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ABSTRACT

ON THE SQUARE INTEGRABILITY OF SOMI
REPRESENTATIONS OF SU(L, 1)

NASSER SAAD

We survey the theory of square integrable group representations for
the non-compact, semisimple lie group SU(1, 1), which has three dif-
ferent series of representations: principal, complementary and dis-
crete. As a result of our survey we conclude that the discrete se-
ries representations are the only ones which are squarc integrable in
the classical sense. In addition, we study the square integrability
of the principal series representations over the homogencous spaces
SU(1,1)/A and SU(1,1)/N, where A and N are closed subgroups
of SU(1,1). This latter is a generalization of an carlicr proposal by

Perelomov.
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INTRODUCTION

The square integrability of group representations! plays a fundamental role in con-
structing a coherent states system?. The importance of the latter comes from its
wide usage through various branches of mathematical physics [22]. Coherent state
techniques can for example be used in the theory of frames [6] or geometric quan-
tization [2] or wavelet analysis {17].

The remarkable correlation between square integrable group representations and
associated coherent state systems has been investigated by many authors {4],[17],
[21], [25].

In the standard theory {17], a system of coherent states can be constructed when-
ever one has a square integrable representation of a locally compact group G (sce
chapter II for the construction). A more general construction was proposed by
Perelomov [25], where the coherent states, labelled by the points of the coset space
G/K, K being a stationary subgroup, satisfy an alternative definition of square in-
tegrability [19]. However, neither of these methods are applicable to certain group
representation appearing in physics such as, for example, the Galilei group {2} or
the Poincaré groups P1(1,1) or P1(1,3) [4].

A further generalization of Perelomov’s method was proposed by Ali et al [4],
where the authors constructed a coherent states system on a homogencous space
G/H, provided there is a unitary irreducible representation U of the group G' which
is square integrable modulo the closed subgroup H and the Borel section o : G/H -
G such that the following integral converges weakly to a bounded, positive, invertible

operator A,:

[ Mo,V >< iU (=) dus) = 4
X=G/H

1 That is , (T'(g)n, n) € L?(G), where T(g), g € G, is a unitary irreducible representation of G
and 7 is some fixed vector in the representation space.
2We refer to Klauber and Skagerstam [22] for a general introduction to coherent states




here p is a quasi-invariant measurcon X and A : GxX — R7 is the Radon-Nikodym
derivative, A(g,z) = du(g~!.¢)/dp(z).

Thus, the vectors

Mo(z) = VAMo(z),2)U(o(z))n, z€X

form a system of coherent states with all expected properties [4].

The purpose of this thesis ‘s to study this generalization for the principal series
representations of the non-compact semi-simple Lie group SU(1,1), which are not
square integrable in the classical sense. The organisation of this thesis is as follows:
After a short introduction to the theory of group representation; we study:
in chapter (1), the isomorphism between the group SU(1, 1) and the group SL(2,R),
providing a detailed construction of the principal series representation induced from
the minimal parabolic subgroup. We give independent proofs for almost all the
results stated in this chapter using the notion of the cocycles [30).

In chapter (II), we survey the theory of the square integrable group representations
in the classical sense [13], examining the affine group as an example of applying this
theory [17]. We also study the theory of square integrable group representations
over a homogeneous space as a generalization of Perelomov’s construction by using
the Poincaré group as an example.

In chapter (IIl), we try to apply the generalization given by Ali at el [4] to the
principal series representation of the group SU(1,1), using it’s isomorphism with
the group SL(2,R). The corresponding subgroups of SL(2,R) allow for easier

construction of the Borel sections.



PRELIMINARIES

We collect together some basic facts from the theory of group representations which

will be useful later on.

Let G denote a separable locally compact group (denoted s.l.c. group) with identity
e,and g,g',... clementsin G. It is well known [14, chapter (14)] that there exists in
such a group a left invariant (written dy) and a right invariant (written dyg) Haar

measure. Therefore,

d(g'g) = dg, that is / f(g'9)dg = / F(g)dg (0.1)
G G

dr(99') = d.g,that is /f(gg’)drg = /f(g)dry (0.2)
G G

for g,g' € G and f belongs to the set of continuous functions on ¢ with compact

support {denoted C(G)). One has

dgg' = A(g')dyg (0.4)

where A : G — RY, called the modular function, satisfics

Ag) > 1
Algg') = Alg)A(g') (0.5)
Ale)=1

and one has the following formula

/ Flg™")dg = / f(9)A(g™")dg = / [(9)drg. (0.6)
G G G

If A(g) = 1 [ as the case of compact, abelain and semisimple Lic groups |, the

group G is said to be unimodular and we have in this case

/f(:q_’)dg = /f(y)dg- (0.7)
G G




Let /I be a closed subgroup of G. It is well known [14] that there exists a
unique (up to equivalence) quasi-invariant measure u on the homogeneous space
X = G/H, that is for any Borel subset E of X and any g € G, p(E) = 0 if and
only if u(g.’, = 0. Therefore, there exists a strictly positive Borel function p on G

satisflying for every h € H,

_ An(h)

p(gh) AG(h)p(g), (g€ @) (0.8)

where Ay and Ag are modular functions (see equation (0.5)) for H and G, respec-

tively. The function p related to the quasi-invariant measure u by the formula,
[ 1tawtards = [ duto) [ somyan, (0:9)
(¢ X H

for f ¢ C(G).
Thus, for each f € C.(G/H), one has the relation,
[ foayiutz) = [ ots™ a)s(e)dutz) (0.10)
X X

where 0 : G x X — R* can be obtained using the Radon-Nikodym theorem [14] as,

-1 plg'.z) _ du(g~’.x)
o(lg™,z) = = 0.11
0= ey = e (011
such that, for g,¢' € G,
o(gg’,z) = o(g,9'z)o(g', z)
~ AR (0.12)
o(g™ z) =0o(g,97 =)

Note that, if G and H are unimodular, then the homogeneous space X admits an

invariant measure.
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The following theorem will be important for the sequel:

Mackey decomposition theorem [10; 23]. Let G be a s.l.c. group and H be a
closed subgroup of G. Then there exists a Borel set S of G (that is G = S.H) such

that every element g € G can be umquely represented in the form:

g=s(e)h, zc X=G/HhcH o (0.13)

The map s : X — G is called a Borel section. It satisfies the condition:

p(s(z)) = ¢, where p(g) =g/l € X.

By unitary representations of a s.l.c. group G, we mean homomorphisms U of ¢
intn the group U($)) of unitary operators on a separable Hilbert space $ that are

(strongly) continuous:

WU (gn)p = Ulgpll — 0, as gn — g, forall 9. (0.14)

It’s well known [14] that (strong)-continuity follows from the measurability of the

maps
g~ (U(gele), w,p' €. (0.15)

All the representalions, we deal with in this thests, are conlinuous cven if we do nol

mention that explicitly.

The Hilbert space ) is called the representation space. the dimension d of § s

called the dimension (or degree) of the representation U.

Let d.g be the right Haar measure on G. For every g ¢ @, let U,(g) be the
operator in L%(G, d,g) defined by

(Ur(g")p)9) = #(99'), ¢ € L*(G,d-g) (0.16)
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'Then Un(g') i1s a continuous unitary representation of G in L?(G, drg), called the

right regular representation. Similarly, the left regular representation U is defined

by

(Ui(g")e)g) = plg''g), € L*G,dg). (0.17)

We shall mainly be concerned with irreducible representations: those allowing
no proper, closed, invariant subspaces under U/ in $. The irreducibility of U is
cquivalent to saying that for any @ € 9, v # 0, the set D = {U(g)p | g € G} is
dense in $.

Schur’s Lemma: If T € £(5)), the set of linear bounded operators on $, and if T
commutes with U(g) for all g € G, i.e. UT =TU, then

T=MA, forsome AeC o (0.18)

’

Let U;, U, be two unitary representations of G on the Hilbert spaces $1, H2
respectively. An intertwining opera.or between U;, and U; is a bounded linear

operator: T : §; — §3, such that,
Ui(g)T = TU,(g), forall ge€G. (0.19)

The representations Uy, U, are unitarily equivalent, if there is an invertible isometry
(an invertible linear mapping preserving the norm) of §; onto $2. For example, let

T : L*(G,dg) — L*(G,d,g), defined by

(Te)g) = ¢(g77) (0.20)

then 7' is a unitary map by (0.6) and

TU()T ™! = U.(g), foral geG,; (0.21)




Indeed,

(TU9)T ™ fYg') = (U(a)T ™Yo~ ")
= (T g™
=(T"' f)(g'9)™")
= f(g'9)
= (Ur(9)fNg")

consequently, the left regular and the right regular representation are unitarily

equivalent.

If U is a representation of G on §) and H is a closed subgroup of 7, we may form
the restricted representation U|ly on $ . If U is a representation of (¢ on § and
H C H a closed, invariant under U, Uly defines a subrepresentation of U given by
the action of U(G) on H. Then H* is also an invariant subspace under U((), and

H=HoH.

We now note several conventions that we employ throughout:

* All the groups, we deal with in this thesis, are Lie, therefore locally compact,

groups.

* All the Hilbert spaces are separable, complex, even if we do not mention that
explicitly.

* All the functions are complex valued and measurable.

* All the operators are linear on appropriate Hilbert spaces.

* The symbol e denotes the end of definition or of the proof of a theorem or a

lemma.

* The notation (i.j.k) signifies equation k of chapter i in section j.




CHAPTER I
THE ISOMORPHISM BETWEEN SL(2,R) AND SU(1,1)

The group SL(2,R) = SU(1,1) has the three different series of irreducible unitary
representations; the principal continuous series, the discrete series, and the comple-
mentary series, in addition to the trivial one. In the present chapter we summarize
the properties of the groups SL(2,R) and SU(1,1) and their representations.

The construction of the unitary maps from the representation spaces for SL(2, R)
to the representation spaces for SU(1,1) is discussed explicitly. Also, the construc-
tion of the principal continuous series representation of SL(2,R) induced by the

minimal parabolic subgroup defined by (I1.1.14) is given.

I.1. The group SL(2,R)

Let G denote the 2 x 2 real unimodular! special linear group, i.e.

G =SL(2,R)={g = (a 3) , det(g)=1, a,bc,deR} (I.1.1)

c

The lie algebra of G, denoted by s{(2, R), consists of 2 x 2 real traceless? matrices.
A basis for sl(2,R) is

0 1 ;o 1 0 (0 1)
Xo—l/Z(_l 0), A1—1/2<0 _1), Xg_(o 0),

satisfying the commutation relations
["\’0;1\’1] = 4\’0 - XQ, [Xo,Xz] = X}, [X],Xg] = Xz. (112)
The corresponding elements® in the group G are

. [ cosB/2 sinf/2\ _
ko = (—sin0/2 c059/2) = eap(0Xo), GER, (L.1.3)

In the sense that determinant g =1
2Indeed, det(g) = det(etX) = e¢r¥) = 1, implies tr(X) = 0 for all t € R and X € sl(2, R).
3Consider the power series representations of sin/2,cos8/2 and e!/2.



ct/? 0 .
T P exp(tX,), <R, (L.1.)

1 -
ne= (4 §)=eomtera), cem (1.1.5)
Particular 1-parameter subgroups of G are defined by
K={ko,0<0<4r}, A={atcR}, N={ng,éc R} (1.1.6)

and K is a maximal compact subgroup of G.
The noncompactness of G follows immediately from (1.1.6). Morcover, from
(I.1.2) we can show that sl(2,R) 1s a semisimple Lie group (we will provide the

proof in detail for SU(1,1); see discussion following (1.2.17)).

Lemma (I.1.1). Any element g € G is uniquely decomposable in the form
g = kgatnf (117)

where 0 < 0 < 4mt,é € R. If g = (Z 3), then the triple (0,¢,€) is given by the

relation
. a — 1c (lb ‘}‘ C(l
80/22 a2+c2, et :a2+cz, 6: ;2—-:{:—6——5 ([18)

Proof. Straightforward, by matrix multiplicatione

The decomposition (I.1.7) is called the Iwasawa decomposition for GG, which shows
that the mapping (ks, az,n¢) — kgaine is a diffeomorphismof K x A x N onto G.

From the uniqueness of the Iwasawa decomposition we have for g € G and 0 ¢ R,

gkg = ug_oat(g'o)nf(g,g). (1.1.9)

and we can easily prove using (1.1.9) and (I.1.8),

(19-0/2 _ (a —1c)cos8/2 + (—b+2d) sinb/2
" (@ —1c)cos 8/2 + (—b +1d) sin§/2|’

(1.1.10)

e9:8) = |(a — 2c)cos 8/2 + (—b 4-1d) sin 6/2)%, (1.1.11)
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(lg,0) = (ab + cd)cos 8 + 1/2(a? — b* + ¢* — d*)sin b
D) T TG T w) cos /2 + (b + od) sin 6/22

Let A' = {a;:t > 0} and A~ = {a;: t < 0} , we can define the Cartan

(1.1.12)

decomposition for SL(2,R) as G = K.A*.K. That is each g can be decomposed
into the form

g = k9a¢k¢ (1113)

where ¥ € R.
Let M be the centralizer of 4 in K;

M—={koe K: koXk;j'=X foreach X € a,a is the Lie algebra of A},

then
M = {£I}

where I is the identity matrix, and

P:MANz{i(g afl),aeR\o,beﬁa} (1.1.14)

is called the minimal parabolic subgroup of G.
As pointed out in (18, chapter (10)], any semi-simple Lie group G is unimodular.
The following lemma provides us with a method to construct an invariant Haar

measure on G.

Lemma (I.1.2). Let G be a unimodular locally compact group, having the de-
composition G = K.P, with Haar measure dg, and let dik (resp. d.p) be the left
(resp. right) Haar measure for K (resp. P). Then if a(p) is the modular function

of P, we have

dg = dikd,p = a(p)dikdip, (g = kp) (1.1.15)

Moreover, suppose P = A.N where A and N are closed subgroups, both unimodular,
with N normal in P. Then there is an analytic homomorphism § of A into R™ such
that, for each a € A,

d(ana™!) = §(a)?dn, (1.1.16)
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and
a(p) = alan) = §(a)?, (1.1.17)
so that

dip = dadn, d,p = §(a)’dadn, (b= an). (L.1.18)

Proof. See [31, Chapter (4), Lemma (1) and (2)]e

A straightforward calculation shows that for SL(2, R) the groups K, A, N and G

have bi-invariant measures which we normalize as follows :

dkg = dé

47
da, = dt (1.1.19)
dng = d§

and

dg = e'dkgda,dn;

L,

= —e"dOdtdf. 1.1.20
47re ¢ ( )

To prove the last statement, it is sufficient to compute the invariant aar measure

of P by using equation (1.1.18) and then combining it with ¢quation (1.1.15). This

is done in the appendix.

From the Cartan decomposition, there exists {28, chapter (5), proposition (5.2)]

an alternative measure to (1.1.20) of SL(2,R) defined as

dg = 2w sinh tdfdtd¢ (I.1.21)
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1.2. The unitary irreducible representations (UIR)

Bargmann [9, 1948] has determined all the UIR’s of the group G. They fall into

four classes:

(1) The two principal continuous series:
g U, s€C, Rels)=1/2, j€{0,1/2}

excluding the case {j,s} = {1/2,1/2}.

(2) The complementary series:

g—}UO'a(g), 1/2<0<1, o¢€R.

(3) The two discrete series:
g- Vi(g)

where

n=1,3/225/2,... for V}(g)

and

n=-1,-3/2,-2,-5/2,... for V, (g).

(1) Others: There is the trivial representation (which is the only finite dimen-
sional UIR), and there arc “the two limits of the discrete series”.
The explicit forms of these representations and the Hilbert spaces on which they

act will be given below.
Actually, Bargmann constructs representations of the pseudo-unitary group Gg =
SU(1,1) which can be defined as the group of all complex unimodular linear trans-

formations leaving the form |z0]|? — |21]%, 2,21 € C, invariant.
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A general element go of Gy corresponds to a matrix

go — <% g) (1.2.1)

where
2 2
‘Q' - ‘ﬁ‘ = 11
with a, 8 being complex numbers and the bars denoting complex conjugation.

It is known that G and G, are conjugate subgroups of

a
GL(2;C) = {( H alz) y G11Q22 — Q21412 ?é 0, aj1,a12,a2,a22 (C}~ (1-2-2)

aziy az2

More specifically, if

¢ = —\}—5(} ’j) € GL(2,C)

then
Go =c.G.c} (¢c™! = ¢*, * = transpose, complex conjugate (1.2.3)

and we have for

_[a B an _fa b

go——(-ﬁ a)’ d g (c d)
a=1/2[(a+d)+ (b-c)] (1.2.4)
B=1/2[(a—d)— (b+c)]. (1.2.5)

One also has the corresponding subgroups of Gg (sce (1.2.18)):
Ko =c.K.c7! = {kp,0 <6 < 27}
Ao =cAc! ={A}, —0 <t < 0}
No =¢.N.c7! = {Né, —00 <€ < oo}
Moreover, one can get that

g= ( ath o "ﬁ2> (G =c1.Gg.c) (1.2.6)

—az—f2 a1— B
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where

a = a + 1oy B =pB1+1iBa.

"Thus, we have established an isomorphism between the two groups Go and G.

By virtue of lemma (1), any element in G can be written uniquely, in the sense

of the Iwasawa decomposition as
[ .
g0 = kl)atnf’

where the equation (1.1.8) now reads

e0/2 _ lZiZ" et =la+ 8, €= Im(af)

Morcover, for gg € Gy
9ok = kg, 6% g0,0)P¢(90,0):

where
oy _ aetB/Z +ﬁe—10/2
- |a810/2 +ﬂe—19/2 ’
e9?) = Jag + BI%,
E90,0) _ Im(aBe)
|t + BI*

el(go.

We have from (1.2.12) and the complex conjugate of equation (I.2.11),

0/2=g0.0/2) _ PEXE 0
8¢ + @

la + 8%

(1.2.7)

(1.2.8)

(1.2.9)

(1.2.10)

(1.2.11)

(1.2.12)

(1.2.13)

We can extend this equation to an element in R. By taking the complex conjugate

of (1.1.12) and from (I.1.11), we have for { = e®, g0 € Gp,and g€ G:

1(8/2-90.8/2) — 3(8/2-9.6/2)

which can be proved as follows:

.9y (1:2.13) Be*’ +@

Be® +a

(1:2,4-5) 972 (a+c2)cosf/2 — (b+ dr)sinf/2
B l(a + c2) cos8/2 — (b+ dz)sin§/2]

(1.1.10) o(0—9.0)/2

(1.2.14)




Note that, we used the fact
0s8/2 =1/2(? + €7, sin6/2 = 1/2(e* - 7).

We claim that

 +d
oH(8/2-9.0/2) _ ,_“;_H_d“' (1.2.15)

(We need some further discussion to prove this equation; However, note that 2 ¢ R
can be written, using equation (1.2.23) below , in the form z = ¢~ '.e)

For completeness, it might be useful to mention that the psendo-orthogonal group
S$0(2,1) of Lorentz transformations on 2 + | dimensional space—time is locally iso-
morphic to G and also to Gy. The homomorphism between SO(2,1) and the group
Go, for example, is easily displayed through the action of the latter on hermitian
matrices U associated to the triples (uy,uz,us3).

Indeed, let

Uus Uy -+ tig
U= ( . ,uy,uz,ug € R,
\ 21— U Us

be a Hermitian matrix with determinant

3

\
det(U) = Z Juptpty = ul —ud —
pw=1

Then, if g = (% g) and g* = (

. u) u! 4 Tl
U' =gUg =( 3 e, 2).

1 fag!
uy — Uy Uy

™I R

§> its Hermitian adjoint, we have

again a hermitian matrix of the same type, and with
uy = Re(oz2 + ,Bz)ul — Im(o:2 - ,Bz)w + 2Re(afB)us

up = Im(a?® + ﬁz)u.l + Re(a® — B%)u, + 2Im{af)us

u} = 2Re(aB)u; - 2Im(aB)uz + (lal* + 181 )us
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one casily verifies that the 3 x 3 matrix

Re(a? + B?) —Im(a® ~B?) 2Re(apB)
Im(a? + B%)  Re(a? - f?) 2Im(afB)
2Re(apB) —2Im(aB)  (la)® + 18]?)

is an element of SO(2,1) .
'This homomorphism is two-to-one in the sense that the two elements =g € Go

are mapped to U’ € S0O(2, 1) with kernel +1.

Bargmann actually wrote Gy differently, as the subgroup of

52,0 = {(% 7). ab-1=1, aBricc)

which satisfies the following relation*:
1 0\ _[a B\'(1 O a B
0 -1/ \vy 6§ 0 -1 Yy §6)°
that so y =f and § = @.

'Therefore, the Lie algebra su(1, 1) of the group Gy consists of all matrices satis-

fying the following conditions:

ir(X)=0
} : (1.2.16)

X*0'3+0'3X =0

Hereafter “4r” stands for the ordinary matrix trace tr(g) = D gii. A basis for su(1,1)

is
1 1 0
) 1Y0—‘2‘0'3-—1/2<0 _2),
1 01
X1—501—1/2<1 0),
1 0 -2
){2——50'2——1/2<i 0)

4In other words; the elements of Go satisfy gjoago = oa where oy; k=1,2,3 are the Pauli

matrices




satisfying the commutation relations:
[Xo, Xi] = —Xa, [Xo,X2] =Xy, [N, X2] = Xy (1.2.17)

The corresponding elements in G4 are

e%‘ 0
b= < 0 e_g‘> =exp(6Xy)

t ot

cosh £ sinh ! ,

wp =1 ., 2 2 ) =exp(tXy)
sinh ; cosh 3

€ _,sinh ¢
n'£ = ( cosh 3 esinh 3 ) = exp(éX2). (1.2.18)

1sinh % cosh g
The noncompactness of Gy follows immediately from (1.2.18). From (1.2.17), we

can prove that the Killing form B ([18],[10]) is nondegencrate, i.c.
det(B(X,, X,)) #£0 1<4,5<3

where

B(X.,, X,)=tr(ad X, ad X,),

and the homomorphism X — adX is defined by:
ad X,(X,) = [X, X,].

Indeed, from (1.2.17), we have

0 0 0 0 0 -1 0 1 0
ad XD = 0 0 -1 ) ad X1 = 0 0 0 N ad X2 = -1 0 0
01 0 1 0 0 0 0 0

and a straightforward computation shows that

-2 if -7
det B XI’JY = -—261 =
(B(X.,X,)) ,{0“”
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Thus, the Lic algebra si(1, 1) is semisimple®. From this, it follows that the group
SU(1,1) is a non-compact, semi-simple Lie group.

It is well known that the group G L(2,C) acts on the complex plane C as a group
of linear fractional transformations.

For (a” n”) € GL(2,C), z ¢ C, this action is given by

@2; az;
gz =z taz (1.2.19)
a212 + da2
Set
d(g.2) del(g)
= ——r = ; 1.2.20
a straightforward calculation shows that
(!1192-2) = 91-(92-2)
and
0(9192; Z) = U(gl ) 92-2)0(92, Z)
(7.2.21)
ole,z) =1,
where e is the identity matrix.
The linear fractional trausformation corresponding to c is given by
z—1
=cz= - 1.2.22
f=cz= 10 (12:2)
and ils inverse is
2= clf = z%—f—g (1.2.23)

The transformation ¢ = c.z takes the upper half plane C* = {z € C|Im(z) > 0}
onto the open unit disk D = {¢{ € C||¢] < 1}, and the real axis R onto the unit
circle U = {¢ € C||£] = 1}. This is the transformation that we use to construct the

intertwining operators connecting the representations of Go and G.

* * *

5Cartan’s Criterion: A finite-dimensional Lie algebra is semisimple if and only if its Killing
form is nondegenerate.
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I.3. The two continuous principal series

For Gy, the representation space of the principal series is the Hilbert space

L*(U, d¢),(d¢ = ;"—f;,é = ¢ € U), of functions defined on the unit circle

U= {¢ e cliél = 1, (131
satisfying
[ 1@ < o,
)
with an inner product
1 2% R
(F,9)= o [ feVale)ae. (13.2)
7 So
The action of Gy on U is given by
af + 0
— go.§ = = (1.3.3
R )
a f
where gy = (B a) €Gpand £€U.
One can prove that Gy acts on U as a group of transformations, that is
(9090)-€ = g0-(gp-€) (1.3.1)
for go, ¢' € Go. Moreover, using (1.3.3) and (I1.3.4), we can prove that
0(9090,€) = a(g0,90-€) (90, &),
(1.3.5)
o(e,f) = 1.

Where (see equation (1.2.20))

d * A =\ — o

oo, €)= VL8 — (e @) (1.3.6)

It is clear that, for any complex number s € € and go, gy C G

lo(9090, €)I° = 1o (90,95 -E 1o (g6, ) (1.3.7)
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Let the map v : Gy x U -- U be defined by

Be+@ 1328
B¢ + @’ (138)

'U(go,&) =

for

g0:<% g)eco, and €€ U.

It is casy to show that v is a continuons function and satisfies the multiplier equation

v(g090,€) = v(g0, 9o-€)2(90, )- (1.3.9)

Definition (1.3.1) Let j € {0,1/2},and s € C,Re(s) = 1/2; the UIR’s of the
principal series for Gy are defined by:

U2 f(€) = lo(gg ™, &) (v(g5 ", €))% f(g5 " -£) (1.3.10)

for f e L*(U,d¢) and g;* = (%g) excluding the case {j,s} = {1/2,1/2}e

It can be checked without difficulty {28, chapter (5), proposition (5.2)] that U7+
is actually a representation and if Re(s) = 1/2 then U?* is unitary. Moreover,
the unitary representation is irreducible for ;7 € 0,1/2 and s € C except when
{7,s} = {1/2,1/2}.

In Bargmann's notation, the series U%*, Im(s) > 0 and U}/2* Im(s) > 0
corresponds to the series Cg,with g = s(1 — s), and C;/z's, Im(s) > 0,with ¢ =
s(1 — s), respectively.

For z ¢ R, (1.2.22) gives

c.T = - ¢ U
r 4+
and so (1.2.20) gives
22
) = 75 I. .11
o(ere) = o (13.11)

Considering the action (I.3.11), one can define for j = {0,1/2},s € C, a map
L,s:¢ — f which maps L2(U,d¢) into L*(R, dz) by:

(@) = (Lyp)@) = Z=lo(e,2)o(e,2)Ppe:) (13.12)
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where v(c,z) = I:I:l satisfying the equation (1.2.21) and the term —\/'2;: is taken for

future convenience.

On the other hand, for ¢ € U, (1.2.23) gives

1, JIH+HE Q ‘
c 1.5—11_€~—L0t2CR
so that
-

If f is defined on R, j =0,1/2,5 € C, and v(c™',¢) = l—i—-}%—l, then we can define

a map

(&) = (L} )(&) = Varlo(e™, &)1*v(c ™1, 6) fc ") (1.3.11)
which maps L?(R, dz) onto L2(U,df).

Lemma (1.3.2). Forj =10,1/2,scC

(1) L;,L,, = Iy, the identity operator defined on L*(U, d¢)
L,sL; ) = Ia, the identity operator defined on L*(R, dz)
(2) Lj, is an isometry from L*(U, d€) onto L?(R, dz);
(3) Lj, is an isometry from L*(R, dz) onto L*(U, d¢).
(4) Letj = {0,1/2},s € C with Re(s) = 1/2, put ‘

Vit =L, ULy, (g =cgoc™)

then V¥ are UIR’s of G given by

(VI f)(=) = (g7, 2)| [sign(ce + d)]sz(g‘l.c)} (1.3.15)
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Proof. Let ¢ be defined on U

(L3 Ly sp)(€) = Von|a(c™?, €) (1 >2J(L,s<p<

(1L

L ()
\/—Q——W—IU(C,C £)| ( ey, )
¢

iy
T

- ot O lote e o (A28 —-g—l)so

= o(£)

which proves that LJ":LJ', = Iy; similarly, LJ,SL;: = Iy. To prove (2), let p,?% €

L*(U,d¢)
1 NEESARNEES
(Lj,sp, Ly,s9) = o /I; lo(e, z)] <]:c + zl) v (:c + i)

lo{c, w)l?m@dz

=5 , lo(c, z)lp(c.z)yp(c.z)dz

2T
— g [ e H s

- /U (€ PE)de
= (‘P) ¢)

In the same fashion we can prove (3). To prove (4), using (1.3.12), (1.3.10) and
(I.3.14) we have,

(Vi )(=z) = (L ;sUjo’L,if)(-'c)
\/—Io(c 2)|*(v(e, 2)) (U3 L7 s f)(e-x)




—lo(c.2) (v(e, 2))?lo (g0, )" (ol0,.2)) Ly F(gu.c.0)

= lo(e,a)* (v(c, 2))?? o (go, c.2)(v(go, c.2))*?
(e, g0-c.0) (v go-c.2)) f(c " go.c.0)
= lo(e,2)*lo(c™ go, c.o) (v(e, ) (u(c " go, c.2)} (e go.c.z)
= lo(c™ go-c,2)| (v(c ™ go.c, &) f(c ™ .gv.c.a)
= |o(g,2)*(v(g,2))* f(g.2)

= |o(g,2)|*[sign(cz + d)|* f(g.x)e

5

§ INDUCED REPRESENTATION

Given any UIR V of G, we can obtain in gencral a reducible representation of
a closed subgroup H of G simply by restricting the demain of V to H. It is quite
natural to ask, if given a UIR of the subgroup H whether we can construct a UIR
on G . The answer is affirmative and has been studied by Weil for compact groups
[32], by Mackey for arbitrary locally compact group [23], and by Bruhat for Lie
groups [12].

Here we will give a concrete description of the inducing construction in the general
setting, followed by a detailed construction of the induced representations of the
group G = SL(2,R), using a given unitary representation of the closed subgroup I’

defined above (see (1.1.16)).

THE CONSTRUCTION

Let H be a closed subgroup of a separable locally compact group G and h —» Ly

be a unitary representation of H in a separable Hilbert space .
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Denote by % the set of all functions 9 : G — §) such that:
(1) (¥(g), v) is a Borel function of g for each ¢ € ;
(2) ¥(gh) =LY (h)Y(g) forall geG,he H,
3) [ Ileh)idu(z) = { (g5 du(z) < oo

X=GJH
It is known [10, page 474—5 or Wa, page 366-7] that % is a separable Hilbert space

with inner product

(W, @)t = /X (%, 0)sdi(e).

The map g — Ugl’ given by

(UE)(g') = o(9,9719") *lg™g) | (1.3.16)
where
ala~! d') = d#(g_lg) s=adhe X 1.3.17

is the Radon—Nikodym derivative of the quasi—invariant measure g in X and sat-
isfies

o(9g' %) = o(g,9'.*)a(g', *) (9,9' € G),

defines a unitary representation of G in $* called the representation of G in-
duced by L, or simply, the induced representation.
Suppose that foreach class z € X = G/H, we choose a “representative” s(z) € G
such that
¢z =s(z)h, heH, =zelX.

For any g € G,g.z is the class of the elements gs(z) mod H, and therefore we

may write

gs(z) = s(g.z)h(g, z)

where

h(g,z) = s(g.z) " gs(z) (1.3.18)




belongs to H and,
h(gg',z) = s(gg'.x) "yg's(x)
= 5(g.(g".2)) " gs(g".x)h(g’, )
= h(g,g".2)h(g', )
for g,g' € G and

hie,z) =e.

When ¢ = zo = H, we take s(zo) = e and since z = s(z).2, we have

s(z) = s(z)e = s(z)s(z0)
= s(s(z).zo )h(s(z), xo) from (1.3.18)

= s(z)h(s(x),z0)

which implies h(s(z), zo) = e, hence

h(g,z) = h(g, s(x).zo)
= h(gs(z), zo)h(s(z),z0) " from (1.3.19)

= h(gs(z), zo).

Also note that for u € H |, u.zy = o, and therefore
h(u,zo) = s(u.zo)_lus(mo)
= s(zo) " us(zo)

=Uu
and

h(gu,zo) = h(g,v.z0)h(u,20)

= h(g,mg)u.

(1.3.19)

(1.3.20)

(1.3.21)
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Civen a unitary representation L of H in §, let U($)) be the group of unitary

operators on §), then an L—-cocycle is a map
v:Gx G/H - U(H)

that is

1(g,2) = L(h(g,2))
(Indeed, we can prove that v is a unitary representation on §) as follows:
L(h(gu, z0))
L(h(g,u.zo))L(h(u,z0))
L(h(g,20))L(h(u, z0))

=79, 30)7(1‘) "BO)

7(9”: 30) =

Il

1l

that is
v(gu) = v(g)v(u)
1(g,z)v(g,2)~" = L(k(g,2))L(k(g7", g.z))
= L(h(g™"g,2))
=1)
such that
(1) v(gg',z) =+(9,9"z)r(9', z) for g¢,9 €G,z€X.

Indeed we can easily prove that as follows:
1(99',2) = L(h(gg',z))
= L(h(g,9"z)h(g",2))
= L(k(g,4'.=)) L(h(g',=))

=(g,9"z)(g', z);
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(2) v(u,zo) = L(u) for ve Hyzo=H
note that

Y, z0) = Lh(u,20)) TE Liw);

(3) (v(g,z)¥,¥)s5, is a Borel function for all ¥, € 9.

Let g be a quasi—invariant measure in X and v an L—cocycle. Then one can
define a unitary representation ( which is an alternative form of the induced rep-
resentation ) V, on L?(X), the space of square integrable measurable functions on

the homogeneous space X = G/H, by

(Vo¥)(=) =o(g,97 ") (9,97 z)b(g ™" =) (1.3.22)

forge G, zeX.

Next, we construct [V, chapter (3)] an isometry between the Hilbert spaces $)"

and L?(X) (which proves the equivalence of (1.3.16) and (1.3.22)).

Define v,(g,z) = L{h(g, z)) which satisfies

7:(g9',2) = L(k(gg', z))
= L(h(g,9".)h(g', z))
= L(h(g,9".2))L(h(g', ))

= 73(91 g'.m)'h(g', (B)

and

vs(e,z) = idy the identity operator in U(9)

i.e. v, is a L-cocycle. Then foru € H,

vs(u,zo) = L(h(u, o)) = L(u). (1.3.23)
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If v is any L-cocycle, then
7(9,2) = (g, s(z)zo)
= 71(g5(z), 2o )1(s(z), o)~

g.z)h(g,), 20 )y(s(x),20) "

) h(g, =)0 )¥(h(g, ©), 20 )7 (s(2), 20)
g.z),20)L(h(g,2))y(s(z),20) "

), 20)vs(g, 2)v(s(z),20) (1.3.24)
So if we put

B(z) = v(s(z), zo)

then

(g, z) = B(g.z)7s(g, z)B(z) ™ (1.3.25)

One can show now [BR, Lemma 1, page 473] that the map

f—Bf
is an isometry in L?(X) which takes the representation defined by v to one defined

by ~,.

The induced representations of SL(2,R)

We are interested in constructing the representations of the group G = SL(2,R)
induced by the finite dimensional irreducible representations (i.e. characters) of the

minimal parabolic subgroup

P= MAN:A'N—_-{(S afl) ,a€ R*,beR}.

First of all, we can easily show that P is a semi-direct product of A’ and N
where N is an invariant subgroup of P. Because the character is constant on N,
x(n) = x(ana™!), then (10, chapter (6)] every finite dimensional representation of
the group P is trivial on N and hence uniquely determined by a representation of

A" = P/N. Indeed we have the following lemma [10, chapter (19)],
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Lemma (1.3.3). A finite continuous irreducible representation L of P in a space
9 has the form
Lman = x(a)Lm, me Mac A,ne N
where x is the irreducible representation of A and m — L,, is a continuous irre-
ducible representation of M in §) e

Since, M = {*1[}, it has only two irreducible nonequivalent representations given
by
L¥ = [sign(a)]”!, j =0,1/2

consequently, by Lemma (1.3.3), the irreducible finite-dimensional unitary represen-

tations of P are one-dimensional {10, chapter(6)] and we have

man = (8 aél) — x(a)L¥ (1.3.26)

where

x(a) = e, veR.

Using Mackey’s decomposition ( see Preliminarics), every element in ¢ which

satisfies the condition a # 0 can be represented in the form:

(£ 2)=(: DG 5

The remaining elements in G of the form (2 3

= 9) (6 &)

where we will disregard them in the following considerations because they are of

) ,e = =b! (sce (I.1.1)) can be

represented as

measure zero in X = G/P. Therefore, any elcment g € G can be represented as

g = s(z)h (1.3.27)
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where

then,

_ Ez'l+—fi c 1+b 0\. (1.3.28)
0 cz+d Z:er 1
= h(g™", z)s(g™ ", )

And the action of g on z is

1 at + b
L = . 1.3.29
I 2= ayd (1.3.29)

Put o(g7 ', z) = i(gd;;'?—), then

o(g™ ) = lez + d| 2

satisfies (1.2.21) and the induced representation UL on the Hilbert space H% [see
(1.3.16)] is now defined by setting for f € Ht

(VE)G') = lez +dI7 (g7 9"). (1.3.30)

On the other hand, from (I.3.28) we have immediately

1y [lez+d)? c
h(g~!,z) = ( A (e ). (1.3.31)
thus by virtue of equations (1.3.26) and (1.3.31)

g™, z) = |cz +d| 7 [sign(cz + )}, veR (1.3.32)

and
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i_(ngJ)(:c) = ez +d| ™ " sign(cz + d)|PP(g ! :c)_J (1.3.33)

To prove that all these representations are irreducible on L?(G/H,dz) except the
one corresponding to v =0, j = 1/2 see [28, chapter 5] and [10, chapter (19)].
It is remarkable to realize in that case, the equation (1.3.33) is the same as V'

defined by equation (1.3.15).

The remaining part of this construction is to prove the equavilence between the
induced representation defined by (1.3.30) and the one defined by equation (1.3.33).

Let L?" be a unitary irreducible representation on P. In particular,
L (agne) = |cz + d|™*  see (1.3.26) and (1.3.32).
We can extend L7 to a function on G, by setting
L7 (kgamme) = LY (ko)L?" (aing). (1.3.34)

Indeed, since G/P is locally isomorphic to the subgroup K = {kg,8 ¢ R}, then
s(z) = k. However, since K is a commutative group isomorphic to R, then any

irreducible unitary representations is one dimensional and cquivalent to

L7 (kg) = x,(ko) = €7°. (1.3.35)
Therefore,
LJ'"(kgatng) = XJ(ko)LJ'v(ag'nf) (1.3.36)
satisfies
L»"(gh) = L”"(g)L’*(h) forall ge G,he P. (1.3.37)

Let f € H%, and define
filg) = L7*(9)f(9)- (1.3.38)
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Then f; is actually a function on G/ P, indeed

fi(gh) = L (gh)f(gh)
= L7 (g) L (k)L (h)"1f(g)
— L¥(g)fta) (13:39)

and thercfore,

p(z) = fi(gh) = L""(g)f(g) for z=gP € G/P. (1.3.40)
It’s straightforward to show that A : f — ¢ is indeed an isometry from H¥ onto
L(R, dz).
Put g = kg, then
o(z) = x;(ko)f(ks), = =koP (1.3.41)
and if we have
p1(z) = L (koe)(Uy F)(ko)

then from equations (1.3.30), (I.1.4), (1.3.41), (1.3.40) and (1.2.15), we have

pi(x) = L7 (ko)lez + d] ™" f(g™" ko)
= x;(ko)lez + d| ™" f(kg-1.0)2u(g-1 8¢ (g1 ,0))
= x,(ko)lcz + d| ™" L(ayg-1 0)ne(g-1,0)) " f(kg-1.6)
= X, (ke)lcz +d| " ez + d| 7" f(ky-1.0)
= X, (ko)lcz +d| 7 X, (kg .0) (97 )
- (6(19/2_19-1.0/2))21 lez +d| "' (g7 .2)

11—

= [sign(cz + d)]?|cz + d| ™ " p(g7 .z)
which is the same as the R.H.S. of (I1.3.15), and we have proved that:
AUL A =V,

i.e. U is a unitary representation of G equivalent to Vi

* * *
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I.4. The complementary series

From definition (I1.3.10), we know that the operator UO" is unitary if and only
if s =1/2+w,v € R. However, if v = 0 and o = Re(s) # 1/2,U};" is no longer
unitary.

It is possible to define [28] a Hilbert space ), so that the operator U7 is unitary
for Go and 1/2 < 0 < 1. Indeed, the Hilbert space ), is the completion of the set

of holomorphic functions on U having finite norm with respect to the inner product

0(€)9(n)
<P, P >= C// déd [.4.1
@, |1—Reh,“’£" (L4.1)
where
do d¢
df = é-;r—,and dn = o
for
t=¢Y,and 5 =¢
and

__I(1/2)I'(a) ‘ ~ .
Co= oo =1/ (TU/2) = V7). (1.4.2)

The construction leads us to defining a unitary irreducible representation V77

called the complementary series repres:ntation for GGy where

(Uo7 0)(€) = lo(a5, )" @%ﬁ)l (14.3)

and 90—1 = (% g) ) ‘7(90—1’5) = mif

The corresponding complementary serics representation V;"” of (7 15 realized on
the Hilbert space £, which is the completion of the set of holomorphic functions

on the real line with the norm

I = c//n yl 20 (o) f(g) dady < oo (14.4.)
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By putting 7 = 0,s = o in (1.3.12), we can define a map Lo, : ¢ — f, i.e.

f(2) = (En)(e) = <=1 (e,2) ples) (14.5)
where
(e o) = —— (14.6)
’ |z + 2 h

satisfies the multiplier equation (I.2.21), and c.z = Z3;. ,maps §), into .

Moreover, from (1.3.14) we can define a map Laf, :f >, le

0(&) = (Ly s F)(&) = V2r|J (™1, ) f(e7.¢) (1.4.7)
where
1) = —2 and ¢! =1,1+E
[7(c™%, €)= TRwTE d L= (1.4.8)

maps $), into $, as will be shown in the following lemma.

Lemma (1.4.1).
(1) Lo,,,LO".:, = Iz, the identity operator in ).
LO_'f,Lo',, = Iy, the identity operator in §),.
(2) Lo, is an isometry from £, onto 5.
LO“,‘I, is an isometry from $)!, onto $,.
(3) V) = Lo,o.UL" Ly, ie. V7 (g =c l.go.c) is a unitary representation

of the group G on the Hilbert space $!,. The representation operator is

given by

(Voo f)(z) =1 (g7",2)|" f(g™" ) (1.4.9)

where g7! = (: 3) ,and  J(g7',2) = rmigye
Proof. To prove (1), let f € !, then
1 oy r—
(Lo,oLg o f)z) = \—/—E;IJ(C,w)l (Lo,of)(e-2)
= 7_!2—”|J(c,:c)|°\/§1r|J(c_l,c.z:)|af(c"1.c.m)
= /(¢ e,2)]” f(2)
= f(z)
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Therefore, Lo_,,Lo",f, = I3, and similarly we can prove that

L()_,},Lo,a = IU.

To prove (2), let

§= '9=m—lEU’and 'r’:e'd’:y_:z.
z -+ Y+

then

d¢ = 9 _ __‘i”’_i,and dy = b _ _Jliwi (1.4.10)

2r ;e b 2t wly+ e
and by a direct calculation
2z — y)? 2z —y|°
1 - Re(gq) = 2229 _ 22—yl (14.11)

@ +1)&+1)  |o+ofly+ o

For ¢ € £, , we have

R T T PR
y, = dzdy
R R

=020_1// z-y? ) !
7 2 |z + z|2|y +1 lz — y|2

B R

o(55) e (35 et
—o [ ('l—R;({" ) Ty

uvu

— dz dy
‘P(&)‘P(Tl)wlz + 12 Ty + 22

_ e(€)p(n)
=Co //u—Re(e i e

= ((pﬁ (p)f)a
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and we have proved (2). To prove (3),

(V27 F)(=) = (Lo,oUg® Ly s f)()
1 o 0,07r-1 .z
= —ﬁ;lv(c,m)l (Ugy? Ly, f)(c-z)

1 o
Jon lo(e,z)|?|o(go, c.z)] Lo,if(go.c.z)

= |a(c, )| |o(g0, c.2)|°|o(c™?, go-c.z)|° f(c ™' .go.c.T)

= lo(c™".go.c,2)|” f(c'.go.c.x)

=lo(g™", 2)|"f(g™" 2)e
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I.5. The two discrete series

For Gq, the representation space [28, chapter (5)] of the discrete series is the

Hilbert space

™ = L(D, ) (15.1)
of holomorphic functions defined on the unit disk
D={z=z+we( |z<1} (1.5.2)
with the inner product
2n-2
(plY)n = o(2)P(2)(1 - |z]*) d*z (dz = dzdy) (1.5.3)
D
which can be written in a polar form (z = re*f) as,
27 1
(pl) = p(re*® W(re?)(1 — r?)2""2rdrdd. (1.5.4)
0

We can easily prove that the constant vector I, I(z) = 1 for all z € D, is in )™

with a norm || I ||= 1, indeed

2

1
IT)? = (1 —72)2"=2pdrdf

0
27 1
_ 1/ do/ (1=t 2ds (% = 1)
2 Jo 0
- 1. (15.5)

The UIR’s U¥ are defined by

Ugele) = (B o+ @) " (2212 (15.6)

Bz+a

wheren=1,2/3,2,5/2,...for Ut and n = -1,-2/3,-2,-5/2,...for U~.
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For G, the representation space is the Hilbert space $, of all holomorphic func-

tions [ on the upper half plane

Ct = {z € C|Im(z) > 0} (L.5.7)
with finite norm
117 = 20— 1) [ [ 17 2dsy (15.8)
o+

where z = z + wy.

Lemma (1.5.1).

(1) Let L, be the mapping from $H* into $, given by

2n—1

f(z) = (Lnp)(2) = T (2 +4)7"p(

z—1
zZ+1

for f € $Hn and p € H™. Then L, is an isometry from H™ onto Hy.
(2) Let L;' be the mapping from $), into H™ given by

o) = (L2 1(6) = 7z (1 - 72"

for p € H™ and f € H,. Then L} is an isometry from $, onto H™.
(3) Put
VE =L UEL
then V* is an UIR of G on the the Hilbert space £, which is unitary

equivalent to Uy, . the representation operator V' is given by

(VEMN) = (cz+d)™*"f (az +_b>

cz+d
org'= (Z g) €G.

Proof. Let

z—1

(=cz= =u-+2w (z=x+1y,)

z+1
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then, we can prove that:

- i a4
dedy = 2 gy
and
1y
- g = Y
4 |z + 7|2

Use these equations, and following a procedure similar to the proof of

Lemma (6) we can prove the present lemmae



CHAPTER II

SQUARE INTEGRABILITY OF GROUP REPRESENTATIONS
AND ASSOCIATED COHERENT STATES

The history of coherent states goes back to the early days of quantum mechanics.
In 1926 Schrodinger [29] specified the existence of a certain class of states that
displayed the classical behavior of the oscillator. This set of states have come to
be known in the literature [20] as the coherent states of the harmonic oscillator or
Schrodinger coherent states. They have a number of interesting properties:
(1) They minimize the Heisenberg uncertainty relation AzAp > h/2 (for these
states, AzAp = h/2).
(2) They are cigenstates in a Hilbert space of the annihilation (destruction)
operator:

alz >= z|z >,
where z is a complex eigenvalue; a is the conjugate to the creation operator
[2,a*} =1, [a,1] =[a*1] =0.

(3) They are created from the ground state |0 > by a unitary displacement
operator:

{ezplza* - z"a]}|0 >= |z > .

These propertics are all equivalent. In fact, usually one of them is adopted as the
definition of the harmonic oscillator coherent states.

In the 1960’s the concept of coherent states (introduced by Glauber) came into
wide usage through the new field of quantum optics [15), and many authors popu-
larized their use [22].

Due to the very interesting properties of coherent states, various attempts have
been made to generalize the concept. One such successful generalization to arbi-

trary Lie groups is due to Perelomov [25] , who constructed what is referred to in

40
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the literature as “generalized coherent states”. This in turn was a gencralization
of Barut and Giradello [11] who presented the generalized coherent states as the

eigenstates of the ladder operators

1
L:t = -\-/—‘_2:(L13 + ZLQ:;)

where in the case of SU(1,1), for example, L5 = %03, Lya = jou, Ly = S0,

(see chapter (I), equation (1.2.17)) of non-compact groups

According to Perelomov’s generalization, the construction of a set of generalized

coherent states is based on the relation

Ing >=T(g)ln0 > (g€ @)

where T'(g) is a unitary irreducible representation (UIR) of Lic group G , and |ny >
is a fixed vector in the Hilbert space § of the representation T'(g). Then {|5, >} is
the set of generalized coherent states (GCS). It turn out in this case that the square
integrability condition of the UIR is not critical in the construction. However, the
assiocated coherent states lack many of the nice properties of the square integrable

ones [3]. One of these interesting properties is the “resolution of identity”;
1
d Ing >< mgldg =1
ag

where d > 0 is a constant number depending on the normalization of the invariant

Haar measure dg on G. That is, for n,p € 9H;

1
2 [1<T@nle > Pdg <o 7l 2
G

which means that the coefficient g —»< T(g)nlp > is “squarc integrable” on G (cf.
section (IL.1) below).

However, for certain group representations, Perelomov’s generalization does not
always work ( cf section (I1.2) ). One of the earlier attempts to recuperate this lack

was due to Prugoveéki {27], for the Poincaré group P_,Tr(l, 1).
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Recently, Ali et al were able to generalize Perelomov’s construction and give a
theory applicable in many cases where the Perelomov theory fails.

The objective of the present chapter is twofold: first to analyse the theory of
square integrable group representations for a locally compact group and built what
is known in the literature as “standard coherent states”. As an example we examine
the affine group which leads to the affine coherent states.

The sccond objective is to study the theory of square integrable group represen-

tations over a coset space G/, where we will study that in two situations:

(1) When H is a closed stability subgroup for a vector 5 € 9, under the action
of a unitary irreducible representation.
(2) When H is an arbitrary closed subgroup of G. Here, we study, as an

example, the Poincaré group in 1-space and 1-time dimensions.

*x X *
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II.1. The standard theory of square integrable group representations:

The standard theory may be found in Dixmier [13]. However, we will not restrict

ourselves to the case of unimodular! locally compact groups [17].

We shall begin by formulating, in a general setting, certain results concerning
the square integrability of the representations of a locally compact group and the
orthogonality relations as well. Details of the proofs will be provided in appropriate

places.

Let G be a locally compact group with left invariant Haar measure dg and right
invariant Haar measure d,.g. Let U : g — U(g), (g € G), be a strongly continuous

unitary irreducible representation in a Hilbert space? §).

Definition (I1.1.1) The UIR U is said to be square inlegrable if the there exists a

non-zero vector n € 9 such that:

[1womie)idg < +o0, e s (1)
G

Equation (11.1.1) is called the admissibility condition and the vector 1 1s said Lo be

admassible o

Note that:

(1) The admissibility condition holds even if we replace the left invariant Haar

measure dg by the right invariant measure d,g. Indeed, from the unitarity

'In the sense that the left invariant measure is also right invariant.
2We will use throughout this chapter the following notation for the inner product; say for

L*(R,dt)

(pln) = / P(Om(t)dt

— 00
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of U and from (0.6), we have
/ (UCahnle)Pdg = [ InlU(a™ o) do
G a
- / (U(g™ )nlo)Pdg
G

- / (U(g)nle)Pdng. (1.1.2)

Therefore, in the following computations only the left invariant Haar mea-
sure will be used since analogous results hold for the right invariant measure
as well, in virtue of equation (II.1.2).

(2) H U is square integrable then the set © of admissible vectors is dense in §).

(3) In the case of a unimodular group, ® = .

Lemma (I1.1.2). IfU,: G — £(%,); i = 1,2 are unitarily equivalent and if U; is

square-integrable then so 1s Us.

Proof. Let T : 3 — $), be a unitary map and U, T = TU;. Then, for 5,9 € $,,
[ 1wamle)ds = 10 0@ Tle)dg
G G

- / (U (9)TnITe)dg < +oo.
G

Consequently, any representation unitarily equivalent to a square integrable repre-

sentation is also square integrable o

Lemma (I11.1.3). IfU,: G — U($,) (¢ = 1,2) are inequivalent square integrable
representations of the unimodular group G. Then for n,p € $H;,and 7',¢' € H3,

we have

/(Ul(g)nlsa)(Uz(g)n'lsO’)dg =0 (11.1.3)
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On the other hand, if the two representations are equivalent under a unitary map-

ping T of $, onto 92, and if G is unimodular we have

f(Ul(g)n!sO)(Uz(g)n'ls.O’)dg = 2(7ﬂ575(7‘¢|w') (H.1.1)
G

where d is the formal degree of the representation Uy = U,.

Proof. See [19; theorem (1)]e

The formal degree d appcaring in the above lemma is analogous to the dimension
of the representation in the case of compact group. Indeed, if G i1s compact group
then every UIR of G is finite dimensional and we have the following fact [14; Chapter

(VII), proposition (24)]:

Theorem (I.1.4). If G is a compact group and U : G — (9) is irreducible

(therefore, finite dimension). Then
N 1—0o
/(U(y)nlw)(U(g)n’lw')dg = S )(ele’) mm'ee’ € H (1.1.5)
G

and d is the dimension of U in the usual sense. Consequently, any UIR of a compact

group is square integrable o

The square-integrability of the group representations of a compact group is also
consequence of the well known fact of the weak measurability of the maps g
(U(g)nln') [see (0.1)] and the following lemma {13, Chapter (V), Proposition (2.1)}:
Lemma (I1.1.5). A locally compact group G has finite measure if and only if it is

compact.

Lemma (I1.1.6). Let U be a square integrable representation of a locally compact
group G [not necessarily unimodular]. Then there is a unique, positive, invertible

operator C on ), such that the following holds:

(1) The set of admissible vectors coincides with the domain of C.
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(2)

(3)

Let m and p' be any two admissible vectors and let p and ¢' be any two

vectorsin . Then

[ Wi @n'te)ds = Tl (IL1.6)
(&)

If the group G is unimodular, then C is a multiple of the identity ,
C =M, (A e RY) (IL.1.7)

and we have the standard orthogonality relations:

/ Ty )(Ula)' ') dg = Xala)(ele') (IL1.8)

G

where d = &, the formal degree, depends only on the square integrable

representation U.

Proof. See [17, theorem 3.1]e

Remarks:

(1) fn=7"=p =¢'in (I1.1.2), then for 7 € D, one has

1
| 7

on0m = = [ 1wiamimidg (IL1.9)
G

and one can associate to 7, the positive number:

1
2
i1 J

(U(g)nln)*dg. (I1.1.10)

(2) If » = 7', then one has from (11.1.2) and (I.1.4)

- JIU(g)nin)I*dg
/(U(g)nlw)(U(g)nlso')dg =2 e (ple"). (I1.1.11)
G
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Theorem (I1.1.7). Let U be a square integrable representation of G acting on $)

and let n be a nonzero admissible vector,

(1)

The mapping
Ly:$-— L}G,dg)

defined by

1
L - (U - ; 112
(Lye)(g) \/q“ (g)nle), for pC N9 ( (IL1.12)

is a linear isometry onto a proper?® closed subspace $), of 1L*((],dg), That

is, for every p, ' € 9, we have

(Lyp|Lyy') = /(—L—n_s;)—(;)(fmw')(y)dy ~ (plp"). (1.1.13)
G

The subspace 3, C L?(G,dg) is a reproducing kernel IHilbert space (cf,

appendix A of [6]), so the corresponding projection operator
P, =1L,L;, (9, = P,L*G,dg)) (111.14)

has the reproducing kernel K, : G x G — C,

(ﬂ"nso)(g)=/Kn(g,y’)<p(g')dy’, o L3(G,dg) (11.1.15)
G
Kq(g9,9') = i(U(y'“]g)nln) (1.1.16)

defined by the function

ka(g) = ;L(U(g)nln)- (11.1.17)

n

39, # {0} or L?(G,dg).
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Proof. Sece [17 section (4) and (5)]e

Remarks.

(1) From (0.11), and the definition of the Ly, we have

(2)

(Uilg") Low)g) = (Lgw)(g'9)

1 -1

= ——(U(q'
\/c*,,( (¢' “gnly)
1

= —(U U(g'
\/c_( (g)nU(g")p)

= (L,U(4")p)(9) (11.1.18)

3

So L, is an intertwining operator between the square integrable represen-
tation U and the restriction of the left regular representation U;. Conse-
quently, every square integrable group representation is unitarily equivalent
to a subrepresentation of the left regular representation.

From (I[.1.11), we may deduce, for arbitrary ¢, ' € 9,

& [(elu@mUaple s = (oly) (IL.1.19)
G

So, the resolution of identity (in the Dirac notation):
1
o / U(g)y >< U(g)n|ldg =1 (identity operator in §)) (I1.1.20)
n
G

holds on $.

From (11.1.12) and (I1.1.13)

P 0)(0) (e(g), i ¢(g) € 9y ( )

Pye)(g) = 11.1.21
U o it wloye st

and therefore, the adjoint L} coincides with the inverse in the range of an

1sometric operator,

Lte == [8aUlane)s' (@€ 5, (111.22)
G
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Note that, an entirely analogous result of the theorem (I1.1.7) holds for the right

regular representation U, and L2(G,d,g). Thus, there cxists an isometry
Rn . 3‘) — L2(G,drg)

defined by

(Rpe)(g) = —\/la-(U(g"’)nlw),for peHygcCQ, (11.1.23)

which intertwines the square integrable representation and the right regular repre-
sentation. The reproducing kernel is

K(9,9") = cin-(U(gg')"nln). (I1.1.24)

Consequently, every square integrable representation is unitarily cquivalent to a
subrepresentation of the regular representation. In other words, square integrable
representations belong to the discrete series of the representations of ¢, ‘T'his result
can be written as: Let U be a unitary irreducible representation of GG on a Iilbert
space §), then the following conditions arc equivalent:

(1) U is square integrable;
(2) U is unitarily equivalent to a subrepresentation of the left (or right) regular

representation.
Definition (II.1.8) Let U(g) be a strongly continuous, irreducible, unitary repre-
sentation of G into a Hilbert space §. Let n be chosen arbitrary bul ficed non zero
vector in §) such that the admissibility condition (11.1.1) holds. Then the subsct of

$) generated by operating on n with U(g);g € G, i.e
G ={lng >=U(g)in>| g€G} (11.1.25)

s an overcomplete family of vectors, called “standard” coherent states associaled to

the representation Ue
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The affine group

The affine group “ax+b” (denoted G') is the set of linear affine transformations
on the real line:

r—az+b zeR, a>0, beR (I1.1.26)

with the group law:

(a,b)(a’,¥') = (ad’,ab' + b). (11.1.27)

It is a s.l.c. non-unimodular group with left Haar measure

dadb
d/-‘(a,b) = 22 (11128)
and right Haar measure
dadb
drﬂ(a,,b) = —a-—. (111.29)

(the proof is given in the appendix).
§ The rcpresentations:

It is well known [8],[16] that there exist only two unitary inequivalent, irreducible

representations U* on invariant subspaces L}(R*,dt) and L?(R-,dt) of L*(R, dt)

where
L*(R,dt) = L*(R*,dt) 9 L*(R ™, dt) (I1.1.30)
and
LR, dt) = {p € L*(R,dt)|p(t) =0 if t< 0}
(I1.1.31)
L*(R™,dt) = {p € L*(R,dt)|p(t) =0 if t> 0}
The representations U* on L%(R*, dt)
(U pye)(t) = a'/2e***p(at) (11.1.32)

for p € L2(R™,dt).

§ The admuissibility condition.
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Our goal is to prove the square integrability of the above representations. So, we
will prove the admissibility condition (IL.1.1) for U(; py With respect to the left Haar
measure ( resp. right Haar measure ) and the proof for U(‘t py 15 almost identical.

Let ,p € L2(R*,dt) then from (I1.1.1) and (11.1.32) we have:

_ e dadb .
//(go|U(a'b)n)(U(a|b)q|ga)-&2—: ////ae -t
LY

R

Dt (atynal ' 5"
@

(11.1.33)

using the Fubini theorem and the definition of delta measure®

/exb(t—-t')db — 27r6(t — t')’ (”.1.3-1)
R

The right hand side of {11.1.33) becomes,

anll o I [ a2

R

Indeed, [ |n(w)?dw/w, (w = at) is not finite for all 5 € L*(R*,dt), for example,
R
if 7(w) = e~ %, the integral will go to infinity, so let D be the subsct of L2(R', dt) for

which the above integral is finite®, i.e. the sct of admissible vectors (or admissible

analyzing wavelets [17]) of L2(R, dt);

D={ne L2(R+,dt)|/|n(w)| —d; < -too}. (11.1.35)
R

A similar calculation can be done to prove the admissibility condition with respect

to the right Haar measure. From theorem (I1.1.6-2) we have,

(Cq|Cn) = 27r/ In(w)|2(—g—) (11.1.36)
K

41f f is infinity differentiable, then [ f(£)6(t - ¢')dt = (')
5 For example, n(w) = w!/2e~¥
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where we can define a positive unbounded operator

1

Cn(w) = —\/—,—u_)n(w) (11.1.37)
For 77, 7' € © and arbitrary ¢, ' in L2(R*,dt), we have
dadb
[l U yle) s = rlonle).  (L138)

S

Now, if we take one vector and fix it in @ for example

no(w) = Ve ¥, (11.1.39)

then, by virtue of (I1.1.10), we can associate to 79 a positive number

Cp, = 27r/e’2'”dw = 7. (11.1.40)
18
The resolution of identity follows now from (I1.1.38). Indeed, from (I1.1.20)
dadb
/ |U(a )70 >< U(a b)UOI =L

§ The isometry :
According to thcorem (II.1.7-1), we can now define a transform (or integral

wavelet transform) between L?(R*,dt) and L?*(G', dadb/a?) as
1 dadb
(Lﬁo(p)(a)b) \/‘(U(a b)nOI‘P)
= — / Vitette " p(t)dt (I1.1.41)
V)

and we can prove its isometry as follows:

(Lol Lnstp) = / [ T L)) 5

N //// t' e =D+ 510 (t!)dtdt! dadb

= 2// te” 22p(t))*dtda (from (I1.1.34))

/ (1) 2ds

(since [te~?%tda =1/2)
]

= (ple) L2(a+ 1)
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for p € L2(R,dt).

The next step in the analysis is to characterize the range of the transform L, .
It was suggested in [8] and [26] to consider C* C L*(G’, 47‘:3,‘—'3) (or $141/2 in the
terminology of [26]), the space of the analytic functions defined on the 7P half

plane, square integrable with respect to the measure
Im(2)*/2dRe(z)dIm(z) = a*'/?dbda

where z = b +1a. For details of such spaces and related problems, we refer to the
references mentioned above.

However, the reproducing kernel of the range of the transforin 1, is given now

by the function (I1.1.17) as:

K’lo (a') b) =

3

/e“"‘e_‘tdt (11.1.44)

s
for z = b +1a.

Applying U~ to o gives a coherent state system [17].

* * *
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I1.2. Square integrability with respect to a homogeneous space :

As we have scen in definition (I1.1.1), square integrability depends on the finite-
ness of an integral over the entire group which, in many cases, is too strong. How-
ever, it often happens that one has an analogous situation over a homogeneous
space X = G/II.

Perelomov’s construction:

Let U be the UIR of G acting in the Hilbert space $); 1o some fixed vector in §); as

we mentioned in the introduction the construction of a set of generalized coherent

states is based on the relation

[ng >=T(g)lno > - (11.2.1)

Let /T be a closed subgroup of G that leaves 7, invariant up to a phase (H

stationary subgroup) :

T(h)|ne >= e***|no > . (11.2.2)

Then from (11.2.1),

Ingh > = T(gh)|no >
= T(g9)T(h)Imo >

= e"**T(g)lno > .

This relation shows that the coherent state |n, > is uniquely parameterized by the

point 2 = gh of the coset space X = G/H corresponding to the element g¢:
|ng >=e|n; > . (11.2.3)

It can be seen that the set of coherent states is defined whenever the integral

/I < Molnz > |*dp(z) = d
X
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where dp(z) denotes a “measure” on X, converges, that is, d is a finite constant.

In such a case

1
pi / Mz >< neldp(z) =1 (1.2.4)
X
and one can expand any arbitrary state |7, > in the cohcrent states,

Iny >= / < zlmy > 0z > dp(r) (11.2.5)

X

Ll -

where K(z,y) = 1&2 < 1z|7My > is not arbitrary but satisfies the integral equation

K(z,z) = /K(m,y)K(y,z)d;L(y) (11.2.6)
X

which means that K is reproducing kernel.

Perelomov’s monograph contains many examples. One of these examples is the
discrete series representation of the group SU(1,1) which we will study in chapter
(II1).

However, Perelomov’s method does not always work and cannot be applied for
certain group representations, for example Poincaré group. Ali et al [4] introduced
a generalization for Perelomov’s construction where Grossmann et al’s construction
(cf. section II.1) appears as a particular case. The following is adapted from [4] (for
the details see [4,I]), and as an example we look at the case of the Poincaré group.

Consider a homogeneous space X = G/H, where H is an arbitrary closed sub-
group of G, as we saw in the preliminaries that there exists up to cquivalence a

quasi-invariant u(z) on X (see (0.8-0.12)). Let
c: X -G

be a measurable section of G satisfying (I.3.18), and F : X — £(9)! be a pu-
measureable function into the bounded positive operators on § . Consider the

rank-1 operator




F = n)(nl (11.2.7)

and a section o. Define a positive operator valued function F, : X — £($)*:
Fo(2) = U(o())FU(o(2))" }
= U(a(z))n)(U (o (=)l

Definition (II.2.1) [4,1I] The representation U is said to be square integrable mod

(11.2.8)

(H,0), +f logether unth F, there ezists a positive, bounded, invertible operator A4

on §), such that:

/Fa(m)dp(m) = A, (I1.2.9)

X

the integral converging weakly, that is, for ¢, ¥ € $:

[elvE@mwiendue) = (ol4-0)e (11.2.10)
X

Notice:
i) If U is square integrable mod (H,¢), it is also square integrable mod (H,0'),

where o' is any other section for which

Apr = / Fo(z)dp(z)

X
~ / U (o' (2))FU (o' (2))" du(c) (I1.2.11)
X

exists as a bounded positive operator with positive, self-adjoint inverse A;,l.
i1) To get coherent states [4,II], if U is square integrable in the sense of definition

(11.2.1), define the vectors:

Mo(z) = U(o(2))n- neH (11.2.12)

Then the family of coherent states:
Gy = {7],(,;)|.’B € 1\’} (11213)

is an overcomplete set of vectors with all the desired properties [4,1].




Poincaré group in 2-dimensions

57

The Poincaré group in two dimensions, denoted PI([, 1), is the semi-direct prod-

uct of the group of two dimensional space-time translations 'I'? and the group of pure

Lorentz transformations LL(I,l). The general element g consists of a space-time

translation a and a Lorentz boost A,

9= (a) A)
with
a = (ao,a) S ]R2
A=p, = (P™ ‘Vm) > 0,p = V)
P ( p/m Po/m ) m P (PO,P) € m
where

VrJrrt ={p = (po,P) € R2|Po >0, p:- p’ - m?}

is the forward mass hyperbola. the group multiplication law is:

g9' = ((a0,a), AP)((ag’al)’ AP’)
= ((ao,a) + AP'(a‘:)ra')’ AA')

This group is s.l.c. unimodular, with invariant [Jaar measure

dau dadp/po .

(11.2.16)

(11.2.17)

(11.2.18)

(11.2.19)

The elements A, of the Lorentz group act transitively on V,}, according to the

action:

k— k' = Ak, k= (ko k)cCV}

(11.2.20)

and the corresponding invariant measure on V} is dk/k, which can be scen as

follows:
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From (11.2.12), we can rewrite k2 — k? = m? using hyperbolic functions, with

ky mmcoshf, k- msinhd. the invariant measure can be seen to be

d = dk _ & (I1.1.21)

myV1 -+ sinh? 9 kU

§ The representations:
Consider the well known unitary irreducible Wigner representation U,, acting on

v in the Hilbert space

dk
S = L2Vl dic/ka) = (o) k€ Vil [Io(BFE <o}, (1122)
vi ’
by:
(Uala, Np)(k) = e=2p(A7'R), o € Hu (11.2.23)
where

k.a = koag — k.a.

First, we can see that this representation is not square integrable in the usual sense

(definition (I1.1.1)). Indeed, from (I.1.1) we have for 7,9 € Hu,

[ lvaloima.(U()ile)s. daodadp/ps = /]/ // k(A7 k)

Pl(1,1)

' —dk dk' d
—k'a_r A =111y Yy p
e " en(Ap k)k W dada 2
= 00
Sccond, consider the time translation subgroup T,
T = {g € PL(1,1)lg = ((a0,0), ), a0 € R} (11.2.24)

where [, is the 2 x 2 identity matrix.
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It’s clear that T is not a stationary subgroup under U, of any vector n € 8.
Thus, Perelomov’s construction fails to give a system of coherent states.

Consider the left coset space I'; = Pl(l, 1)/T (resp. the right coset space L',
T\ P}_(l, 1)). A direct computation shows that any element g ¢ P,r(l, 1)/T (resp.
geT\ Pl(l, 1)) can be factorized in the following form:

((QO, Q)) AP) = ((O’q’)v AP)((qL’)’ 0): 12) (“'2'25)
where .
q=q-p
Po
90 = ™qo /Py

(resp. ((g0,9),Ap) = ((90,0), 2)((0,9'), Ap) where q; =q, q' = q).
Therefore the points in I';, can be parameterized by (q,p) € R?, and the map

o(q,p) : T1,r = PL(1,1) defined by

o0(q,p) = ((0,@),Ap), P = (po = /P* F m?,p) (11.2.26)

is a Borel section ( zero section in the terminology of [4] ). According to the general

theory [4], an arbitrary measurable section may be written as:

o(q,p) = ao(a, p)((f(a,p),0), I2)

= (4, A) (11.2.27)
with
p=p, Go=" (a,p) <‘1=q+£f(q P) (11.1.28)
) m b ) m ]

where f is a measurable real-valued function. In order to ensure finiteness of the

integral (11.2.9), one works with affine sections (4, 1]

f(a,p) = ¢(p) + q.6(p) (11.2.29)
where 0 is a function of p alone and satisfies

m
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while » may be actually set equal to zcro. (see [4], in particular section 3.A;

Caution: ¢ or 6 are not vectors in $y,)

Then
i, = Poaf(p) (11.2.30)
m + p.0(p)
A number of special sections are discussed in [4]. For o9, 6(p) = 0 and for
os, B(p) = ;—I:—;n, here we consider 8(p) = 2 which leads to opp :
q.p
fla,p) ==,  (p(p)=0) (11.2.31)

therefore, from (11.2.26), we have

oo8(a,p) = ((5(a.p), q) Ap). (11.2.32)

An arbitrary element ((go,q), Ap) € P+(1, 1) can be written according to I'; as
(see appendix (B) for detailed computations):

(a0, a), Ap) = (B(a.p) - Z5p% 5 (poa - wop)), Ap)x

1
X ((—(gopo — a.P),0), I2) (11.2.33)
The left action of Pl(l, 1) on Iy is then the following:
(a,p) — (P',q') = (a,At)(a,P) (11.2.34)

for arbitrary (a,Ax) € Pl(l, 1), where:
' po(koa - aok) - p.(aoko - ak) + mpoQq

a = 11.2.35
! (kopo + K.p) (11.2.35)
]
p' = ;(kop + Pok) (11236)
A straightforward computation then shows that the measure
dpi(q, p) = dqdp (11.2.37)

is invariant on ['.
The proof of the square integrability of the representation U, mod(T,opp) and
the construction of associated coherent states follow directly from the general theory

in [4].



CHAPTER 1L
SQUARE INTEGRABILITY AND THE PRINCIPAL SERIES
REPRESENTATIONS OF SU(1,1)

In this chapter, we will study the square integrability of some representations of
SU(1,1).
From chapter (I), we know that the isomorphism of SU(1,1) and SL(2,R) allows
us to work with them without distinction.
From chapter (II), we conclude (theorem (I1.1.7)) that representations which are
square integrable in the usual sense belong to the discrete series representation
of the group. In particular, the discrete series representation U} of the group
SU(1,1) = SL(2,R) (see chapter (I) section (5)) are square integrable.
To prove that precisely, let us first introduce the following result:
Let U be a UIR of a semisimple Lie group! G acting on a Hilbert space
9, then from the Cartan decomposition G = K.A". K, where K is compact
subgroup of G, with a suitable invariant measure: dg = §(a)dkdadk’, where
§(a) has to be determined [18]. ( For SU(1, 1); dgo = 2w sinh tdkdtdk', chapter
I equationl.1.21) ) From theorem (II.1.4), we can say in gencral that U is

square integrable if and only if there exists a non zero vector 5 € §) such that

/I a)n|n)|*é(a)da < co. (11L0.1)

We showed in chapter (I) section (5) that the constant vector I belongs to H™
the representation space of the discrete seriesrepresentations U,! defined by (1.5.1).

Thus, for

~2n az*ﬁ
(U0)) = (B = + ) ™" (520)

1For example, SU(1,1) and SL(2,R) , see (1.1.4)
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where g, ! - (; g) and n = 1,3/2,2,5/2,..., we have from (II1.0.1), where

1 cosht/2  —sinht/2° _
‘ ( - sinht/2  cosht/2 ), and dz = rdrdf

[ 1w @saae = 2220 [ any

At

0
2
l / (—sinh(2/2)z + cosh(2/2)) 7" (1 — |2|*)?*"~2dz
|zj<1
[ ]
_ 132
= g—(lrf——-l)—/sinh(t)(cosh(t/2))"’"dt
™
0
S R 1 i §
’I s (1 — tanh(t/2) z)*m
z|<
S T
- 3(_2.“71)_ / sinh(£)(cosh(t,'2))~*"dt
0
] Z (2:> tanh® ¢/2 / z*(1 - |z|2)2"’2dz|2
k=0 2<1
2 oo
2(2n /smh )(cosh(t/2))*™dt
o
y 2
2“_/ 2)2n 2
0
= 2n(2n - 1)? /sinh(t)(cosh(t/2))"4"dt
0
— 4n(2n — 1)? / sinh(2/2)(cosh(t/2)) 4"+ d¢
0
T 4
. —4n-+1 _
= 87r/u du —

1

which is finite. The formal degree (see theorem (IL.1.3)) of U™ is 2221,



A3

To show how Perelomov type of coherent states are derived from the square inte-
grability of the representation U™, let us refer to I as |y > = |0 > (the lowest weight
function in Perelomov’s terminology); acting on it by Uty go € Go = SU(L, 1), we

get the system of states:
1nge >= T(g0)|0 >= (B = + &) *™. (111.0.3)

From Mackey decomposition, any element go € Gy can be decomposed uniquely

s
go = s(£)-k
where
(0= (g0 o GO ) €D
and

_ (T
k= (s

Then equation (I11.0.3) can be written as:

> € K. (see (1.1.18))

®iR©

ngo >= 1€ >= (1 — & 2)7"(1 - [¢]*)". (111.0.4)

The set {|€ >} is just the system of “coherent states” with all expected properties
[25].

On the other hand, we may show that for the principal series representation
(1.3.10), and consequently the complementary series representation ([.4.3), the in-

tegrals:

/ (Uanl@) L2u.aey(Us nle) L2(v,a¢) sinh(t)dt (1:1.0.5)
At

for 9, € L%(U, d¢) with the usual inner product (1.3.2), and

/ (U2 710)5, (U2 qlp)s, sinh (£)ds (111.0.6)

where 7, € $, with inner product (1.4.1) are divergent.
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The success of the Ali et al technique prompts us to inquire into the possibility of
applying this technique to the principal series representation of the group SU(1,1) =
SL(2,R). We will attempt to investigate this in the rest of the present chapter. Our
approach will be to study the generalization of [4] for the group SU(1,1) = SL(2,R)
mod certain subgroups A and N (see chapter (I), section 1).

ITI.1. The homogeneous space G/A and A\ G:

Consider the closed subgroup

A:{(g agl), a#0¢eR}

of G = SL(2,R)( see equation (I.1.4)). It’s clear that A is not a stationary subgroup
for any vector in the Hilbert space L*(U,d¢) (see section (I.3)).
By using Mackey’s decomposition (see preliminaries), any element of G that

satisfies the condition a # 0 can be uniquely written in the form

g= (Z’ 2) = <ca1—1 32) (g a91> (IIL.1.1)

with respect to the left coset space X; = G/A or

a 0 1 ba™!?
g = (0 a—]) (ca ad ) (III].3)

with respect to the right coset space X, = A\ G.
Therefore, the Borel set has the form

§={s(z) = ( ! ‘! ) z) = ba,zy =ca”! € R} (I11.1.2)

o2 1429

and the map s(z) : Xir» —» G = SL(2,R) defines a Borel section [23].
Note that, the Borel set corresponding to the remaining elements in G, ¢ =
~b~1, will be of measure zero in X; and X, therefore we will disregard it in our

consideration.
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It’s clear that the homogeneous space X;, = R? and the points in both Xj and

X, can be parameterized by (z,,z;) € R2
§ The measure:

Consider the left action of G on X, i.e.

(1)1,222) - (mllam;) = g'(zl’l‘?)

then we have:

a b\ 1 1
c d) z2 142129
_[a+bzz (a+bzy)z, +b
“\c+dzy (c+dzy)e +d
( 1 ((a + bzz)zy + b)(a + bﬂ?g)) (a, + by

Jﬁ-z ((c + dzo)zy + d)(a + be2) 0

= s(g.g).h(g,in.)

where

hlg,2) = (a +0bm2 (a+ t?mg)*l )

satisfying the multiplier equation:

h(gg',z) = h(g,9"z)h(g’, z)
moreover
h(g,z) = s(g.z) " g.5(z)

Under this action

, c+ dzy
T, =

z; = (a+ b222)2$1 + b(a -+ bmz)}

a + beg
I.’s not diffecult to see that

1+ zizy = ((c -+ dzz)z1 + d)(a + bz3)

0

(111.1.4)

o))

(111.1.5)

(111.1.6)
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Similarly, on X, we have for g € G,

(21,22) — (21,23) = (21,22).9 (1I1.1.7)
where now
y _ (b+dzy)
Ty = g
(a+ czy) (II1.1.8)

zp = (a + cz1)?zy + c(a + czy)

A straightforward computation shows that the measure
d/"‘(:z:l,::;) = d:cld:cg (IIIIQ)

is invariant on both X; and X,.

Indeed, from the definition of the quasi-invariant measure [see Preliminaries| and
since both G and N are unimodular, both X; = R? and X, = R?2 admit the same
invariant measure dz,dz,.

§ The representations:
Consider the unitary irreducible representation of the principal series for SL(2,R)

(sec equation ([.3.15))

ak+ b

(U m)(k) = |k + d|™**[sign(ck + d)f"n( Z—)

where,
-1 /(1 b . .
g :\c i) 7=0,1/2,and s=1/2+iv,veER
with Hilbert space L2(R, dz).
For the section s(z1, z3), let us write,

(U2, oymk) = |22k + (1 + z12a)| > [sign(ak + (1 + z122))]”

k + )
I11.1.10
n($2k+(1 +$1$2) ( )

Put j = 0, and define

Ny (k) = Ugh, 4yn(k) (I[1.1.11)
(z1,22)
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Now we attempt to find at least one non-zero vector, if it is ezists, in L*(R, dk)

such that the function f, ,: X; — C defined by

f‘PyTI :< @I”’:hx;) >

where,

< ‘Pln(m.m) >= /I;‘(P(k)lmzk + (1 + 1;1;1;2)|~2§n(~.;.'_..—.:_____“~)da:

is square integrable.

In other words, we search for a vector n € L*(R, dk) such that:
AS(Et.zz) = // in(zl.rg) >< n(xl,,,)ldmldmg.
R

is a positive invertible operator in the weak sense.

Therefore, if ¢, € L*(R, dk), then
<plAyp >= // < PN (z1,20) > < War,zg) ¥ > dzids
R

and we have the following integration,

< plAp > = /// o2k + (1 + m,mz)rZ’T,(-M,_’L'_‘fgl’_*l
R

k' +
zok' + (1 + @ z2)

—23

|z2k' + (1 + z122)| " n(

(1L.1.12)

(11.1.13)

(11 1.14)

(1L1.15)

(k' Ydkdk'dzy dz,

(111.1.16)




68

II1.2. The homogeneous space G/N and G\ N:

Consider the closed subgroup

v=q(y §)eer

Again using Mackey’s decomposition, every element g € SL(2,R) satisfying the

condition «¢ # 0 can be uniquely written in the form:

(«Cz 3) _ (: a91> (é ba:) (IL2.1)

with respect to the left coset space G/N.
So the Borel set has the form

s(z) = < _1), z)=a#0€R, z=ceR} (I111.2.2)

and the map s(z) : G/A — G defines a Borel section.

§ The invariant measure:

Consider the action of the group on s(z), i.e. if g = (Z’ 3

N ey

czy + dzo d::::l_1

) € SL(2,R), then

implies
g-s(z) = s(g-z)-h
where
s(g.z) = <::11 :3:2 (az; +Ob:v2)—l>
and

h = hig,z) = ((1) b(az, +b1m2)“1/a:1>

where again h = h(g, z) satisfies the multiplier equation

h(gg',z) = h{g,g'z)h(g', z).
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Under the action of g, we get
(z1,22) — (z],25) = (az1 + bra,czy + dia) (111.2.3)
and a straightforward computation shows that the measure
dp(z,,z,) = dz1dy (11.2.4)

is invariant on the left coset space G/N.

If we use the principal series representation of SL(2,R) for the section (111.2.2),

we get:

. —142 )T ‘
(U (,;)‘P)("’) leaz + 27t |72 sign(zaz + 27 ') ]‘P( l‘ﬁ) (111.2.5)
Tax + 2,
Put 7 = 0 and define

Mar,z2) = Vagay1(2) (111.2.6)

then
< PNz, ,z0) >= ‘/I;cp(m);yamdm (111.2.7)

and
< n(zl,zz)|¢ >= ‘/1;‘ 7](m.z,)(“’)¢(m)d$ (”[.2.8)

Again, as in section (III.1), we get

< pl|lAY > = // < ‘pln(zl.m;) >< T](,,hz,)l'lﬁ > dz dz,

(111.2.9)

Using (I11.2.6), then we have the following integration:
- , I TN
<¢IA¢>—////<P(:6 a0+ o7 0 )
lzez’ + 21t "2 n( z12' 1)1/1( z')dzdz'dz, dz,
T2T + T
o ol
/// o P Ples ez + 1oy 1 150 )
7 zie Yo(z)p(z)dzde' dzy de; (111.2.10)

:z:lzcg:c’ + 1
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Unfortunately both expression (111.1.16) and (111.2.10) are difficult to compute
explicitly.  Although we do not have good estimates at present, we guess that
for certain sections or under some restrictions there is a possibility to prove the

convergence of both integrations.
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APPENDIX (A)

In _this appendix, we prove the formulas (1.1.22), (11.1.28,29 ):

To prove (1.1.22): First, note that the closed subgroups K, A and N are unimod-
ular (that is, the left and right Haar measure conicide) ); they are abelain groups.
Moreover, the subgroup K is isomorphic to the torus T = R/4n [28] and we have
proved equation (I.1.21).

Secondly, the group P is a semi-direct product of A and N, N is a normal

subgroup of P, with the product law:
(a,n)(a’',n') = (a.a',a(r')n), a€Ad, meN
where a(n) is the action of A on N. Indeed,
et/2 0 1 ¢\ _ (1 ete\[et'? 0
0 et2)\0 1) \0 1 0 e¥2)"
Then, from lemma (2) equation (1.1.18), we have
d(ana™) = d®dn, (a =€’ n=¢),

and the modular function of P is e* (see equation (I.1.19)) which satisfies (0.5).
Combine this with the measure of K (I.1.21) in (I.1.17) to get the desired formula:

1,
dg = el dfdtdg.

To prove the invariance of this measure, that is d(gge) = dgo for go,gy € Go see
[28, chapter 5 proposition (5.1)]
X x *

To prove (11.1.28), consider the left action g — gg' (g9’ € G') , i.e.

(a’ b)(al, bl) = (all’ bll)
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where

" !
a = aa

' —ab + b
A straightforward computation shows that the left invariant measure on ' is
dadb/a?.
On the other hand, if we consider the right action g —g¢'g (¢’ C GG) then

all — a,'l

bn = a'b + bl
and the right invariant measureis
dadb/|a|.

and we have proved equation (11.1.29).

* * *
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APPENDIX (B)

In this appendix, we give the Getailed computations of equations (11.2.33-36):

To prove (11.2.33) using Mackey decomposition, we can factorize any arbitrary ele-

ment ((qo,q), Ap) with respect to Ll(l, 1)/T as:

((0,a), Ap) —(( (g’ p), q) Ap).((f(q,p),0),12)

where, using (11.2.18) and comparing the coefficients,

) Poq — qoP
q =
Po

f(a,p) = %(‘IOPU ~ q.p)

From the action (I11.2.34), we have:
P2

(a0, 2), Ax)( 25 (a.p), £5a), A7) = (a5, 2'), Aps)

where

kq ,
m3Po

kop?
a’ =a+—(qp) +—54

A — m-1 ™ (kopo + k.p)  m 7 (kop + pok)
Pk m"l(kop + pok) m*](kopo + kp)

We can rewrite this equation using (I.3.18) as:

kopo

5 (1P) +

!
av():a()‘*‘

((ah,a'),Ap,) = (m™>(kopo + k.p)(q'.m " (pok + kop)), m~*(kopo + k.p)?q’), A, )
((f(q',m ™ (kop + pok)),0), 1)

where in this case,

po(kga — aok) - p.(aoko - ak) + mpyq
(kopo + k.p)

q =

fla', m ™ (kop + pok)) = m?(kopo + k.p) " (10 +m™*kopo(a.p) + m~*p}(k.q)
- m‘4q'(k0po + k.p)(pok + kop))

which proves (11.2.35).
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List Of Important Symbols:

(The number at right indicates the page of the first appearance)

a:
adX .
B(X,Y):
C:

Go :
GL(2,C) :

Lie algebra of the subgroup A

The adjoint mapping of X in the Lie algebra
Killing form

Positive, invertible operator on Hilbert space
The field of complex numbers

The set of the admissible vectors
Exponential of X, an element of the group
The group SL(2,R)

Coherent state system

Affine group “ax+b”

The group SU(1,1)

General linear group, g = {g,,},9,;, € C, |det(g)| # 0
Representation Space of U 3(;’

Representation space of Vyo”

Representation space of U;;

Representation space of Vgi

Lepresentation space of U}’

The set of Linear bounded operator of $
centralizer of A in K

The set of real numbers

The minimal parabolic subgroup of SL(2,R)

Poincaré group in 1 space and 1 time dimensions
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s(.) :
SO(2,1) :
sl(2,R) :
su(1,1) :
U9) :
U3, v

' "go

Uos v

g9 %o

Ut v+ .

Borel section (representative)
Pseudo-orthogonal group on 2 + 1 dimension
Lie algebra of SL(2,R)

Lie algebra of SU(1,1)

The group of unitary operator on £

Principal series representations of G, Gy
Complementary series representations of G , Gy

Discrete series representations of G, Gg

(24)
(15)

(8)
(16)
(39)
(19)
(33)
(37)




