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Abstract

An extension of the supersymmetric standard model to
the supersymmetric SU(2)L X SU(2)R x U('J.)B_L model 1is con-
sidered. The gauge group contains bi-doublet and trirlet
Higgs fields. In this work we have considered chargino
(charged gauginos mixed with higgsinos) and neutralino

(neutral gauginos mixed with higgsinos) eigenstates for the

left-right supersymmetric (L-R SUSY) model. After mixing,

in the minimal supersymmetric model (MSSM), there are two
charginos and four neutralinos. In the L-R supersymmetric
model, in addition to four charginos there are three

neutralinos generated from the first symmetry breaking, and
four neutralinos (generates from the second symmetry
breaking. The mixings are in general model dependent. 1In
the minimal SUSY and L-R SUSY models, these mixings can be
parameterized in terms of a few parameters. We find
analytical expressions and numerical solutions for the mass
eigenstates with some restrictions on the L-R parameters.

We also investigate the possibility of detecting charg-
ino and neutralino production in pp-collisions at CDF, name-

ly pp - w;’ + X o §;§?+ X. The expressions for these
inclusive cross—-sections are solved numerically, using
parton model distributions. We have used ﬁx-=45 GeV, tanp=1
and a lower bound on the lightest supersymmetric particle

(LSP) mass, x=14 GeV. Finally we take M, 2300 GeV for



g=g =g_. In the pp-center of mass frame we find the cross
sections are: GL(p5 S S i;i?+ X)10.11 nb, and
o (PP > W+ X = i;i? + X)=4.6 pb, and thus o =240 at
vs=1.8 TeV. Cross sections are also given for larger values
of the center of mass energy Vs up to those available at the
SSC. The results are compared with the prompt-lepton back-

ground of the WL,R decays from pp = WLR + X - (Vh4n+ X.

Both decays for W; R-bosons show Jacobian peaks for
/ A o
p.= s/zzMwL/2=4O GeV (pT=150 GeV for D%R) at =90 .
Furthermore the chargino signature unlike the prompt-
lepton background is symmetric under the Jacobian peak. We
also exhibit the dependence of the angular distribution of

the charyino on the c.m angle 6 for p =40 GeV, 150 GeV at

vs=1.8 TeV.
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Introduction

The standard model (SM) of particle physics 1is a par-
tially unified quantum gauge field theory for the electro-
magnetic and weak interactions, which exhibits a broken
SU(2)L ¥ U(l)Y gauge symmetry (Glashow-Weinberg-Salam
model), together with the SU(3)C symmetry (quantum chromo-
dynanmics) for the strong interaction. It seems to give a
completely satisfactory account of the interactions of the
"fundamental" particles, which are the quarks and the
leptons.

However, the standard model can not be regarded as a
satisfactory or final answer to the problems with which it
deals. The model suffers from the need for a large number
of wholly arbitrary parameters, including the masses of the
particles and the coupling strengths of their interactions.
Once the strong interaction is combined with the electro-
magnetic gauge theory, the gauge group is enlarged to
SU(3), » SU(2)L « U(l)y, but there is no prediction of the
strong coupling relative to the electromagnetic coupling.

" This latter problem is resolved by embedding the large
group in one simple group, the so-called ‘"grand unified
group". The essential idea, based on the gauge group SU(5),
was proposed by Georgi and Glashow (1974). SU(5) predicts
that, at high energy scale, above some unification scale Mx’

all phenomena satisfy the symmetry G. The different



couplings g, 9, g’, observed at 1low energies would then
arise after the symmetry group G is spontaneously broken,

first at mass scale Mx(zlo15

GeV) then followed by electro-
weak breaking at scale of M. In the grand unified
theories, one must assume that a cancellation occurs betwecen
terms in the series representing the Higgs mass. The terms
are each of order 10'° Gev. This yields a residue of order
10° GeV, which is the size of the Higgs required for the
weak bosons to remain light. These are two aspects of the
so-called "gauge hierarchy problem". At present, there is
very little evidence in favor of a grand unified theory. 1In
the SU(5) grand unified theory, there is no evidence for any
of the new interactions associated with the new vector
bosons, although great experimental effort has gone into
looking for the predicted proton decay events.

An elegant way of solving this hierarchy problem is to
introduce a boson-fermion symmetry (supersymmetry). In the
supersymmetric standard model (SSM) the mass of each scalar
particle must be equal to that of its fermion partners.
This implies the Higgs mass is no longer gquadratically
divergent since the boson and fermion loop corrections have
opposite signs and cancel each other. Naturalness in the
hierarchy problem requires that the masses of the super-
partners of the ordinary particles should be in the range of
~]1 TeV. These ideas will be discussed in chapter I in our
thesis.

Oone of the unsolved problems, which the standard model



was not successful in resolving, is the origin of parity
viclation in low-energy physics. An interesting approach,
within the framework of gauge theories, the idea of
"left-right symmetry" models was proposed in 1973-1974.
This idea has found its realization in the sU(2), x SU(2)R x
U(1)B’L gauge group. An important feature of this model is
that, at low energies, it reproduces all the features of the
SU(2)L x U(1), model. As we move up in energies new physics
should appear, such as a second neutral z°~-boson and right-
handed boson, Wi. In the left-right symmetric model (LRSM),
one can expand the gauge boson and Higgs boson sectors, and
combine the L-R symmetric structure with a supersymmetric
structure. These models are constructed in chapter II.

If there is new physics beyond the standard model,
several questions naturally arise. First, at what energy
scale will the new physics enter and, second, how will the
new physics be identified? There are strong theoretical
arguments that new physics will occur in the range 100 GeV-1
TevV. This 1is a very exciting possibility since the lower
end of this energy range is already being examined for the
first time by CERN pp Colliders, the e’e” Collider at CERN
(LEP), and the Collider Detector at Fermilab (CDF). At the
end of the decade we expect to have pp collisions at super-
high energies (x40 TeV c.m) for the Superconducting Super
Collider (SSC) and the Large Hadronic Collider (LHC) at CERN
(*17 TeV c.m).

An aspect of searching for the superpartners to the



normal particles which has received a lot of attention in
hadronic collisions is chargino and neutralino pair produc-
tion. These are perhaps the most promising of the supersym-
metry partners for detection and study, because they may
give the cleanest experimental signatures.

The limit on their masses is based on the missing
momentum signal associated with chargino and neutralino
decay into an undetected stable neutralino. Their produc-
tion via the decay of left— and right-handed W' -bosons in
the pp collisions is the main subject of this thesis. This

is found in chapters III, IV, and V.



Chapter 1

Supersymmetric Standard Model (SSM)

I.1. Introduction.

The standard theory of electroweak interactions (or the
Glashow-Weinberg-Salam model), based on the gauge group
Su(2), U(1) . is a partially unified quantum gauge field
theory for the electromagnetic and weak interactions.[”
This model together with the SU(3) symmetric guantum chromo-

2 .
(2)ceems to give a com-

dynamics for the strong interactions
pletely satisfactory account of the fundamental particle
interactions of quarks and leptons.

There is no doubt that the standard model, based on the
gauge group SU(3)C X SU(2)L X U(l)y, has been very success~
ful in making @predictions confirmed by experimental
discoveries such as the neutral current and the Wt and z°
vector bosons that mediate the weak interactions at the CERN

3]

pp-collider. ' Of course the standard model is not com-

pletely tested; there are indeed many predictions which are
no checked at all. These include for instance: the
observation of one fermion, the so-called "top-quark”.
According to the model the top-quark should exit in the
energy region 20-200 GeV. L4l

Another prediction is the existence of the Higgs sector

(5]

(scalar particles with spin-0). This sector ~'remains



rather mysterious, and the predicted particle has not been
found. The Higgs sector, however, is very important for the
standard model since the masses of the gauge bosons w’, 7"
and the fermions are generated by parameters in this sector
after the breakdown of the gauge symmetries.

The Higgs particles have several nice properties. They
are the only particles to possess nonvanishing vacuum expec-
tation wvalues (VEV’s) without breaking Lorentz invariance.
But the Higgs masses, are suhject to quadratic divergences
in perturbation theory which push them to orders of the
Planck mass. An approach to this problem is to use a higher
symmetry to eliminate the quadratic divergence in the Higgs
sector. An example is the supersymmetry theories as we will

indicate in the next sections.

I.2. Supersymmetric Theories of Particles,
I.2.1. Generalities.

Supersymmetry is a symmetry that transforms bosons into
fermions and vice versa. The generator Q of these transfor-
mations should therefore have fermionic character. Since
the supersymmetry generators carry one half unit of spin
they obey anticommutation relations. Supersymmetry transfor-
mations are generated by a 4-component Majorana spin-1/2

symmetry operator Q, which satisfies the algebra:'® "

(@, "= o (I.1)

Si= - M
(Q,Q)= -27 P (I.2)



where the energy momentum operator is pH=is". From this
algebra one can immediately read off two important conse-
guences: From eq.(I.1) for u=0 we see that Q commutes with
the Hamiltonian H=P°, which means that spinor charges are

(9,10) pguation (I.2), the anticommutation rela-

conserved.
tion, indicates that two successive SUSY transformations
involve the structure of space time.

The supersymmetric algebra, in its simplest form (N=1),
has a self-conjugate spin-1/2 Majorana generator Q with the
property that it changes the total angular momentum J by
half a unit and turns boson fields into fermion fields and

1101 There could exist N different operators Qi

vice versa.
(i=1,...,N) of this kind, but only N=1 SUSY allows fer-
mions in chiral representations. A local gauge symmetry
involves spin-1 gauge fields and a local symmetry for the
Poincaré group involves spin-2 gravitons.

In the spirit that all fundamental symmetries are local
gauygye symmetries, it is also possible to make supersymmetry
local. Since the anticommutation relations of the supersym-
metry involve the Poincaré group generator P“, local super-
symmetry involves both the supersymmetric partners of the
graviton and the gauge bosons—the gravitino of spin-3/2 and
the gaugino of spin-1/2. 1In global supersymmetry models the
gravitino is not present.

In supersymmetry, particles are assigned a quantum

number known as R-parity defined by[nl



R =(-1) B3 _ +1: for ordinary particles
P —-1: for supersymmetric particles

where B is the baryon number, L is the lepton number, and §
is the spin. The latter formula illustrate that the conser-
vation of baryon and lepton numbers (or simply their dif-
ference) necessarily implies R-parity conservation. If we
try to replace a normal particle with its superpartner we
would violate angular momentum conservation by *1/2. Hence
any amplitude must contain an even number of superpartners.
If the R-parity is conserved, it has important phenomeno-
logical consequences:

® supersymmetric partners will be produced in pairs
starting from normal particles,

m the decay of supersymmetric partners will contain a
supersymmetric partner,

m the lightest supersymmetric partner (LSP) will be
stable. It is thought that the neutralino %° is likely to
be the LSP, though other candidates are possible.llz}

In supersymmetric theories the number of fermion ana
boson degrees of freedom must match. For instance, for each
quark chirality state, such as q . there 1is a boson super-
symmetric partner in this case the "squark", aL. In the
supersymmetric theories, it is necessary to have two doub-

lets of Higgs fields in order to give masses to all the

quarks and leptons and there are corresponding spin-1/2



. , 10,13
"higgsino" partners:[ ]

(Hg Fx‘l’] 1’-’12
Pl - (I.3)
Jlﬂ;] [H'){H'}

The particles winos, =zinos, photinos and gluinos, are the
spin-1/2 superpartners of the wi, ZO, ¥ and gluons respec-
tively. All the superpartners of leptons and gquarks, which
have spin-0, often called are "sleptons" and "squarks". The
particle content of the supersymmetric standard model is
shown in Table I.1.

The charged weak gauginos or winos and the charged
higgisinos will mix among themselves, since they carry the
same values of conserved gquantum numbers, forming the so-

(12l Additionally and for the same

called '"charginos".
reason, the neutral electro-weak gauginos or zinos mix with
the neutral higgisinos and form the so-called "neutralinos".
Together the charginos and neutralinos sparticles are the

main subject of this thesis.



Table I.1: Spectrum of SUSY particles.

Ordinary , .
Particles Spin Spartners Spin
q, R 1/2 S 0,0
P ~
“L,R 1/2 £L’ R 0,0
4 1 7 1/2
g 1 g 12
- gauginos
" 1 W 1/2
ZO 1 20 1/2
H 0 i } Higgsinos| 1/2

Supersymmetry introduces no new coupling. Sleptons and
electroweak gauginos interact with the same coupling
strength g as the leptons and gauge bosons, and squarks and
gluinos with the coupling strength g, as the quarks and
gluons. This is because in the SUSY extension of the
standard model, the interaction of a fermion with a gauge

1o
boson transforms under supersymmetry as follows: :

gt v £a" 5 vagEAE + H.C. (I.4)
where A is the corresponding gaugino and fL is the corres-
ponding sqguark or slepton. If supersymmetry were unbroken,

the supersymmetric partners would have the same masses aco

their corresponding particles. Supersymmetry must Le

10



broken, because the observed particles do not sxhibit boson-
fermion degeneracy. However, if we assume the symmetry is
broken spontaneously at a scale =1 TeV, the mass degeneracy
is removed but the predicted relations among couplings

remain exact.

I.2.2. The gauge hierarchy problem (GHP).

Altlhough the standard model is completely successful in
accounting for low-energy particle physics (i.e., describe
physics at energy scale of order =100 GeV), it leaves unex-
plained why the gauge group of strong and electroweak inter-
actions is SU(3)c x SU(2)L x U(l)Y, with different gauge
couplings and why the fermion gquantum numbers have their
particular values. In 1974 an elegant unification scheme

] according to which the standard model at

was proposed[”
energies =M, is the remnant of a bigger SU(5) symmetry which
is spontaneously broken at some unifying scale M . Such a

% is characterized by only one gauge coupling cons-

theoryzl
tant g . at energies =M, where breaking of SU(5) down to
SU(3)C ~ SU(2)L ~ U(l)Y occurs.

The essential idea of grand unification is to try to
embed the standard model in some simple gauge group G, and
at high energies, above some unification scale Mx' all phe-

140 The different couplings

nomena satisfy the symmetry G
g., 9, g’ observed at low energies would then arise because
the unified group G is spontaneously broken, first at mass

scale Mx then followed by the electroweak breaking at the

11



scale of M. In grand unified theories (GUT’s), there are
two types of Higgs particles which cause the symmetry break-
down: the usual Higgs with b%=O(Mw), and heavy Higgs ¢ with
M®=O(Mx).

In the standard model there are 12 gauge bosons (the
eight gluons, wi, 2°, and ¥). In a grand unified theory
there are additionally gauge bosons, X, which 1link the
quarks and leptons that lie within the same multiplet of the
group G. These X bosons, which mediate new interactions,
violate the conservation of baryon number, B, and lepton
number, L. For instance, the most spectacular featurc of

this GUT’s is the prediction[14'l6]

of proton decay with a
lifetime =a§%¢/n§z2x1029 years (a is the GUT coupling).
such a decay occurs only through lepton and baryon number
violating interactions, which are mediated by a virtual
superheavy gauge boson, X, with mass szlfs GeV. Since the
experimental limits on the proton lifetime are of order
'cp.>.1031 year,[15'17] M, is at least of order 101°VE:' GeV.
such interactions seem to be a basic ingredient, along with
CP-violation, for the explanation of the observed baryon
asymmetry of the Universe. ' !®!

Most of the unification models proposed so far contain
two characteristic mass scales, M and M; M is the scale

where breaking of the elecroweak SU(2)L s U(1) - U (1)

Y
takes place and M, is the scale where unification of all
forces (but gravity) occurs. There is a vast separation of

213 orders of magnitude of these two scales. llot only that

12



but this vast separation is not stable under renomaliza-

tions. These are the two aspects of the so-called "gauge

(19.20)  the first problem is: these

hierarchy problem".
models provide us with no information as to why
MR/MXSO(lo'm) and hence cannot be complete as physical
theories. The second aspect is the "“naturalness" problen,
which means that the radiative corrections involving super-

heavy gauge and scalar particles to the low-energy scalars

(the normal Higgs) of the theory do not cancel but contrib-

ute through the graph of Fig. I.1 to give corrections:'!?!
2 2 2 2 2,2
SMi= M. [0 (g°,A) + O (g%, )M /M), (I.5)

where g2 is a typical gauge coupling and A is a quartic

coupling appearing in the Higgs potential. Obviously, SM:

cannot be O(Mi) unless 02(<;2,A.)=O(10'26

). This means that,
in order to keep the light Higgs H, while the ¢ is heavy, we

must ensure cancellatiuns of the divergences to an accuracy:

(M/Mg) %= (M /M )% 107, (I.6)

Fig. I.1 Quadratically divergent contribution to the mass of

a scalar particle.

13



foerzlo15 GeV, which must be put in "by hand". Such a fine
tuning of the parameters to 26 decimal places is really hard
to conceive, and what 1is worse 1is that this has to

1191 1his

readjusted to each order of perturbation theory.
destabilization does not affect the low-mass (=M ) gauge
particles of the theory.

An elegant way of solving this hierarchy problem is to
introduce a boson-fermion symmetry (supersymmetry). If
boson-fermion pairs have identical couplings, their con-
tributions to loop diagrams, such as Fig. I.1, are of oppo-
site sign and cancel each other. Naturalness in the hicrar-

chy problem requires the mass of the Higgs to be not much

larger than =1 TeV.

I.2.3. Motivations for supersymmetry.

We have seen that the origin of the gauge hierarchy
problem is the difficulty of including fundamental scalar
Higgs fields in the standard model: consider the Higgs

potential,lg]

V(g)= -uZ|¢]

4+ ale]’. (I.7)

The Higgs mass is then given by: M;=(2uﬂl/2=(2A)”2u, where
v is the vacuum expectation value of the Higygs field and
given by,

v=(u?/1) 1722250 Gev,
where A is the same as in eq.(I.5). Although A is unknown,

we require A<l so that MH<1 TeV. Experimental bounds'“'! on

14



M, come from LEP; M =40 GeV. The parameter u? in eq.(I1.7)
receives a contribution due to the graph of Fig. I.1 which
is quadratically divergent. Hence the masses of such
scalars, M , are subject to quadratically divergent re-

normalization corrections,
2
M~ AA (I.8)

where A is a physical cutoff (of dimension of a mass) in the
TeV region.

We have said in the previous section that there is no
natural way to sustain a light Higgs of mass O(Mw) together
with a heavy Higgs of mass O(Mx). There will be radiative
corrections to the light Eiggs mass of O(Mx) that automa-
tically destroy the hierarchy. Only an "unnatural" fine
tuning of parameters, order by order in perturbation

theory,“ol

could keep a light Higgs of mass oM, ).
In exact supersymmety the mass of each scalar particle
must be equal to that of its fermion partners. This implies

[9,10] .
sSince correc-

the absence of quadratic divergences
tions to the scalar mass, MH, is cancelled by the contribu-
tions from the supersymmetric partners of the Higgs boson,

as shown in Fig. 1.2, i.e.,

2

2_ 2 _ ~
SM"~ A(n% mF) 0 (I.9)

Although experimental support for SUSY is 1lacking, many

15



S

people believe that it is only a matter of time before evi-
dence of SUSY, albeit in some broken form, will be found.
We need a finite Higgs mass of O0(M,) to produce the observed
electroweak symmetry breaking, so we want to break supersym-
metry "gently" so that the masses of the boson-fermion mul-
tiplet are split and eq.(I.9) becomes:
2_ 2 _ . 2
SM= A(m. - m) (I.10)

So if eq.(I.10) 1is to give amﬁm:, supersymmetric partners

of the ordinary particles must be found with masses =1 TeV.

Fig. I.2 Quadratic divergence contribution to the mass of a
scalar particle (dashed 1line) that cancels th
contribution of fig. I.1 in a supersymmetric model.
The solid line represents the fermionic partner of

the scalar particle.

I.3. The Minimal Supersymmetric Standard Model (MSSM).

22 (mssm) is

The Minimal Supersymmetric Standard Model
the supersymmetric extension of the standard model (SM) with
the minimum number of new particles and new interacticns. In

this model the Higgs boson receives corrections that are

16



limited by the extent of supersymmetry breaking. The minimal
supersymmetric model is the only structure in which the
problems of naturalness and hierarchy are resolved, while
retaining the Higgs bosons as truly elementary spin-0
particles.

In the standard model only one Higgs doublet, together
with its complex conjugate, is required to give mass to the
quarks and leptons. In the supersymmetric theory, at least
two Higgs doublets are needed to give mass to both up and

{23-25]

down quarks. Furthermore, two Higgs doublets, are

necessary for cancellation of anomalies, '?¢!

Once electroweak symmetry is broken, the particles with
the same spin, electric charge and color (gauginos and
higgsinos) mix to form mass eigenstates (charginos and neu-
tralinos). The mixing between the partners of the left- and
right-handed fermion, fL and fR, is proportional to the
corresponding fermion mass. The gluinos, g, are the only
spin-1/2 color octet fermions and so cannot mix, and then,
their interactions are fixed by QCD. Gauginos and higgsinos

are spin-1/2 weakly interacting particles and so they mix

once SU(2) x U(l), 6 is broken. After mixing, in the MSSM,
L Y

there exist four neutralinos, i?, X X X, and two
~ %+ -~ R . '
charginos x;, x; (labelled in order of lncreasing

122,271 14 our model, the L-R supersymmetric model,

mass) .
there are seven neutralinos: three generated by the first
stage of breaking, after acquiring VEV ., and four

generated by the second stage of breaking, after acquiring

17



VEV’s Kk and K- These particles will be discussed 1in
detail in chapters III and IV. The mixings are in general
model dependent. In the minimal susy model and L-R susy
model, however, they can be parameterized in terms of a few

parameters.

I.4, The Scale of Supersymmetry Breaking.

The particles observed in nature show no sign
whatsoever of a degeneracy between fermions and bosons.
Since nature is not supersymmetric, SUSY must be spontane-
ously broken. Consider eq.(I.2); it has immediate conse-
quences since it relates the supercharges to the Hamiltonian

9
and we have,[]

H= P°= QQ', (I.11)

where Q 1is the SUSY generator. Thus H 1is semipositive
definite (Hz0). This implies that in supersymmetric
theories the vacuum is well defined. If supersymmetry is
unbroken this implies Q|0>=0, where |0> is a vacuum state.

We then conclude for the vacuum energy:

E, ~<0[H|0>=0. (I.12)

va

If, on other hand, supersymmetry is spontaneously broken we
have:lg]

Q[O>=|VJG>=¢O; E _*0, (I.13)

18



where Q|0> is a fermionic state, denoted by |wc>. This
means that, if supersymmetry is spontaneously broken there
will be a massless fermion the so-called "Goldstone fermion
or Goldstino"* created out of the vacuum.'2%:2°!

In the case of spontaneously broken global supersym-
metry: the Goldstone fermion is the lightest supersymmetric
particle (since it is massless), which would couple to every
particle and its superpartner. This gives rise to a number
of interesting production and decay mechanisms, which could
be relevant to experiment if the Goldstino coupling were
large and this requires the scale of supersymmetry breaking
to be less than a TeV. However, in SUSY models involving
supergravity, and on spontaneous breaking of the symmetry,
neither the Goldstino nor the gravitino remain massless. The

s . . 9,10;
gravitino absorbs the Goldstino and becomes ma551ve;[ ’ !

(m=0, spin-3/2) + (m=0, spin-1/2) - (m#0, spin-3/2).

The Goldstino becomes the missing helicity * 1/2 components
of the massive gravitino. The gravitino in most recent
models is not the 1lightest supersymmetric particle. The

supersymmetric particle most likely to be the lightest and

o‘-

This sltuation is analogous to the case of ordinary sponta~-
neously broken symmetries in which massless Goldstone bosons
are created out of the vacuum. In the standard model, the
gauge bosons, Hi, Zo becone massive by “eating" three of the

massless Goldstone bosons.
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stable is a neutralino (this is discussed in chapter 1V).

Supersymmetry must be broken spontaneously at some mass
scale Ms(zlclo GeV), which implies M »M . If M_ is suffi-
ciently lar e, gravity is no longer neglected. We then have
the exciting possibility that it is gravitational effects
that are responsible for SUSY breaking.

One wants to extract the low-energy physics of these
models, that is, those effects which are not suppressed by
the gravitational coupling itself. These are most simply

obtained by considering[3°]

local supersymmetry breaking.
In the unbroken case, the graviton and gravitino are degecne-
rate and massless. If SUSY is broken, there will be mass
splitting: the graviton will stay massless and the gravitino

will acquire a mass:

1/2 M2
8m
m, = [-—3—] M, (I.14)

M W
P

where MS is the supersymmetry breaking scale ~10"° GeV, and

MP is the Planck mass scale =10'°Gev. The result of this
procedure is an effective "low energy" theory, occuring at a
mass scale MM, where its Tagrangian is just, the super-

symmetric Lagrangian of the ordinary and super-matter fields

plus supersymmetry breaking terms''® 3!
= [ =
£= “esusy + '(Ebreakinq' (I.15)
Here
= ¢  [SU(3) » SU(2) ~» U(1); f] (I.16a)
susy susy
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f= f + uﬁf}; where (I.16b)

2
2brcaklnq= l’n3/2 Z|¢1I - M ZAaAa + [AmB/ny +
i

a

+ (4 - 1m  uHH + H.C.] (I.16c)

where A;J, A;J, ALJ are lepton and quark Yukawa couplings,

A

H1 and ﬁz are the Higgs superfields, 6 and £ are the 8SU(2)
weak-doublet quark and lepton superfields, respectively, ﬁ
and 6 are SU(2) singlet quark superfields and ﬁ is an SU(2)
weak-singlet charged 1lepton superfield. Because of the
gauge invariance the ﬁlé U coupling is prohibited; thus, no
up-quark mass can be generated if ﬁz is omitted, ¢i and Aa
are scalar and gaugino fields respectively. The parameters
My m M, A, can all be taken real and have dimensions of
mass. The appearance of a mass scale u in eq.(I.16b) is es-

sential for the breaking of supersymmetry[lz’gn.

When u=0
supersymmetry is broken and the two Higgs doublets acquire

vacuum expectation values:

R v, ~ 0
<H1>= , <H2>= U . (I.17)
2
As a conclusion, we have seen, one expects the SUSY

breaking scale to be O(x1 TeV), so the difference in mass

between a partner and its superpartner is 1likely to be of

21



this order, and it is therefore not too surprising that no
sparticles have been found yet. An order of magnitude in-

crease in energy should, however, show evidence for SUSY.
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Chapter I1I

Left-Right Supersymmetric Model, Lagrangians

and Feynman Rules

II.1. Introduction.
Although the standard model, based upon the gauge group

' has been very successful in

su(3), x SU(2), «x u(1),, "
describing the low-energy phenomena, it leaves a 1lot of
unanswered questions. One of these questions involves under-
standing the origin of parity violation at the 1low-energy
scale. An interesting approach is to assume that the inter-
action Llagrangian is intrinsically left-right symmetric
(LRS). Within the framework of gauge theories this idea has
found its realization in the SU(2)L x SU(2)R X U(l)&i

' At low energy, this model reproduces all the

models. ‘2
features of the SU(2)L X U(l)Y model, and as the energy
increases new effects associated with the parity invariance
of the Lagrangian are supposed to appear. For instance, we
have two charged gauge bosons Wi correspond to SU(2)L and
are the same as Wt of the standard mocdel SU(2)L X U(l)Y,
while Wi corresponding to SU(2), are new. The U(l),_,
factor is also different from the standard model U(l)Y; the
ordinary quarks and leptons couple to B-L.

In sec. II.2, we describe the SU(2)L x U(1) gauge

Y

symmetry. In sec. II.3, we have extended the standard model
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SU(2), x U(l)Y into a fully left-right supersymmetric model

SU(ZM_ x SU(2)R x U(1) We have shown in section II.4

B-L"
some constraints on the right-handed gauge boson mass, W,
mass and the mixing angle. In the last section, we restrict

the Lagrangian and Feynman rules to the W; R -gauge boson
'

interactions with the chargino and neutralino.

II.2, SU(2)L X U(l)Y Gauge Symmetry.

Spontaneous breaking of gauge symmetries is the crucial
ingredient in the model of unified weak and electromagnetic
interactions constructed by Glashow, Weinberg and salam.''!
The Lagrangian of the theory contains terms corresponding to
massless gauge bosons and also massless leptons, which are
invariant under the symmetry group. In the electroweak
SU(2)L x U(l)Y model, breaking the symmetry is accomplished
by a complex Higgs doublet, three components of which become
the longitudinal polarization states of the gauge bosons.
The remaining component manifests itself as a neutral scalar
Higgs particle. By choosing the nonvanishing vacuum expec-
tation value to be that of the neutral field, we ensure the
vacuum is invariant under U(l)EH of QED, and that the photon
remains massless.

In the SU(2)L X U(l)Y model, the right-handed fermicns
are assigned to transform under U(l)Y only; no right-handed
neutrino is introduced. Left-handed fermions transform under
both SU(2)L and U(l)Y. For instance, in first generation of

leptons and dquarks, the left-handed fermions isospin

28



doublets ¥, and the right-handed fermions isospin singlets

v = [ Ze ) U= e (IT.1)
and -

u
Y = [ q ]L, |//R= u, or dn' (IT.2)
The generators of the two groups satisfy,

Q=T + Y/2 (IT.3)

in analogy with the Gell-Mann-Nishijima formula for strong
interaction guantum numbers. Here Q is the charge operator,
generates the group U(l)EM and the operators 'I‘3 and Y gener-
ate the symmetry groups SU(2)L and U(l)Y respectively. The
weak quantum numbers for the first generation of leptons and
quarks are listed in Table II.l. The massless gauge fields
in this model are an isotriplet wu for SU(2), and a singlet

BM for U(1) . The Lagrangian is, (3]

Table II.1l: Weak isospin and hypercharge quantum numbers of

the first generation of leptons and quarks.

Lepton T 'I3 Q Y Quark | T T3 Q Y
v 72| 12| o -1 u 172 172 2/73) 1/3
e
e; 172 |-1/72]-1 -1 dL 1r2)-172-173] 1/3
ug 0 0 273 a/3
e 0 o [-1 -2 d o 0 -1/3| -2/
. . 1 2/3
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= - igHY - lgMV igr M
£ 4W .wuv 4B Buv + 1Yy D“w (II.4)
with a separate fermion term for each field wL and V- The

first and the second terms are the kinetic snergy and self-
coupling of the w“ and Buv fields, where the field tensors
w“v and Buv are defined as

Wuv= auwv - aku - gwu x wv; and B =38 B -0 B

The covariant derivative is,

?
D=8 + igz.w

. LY
+ 1g’'=B
u u 9 2%u

H
where T are Pauli matrices (T=?/2). We introduce the Higgs
fields, ¢, which couple gauge-invariantly to the gauge
bosons through the covariant derivative,

2

[T 2 . . ,Y
= - + . + - .
au¢a ¢ |8 ¢| |[au igT.W ig ZBu]¢ (1I1.5)

and to the fermion through so-called "Yukawa" couplings of

the form
- - %
=G Ly v, + ¥ (@ ¥)]. (11.6)
We require the Higgs field, ¢, to be an SU(2) doublet if

eq. (II.6) is gauge-invariant. We take the Higgs doublet to

be
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9= [ , ], with ¢'= (¢, + i¢.)/V2 ; ¢°= (4, + i9,)/V2.

(I1.7)

with ¢l (i=1,..,4) real. Eq.(II.6) is only SU(2), U(l)Y

gauge-invariant if ¢ is an isospin doublet (T =1/2) with
weak hypercharge Y¥=1 (see, Table II.1l):

In addition to the Lagrangian in eq.(II.4), we have to

add an SU(2)L x U(l)Y gauge invariant Lagrangian for the

scalar fields, '

2 2
L= |Du¢| - v(|el, (II.8)
The general form of the scalar potential V is,
v(e)= -u3(ete) + a(ete)2. (II.9)

where p°>0 and A>O0. Suppose that the vacuum expectation

value for &(x) is
<b>= _L-[ 0 ] (II.10)
v
The gauge boson masses are then identified by substituting

the vacuum expectation value ¢, in the Lagrangian eq. (ITI.5).

The relevant term is,
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2 , 2
s T ] g = 2 + —u
|(1q§—.w“-+1—§—3u]¢ (vg/2) wuw

1l .21.2,.,3,2 3 H 2,2
+ =v W - 299’ + g’ .
B [g (W) 2 W' B g B] (I1.11)

The first term gives mass of the charged boson, Mﬁfw', with
M=-—l-v II.12
= —5—vg (II.12)

The second term is off-diagonal in the wZ and B“ basis,

which gives:

1. 2[.2,.3,2 I ;2,2 1 2 3 , .
- - + = - -
U _g (W) 2g9’'W™ B g Bu] sV [g wu g Bu]

- 2
+ 0 g'wz +gBu] (I1.13)

Now, the physical fields Zu and Au obtained by diagonalizing

the WZ and Bu basis correspond to

Normalizing the fields, we get

7 = AT with M= su(g® + g’5)"*  (1I.14
- 2, 1s2' 2~ 3Y\9 g -14)

Ho(g® + g°9)
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3
‘W + gB
TR "
u

ppEa— —i with M,=0. (I1.15)
For the electromagnetic interaction to be unified with the
weak interaction in this model, the electromagnetic ternm
ieQAu must be contained in the neutral term :'L(gW‘iT3 + g’l—{Bu)
of the covariant derivative. Therefore, the Wz and Bu
fields must be 1linear combinations of Au and the neutral

field Zu. This can be written as

wu cos@, sinew Z
= K, (I1.16)
B -sine cos8 A
u W W K
where 8, is the electroweak mixing angle. Hence,
ig wir o+ ig’XB = iA |gsing T_ + g’cosé X
M3 2 u W3 W2
. ) Y
+ 12“ [gcosewT3 g smew 2]. (I1.17)

For the coefficient of Au to be equal ieQ= ie(T3 + Y/2), we

need: g=e/sin8w; g’=e/cosew; and hence

1 1 _ 1
— + — - (IT.18)
g g €
From egs. (II.10) and (II.12) we have,
Mw/M2= cosew (I1.19)
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The inequality M_#M_ is due to the mixing between the wa and
Bu fields.
II.3. Left-Right Symmetric Model (LRSM),

The left-right symmetric nodel'?! is based on the gauge
group SU(Z)L X SU(2)R X U(l)a-n_' A central reason for con-
sidering this model rather than the standard model is that
the scale of parity wviolation and the strength of new inter-
actions involving the right handed currents. 1In this frame-
work, the weak interaction respects all space-time symme-
tries, as do the other interactions at sufficiently high
energies. Second, if the weak interaction symmetries are to
arise out of a more fundamental substructure of quarks and
leptons then SU(2)L x SU(2)n x U(l)B_L arises as the natural
weak interaction symmetry rather than SU(Z)L ~ U(1)Y.
Another important reason for considering this model is that
if the neutrino has a mass, then this kind of model ' *!
becomes the most natural framework in which to work.
Another reason is that the L-R symmetric model can give rise
to CP-violation for only two generations, and can account
for its strength by relating it to the suppression of V+4A
currents. Another deficiency of the standard model is the
lack of any physical meaning of the U(l1) generator, which in

: Once B-L ig

the left-right symmetric model becomcs B-L. ta
included as a gauge generator, the weak gauge group hecomes
SU(2)L X SU(2)R X U(l)B_L, and the electric charge 1is given

by : [4]
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_ B-L
Q=T + T + == (II.20)

where B is the baryon number, L is the lepton number, and

T, & is the third component of the left-right isospin,
[

related to the weak-gauge groups SU(2)L and SU(2)R

respectively.
In analogy with the standard model, we find from

eq. (IX.20) that the hypercharge Y=2T + (B-L). We define

3R

T_._ ,B-L) for the following fermion

the quantum numbers: (T_ ,
3L’ "3R

doublets;'®’ ¢! for the quark fields,
QL W= [ 3 ] , with gquantum numbers (1/2,0,1/3) and
' L,R
(0,1/2,1/3) respectively. (I1.20)

For the leptons we have,

LL = [ Z ] , with quantum numbers (1/2,0,-1) and
! . L,R
(0,1/2,-1) respectively. (I1.22)

The gauge invariant Lagrangian for Q and L leads to the

following gauge interactions with fermions: te]

_ i = 2 i = _ 2

Ko 2 9 [QL"’,uTQL LWuLL] W o+ 2 9 [QR'IIJTQR

+ Ly LW + ——i-g’ 2 5y 9 - Ly L|B (II.23)
R°M TR| R 2 3 K u 1N :
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where wL, W Bu are the gauge bosons corresponding to the

R,
gauge groups SU(Z)L, SU(2)R and U(l)&L respectively; 9.+ 9,
and g’ are the corresponding gauge coupling constants. If
one now requires the model to be invariant under the parity

operation, P, and the fields transform as follows:

LL = LR: QL > QR; and wL —> wn,
then g, ~9,~9 reducing the number of the gauge coupling
constants to two as in the standard model. This implics

that,

= + (IT.24)
Therefore, as in the standard model, one can parameterize ¢
and g’ in terms of the electric charge e, and the Weinberg
angle, 6 with
sin’e = e°/g’. (11.25)
From eqgs. (II.24) and (II.25) it follows that

c05228H= ez/g’z. (I1.26)

In order to maintain left-right symmetry, we choose Higgs
multiplets in a way that the minimal set required to break

the symmetry down to the U(l)EH are'”
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¢(1/2,1/2,0), (11.27)
and

8= (1,0,2); A.=(0,1,2). (II.28)

In component form they can be expressed as

! . | (II1.29)
¢2 ¢2
and
A /2 AT?
o ) (I1.30)
A -0 V2

L,R
The gauge fields contain two triplets groups wf and wg
corresponding to the gauge dgroups SU(2)L and SU(2)R

respectively, and one singlet, Bu belong to the gauge group

u(l), .

II1.4. Left-Right Supersymmetric Model,

[8]

The L~R supersymmetric version, is an extension of

the supersymmetric model SU(2)L x U(1) x U(1)B_L found in

I13R

Ref. [9]. In the SU(2) x SU(2)_ x U(1)  model, the tri-
plet vector boson (wi,wo)LR and their superpartners
[

(At,?\o)L'R are assigned to the gauge groups SU(2)L nt the

singlet gauge boson V“ and its superpartner A, is assigned

to the gauge group U(1l) 7 9., 9

L and g, are the gauge

R
coupling constants corresponding to the groups SU(Z)L,

SU(Z)R and U(l)B_L respectively. The Higgs fields of this
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model are:
(i) bi-doublet:
¢ (1/2,1/2,0), ¢,(1/2,1/2,0), (I1.31)
and
(ii) four-triplets:

AL(

1,0,2) and AR(O,1,2),
(I1.32)

5 (1,0,-2) and §_(0,1,-2).

Supersymmetry is responsible for doubling the number of the
Higgs fields; ¢u and ¢d are required in order to give masses
to both the up and down quarks, and BL and 6n, with B-L
guantum number -2, are introduced to cancel anomalies in the
fermionic sector that would otherwise happen. The new Higgs
fields 6L and SR do not acquire VEV’s and play no role in
spontaneous symmetry breaking. The normal particles of the
model, their superpartners, and their quantum numbers are
given in Table II.

According to the existence of the discrete parity sym-
metry, P, the model has only two gauge coupling constants
before symmetry breaking, 9,%9,9 and g, Symmetry breaking

. 10]
occurs in three stages:[

SU(2) x SU(2) x U(1), x P —— SU(2) - SU(2), U(1)

M
P

B-L’

<AR>¢0
—_——) SU(2)L / U(l),{,

M
WR

su(2), x sU(2), » U(1),_,
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Table 1I1I:

The particle content for the L-R supersvmmetric
model with their quantum numbers (the numbers
inside the brackets belong the R-handed

particles),

|
Field Matter

SU(2) x SU(2) x U(1),_

Fermions Scalars Quantum numbers
Q = I 1/21(0) ot1/s2) 1/3
L,R d
L,R
~ u
Q = 1/2(0) 0(1/2) 1/3
L,R [ a ]
v L,R
L = 1/721(0) 0(1rs2) -1
L,R
L,R
= v
L = 1/20(0) 0(1/2) -1
L,R é
L, R
~0 ~ 4
¢ ¢
~ 1 1
¢ d=[ 1/2 172 )
u, ~ - ~o
¢z ¢2 u,d
4 +
¢x ¢1
¢ = 172 1/2 0
u,d ¢- ¢o
2 2 u,d
Z* Zoo
~ V2
A W . 1(0) 0(1) 2
" ~0 -~
! A -A
Ve L,R ..
+
A A
V2
A = 1(0) 0(1) 2
L,R Ao _A+
vz JLr
5~ 8°)
~ Va2
éan S 1(0) 0(1) -2
’ S -8
. vz L,R
- [e]
] S
Ve
SL n= _ _ 1(0) 0(1) -2
! S -8
V2 ‘LR
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<¢ ey
SU(2), x U(1), — = U(1),,- (I1.33)

M
WL
At the first stage only the parity symmetry is broken at a

(2,101

mass scale MSMP (Planck mass scale) and the weak gauge

symmetry remain unbroken. The parity breaking at the first

stage results in g,%9, leaving the W and W massless. The
second stage breaks the gauge symmetry SU(2)n . U(])nl to
U(l)Y of the standard model at mass scale Mw”<<MP, and

<AR>¢O (MHR is the mass of the right handed gauge boson).
It is possible to choose the Higgs multiplets in a way that
the parity and SU(2)R are broken at the same scale, i.ce.,
MP=MwR' The final stage is brought by <¢> 70 and <Aﬁ40.

!

As in the standard model, in order to ensure that u(n,,

remains unbroken, only the neutral Higgs fields arc allowcd

to have non-zero vacuum expectation values VEV’s. The valucs

L2

0 0 0
<AL>= v oo | <AR>= v
L R

are
0

(I1.34)
<¢> causes the mixing of wLand w with a CP-violating phasc
e'”. 1In the present paper the VEV’'s of the Higgs fields arc

taken as:

0 K. 0 0 0
<02 Lo o] %7 | o &

(IT.734)

where UL=K'=O have been taken, because of the followingy

0
<A >=0; <A >= [
L R v

4

R
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reasons: firstly as a stringent case of the phenomeno-

logically reguired hierarchyla'lm

UR>>maX(K,K')>>UL, and
secondly as due to the required cancellation of flavor-
changing neutral currents. The Higgs fields acquire non-

zero VEV’s [eq.(II.35)] to break both parity and SU(2)R X

{11}

u(1),_, (g,=g9.) as
<AR>¢0
SU(2)L ~ SU(Z)H P U(l)B_L X P e— SU(2)L X U(l)Y
<A >=0
L
<¢u d>=o
where <¢>u g breaks SU(2)L x U(l)Y —_— U(l)gu’

’

(II.36)

In the first stage of breaking, the chargel right-
handed gauge bosons, Wﬁ, and neutral right-handed gauge
boson, Zﬁ, acquire masses proportional to Vg and beccme much
heavier than the usual 1left-handed Wf and the 2z°-bosons
which pick up masses proportional to K. and K, only at the

!

second stage. In general the gauge group eigenstates, WL .
4

mix with each other to form mass eigenstates W of mass
7

iW

[ cosT e “sinm W

, (II.37)

AN
e “sinm cosTn W

where m 1is the mixing angle: tannznn’/vi; and w 1is a CP-

violating phase. The mass eigenvalues are; !12:13)
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2 l 2 2 - 2 - 2 2 2 2.1
W1,2 2[Mw1_ + MHR M [(MHR L A 4|MNLRI ) ]
(IT1.38)
where
¥ 2M5L .
tan2n= ’2 ’ (I1.39)
M™ -M
L
and M, _ is mass mixing of W -W  system. Since, we have
1
K =vL=0, Mqu=O, n -» 0. MmcMwR and sz=Mw“ 1s a good

approximation in the absence of mixing.

II.5. Constraints on the Right-Handed Gauge boson Mass, va

Many studies have been done on su(z2) - sU(2),

U(l)B_L model, and many restrictions have been presented on

[13,14])

M and 7. Almost all of these restrictions involve

WR
extra assumptions, especially on the Higgs structure and the
Yukawa couplings of the models. The two most widely adopted
assumptions are:

(i) Manifest L-R symmetry; an unrealistic assumption that
CP-violation is generated by complex Yukawa couplings, but
that the vacuum expectation values (VEV) of the Higgs fields
which generate the fermion masses are real.''®!

(ii) Pseudo-manifest L-R symmetry; the assumption that
both P and CP-vioclation arise from spontaneously breaking,
which means the Yukawa couplings are real.''®!

Such assumptions may cause serious difficulties when

embedded in grand unified theories (GUT) or when their cos-

mological implications are considered, especially the baryon
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(171 Some authors have

asymmetry and domain wall problenms.
assumed that the discrete L-R symmetry P is not a good sym-
metry at low energy (TeV) scale, which means the symmetry is
broken at 21 much higher scale than the SU(2), x sU(2) x
U(1), . breaking scale. This implies that the gauge coup-

[18]

lings g9, and g, are not equal. We consider the SU(2)L x

SU(2)R x U(1) gauge structure to be more fundamental, so

B-L
it is worthwhile to examine some phenomenological 1limits
without assuming manifest or pseudo-manifest L-R symmetry.
In particular, we investigate the existing constraints and
limits on M and . The most important are:

s The K -K  mass difference Am  can yield a very strin-

gent bound ‘! ,201

M, .>1.4-2.5 TeV, depending on certain
theoretical assumptions. However for certain values of the
gquark matrix elements for the right-handed currents, there

(211 The weakest l1limit from

is no useful constraint on MHR.
Am yields M 2300 GeV for g =g , independent of the pro-
perties of the right-handed neutrinos. Bdﬁd mixing also
yielP- a stringent constraint on MHR, but there are no sig-
nifi .nt constraints from BSES and DD mixing.'®®

m In L-R symmetry models, unlike the standard model, we
have a right-handed neutrino, which is inevitably massive.
There are extremely severe constraints based upon observa-

23 . .
(23l For instance, 1if

tions from astrophysics and cosmology.
the M is lighter than 1 MeV and was produced in enough
numbers in the early Universe, it would have contributed

significantly to the expansion rate of the Universe, thus

43



affecting the ratio n/p leading to the production of too
much helium. The dominant production mechanism is
e'e” o v_. V. Vvia Z’' exchange. The limit depends on both
the MwR and 2’ mass in a complicated model dependent way,
typically yielding a lower bound of around 1 TeV (at 9,%9,)-

» There are stringent constraints from the energetics of

Supernova 1987a.'%%

If M, =10 MeV then it could be produced
in the core of the supernova via the charged current process
e;n-a v _ne For a certain range of the strength of this
charged-current interaction, either of +two +things can
happen. (i) Vo has a mean free path larger than the core
radius so that it escapes. This can cause the integrated v,
luminosity to saturate the total energy that can be released
in the neutron-star formation, thereby putting an upper
bound on the strength of the charged-current interactions.
(ii) On the other hand, if v, has a mean free path smaller
than the core radius, it gets trapped and its subsequent

thermalization can reduce the luminosity. This gives a very

strong limit; M.z 23 TeV.

s For Dirac neutrinos (MVR=10—50 MeV), constraints from
Amx, Bdﬁd mixing, b-decay and muon decay result in limiting
MwR to the range between 500-700 GeV. For the case of

Majorana neutrinos, the combination of AmK, BdBd mixing, b-

decay and the contribution of right-handed currents to necu-

[25])

trinoless double B~decay can also give correlated bounds

between the mass of the right--anded neutrino M. and M,

As a typical bound, if Mvn is =50 GeV then Mw"21.5 TeV.
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There would be a good chance of detecting WR at the SsSC,
which should be sensitive up to 8-9 Tev. 18!

There are some stringent limits on the left-right mix-
ing angle 7:

m One can look for deviations from the predictions of V-A
theory for muon decay. However, since right-handed leptonic
charged currents involve the right-handed neutrino field, to
carry out this analysis, one needs the mass of the right-
handed neutrino. The most stringent limits come from the
measurement of the m-parameter in p-decay at TRIUMF[26] are:
M F400 GeV for arbitrary ¢ and { - 0.041 for M. > .

m Based on the hadronic decay K - 3m one can obtain: ‘27!

M =325 GeV for n=4x107°.
In obtaining this bound as well as the bounds from the
p-decay, it is assumed that the quark and lepton mixing
angles in the 1left- and right-handed charged currents are

equal. This is however more model dependent than the bound

based on u-decay.

s The most stringent bounds on Moo and 7 from the combination

of the SN 1987A observations would imply,(M}

M =23 TeV and 7n<10° for m =10 MeV.

WR VR
Such a small value of U for these values of MwR and 7 is
ruled out by the present laboratory 1limits from u-decay
which indicate that, '2¢!

MHR2514 GeV for mn=0.

In this work, we consider the absence of W;W% mixing

(n » 0), and also the absence of unusual contributions to
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(16, 28]

the processes such as K-K mixing. With reasonable

assumptions MHREBOO GeV for 9,599 -

II.6. Lagrangians and Feynman Rules for the Left-Right
Supersymmetric Model.
II.6.1. General structure of the model.

The model here is found in ref. [8]. The interaction
Lagrangian of this model is constructed in concordance with
the rules given in Refs. [29] and [30]. Supersymmetric
gauge theories consist of gauge bosons VZ ard their gaugino
fermionic partners A® in the adjoint representation of the
gauge group G, and matter multiplets (A]wﬂ in some chosen
representations of G. A* and w‘ are two component fermions.
In the strictly supersymmetric case one has the following
terns:

1. Kinetic terms.
2. Self-interaction of the gauge multiplets: These terms
contain three and four gauge-~boson vertices where the covar-

a

iant derivative is given by D=, * igT°w’; where T” are the

a
u
SU(2) group generators, T°=t®/2, where t° denote the Pauli
matrices (a=1,2,3) and Wz are the gauge fields. The gaug-

inos interact with gauge fields through the following term:
ige  a%M AP (1I.40)
g abc U :

where f b are the structure constants of G.
a Cc

3. Interactions terms of the gauge field with matter mult-
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iplets: These terms are,

- - N * 3\
- qr} Vo (@,6My + i) 5,

ig\/ET‘:J(A"wJA:- X"x/-/lAj), » (II.41)

gz (TaTb) Va

vHea’a
ST 17

4. Self-interactions of the matter multiplets: The super-
potential W is some cubic gauge-invariant function of the
scalar matter fields A (independent on A:). Define the

auxiliary functions,

F= 8W/éA, D= gA:T?JAJ (II.42)

Then, the scalar supersymmetric potential can be written as,
v= iD°D" + F F (II.43)
Yukawa interactions are given by
- %[(BZW/BAlaAJ) + H.C.) (II.44)

For the U(1) factor there is no gaugino-gaugino-gauge inter-

action (i.e., set f =0) and the product gTLVﬁ is replaced

by égylauvu’ where Y, is the U(l1) gquantum number of matter

multiplet (A‘,wl). In general the U(l1) D field may be
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shifted by the so called Fayet-Illiopoulos term: '*'!
’ 1 .
D'= gy AA + £ (I1.45)

The constant £ is different from zero and in most realistic
models this constant is absent. Thus, the scalar potential

can be written now as
= %[DaDa + D'%] + FIF: (II.46)

To construct models which keep the nice property of
such supersymmetric theories—Ilack of quadratic divergen-
ces—and which simultaneously are experimentally acceptable,
it is necessary to add to the above Lagrangian explicit soft
supersymmetry breaking terms. All admissible expressions

are of the form:[32]

IVIIReAZ + n"qZImA2 + y(A® + H.C.) + (A% + R°X°)
+ ﬁq(a'x' + A'X) (IT1.47)

where A% and A’ denote symbolically all possible gauge in-
variant combinations of the scalar fields A (e.g.,
A’s lekAlAJAk' etc.). These terms split the masses of
scalars and fermions present in the supersymmetry multiplets

and introduce new, nonsupersymmetric trilinear scalar coupl-

ings. The coupling constant y corresponds to a new (non-
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supersymmetric) scalar interaction term, ﬁa and ﬁ4 are
Majorana 1 .ss terms for the gauginos corresponding to the
groups G and U(l) respectively, and A is the superpartner,
the gaugino, of the gauge boson. In our present work, we
only consider the Lagrangian for the interactions of charg-
inos and neutralinos with the left- and right-handed gauge

bosons.

II. 6.2. The scalar supersymmetric potential.

Before we write the gaugino and higgsino mixing
Lagrangian in the following sections, we have to compute
first the scalar field potential, V, in the L-R SUSY model.
This scalar potential which arises from the superpotential
can be computed as the sum of "D" and "F" terms (Refs. 29
and 30) and the soft-breaking potential, v . Thus, the

oft

sca.ar potential is written using eq.(II.45), by using the

identity
=28 8 -8 & (II.48
1)kl 117 Jk 1y k1! .48)
The result for V is
_ 1 2 2
V= 2|D| + |F| cort! (I1.49)

where the D terms [eqgs.(ITI.42) and (II.45)] are given by

|D|?= %gL TIT w*GLw|2 + %gﬂ TIZ W*GRWI2 + =g,|L TR
Loy R Y 1/
(II.50)
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where Y= 0 L § ; and G

.
L,R' u,d’ L,R’ L,R LR’ and V are

L,R’

the generators of the gauge groups.

2_ 0x = L = |2 Ly = 2
|F|“= IchLQR + cuLLLR| + |sdQLQR + chLLRI

|ele 0, + el d |®+ |e%2 0 + %3 |

L, = L, = = 2
|eu<I>uLR +e0 L + ZCLR(t.AL)LLI

L, = ~ 2
|eu<1>uLL + z:d<I>dLL +2e ('C.AR)LR| + H.C., (I1.51)
Q L
where cmd, emd, CLR are the 1lepton and quark Yukawa
couplings.
_ o=t o=t . ~ Lt o =~ Ls¥, =~
sof‘t._ S[CUQLQUQR + CdQLq)dQR + CuLLq)uLH + chLQdLR
+e (Lt (t.a )L + Llt (e.A )T ] + w (zd Tt )0
LR[ L1 "L’ R 1' ""R’7R PRI d
2 =¥~
tu (Ttd ) (T.8)) + u3(t.AR)(t.6n)] + meLQ +om o Q.0
+ m? T+ n? 7T . (I1.52)
LL L L LR L R

where M, (i=1,2,3) are the higgsino mass parameters; the

parameters m., M m and m o have dimensions of

QL' QR' LL

mass.
It is necessary to introduce the soft SUSY-breaking

terms (without them even using two Higgs doublets it is
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impossible to break spontaneously the gauge symmetry).

Equation (II.47) gives the mass terms for gauginos:

a.a a,.a
ML(ALAL + H.C.) + MR(ARAR + H.C.) + MV(AVAV + H.C.)
(I1.53)
where ML, MR and Mv are the gaugino mass parameters
associated with the gauge groups SU(Z)L, SU(2)R and U(l)m¢

respectively.

II.6.3. The charged gaugino-higgsino mixing Lagrangian.

In this Lagrangian, we consider the term (ayA) 1in
eqg.(II.41), the scalar potential in 2q.(II.49), and the soft
SUSY breaking mass terms for the charged gauginos (the
superpartners of the charged gauge bosons) given in
eq. (II.53). As a results of this coupling, fermion masses
are generated by the VEV’s of the Higgs fields given in
eq. (II.35). Substituting eq.(II.35) in egs.(II.41) and
(I1.49), we get:

e e R A R L R NN
+ixg k@ + M AAHF MAA S gt ua;a;] + H.C.

(I1.54)

where we assume for simplicity that u,=u and u,=u_.=0. From

eq.(II.54) one can write the mass term as,
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- i -%
e = g U A A+ H.C. (I1.55)

which can be written in four-component notation as:

mass= _MHRWRWR' (11.56)
-A'+
where W;=iig], is a four-component Dirac spinor. At this
R

stage susy is unbroken, and the right-handed gaugino mass,

= —l—gtz is the same as that of the gauge boson mass,

WR /—2 R R

WR "

=t

M

II.6.4. The neutral gaugino-higgsino mixing Lagrangian.

In analogy with the previous section, we consider the
term (AyA) in eq.(II.41), the scalar potential in
eq.(IX.48), and the soft SUSY breaking mass terms for the
neutral gauginos (the superpartners of the neutral gauge
bosons) given in eq. (II.52). As a results of this coupling,
fermio)1 masses are generated by the neutral Higgs fields.
We get:

<0, - 2i ~0,0 i ~0.0
g A+ —gKk @A
R R R R ‘/— vV R R V - R u

u R

1 ~0 i ~0,0 i ~0.0
- ﬁ gLKU¢UAL - v’—' gRKd¢dAR + 1/5 gLKd¢dAL *
0,0 0,0 0,0 ~0~0 c
+ MLALAL+ MRARAR+ MVAVAV + 2H¢u¢d] + H.C. (I5.%7)
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II.6.5. The gauge boson masses,

In section II.2 of this chapter we have explained

briefly the gauge symmetry Lagrangian and extracting the
masses of the gauge bosons. In this section we have used
the Lagrangian and symmetry breaking, to obtain the masses
for the left- and right-handed gauge bosons. 1In the first
stage of symmetry breaking, the Higgs field acquires VEV
<An>' This process generates masses fc. the right-handed
gauge bosons, wz and w? In the second stage the VEV’s
<<j>>u’d of the Higgs field generate masses for left-handed
Jjauge bosons, wf and WS.

The right-handed gauge boson masses are obtained by

substituting the VEV for the Higgs fi-~1ld A, in eq. (II.5).

The relevant term is:

6] 1 2 2
gw g (W = 1iW°) 0o 0)|
_ :11_ [ R LR ) RY MR ) LR + ZgVVu l
9y (wuh lwun) "9y qnu v, 0
(II.58)
2 ou
- _ g -29 g W
= (= vg) “wL’mwn“ + oz U;(WER' v,) R "2“ Z
2 —2gvgR 4gv v
(II.59)
i — 1 — . 2 - y 3 1]
where w“n—(w“n ¥ 1WHR)/¢:. Comparing the first term in

eq.(II.59) with the mass term expected for the right-handed

2 + -
gauge boson, MHRW“RWR , we have
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MHR= gRUR/\/_Z- (IT.060)

The remaining term is off-diagonal in the wﬁ“ and V“ basis,

and can be written:

1.2, 2.02 0 2,2, 1 2 o _ o

AUR[nguR 4gnnguﬂvu * 4gVV“]— .:Un[gnwun ngvu]

+ 0[2g. W’ + gv }° II.61
IWVur t 9y u] . (IT.61)

The matrix in eq. (II.59) has two eigenvalues: (gﬁ + 4g;) and

0. Equation (II.61) is a linear combination of the fields
. . . . -

ar’ Vu are dgilven by the new physical fields 2 and B“

occur in the diagonalized mass matrix in eq.(II1.59), so that

eq.(II.61) must be identified with

Therefore, on normalizing the fields, we have

0
g W - 2g v 3 Ml o
ZL.LR= RZHR 2 ‘1,/‘:" with M2H= : Un(g;; + 4g;)l/(—
(9, + 49,) Va
(11.62)

and

29 W'+ gV
B,= - —; H _ l/g; with M =0. (11.63)
(g2 + 4ag2)

The massless eigenstate Bu is the gauge boson of the gaugc

group U(1) , which survives the breaking of su(z), -

+
U(l)&L. The massive eligenstates W~

i and Z“R are decoupled
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from the low-energy theory, leaving only Bu to go through
the second stage of symmetry breaking.

In the second stage of symmetry breaking, the left-
handed gauge boson masses are obtained by substituting the
VEV'’s <¢>u'd, eq.(II.35), for the Higgs fields in eq.(II.5).

The relevant terms are

1,0 .9 oL . R 2 1, ,. L . 2 R 2
ZI (1gLr.wu + Jgn?.w“)¢u| + 2—[ (1gL?.w“ + 1gR"c.wu)¢d| .
(I1.64)
Since the right-handed gauge bosons decouple from the first
part, we neglect the terms containing the charged gauge
bosons W>  and Z . We retain the neutral boson W° , which
KR UR R

B as:

can be written in terms of the fields ZuR’ "

9.2, * 29,8,

O- B MR k (II.65)
R 2 + 4 2 /2
(9, g9,
Inserting (I1.65) in (II.64), we find
— 1 2,.2 .2 + o=l
= [qu(nu + kd) ]wuLwL
1,2 2 0 gi 29,9 wg“
+ gk KD (W 4B ) u , (I1.66)
-29,9° 49’ B

+
where we have used: WLL= (w:lL ¥ WZL)/\/E, and g’ is the coup-

ling constant of the gauge group U(l)y, which is given by

g’'= (I1.67)
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Comparing the first term of eqg.(II.66) with the mass term,

2 oot oM,
MwquLWL ;

1 2 2,172
M = —g, (k> + k) (I1.68)

2

I

The remaining term is off-diagonal in the WEL and Bu which

can be written as

1, 2 2 2,.0 .2 ;10 , 2.2
4(Ku + Kd) [gL(Wu.L) - 29,9 W“LBu + g B“]

2

o

2 2 0 ,
(Ku + Kd) [gLWML - 29 Bu]

+ otzg'wzL + gLBu]’

(IT.G9)
The matrix in eq.(II.66) has two eigenvalues, gi" + 49" and
0. Similarly, the physical fields Zux. and A“ arise from
diagonalizing the mass matrix, so that eq. (1I1.69) must be

identified with;

Therefore, on normalizing the fields, we have,

0 ,
;= ngLlL 29 Bu
L 2 , 2,172
HE gl + a9 ®)
with mass M, = -—‘—(ni + K:)Vz(gi + 4g’%)'?,  (11.70)

2

and the photon field Au given by
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0
29 W + g'B
A= ';“’“ - 1‘/‘2 with M =0. (II.71)
(g° + ag’?)

II.6.6. Chargino-neutralino interactions with the gauge
bosons.
Based on eqgs.(II.40) and (II.41), one can write the

Lagrangian in two component notation;

R | -, 3+= 0 _ TO= -
jewcn 2 ngL (ALGuAL '\LUuAL)
+ it Wt (5 - - 5'6 'y + wH é*c‘r 5 - 3 'Y
/3 L (¢u nra u u¢d) L ( d u¢u ¢d0u u)
s M (ES K - K6 ) + wH@E'S, BT - BU5 B
L (B Ta® LM L) L 'L ML L ML )
+ R.H. + H.C. (1I1.72)

where of are Pauli matrices (see, appendix A). The four-

component Majorana spinors are given by

~0 _iA? R ~ _lA; R =~ a; d
LTSl IS PR B D N e
B O ! ia ! )
L,R L,R u,d

~1 ' Z:. R ~2 .A':*R
H =] ="' , and H =| = . (II.73)
L,R E— L,R K__

\ TL,R L,R

Inserting (II.73) into (I1.72) we get
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ig [: -

= _—i -LI:O % .__‘L_ -H
jewcn 2 ngL WL 7uWL + wL tbuvuq‘d
2
+3 7 & + H'y B'+ A% H?| +R.H. + H.C (I1.74)
d’uu LuL LU e T :

For the lightest supersymmetric particle (LSP), x, we can

write the Feynman rules for the W R—i;—i} interactions. The

!

left-right gaugino fields are given in terms of the LSP 3}

and zino 7 as follows; '8/

~0 ~ . ~
= +
wL cosewZL 51n8wx

Vcos38 (1T.75)
w~

7Z + sin6 tanf Z + siné ¥
R W W L W

=1
o

R cosB
H

Inserting eq. (II.75) into the (w*EJW-W)L , intcraction term

!

and making use of the chargino eigenstates,

pnwf PR(U11X1 * U21X2 * U:nx:; * U41x4),
v:qLPL-_- (U:1§1 * U;1§2 * U;17:‘3 * U;l;‘i‘l)Pl’
Tp (LE ¢ VLA 4 VLES ¢ VED Y,
(= BV, 5 + VS ¢ VL v (11.76)

where ;'Z'C (3=1,..,4) are the charge conjugate statc:,,
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P =(1 ¥ 75)/2, and V”, U are matrices diagonalizing the

L, K "

chargino mass matrix. Then, the resulting interaction is

(we have neglected the terms containing ZL and ZR),

_ 1 N -—u: - ~ 4
wH(LSP) = 2 gLS:LnGwWL x"u(PRUn-*' PLV11)X1

1 . -[J.: o~y
+ 5 g]_51newwL xaru(PRU21+ PLVZI)XZ

1 . _u: - ~4
+ —3——<;;Ls1newwL x’;u(PRU31+ PLV31)X3

1 s -u: d ~ 4
+ —— gLSJ.newwL xzu(PRU‘“nL PLV“)X4

+ R.H. + H.C. (I1.77)

The corresponding Feynman rules are shown in Fig. II.la. To
get the neutralino physical states f{f?, from eq. (II.74) the

W R—;}]-;}? interaction term becomes (inserting P + P =1),
t

. g -
-1°L ,-M~0 L R ~4
W xx7u[O:JPL + OUPR];xj + R.H. + H.C.

WCN 2
(XI.78)

- * R L d *

where o= -N V.. + N V. ;0= -NU_ + N U
1) 13 j2 12 51 1) 13 j2 1231

(I1.79)
and NU are unitary matrices which diagonalize the neutral
fermion states. The Feynman rules for the W; R-chargino-

!

neutralino interactions are shown in Fig. II.1b.
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. u .
51n9w7 [L“iPR + VJ‘PL]

S iy
\\\N L,R

%, (LSP)

Fig. II.1 Feynman rules for the interaction of the w; with

’

the chargino i; and lightest supersyrmetric partic-

~0
le X, .
;'E+
/ J
U /“
W .
LR o -1 KR L
> \\\\N 2 gL,Rv [ijpn + OJXPL]
\ ~0
X,
Fig. II.2 Feynman rules for the interaction of the w;i with

o B

the chargino i; and neutralino i?.

€0



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

S. Bludman, II Nuovo Cimento 9 (1958) 433; S.L. Glashow,
Nucl. Phys. 22 (1961) 579; A. Salam and J.C. Ward, Phys.
Lett. 13 (1964) 168; S. Weinberg, Phys. Rev. Lett. 19
(1967) 1264; A. Salam, in Elementary Particle Theory
(ed. N. Svartholm), Almquist and Forlag, Stockholm,
1968; S. Glashow, J. Illiopoulos and L. Maiani, Phys.
Rev. D2 (1970) 1285; M. Kobayashi and M. Maskawa, Prog.
Theor. Phys. 49 (1973) 652,

J.C. Pati and A. Salam, phys.Rev. D10 (1974) 275; R.N.
Mohapatra and J.C. Pati, Phys.Rev. D11 (1975) 566, 2558;
G. Senjanovic and R.N. Mohapatra, Phys. Rev. D12 (1975)
1502.

R.J.N. Phillips, Collider Physics, Addison-Wesley Pub.,
california, 1987, ch.2.

R.N. Mohapatra and R.E. Marshak, Phys. Lett. 91B (1980)
222; A. Davidson, Phys. Rev, D20 (1979) 776.

J.F. Gunion, H.E. Haber, G. Kane, and S. Dawson, The
Higgs Hunter’s Guide, Addison-Wesley Pub., California,
1990, ch.s6.

R.N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44,
(1980) 912; R.N. Mohapatra, in Advanced Series on Direc-—
tions in High Energy Physics, Vol.3, ed. C. Jarlskog,
Word Scientific Pub., 1989; R.N. Mohapatra and R.E.
Marshak, Phys. Rev. Lett. 44, (1980) 1316.

Ref.[6] and R.N. Mohapatra and G. Senjanovic, Phys. Rev.

D23 (1981) 165.

61



[8] R.M. Francis, M. Frank and C.S. Kalman, Phys., Rev. D43
(1991) 2369.

(9] M. Frank and C.S. Kalman, Phys. Rev. D38 (1988) 1469.

[10] R.N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 46
(1981) 1315; and Phys. Rev. D24 (1981) 704; D. Chang,
R.N. Mohapatra, and M.K. Parida, Phys. Rev. D30 (1984)
1052, and Phys. Rev. Lett. 52 (1984) 1072.

[11] J.F. Gunion et al., Phys. Rev. D4, (1990) 1546.

[12] P. Herczeg, Phys. Rev. D34 (1986) 3449.

[13] For review, see for example R.N. Mohapatra, in Ncw
Frontiers in High Energy Physics, New York, 1978, cd.
B. Kursunoglu et al.; R.N. Mohapatra, Unification and
Supersymmetry, The Frontiers of Quark-Lepton Physics,
p.118-138, Springer, New York, 1986.

[14] See for example Ref. [13] and P. Langacker, in Procced-
ings of the 1985 International Symposium on Lepton and
Photon Interactions at High Energies, eds. M. Konuma
and K. Takahashi p.186, Nisha, Kyoto, 1986.

[15] M.A.B. Bég et al., Phys. Rev. Lett. 38 (1977) 1252; C.
Senjanovic, Nucl., Fhys. B153 (1979) 334.

[16] See, Ref. [13] and H. Harari and M. Leurer, Nucl. Phys.
B233 (1984) 221; P. Langacker and S. Uma Sanker, Phys.
Rev. P40 (1989) 1569.

[17] See for instance P. Langacker, Comm. Nucl. and Part.
Phys. 15 (1985) 41.

(18] D. Chang et al., Phys. Rev. D31 (1985) 171g; J.N.

Gibson and R.E. Marshak, ibid, P.1705; Y. Tosa et al.,

62



[19]

[20])

[21]

[22]

(23]

[24]

(25]

[26]

(27]

(28]

[29]

[30]

Phys. Rev. D28 (1983) 1731.

G. Beall, M. Bander and A. Soni, Phys. Rev. Lett. 48
(1982) 848.

G. Ecker and W. Grimus, Nucl. Phys. B258 (1985) 328.
The limits from Am  for the quark matrix elements of
the right-handed currents were first considered by F.I.
Olness and M.E. Ebel, Phys. Rev. D30 (1984) 1034. See
P. Basak et al., 2. Phys. C-Particles and Fields 20
(1983) 305.

G. Altareli and P. Franzini, 2. Phys. C-Particles and
Fields 37 (1988) 271; see also a review of Bdﬁd mixing
for P. Franzini, CERN-TH-5083.

D. Seckel, Phys. Rev. Lett. 60 (1988) 1793; R. Barbieri
and R.N. Mohapatra, Phys. Rev. D39 (1989) 1229.

G. Steigman, K.A. Olive, and D. Schramm, Phys. Rev.
Lett. 43 (1979) 239; Nucl. Phys. B180 (1981) 497.
W.C.Haxton and G.J. Stephenson, Prog. Nucl. Part. Phyrs.
12 (1984) 409; R.N. Mohapatra, Phys. Rev. D34 (1986)
909; M. Doi et al., Prog. Th. Phys. (Supp) 83 (1985) 1.
J. Carr, et al., Phys. Rev. Lett. 51 (1983) 627; D.P.

Stoker et al., ibid 54 (1985) 1887.

J.F. Donoghue and B.R. Holstein, Phys. Lett. B1l13
(1982) 382.
J.L. Rosner and E. Takasugi, Phys. Rev. D42 (1992) 241.

H.E. Haber and G.L. Kane, Phys. Rep. 117 (1985) 75;
J.F. Gunion and H.E. Haber, NUcl. Phys. B272 (1986) 1.

J. Rosiek, Phys. Rev. D41 (1990) 3464.

63



[31] P. Fayet and J. Illiopoulos, Phys.Lett. 51B (1974) 461.

[32] L. Girardello and M.T. Grisaru, Nucl.Phys. B194 (1982) o65.

64



Chapter III

Chargino Mass Eigenstates

III.1. Introduction.

The charginos are mass eigenstates, if (i=1,2) and thus
linear combinations of charged gauginos and higgsinos. In
the MSSM the two gauge bosons Wi, and the charged Higgs
bosons H; and H; from the two weak doublets needed in a
minimal supersymmetry theory, have supercymmetric partner
W, ﬁ: and ﬁ;. In the left-right supersymmetric model we
have four charginos, x? (i=1,..,4), corresponding to the two
gauginos Af and Ai, the superpartners of the gauge bosons Wi

~+

+
and W;, and the two higgsinos, ¢;d. In section III.2, we
discuss the chargino masses and their mixing for the minimal
supersymmetric standard model. The L-R supersymmetric model

will be discussed in section III.3.

III.2. Chargino Masses for the Minimal Supersymmetric
Standard Model (MSSM).
III.2.1. Chargino mixing.
The electroweak gauginos and higgsinos are all spin-1/2

weakly interacting charginc particles and so mix once SU(2)

x U(l) is broken. After mixing, there exist two charginos
-~ ~ :
;, xi. The mixing is in general model-dependent. In the

minimal supersymmetric model, the corresponding mixing mass
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matrices can be parametrised in terms of three unknown para-
meters. They are choosed to pe: 2
1. A supersymmetry higgsino mass parameter u, which mixes
the higgsino fields H and H, that give masses to the
up and down quarks respectively.
2. The ratio tanB=%/v1, where v, and v, are the vacuum
expectation values of the Higgs fields which couple to
d- and u-type quarks respectively.
3. The supersymmetry breaking SU(2)L gaugino mass para-
meter M.
In the neutralino sector there is also a fourth parameter,
the U(l)Y gaugino mass parameter M’ which is related to the
gaugino mass M when the usual assumption of the grand uni-
fied theory (GUT) is applied. Additionally this assumption
implies a relation between M and the SU(3)_  gaugino mass
parameter which is the gluino mass ﬁg. At the electroweak

energy scale one expects,

M= 2 (g'%/g) M (T1T1.1)
and
M= (gz/g:)ﬁg (I11.2)

where g’, g, g_ are the gauge couplings of the U(l)y, SU(?.)l
and SU(3)C gauge group respectively. From eqgs. (II1.1) and
(III.2) we get M'=0.5M and M=o.3r719. There is a slight
theoretical prejudice as to the value of tanf. This o

basically due to the relation: ''!
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gm,
S — (III.3)

A =
V2 MwsinB

t
where A is the top-quark Yukawa coupling, m, the top-quark
mass, and g is the weak coupling constant. Thus, the large
top-quark mass can be explained by the maximum value of
sing. The general tendency of the model then 1is to have
values of tanfi>1.

As mentioned before, the minimal supersymmetric model
contains two Higgs doublets. Of the 8 degrees of freedom, 3
are vbsorbed in giving mass to the yauge bosons w' ana z°.

3,4
3141400

This leaves a total of five physical Higgs bosons:
charged Higgs bosons Hi, with mass Mt two neutral Higgs
scalars ho(light) and Ho(heavy), with masses MH” Mo and
one neutral pseudoscalar Higgs Ao, with mass Mo. All
couplings and masses of the Higgs sector are determined by
two parameters:; tanB=vyﬂﬂ and r%:. The pseudoscalar and
scalar-Higgs boson masses are given in terms of these two

3,4
parameters by:[ )

(III.4)

r
~

and

2 _ 1 2 2 2 2,2 _ 2,0 2
M“?hu—- 5 [(MAO'*- M:‘) + ‘/(MAO'F MZ) 4MZMAOCOS 2R3 ].
(ITII.5)

These relations imply the following constraints:

(i) MHO> M:, (11) Mhof MAO,
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(1ii) M o= M2|cos(2B)|s M, and Mz M.

Furthermore, the phase of the Higgs fields can be chosen as
0=p=m/2. Typically, we expect tanB>1l; the nearer tang is to
1 the lighter the h°.

The charginos can be written as four-component Dirac

fermions which arise due to the mixing of winos, W, W', and

~ ~4

the c-rarged higgsinos, H, and H,. (For chargino mixings in

two component notation, see Appendix B). Because there are

o~

actually two independent mixings, (W ,H]) and (W',H'), onc

1
needs two unitary mixing matrices to diagonalize the mass

matrix. We define the mass term in the Lagrungian as'"!

£ = (v’)Txy’ + H.cC. (111.6)

where the Dirac fermions are,

- ~ - e + ~4 4 .
'r,lj—(w rHl)l VJJ—(W ’HZ) (I1T.7)
and
M Mw¢§ sinp
X= ' (I11.8)
MHVE cosf u

where M, u, and tanf are defined previously, and

o
Mw_.?

where v are the vacuum expectation values defincd by

2 2,172 .
g(v1 + uz) ' (I1IT.9)
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<H > = —E—cosﬁsvﬁ and <H2> =Y sinBEu2 (III.10)

! Ve V2

Let the mass-eigenstates be defined by

=V x=U ¥, (d,3=12), (III.11)

where U and V are unitary matrices chosen such that
M=UXV", (ITI.12)

where M, is the diagonal mass matrix, which is required to
contain real and non-negative entries. It is useful to
consider the eigenvalues of x'X. The positive square roots
of the eigenvalues of x"X will be the diagonal elements M.
Thus, eq.(III.12) kecomes:

M= v x'xvi= u'xx"(u®) . (III.13)

The diagonalizing matrices U’ and V can easily be obtained
by computing the eigenvectors corresponding to the eigen-

values of X'X and xx' respectively.

III.2.2, Solutions for the chargino mass eigenstates for the
MSSM: Asymptotic results,
Before presenting some numerical results from

eq.(I1I1.12) [or eq.(III.13)]. We present simple analytical
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expressions, in the limit of large M and u. In order to do
this, we need to diagcnalize the mass matrix M., by finding
the eigenvectors of the mixing matrices U, V. We first

assume that |Mu|»%Misin28. Then, we find:

M V2 (Mc, + us
el g tH B)
2 2
U= | =M va(Mc, + us,) M-o-u . (ITI.14)
W B B 1
M?‘- LLZ
and
1 hmV?(MsB + ucB)
V= -M V3(Ms, + uc,) Moo-u (1TL.15)
W B B 1
M2 - “2
where sB=sinB, and cB=cosB. The corresponding chargino
masses are [we use eq.(I1II.12)]:
ﬁ+zM+Ms(M:“SlZZB ], (111.16)
x1 M - u
Moo~ (| +Mz[u+MsmB ] (1T1.17)
x W 2 2
2 L - M

These masses, eqs.(IITI.16) and (III.17), are in agrecment

with Ref. [7].
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III.3. Chargino Masses for the Left-Right Supersymmetric
Model.
IIr,3.1 chargino mixing.
Let us recall eq.(II.54) for the chargino-higgsino

mixing Lagrangian, and exclude the mass term, which has been

already discussed:

oy — ~+ - ~4 .+ ~a
de" [lARgRKL¢d + lALgLKd¢d + lARgRKu¢d
L+ -~ 4+ - + - ~ 4~ ~ ey
+ lALthuqsu + MLALAL+ MRARAR-F u¢u¢d+ “¢u¢d:l + H.C.
(III.18)

All the notations are already defined in the previous

chaper. Equation (III.16) can be written in two component

station in matrix form as

1 - 0 MCT 3//‘
£ o= = ~(yY) ] | + H.C. (III.19)
B M" 0 Y
where
= (-inD, -ing, @, 80) (III.20)
y'= (-ir, -ia, ¢, 4)); and (III.21)
ML 0 0 9. Ky
0 M 0 g.K
o R R d
M= . (I'1.22)
gL u gRKu 0 -
0 0 -u 0
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In the L-R supersymmetric model we have four charginos

i+

Ex (i=1,...,4) instead of two. This is because we have two
Higgs doublet mixed with the Wf”f Before we present an
analytical expression of the chargino masses for some limit-
ing cases, it is more convenient to discuss the chargino

matrix (III.22) in terms of the four parameters M, M, o,
and tan6K=Ku/Kd, where K,» Kk, are the vacuum expectation
values [eq.(II.31)] of the Higgs fields which couple to the

u-quark and d-quark respectively. Substituting the values

of K. and kK, 1n MHL(EMW) [eq. (II.54)], we get

gk =V2 M siné
u " K } (111.23)

gxd=v5 M, cose,

Inserting eq.(III.23) into the chargino mixing matrix,

eq. (I11.22), we get

( M 0 0 Va M, cosO,

e 0 Mo 0 Ve M, cos0,
e M sine VEP%51n9K 0 -
\ 0 0 - 0

(I1T1.24)
As in the MSSM, we need two unitary matrices, U and V, to

diagonalize the elements of the matrix M :

M = UMV, (I11.75)
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The eigenvalues of the 4 x 4 matrix, MC, can be either
positive or negative whereas we require M to contain only
non-negative entries. Therefore, it is important to con-
sider the eigenvalues of the matrix MC*MC(or M© C“). In
analogy with the supersymmetric standard model, then we have
from eq.(IT1X.22),

wP= v v= Ut ) (o) (III.26)

The eigenvectors of the matrices U and V can be found by

computing the eigenvalues of M *MC ang MCMC+ respectively.

IIT, 3.2. Solutions for the chargino mass eigenstates for the
L-R supersymmetric Model: Asymptotic results.
The matrix (III.24) gives quartic solution, by solving

the characteristic equation,la]

(A - A%1)x,= o, (I1I.27)
where A=MSTM®, MSM®T (MCTMC. MOMCY), A% and % (i=1,...,4)
are set of eigenvalues and eigenvectors of the matrix A
respectively and I is a unitary matrix. We have diagona-
lized the mass matrix Mz in eg.(III.26) by finding the
eigenvalues and the eigenvectors of the characteristic equa-
tion (III.27).

Using the Maplelg, programming language greatly simpli-

fies the calculations. The eigenvalues of the matrices Mo ty©
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and MCMCJr are rather lengthy and the general forms of U and
V are very complicated. Therefore, we shall give only the
final steps of the solution. 1In analogy with the supersym-
metric standard model, we assume, in the limit of large MH,

M i1, that

L’
[Mou|> M:sinzex, | M 1> Misin?’ex,

and similarly for sinze'c > coszek. We find that the charg-

ino masses are:

2 2 6 2 o Gy,
D + MX(MZA +B) -2M° (u+ 2M7) - MM

M t= M+
X, ot 2ML(M§ - m) (Mi - uh
(III.28)
M°M°B + M°D + M! [M%a - MY(u® + 2) - MM
ﬁ t M - R L L R L L W L
X R 2 2 _ 2y 4 _ 4
2 2MM (M7 - M7y (M) -t

2,.0 2 2
- MM (1° + 2M))

- . —— — (II1.29)
2M°M (M° - M) (M, - )

Moul+ pPMPM (ul+ 2M%) - D+ ap'™® + - B
r’;i L L R W W

=+
X

w I+

3 2 2 2 2
4u- (M = W) (M - u)

4

-uta - 2u MMg

= N

(I11.:0)

3

3 2 2 2./
au’ (P = p®) (- 1)
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and
2 6 2 2.2, 2 2 4,2 8
. Mo+ u"M Mo (uS+ 2M0) + D+ 4uM + 3u

=2
& i+
R
=
L

au’ M7+ u®) (4 1)

- u%B+ u'a + 2u4M3Mi + 2M§u6

T S 5 5 ’ (ITI.31)
AT (M + 1) (M4 u7)
where

A= cd - a° + f%- ab + (e + uz)(c + d) + uze,

1]

B= —(e + p®)(cd + £2) - eu’(c + d) + a*(u® + c)

+ ab(p® + d), and
D= ple(f® + cd) - ap®(ac + bd) (I11.32)

and

ot}
i

V2 M, (M cose, - usine, ), b= V2 M, (M cose - usine, ),

9}
]

2 ;2 2 2 ., 2
Mn + 2M sin QK, d= ML + 2MH51n GK,

43
i
TN TN

u® o+ 4M‘coszek, and f= zmisinzek. (III.33)

By computing the eigenvectors, we find the two mixing matri-

ces V, and u.

1 \Y% 0 \Y% ]
12 14
V21 1 0 v
. “ ! (III.34)
v 1 1
31 32
‘ V“ 42 1 -1 J
where the matrix elements ViJ are
fa - b(d - Mi -~ 2MB)
V= - , (I1I.35)
“ fb - a(c - M. -~ 2M @)
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- -a’+ (e - y° - 2uy)(d - u°- 2uy)
fa - b(d - u®- 2u7)

31

2
v = @- (e +u® - 2u7)(d+ u’- 2uy)
4 fa - b(d + p%- 2uy)

fb - a(c - M - 2Mﬁx)

2 fa-bd-M

I
e

[
- 2MLa)

. —ab + f(e - u2 - 2UY)

V !
% af - b(d - u®- 2uy)
- -ab + f(e + u2 - 2uo0)
12 af - b(d + uz— 2u0)
2 2 2
y - £~ (c - M - 2M a)(d - M. - 2M «)
- '
1 fa - b(d - U° - 2M «)
L L
and
2 2 2
_ -f%+ (c - M - 2M B)(a - M. - 2M@)
2 fb - a(c - M. - 2Mf3)

where the parameters «, B, 7, and o are given by:

2,2 6, 2 2 G,
e D + ML(MLA + B) - 2ML(LL + ZMH) - MLMR
- 2 2 4 4 !
ZML(MR ML)(ML KD
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(III1.36)

(II1.37)

(117.38)

(I11.39)

(111.40)

(I1T.41)

(L11.42)

(I1I.43)



2. .2 2 4 2 4 2 2 4. .2
MOMB + MD + MY (MZA - MY(u® + 2M)- MM ]

£ 4
2rfLMR(NfR - NfL) (ML - )

B:

- MiMz(u2+ 2M)
(ITI.44)

2 2 2, ,,.4 a, '
2MLMR(MR ML) ( I 4D

2 6 2.,2,.2 2 2 4,,2 8 2
MuC+ MM (MS+ 2M) =D+ 4u'M) + - uB

7:
au® M- u®) (- u°)

4 4,.,2,.2
—uA-ZuMHMR

s (III1.45)
(M- ) (M- 1)
and

Mfu°+ ulezMz(u2+ 2M§) + D+ 4u“M§ + 3u°

R
0‘:
ap® 7+ u®) 0+ 1)

- u?B+ 2+ 2u4M§M§ + 2M§u"
— —r i i (III.46)
Au™(M7+ u7) (M+ )

The mixing matrix v is,

21 U23
' (IITI.47)

c c c
(=
{
[}
e}

where the matrix element are given by
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mh = i(k - M - 2Mf)
0, - d R (I11.48)
mi - h(.] - MR - ZMRB’)
2 2
_ b= (k- ut - 2uy)(l - u’- 2uy) (I11.49)
, .
31 mh - i(k - u°- 2uy)
2 2 2
U, - h°- (k + u® - 2mfg(1 M 2uy) (I11.50)
hm - i(k + u°- 2uy)
im - h(j - M - 2Ma)
- 2 ’ (I1I.91)
hm - i(k - M) - 2M )
s 2
u_= hi + m(1 u 2u7) , (1TT1.52)

hm - i(k - fi - 2u¥)

, 2
U = hi + m(l + u 210 ) ' (111.573)

2 hm - i(k + u®- 2u0)

-m*+ (j - M- 2M a) (k - M - 2M o)
U = - , (III.%4)
hm - i(k - M° - 2M «)

and

2 . 2 2
. -m+ (j - M- 2M @) (k - M. - 2M§) e,
23 im—h(j—Mi - M)

where

h= v2 M (M sin8_ - pcos8 ), i= Va2 M (Msing - pcoso ),
W R K K Wit I3 K

j= M% + 2M°cos®e , k= M° + 2M°cos’e_,
R K L W | &

b o

2

1= uz + 4M sinzeK, and m= ZMicoszar. (1171.%0)

=
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III.4. Numerical Results.

We obtained in the previous sections, analytical solu-
tions for chargino masses, egs.(III.28)-(III.31; based on
some approximations. In this section we solve for the
masses numerically and exactly without any approximations
using eq.(III.26). We have shown the relation between the
chargino masses and the higgsino mass parameter, u, in the

range -1000 to 1000 GeV.

Case I: In the MSSM.

For our numerical results we take M=50, 250 GeV, corre-
sponding to gluino masses of roughly 168 and 840 GeV respec-
tively, as obtained from eq.(III.2). We also examine
tanBf=1.6 and 4 (recent searches at LEP imply that tangzl.¢,
see Ref. [10]). Figures III.la and III.1lb show the chargino
masses as a function of u for M=50 at tanB=1.6 and 4. The
very small dependence of the chargino masses on tang |is

illustrated for M=250 GeV in Figs. III.2a and III.2b.

Case II: In the L-R supersymmetric model.

We have assumed that the right-handed gaugino mass
parameter M _has two values 300 GeV and 1 TeV. (This is for
illustrative purposes as M could be much heavier than

that). '

We take the same values of ML as we used in
examining the MSSM (50 and 250 GeV (M=ML)). We also examine
two values of tan8K=Ku/Kd, 1.6 and 4. Figures III.3a and

I1IX1.3b show the chargino masses versus u for M =50 and
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250 GeV and two values of D%=300 GeV and 1 TeV at the fixed
value tan8K=1.6. Figures III.4a and 1II1I.4b shcw similar
relations at tan8K=4. For both cases all these figures show
some important general features of the mass spectra:

1. In the MSSM for all choices of M there are regions in
the vicinity of small p where if are very light (as shown in
Figs. III.la and III.1h). Generally, the i‘l’ is the LSP, but

there is always a region of small positive p for which 7 is

—_ e

the LSP. However, the experiment at LEP tells us that the
lightest chargino if is heavier than about 45 Gev.''!

2. In the MSSM, when M=250 GeV, we find (Figs. II1.2a and
III.2b) that at large |u|, if is heavier than the left-
handed gauge boson masses.

3. In the L-R supersymmetric model, for instance at a
value of MR=300 GeV, we have used the same valuecs of
ML(=M)=50 GeV and tan9K=1.6 and 4 as in the MSSM. There arc
very tiny regions in the vicinity of small p where ;i
(s20 GeV) are very light (Fig. III.3b). Thus if could bz the
LSP. .

4. When M =300 GeV and Iﬂ=50 GeV, we find that at lary~
values of u the mass of charginos %: (k=2,3,4), crxcoept Q:,
are heavier than the left-handed gauge boson, M , M, (Figs.
III.3a and III.3b). At b%=1 TeV and n&=250 GeY, all the
chargino masses are much heavier than MHL, Mz. Also we find
in the L-R supersymmetric model that ﬁX%>1 TeV (igo. 111.44a

and III.4b). In comparison; in the MSSM, as we mentioned in

chapter I, that none of the supersymmetric particles are

g0



expected to be heavier than about 1 TeVv.
Therefore, we can conclude from this section that the
I-R supersymmetric model shows a very different spectrum ot

the charginos than found in the MSSM.
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Fig. IIl1.la: Masses of charginos, in the MSSM, as a function
of u. We take tanfi=1.6 and M=50 GeV. The curves

are: heavy solid, M_:; and dashed, M_t.
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82



Chargino Mass (GeV)

300
tanf3=4
M=50 GeV
200 r
100
O ] ! ] ! |

-200 -100 0 100 200
Mu-Mass (GeV)

Fig. III.1lb: Masses of charginos, in the MSSM, as a function

of u. We take tanp=4 and M=50 GeV. The curve:s

are: heavy solid, ﬁx§; and dashed, ﬁx .
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II1I.2a; Masses of charginos, in the MSSM, as a function
of u. We take tanf=1.6 and M=250 GeV. The
curves are: heavy solid, IT!X%; and dashed, I?x:z“.
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III.2b: Masses of charginos, in the MSSM, as a function
of . We take tanf=4 and M=250 GeV. The curves

are: heavy solid, M_:; and dashed, M_t.
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Fig. I11.3a: Masses of charginos, in the L-R supersymmetric
model, as a function of u. We take tan6K=l.6,
ML=50 GeV and MR=3OO GeV. The curves are: heavy
solid, MX% light solid, Mxiz:; dashed M_z%; and

; 3
dotted, M_*t.
x3
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III1.3b: Masses of charginos, in the L-R supersymmetric

model, as a function of u. We take taneK=4,
ML=50 GeV and MPSBOO GeV. The curves are: heavy
solid, @Z%- light solid, Mxé; dashed ng; and
dotted, M_=.

b
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III.4a: Masses of charginos, in the L-R supersymmetric

model, as a function of u. We take taneK=1.6,
NL=250 GeV and MR=1 TeV. The curves are: heavy
solid, ﬁzf’ light solid, M_#; dashed M_:; and

x2 x3
dotted, M_=*,
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Masses of charginos, in the L-R supersymmetric
model, as a function of u. We take tane, =4,
ML=25O GeV and MR=1 TeV. The curves are: heavy
solid, Hzg; light solid, Mx‘é'; dashed M:«:’::" and
dotted, Hx’f.
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Chapter 1V

Neutralino Mass Eigenstates

IvV.1. Introduction.

The spin-1/2 partners of gauge bosons and Higgs bosons
are perhaps the most promising of the supersymmetry partners
for detection and study, because they are likely to have the
cleanest experimental signatures. The properties of the
neutralino particles depend on the mixing of the weak eigen-
states with each other to produce the mass eigenstates. The
mass eigenstates correspond to the physical particles that
could be detected experimentally.

Neutralinos can be produced at any high luminosity
collider, e'e” or pp, and indications in most models are
that they are 1light. Thus limitations on the values ot
their masses is a definitive constraint on the paramcters
supersymmetry models.

The minimal set of neutralino particles arises as the
spin-1/2 supersymmetry partners of w°, BO, H?, H:: the ncu-
tral wino #W°, the bino B°, and the two neutral higgsino ﬁ?,
fJ respectively. (w5 ,w°) is in an SU(2) triplet , B’ is an
SU(2) singlet, and H? and HZ form an SU(2) doublet. one:

]

could equally well consider Z°, ¥, the partners of 2, 7,

instead of W%, B°).''™%!
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IV.2. Neutralino Masses for the MSSM.
IV.2.1 Neutralino mixing.

In the MSSM, the discussion of the neutralino mass
eigenstates is similar to the chargino mass eigenstates, but
the main complication here is that there are four neutral
states . We define the four-neutralinos in the four-compo-

nent fermion fields:!®™ 3!

vo=(#°, B°, ®°, ®Y). (IV.1)

The neutralino mass matrix in the Lagrangian is given by:

w vy + H.C., (IV.2)

3
[N L

where Y is in general a complex symmetric matrix given bydr

M’ 0 —MzsinewcosB MzsinewsinB )
0 M MzcosawcosB -MzcosewsinB
Y= —MzsinewcosB MzcosewcosB 0 -1 '
k MzsinewsinB —Mzcosewsinﬁ -u 0 J
(IV.3)
where Mz= % [(g2 + g'z)(vf + v:)]lﬂ, and ew is the conven-

tional Weinberg angle; all other terms above have been pre-

Y is symmetric because of the Majorana nature of the neu-
trallino particles. As a result, only one diagonalizing ma-
trix N, eq.(IV.5), Is .equired in this case.
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viously dJdefined. We define two-component mass ecigenstates

e 11
using

=N y° , 1,3=1,...,4, (1V.4)
where N is a unitary matrix satisfying

N= NYNT, (IV.5)
where N is the diagonal neutralino mass matrix. To deteor-
mine N, it is easiest to square eq.(IV.5) obtaining

N§= Ny ynl. (IV.G)

In analogy with the chargino mass matrix, eq.(II1.9), N can

be obtained by finding the eigenvectors corresponding to the

eigenvalues of Y*Y. One can choose N such that the elements

of the diagonal matrix N, are real and non-negative. The

general form which diagonalize the matrix (IV.3) is quite

lengthy and the Majorana mass eigenstate fields i? are in
~0 =0 -0 ~0 [ 1- 3]

general complicated combinations of W, B, }g, H

»
[

+ N H + N H (1V.7)

where Nlj are the matrix elements given by eq.(IV.4).




Iv.2.2 Solutions for the neutralino mass eigenstates for the
MSSM: Asymptotic solutions.

We solve eq.(IV.6) analytically by diagonalizing the
matrix Nu' in a manner similar to that of the chargino
masses, using the "maple" programming facilities. In order
to simplify the solutions, we first assume, in the limit of
large M, M’, or large u, that |M#ul, |M'iu]>>MZ. The final

. 4
results of the neutralino masses are:[ :

- M;(M’ + usin2{3)sin29w
M o= M + , (IV.17)
X 2 2

M™ - u

M, (M + psin2g) cos’e,

M o= M + . > : (IV.18)
X, NERE
- Mg(l - 2sinB) (M + Msir128w + M'coszeﬁ
M_o= - -
2 I ZOT F 0 (0 7 ) '
(IV.19)
2 . .2 , 2
- Mz(l + 2s1nf) (4 - Msin ew - M'cos eﬁ
= +
Myox ul S = W (M = 1)

&

(IV.20)
The neutralino mixing matrix is obtained by computing the
eigenvectors corresponding to the eigenvalues, egs.(IV.17)-
(Iv.20), using the characteristic equation of the
matrix, which is given in eq. (III.26). We find the mixing

matrix, N is
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- ’ [ 3
( L . My, (M'cpt usg) Mos (M st HC )
21 M,z_ ul M- “?
+ - S 4
N . Mzcw(McB usB) NJCH(N 8 ucﬁ)
12 M2_ U-2 M.l__ ud
N= ,
-Mzsw(sB- CB) Mzcw(sB- CB) 1 1
V(L + M) Vz (1 + M) —
/2 v 2
Mzsw (Sf3+ cB) -Mzcu(sB+ CB) 1 -1
Va(u - M) Vz (i - M) —
n v 2 V2
(IV.21)
where
—Mzsinze”(mw usin2p)
i~ — , (IV.22)
2(M' = M) (M'" "= u7)
and

Mzsinzew(M + usinzp)
n, = S . . (IV.23)
2(M'- M) (M= u")

The masses and the mixing matrix N [egs.(IV.17)-(IV.23)] arc

in agreement with the previous results (see, Ref. [4]).

IV.3. Neutralino Masses for L-R Supersymmetric Model.
IV.3.1 Neutralino Mixing.

As was the case for the charginos in the previous
chapter, the heavy particles decouple from the Lagrangian.
The neutralino particles are produced in two stages of sym-
metry breaking. The first stage, involving the VEV v, ol
the neutral Higgs AR is responsible for giving mass to the

heavy neutralino. The second stage, involving VEV's, k , «

] Bl
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of the Higgs ¢ D, is responsible for giving masses to the
light neutralinos. The amount of mixing between the heavy
and light neutralino eigenstates is small so that enough to
make a reasonable approximation, one can calculate the

neutralino mass eigenstates for both stages as independent

cases.

I. Neutralino mass eigenstates are generated by the first
stage of symmetry breaking:

We recall the Lagrangian, eq.(II1.57), for the neutralino

masses from chapter three and we write the part which

involve the first stage of symmetry breaking. These terms

contain Ui

_ _ i .o %0 i .0 <0
= ;;?- N A L g,vpd, + H.C. (IV.24)
2 2

We write the two-component fermion fields:

0 4 0 «, 0
n o= (-ixs, -iag, ), m=1,2,3 (IV.25)

Thus, eq.(VI.24) takes the form

v
= - (n°)'zn° + H.cC. (IV.26)
2v2
where
0 0 -9,
z= | O 0 29, |. (Iv.27)
-g 29 0
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We define two-component mass eigenstates using
0
xm= Amnnn ’ m,n=1,2,3, (IV.28)
where A is a unitary matrix satisfying
. . -1
A= AZA, (IV.29)

b

where A is the diagonal neutralino mass matrix. To

determine A, it is necessary to square eq.(IV.29) yielding

A= az¥za™l. (IV.30)

Since the matrix Z is symmetric, only one mixing matrix is
required to diagonalize A - The eigenvalues of the product
2¥2 are,
A= (g° + 49°), A= (d° + 4¢°) and A_= 0 IV.31)
1_ (gR gV ! 2" gR gv 3 ] ( .
which are used to find the eigenvectors. Normalizing the

eigenvectors yields the mixing matrix

g, 9, 29,
= 1 -2y - 3
A= —6: ZJV ng gR ' (1V.32)
gR gR

where 9,= (g: + 4g3f’2.

The four-component (Majorana fermions) mass eigenstates are
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the neutralinos which are defined in terms of the two-compo-

nent :c'f: fields by

[0}
xm
I ] (IV.32)

Using egs.(IV.28) and (IV.32), we find that the physical
eigenstates, :’{': arising from the first stage of the sym-

metry breaking are;

~0

, ~0
-l(gkkz- ngls) + gph

s —é— -0 -0 o (IV.33)
1 1(gRAR- 2gVAV) + gRAR
. 1
with mass —u g
2‘/5 R-1
. ] 0 =0
~0o_ 1 -l(gRAR- ng}‘v) + gRéR (IV.34)
X" g . =0 =0 =0 :
1 1(gRAR- 2gvAv) + qRAR
with mass —1—uRg1 and
2v2
. 0 0
-1(g A + 2g_A))
~o_ 1 RV V'R
X3— —g': ’ (IV.35)

i (gRX3+ 2gv5\'g)

with zero mass.
Thus, the neutralino spectrum at the first stage of
symmetry breaking contains: two Majorana fermions, degene-

rate in mass, and one massless fermion.
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II. Neutralino mass eigenstates are generated by the second
stage of symmetry breaking:
At the low energy scale, the fields, Ag and AS, found
in eq.(II.57) have to be rewritten in terms of ASR (the

superpartner of Z“R given in eq. (II.61)) and AS defined as:

o _ o _ 0
Aes (9pAp = 29.20) /9, (IV.36)

o_ 0 0

A (9A, + 29.2.)/9, . (IV.37)
These give

0_ 0 0

AR= (gnhmz'+ 2gVAB)/g1 (V1.38)
and

O= 0 - 0 -

Av" (gRAB 2gvA2R)/g3. (1V.39)

Substituting egs.(IV.38) and (IV.39) in eq.(II.57), and
removing the contributions of the fields which have

decoupled (such as, Zg and ASR), then the Lagrangian for

light neutralinos becomes

i ~0 0.0
d7d'B + — gLKd¢d+.MLAIAL
1 V2 ’

2 2 2,.0.0 ~0~0 4
+ [(4MRgv + Mvgn)/gl]ABAB + 2u¢u¢d + H.C. (IV.40)
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In the case with four light-neutralinos, we define the two

corponent fermion fields
£= (-ial, -ia;, &, ). (1v.41)

Then the mass term in the Lagrangian, eq.(IV.39), can be

written as
¢ .= - %(g°)TM“g° + H.C. (VI.42)

where M" is in general a complex symmetric matrix given by

1 K 3

1
( M 0 - \/-—2— 9.k _2— 9. K4
4M g% + M g° K K
0 Ry vIn vz 99k, vz 9y9r%,
5 g, g,
M= .
g,9 kK
_ ——l—g vz ZvIrTy 0 -2
\/‘;, L u gl
- g,9 kK
\ 71_ gLKd ‘/-2— ; L -2“ 0 /
2 1
(IV.43)

As usual, we define two-component mass eigenstates using
e, k,1=1,...,4 (IV.44)

where B“ is a unitary matrices satisfying:
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M = B M8, (IV.45)
where MD is the diagonal neutralino mass matrix, and
w= BN M"B™. (IV.46)

Similarly B can be obtained by finding the eigenvectors
corresponding to the eigenvalues of M''M". The four-
component mass-eigenstates are the Majorana neutralinos
which are defined in terms of the two-component 52: fields.

From egs. (VI.41) and (VI.44) we f£ind:

. X
x2= [ _'; ] (k=1,...,4). (IV.47)

We diagonalize the mass matrix M) in the 1limit of large
M o soor large |m|. We assume that,
14

(i) IML’R tul»M,,
(IV.48)

. 2 2, ,.2, 2,2
(ii) M >M, [4M g, + M9,1/924M g /9.

Before continuing, note that:
m In order to compare with the MSSM, it is more convenient
to write the masses in terms of the parameters M“, M:’ I,
u

and taneK rather than the parameters 9=g,*d,s 9, 9, K and

K, From eq.(IX.69) the mass of the left-handed z° -boson is
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M= [ (g" + ag'?) (k2 + k2) 1Y% (IV.49)

s From eq. (I1.66), the gauge coupling of the subgroup

U(l)v is
99, %, o
g’ = o H us
(0 + ag))'/? 9,
. g
t S - IV. 50
anfi)H g 9, ( )

where 6 is the Weinberg angle.
s In the L-R supersymmetric model, we define the ratio of

the vacuum expectation values as
tan9K= Ku/Kd. (IV.51)

Then we write the following relations (substituting

eqgs. (IV.50) and (IV.51) in the zf-boson mass, eq.(II.70)):

V2 M_sine,

gk = 5 VL (IV. 52a)
(1 + 4tan ew)
V2 M cose,

gK = . (IV.52b)

¢ (1 +4tanzew)1/2

Now, substituting eq.(IV.52a,b) in eq. (IV.43), we write the

final results of the neutralino masses:
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Mz[ML + 2usin2e, ]
A - —, (IV.53)
(M - 4u’) (1 + 4tan’,)

=2
= 0
R

2 2 2 .
2M2tan ew[zMRtan ew + Usin2é ]

M o~ 4Mtan’e, + — _ — L, (VI.54)
2 (4M_tan'e - pey (1 + 4tan‘“ew)
_ M3(1 - sin26 ) [2tan’® (2u + M + M) + u)
M o= Izul - z K W L R ,
X3 2(M. + 2u) (2M_tans_ + u)(1 + 4tane )
L R W 1)
(VI.55)
_ M%(1 + sin20_ ) [2tan®® (24 - M - M) + u)
M o= lzul + 2 K W L R
X, 2(M - 2u) (2MRtan28w - u) (1 +4tan’o )

(IV.56)

In order to f£ind the general form of the neutralino mixing
matrix, B,/ We have to find the corresponding eigenvectors
of the masses given in eqgs.(IV.53)-(IV.56). From

eq.(III.26), we find the mixing matrix

103




-MZ(MLCK+2,usK)

MZ (MLsK+ 2ucK)

ki

Mz(sK- cK) - Mztw(sK-— cK)

£

/2

VE(2u + M)t VE(+ ZMRt:)t

- Mz(sK+ cK) Mztw(sx+ c

)
VZ(u - 2MRt:)t

1

/2

K

Va(2u - M)t

where we use the shorthand notations sK=sin6
tw=tanew, t=(1 + 4tan26w)“2, and
2 .
21\’12tw(ML + 2u51n29K)

12

14
(4MRt5 - M) (Mi - 4u®)t?

2 .
N MZtH(ZtHMR + u51n28K)
21

2 2,4 2,,2"
(ML - 4Mntw) (4Mntw - u)t

We use the mixing matrix found in eq. (IV.57)

1 bxz 2 2 2 2
(ML— 4uT)t (ML- 4u7)t
2 2 2 2
b N Mztw(thsx+“cK) Mztw(ztchﬂtsK)
21 2,4 2 2,4 2
(4MRtw -4 )t (4Mntw M)t

K,

Al

=

w |

(IV.57)

C_=COo
K SQK !

(I1V.58)

(IV.59)

to find the

mass eigenstates for the 1light-neutralinos resulting from

the second stage of symmetry breaking
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o | i+, a0) + (0 3+ b 3°)
X, = Zo Zo : (IV.60)
l(blz;\L+ AB) * (b ¢u 4._¢d)
: 0 o ~0 ~0
~0_ -l(b12AL+ A13) + (b32¢u + b42¢d)
xX,= ' o - = = | (IV.61)
1 (bzlAL+ AB) * (b23¢u * l:}’24¢d)
~0 ~0
~_ | ~i(b, A+ bzahs) + (¢ + 9)/V2 )
X3~ : PRI | (IV.62)
. (b31AL+ b32AB) + (¢u * ¢d) /V2
0 ~0 =0
~o_ -i(b A+ b24AB) + (¢_>u - fd)/\/E (1v.63)
4 =0 ~0 )
1(b AT bnaB) + (¢ - 9 )/V2

where bkl are the elements of the mixing matrix B, given by
(IV.57). Thus the neutralino spectrum at this mass scale
contains four Majorana fermions, iz, given by egs.(IV.60)-

(IV.63).

IV.3.2. Special solutions of the neutralino mass eiqgen-
states: A consistency checkh.

In the previous sections, we have solved the neutralino
mass-eigenstates using the diagonalization methods. We have
seen that, there are four light-neutralino masses in the
neutralino spectrum. In this special method, we are verify-
ing our results, which are given in egs.(IV.S3)-(IV.56). Vr
have used the first order perturbation theory in our solu-

tions, neglecting the high orders. We assume that this can
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be written as

~ 2 ~
fo—Al— p/g1 + o, Mx:—kz— ML + B,

(IV.64)
ng=A3= 2] + 7, Mxi=hi= | 2] + o.

where p-—(4Mngv + Mng), and Mx: or Ak (k=1,...,4) are the
diagonal elements ofMD. The neutralino masses are chosen,

eq. (IV.64), in such a way that the parameters «, B8, 7 and o
are small enough in order to satisfy the following condi-
tions:

(i) The parameters o, B, ¥, o are first order pertur-

2

pating terms O[Mz/(M + )% O[Mz/(ML t u) (M, ¢ w)] and

L,R'
negiecting the high orders, 1like O[Mz/(ML . u)2]2,...etc.
4
(ii) Using the matrix M", eq.(TV.43), and the eigenvalues

A to solve the determinate of the eq.(III.27). We find

4 2

A A+ /g + AZ[MLp/gf - 4u
- (927267 (ag} + ) (8 + kD) |+ a[ant v p/d)

¢ (g%/202) (aMgl + p) (34 kD) - 2u(a®/g0) (4glr gDk, ]
v [/l + 2ua’/ad) (Mgl + ik l=0  (1V.65)

(iii) From eq.(VI.64), we find
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(A =M -a) (A -p/g] = B)(A - 2u-7)()+ 2u - o)=0,
(IV.66)

This becomes.

4

A ) o~

=AM+ p/gE At B+ T+ O) A“’[(p/g;’ M

(7 +0) +p/df(a + M) + BM_ = 2u(r = @) - au’]
+ A[zu(p/gf + M) (v - o) + 4 (a + B) + 4u‘3(p/g‘; FM)
- M (p/g) (v + 0)] + {-2Ml‘u(p/gf) (v = o)

- ap®(M p/97 + a p/g" + Buz)]=0- (IV.67)

Comparing eq. (IV.65) with eq. (IV.67), we get four cquation:

a + 3 + ¥ + o= 0. (1v.o8a)
- M - 4(p/g)8 - 20y - 0)= - (9°/29)) (4] + 9))

2 2 )
(Ku + Kd)c (I‘/o()’l’))

2u(p/gs + M) (v = o) - (4u® + M p/q) (¥ + 0)=
- 2u(9%/9%) (ag) + gl)k e, + (g%/29]) (amg) + p) ~

2 2 .
+ . 1°7.608¢c
(k. + k) ( )
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au [ (p/gj)e + MB] + 2M (p/gl) (v = 0)=

- (29°/97) (4M gl + p)k k_ (IV.68d)
We have solved egs.(IV.68a-d), and we find the parameters «,
B, 7, and o are:
2 2 2
(g7/72) M (k + K[} + 4pK K ]

o= . (IV.69)
2
[M° - 4u®]

29,(9%/9)) L(p/g?) (k2 + &) + uk k)]
B= , (IV.70)

[(p/g,) %~ au®]

2

— 9’[4(gl/g) (2u + M) + (21 + p/g)) (K, - K )

= ,
4+ 2u) (p/gF + 2m)
(IV.71)
g lagy/a)) (2u = M) + (20 = p/g) 1 (K, + k)7
o= .
4(M - 20) (p/9; = 2u)
(IV.72)

Substituting egs.(IV.69)-(IV.72) in eq.(IV.64) and using

p/gf;4MRg$/gf, eq. (Iv.48), and the relations given in

eqg. (IV.52), we get:

. M7 (M, + 2usin2e ]
Moo= M+ — - —, (IV.73)
1 (ML - 4u7) (1 + 4tan ew)
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2M2tan GH[ZMRtan 8w + u51n2ex]

ﬁxoz 4Mntan29u + — - - ,
2 (4M_tan'6 - ) (1 + 4tan“6w)
(IV.74)
_ M2(1 - sin26 )[2tans (21 + M+ M ) + u]
M o= |2ui - Z K W L R ,
X3 2(M + 2u) (2MRtan29w + 1) (1 + atano )
(IV.75)
_ M2(1 + sinZGK)[2tan29w(2u - M - M) o)
M, 0= | 2] + : ,

-

Z(ML - 2U) (ZMRtan GN - u)(1 + 4tan‘0w)

(1V.70)

Thus, egs.(IV.73)-(IV.76) are similar to eqgs. (IV.L3)-
(IV.56). Repeating the same calculations wused in the
minimal supersymmetric model, we also get similar eqguations

to egs. (IV.17)-(IV.20).

IV.4. Numerical Results.

In this section we present some numerical reoults
similar to use found for the chargino masses in the previous
chapter. We assume that MR>MV. Thus the approximation that
the parameter p=4MRg$/gf is still valid in this analysic.
We use M;=91.15 GeV, the recent measurement made at CERN.I"'
From egs. (IV.6) and (IV.46), we find the eigenvalues of
both matrices Y and M". The positive square roots of thc

i

eigenvalues of the matrices Y*Y and M"H# will be the
diagonal entries of Y and M" respectively. One can also uoe
egs. {(IV.5) and (IV.45), without taking the sqguare roots of

the eigenvalues. As in the case of the charginos, we have
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shown the relation between the neutralino masses and the u

parameter in the range between -1000 to 1000 GeV.

case (I): In the MSSHM.

We take M=50 and 250 GeV, which based on eq.(III.2)
corresponds to gluino masses of roughly 168 and 840 GeV
respectively. We also consider tanB=1.6 and 4. Figures
IV.1la and IV.1b, show the neutralino masses as a function of
# for M=50 at tanf=1.6 and 4. The very small dependence of
the ii masses on tanf is illustrated for M=250 GeV in Figs.

Iv.2a and IV.2b.

Case II: In the L-R supersymmetric model.

Figures VI.3a,b and VI.4a,b show similar relations for
neutralino masses versus . As in the MSSM, we take similar
values of ML(=M): 50 and 250 GeV; and MR=300 GeV and 1 TeV.
We also examine two values of tan9K=Ku/Kd; 1.6 and 4. The
important general features of the mass spectra are listed
below:

1. In the MSSM, for all choices of M there are regions in
the vicinity of small p where the i? is very 1light. For
instance, we see a very tiny region for %? (=13 Gev), for
M=250 GeV at tanf=1.6 as shown in Fig. IV.2a. Generally, in
the MSSM, i? is the LSP. Now, the lightest neutralino has
been only mildly constrained to be heavier than about 13

(61

GeV by combining the results of the ALEPH direct search

for neutralinos with the UA2 lower bound on the gluino mass.
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(This limit is improved to about 20 GeV by the new, prelimi-
nary data from CDF).

In the previous chapter, in the charginos case, we have
noted that there is always a region of small positive u

~+

(much smaller for the L-R supersymmetric model) for which ,1;
is the LSP, but once the constraints from the experiment arc
applied, the condition ﬁx?ﬁx? does not restrict the allowed
u-M parameter space any further.mAlso, LEP tells us that
the lightest chargino 52? is heavier than about 45 Gev.''™"!

2. In the MSSM, when M=2200 GeV, we find (sce, Figs. 1V.2u
and IV.2b) that at large |u| not only %O, i’i, and 5_(: are
heavier than the left-handed gauge boson masses, but so ia
the LSP,

3. In L-R supersymmetric model, there are always very tiny
regions of |u| region where the LSP, 52?, is very light. For
example, in Fig. 1IV.3a, for M =50 GeV and M =300 GeV, wc
find a region where the mass can be as small as 17 GeV for
tan9K=1.6. In Fig. IV.3b, we find a region where the mase,
can be as light as 5 GeV for taneK=4.

4. When MR=300 GeV and ML=50 GevV, we find that for largc
values of u, the mass of the neutralinos 522 (k=1,...,4) arc
heavier than 1left-handed gauge boson, and the masses arc
even larger for MR=1 TeV and ML=250 GeV and can become even
heavier than the right-handed W-boson as shown in Figs.
IV.4a and 1IV.4b. Also we find in the L-R supersymmetric

model, for large values of u, the mass of fourth neutralino,

:752, is larger than 1 TeV.
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We conclude this section by noting that the L-~R super-
symmetric model could add new limits on the supersymmetric
particles. For instance the LSP, if, mass could be much
lighter than expected in MSSM. Secondly is that, not all
the supersymmetric particles are in the range =1 TeV. This
implies 1limits not only on M but also on the other para-

meters.

VI.5. Constraints From Search on Charginos and Neutralinos.
We have shown from the previous sections that the
masses and mixings of the gaugino and higgsino sector of the
MSSM are determined by the parameters (M or ﬁg, 4, and
tangB), when the usual assumption of grand unification is
applied. In the case of the L-R supersymmeric model the
masses and mixing of the gaugino and higgsino sector are
determined by the parameters MR, ML, M, M, and taneK. The

LEP experiments can place constraints on these parameters

{10]

for the MSSM, in a variety of ways. Charginos, if light

enough, should be copiously pair-produced at LEP in 2°

(71

decay. Based upon experiments at L3, ALEPH,IB] and OPAL

9ot LEP the lower limit on the chargino mass is about 45

GeV. The search for the Neutralino is obviously much more

difficult. No absolute lower limit on the neutralino mass

[11)

is known, although ALEPH, excluded large parts of the

(12] [13]

parameter space u-M. CDF and UA2 collaborations
have searched for the gluino (the superpartner of the gluon)

and the squark (the superpartner of the quark), and
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presented the following bounds on their masses
ﬁq> 74 GeV, ﬁg> 73 GeV  (CDF)
and
ﬁq> 74 GeV, ﬁg> 79 GeV  (UA2)
The assumption of grand-unification allows us to use the
gluino mass, eq. (III.2) to obtain:
M>22 GeV (CDF), M>23.5 GeV (UA2).

on the other hand, it is likely''¥

that CDF will improve
the gluino mass bound to ﬁ52140 GeV (or Mz41.6 GeV), given
the much larger data sample now collected at the Tevatron.
(So far, the experimental limits on these particles for the
L-R supersymmetric model have not been extrapolated).

One should remember that the above bounds on the squark
and the gluino mass have been obtained assuming that only
the direct decays gq - qil and g - qail are possible. The
lightest neutralino i?, which is assumed to be the LSP,

15) =~ ~
(151 q and g become hecavy

escapes the detector. However, Once
enough so that their decays into charginos and necutralinos
other than the LSP are kinematically accessible, these often
dominate the direct decays to the LSP.

16
l ]that cas-

It has been pointed out by several authors
cade processes through charginos and heavier neutralinos, as
well as the effect of ﬁﬁ:o, can significantly reduce thesc
bounds. To be more specific, it is shown in Ref. [17] that
the CDF bound of 73 GeV can be reduced by 3-30 GeV, whercas
the squark bound is reduced by up to 10 GeV, depending on

the values of ¢ and tanB. For values of tanf2 not much above
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1 there still remains a tiny region of small |[u| and M,
where the LSP is almost a pure photino. It is also pointed

7] that in the region of small |#] and M»|u|, where the

out
LSP is almost a pure higgsino, the process g = qﬁi? is
greatly suppressed by the aqif coupling, and no bound on ﬁg
can be given.

The combined bounds (from CDF and UA2) provide a lower
limit on the mass of i? of about 13 GeV (as shown in Fig.
VI.2a for M=250 GeV and tanf=1.6 GeV), although for smaller
values of tanf there are still tiny regions of small |u| for

) Future searches

which the LSP can be as light as 10 gev. 'S
for the chargino and neutralino will be able to exclude the
LSP mass below about 14 GeV for tanBzl, and about 20 GeV for
tanpzv2. Recent Higgs searches at LEP imply that

tanB>1.6.[5]

An upper bound can also be placed on the mass

of the LSP. Since none of the supersymmetric particles is

expected to be heavier than about 1 TeV and directly from

the relation (III.2) we find the rough bound: ''®!
ﬁgsl TeV; Ms300 GeV and Mx?slso Gev.

For completeness, we have shown in our results, that in
the L-R supersymmetric model, new limits could be applied on
the LSP’s mass (=5 GeV), which could be lighter than ex-
pected in the MSSM, Figs. IV.4b. Where the lower bound =13
GeV. Depending on the M assumptions, we also find that
some of the SUSY particles could be heavier than 1 Tev.

Certainly the future hadron colliders will tell us more

about the right-handed bosons and supersymmetry.
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Neutralino Mass (GeV)

300
. tanB3=1.6
N M=50 GeV
200 | -
100 | R
i ]
O ] 1 | '
~200 -100 0 100 200
Mu-Mass (GeV)
Fig. IV.la: Masses of neutralinos, in the MSSM, as a func-
The

tion of u. We take tanp=1.6 and M=50 CGeV.
curves are: M light solid, ﬁxg;

dashed M 0; and dotted, M o.
X3 x3

heavy solid, Mx?;
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Neutralino Mass (GeV)

300
tanB3=4
M=50 GeV
200
ioo0r T B
TN
O | l | !
-200 -100 0 100 200
Mu-Mass (GeV)

Fig. IV.1lb: Masses of neutralinos, in the MSSM, as a func-
tion of M. We take tanpB=4 and M=50 GeV. The
curves are: heavy solid, ﬁxg; light solid, ﬁz%

dashed M 0; and dotted, M o.
P& P
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Neutralino Mass (GeV)
500
tanB-1.6
M=250 GeV =
400 ,.
300
200
100 -
O | | A\/ ] I
-400 -200 0 200 400
Mu-Mass (GeV)
Fig. IV.2a: Masses of neutralinos, in the MSSM, as a func-
The

We take tanf3i=1.6 and M=250 GeV.

heavy solid, ﬁxg; light solid, ﬁxq;

tion of L.

curves are:

dashed M _o; and dotted, M_o.
X3 X1
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Neutralino Mass (GeV)

500 ~ tanB=4
M=250 GeV  /
400 -

\
300 '
\
‘ ‘
. - U
. - ’
M - - R v
. .
'
,

200
100
O l ! ! !
-400 -200 0 200 400
Mu-Mass (GeV)
Fig. IV.2b: Masses of neutralinos, in the MSSM, as a func-
The

tion of Au. We take tanf=4 and M=250 GeV.
curves are: heavy solid, ﬁx?; light solid, ﬁxg;

dashed M_o; and dotted, M o.
X3 x4
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Neutralino Mass (GeV)

600
tanBx=1.6
3 Mg=300 GeV .
500 =,
M =50 GeV ]
400 -

300

200

100

0 ! | 1 !
~-200 -100 0 100 200

Mu-Mass (GeV)

Fig. 1V.3a: Masses of neutralino, in the L-R supersymmetric
model, as a function of u. We take tan8K=1.6,
ML=50 GeV and MR=3OO GeV. The curves are: heavy
solid, Mcla; light solid, Mg; dashed ng; and

X X
dotted, qu.
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Neutralino Mass (GeV)

tanB,=4 .
500
' Mg=300 GeV
M, =50 GeV i
400 r .

300

200

100

| | ] L

-200 -100 0 100 200
Mu-Mass (GeV)

Fig. IV.3b: Masses of neutralino, in the L-R supersymmetric
model, as a function of u. We take taneK=4,
ML=50 GeV and MR=3OO GeV. The curves are: heavy
solid, Mx?; light solid, ng; dashed ng; and

dotted, M 0.
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Neutralino Mass (GeV)

1200 o
tanBy,=1.6
Mg=1 TeV
1000 |
M, =250 GeV i
//’;/
/
800 ‘
600
400
200
O L ! ! ]
-400 -200 0 200 400
Mu-Mass (GeV)
Fig. IV.4a: Masses of neutralino, in the L-R supersymmelric

model, as a function of pu.
ML=250 GeV and Mn=l TeV.
solid, M g; light solid, ﬁxg; dashed M 9; and

X
dotted, M
X

We take tan8K=1.6,

The curves are: heavy
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Neutralino Mass (GeV)

1200 -
tan©y=4

1000 MR'-"I TeV

s

M,=250 GeV

800

T

600

400

O { ! ~ J | |
-400 -200 O 200 400

Mu-Mass (GeV)

Fig. IV.4b: Masses of neutralino, in the L-R supersymmetric
model, as a function of u. We take taneK=4,
ML=250 GeV and MR=1 TevV. The curves are: heavy
solid, P{x?; light solid, ng; dashed ng; and
dotted, ng).
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Chapter V

Chargino and Neutralino Production in pp-Collisions

V.1l. Introduction,

If the supersymmetric particles have masses that arc
larger than Mz/2, then it may be that their presence can
only be established at the very high energy hadronic col-
liders. Thus, it is very important to study the production
of new particles at the hadronic colliders to compare the
cross sections for the production of supersymmetric parti-
cles with standard model processes.

A reaction which has received a lot of attention in
hadronic collisions is gluino pair production. We have

0,0
! based on

already gquoted the bound on the gluino mass,
the missing momentum < signal associated with the gluino
decay into an undetected stable neutralino g - qax?. if one
assumes that i? is considerably lighter than the gluino, the
sensitivity to this signal depends only on the gluino mass.
The extraction of new physics from the background will
be a formidable task at hadronic colliders. Of special
interest, which is our purpose in this chapter, is the pro-
duction of charginos and neutralinos in hadronic colliders.
These particles occur in the final state decay products of

[1,2])

the wt and 2° bosons, specifically with:

~1)

p§ - W;+ X (hadrons) - ¥ + Y(hadrons) with Q?-; X, t Co=

+ 0
X
17
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planar jets or monojets or coplanar lepton pairs (where i>k)
with missing momentum. In general SUSY particles will decay
through multi-step cascades which terminate in the LSP.
Within the MSSM, all the cascade decays and sparticle masses
are completely determined by fixing the paraieters set (M or
fV'Iq, fiq, W, tang, M +, and ML).m

Eventually, at a high luminosity supercollider this
process, in question, will provide the most definitive test
of whether SUSY is present on the weak scale, because it has
a clear signature and a cross section that is large enough
to see even for quite heavy neutralinos.

1n this chapter we consider the lowest-order cCross

section of the process pp - w:R

~_~O -
+ X = 75jxi + X and wL,R-

boson decay at the Fermilab Tevatron pp-Collider (CDF) of
1.8 TeV center of mass energy. Parton model distributions
which are used in our calculations, are discussed in the
next section. The results are compared with the conven-
direct decay as a background signature

tional w; > (Y

{L, R
in the lepton transverse momentum p. region. We also study

, 1

the chargino signature through the Jacobian peak in the
neighborhood of pTz(Mw/Z)L'R. Since the charged fermion,
i"‘, or the neutral fermion, ;'E?, decays further into ;%? and
a pair of charged and neutral conventional leptons or two
collimated jets. Since neutralinos escape undetected, one
should look for the chargino signature by examining events

which include lepton or collimated jets.
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V.2, Cross Sections and Decay Rates.
V.2.1. Cross-sections.

Chargino and neutralino production in physics col-
liders have been already studied in detail for the standard
model. As a review see for instance Refs. [4-8]. In our work
we consider the lowest-order decay of the w;,n—boson into

charginos and neutralinos in pp-collisions for the left-

right supersymmetric model. The process in question is:
PP > W+ X o xx + X, (V.1)
’

This process gives rise to the experimental signature asso-

ciated with the direct Wl—_ Q2 8“17“ . decay in the proceus:
’ !

pp - W;'R + X > c'Tzu ot X (V.2)

+

The process (V.l) could give rise to the experimental back-

ground signature associated with w; ,~decay, process (V.2),

1

namely the presence of high transverse momentum of the

lepton (¢'=e ,u ,T ). The possibility of detecting wl' W
’

x]i? decay against a dominant background due to the conven-
tional decay W;'Ra [_DZL,R depends on the observation that
the lepton distribution exhibits forward-backward asymmectry.
This is because of the typical (1 7 cosa)2 distribution of
lepton pairs with V-A coupling. The decay of w;'“ to charg-
inos and neutralinos is on the other hand symmetric. We

lbbegin with the subprocess

127




ap,) + a'(p,) » X (k) + & (k). (V.3)

Neglecting the quark masses, in the c.;q’-center of mass ener-
gy system, we define the spin averaged, color averaged ma-

trix element squared (we have used the Lagrangian from the

second chapter).

4
2 _ g 2 Ay 2 L2 R 2
|#]7, .= 1V, o] IDN(S)IL,R[(IOUI + o, 17) x

ave 6

L .R* L* R
[0, %, (, k) + (B0 (2,0 |+ (0f o)+ ool )

1]

1 ~ ~
3 Mx—Mxo (pl.pz) (V.4)
where |vq o |> is the quark mixing matrix’, and
A A 2 : -1
D,(8), =[(8 = M) + iMr 3 (V.5)

is the W; R-propagator. The matrix elements O;‘Z and 0}:,> are:
L . . . . R __. et .
012=sm6wV21—-sm8w51n¢#, and 012—..,1newU21 51n6w51n¢_,

where the relevant elements of the mixing matrices U and V

are given by,

=0- , V21=O+ , and Ox= (V.6)

cos¢, sin¢+]
u * *
21

-sing, cosg¢,

.r

The dominant contributions are:lV- I-’=‘-|V— ‘=|V- l-"-’l, and all
ud cs tb

other elements due to quirk mixing matrix or the CKM matrix

are small. Thus, summing over all quark generatlons NG=3.
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. (ol
The decay width 1"wL R

of the W -boson for 9:g =g, is

2
Ir = 9r°W - e v —9—(3—14-"—&— V.7
WL— ( L - e)— 48 ’ ( . a)
and )
I = 12r°w- > e v )= 12 9 Mun V. 7L
WR R~ VeR)_ 48 1 |° (V.7b)

We multiply eq. (V.7b) by the factor (12), since M~ M and
the decay WG » t + b is kinematically allowed. Thus, for
M, ,Zz300 Gev, we get FHR?_ Ser' We define the following

kinematic invariants in the gqg’'-center oOf mass energy

system:
/\~ = =2 ’“'2_ 3\
S« 2p1.p2 Mxo-+ Mx 2k1.k2
t~ 12- - 2p_.k.= M% - 2p_.k. } (V.8)
= x— P.. ) xo pz. 2 .
A =2 v
u= Mx— - 2p2.k1- Mxo 2p1.k2 )
with
8+t + 0= v M2 M3 + M5 (V.9)
: 1 X X
Substituting egs.(V.8) and (V.9) in eq.(V.4) we get:
2 g4 2 Ay g2 L 2 R 2
M0, =5 1V, o ITID GBI oy 17+ o)1) -
~2 ARy 2" A o2 Ay A
- - - - - = U)(M o - U
[(B2- - B (il - &) - (- G)iie - )]
g ~~ L R* L®* R
—_— - . V.1
+—— MM o (0] 0f + 0 0 ) (V.10)
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It is more convenient to write our results in terms of new

variables x, y and z:

-/8. (V.11)

Thus, eq.(V.10) can be written as,

A2 4
2 S 2 A 2 L 2 R 2
47, .= “ﬁi Vg q- | IDH(S)IL,R[(IO,,I + [0, 17) x
[1 - (y-2)® + A“Z(l,y,z)cosé] +
+ x(otjo'l‘; + o’;;o‘:j)]. (V.12)

A
. . ' . A . .
Here the kinematic invariants t, U, can be written 1n terms

of eq. (V.11) as,

Ez - 18 ((1-y-2) - A”z(l,y,z)cosé]
2
A 1A 1/2 - ! (V.13)
u= - =S [(l-y=2) + A/7(1,y,2)cos8]
where the triangle function A 1is given by,
A(l,y, z)=1+y3+z°-2y-22-2yz. (V.14)

The angle e specifies the chargino or lepton direction with
respect to the incident p-direction in the W -rest frame.

The differential cross section of the subprocess (V.3) is
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given by: 10}

ave

At%(1,y,2). (V.15)

do (X }%}) [ 1,

d(cosé) 32718

Substituting the value of |M|§ve in eq. (V.15) we get:

~org

do(x x ) A_4
Tyl LAV R LY O R
d (cos8) 15361 9,4 ,
L (2 R 2 2 2 ~
(|O”| |01jl )[1 - (y-2)" + A%y, 2)0058]
L R* Le* R
+ x(0 07+ oijolj)]. (V.16)

Equation (V.16) concerns a subprocess of the total cross-
section (V.1) . 1In order to find the total cross-section, we

consider the standard parton model:

V.2.2. Parton model.

Most of the collisions are called "soft", which means
that the colliding protons might stay together and just
scatter elastically. No energy 1is trancferred to the
target. The outgoing particles are in groups and follow a
path not far from the beam direction. When the energy i
transferred to the target it (i.e., the target) often breaks
into several particles. Then the scattering can occur at
large angles, giving some collision products with large

transverse momenta relative to the beam direction. such
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. . .. . . 11
inelastic collisions are also called "hard" COlllSlonS.[ )

The simplest inelastic cross-section to measure is the so-
called "lnclusive" cross-section. For these cvross-sections,
which correspond to processes such as (V.1l) and (V.2), only
the final chargino (or lepton) is observed.

In the parton model, the incoming proton is composed of
partons i carrying fractional longitudinal momentum repre-
sented by X, (OSXISl). The various scattered and spectator
partons are assumed to fragment to final states with proba-
bility one. A charged constituent quark coming from the
proton carries a momentum le, and mass m=x M (where P is
the proton momentum in the pp-centre of mass frame and M is
the mass of the proton(antiproton)). Similarly an antigquark
coming from the antiproton carries a momentum -x P. The
corresponding Feynman diagram for the pp-collisions is given
by Fig. V.1.

Suppose that f(xl) is the probability distribution for
finding a parton f with momentum fraction X, and f(xz) is
the corresponding probability distribution for finding an
antiparton with momentum fraction X, Then one can obtain
the probability distribution for proton-antiproton colli-
sions, by multiplying the subprocess eq.(V.15) with the
probabilities for finding a quark of type «, with momentum
fraction X, and an antiquark of the same type with momentum

fraction x_, namely
(fa(xx)dxl] ~ {fa(xz)dxa]
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There 1is of course another contribution for which the

antiquark has fraction X, and antiquark x_,

[fa(xl)dxl} x [fa(xa)dxz]

Thus, the inclusive differential cross section for pp-

. . . 1
collisions 1s:[9'1]

S LA KJ as Z [f—(x )f (%) + f (xl)f-(.\:ﬂ)]
déd(cosb) L 1han 2 4 -
9,9
a& -, ~-~0
—(gq’ - xjxi) (V.17)
d (cos8)

where K 1is the Dr-ll-Yan correction factor: this factor,

Invariant
mass
M = /8
Wik

Fig. V.1 Parton Model description of chargino i; and neutra

lino i? production in pp-collisions through w; ,~bosons.

’

o]
(€
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commonly referred to as K-factor is given by[12]

_ 8n 2

=1+ —— o (M), (V.18)
where o is understood to mean asﬂﬁ) thinking of a as a
function evaluated in terms of the renormalization group.
The functions f(xl) and f(xz) are also related to the Drell-

Yan cross section for producing a W; R-—boson from annihila-
!

tion of a quark-antiquark pair with fractional longitudinal

momenta X 1%, If there are N, numbers of gquark flavors
active at the W -mass scale, '>'*!
N(‘
Zfa(xl)fq(x2)= u(xl)d(xz) + [ 7 - 1]S(X1)S(X2)
B (V.19)
N{‘
qu(xl)fc—l(xzh 5— S(%,)s(x,) (V.20)

a9

where the quark structure functions u(xl) and d(xz) include
both valence and sea contributions. The latter contribu-
tions include the strange quark structure function s(x). 1In
our calculations we have used the Duke and Owens parameter-
ization for the quark structure functions found in Ref.
[(15]. The 1longitudinal scaling variables X and X, are
related to s and £, where £ is the rapidity of the W -boson

in the gg’-centre of mass frame and defined by

g= x ~ x, and xl'2=(Mw/\/§)etE (V.21)
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Here it is assumed that §=M5 is the appropriate scale of

the quark distributions. We integrate eq.(V.17) over é, and

2

replace ]Dw(é)lL o

in eq.(V.12) with the narrow-width appro-
ximation m[s(} ~ Mi)/(MNFH)]L,R. The integral over ds take:.
out the delta function. The total cross section for W -
production is obtained by integration over the full range of

the W -rapidity 1limits -ln\/E/MNL Rf&flnv/é'/l\‘{wl . Comparing
’ » It

with process (V.2), the differential cross-section at the

parton level is given by'HO-lz]
A
do —= KJ 25 Z [f-(xl)f (x)) + f((xl)f(__(x,):]
d€d(cosB) L 9 2 1 ARt
q,4q
A
dd -~ ((_Iq’-y C-;eL R) ' (V,;’))
d(COSG) '
where
aé - - g4 ) .
d(COSé) (qq K e VeL,R)= 8T[lvq,q’l |DN(S) Il..l(
X é(l - cosé)a. (V.2%)

The expression for 6 can be transformed from the gy’ -t rame

to the pp-frame:

(1 - cos@)= (2p_/% V5) [ (1 - cos6)/sino], (V.24)

(1 + cosa)= (2pT/x2\/§)[(1 + cos8)/sino], (V.25%)

where 68 1is the angle at which the chargino or lepton i:.




produced in pp-centre of mass frame.

v.2.3. Decays of the w; . ~boson.

It is important to give an estimate of the branching

ratios of the chargino and neutralino in the decay of the

W -boson and compare it with that of the conventional
process WL,R - ¢ V&IH. For our process, 1l.e.,
L (P) 2 X (K) X (K) (V.26)
-1

where P, k, k'’ are the four-momenta of the vector boson,
chargino and neutralino respectively. We find the matrix

element squared of the W; ,~boson decay at g=g =g, is,
]

2 ¢ L 2 R 2 . 2(P.k) (P.k’
El —2—[(10”| + |0} | )[(k-k) + 22X ( ’]
M
WL,R
3IM M. (080" + o "oy, (V.27)
X X by 1) 1) o1y
where P= K + K’. In eq.{V.27) we average over W -boson
polarization and sum over the fermion spins. For the above

decay, we find the decay width in the rest frame is (evalua-
tion of the phase space integration is given in the appen-

dix C)
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. 2 L . R* 1e R .
[2 X y (x y)] + 62(0u011'+01j01ﬂ

1/2

[(1 +y - x)° - 4y], (V.28)

where the variables x, y and z are defined by

2 .
wL,R’

2 .
WL, R'

b
.

= ~2 p=—r ~2_ = M —~ .
x= M o/M y= B -/ i -Fo/M

and F:L q is given by egs.(V.7a,b). The contribution ot the
chargino and neutralino signature to the experimental back-

ground signature is found to be in the ratios:

- ~w~0

rw ->xx) 2 : ‘
R= l_”R f---1 = g (Ioli‘112+ loli(jl“) [2—X-y_(x'y)‘]
rw o-1¢vp ) -
L,R el ,R
L *R L* R 2 1
+ 62(O:J01fboijoij) [(1+y—x) - 4y] (V.29)

The present experimental lower bounds on the masses obtained

at LEPIjs'IB] are 45 GeV for ﬁx- and for the 1SP 14

19, 20) ,
{ Furthermore using recent measurcements of  the

GeV.

21
( ] at the Tevatron:

W-koson mass obtained by the CDF
MHL=80 GeV, with rwx_=2'2 GeV and sin28w=0.23. This implic:

that
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R(W - i;ij)zo.az, for I' (W » e'f}e)zo.zz GeV (V.30)

We expect normally to be able to see WR decays to a charged

[22,23)

lepton and a right-handed neutrino. We find the decay

width (neglecting the lepton masses, and setting gszzgR) is

2 4 2
2 m m m
F(Wo €5, )= g9 M |1 - VR _ VR 1 - VR .
R r 481 wR 2M2 2M4 MZ
WR WR WR

(V.31)
If the right-handed neutrino is light (mVRﬂO MeV) and if it
has a charged current coupling, then using eq.(V.21l) with

Mwnt300 GeV we find that:
R(W - i;i‘;)zo.lz; for T(W- ev_)=0.84 GeV (V.33)

The possibility of detecting W; o %;77:(: decay against a
’

dominant background due to the conventional decay W; R

e_;PL,R depends on the observation that the lepton distribu-
tion exhibits forward-backward asymmetry. This is because
of the typical (1 ¥ cosé\J)2 distribution of lepton pairs with
V-A coupling. The decay of w; o to charginos is on the

]

other hand symmetric.

V.3. Numerical Results.
The inclusive cross-section for the parton model in
eq.(V.17) is solved by numerical integration at Vs=1.8 TeV,

the pf5~collider enerqy at Fermilab (CDF). We assume
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MmeO GeV, mez.z GeV, xu=0.23 and tanB=1l, and based

upon the weakest 1limit from Am, and astrophysics we take
Mm2300 GeV. The decay at this value is: FWfS.ZS GeV at
g9, ~g, - Equation (V.17) 1is normalized by including the
QCh-motivated correction factor K=1.22 at CDF (K=1.31 at
CERN Collider energies), which is given in Ref. [14]. The
cross section for W;’ N E'i? decays (tanBz 1) are shown in

R J

Fig. V.2 and W_ = e'EeL ., decays are shown in Fig. V.3.

From these figures, process pp - WOt X o i]i? + X, note
14

that the cross sections at 1.8 TeV are:

o (PP » W + X » ¥ [x+ X)=0.11 nb,
oR(pE > W+ X i]i? + X)=4.6 pb, and

thus 0L224 o, assuming the couplings 9., 9, for the sub-

groups SU(2)L and SU(2)R respectively, are equal. Using thce
same numerical integration procedure for the process:

pp - W+ X o [;BL .F X, at VS=0.63 TeV we get;

GL(pp - WL+ X > EVgL + X)=0.58 nb.
which is in agreement with previous results. '™
At Vs=1.8 TeV we find:
ol(pp - W£+ X > BlQL+ X)=l nb, and
GR(pp - Wd+ X - Zven+ X)=37.7 pb.
In Fig. V.4 we show predictions for the chargino transverse

momentum from W;R» i;i? decay at Vs=1.8 TeV at different

values of centre of mass angle 6 at which the chargino ig
produced relative to the p-direction. Similar distributions
for the direct decay of W [;hqn are shown in Fig. V.s5.
Both decays show Jacobian peaks for pT=/r§/2=MHL/2=4O Ge' at
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6=90°. Similarly for the right-handed gauge boson, M, ., the
curves peak at pTZISO GeV. For angle 6=10° there are no
peaks. Furthermore the chargino signature unlike the prompt-
lepton background is symmetric under the Jacobian peak. 1In
Figs. V.6 and V.7, we exhibit the dependence of the angular
d:stribution of the chargino or lepton on the c.m. angle 6
for p{ﬂa”qR/z (i.e., 6 - n/2). Note that at this value,
the asymmetry almost disappears. In conclusion, we have
shown that the chargino and neutralino production processes

could give rise to a distinctive signal in the lepton dis-

tributions from W; R-boson production in pp-collisions.

»
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Cross Section (nb)

0.1

0.01

T TTTTT

T

T

0.001 | J g1t | | NN | 1
0.1 1 10

C.M. Energy (TeV)

Fig. V.2: Cross-sections of pp - w; + X - E;;?; + X, versus

R
the centre of mass energy V5. We take tanf=1,
ﬁxo=14 GeV, and I‘?x-=45 Gev. The curves are:

(I) for o*L(pﬁ S W+ X o E:L ;'E': + X) and

(II) for o _(pp -» W_+ X - x];?: + X).
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Cross Section (nb)

T TTTT7

0.1
1l
0.01 =
0.001 | | | S ) l | | T 1 1
0.1 1 10
C.M. Energy (TeV)
Fig. V.3: Cross-sections of pp - W __ + X - 2-;21. .t X

versus the center of mass energy Vvs.
The curves are:

(I) for crL(pﬁ > W+ X 8'17“ + X) and
(II) for o (pp » W + X = 2'5“ + X).
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d0/dPT(nb/GeV)

0.1¢
- tanB=1
i \5=1.8 TeV
_ |
0.01F ©-90"
=/
AN
i ©-10"\_
1.000E-03 | Il
- 0-9¢
1.000E-04 E
= [V
- ©=10°
1.000E-05 ' ' | ' '
0 50 100 150 200 250
PT(GeV)

Fig. V.4: The transverse momentum distribution of the charg-
ino at Vvs=1.8 TeV for 6=90°, 10°. We take tanp=1,
ﬁxo=l4 GeV and ﬁx—=45 GeV. The curves are:

(I) and (II) pp = W+ X - 2152'1’ + X,
(II) and (II) pp > W_ + X = i}il + X.
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d0/dPT(nb/GeV)

10
5=1.8 TeV

U TTITTm

P T 1T

0.1

T T TTTT

0.01

T rrmm

1.000E-03

T 1T

1.000E-04

T TV

! i - ne

1.000E-05 l
0 50 100 150 200 250

PT(GeV)

Fig. V.S5: The transverse momentum distribution of the lepton
at v5=1.8 TeV for 6=90°, 10°. The curves are:
(I) and (II) for pp - W+ X - [E&.+ X,

(IIT) and (IV) for pp = W X o ETQR + X,
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d0/d{cos(8)]

- tanB=1
i {s=1.8 TeVv
0.1E
0.01¢
-
i 1
1.000E-03 &
S PT=150 GeV
1.000E-04 : L !
-1 -0.5 0 0.5 1

cos(8)

Fig. V.6: The angular distributions of the emitted ;'E; at
vVs=1.8 TeV. We take tanp=1, ﬁxo=14 GeV and
Mx-=45 GeV., The curves are:
(I) for pp - W+ X QS}‘; + X (p,=40 GeV) and
(II) for pp - W+ X o 7‘;’?: + X (p,=150 GeV).
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dG7/d[cos(8)]

}..
- Vs=1.8 TeV
10 =
1E
0.1 =
0.01 =
- PT=150 GeV
1.000E-03 =
1.000E-04 : ‘ '
-1 -0.5 0 0.5 1

COs(e)

Fig. V.7: The angular distributions of the emitted ¢ at
Vs=1.8 TeV. The curves are:
(I) for pp - W+ X o 8'5&_ + X (p,=40 GeV) and
(II) for pp » W+ X = [Eea + X (p,=150 GeV).
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Chapter VI

Conclusions and Prospects

In this thesis, we consider the L-R Supersymmetric
Standard Model, the extension of the Minimal Supersymmetric
Model (MSSM), based on the gauge groups SU(2)L X SU(2)R %
U, . with doublet and triplet Higgs fields. In the L-R
model, ¢nd in the MSSM, gauginos and higgsinos are spin-1/2

weakly interacting particles and so they mix once SU(2)L >

u(1), is broken. After mixing, in the L-R supersymmetric
-~

model, there are four charginos x; (j=1,...,4) and seven

neutralinos il (i=1,...,7). The first three neutralinos are

generated by the first stage of breaking after the right-
handed Higgs acquires a vacuum expectation values, <AR>
(However, one of them remains massless). The other four
neutralinos are generated by the second stage of breaking
after the doublet Higgs acquire VEV'’s, <¢>m

We examined in detail analytical and numerical solu-
tions for the masses for some particular values of the left

and right parameters (Mv’ M MR, and taneK). The results

LI
in the MSSM are in agreement with previous results. In the
L-R supersymmetric model, the mass spectra for charginos and
neutralinos is very different from that found in the MSSM.

We also consider ways of finding evidence for the left-

right supersymmetric model in pp - W

)

+ x»i‘fi; + X. The
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total inclusive cross-sections are solved by numerical
integration using parteon model distributions for Vvs=1.8 TeV.
We use tanp=1l, and based upon the weakest limit from AmK and

astrophysics MNR of about 300 GeV, we find

o, (PP » W+ X - i;ic} X)=0.11 nb, and
0 (PP » W+ X » X X + X)=4.6 pb,

Thus o*L.>.24oR, assuming the couplings 9. 9, for the sub-

groups SU(2)L and SU(2)R respectively, are equal.
Comparing our results with the lepton background sig-

nal for the process pp - Moo+ X o l"ﬁcl Lt X, we tine at

Vs=1.8 TeV,
O‘L(pp - WL+ X =>Llv

“+ X}=1 nb, and

O‘R(p[-a S WA X [’z_/l,“w& X)=37.7 pb.
Both decays show Jacobian peaks for p}z\/-é/z Mm/?wl() GoeV
(p,*150 GeV for M ) at 6=90", whereas the deccays have no
peaks for angle 6=10°. Furthermore the chargino signature
unlike the prompt—lepton background is symmetric under the
Jacobian peak.

Further investigations that should be considerced are
increasi..g the c.m. energy from CDF (-1.8 TeV) to 53C (40

)

GeV) and consider the pair production of ;?;;Z() and ;,g; via

. . O . -
neutral current Iinteractions (Z/ “-exchange) in pp- and

pp-collisions. To this end, one can use the analytical
expressions (asymptotic results) for chargino and ncutral-

ino mass eigenstates to consider the properties of the Hidgg:s

.t -1, +

particles in the L-R SUSY through the decays: x - 2 W
~%

~0 ~0 (o] ~0 + ~U -~ ( .
xl-exj+z;;zl—>xj+¢;xx-7x;+¢J (i-3).
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Appendix A

Conventions

Most of the conventions in this thesis are taken from
Ref. [1], and the rest are taken from Ref. [2]. We write

our metric to be:

guv= diag(1,-1,-1,-1). (A.1)

The momentum four vector is p“=(E, p).

o= (1,%) ; M= (1,-3) (A.2)

denotes the Pauli matrices. Spinors can be written in two-

or four-component notation. If the two-component spinor ga

transform under a matrix M, the spinors Ea, Ea, and Ea
transform under M', M and (Mq)' respectively. The Dirac
equation in two-component notation is:

= M &B . _ =& wy . =B_

(0, p7) " gg=mm,  (0,P) 5 N = Mg, (A.3)
This allows us to introduce four-component notation. One
introduces a four-component spinor which satisfies

(v, p" - =0

7P m) Y . (A.4)
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It follows that

13 0 o
= o HVB
p = a1 7= . . (A.5)
7% o F&B 0
u
-1 0
7= ir'y'yy’s , (A.G)
o 1
HYVB
. () 0
v 1 v .
o= 2 (oH,g"= 21) ¢ ], (A.7)
o e
B
where
HVB_ 1 M V&R _ v =uaf
Oy = A(Ua& (o) Cui © ). (A.8)
“UY&_ 1 —M&a Vo =vaa |
OB 4(0‘ GaB o oaﬁ)' (A.9)

This is called the chiral representation of the ¥-matrice:.

We define the four-component spinors:

v, |
y = [w ], (A.10)

where wL o= PL,Rw, and the left- and right-handed projection
’

operators are given by
(L # 7.). (A.11)

The charge conjugated spinor can be written in terms of the

charge conjugation operator C as:

W'= oy’ ; o= -ir%C. (A.12)
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In two-component notation, one defines an antisymmetric

tensor (eaB: - cBa):
0 1
g - eP¥ ig2 . (A.13)
-1 0
The CaB tensor can be used to raise and 1lower spinor
indices:
g% e*Pe,, £.=cy " (A.14)
B’ B "Bo> )

Then, in chiral representation we have:

c= -iy%y°= “fa ©. (A.15)
0 gBY
and
x
- n m
g'=| _ ], yo= [ _g ] (A.16)
€y 3

A four-component Majorana spinor has the property that == £,

which implies that wc=w:

(A.17)

<
x
1!
—
MmeoMm
RR
~—————

The following equations are translated from two-components

into four-components:

yv=m¢g + g, Vvry=-ng + g,
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ny, MV, _ = MUz
(o) 1/12— n.o 52 n.0 El. (A.18)
where the subscripts 1 and 2 label two different four-compo-

nent spinors. In egs.(A.18), we have used:

E=- &M, e = - gV, (A.19)

and

7“P$=—non. (A.20)

Fically, we write some useful relationsfor four-component

Majorana spinors using egs.(A.15) and (A.16);

G,= U, B =y, Uy s - by

Uy V= VLY Y, U s - o

u'sta2 2°u’s (A.21)

and

Uy P VL= - UL Py (A.22)




Appendix B

Chargino and Neutralino Mixing in Two Component Notation

B.1. Chargino mixing.“’“

I . ~* .
The mixing of the charginos, X, (1=1,2) has been
discussed in chapter three in the terms of four-component
Dirac fermions. In this section the mixing process is put

in terms of two-component notation. We define two unitary

mixing matrizes:

Wi (=10, ),
oo j=1,2 (B.1)
'/lj= (-1a ,l//m),
with At=¢§(xl ¥ iAz). The mass term in the Lagrangian is:
1 . 0 XT !/I\f
g = - S(yy) | (B.2)
X 0 Y
where
M M“»/E sing
X= . (B.3)
MH¢§ cosfp (L

Here M is the gaugino mass parameter associated with the
gauge group SU(2) of the standard model, u is a supersym-

metric Higgs mass parameter, tanB=u¥%q, and
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1 2 2,172 . .
M,,: Eg(u1 + Uz) . Finally v, are the vacuum expectation

values of the Higgs doublets;

v1 0
<H> = ;, <H>= . (B. 4)
1 2
o) u2

Let the mass eigenstates be defined as

+ + - - » .
x‘= VUWJ ' X‘= UUWJ ' (lrj=112) (B.5)
where U and V are unitary matrices chosen such that
. -1
M= UXV, (B.6)
where M is the diagonal mass matrix with

real and non-

negative entries. Eg.(B.2) can be written as,

- [x, (M), X + H.C.]

X (B.7)

Using eq. (A.16), we may write eq. (B.7) in four-component

Alyy

where 541 and ;'Ez are the charged four-component Dirac spinor

x! x.'
1 ~ 2

1 [ - ]l X2= [ - J- (B.9v)
Xy X,

had
1l
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It is useful to consider the eigenvalue problem »>r x'x.
The positive square roots of the eigenvalues of XTX will

diagonalize M elements. Thus, eq.(B.6) becomes:
M= v X"xvs u'sx" (uh) L (B.10)

The exact solution for the chargino masses for the 2x2 ma-—

trix can be found. From (B.9) we find the masses,

~2 _ 1 2 2 2 . 2 _ 2.2 4
Mxl,xz_ —2——{M tuT o+ 2M 3 [(M p’)" + 4M cos2g +
2 2 2 .
+ 4MH(M + U+ 2Mu51n2{3)]} (B.11)
( ° , det Xz 0 cosgp*  sing:
U= O- r = ? Ot:’ 3
o 0+ , det X< 0 -sing* cos¢t

(B.12)
where the Pauli matrix o, is inserted when det X<0, so that

the masses M;I x2 which appear as diagonal elements of MD
are both positive. In the supersymmetric limit u=0 and

v =U, (B=45°). Then ¢+=¢-=¢p and the physical eigenstates

are the Dirac spinors

' 1 '
—ir'cosg + v, sing

with mass= M and (B.13)

x1
n

- - !
iA cosg + wfn sing X1
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. -ia*sing - w;zcos¢ _
X, = with mass= M, .-

T - . -2 -
-1A sing + a,l/m cos¢

(B.14)

In the 1limit M=y=0 (¢=45°) we have two degenerate states

with mass MH:

~~ 1 ,=C ~C ~4 _ -
w= 5 X, +x), w= £ (x,-x), (B.15)

where C 1is the <charge conjugation operator given in
~ e 4 ‘ .
ed.(A.15), and w, w, are four-component Dirac fermions

given by:

l//l
= [ i ] (B.16)

B.2. Neutralino mixing. 1,31

~0

In the case with four neutralinos, X5 (i=1,...,4), wc

define the two-component fermion fields

o

Ha) (B.17)

.., 3 ,0
V/j=(‘ 1A l-lh ,WHI,W
where A° is the neutral wino and A’ is the bino. Thooe

fields can also be expressed in terms of two-component nota-

tion given by linear combination of the photino and zino:

—_ 3 - s, 3 ) )
Az— A coseH A smew, (B.18a)

3. , Y
7&7— A s;mew + A cosew. (B.18b)
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So, in place of eq.{(B.14), it will be usful to define

0

bo) (B.19)

’ : : 0
'/IJO=(- lA.a,l-lAzerilw

The mass term in the Lagrangian is given by

¢ = - %(¢°)Tyw° + H.C., (B.20)

m

where Y is in general a complex symmetric matrix given by

( M’ 0 -MzsinawcosB Mzsinewsinﬁ
- 0 M MzcosewcosB -MzcosewsinB ,
-MzsinewcosB MzcosewcosB 0 -1
\ Mzsinewsinﬁ -Mzcosewsinﬁ -i 0] J
(B.21)

2

where Mz= -;-[(g2 + g’z)(vf + uz)]1/ and ew is the conven-

tional Wienberg angle. We define two-component mass eigen-
states

i,j=1,...,4. (B.22)
where N is a unitary matrices satisfying

N = NYN?, (B.23)

where N is the diagonal neutralino mass matrix. To

determine N, it is easiest to square eq. (3.20) obtaining
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N= ny'yn (B.24)

One can choose N such that the elements of the diagonal ma-
trix N are real and non-negative. The four-component mass
eigenstates are the neutralinos which are defined in terms

of the two-component i? fields by

0
~0 X, .
x= - |’ (i=1,...,4). (B.25)
X,
Note that the i? are Majorana fermions. The mass term bhe-
comes
1 ~ ~0~0
- .'.()
: DX, (B.206)
where ﬁi are the diagonal elements of NU. The special case

M=M’ and p=0 corresponds to a massive photino with mass W

thich decouples from the other fermions.
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Appendix C

Integrated Cross-Section for Chargino

and Neutralino Production

C.1. Parton model distributions.

C.1.1. Cross-section for subprocess.[4’“
Consider the first order production of the chargino and

neutralino in w; R-decay for the qgq’'-collisions. The

L

process in terms of the momenta labels is:

— ’ - O ~0

d(p,) + a'(p,) » W - x (k) +x(k). (c.1)
The amplitude of this interaction at 9~g, =g, is:

o ¥ R RO RGN N

. UV .
B 4(p,) —;%— 7,(1 - ¥ )u(p,)
q - MH + 1I“HMH L,R 2v2

(C.2)

where B(RZ), u(kl), ﬁ(pz), and u(pl) are respectively, the
Dirac spinors of the neutralino, chargino, antiquark, and

quark, Vq o is the quark mixing matrix, and

1

= + .
1) 14v12 IZVJI' Olj N&sujz + N12Uj1
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where NU are unitary matrices which diagonalize the neutral
fermion states. The vertex of W;-boson-lepton—lepton inter-
actions can be found from the Lagrangian given in chapter
IT:

Fr

S M - =. M +
. [(vy PRe W“ + ey PRV Wu] (C.3)
where we have made use of edq.(A.15). In the Feynman gauge,

the W: ,—boson propagator is given by
!

gtV
19 , (C.4)

2 2 .
g- M + 1Fwa LR

where q is the four-vector momentum of the gauge boson. The
vertex W;-boson-charqino—neutralino has been already discus-
sed in chapter II. Consider the Mandelstam variables g, E,

and { defined by

2_ A 2 2
q°= 8= (p, +p,) "= (k, + k)%,
A 2 2 -
t= (p, - k)%= (p, - k)%, . (c.5)
A - 2= - 2
U= (p, - k)%= (p, - k)"
Note that
A _ m2 =2
S= 2p,.PF MXO + Mx 2k k2
t= M2- - 2p .k =~ M2 - 2p_.k (C.0)
T T Pp-%" P,- o
A =2 ~2
u= Wl 2p2.k1~ MXO - 2p k2




We average over the spins of the incoming particles and sum

over the spins of the particles of the final state, 1i.e.,

|#] .- +Z | ] ® (C.7)

spinsg

Before evaluating the traces of the squared matrix element,

|Aﬂ2, we note the following:

Y u(p,,s)u(p,s)= p .7,

6l

Y u(p,,s,)u(p,,s,)= p,.7,
s 2

Yulk,r)vik,r)= (k.9 = N -),

ri

pd
and

Z v(kz,rz)ﬁ(kz,r2)= (k,.v + M. 0)

. (C.8)
12 x ’

where S+ S

a0 Tys and r, are the spin of the quark,

antiquark, chargino, and neutralino respectively. As a
convention, we assume that i; is the particle and i; is the

antiparticle. Thus, based upon egs.(C.2), (C.6) we gec

a2 = 2 |v

ave 6 q, q’

llew(é) li,R[(IOTJIZ + IOTJIZ)

A . L .R* L* R
[(pl.kl)(pz.kz) + (pz'k:)(p1'k2’] + (Oljolj-+ Oijoxﬂ

1 ~ =~
Ny’ Mx-MxO (pl.DZ)], (C.9)
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where

A -1

— A —-— 2 : >
DH(S)L,R- [(s MH)~+ lMJ}](L,m (C.10)

Using the relations in (C.4), eq.(C.9) beconmes:

4
2 _ g 2 Ay 2 L2 R 2
2 5 v ] wsm,n[uo.,t + 1ot 1)

~ 2 o 2 o ~2 A, =2 A
{(Mx- t) (Mxo t) (Mx- u) (MXO u)]
é ~ - L R* L* R
+7Mx- ¥ (OlJO” i) lj) (C.11)

The differential cross-section for the subprocess can be

writtern as:

A 1 4 4 v L
do= 1,2 ,A 2 2 (em) = & (p, + P, = K, k)
2A (s,m-,m",)
a’q
, a’k, a’k,
x IM(p Pk k )l — (C.12)
1 2 1 2 ave (21!)3 2&)1 (211)3 Zw?
It is conveniert to introduce the triangle function

2 2 2 .

A(X,y,2)=x"+ y + 2" - 2wy - 2xz - 2yZ. (C.173)

Eqg.(C.12) is evaluated in the center of mass trame, where

‘T

the four-vectour momenta of the given paticles are p?- (=

1 ’

yl
P,), pg= (E,, -P,), kf= (w, k), and K= (w, -k ), and

P,® “P= P i k = -k2= k. The d—}}c2 integration takes carce

of &é(p + P~ k - kz) yielding k= p + p - k, ani

l
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integration with respect to k, eliminates S(E,+ E- w - w,).

Thus the differential cros-section becomes

A ~2 ~2 172
A A(s,M_-,M0)
do . 1A X X |2 (C.14)
d(cosB8) 32ns A(s,m;,mq,)

It is most convenient to introduce new variables y and z:

-/8, (C.15)

Thus, eq. (C.15) becomes:

ab _ 1 3172 2
— = (L,y,2) 4|5 s (C.16)
d(cos9) 32ns

where we neglect the quark and antiquark masses in the tri-

angle function A(é,mg,mi).

C.1.2. Evaluation of the parton model cross-section. ' %!
Chargino and Neutralino production in pp-collisions is

based on quark-antiquark annihilation into a vector boson or

photon, which subsequently decays into charginos and neutra-

linos . In our process, the W -boson is the mediating part-

icle and carries four-momentum Q“= (Q,QO) with
Q= (xl -~ XZ)P, QO= (x1 -+ xz)E, O=x =1

where E is the proton(antiproton) energy in the centre-of-
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mass frame, and s=4E°. Neglecting the proton(antiproton)

masses so that |P{=E=%V§, it follows that
§=0’= x x.s = lln(x /¥ 17
1450 Y= 2 n( 1/ ‘2)1 (C. )

where y is the rapidity of the W -boson in the centre of

mass frame. The momentum fractions X, X, are related to the

<

. A . A
variables y, s. The transformations from X0 X, to y, s are

“

X = eV, (C.18)

and

d’c e d%c (C.19)
- ’ -
dx dx, dyds

The differential cross-section for pp-scattering can be

written as:

A

— = KC ,Z [fq, (X1)f;(x2) + fa(x))fq, (x‘{)jl .0,

1
9,4

(C.20)

where & is the total cross section for the subprocess gy’ -
iﬁ?, given by eq.(C.16). The functions f ,(x) and f-(x)
(g <> q’') are the gquark(antiquark) distributions inside the
proton and antiproton, respectively. 1In ed.(C.20), we indi-
cate the summation over the quark(antiquark) flavours that

lead to the annihilation reaction into the VW -hoscson. Colour




average factorsJr are accounted for by Ca qQ’ (=1/9), and the
[4
K-factor is the first order QCD correction. Substituting

eqgs.(C.17)-(C.19) in (C.20) we get the so-called Drell-Yan

formula (at y=0)

d’c _ . i
dngd(cosa) ¢ Ca,qlzi:[fq'(xl)fq(x2) * fg(x1)fq'(x2)]
q,q
A
x (x xz/g) __QE_T_ . (.21}
' d(cos8)

In the qgq’ - i]i? subprocess centre of mass frame, the tran-

sverse momenta QT of i; and i? have the same magnitude:
;’5T= -;j‘/ & sine (C.22)

To change variables in the differential cross section from

d(cosé) to dﬁ, we use the Jacobian of eq.(C.22) and we find:

A A A
do _ [ 2 sin6 } do (C.23)
A A1/2 B ~ '
de s "“cos6 d (cos8)
where
1/2
A 2 A A2
cosf= s/4 -
N1/2 [ / pT]
S
-'.
Since the results for the annihilation of a quark-antiquark
of a given colour does not depend on the colour itself,
summing over colours gives a factor 3, s0 that combining the

(AR

factors gives 3INC- )=
q,
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The divergence at §=n/2 which 1is the upper endpoint

ﬁ =%/ &M /2 of the ﬁ distribution stems from the
T 2 WL, R T
Jacobian factor and is known as a Jacobian peak. The inte-

’ A . . .
gration over s removes the singularity and leaves a Jacobian

peak of finite height near ﬁ;ﬂ /2. Thus, using

WL, R

egs.(C.21) and (C.23), we can write the differential cross-

section:

:
do _ - ,
Tap,” e, JZ [fa £+ 08, )]

v J ’
9,49

3

2sin®é ab X %2
A A
gl/zcoseltd(cose) g

~

dgdyd(cosO), (C.24)

where x, , are given in terms of y by eq.(C.18).

C.1.3. WL R—Decay.

The amplitude for W _(P) - ;(;(—k) + 7}?(}:’) decay modc

[

is given by (at g=nggQ

L

= -9 a(k )y
M= 1 cu(P)u(k )y [OU

g (1 -3 o1+ ) |-,

(C.25)
where CU(P) is the gauge boson polarization vector, and
u(k’) and v(-k) are the spinors of the chargino and ncutral-
ino respectively. Averaging |M|2 over the W -polarizations

and summing over the fermion spins, we get
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2 1 2
|42 =L Z | (C.26)

spins
2
2g \ . 2(P.K) (P.K’ L2 R2
= 2 {[(k.k) + 2ER )](|oU] + 10015
W
Ry L Re L®* R
+ af o - (O} o} + o”ou)} (C.27)

Using the following kinematic invariants:

, 2_ =2 ~2 ,
P=k + k', M= M-+ {0+ 2k.K, (C.28)

the differential decay rate in the W -boson rest frame is

> % x0)= == |#|% a(ps), (C.29)

dar(w 2Mw ave

L,R

where d(PS) is the invariant differential phase space, which

can be written as

3 3.,
a(ps)= (2m) st (p- k - k)3 X _dK (C.30)
2w((2n)” 2w’ (2m)
The integration over the phase space is
1 1/2 ~2 2 =2 2
Id(PS)= 5 A (1, M/M, Moo/M). (C.31)

Substituting eq. (C.29) in eq.(C.31), we find the total decay

width
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(!2 0
)= —5 I (W

L,R

- L2 R
5 (7)) [(|0U| + 1o |

) 2 L R Le
x |12 - x -y - (x - y)] + 6z(OUOU + OUO“J)

2 1/2
X (1 +y -x) - 4Y] '

2
WL, R’

- w2 _ ool
y= Mx /M 4 MxoMx /MwL,n‘

This result can be compared with

. - - - gZMwL
F(WL - ¢ VE)— 3I"(WL =2 € Ve)_ 9~z§'ﬁ“,
(W > {v, )=3T(W. » e v )= 12i§ﬂ

(W e’ R eR’ 481 °

171

-
«

)

(C.32)




References

(1]
(2]

(3]

(4]
(5]

(6]
[7)]

(8]

H.E. Haber and G.L. Kane, Phys. Rep. 117 (1985) 75.

P. West, Introduction to Supersymmetry and Supergravity,
2nd ed., World Scientific Pub., Singapore, 1990.

J. Gunion and H. Haber, Nucl. Phys. B272 (1986) 1; Nucl.
Phys. B278 (1986) 449.

R.M. Barnett and H. E. Haber, Phys. Rev. D31 (1985) 85.
B. De Wit and J. Smith, Field Theory in Particle Physics
ch.3, vol.l, North-Holland Phys. Pub., Amsterdam 1986.
Ref. (2] ch.6.

V.D. Barger and R.J.N. Phillips, Collider Physics, ch.8,
Addison~Wesley, California, 1987.

For review, see for example; W. Marciano and H. Pagels,
Phys. Rep. 36C (1978) 137; A.H. Mueller, Phys. Rep. 73C,
(1981) 237; G. Altarelli, Phys. Rep. 81 (1982) 1: J.F.

Owens, Rev. Mod. Phys. 59 (1987) 465.

172




Appendix D

PHYVSICAL REVIEW D

VOLUME &, NUMBER +

15 AUCGTUST 9o

Geaviton-2leczon interaczions

H.ON.Saf
Phusies Decartmen:. Concarziz Umversiy, 1455 2 Maiscnaeuve Joulevars Weet, Montreat. (Juecee, Ciraaa 26 1 M3
(Rezsived 22 Feopuary 1991: ravises manuseript fesmived 24 Agni 1901

-
t

Firsi-order sToss secsions (or the procsrses 3F graviten-Compton scattenng, 3¢ - —»e, Sremastran.
lung, 2nd parr procueson by gravicons in tie Coulamo deid. are 2alcuiates. Tie 1Zicuiations, vaes are
lineas in the Jravieationai souziing v, 2re J0tained in the 2xireme relanvisue limt

1. INTRODUCTION

Several precasses in which gravitons, the quanta of the
gravitaticnal feld, interact with other elementary paru-
cles are studiad in the liczrature. Sincz the gravitaticnal
ccupiing strengih x=V'37G is extrzmely weak, wherz G
is the Newicnian gravitational consiant {G=4d.7
X10799GeY ™), crly processes linear in x ars usuaily
considered. Although no real attempt is made to esii-
mate the averail backzround of gravitational raciation in
the Universe, which would clearly be of considerable as-
trophysicai significancs, linear preessses can be distinctly
singled out :hat centritute to increase the gravitatienai
radiation in the Universe. Some such precesses have a

irest astropaysical interest; for instancs, photopraduc-
tion aad bremssirahlung grnerate sizable amounts of
gravitational radiation which can be comgarable in mag-
nitude to those of classical procssses.

Previous work was done by Weter and Kinds (L],
Wainberz (2], Carmeli (3], Beczalettd and Ceshicnero {4,
Beczaleni (5], and Pagini (). They have showa that in
astrophysical apriications the gravitational radiatien
power in quantum precesses could Se as high as in the
classical ones. Papini and Valluri (7] ccnsidered the pro-
csss of photopreguction of gravitons in static magnelic
and Coulomb felds in the frst- and second-order pertur-
bation theory and appiied the results for studving the
gravitaticnal radiation {rom scme astrophysicai odjects.

thcugh the experimental implicztions of quantum
Zravity are aormaily far beyend the rangs of contem-
porary sxpesumental physics, some interssung asiropnysi-
cal opjesis Rave recaatly besn ocserved that emit
exiremeiy-Q1ga-ener3y eleciromagnenc racdiauon which
could Be preducsd by procasses involving gravitons.
Indes=d it is likaiy that cbjects such as Cygnus -3 or 3eu-
tron stars r3ciate 3 signtficznt {racticn of their energy
the form of verv-nigh-2nergy gravucns. A'so, thers &
strong indirss: evidencs that the rate ar which the rota-
tion percds of seme massive binary.star systems are
slowing down s sznsistent wun the sxgeciation of energy
loss due 29 the 2mussicn of graviational rzciation 3],

Parz of the motivaticn {or considenng lnear precasses
for quantum gravity is due 0 the question of rencrmal-
izakility, whica now appezrs 1s a2 major atsizcie 0 con-
stmicting a compleze quantum thesry of gravity, For
nongravitaticnal radiatien, renormalizable quantum fie'd
theories exist which sesm to dascrice nature adeguately.
However, when one censiders gravity because the gravi-
tational coupling constant x of Einsteia’s theary of gravi-
ty is dimensional, the correszending uantum feld theory
is ncnrenormalizabie. Although in (ke case of pure gravi-
ty the one-icap divergencss can be efiminated by eld re-
aormalization [9-11}, paysical divergences remain for
the mors reaiistic situaticn of combtined matter interac-
ticns, It is implicitly hoped thar the drst-arder terms of
perturbation theory ars valid for the precssses con-
sidersd.

Thae main purgese of this paver is (o give an esumate of
the cross section at the tres level (ordes of x°), for the
precssses ge -+7e , bremssizanlung and pair produc-
tion by gravitens in a Coulembd feid. Tae meuvation is
to ind some preesss wiich would enabie exiremmely high-
enes3y gravitons to be deecizd. In Secs. 11-1Y, we zal-

zlatz the cross secuons for these preczeses. Seciion V
contains the cenclusicns. We useunus A=c = 1.

0. GRAVITON-COMPTON SCAITZRING

The ast-arder contnibuticn 0 the rencticn 32~ —sve ™
is descricea U the two diagrams of Figo . wners
Xk, &' w,w" are the lcur-mcrmenta of the imial 3ravien,
the Snal pheten, the intial 2izcircn, and the dnal siez.
trem, resgecuvely. Tae quantities €, €5 are the jolanza-
tton tensor and vezior of the imtial 3raviten 1ad the anal

3=
o~

photen, resgesuvely.  Tae ntermeciate  four-secior
momenta ars g'=h-pi=k"=0"l, g=1p ="}
=lp'=%¢). Thae correszending Fevnman rile for the

elaciron-eieziron.3raviten veriat 18 «i'p ="l — v
-7',] (p—2" ana q—" :n the sezcnd diagramu. wnicn
has aireadv bes=n discussed :n the literzture (3,10-12)
{mers desziis are Jtven :n Ascencix A.. [ae matnx ele.
ment jor s0tn 41agrams s Jivan 3V

atm . . -
. - rr Lt L, vy, uo 200
g =m":

Lo TN Tie amemoan Ot Tue ey
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FI1G. 1. Graviten-Compron scattenng ge ™ ~—ve .

where u(p,s), u(p’,s’) are the Dirac spinors for the ini-
tial and final electron and § =g, y#=(g 7). Disregarding
polarization effects, we average the cross section over the
initial spins of the graviton and electron, and sum over
the polarizations of the final electron and photon.
Neglecting the electron masses and squaring Eq. (2.1} one
obtains

lt"iﬂlz:Bn’Gezi— E E;AvE;:?EoE;(E'T Vpu)(ET”"su')
polar

= —20Ge Tr{18,(8,4a8 v8 + 8,88 va — 8 uvias)
X(p' 7 T2 ? Taga)1 s

where we have used the polarization sums of the photon
and graviton [3,13,14]:

ootk N Ie k', 1)= =g, ,

2.3)

(2.4)

3 ek Medf kA= 18,080 888 va ~8uvaz) »
X
(2.5
with
+ ¢
T,w=[2p+%),7,%7, (Zp-rk)] k)z'P
+75 7_.'( (29" ~k)7,F7.i20 k)]
(p"—x)
(2.6)
and
=3 i ! . 1/
Tuad=.l'a_~_-7 (2p—% Y73 7a P?‘)ﬂ]
(p=x’
ime . ~¥
F{2p = &)y ol -k)g]-‘—-—)-:-/, .
(2.7)
We define the kinematical invaniants

s=qlt=k~pi=a =0, =tk =k =p =),
=g'=(p—k'V=1p =% and s~u~r=0. Equation
(. 3} 1s evaluated :n the center-of-mass frame, where the
four-vector momentum of the given particles are
1Fig. 21 «*=ru,c. p*=i&, ~k' &“=(w k", and
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pH=(E',=X’'). After very lengthy calculations of tracss
in Eq. (2.3), we get the diferential cross section

iGa | .

-

1 R
docym™= T(Zr’-.-:t’:-.-:t'u

sy 4, (Q.8)

¢

where a is the fine-structure constant and Q' is the
emitted photon  soiid  angle.  Sewing  s=4k3,

=~2k*(1—cosf, , hu=~=2k"(1+cesd, ) and in-
tegrating over the angle 8., (where 8. . is the c.m. an-
gle: we get 0, =87aG =0.5X107% cm®, which no
longer depend on the energy of the colliding paricles.
‘l‘he radiation of the final particies becomes strongest in
the directions of the initial momenta. This result is in
agresment with the results of Viadimirov [15] for the col-
lision e*e~—73z. Actually this is expected since these
two procssses are related by crossing symmerry. The cal-
culation by Papini and Valluri {7] of one vertex y-g in-
teraction also shows that the results are energy indepen-
dent,

111, GRAVITON BREMSSTRAHLUNG IN
THE COULOMSB FIELD

We consider graviton emission in 2 collision betwesn
an eleczron and 2 nucleus (¢~ —=Z~—e¢~=2=2). The
momentum k'=p'—p—x 1s the {our-vecior mcmentum
transier to the nucleus. Since the recaul of the aucleus is
neglected, the time componeat <, =0. According to Fig.
3 the matnx element M, has the 'orm

M ==eV3zG UK etk 1T p",5")

’ ’ v v ’ d d
X l[‘; T Va3t 7? T T T
q q

X{lg=q)ary—va'pt3l4] j.up (3.0
where the intermediate four-momenta ars g¢'=p
~R'=% -p.e= =p=—x=p'—<, and B k') s the sczlar
potential of the extemnai deid: ‘or 2 Coulemp deid

S
(3.2

DUR = =8 Ze TSR

Alter averaging the ¢ross seciicn Sver ihe .mifial »oin of
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b
where
T =30 ) v e (2 2’ -k
pv--(".: X s v lu"? h v] T
lp =)
p—X
Fyy= s Ulp =)y o =10 ] 35
Yip=irt ! e
and
= t
FIG. 3. Gravizen bremsstrahlung in the Coulomb field. T,.v'—"'x’orad 7o
g'+1
ro———l1p TR rg—vail
7o (P_k).\ P a?3 ™ Val2p TR ]
the electron and summing over the polarizations of the +{(2p =)y g+ 7alln— ,()5] nt.d vo. (3.6

final electron and gravi:on. by squaring (3.1) one obtains (p—kV

2= . ==, The diferential cross section for bremsstrahlung is given
|Mj1*=8= GZ= lk’l‘ 2 2 epvsd(.x T, ulGTgu’) . by (16]

(3.3) |~ E'ow

dabrems ( l ‘{/‘4 E

dod, d0?', (3.7
Inserting (2.5) into (3.3), we get

1 Z% where dQ2, d Q' are the solid angles of the graviton emis-
!‘Wﬂl A5G ¢ Tr[ (840848 T 8138 va "8 v s sion and the final electron. Inserting the value of !Mﬁlz
= in Eq. (3.7), we obtain the followtng expression for brems-

X(p"rTupvTag)ls B4 grahlung cross section:

J

2
d0yrems= ‘3—2%!‘—6‘ EEQ dwd(cosfld(cosd’)

X (p-k)—-?.(poko)-i-m

X[3p"pP¥p-k)+2p"p P =3(p'p ) p k)= Hp plps Do Xp-k)—=dpg poip'p )
+4ph paXp"k)Xp'p)=2p"pUp -k Np-k)+{p'p)p'-k ) +(py ko Wp pNp-k)=2pg koXp'p )
—(pg ko) p pNp'k)=(pgpoNp-k ¥ =2pypalp'pNp-k)+(pypoNp k) p-k)=2pypg)p'k)p-k)
—~(papo)p kP +(p"pNp-k ) —=(pypolp k)2 +{popo M p k)N p-k)+2papo)p -k }p'p)

—(papo P kP =(poka Np " p Np k)= Apoko N p'p 1 +(poka M p'p W p k)] = (" k) =2p5%s) |
(3.3)

where kq,p9 09 are the energy components of the graviton, the initial, and the final electron, respecuvely; 8,8° the an-
gles between k and p,p’, respectively. It 1s convenient to write, at extremely high energy E >>m the relations

plp=pk—pk=k'?/2, where p'l=p*=m? k=0, (3.9

pk=Ewl(l=cosd)=w8, where §=E(|—cos8), (3 10)
and

prrk=F'wll—cosd')=wd , where &=E'(l-—cosd'), (3.1

substituting (3.9)~(3.11) in (3.3). The intezration of Eq. (3.8) over the angles 8,8 1s rather lengthy !sez Refs. [16-19]
for photon bremsstrahlung). We shall give only the final result (a few steps are described tn Appendix B

dCpremy =322 a*GIE /E ldw /w)
X[L=BL\=3E /2E=EYEY) = L{= L ~3E /16E' = SE' /16 , =30 L =VE' /3E = 1E /3E")

=B e =19E/16E —3E /16E)=8B" 1 = SE /4E )], 2L

where fB=liiE-a i/t E—pil=liml&E/m.; B =WllE =g W/'E =53l inlE/m, and L ='nl"ZZ —zp
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-m)NEE" =20 ‘=m*)]=2In(2EE" /mw) as desned by Bethe and Heitler (18], The presencs of the logarithm of 2
large quanuty “the ratio (2EE"/mw)>> | even if 2= £ | should e noted, the loganthmic terms become the principai
ones n (3.12). Finaily, we shall zive the limit:ng formula for the region near the end of the spectrum. when the
extreme-relanvistic electron radiates almost ail 1ts energy w s £ >> E°>>m, then L =f° one caa eastly find

dOeems =322 a° G dw /E(28/2—138/8) . (3.13)
Equauon (3.13) covers all the range of  values for extremely refauvistic initial electron,
IV. PAIR PRODUCTION BY A GRAVITON IN THE COULOMB FIELD

The process of pair production by a graviton in the field of a nucleus (g +Z —ee ™ +e* +2Z) is very closely related to
the procsss of bremsstrahlung in the previous section. Figure (4) shows the corresponding diagrams, where
Epee—E,~p 00,k ~ =, —k; and €ag—E,, 1De four-vector momentum transfer to the nucleus can be written as
&'=p’'—p—k, and the energy transition is =E + £°. The matrix element M, is, therefore,

Mp= —eVizG (X’ Je,, dip’,s")

X p"+q" )7, +rlp' +g) L = /oq ((=p+g)7 v rl—~p+g)] T —p.s), 4.1)
where the intermediate four-momenta are ¢'=—p+k'=—k+p', g=—~p-~k=p’'—k’, and T(—p,s) is the Dirac spi-
nor of the emerging positron. The differeatial cross section for the pair production is

dapm':[l/(er)’]IMﬂlz(EE'/w)dE ao’'dQ (4.2)

we have multiplied (3.7) by (E*/w*)dE /dw and replaced by d; by d(, the solid angle of the emerging positron (ses
Ref. 16, Sec. 31]). By squaring (4.1) one obtains

W/:|’=8ﬂ<72..°': L 3 AT T, BT i) 4.3)
et 2 35
=4vGﬁ:,l‘Tr[ 8088 T 858 va = 8uBas )P 7 TP v Tas)] (4.4)
where
T,..=[(2p'—k),.'/v+-/,.(2p'—k)v](__::'_":,')z 7o+ 707 : “)z[( —ptk)y, 7 —pFk),] 4.9
and
Taa'—"}’oT;a'/o
"=‘/o(_;; = T{(2p =k)gyatval2p =k )g)F{(=p+klygty{—p+klg ] i’ s "{)z 7q - (4.6)

By means of (4.4) and (4.2) the cross section can be now written as

32Z°2°G EE” . .
dc‘“"=—-|k—';‘__m— E d(cosd)d(cosd’)

X (p-k)-:(poko)—m
X{3(p"p P lpk)=20p 0¥ +3(p"p)p k) =3p 2 Np-k Npy 2g)
+Hp p Py pg)=Ha 2 Np"kNpy po)=2p pNp -k Np-k)
—(pp NP kP r(poxgp g ok ) =2p 0¥ poke)+parg Np plp k)
—{papailp- k¥ =2005paMp 2 Np-k)={papoNp kip-k)
= 2Upppalp kMo k)= (py pailp Rk P ={p g Np k)P =(ph pgltp-k)
=0y R P k)= 220 2" e M ) = (Papa g k= (p" p Mk U poky)

1
t

=P a2k = P pgR ) Rip k) =0T (+.7)



FIG. 4. Pair preduciion Yy a graviton in the Coulomb deld.

The electron and the positron are emitted at angles 6,9
relative to the directicn of the incideat graviton. The in-
tegration over the angles 6,8’ is completelr analogous to
the bremsstrahlung case [Eq. (3.5)]. We assume the
electron and positron share equally the energy of the
graviton o =E +E'=2E, then f=F'=2In(2E/m} and
L=2Wn(E/m). We find the diferential cross section is

d0 e =Za*G(dE /E (T8 /2+2018/5—31/5) . (4.3)

Integration of Eq. (4.3) over E from m —w gives the total
cross section for pair production by a graviton having a
given energy o >>m:

or pur=zz¢:G[-}1nJ(m/m y+inNw/m)
X{71n(2/m)+ 3 ]+ n(w/m)
X{7ln*2/m)+ 2 In(2/m)]— 3] .
(4.9)

As in bremsstrahlung, the logarithmic terms in pair pro-
duction become the principal one in {(4.3) and (4.9). Tak-
ing @=10* TeV, Z=1, thea o1, =107% cm®. Near
threshold, ie.., w—2m, Eq. (4.9) can be reduced to
o =(370)2%a*G =0.0§X 10~% cm®.

V. CONCLUSIONS

We have calculated the drst-order crass sections for the
processes graviton-Compton scatterning (ge” —-ye ™},
bremsstrahiung, and pair preduction by a graviton in the
Coulomb fieid at extremely high energies. In the procss
ge~ —ve” the dnal result is energy independent, which
is in agresment with the results obtained in Refs. {7] and
(15]. We have treated the graviton bremsstrahlung and
pair production in a manner simiar to photon brems-
strahlung and pair preduction [16-13]. Since the brems-
strahlung and patr production depend on the loganthmic
terms, one might hope. at least from the astrophysical
pownt of view, that these processes are sigmificant.
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APPENDIX A

Lagrangian and the Fevaman rule

Thae Lagrangian density for a spin-= Jermicn i 1 grave-
tational feld is 3iven by the sum of the Dirac and E.n-
stem Lagrangian densites (10!

LT )= =13 TG =T et D d S =35G, (AD
whare 31s expressed mn terms of @ by the relation
3,d —
€8vTap = 8uv

The matrix ¢f (the inverse of ¢3) is a set of vierben felds
or tetrad fields (which 1s defined as the matnx square reot
of the metric tensor g,,, ), and ¢ 1s ziven by

(A}

e=detled)=[detle)] 7 = ~detlg )N'7.  (AD

T4 15 the Minkowski metric tensor; R 1s the curvature
scaiar; ¥ and ¥ are fermion fields, which can te intro-
ducsd into general relativity [20] by descnibing them with
respect to local Lorentz frames; they are defined to be
world scalars and transform as ordinary spinors under {o-
cal Lorentz transformations of the vierbewn frames
{Lorentz spinors). The covanant derivattves D, can be
intreduced as a covariant werld vector and a Lorentz spi-
ner,

(A
%(',"','b-y”'/").and

4

\
@, pe:o""g]luai .

=l oY — UL I -
ap = (€502 2y, =3,y )T refef(0,e.,~0

The last symbol denotes antisymmetnzation in {adh @,
is a covarant vector; under local Loreatz transforma-
tions it is not a tensor, but acguires an tnhomogenesus
term which is needed to make D, ¥ a Loreatz spinor.
The §elds 7, can be wntten as a 5° 1 of background and
quantum fields:

Fi=el=xci, d—xT'i=. (AS)
The factor x 1as bean inserted to 2ive the quantum elds
canomecal dimension (units i=c¢ =1 are usedi. The quan-
tum deld ¢3 can be considered just hike other matter
fielgs. such as photens and fermucns, and J is a fermion
fieic. We expand Lie—«c, 75— tn quantum fields
(¢, 2} around the backzround felds le,l, For the tirut
varaticnal derivative fneglecuing the other Lagrangans:
one has {10}

Lie,cisbi=x""elcl2G!=THe 5]

e g

=IpAD b= D, A
the symmetric E.nuren

whers G#=e¢, G™ and G .
s .ot tenser L, vanisnes

tenscr R*—-z7"R°R *he
if ang sniv of the ciassical qeld 2cuaticns
the zac<zrounc feid. namer,

s
?

feonatnie Yy
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G,=—-'T,,~T,' and an anusvmmerne port I =pi=THh e
T,.-T.,=0 ne fermion stress teaser [ - - -
T:=*a.£:"/5¢:is X | d Wlmp TR = 7T L BY
Te=—=1y"D,s=5 "D, s =~ D Itoy We idnd the .odowmr cases” Loy Jrae fyne Fal Lo
~ ) SO SR [:_. Iy e oo The intzgnis for m =9
~+ D, e pigiaig] A3} or 2 =0 may be sasily evaluatea by »'*CLsmg cord as the

. . . poiar axis {or the :ntegrazion over ¥, then
and is g sriort nonsymmaetric, but it becomes symmestnic,

conserved. and tracsiess as a consequencs of the Dirac I,=pt= T')"‘f d(ccsc".c‘l T=pel™!
equation y#D =0 {for conveniencs, we have neglected - .

the fermion mass in Ea. (Al)], which'reducss it to the =) e = TH =5 (1=p0)]
usual expression T“,=§('/.’,D,?7,DF)§. Thus, the cor- =(p'T)" '8y,

responding chnm:m rule for a spin-% fermion-graviton
vertexis x{7,P,+7,P,), P=p=g (where p and g are the ~ Where Sr=W{(T=p"1AT -p"], at Em S &L

momentum components of the initial and final fermion  +£')/I, with
states). CE w2 Apre
L=in== 22— mapa=s
EE'—pp'~m- mw
APPENDIX B
and
Integrated cross section ,8’=1n{("'*-p')/(E'—p')]*llml:’f'/m)
The integrals to be evaluated have the general form 2o =(pt T )'f a'(cosv —pe)?
Ina= [ dlcosd k'~ , (B T
m=-1,01,2, n=—2-1,01. I =(Ep'6) {1 =p'd) 1 =p"d) =8 /p",

=2 i —p'ipt =l=9 Tyl
where §'=E'(1—cosf’), if one writes k’=(p—p’ To:=2E7H1=7%") HET=pT
—kP=(T¥+p'Y)(1=p'¢c), with ¢=2TAT*+p%), Theintegralssuchasly -, I, [s_ ,and], _;canbe
T=p~k,and §’=E"'(1—p"d), withd=k/wE’', th:n the  expressed in terms of the others by choosing ¢ as the po-
integrals rcducc to the form lar axss for the integration over 9. For example,

1

I, =(p"+ Tz)"lE'f_lld(cosé;.‘)(l—p'-c)"'(l—p’-d)
=2+ TH7E [ dlcosdy N 1—p-d)7 {1 =(p"cle-di/ec’]
=(pt+THTIET o[ 1=cd/e?] 5
using c=2'r/(p'2-:-r=)- d=k/wE’, and 2k-T=p*—T?—0? one fnds

L= ,Tp,,ar. l=(p*=T = T +p ) /MwETY],
P =+ THE ™ [1=c-d/d?)
=P" 'T'3. p =T =’
14 @

The integrals Iy ;,J. | may be easily evaluated by using the Feynman integral
{ |
_dx B3,

(ay)~'= .
& -t{ax =7(l=x))?

and those find by diferentiating (B3) with respectto @ and 7. For zzampie

I, =(p’z~TZ)"E"'fdlc056' Nl~p-c) Hl1=p"d)"

=(pl-TH~'E" "‘f drf d'cost)N)(l—p Ry,
whers h=cx=di!—x' If h is now as the polar amus. the integraticn over 4 muv te periormed, Zranyg
B Dimt i - o
I, =Up"=T" 277 )3 'dx, where § is given as a quadratic :n v
gl Ll N 2 1,00 .2
f=l=pthe=l—p et =lxp e d=bT)—xp M e—~dt,

fou
~
)
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then sne canobtan /, , =wip'p) ™ (T = 7'L. By a similar methca one aiso 2215

R eI

-

w" ’ -

=it lpteriagt aeETt |
|

wkE™ 1pt=7)

(pi=T-/ J - (p'p T =p

t:'fp:—Tl—w:)—wl_p'z’-Tl)]L
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