cL £,
j van_ J n m T

xcoszz?w) Dj(x)] + (L — R,x — f£X)}.
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Let a = 5= bECL——f-, CECR——J,
/Ems 4 1
2G 2G
d = @ c —Ff cos®s ' £ @ ¢ —E& cos®s..
2 L W 2 R W
m n m_ n

All these coefficients are constant. Let

LI}

Ej(x) aAj(x) - bBJ.\;) + dDJ.(x),

F.(x A, - CB,; + eD.(Bx).
_]( ) a J(BX) c J(BX) J(B )
Noting that 0 « X_ o« 1, 0« B « 1, we have

xinx 2=—=° . 0, and Bxlngx —BX > 5 0. Thus

Ec(x) = - -:- (a—bCL+d) = constant, denoted by 'E‘.c

Fj(x) = - % (a~cCR+e) = constant, denoted by Fc .
We can , therefore, write

L

.+ F(Bx) a, },

_ L R
Hm =y { EcaC + Fcac + Et(x) a

This depends only on the top quark mass m . Separating the

real part from the imaginary part, we obtain

Im Hmt =y sl{szc‘?s3 suz&[Ec- Et(x)] + c, s1n({31—{32)- ]

[c; F_ - s. F (Bx)]).

it RE g s U

~ 2 - 2
Re Hmt =y slclca(c2 [Ec+ FC cos(B1 [32)] + s, [Et(x) +
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+ cos(B,=B,)F (Bx)]}.

Because we considered only pure left- or right-handed
currents, we can, like Gilman and Wisegz, assume that the
result can be parameterized by the fractional contribution,
f (which is not far from unitygl), of the real part of the

H to K — 21 (I=0),

Im Ao Im Ht
£ = = f °

Re A Re H
[o] tot

t

=fs2c233 sinG[Ec- E(xt)] +c, s1‘n([31--{32)[c:1='C - siF(th)]

clcs([cz E_+ S°E(x,)] + cos(B,=B,) [cipc + si F(Bx,)]1)

(5.50)

In what follows we shall consider two extreme cases:
i). m o= ML, we have X, = 1. In this case, the first term
of E(xt) —> ®, the second term of E(xt) has a finite limit;

and F(th) has a finite limit too. Thus

£ = ~f c, s, siné / c,s, C, . (5.51)

ii). m = MR , l.e., th = ],

If we exchange E(xt) with F(th) in (i), then the

conclusion of (i) doesn’t change. Therefore

£ = -f tan(B -~ B,) / c, . (5.52)
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Conclusion

In chapter 3 we introduced a general formalism treating
CP-violati>n in the neutral kaon system and derived the
general expressions of £’ and €. In chapter 4 we calculated
€’/ € under the assumption of mo«<m and re-gained the
results obtained by Ellis, Gilman and Wise, which is typical
during the period of 1979-1989. Inchapter 5 without any
limitation on the top quark mass (mt), we calculated €'/ ¢
to the 1lowest order at low energy  —case in the
Pseudo-manifestly Left-~Right Symmetric Model. Our results
have shown that
i). The € or £ (equivalently, €’ or &) dependence on the
top quark mass is as a power-series and not logarithmically.
ii). The € or € doesn’t depend on the CP-violation phase
angle 7. The reason is that we assumed that the mixing
between left- and right-handed currents was small and so

could be neglected In the case of a pure left-handed
iy

current, e is absent; and in the case of a pure
. iy -iy . .

right-handed current e and e are present in pairs and

cancel each other.

iii). Our results contain too many parameters:f, §, %y o,

B:' and BZ, not known for the left-right model. Therefore,
it is difficult to compare our results with experimental
data directly.

Some modifications of the work done here are as follows.
i) Corrections should be made to all orders. This can be

accomplished wusing the operator product expansion and
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renormalization group techniques. Such a calculation is
very complicated. For higher order corrections we still
expect that the mixing between 1left- and right-handed
currents could be omitted because of the smallness of tanec.
ii) §, X, o Bl, and Bz should be determined independently

of €’/ € as is done found in the Standard Model (see secton

1.1).
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APPENDIX

A.1 Units
The convention h/(2m) = ¢ = 1 is used unless these symbols

explicitly appear in the formula. Some useful constants are
h/(2n) = 6.5822x107>° MeV

1.9733x10" ' MeV cm

i

197.33 MeV fermi

« = e°/(am) = 1/137.036

A.2 Metric And y-Matrices
The metric in Minkowski space (xu:u = 1,2,3 ) is given by
g“v with
dm = +1, gii = -1, otherwise =0, here i = 1,2,3.
¥-matrices, 1“, satisfy the anticommutation relation
7u7v + 7v7u = 2guv-
¥° is defined as 7° = i7%'¥*s° and satisfies
°oH o+ Myt = o
In the Dirac representation, the explicit 4x4 form of
r-matrices reads

SRR RS RN L

0 -1 -¢# o0

where 1 and 0 are the 2x2 unit and zero matrices
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respectively and ¢ = (OH’ o, O.) with o; (Pauli matrices)

given by

A.3 Parameters
The parameters in the minimal standard model are related
by the following eguations:

= ;g s.im?H = g’ cosd = e, M = % g v,
2 8M

= N

_ 1 2 ,2 _
M = 3V J (g + g7 , Mw = MZ cosz?H .
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