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Abstract

PRODUCTION OF CHARGINQOS AND NEUTRALINOS FOR THE REACTION
e I 17,27,
INSU(2), x SU(2), xU(1).,

Scott W. Eby-Frederick

All left-right models contain a second Z°,Z'. If the Z'
is massive enough it will decay into charginoes % and
neutralinos %’. The particular model being considered is an
extension of the supersymmetric standard model (SSM) which has
been modified to include both left and right symmetry groups:
SU(2), xSU(2), xU(1),.,. In this thesis the cross sections have
been calculated for the production of <charginos and
neutralinos in the reaction e¢'¢” »Z'—> %% or2'%). Evaluating the
Z'-reaction at the center-of-mass energy up to 2 TeV for
different sets of parameters.

Choosing masses of M, =400 GeV and M, =63Gel,

A2

M, =54 Gel”, with g,=g, I,=12Gel, M,=300Gel", M,=50GeV and
pu=-10Gel” the cross sections were found to be:
ole'e > 7' %:%.)=021nb and olee 52> 2‘2’}"2’)5 T77pbh.

Choosing masses of M, =400 GeV and My, = 171.7 GeV,
M, =80Gel", with gy=g,, [,=12Gel’, M;=1000GeV’, M, =250GeV
and wu=-80Ge¢l” the cross sections were found to Dbe:
ole'e »2'>%i7.)=011nb and ole'e” - 72'—> 1330)= 15pb .

Finally, Choosing M, = A'Iij masses of M, =400 GeV and
A, =158 Gel, M, =1717Gel”, M‘%S =80 Gel’, Mir.‘ =453Gel”, with

gozg, T.=12Gel”, M,=1000Gel", M, =250Gel” and u=-80Gel the

iii



cross sections were found to be: cr(c’c —)Z'——)};},):‘_—O.‘s?.nh and

olee > 2> 727)=48pb.
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Introduction

The last twenty years have seen a remarkable revamping
of the pre-existing concepts of particle physics. A highly
inhomogeneous system of describing particle interactions via
phenomenology has given way to what we now refer to as the
standard model, a theory which describes in detail, all of
the available data from the world of high energy physics.

The standard model (SM) actually consists of two
separate parts; the Glashow-Weinberg-Salam (GWS) theory,
(based on SU(2L)(U(H, gauge symmetry), which may be
described as a quantum gauge field theory which unifies
electromagnetic and weak interactions; and quantum
chromodynamics (based on SU(ﬂ( symmetry), the modern field
theory of the strong interactions. Both are gauge theories,
and it 1is because of this, that they are thought to
represent the low energy 1limit of a single comprehensive
gauge field theory which would be responsible for the
unification of all forces known to exist in nature.

Some of the problems associated with the standard model
indicate that there remain fundamental topics of concern
which have yet to be properly addressed. A fundamental
theory should be wholly predictive, and yet , the standard
model is subject to the perils of arbitrary
parameterization. Masses of the particles and the coupling

strength of their interactions must be inserted "by hand".



In fact, in the standard model the coupling strengths do not
even appear to be related in any logical manner.

Grand unified theories (GUTS), predict that at a high
energy scale, located somewhere above a unification scale
M,, all phenomena satisfy a single symmetry G. Spontaneous
breaking of tne symmetry of the group G would then be
responsible for generating the different couplings g, g,
£', which arise at low energies. There exists at present,
very little evidence to support these ideas.

One of the fundamental difficulties with these theories
has bDecome known as the "gauge hierarchy problem". The
standard model incorporates a scalar sector, which remains,
as yet, untested. The Higgs particles associated with this
part of the model have particularly appealing qualities, one
of which is the ability to possess a non-vanishing vacuum
expectation value (VEV) without breaking Lorentz invariance.
Perturbation theory, however, yields quadratic divergences
in the masses, pushing them to the order of the Planck mass
unless the perturbation series were to cancel to 26 decimal
places. This is the essence of the gauge hierarchy problem
(GHP) .

One very elegant way of dealing with the GHP and
simultaneously incorporate gravity into the unified models
is to introduce a boson-fermion symmetry or cupersymmetry.
Supersymmetry resolves the GHP by including a
bosonic/fermionic partner for every respective fermion/boson

in the nonsupersymmetric theory. Unbroken supersymmetry has



the bosonic-fermionic partners possessing equal masses and
equal coupling strengths. Thus, in this theory, the mass of
the Higgs Boson is not renormalized, since boson aud fermion
loops give contributions of equal and opposite signs to the
perturbation expansion. In broken supersymmetry, the Higgs
mass 1is renormalized, but provided that the mass of the
'"partner" states is small enough, the Higgs mass will remain
small.

Another of the problems associated with the standard
model is the ‘'skew" nature, or inherent 1left-handed
symmetry. The parity associated with the weak interactions
leaves one questioning the reason for which nature has
chosen to exhibit only left-handed particle states. In
recent years, models have been proposed which try to explain
the reasons for this handedness, associating left-handed
particles with a lower energy scale, and proposing the
existence of right-handed equivalents at, higher energy
scales.

The model which is used in this thesis addresses the
problems listed above by incorporating into a single theory,
the concepts of left-right symmetry and supersymmetry. The
subject of interest in this work involves the proposed
production of neutralino and chargino pairs in electron-
positron collisions. These paticle states , which arise via
supersymmetry, are of interest since they may give rise to

very clean experimental signatures. The production of these



states in right-handed Z’-boson decay, and their scattering

cross—-section calculations are the focus of this thesis.




Chapter 1

The Supersymmetric Standard Model (S8M)

1.1 Introduction

Before outlining the supersymmetric standard model, it
is instructive to first describe the standard model in order
that its shortcomings might be presented as motivation for
extending the model. The standard theory of electroweak
interactions (the Glashow-Weinberg-Salam Model), 1is a
unified guantum gauge field theory based on the gauge group
SLKZL'XLKIL”, which combines the electromagnetic interactions
with the weak interactions'. The combination with quantum
chromodynamics, a theory of strong interactions® based on
SL“3) group symmetry, seems to yield a highly satisfactory
description of the fundamental interactions of quarks and
leptons. The Electro-Weak theory is well tested and
predictive. Quantum chromodynamics by contrast, has not
been as thoroughly tested.

While this @partially unified theory of particle
interactions has been shown to be quite successful in
predicting the existence of such phenomena as neutral
currents and the existence of the W', W and Z'
intermediate vector bosons, there remain several untestea

areas; for example, the "top-quark", a fermion state of the



theory is predicted to exist in the 20-200 GeV energy
range' and has almost been located experimentally.
Similarly, the Higgs sector® of the theory (containing
spin-0 particles) has yet to be experimentally confirmed.
It is, however, an essential component of the theory, as it
is responsible for generating the masses of the fermion and
gauge boson masses of the theory, via spontaneous symmetry
breaking. In the case of particle physics, perturbation
theory is used to calculate fluctuations around a minimum
energy. Expanding around an wunstable point yields a
divergent series. Expanding about a stable vacuum, on the
other hand, yields a converging series, and a mass for the
Higgs particle. Higgs particles also ©possess very
interesting and useful properties including their ability to
have a non-vanishing vacuum expectation value (VEV), while
maintaining Lorentz invariance. Perturbation theory yields
gquadratic divergences for the masses of the Higgs particles.
One approach to eliminating such divergences in the Higgs
sector is to invoke supersymmetry, as will be explained

below.



1.2 Supersymmetry and its Application to Particle Physics

1.2.1 Motivation for Supersymmetry

The current understanding of field theories which can
be used to describe fundamental physical phenomena qualifies
a "particle" as one of two possible types of quantized
field, the boson, or the fermion. It is the bosons (in
particular, vector fields of spin-1), which are responsible
for mediating forces, while fermions (spin-1/2) are the
"stuff" of which matter (quarks and leptons) is made.

One of the reasons supersymmetry has been the focus of
so much attention over the last two decades, is that its
application to particle physics allows many of the inherent
problems of existing theories to be dealt with naturally.
Supersymmetry combines bosons and fermion into multiplets.
This removes the distinction between matter and interaction.
Each fermion is given an equivalent bosonic partner and visa
versa. Thus, both the particle and the "superpartner" can
be considered to be carriers of force, kut fermions, are
subject to the constraints of the Pauli exclusion principle
and as a result, cannot contribute to coherent potentials.
Thus it is only phenomenology which distinguishes matter
from forces; 1i.e., since no two identical fermions may
occupy the same point in space-time they manifest themselves

as physical "particles", while the classical fields which



arise from the superposition of bosons, yield an impression
of the presence of "forces".

Initially it was thought that symmetries which
transform "forces" into "matter" would be at odds with field
theory. Coleman and Mandula’ showed, in 1967, that
internal symmetries cannot be unified with space-time
symmetries within the context of a relativistically-
invariant field theory. This "no-go theorem" states that
charge operators which have eigenvalues which represent
internal quantum numbers, must commute with energy, momentum
and angular momentum operators, thus implying translational
and rotational invariance. The generators of the Lorentz
transformations are in fact, the only symmetry generators
which translate under both translations &end rotations.
Thus, eigenstates which yield different eigenvolues of mass
and spin operators cannot be related by generators of
internal symmetries, i.e., particles whose masses or spins
are not identical cannot be contained within an irreducible
multiplet of symmetry groups.

Fortunately, the theorem applies only to symmetry
transformations which adhere to real Lie algebras. The
generators of Lie dgroups of symmetry transformations are
charge operators which obey well defined commutation
relations. If symmetry operations which have generators
which obey "anticommutation" relations are included, it
becomes possible to include particles with different spins

in the same multiplet. 1In 1973, Wess and 2Zumino® proposed



a renormalizable model involving the interaction of two
spin-0 particles with a spin-1/2 particle. These particles
were related by a symmetry transformation, thus they could
be placed in the same multiplet.

The true importance of supersymmetry 1lies within its
ability to address two fundamentally important issues.
First, there exists the possiblility of resolving the gauge
hierarchy problem. Secondly, and perhaps more importantly,
the possibility of unifying all known forces resides in the
nature of supersymmetry. It turns out that "local"
supersymmetry implies "supergravity" and thus provides a
natural framework in which to attempt to 1link all of the

fundamental interactions.

1.2.2 The Algebra of Supersymmetry

It has been shown that supersymmetry can be used to
transform bosons into fermions and visa versa. In this
section, a brief explaination of the symmetry which is
responsible for this possibility shall be provided. The
generator (), of a transformation which turns a half-

integral spin entity into an integral spin entity must be

fermionic in character. Thus we may designate it as (), a

ul
left-handed Weyl spinor which transforms as a (1/2,0)
representation under the set of Lorentz transformations.

Its Hermetian adjoint, which transforms as (0,1/2) should

be denoted E&. It can be shown that the anticommutator of



any operator with its adjoint is non-zero. We therefore

have:

{0..0,}#0 (1.1)

{Q.,,(?,,} transforms as (1/2,1/2) under the Lorentz
transformations. There exists only one operator (the
energy-momentum tensor /F,) which transforms in this manner.

Then, (), and I, must be related entities. Thus, it may be

shown that the supersymmetry algebra7 is defined by:
[0..2,]=0 (1.2)

{0..0,}=20"p, (1.3)

where the o¢“ are the Pauli matrices and the constant 2 is
invoked for the sake of convenience.

Choosing =0 in eq.(1.2) shows that the Hamiltonian
H=F, commutes with the generator (. Thus, all non-zero
energy states are paired by the action of (0. As (Q is
fermionic in nature, this pairing condition requires that
all supersymmetric multiplets contain one degree of bosonic
freedom for every degree of fermionic freedom. These
"partners" must then, have equal masses.

Eq.(1.3) relates the Hamiltonian to the supercharges,

and using o o =2g¢g" , the important result

H=P =%

Ql

0,+00+0.0, +0.0.) (1.4)



may be derived, showing that the energy must be 0.

If we consider a globally supersymmetric theory (not

broken spontaneously) in which we define |0) as the vacuum

state, then we must have (,|0)=0. Then, since the
anticommutator of ( is the Hamiltonian, we find that the

energy of the vacuum is
EvacE<OIH|O>' (1'5)

Spontaneously breaking the symmetry requires that (

acting on the vacuum be non-zero: (), O):tO, leaving a non-

zero vacuum energy.

1.2.3 Implications of Supersymmetry

First, we address the question of parity in
supersymmetric theories. A quantum number designated R-
parity’ must be assigned to all particles in order to

maintain a coherent theory. It may be defined:

L1328 +1: ordinary particle
sz(_])sal_-sz{ ryp (1.6)

-1 supersymmetric particle

where B is the Baryon number
L is the Lepton number

S is the spin

11



We see that the conservation of baryon and lepton numbers
yields conservation of R-parity. Replacement of a normal
particle with a supersymmetric particle leads to violation
of angular momentum conservation by a value of *i.

R-parity carries with it some important consequences

which are relevant to the production of chargino and

neutralino states:

1) Normal particles always give rise to PAIRS of
supersymmetric particles.

2) Supersymmetric particle decay will always yield
supersymmetric products.

3) The 1lightest supersymmetric particle (LSP) will be
stable.

An outline of the spectrum of supersymmetric particles
is given in Ref[9]. As the degrees of bosonic and fermionic
freedom must always be equal, every particle must have a
superpartner. Thus, every quark will have a corresponding
"squark", each lepton a "slepton", etc. ... . Similarly,
the gauge bosons will have fermions for partners: "photinos"
to photons, "gluinos" to gluons, "winos" to W's, "zinos" to
Z2's and "higgsinos" to Higgs'. The various particles,
superpartners and their spins are listed in Table I.

The couplings associated with the supersymmetric
theories are in fact the same as those found in the standard

model. The interaction portion of the Lagrangian

12



corresponding to a fermion transforms under supersymmetry

according to '°:

gijnyA“_)ﬁgjL’al.jl + H.C. (1.7)

where ZL is the corresponding gaugino, ﬁ‘ the "squark" or
"slepton". Thus, the strengths of the couplings remain
unaffected by the supersymmetry transformations.

Unbroken supersymmetry would have particles and their
superpartners degenerate in mass, but as these "theoretical"
particles have not been observed in nature, we require
"spontaneously broken supersymmetry". If the symmetry is
brcken at a scale <€ 1 TeV, mass degeneracy 1is removed
while couplings remain unaffected.

An interesting result arising from supersymmetry theory
is that winos and charged higgsinos carry the same value of
conserved gquantum numbers. As a result, they may intermix
to produce particles appropriately deemed “charginos".
Similarly, neutral gauginos mix with neutral higgsinos to
yield the "neutralinos". The interactions of these quantum

fields are the essential focus of this thesis.



1.3 The Gauge Hierarchy Problem (GHP)

One of the most appealing qualities of supersymmetric
models is that they can be used to tackle the gauge
hierarchy problem. The nature of the problem shall be
addressed here, along with an explanation of how SUSY models
work to resolve it.

It has been mentioned that the standard model provides
a highly accurate description of currently visible
phenomenology, but fails in its inability to explain many
fundamental isssues, among them, values of constants
including charge and coupling strengths. It is expected
that the solution to these questions 1lies within the
framework of a more fundamental theory than the standard
model. Based on grand unified theories (GUTS), it is
predicted that the unification of all forces can only be
accomplished at energies which lie between 10" Gev and 10"
GeV (the Planck scale - the point at which gravity becomes
important). Some argue that no new physics should exist
between the energy scales currently being investigated (10
GeV) and the GUTS scale, but this view leads to certain
fundamental issues; in particular, those which involve
linking widely separated scales in a natural manner: the
Higgs' vacuum expectation value (=250 GeV) and the GUT
scale.

The GHP exists only if certain assumptions are

made:

14



1) The standard model may successfully describe physics
which occurs up to energies =AM much higher than the 250
GeV weak scale.

2) At the scale M, the standard model breaks down, and a
new physics occurs - possibly GUTs, gravity, etc. ... .

3) The physics of low energies is not highly affected by the
values of fundamental parameters of high enegy scales.

While the first two assumptions are self explanatory,
the third requires some qualification: The standard model is
a quantum field theory and as such, it has certain
constraints placed upon it. The path integral which defines
such a theory is only defined in so much as its short-
distance content may be regularized, i.e. it requires a
"cutoff" distance in order not to diverge. Thus, a
prescription which specifies a cutoff momentum, (as well as
a coupling constant g and a mass parameter u (both
generally momentum dependent), must be employed. This
leaves us with a defined theory (for momenta less than k).

Renormalization theory allows us to gather quantum
effects involving momenta larger than k, and place them in
the values of the constants g and g - transforming them
into functions of k. The parameters g and u ,then, depend
only on physics which occurs at length scales less than k'
in magnitude.

In order to illustrate the difficulties introduced by
the GHP, it 1is instructive to consider a hypothetical

unified field theory. If we demand that this theory contain

15



no other low energy fields than those required by the
standard model, then, for a cutoff k less than M, the low
energy physics should be that of the standard model. This
should include the gauge couplings g3(k),g2(k),g,(k), the Yukawa
coupling , g (k), quartic scalar couplings A(k) and the mass
parameter (k).

/f(k) is the negative mass squared of the Higgs fiels.

The associated potential is
V(g)=A¢' -1 (1.8)

These parameters are non-trivially dependent on the
construction of the particular unified field theory at
distances shorter than M.

The standard model dictates that all particle masses

are directly proportional to the VEV of the Higgs, (¢):

quark and leptor masses: m,, = g.(¢) (1.9)
Z and W masses: Ny = g,(¢) (1.10)
Higgs mass: m, =Vi(¢) (1.11)

The VEV of the Higgs is directly calculable from A(k),
uk), g k), ana g(k). Minimizing the potential ¥(¢)

(ignoring quantum fluctuations), it is found that:

16



(@)= u(k)I2JA(k) . (1.12)

If, however, quantum fluctuations become important, i.e.
when the cutoff is =M, k 1is no 1longer a reasonable
momentum limit. Instead, a low energy cutoff, k', should be
used - 1 TeV as an example. As k'<<< k, an approximation of

kX'=0 is acceptable, leaving:
(#) = u(0)/2,/4(0) . (1.13)

Therefore, a reasonable approximation of the Higgs' VEV can

be determined via the "renormalized" mass ;AO) and coupling

A(0) calculations.

The source of the GHP may be illustrated by calculating

y%O). The individual contributions generated in the ;KO)

series are all cutoff dependent, and proportional to k? ,

v 2 (0) = P (K)+ K(C A +Cog +-) (1.14)

It is expected that the parameters fit the unified field

theory when k is at its maximum, i.e. order of M, such that
1£(0) = (M) + M*(C,A(M) + ) . (1.15)

Since ;KO) should be E(¢),KO), then with a typical value of

Ji=1, 40) is of the order 10° GeV.

17



For a scale )f=10" GeV, eq.(1.15) would be written:

12(0)/ M? =107 = g2 (M) M* +(C,A+--) (1.16)

what this means is that in order for the known particle
spectrum to be what it is, p2(M)ym?2 must cancel out the
series to 26 decimal places. u3(M)M2  however , is only
relevant to small distance physics, and so the liklihood of
such a cancellation occuring is inconceivable within the
bounds of probability theory. There is then, no justifiable
explaination for the existence of two scales separated by an
energy difference of o' GeV, as this sort of division would
be deemed '"unnatural". This is the "technical GHP", the
more commonly addressed GHP being the philosophical question
as to why there should exist two such varied scales of
energy.

Invoking supersymmetry allows us to do away with the
GHP by means of natural cancellations for every contribution
of the series. Every bosonic partner of a fermionic
particle (and similarly fermionic partners for bosons)
couples with the same strength and possess the same mass as
the original particle state. Contributions to the Higgs
mass are then equally bosonic and fermionic. Bosonic
contributions carry an opposite sign from fermionic
contributions and thus, the divergences which arise in the

standard model are cancelled out in supersymmetric theories.

18



The coefficients ( (C,... ©of the series vanish, leaving a

divergenceless series.

It must be noted, however, that superpartners of known
particle states would have been detected by this point if in
fact such states possessed degenerate masses. To date, no
such states have been detected. It is necessary then, that
supersymmetry is  broken, leaving superpartners with
different masses than their standard model counterparts.
This being the case, divergences re-emerge in the Higgs mass
series. These "new" divergences are much more manageable
than those arising from the original series. This yields a
much more appealing situation, as the problem of naturalness

or grand unified theories does not resurface.

1.4 Broken Supersymmetry

It is well understood that if nature is intrinsically
supersymmetric, then supersymmetry must be broken if the
existing particle spectrum is to be explained. Mechanisms
of supersymmetry breaking have been thoroughly investigated.
It has been shown that only two such mechanisms exist; 1)
the O'Raifeartaigh! (or F-type) mechanism, and 2) the
Fayet-Illiopoulos!? (or D-type) mechanism. These techniques
however, impose strict constraints on the theory. This
makes for tedious and undesirable calculation.

The alternative is to break supersymmetry "by hand",

which is accomplished by adding explicit mass terms to the



Lagrangian of the theory. This requires care, since only
certain types of terms will leave the theory
"renormalizable". Giardello and Grisaru!’? have presented a
comprehensive 1list of mass terms which will not introduce

quadratic divergences. They are deemed "soft-breaking"

terms:
K, Red? + M, ImA* +C( 4> +he)+ Kt (2a + 77)+ K, (A 442 7)  (1.17)

- 4° and 4% are group invariant combinations of the scalar

fields A (eg9. 4'=4

yk

4Arﬂ' etc. ...).

- A is the fermionic partner of the gauge boson.

- Nﬂ is the parameter which distinguishes the mass of the
complex scalar field 4 from its fermionic partner vy,.

- If A is expressed in terms of two real spin zero fields,
then A/, splits the masses of these fields.

- The coupling constant C(C corresponds to a new (non-
supersymmetric) scalar interaction term.

- NL and ﬂl, are Majorana mass terms for the gauginos

corresponding to the groups G (non-abelian group) and U(l).
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1.5 The Higgs Sector in Supersymmetric Theories

The standard model wuses the Higgs field ,¢. to
generate masses for the quarks, leptons and intermediate

vector bosons. Masses can be given to both "up" and "down"

quarks because ¢ forms an JSU(2) doublet with its complex
conjugate. This, then allows for Yukawa couplings which

take the form:

8,0,9D, +quL¢‘l/R (1.18)

Supersymmetry has such couplings developing from cubic
terms in the superpotential W, which are formed from chiral
supermultiplets of the same chirality. Now, if ¢ is
defined as a left-handed chiral supermultiplet, ¢ will be
right-handed. (,, D, and U, will be left-handed fields.
Thus, Q,#0, couplings are permitted, but (,¢l/, couplings
are not. This difficulty may be solved by introducing a
second Higgs doublet, &, which transforms like ¢ under the
electroweak group, but which is left-handed. Therefore eq.

(1.18) may be replaced by the terms

£,0,6D, +quLaUR (1.19)

in the superpotential W.

21



1.6 Supersymmetric Lagrangians

Haber and Kane'®, have provided an in depth discussion
regarding the construction of interaction Lagrangians. Here
we outline some of the major points presented in Ref.[14].

Supersymmetric gauge theories are constructed to

combine gauge bosons V; with their (two component) gaugino

fermionic partners A in the adjoint representation of the
gauge dgroup G, along with matter fields consisting of
complex scalar fields 4 with two component fermions vy,
which transform under some representation R of G. There are

then, three different types of interactions to consider.

They are:

1) Self-interaction of the gauge multiplets: These terms

consist of three- and four-gauge boson vertices and involve

the covariant derivative D,,=ﬁ,,+-5—g(‘z"-ﬂi,") (where the 7 are

the wusual Pauli matrices). In addition to boson-boson
interactions, gauginos also interact with the gauge field

via the term
igf A "XV, (1.20)

where the f, are the structure constants of G.
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2) Interactions of the gauge and matter multiplets:
The interaction terms are:

TV (W o y, +id 8,4 ) +igl2T (B y &' =FGA )+ g (1 1) 1 a4,

y'u y
(1.21)
where T =17"/2 is the Hermitian group generator in the

representation R.

3) Self-Interaction of the matter multiplet:

It is essential to introduce some notation at this
point. The superpotential W is some cubic gauge-invariant

function of the scalar matter fields 4, (independent of 4 ).

We define the auxiliary functions:
- WIMA, (1.22)

D =gA'T"A, . (1.23)

This allows us to write the ordinary scalar potential V as:

V=LiD'D+F'F. (1.24)
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The Yukawa interactions are given by:

——;[(JW/&A,(%I)V/,V/, (ewranan) W,V/,] (1.25)

These formulae may be generalized to groups G which contain
a U(1) factor. Accordingly, the above interactions would be

modified in the following way:

i) No interaction between the U(1) gaugino A' and the U(1)
gauge field V': set f, =0.
ii) U(1) gauge multiplet: the term g7}V’ is replaced in eq.

[/

(1.20) by 1g'yol’,', (no sum over i), where y, is the U(1)

o

quantum number of the matter multiplet L{,%).
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Chapter 2

The Left-Right Supersymmetric Model

2.1 Introduction

It has been shown that the standard model, based on
SU@3). xSU(2), xU(1);.* symmetry has served as a highly
effective means of describing low-energy phenomena. The
model, however, cannot be a complete description of the
"nature" of physics, since it fails to address certain
fundamental gquestions. Having introduced the minimal
supersymmetric standard model in the previous chapter, it is
time to introduce the motivations behind extending such

models to incorporate left-right symmetry.

2.2 Motivations for the Model

The original motivation for the extension of the
minimal supersymmetric standard model to include left-right
symmetry was to investigate possible mechanisms for parity
violation in weak interactions. Left-right- (LR) symmetric
models provide a framework in which weak interactions obey
all space-time symmetries, along with the strong,
electromagnetic and gravitational interactions. In such
models, the asymmetry observed at normal energies results
from the non-invariance of the vacuum under parity

symmetry'. Left-right models based on SU/(2), »S(/(2), /(1)
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symmetry arre especially appealing since they reproduce
features of SI/(2), xl/(1); at low energies.

Beyond the obvious appeal of parity explanations, there
are other important reasons for considering left-right
models. Most importantly, there is the question of the
neutrino mass. If the neutrino does in fact have a mass,
then the left-right models provide a natural framework in
which to work. Then, there is the question of possible
substructures to quarks and leptons. If forces acting at
this 1level are similar to QCD, then there are arguments
which suggest that SU(2), xSU (2),xU@1),., , not SU(2),xUl); is
the symmetry of weak interactions. The B-L (Baryon minus
Lepton) quantum number is the only gquantum number of the
standard model which has not been gauged. As such, it
implies that there exists a deeper symmetry structure, so
that the replacement of U(l), (to which we can attach no
physical significance) with U(l),,, gives physical meaning
to all generators of the theory.

CP violation' has been a hotbed for investigations
which point toward left-right models. The CP-violations
which arise in the Cabbibo-Kobayashi-Maskawa (CKM)
parameterization of generation mixing for three generations
are dependent upon only one parameter, called J,,, (the KM
phase) . There exists no explanation for the milliweak
strength of the CP violation. The suppression of V+A

currents" can be used as an explanation of CP-violation
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strength in left right models where only two generations are

present.
2.3 Description of the Model

2.3.1 Notation

"Component fields" are used throughout the description
of che model. Fields and superpartners are denoted by the
same symbol, the latter being distinguishable from the
former by a tilde placed over the symbol. The exception to
the rule is the case of gauge bosons and gauginos which are
represented by different symbols. Two-component spinor
notation is used and all conventions are described in
Appendix A.

Taking leptons as an example, we have:

v - [4
‘Ls( ) , and its supersymmetric partner LLE( ) . (2.1)
e
L I}

(Y]

In this case, the field introduce via supersymnetry is

bosonic. Higgs fields (AL), on the other hand, possess

fermionic superpartners A, .
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2.3.2 The Fields

A) Matter Fields:

In order to simplify the description, only a single

generation of quarks and leptons 1is considered. SU(2), ¢

doublets of two-component spinors are classed into leptons

), ol =
Jl" E ; L~R E -
€ LR d L.R

and quarks:

(2.3)

S
1]
——
S ™
A
t~
)

. v
I‘lk =l 5
¢ 1.R

B) Gauge Fields:

SU(2),, gauge fields are triplets of vector bosons;

Wy The fermion  superpartners are  two-component
gauginos;4,,. U(l), , gauge fields are singlet vector
bosons, I'#, with superpartner gauginos, 4,. The SU(2),,
gauge couplings are respectively g, and g,. Similarly, the

coupling l/(l),., gauge coupling is g..

C) Higgs Fields:
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There are many possibilities for the Higgs sector of
the theory. The particular choice of interest involves two

bi-doublets:

®,(4,4,0 , @10, (2.4)
and four triplets

A,(0.1,2) , A,(1,02) , (2.5)

50,1 2) , 5,(10,-2) . (2.6)

This 1is twice the number of fields required by non-

supersymmetric theories. & 1is responsible for giving

masses to the quarks of ((/(2),, doublets, ®, , the lower.

These have fermionic partners ®, and @,
The members of the A,, triplets possess chaiyes 0, +1

and +2 respectively. The superpartner A,, has the same

charges as the quantum numbers are equal. As a result,

triangle anomalies should be present in the fermionic sector

of the theory. In order to counteract this effect, it is
necessary to introduce two Higgs triplets J,, and their
superpartners , 8L,R whose members possess (/(l),, charges

which give rise to electric charges of 0, -1 and -2. The

"triangle-loop" contributions of the §,, carry opposite
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signs to those of the A,, resulting in an overall

cancellation. These §,, Higgs and §,, higgsino fields do

not aquire VEV's and are not involved in the process of
spontaneous symmetry breaking. In addition, there fields
couple to very few fields in the theory. The entire LRSM

Lagrangian is given in Ref([9].
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2.4 Symmetry Breaking

This model has been constructed to contain four
distinct symmetries before symmetry breaking, three gauge
symmetries and one discreet parity symmetry, i.e. g, =g,.
The breaking of these symmetries is accomplished in three

stages:
SU(2), xSU2), xU1)y_, % P—MT>SU(2)L xSUQR)e xUM)y.,

SU(2), xSU2)py xU(1);_, _T)SU(?-)L xUm, ,

(2.7)

SU(2), x UQD)y —z—>U(D),,
Parity alone is broken at the first stage at the A, (Planck
mass) scale'’; here there is no gauge boson produced. The
g, and g, couplings are then, no longer equal. In the
second stage (A,)#0 is  responsible for breaking
SU2),xU(l)y., to U(l),,. It is possible to choose the Higgs

multiplets in such a way as to break parity symmetry and

SU(2), symmetry at the same scale,i.e., M,=M, . The final
breaking is brought about by (®)#0 and (A, )=0.

In order to ensure that U(l),, remains unbroken,here, as
in the standard model, only neutral Higgs fields are allowed

to possess nonzero VEV's. Their values are given below:
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o<l o] el o] @y ] (2.5)

(b) causes W, and W, to mix with a CP-violating phase e“.
In this paper the VEV's of the Higgs field have been taken

to be:
=[] @=to=o, 0= ol @y 2] e

Here, the assignments v, =0 and «'=0 have been made for the
following reasons; vy, >>max(x,x')>>v, is required strictly by

arguments regarding phenomenological hierarchy®. k=0 is

necessary in order for flavour changing neutral currents to

cancel as required.
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Chapter 3

Vector Boson Mass-Eigenstates

3.1 Introduction

Weak interaction eigenstates aquire mass via the
process of spontaneous symmetry breaking. These vector
bosons have an associated mass matrix which must be
diagonalized in order to yield "physical" mass eigenstates.
This chapter focuses on the evaluation of these matrices, as
their expressions are required in the determination of the
gauge boson - chargino/neutralino cross sections.

The genceration of vector boson masses in the LR-SUSY
model can be separated into two stages. This is possible
since the values of the VEV's chosen for the Higgs fields
allows us to distinguish left and right breaking scales
(vg>>k,,k, and «k,'=k,'=v,=0). The first stage has (A,)
generating masses for W, W, and V,. Subsequently, the
mixing of the two neutral states W’ and V, give rise to the

M

physical fields Z, and B,.

The second breaking takes place at a much lower energy

scale. It involves ¢, ,, a field which couples to both
left- and right-handed fields. This is responsible for
mixing W, and W,, but to such a small degree that it
warrants the treatment of right-handed fields as

"effectively decoupled" at this energy. Thus, it is only

W:,W) and B which aquire masses at this level. The neutral
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fields W, and B mix and give rise to the Z; and A4, bosons

which are familiar from the standard model.
3.2 Right-Handed Vector Bosons

The Lagrangian term responsible for the first stage of

boson mass generation is

2
(-5 e Wl —ig ¥, ) Ay (3.1)

Substitution of the VEV (AR) in the place of A, yields the

physical fields

W -2g.V
z, = e B (3.2)
(gl-(+4gl-’)
V+2gV
B=£’;———% (3.3)
(g +4g7)
with repective masses of
) 2\172
Aflzk=7'3-VR(g,}+4g,i) ' (3.4)
and
M, =0. (3.5)

B, is the massless gauge boson of the symmetry group U(l),.

W, and Z, are very massive states and therefore decouple
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from the low-energy theory. B” is, then, the only field

which continues through to the next stage of symmetry

breaking.
3.3 Left-Handed Vector Bosons

The relevant Lagrangian terms to be considered in the

second stage of symmetry breaking are:

-

70,0, 8e Wi, +0, 80 .yt & 1rlo0, - B W0, + 0, Bl o)
G 2 T G

(3.6)
Since W, and Z, have effectively decoupled, the charged

bosons emerging at this stage are to a good approximation,

W, whose masses are (in this approximation):

NG
qugj‘"{gl.(’q'*‘"‘:l) . (3.7)

The neutral bosons must be expressed in terms of the

fields B and Z.:

- gRZR + 2gl’B

WU -
! (glze + 4&'12' )“

(3.8)

We may define the gauge coupling constant g' of U(l),,as

. Er8yr

S 3.10
g (g;+4g)" ( )
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in order to express the neutral mass eigenstates as

7 - glu/lo —zg'B

4 T 3.11
" (grrag?)” B

of mass

172

M,, =[(x2+ ) g} +4g”)] (3.12)

along with the massless photon given by

- 2g'Wlf) +g. B

y 2
" (g +ag”)

(3.13)
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Chapter 4

Charginos (Charged Gauginos and Higgsinos)

4.1 Introduction

Gauginos®, Higgs bosons and higgsinos possess certain
identical quantum numbers which make it possible for these
fields to mix. As in the case of vector boson fields just
discussed, after the Dbreaking of gauge symmetries,
supersymmetric particles may combine to yield "“physical"
states. In the case of charged particles, these are deemed
"charginos". The identification of such species is a more
involved procrss than in the case of vector boson mass
eigenstates, owing to the presence of superymmetry breaking
terms in the interaction Lagrangian. This chapter shall be

concerned with the elucidation of such states.

4.2 The Mixing of Gauginos and Higgsinos

Gauginos mix with higgsinos via the "AyA" coupling of
edg.(1.21). The non-zero VEV's of the Higgs fields generate
fermionic mass terms. These massive fermions combine to
produce new "physical" fields. Soft supersymmetry-breaking
terms are responsible for contributing to these fermion
masses.

The terms of the Lagrangian that are relevant to the

mixing may be called L,,:
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I,,,,,=l\/§'/'r{(r-A,‘)'(g,‘r~/1,,+2g,/1,.)r-[3L}+h.c
+IVE7?{(1-A") (gRr-lR-+2gyly)r-ik}-+hxa
w2 Tr{®, (g, 74, + gu2,)0, }+hc.
+5 7'r{<b (g, 74, +g,,r-/1,‘,)&> }+h.c.
wm (220 2 B )+ (0,20, + T 70,

e, (4,2, + 2,7, )+ 1r{u[nd,5] &.)

{73, )e-8, )}+ (- B,)(+-5,)}

(4.1)
4.3 Chargino Mixing

Terms in eq.(4.1) involving charged fields give
rise to chargino mixing. Substituting the VEV's of the
Higgs fields in eq. (2.9) into eq.(4.2) yields the chargino-

mixing Lagrangian L.,:

. 0 . e - . i+ .y ~ - . AL - + A=
Loy = {’)*k(‘/igk“kAR +gle"d¢d) + 1A, g K, @, TidpgpKk &, +id g kP, +m A A,

+"'n7~'nf1n+#15;55;+#15’;43;}+’7-". (4.2)

where the simplification u,=u,=0 has been made.
As in the case of vector bosons, each stage of symmetry
breaking may be considered individually. The mass term of

the fermionic partner of W, is responsible for the first

stage:
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L, =g, 00 W, +h.c (4.3)

where,
- A
A =[__f‘). (4.4)
iy,
W; is a four-component Dirac spinor. Since Majorana

fermions cannot carry conserved additive quantum numbers,
all charged fermions must combine into four-component Dirac
spinors.

From eq.(4.3) it can be seen that the mass of the m;
is Jagﬂ@, and equal to the W, , mass. W, , however, does
not develop an equivalent mass indicating that supersymmetry
must have been broken. As 1in vector boson theory, the
particles produced at the first stage of symmetry breaking
are very massive. Such massive states will decouple from
the low-energy theory.

The second stage involves the remaining terms of
eq. (4.2). The Lagrangian terms are ed.(4.2) - eq.(4.3),

which may be written as the matrix equation:

(v v )(0 XT)["/JMC (4.5)

L.=-
‘ X 0 ANy

N |

Defining

39



v =(=, ik, ¢ #) (4.6)

p o =(=12, -1k, @, 8) (4.7)

0 m 0 K
Y= 'k BrKq “48)
8.5, &pk, 0 —H

0 0 - 0
The mass eigenstates may be defined as
x, =V, , xz=Uyw , ij=1234 (4.9)
where I’ and U/ are unitary matrices chosen to satisfy
U xV'=M, (4.10)

where M, is a diagonal matrix with non-negative entries.

Using these definitions we may write eq. (4.5)

"(XI(MD),,Z} +h-c.) (4.11)

and using eq.(Al9), then this may be written in four-

component notation:

> Mzrzx (4.12)
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where the % are charged four-component Dirac spinors:

Jr,=(f’.) : (4.13)
X

Expressions for the matrices U and I’ must be solved
for, and subsequently, the masses M. M, 1is constrained
to have only non-negative entries. The eigenvalues of .\
may, however, be either positive or negative. Positive
square roots of the eigenvalue problem for X'X will then be

the diagonal entries of M,. From eq.(4.11) we have:

ME=VXX V=0 xx(U0) (4.14)

Thus, the eigenvectors corresponding to the eigenvalues of
X'X will be the diagonal matrices U/' and /. The solutions
to this equation have been presented in Ref.[22]. All
calculations will be expressed in terms of the matrices (J°

and V.
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Chapter 5

Neutralinos (Neutral Gauginos and Higgsinos)

5.1 Introduction

The neutral states which result from the mixing of
massive gauginos and higgsinos can be elucidated in much the
same manner as the chargino states of the previous chapter.
There exist, however, certain differences which must be
noted; these are:

1) One extra gauge field A4, is involved
2) Since neutralinos do not carry charge, they may be
represented as Majorana spinors.

The neutralinos of this theory are produced at two
stages of symmetry breaking, as was the case for the gauge
bosons and chargino states. The "heavy" neutralinos are
produced at the first stage of symmetry breaking, "light"
neutralinos in the second. Since the amount of mixing
between these states is minimal, it is acceptable to make
the approximation that mass eigenstates may be calculated at

each scale independently.



5.2 The Neutralino Mass Lagrangian

The terms of relevance are contained in eq.(4.1). The

neutral terms arising from this equation are:

— {3 A0 . 40 A0 S0 1 Ty
Ly = { ’AR\/—igRURAR+'Al'2\/5gl'URAR+’AR 7 &K P
0 L 0 ca0 . 0 L0} Q)

—14, &K, ~ iy 'T:gk’\d¢:d +iZ, FEIKP

0 a0 0 40 0 40 Ut .
+nQ2LAL+nmﬂR2R+ny2,1r+lm¢m¢m}+hL

(5.1)
5.3 "“Heavy" Neutralinos

The mass eigenstates which develop in the first stage
of symmetry breaking derive from terms in eq(5.1). These

"heavy" states involve terms which contain v, (we may define

the Lagrangian as L, ):

Lam = {_’.;"UR ‘[2—5-»'1( U/(&;e +’2‘;'2‘/§8’V URA‘;(} the (5.2)

We define:
A\T .l v It
(&) =iz, -, &) (5.3)
Using this, eq.(5.2) may be rewritten as

17 )
L =‘]I'§UR(¢J) YE +hc (5.3)

with
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0 2g, . (5.4)

The mass eigenstates may then be defined as:

Z =N,¢& (1,j=1,2,3) (5.5)

where N is a unitary matrix which satisfies
N'YN '=N, . (5.6)

N, is a diagonal matrix possessing only non-negative
elements and may be found in the same manner as in the
previous section, by squaring the matrix equation. Solutions
for these matrices can be found in Ref.[22].

Using egs.(5.5) and (Al9), edq.(5.3) may be expressed in
terms of four component neutral Majorana spinors. We may

define:

i'?=('f'(,) (5.7)

and then the mass term will be

LY MY (5.8)
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where M, are the diagonal elements of N,.

Now the matrix,

glze -28:8; 0
YY=|-2g.8. 4g 0 (5.9)
0 0 gr+ag’

which has eigenvalues 0, (gi+4g}), ana (gi+4g}) ,the

diagonal entries of N]. The diagonalizing matrix is
therefore:
[
Er -28, _ ___]__
R NI ) NE
V2(gi+ag)” Valgieag)” V2
8r -28, I
N = = (5.10
5 )

V2(gi+agt)” Va(gi+agd)”
28, 8r 0
e - 112 2 9 12

\ (gl.( +4g1-') (gl.( +4},’,7) J

Egs.(5.5), and (5.7) are then used to determine the

expression fro the "physical" neutralinos which arise from

the irst symmetry breaking:

(_i(gl(ﬂ’ol( _28'1/’7‘(') Z\r;,

V2(g2+4gl)” V2

+i(gle}:(;e - th'zx') _ &
Va(gi+agl)” V2

j.'m‘—‘ (5.11)

45



with a mass
Lo (g2 vagh)” (5.12)
(-ilg 2y ~28040) &)
A (gt +agt)” 2
X = = ’ (5.13)
+l(gR/1 2g,,/1 )+§OL
| V2(gi+ag)” V2
also with a mass of
l Ule(g;+4glz’)”‘ ’
and
’( R}‘O +2g, ’ﬁ)
-~ +4g;)
Xp = +l(gR 2 -2g, lo) (5.14)
(gle+4gx) J

This is the superpartner of B

with zero mass.
The two massive Majorana fermions may be expressed as a

single Dirac spinor
_ A
‘Zn_ ]( /10 —_
= NErtr (5.15)
; T\ 2
(g3 +4g7)

2gx'}x') ,
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the superpartner of Z,.

The massive ¢’ decouples at this energy, leaving X, to

continue through to the second stage of symmetry breaking.

5.4 "Light" Neutralinos

At the low energy scale, the particles which are of
interest are no longer those which were expressed in
eq.(5.1). This is due to the reshuffling of fields at high

energy. It is therefore necessary to reexpress the fields

A, and 4. in terms of X, and A,. From the definitions:

A = Euhy =282 (5.16)
z = N N2 )
(g7 +4g7)
2= gy — 28 Ay (5.17)
vp = N2 )
(g7 +4g?)
we get
P = gl =28 2 (5.18)
RES B )
(g3 +4g2)
and
. = 8ily = 2gt'}_‘:/_ . (5.19)

(g2 +4g2)"
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Substitution of eq.(5.18) and (5.19) in eq.(5.1) yields
the light neutralino mass Lagrangian L,,, which may be
simplified by discarding contributions of the fields which

decouple at high energy, eg. A% and /.

14y ‘/Egl'gll K, (3?.,
(glze +4g; )1/2
dm, g 2, M g A2,
g +4g  grt+4g

_ cal) . 0 220 py
Lan = { —iA, & K.G+ A, 581K
. a0 o0
_i4, ‘/—igl’gkhd¢2d
2 2\
(gle +4gx')

+m, XA, + +2u,8°45 }+h.c. .

(5.20)

The mass eigenstates may then be determined by the same

procedure as in the [L,,, case: First defining

Q) =(=2, -ity, 3 &), (5.21)

11

then eq. (5.20) may be written as:

Ly = -4Q") 20 +he. (5.22)
where
{
n, 0 -~ £ &K, F&.K,
0 "’l'gize +4’”Rg1:' Jz—gl'gRKu _‘/ng'giz’fu
y< - 2 212 2 2\1"2
7 & + 48 (gR +4g:') (gR +4gr)
L= \/2—_1 y K
Lgw, R 0 -2
(gz.e +4gl‘)
—J2¢.0. N
Lgx, (L'—E“L),L 2, 0
\ Cr+ag (5.23)
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The physical states are then defined by:

=B , (i,j=12,34) (5.24)

The xf) are four-component Majorana spinors whose masses are
the positive square roots of Z,=B'ZB', where the matrices

B’ and B"' diagonalize Z. These ma.rices have been solved

for and have been presented in Ref.[22].
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Chapter 6

Chargino/Neutralino-Gauge Field Interactions

6.1 Introduction

Since the introduction of supersymmetry,
experimentalists have been axtremely busy trying to identify
physical states associated with this '"new" physics. This
chapter 1is concerned with some of the fundamental
interactions of supersymmetric particles with members of the

known particle spectrum.

6.2 The Chargino/Neutralino-Gauge Field Lagrangian

The first step in developing cross section calculations
for chargino and neutralino production in electron-positron
collisions 1is to determine the contributions to the
chargino/neutralino-gauge field Lagrangian L.,. It should
be noted that some of these fields will not contribute
directly to these interactions, but only after mixing. Here
we shall be concerned solely with one generation of the

physical fields.
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The Lagrangian’ terms are:

+T{®,5,(-sg, 7 W} ~4g,r W), |+ he
+Tr[$d'6 (—%gLr-W,f -18; r-Wﬂ")d)d]+17 c.
+%gLIL3/4 Y:zG:/lL + %ngRa;z .G, A,

a>u

(1)

The expansion of each term with its Hermitian conjugate
yields explicit two-spinor expressions for the Lagrangian.
Here we develop these contributions, one at a time,
beginning with the left-hand Lagrangian.

The expression
+17[®,5,(- s g, v ) ~ 12,0 WE)D, |+ e (6.2)

involves the &nz"lL term which has been determined to have

the form

(6.3)

5- [éﬁ
b,

é’s&tlésdl
S——

using an extension of the Gell-Mann-Nishijima formula.

The expanded form of eq.(6.2) is, then:
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~11r Zsluu Z:., (Eﬂ )[ g E8Mu [:'0" ?;") + h.c.
al.u 2u O J \/" g W - %gl-W#; ¢;u ¢(2’u

(6.4)
which yields the terms
-t Wil i’f,. +¢§’u",. v~ 1.0, ¢1u +9.0,8
+¢lu Gy¢lu+¢luo/l¢lu_ "'Ju ;1 ¢2uo'y¢"u )]
(6.5)

the Hermitian conjugate term having been evaluated in the
same manner, and neglecting those in W' and W~.

Similarly the term

T '/'r[Eda,,(—gg, rW-sg, T n;”)cbd]m.c. (6.6)

gives rise to similar contributions.

Next, the 1left-hand gauge field contribution is

considered:;

10 2,5 TGA, , (6.7)

wia=u

where the 7, are 1 times the regular Pauli matrices 7.

The expanded form yields the two spinor terms:

vig e (15,4, - 2,5,4,) . (6.8)
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where terms in W' and W~ have been ignored.

The total two-spinor interaction Lagrangian is:

LCNZ =

I{ gL ,uL[ ()‘l /lﬂ"‘L_}-La/TL) +

%[ ( ¢Iu ¢?u + |u0-[l¢|ll ¢2u y ;u - ~;u_0-[l ;u
¢; g, ¢1u + ¢Iu ¢Iu ¢2u y¢gu - ¢gua-;4 (Zju )]
¢+d6- ¢14 + ¢1d ¢1d ¢zd°',4 2~ .’(.)da-p¢(2)d )} ]
=, o~ o — =, - - = _ -
"’;‘[ ( ¢?do-p¢?a'+ 1dF ?d ¢*d°’ $ry + 240,924

(6.11)

At this stage it is instructive to convert to four-spinor

notation as this makes the identification of physical states

explicit. Therefore it is necessary to define the weak

interaction eigenstates in terms of Dirac and Majorana four-

spinors:
Roe($) s () om(2)
¢lu ¢2u 2’[
= (¢ = (9
Iy = [ ld) ; dez(f_d)
Da P
and
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Using eq.(6.12), (6.13), and (Al18) we may convert the

following:

~A,5,4,)= W, PW, +W,y" P,
B.) = Foy P ES - Foy P
) = By By - Foy P,
5,0 = Foy PRS- oy P FY
B)=

f;u}’”P u—l?luy”PR]:;lu

!

A

RN

—
>
=

l
=
S =3
=
+

t~

;SJI
o
‘:ql

(

<o

LJ -
+
.

——
=
15
QI
SN
+
S |y
-‘c
'sﬂl ‘SJ' ~$~||

N

u

Qi

=

ll

-~
=

“Q:ll Q.

)

———
.
T -
I
&
-+

(6.14)

In addition, we must express the fields W, and V, in terms

of the physical fields Z;, and 4,, which arise after the

breaking of symmetry. These fields were discussed in

chapter 3 and have the forms:

’WO—‘ 'B
7, =8 280 2? 2 (6.15)
(g2 +4g")
and
20¢'W'+¢g, B
4= 780 (6.16)

(g7 +4g)

where the coupling constant g' has been defined in terms of

the coupling constants g, and g;:

' gl'gR

£= 3 6.17
(¢ +4g3)'" (6-17]



rearranging eq.(6.15) and (6.16) we are left with the

expression:
r Z. +2g' A
W,°=————-——_&L”' fl,;‘ (6.18)
(g +4g7)
We define
) 2g'
COSU)y = gll 7T s SInf = N 8' 2 (6.19)
(g7 +4g") (g7 +4g)

Using eq.(A28) we have expressed the fields in terms of
their left-handed and right-handed projection operators.

We may separate the interaction Lagrangian into individual
chargino and neutralino Lagrangians. Combining all of the
above expressions involving charged states yields the four-
spinor chargino Lagrangian. In the choice of VEV's of this
model, the states involving /, and /,, remain unmixed and
constitute eigenstates of the theory. The expression for

the chargino interaction Lagrangian is:

55



_,{( 800y s og, + 828 7, )x
cosf,, gy

(<Fouy" BBy + Fouy" BBy + By PLE, - By P

~ ~

=By P By 4 By Py + By Py = Foyy" Py )

-~ - -~

4 "A,I(Wl yY'PW, +HT-/L}’III)RM/L +W—R}/”PLWR +—W;7”PRWR)

+ ZI,(gl cosG,,.[ﬁy"]’LWL +—W-;7”PRWL]-g'Sin Bu'[l'_f,:z}’”PLWR +—W:/;7"PRWR])

7, [f—f—(w YW, + W,m"l’,m)) }

&8

(6.20)

Performing the same steps with the uncharged higgsino and
gaugino components yields the analagous neutralino

interaction Lagrangian:

_,{( gl COSZO,, Z;"f'gkg ZR )X
cos Gy &

] ( o ~ = - = - = -
% s gt ALUNFTE 5 3 Y 00, 70 _ 10 m 0
5 -1/ 4 ]l,llu +1]u}, 3 +I;uy PL]—;’.u Zuy PR]_;M

lu R lu

DO gty [0 —::0 Iy 0 ?0 1 0 -"TO ‘ 0
=Dy Pl + By Pelog + gy PR, — Fuy Ry, ) }

(6.21)
At this stage the WL, WR, F and [7", fields must be

L}

expressed in terms the chargino and neutralino nmass
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eigenstates. The interacting neutralino states are defined
in eq.(5.21). The corresponding chargino eigenstates are
defined in eqgs.(4.6) and (4.7).

It is instructive to consider the low energy theory, as
its results are familiar from MSSM theory. Thus, we may
reexpress the low energy chargino interaction Lagrangian

using eqgs.(4.6), (4.7) and (4.9):
1= =i =i A 4V 41, (6.22)
and

X =_illll’1~L_"Ulzﬂh"*_(/nau+lll-l’¢d ’ (6.23)

with equivalent expressions for pi,r;.r, .

The right-hand projection of Wﬁ can be expressed
P, 0 X
= Yy = . . . . ) ’ 6.24
RS 7 )T -0, + UL U + UL, + UL, (6.24)

since, by the properties of unitary matrices, the bracketted
term 1is equal to one. Using eq.(6.23), and equivalent
expressions for 2.,%,.¥: . the right-hand side of eq.(6.24)

can be reexpressed as:

PR(UHZ+U:|i':+uali'3+”4ni'4) ' (6.25)

giving;
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I)Ilp‘./l = I)I(((IH/%I +(/21'%2 + (/111%3 +U4li’4) . (6' 26)

In the same manner, expressions for all of the Lagrangian

contributions can be developed:
WP, = (V2 +VieZa +Voks +ViuZe) 7P,
PW, = PVd +VaZe +Vads +Vas)
W,y B, = (Un g+ Uns +Un T+ UnZa )7 P
P, = P(ULg, +Upts +Us 7y +Upn7,)
For' P, = (12, + V% Vs + Va2 PP,
PO = P + 10T +T a2 V)
Wy = (U + UnTe + Un T+ U )7 Py
by =(Und +Usa + UnZa + UL Z )7 Py
RS A (PSS WS W N W

Ry'p = (l'ﬂ;l +I;2}: +V33;3 '"1'34;4)7”]1

I’Ri;u = PR(Uni’x +U}:i- +USS/%3 +U342-‘)
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Fuy'Po=(Us 2+ UnZa + Un + UL R )P P
Pl = PN + 1t +10 2+ %)
Bt P, = (a2 +V 2 +VoZe 41707,
P, = PlULT +Undy +Un 1 +U L Z,)
Foy'p, =(B.F + By 2o+ Bols + B X P
PR = P,(B,Z) + B2 + BLZs + BLZY)
Foy' P = (B2 + Buds+ BuZ + BLZO )P
PF2 = P(BoTY + BuZo + BuZy + Bu1))
Fop, = (B + BTl + BT + BLE)P'T,
PRy = P(BLZ + B3 + BL2, + BL 7))
Foyp, =(BiZ + Budo+ BaZo+ BLZ.) 7Py
Poy = P B + BoJo + B3y + BuZl)
(6.27)

The total chargino-gauge boson interaction Lagrangian may

therefore be expressed:
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L, =

Z:f{ £SO 5 (v + v )P+ (UU; + VUL R 7,
W

+g,c080, 2y, 7 (VViP, +U UL P )T,

J
— g'sin 0,,2,{'7,,;: (V,QV,;PL +U.2U;2PR)Z'; }
+Z,’;{ &f_{”_;" y“[ (V,ZVJ'2 +V V) +V,4V;,)PL
-
+(U,2(1;2 +(/‘3U;3 +U14U;4)PR ]}; }

A{ 53 y"[ (47" 40+ V)P,

AU +UULULUL +ULUS)P, :lz }

(6.28)
Similarly, the neutralino-gauge boson interaction Lagrangian

may be expressed:

Ly =

| 58 B
it W

2g

ik at)

+z;;{ &"—“l’—'}f‘y"[(l)’,ﬁj‘_‘ +B,B;, )P, +(B,B], + BB}, )P, |7 }

(6.29)
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We may simplify the above expressions by expressing them in

terms of the matrices defined below:

0" =cos® 6,107 - ~—-2i sin 26,1707 +c0s26, (110 +17,07)
L

0% = cos* 6,U,U", - %sin 28, U, +cos26, (U1 +U U,

L

(6.30)
QUL = ljzl'j'2 +I;3Vj'3+l',41'1'4
QUR = U,:U]‘2 +UUL+U LU,
(6.31)
and
()",f =-1B.B,+1B,B,
(Tf:—Oﬁ'
(6.32)

The left-hand chargino Lagrangian may therefore be expressed

L g 1R Wl ' T
LC"(ESSIGT)Z;'[L y (0B +0" Bz ] (6.33)

The left-hand neutralino Lagrangian is

I =322, (0 P40 1)) (6.3)

The respective right-hand Lagrangians are

260, _.[=. -
={C::st9u ngeZ;e[lr 7‘,(QU"I’, + ):I)I')X'] (6.35)
It

R
Le

6l




and

1 =122 77, (0 P+ 07 B2 (6.36)



Chapter 7

Chargino and Neutralino Production in ¢'¢ Collisions

7.1 Introduction

Experimental identification of supersymmetric particles
has become a major focus of the new generation of high-
energy accelerators. Here we calculate cross sections for
the production of charginos and neutralinos in ¢'¢ -

collisions.

7.2 Cross Section Calculations for the Process

~0~0

L 0 P
ec _—)ZL.R—_)ZIZJ’ZIZI

Chargino and neutralino production in high-energy
collisions has already been studied in depth for the Minimal
Supersymmetric Standard Model. For a review of this
material one may refer to Ref.[14]. This work is concerned
with the lowest-order process for the decay of the Z/- and
Z'-bosons into charginos and neutralinos in ¢'¢ collisions
for the left-right supersymmetric model. The process of

interest is:

~=~0

e'e 22,290 %,.1%,

We define the four-momenta:
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Incoming ¢': ¢, ; Incoming e : g, ; Outgoing 7': p, ;

outgoing ¥ : p,

Thus, the conserved four-momenta are:

2

K =(q,+q.) =(p,+p) . (7.1)

For the sake of convenience, the calculation will be
performed for the Z' interaction, the left-handed equivalent
requiring only minor substitutions. The neutralino cross
section is calculated in the same manner.

The Z'-propagator .s defined:

—i - 1)k k
1)2.(k:)'=‘—~—'—’:*—7‘|:g,“.+( (¢-1 b ] (7.2)

where £-T,M, at the singular point k*=M;, and

£=1 in the 't Hooft-Feynman gauge,
£=0 in the Landau gauge,

f=x in the unitary gauge .

Since charginos and neutralinos are physical states, this
calculation is constrained to be performed in the Landau
gauge.

The vertices are defined:
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Z-y 7 -vertex: ¥ (0lp +08p,) , (7.3)

&
where,
1+ 1-
PR=( 275) and P,,=( 7 (7.4)
¢'e" -7'~ vertex: —i—2R 7"(0,”. —-c_‘;)a) , (7.5)
cosb,.

where the ¢ and ¢, are the vector and axial-vector

couplings of the Left~Right Supersymmetric model:

¢, =-16+15sin° g, and ¢, =-3sin* G, (7.6)

7.3 Invariant Amplitude 7 for the Z'-% ¥, Interaction

The invariant amplitude M for the ©¢'¢ >Z'y'7,

interaction is written:

m = { [ i1 % (42,57 (01 P + O P )1 (41.5) ]
cosf,
=i kuk"/M?z.’ . 8 - vf ¢ ¢
- o= - i—=E—a(p,,n)y'\e Sy ulq,,s
[ (kz—M2.+i€)[gﬂ (k'—M£.+l'£) cos8, (1 )7 (1 175) (ln |)
(7.7)
where the terms in kk, —0 by virtue of the fact that
ky:p'.’;l—pl;l (7'8)

and the Dirac equation gives
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p.,jip,,n)=0 and  pa(p,r)=0

(7.9)

We shall call 7

l( po ) ll) )E’; ((12,sz)}z"QUI‘PLi"((]“s‘)ii(pz,rz)}'v(c; —c;}'S)l_l(pl’r) (7.10)
gy cos O,

and 1,

'(-————) 10, (K )z, (42.5) 7 OF Pe (00,8 pors )y (et = s il pror ) (7. 12)
£ cos 6,

The average square of the invariant amplitude; [m[’

=mmn*, is
then defined:
|m| =343 |, c'm,l2 =37 |m,|: +|m,7n;|+|7/12771,'|+|7/a:|2 ] (7.12)
amns Spns

where we average over initial spins and sum over final

spins. Applying succesive Fierz transformations of the form

[N yu(D][o(7)y o 7)) = =[7 1)y A7) B(7) 7 al0)]

(1.13)

and evaluating spin sums according to

Zul(pl‘rl)’_ll(pl’rl) =P +Mc'

n

S uy(por)i(p,r)=p. - M.

zi"(q“sl)z’l((h‘sl) =4, +1\'I,.

3
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Zi’:(qug);z(qz,sz) = q: - A{I

$2
(7.1
where it should be noted that at this energy, the electron

and positron masses may be approximated to equal zero, thus

> u(p,.n)u(p.n)=p, (7 15)

n

and

Z"Z(pz’rz)ﬁ:(pzvrz)zlpz (7.16)

n

then we may evaluate each of the contributing terms,
|WL,|2,ITTL,7R;|2,|?722?7z,'|2,|’m:|2 individually.

As an example, we evaluate |m,|':

2 ., \2 2
_('g'gc—f;‘é‘) o |p. k)]

{ [ 7,(a.8)r (1 -7)7. (9, s)7.(9,.5) 7 (1- 7)1 (42, 5,) ]x

[ #(p,.n )y, (e = s )ulp,n )a(p, )y (e - iy Jalp, .n,) ] }

(7.17)
Completing the spin summations and evaluating the products

with the help of the trace theorems

Tr(y,7.]= 48,
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177,757 ) = N 20~ Bunlle* Burin)
Tr[}'s}'a}'ﬂyﬂyv] = 41'6‘"/,/,‘.
Tr[odd # y's]=0

Tr[¥sva?p)= Tr7svatuta] =0

(7.18)
and defining
¢ =¢,—¢, and ¢, =¢, +¢, (7.19)
we are left with an expression for Wﬂz of
1o _Euk” 0: |12, (& 'x
ghcos @, )7
{ ("I:f +e; )[((/: P )((11 '1)1)+((1: P )((II P> )]
+("l:e - clz )[(‘1: P )((II '1’1)" ((12 P )(ql P2 )] }
(7.20)
In a similar manner the expressions for hnm;f,ng;z,mmlmAZ

are determined to be:
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|%”'7"'i’lz= 37( &Rg )’Qu QUR'

g cos” 6,

| ik | .o

\ 4 ,|2 . . .
] = 32(gﬁ£:z>i°9, )Q,f OF||D.(k l*{ (2 +e)p.-p,) } (7.22)

X

D, (k)

& cos” 6,

{ (cfze +¢; )[((I: '1’2)((11 '1)1)‘*’((12 P )((11 "Ps )]

32(—91"%'2—]\@5%

_(cfze - )[((I: '1’2)((11 '1’1)' (‘12 P ), P )] }

(7.23)

Now it is conventional to express these quantities in
terms of related Mandelstam variables defined (for incoming
particles of momenta p, and p, and outgoing particles of

momenta p. and p,):

S=(p‘, +pn)2
= (I)A ‘pc)
u=(p,-p,)

(&1

(7.24)

In this particular case we have

K =s=(q,+q,) =(p,+p) (7.25)
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-

which allow us to express the momenta products (neglecting

the electron and positron masses):

(7.26)

This process was evaluated in the center-of-mass frame

of reference. We have

"= i[AII + Mi:, — 8- ‘/[s-(Mi: + Mi; )2][5—(M}; - Mz; )’] cos&a,)

(7.27)

l= }—(M;l, + M;, "“H\/[“"(Mii + M, )2][5“(”[51; —Mi; )2]cosam,)

(7.28)
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Taking all terms into consideration we may express |*m|fw for

the process ¢'¢” »7'> 7y

(g:’;’zciif;")( (CL”:!S (lox[ +[orf) > [ T OEN VR CVEARG VA (YRl Vil

+|:52 -ZS(M;; +M;‘)+(M;; + M,, )2](:052 Ocrs ]+(0,,L():. + ():?()'f.)l: SM M. ]
(7.29)

7.4 Differential Cross Sections and Total Cross Sections

The differential cross section for two body scattering

1+2—>3+4 of non-identical particals is given by:

]
CAf |q| 647{33‘

2

M(s,1)

o (7.30)

where in the case of mixed handedness, only the s-channel

contributes. For our process we have:

- r

As, M2 A1) [-8‘-(M‘,'+Mc- J s—(p,. -, )2]
4q* = <= A , (7.31)

49" = 4 Lo , (7.32)
so that in the high-energy approximation M _M_ -»0 , then
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172

YL
[ ] 20 oo ) [

n

Als, M3 M?) 5

The partially integrated differential cross section for the

process ¢'¢ = Z'->x'¥, is given by

do____| (2&'3&’; ) lirel) [ 200 sar Yot (nz ops ) ]mx
d(cosO,,,) 2567\ gicos’ 6, Jy(s-Mi+1g) L s % PTosA F
{ezfefert) [ =tz -nes ) |
" [f ~2s(M, + M )+(a2 — a2 ):]cos: O, )
lotor varoyfas, v, | |
(7.34)

Integrating over 6,, gives the total cross section

o g,ig'z (C‘,:g‘*‘ci) _:7__ ) \ _!_ o I
Tror 128”(8'1:' cos’ 9;4-)5(_5-_}\.{;“'3)2 I S(Mi.‘ +A4};)+s: (Mi’ Mi‘) X

{ (o[ +lorf )%[s —(a2 aa2 )+ (ag2 - M. )]
HOrow +orgr )[4.;/\4}[. M, ] }

(7.35)



The corresponding differential cross section and total cross

section for neutralino production are respectively

do - 1 ( gng )((C§+Ci) l:l__z_(M + M )+%(A'I;..—AI;..): illl“x

d(COSHCM) 2567\ g cos 6, s—- M, +l£) s

{ Qo storsp) [ 2~ 05 ) |
+[s2 —ZS(M;:, + M, )+ )+ ( ) ]cos2 Oy )
(oo™ om0t [4vM M, ]}

(7.36)

and

o - 1(gRg ) (c3+¢?) []_g(M M)+;]5(M;,~M;..)2 }'“/

1287\ g cos™ 6, S‘(S‘ M, +IS) s

{losf siors )= slags sz ) aag a3 ) |

(OuL 0||R‘+O||R ()nL [4SM M. ] }

(7.37)
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Cross sections for the left-handed interactions have also

been calculated. The results are:

For the process ¢'¢ > Z, > % 7t

do___ | ( & ) (6 +ci) z[I—E(M?.+M?_)+—1:(M?.—M?.)z ]
Toostm)~ 3567005 by Jisart a0 M) W =
ot o) [ -t -5 ) |
N [.6 ~2s(a} 4 M2 )+ (M2 - )z}cos2 Bens )
w(otorsotoram, m, | }
(7.38)

and

_ ] X? (cl:e+"1:) __2‘ , ) _]— . L\ 12
e lzg”(c°54 0, ).s(s—Mj +ig)2 1 s(Mfr-' +A/{i3)+ 5 (Mi‘ -M;-) X

{ (o] + |()’5’:)%|:s2 - a2 )+ (0 - )]

w(or o ok ()';‘)[4s/uy M, ] }

(7.39)
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For the process ¢'e¢” —>Z - 77

1,0 , oo
do____1 (_g& ) (e +ci) IS VRN VER LA UYERED VES B E
d(cosO,) 256x\ cos' O, s(s—-Mj +u:)" s * LA x

{ (\0".?|2+|0",’j}:)( [ s-(ar -m) J
b T
+ (0";‘ O""J" +O"* O ',L,.)[“Mi.‘ AM}; ] }

(7.40)

and

: ( g_; ) ((,; +Ci) I: ]_3(M;;, +A/I;0’)+—],'(A”;., - /\4;")" ]1/2 X

or 1287\ cos' B S s a2 +i) L 5 *
(st lorsf W] -lasy rasy o a0,
+(om o w0 0"5")[4"“&: M, ] ]f

(7.41)
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Analytical expressions and numerical solutions for chargino
and neutralino masses 1in the fully left-right supersymmetric
model (LRSM) have been determined by Frank, Kalman and Saif”®.
Two charginos x, and three neutralinos 2",’ are generated from the
breaking of the LRSM to the MSSM. Four additional charginos and
four neutralinos are generated from the breaking of the MSSM.
The masses of the charginos in the LRSM, are dependent upon a
variety of parameters. They are: gaugino mass parameters M, and
M, associated with the gauge groups SU(2), and SU(2),
respectively; the higgsino mass parameter u; and tanf =« 6 /kx, ,
where kx, and «, are the VEV's of ¢, and ¢, respectively. Masses
have been calculated using several different combinations of
choices for the above-mentioned parameters®™.

For any choice of M, and M,, the chargino masses can be
larger than M, and M,. The numerical solutions for the
neutralinos all provide for small regions of |,u[ where the LSP 7'
is wvery 1light. For 1large values of u, the masses of the
neutralinos are heavier than M, .

Since no pairs of unidentifiable charged particles are
observed from Z, decay™, % >45.2 GeV. It is expected that
higher energies than those currently available, will be necessary
for the detection of these particular supersymmetric particles.
Since decays arising from electron-positron collisions tend to
give rise to very clean signatures it is expected that energies

around the Z' should be ihe ideal place to see the %, .
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Conclusion

This thesis is concerned with the identification of chargino
and neutralino states using the fully left-right supersymmetric
model (LRSM). The process of interest is e'e"—>Z'-7)7 .71’ . The
total cross-sections are given in egs.(7.34)-(7.41). The future
CLIC at CERN® should provide center of mass energies on the
order of 1 to 2 TeV. Evaluating at Js= 2 Tev , and taking a
reasonable assumption for M, (400 GeVv)®, chargino and
neutralino mass-dependent values have been calculated. Frank,
Kalman and Saif” have determined possible values for the
chargino and neutralino masses for different combinations of
parameters. The width of the Z' was calculated from the general

form®

-

F(Z‘—)fL_szLﬂ)=%i(l—4n])m%Cf(u,'}'af')‘ (7.42)
where v, and a,' are the vector and axial couplings of the
generic fermions f, and 77/-.=.(M‘,/M,,)2, with a=f and C, is the
colour factor. The form which applies in this this case s also used
by Frank, Kalman, and Saif” to predict the Z' decay rate for
M, =057TeV . At this energy the value was found to be I, =18Ge¢l .
The same calculation for M, =04TeV yields a value of I, =12Gel .
This value was used in the determination of numerical values for
the cross sections for different choices of parameters and

masses. These choices were made in accordance with values

provided in Ref.[28].
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Since the chargino and neutralino masses have been chosen
in the range > 50 GeV, one would expect their widths to be on the
order of a fraction of a GeV. Unless the charginos or neutralinos
in question turn out to be the LSP (stable), the decay of these
particles should occur well within the detector. With such
widths, we would expect to observe not the charginos and
neutralinos themselves, but their decay products.

In the case of charginos, the expected decays are the

following”.

7 >l +v+ ) (7.43)
e N A (7.44)

7 Dq+q+x (7.45)

¥ oOq+q+g, §oq+q+y) (7.46)

where % 1is the lightest neutralino mass eigenstate, Vv 1is the
sneutrino, and ¢ is the gluino.

In the case of the neutralinos, the decay products are”

7 o0+l +x (7.47)
rovevey (7.48)
X =>q+3+n (7.49)
XqHg+g §-oq+i+i (7.50)
Using A/ .= 54.6 GeV , M., = 63.2 Gev ,tanf@ =16, M, =50Gel,
Xy L4 ¥ L
M, =300Gel", u=-10Gel” and g, =g, , the cross sections were
determined to be: o(e'e 972>y IR 0.21 nb, and

-~

o(¢'ec 72>y, )= 77 pb
Using Alj.= 80 Gev , Ali(.: 171.7 Gev ,tan6, =16, M, =250Gel’,

1

A, - 1000Gel,  u=-80Gel” and g, xg, , the cross sections were
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determined to be: o(ee »Z'->ry, )™ 0.11 nb, and
olee »>Z'>17)=< 15 pb .

Finally, choosing M, = A/,

;,+ the following cross sections

were determined. Using Mi:'_' 80 GevV, Ali= 45.3 Gev , Ml‘.-

171.7 GeV, and M/.ﬁ,zlss Gev ,tanf, =16, M, =250Gel", AL, = 1000 Gel”,
u=-80Gel” and g, =g, , the cross sections were determined to be:
o(e'e > Z'-> %% Y= 0.32 nb, and o(¢'e >Z'> Y )X 48 pb .

Graphs showing cross-sections as a function of center-of-mass

energy are shown in Figs. I to VI.
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Appendix A

Spinor Notation and Conventions
These are the conventions used by Haber and Kane".
They are essentially the same as those used by Wess and

Bagger, but use a different metric convention.

The metric is given as

g, = diag(1,-1,-1,-1) (A1)
The momentum four-vector is p“z(E;p). The Pauli matrices
are:

o =(18) , o =(1,-5) (A2)

The two-component spinor ¢, transforms under a matrix M of

SL(2,C).  In a similar fashion, the spinors ¢,, &%, and Ed

transform under Af°, M ', and (A/'). respectively. We may

therefore define:

‘rn '
il
™

The dirac equation in two-component notation is:

ot it @i £ Y ( u) ety ¥
(Oul) ) i m ” N 0111) afi ’7 = ”"Da (A3)
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This allows the introduction of four-component notation.
Usually, a four-component spinor is introduced which

satisfies

b@p“—naq’:O (A4)

It follows that

4 0 0.,
\_P — a - pufl
(7"1 ) },/1 -6_‘(:[] 0 (AS)

. 01213 -1 0
VEXYYY =, (A6)

]

o’ 0
0,/1\':% I’ v :21 a o A7
'[},‘ }/ ] [ O 0;:!{1) ( )

where

ol =4(o4"" - 0, 5). (A%)
"5-‘_;1“'([ — %‘(6’1”1"0:” - B_L'UII O,/"I,ﬂ) (A())

This is called the chiral representation of the y-matrices.

We define the left- and right-hand projection operators by

p15%(]“7s) ) plcE%(]+74) (A10)
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Then, using the notation w,,=/F,,, it is seen that
i/
‘P:(V") (Al1)
Vr

It should be noted that most books define o,=(,5) and

a“:(l,—Ef) as opposed to eq.(A2). This would lead to an
interchange of y, and y, in eq. (All).
As usual one defines ¥=W¥ . The charge conjugation

operator (' allows the definition of the charge conjugated

spinor:
Wy = 7 (a12)

In the chiral representation, C=-iy’y°. In two-component

notation, one defines an antisymmetric tensor (8"”=—6ﬂ"):

aff P2 0 1
EN ==E,, =100 = 10 (Al3)

The ¢, can raise andlower spinor indices
e =e"E | E=¢E (Al4)

Identical relations hold when replacing undotted with dotted

spinor indices in egs.(A13) and (Al4).



and

It follows that

A four-component Majorana spinor has the property that

which implies that W =Y¥. That is,

()15
& oy,

The translation of two-component formalism

(Al15)

(Al0)

(ALT)

n=g

(A18)

four-

component fromalism is accomplished using the following set

of equations:

W,‘}’z = M6, +77:21

_@17«\*’: ==, +77:El

Y'Y, = £0"E, - oy,
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(A20)

(A21)



W'y, = —215”52 - .0, (A22)
_é_[}_;‘oﬂvql: - 771 O_Ju'éz +'7—720uv21 (A23)

where the subscripts 1 and 2 1label two different four-
component spinors and their associated two-component

spinors. In egs.(A19)-(A23), the following have been used:

ns=1"6, = &1 (A24)
WE=T,E = & (A25)

7.0" 1, = 1, 0" 0, = 9,07, (A26)
" E= 'TL,B,‘;’"E’ = - &7 (A27a)
no' &= o, = -0y (A27b)

In eqgs.(A24)-(A27), the first equality is one of
definition. The second equality follows from
eqs. (Al13), (Al4) and the fact that spinors anticommute. The
definition of 7];‘ has been chosen so that (5¢&) =T72. Using
egs. (A19)-(A23), all Lagrangians written in two-component
form can be converted to four-component form, to satisfy the
present conventions. In this respect it is particuarly

useful to rewrite egs.(A19)-(A23) as follows:
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-‘{_117”1);}}2 "—‘Elaﬂ’f:
Tp'l},ﬂpkty: =-70"n,

(A28)

where P, are the projection operators defined in eq.(Al0).

From this, one can build up four-component Dirac and
Majorana spinors and interactions from a Lagrangian
expressed in two-component notation.

To conclude, below are some useful identities which

follow from eqgs. (Al18)-(A23). If ¥, and ¥, are anticommuting

four-component Majorana spinors, then:

YV, =9, (A29)
Yy, =Y,y (A30)
Yy, ¥, ==Y, Y, (A31)
Yy, 7, = Py, r Y (A32)
Yo, ¥, =-V,0,Y¥ (A33)
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one useful consequence of the above is:

WP Y, = —r{}—:'y“])R\PI (A3d)
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Table 1. The particle content for the L-R Supersymmetric Model.

. Matter field SUR)LXSU2RX U(1)p_
Fermions Scalars Quantum numbers?
u
O r- ( d) 1200 0(12) 13
LR
- i
Crr™\ 5 1/2(0 1/2 1/3
L.R \d) LR (V)] 1/2)
v
\e L.R
. (D)
L - 1/2(0) N1/2) -1
L.R \e} LR
¢, = ("’f 4’;) 112 12 0
ud ~a <0
¢ 92/,
0 +
é. n( ' ‘) 1/2 12 0
4 ¢Z ¢;’ ud
A= ridzo A ~ 10) oy 2
A° -A 132
A+ / Ji A++
A L= 1(0) o 2
L,R ( AO *A‘/ﬁ)
51. R= 6+f J?_' ..‘SH 1(0) o -2
" 60 _6+ /‘/'2'
612 o
O, ,= 1(0) ol -2
L.R ( 60 _64 /ﬁ)
Gauge Bosons Gauge Fermions
Vigs (W W W), 10) oy 0
\Y% 0 0 0
A’L'R = (A# AO A—)L'R 1(0) 0(1) 0
kv 0 0 0

3The numbers inside the brackets are the quantum numbers corresponding to the right handed particles.
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