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ABSTRACT

3D STACKING PALLETIZATION OF MULTI-SIZE BOXES

Jafar Arghavani

The focus of the thesis is on the 3D stacking palletization of multi-size boses Boxes of
both rectangular and square dimensions are used. The palletization objectives aie
maximization of the pallet utilization and stability of the stacks, muminnzation of the
work-in-process (WIP) area and of the palletization time Previous Iiterature on one, two
and three-dimensional cutting-stock, packing, and pallet loading problems have been
reviewed. Three models are developed to deal with three different types of palletization
problems. Model 1 is a mathematical Integer Linear Programmung (IL.P) model which
deals with 3D pallet volumetric optimization Model 2 provides solutions to 3D stacking
palletization, applying interactive 2D palletization and stacking multi-layer procedues
The solutions to the Model 1 and Mcdcl 2 problems are obtained using the LINDO
(Linear INteractive Discrete Optimizer) software Model 3 1s a random sequence heunistic
for 3D stacking palletization, where the number and the availability of non-identical s1z¢
boxes are unknown and their incoming is random. A program is written in C language to
obtain the solution for the latter model Several examples are illustrated for the three
models. The practical limitations are set and reflected in the models The results obtamed

from the developed models are compared with those from previous studies

111
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CHAPTER 1 INTRODUCTION

The palletization problem involves interlocking boxes with similar and dissimilar
dimensions onto the pallet. Palletization usually takes place in manufacturing
environments and distribution centres to ease the transportation of boxes containing all
kinds of goods. A common problem experienced by manufacturers and distribution centres
is the 'optimal' utilization of the pallet loads. Utilization means how well the loaded boxes
use the space in the specified dimensions of length, width, and height of the pallct. Thus,
more boxes could be loaded on the pallet the less number of times trips are required to

transport a given volume of product between two locations.

Manual palletization is the most common way of loading boxes onto the pallet in small
manufacturers and private businesses. It is used for light loads, and flexible environments.
These environments are characterized by nonstandard boxes, high flexibility of box sizes,
for which their locations on the pallet are not defined and/or they have a random
incoming sequence (Penington and Tanchoco, 1988). Here, the operator uses hisher own
experience to interlock the boxes of similar and non-similar dimensions onto the pallet.
The manual palletization, although time consuming, produces close to optimal results.
Therefore, since the stability criterion is an important issue in the palletization, it can be

well achieved by the operator's own logic.

The most advanced form of palletization is that which is robotics. Advancement of recent

computer and engineering technology has contributed to robotics palletization. Robotics
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palletization has medium speed and applies to a flexible environment as well. Computers,
computer software, vision systems, robots and conveyers are used in robotics palletization.
In this case, several programs must be written to control and synchronize the motion of
each individual machine to load the boxes onto the pallet. Furthermore, there must be

logic programs specially written for the location of the boxes on the pallet.

No complexity involves when loading a pallet with identical boxes however, many
different criteria have to be considered in the palletization with multiple size boxes, such
as:

+ random sequence arrival of boxes

+ palletization time

* types of goods carried in each box

« grouping different types of boxes

* loading priority

* unloading priority

« loading and unloading time

Generally, both manufacturers and distribution centres share the following common
objectives to obtain solutions to the palletization problem:

» maximization of the pallet volume utilization

* maximization of the value of different types of boxes to be loaded on the pallet

* reduction in the pallet loading time



* reduction in the pallet unloading time
* loading and unloading priorities with respect to different demands
» maximization of the stability of the load

« reduction in the WIP area

Different approaches, including exact, and heuristics, can be used to deal with the
palletization problem; in all approaches certain objective functions, similar to those
mentioned above, must be developed. Also, certain constraints, with some specifications,
must be developed to satisfy the objective functions, for which the objective functions can
be maximized/minimized. These constraints are subjected to upper and lower bounds and
can be defined as:

* pallet constraints,

* box availability constraints,

« stability constraints,

* sub-area constraints,

¢ work-in-process constraints,

* efc.

Manufacturers have been aware of the importance of the palletization problem for some
time. Therefore, researchers have given considerable attention to this problem. The
previous works have been primarily focused on the application of various techniques to

deal with the mathematical aspects of the palletization problem. However, since these
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mathematical aspects do not always give feasible results, heuristic should be dealt with.
Furthermore, few researchers also have used mathematical and heuristic approaches to

deal with the physical aspects of implementing a pallet loading system.

In most cases, the pallet dimensions are fixed, and the palletization problem arises from
two points of view: the manufacturer's problem and the distribution centre's problem. The
palletization usually occurs in large, busy and fully-automated centres. Usually, the pallet
loading takes place at the end of the production line, and the manufacturers deal with a
random pattern of incoming sequences of boxes of different dimensions. One may assume
that some manufacturers pack their products into identical boxes, so the palletization
process at the end of production line is done all with identical boxes. However, for a
ntanufacturer with multiple production lines, boxes of different dimensions may randomly
arrive on the final conveyor. On the other hand, distribution centres usually deal not only
with a known numbers and types of boxes, but also with the random arrival of a sequence
of boxes of different dimensions carrying different types of goods. Therefore, the
palletization in both cases is not an easy task. Furthermore, palletization is done using

certain patterns that are discussed next.

In general, cutting-stock, packing, container loading and palletization are done in either
orthogonal or non-orthogonal patterns. In terms of cutting-stock, rectangular units can be
cut into smaller pieces in either orthogonal or non-orthogonal patterns. Whereas, in terms

of palletization, pallets can be loaded with number of boxes in either ways. In orthogonal
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patterns small items, such as boxes, are arranged parallel to the large object's edge such
as pallets, whereas in non-orthogonal patterns the angle at which the boxes are loaded on
the pallet is optional. In the orthogonal pattern either a guillotine or nested pattern cut can
be employed. Therefore, boxes can be loaded on the pallet with guillotine-cut pattern or
nested pattern. The guillotine-cut patterns are continuous from one end of the object to
the other end (figure 1). However, interrupted cuts are allowed at any point in the nested

pattern (figure 2), H. Dyckhoff and U. Finke (1992).

Figure 1. Orthogonal Guiltotine-cut pattern

single-stage two-stage three-stage
The guillotine-cut pattern can be divided in different stages such as single-stage, two-
stage, three-stage, etc. This may depend on the design criteria (with respect to the types
of boxes available), some loading and unloading priority, or the manufacturer and

distributor requirements. The solutions to the problem with guillotine-cut patterns are

carried out more easily than those of the nested pattern.

Figure 2. Orthogonal Nested pattern

Palletization problems are complicated when dealing with three-dimensional palletization
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with random arrival sequence of the boxes. Mathematical and heuristic models are two
common approaches dealing with the solutions of palietization problems. The
mathematical approach in palletization is applicable and is more likely suitable for the
material handling system in a warehouse, or a distribution centre, where all the
merchandise is in stock. In this case, availability of boxes of all types is certain, the
dimensions of all boxes and pallets are known and pre-specified, and the number of boxes

required at any time is known.

Heuristic approaches are required to the solution of the palletization problem if the
availability of each type of box is in question, such as in the situation where the boxes
on the conveyer are arriving in a random sequence. For such a case, there is no known
mathematical approach. Heuristic approaches, with some practical assumptions, are
considered to deal with complex optimization problems since no exact mathematical
method for solving the three-dimensional palletization problem, with random arrival

sequence of boxes, has been developed which yields an optimal solution.

I. this research, the 3D type stacking palletization problem is studied. Three models are
proposed. Some applications are applied to illustrate the efficiency of the proposed

models.



CHAPTER 2 LITERATURE REVIEW

Since the early 1960's, the pallet-loading problem has prompted researchers to look into
many criteria and to develop many procedures for the solution of palletization problems.
Such a problem arises in a variety of situations including cutting-stock problems, packing,
container loading and placement problems. Many researchers have focused on the
modelling and the solution of the problem in two, two and half, and three-dimensional
problems. Several approaches, including graph-theoretic, tree-search, exact, and heuristics,
have been used. Most research has focused primarily on three approaches to obtamn
optimum solution to palletization problem: mathematical programming, dynamic

programming and heuristics.

The characteristics of one, two, 24, three, and four-dimensional problems can be defined
as follows:

* The one-dimensional problem can be defined such that objects of pre-determined lengths
are chopped into smaller pieces. Tlie two-dimensional cutting-stock or packing problems
are variant. If the required number of pieces of each type 1s unbounded, and the layouts
are restricted to those obtained by guillotine cuts, the problem has to be categorized into
the dynamic programming.

« In two-dimensional palletization problems two cases can be considered since the
problem deals with surface partitioning: the single layer pallet loading with objects of

same dimensions, or objects of different base dimensions with their heights being similar.
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* In the 2'5-dimensional palletization problem multi-layer pallet loading is encountered.
The objects are of the same dimensions, or have different base dimensions with similar
heights.

* The three-dimensional pallet loading problem deals with loading objects of different size
on the pallet, where the objects have different lengths, widths and heights.

* The four-dimensional (conventionally called multi-dimensional) palletization problem
deals with loading objects of different dimensions as well as considering the time period

required to load the pallet.

Three types of pallet loading usually can be considered for the solution of the palletization
problem: Layered palletization, Mixed palletization, and Column-stacked palletization. In
the layer-type palletization, boxes are loaded layer by layer onto the pallet and the height
of each layer is constant. In mixed type palletization, boxes are loaded onto the pallet as
long as there is available space; whereas, in the stacking palletization, pallet is partitioned
into smaller areas, namely subarea, and then each subarea is stacked until the pallet

stacking height is obtained.

There has been much research concering two-dimensional layer palletization. Also,
recently some have developed algorithms to deal with the solutions to the 2%-dimensional
and three-dimensional layer palletization. Most of the work in this area has concentrated
on the palletization with boxes of similar dimension, and only a few researchers have

studied the palletization problem with boxes of different dimensions, where layer
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palletization by grouping boxes with respect to their similar height has been worked on
However, there is no literature on 3D stacking palletization with multi-size boxes,

furthermore, no ILP model has been reported.

There has not been much attention given to the three-dimensional stacking palletization
problem with boxes of different dimensions. Most of the literature has dcalt with two and
2'4-dimensional layer palletization, or loading a container, with either boxes of the same

dimension, or boxes of different base dimensions with similar height

The earlier research into the pallet loading problem can be viewed as an extension of
work on the one and two-dimensional cutting-stock problems. Gilmore and Gomory
(1961-63-65) showed how the one-, two-, and three-dimensional cutting-stock problem
can be solved using mathematical programming techniques. They considered that the
packing problem is essentially the same as a cutting-stock problem. However, they did
not present any algorithm for the three-dimensional problem for which an optimal solution
can be obtained within reasonable computer time Only heuristic approaches are proposed

for practical packing problems.

Many have considered that the manufacturer's pallet packing problem involves producing
and packing products in identical boxes and stacking the boxes on identical pallets.
Steudel (1979), Smith and DeCani (1980), Bischoff and Dowsland (1982) and Dowsland

(1982) presented procedures to the solutions for this type of problem.
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George and Robinson (1980) developed a heuristic approach for packing boxes into a
container In their research, the dimensions of the container are known as well as the
collection of the rectangular boxes with known dimensions and the number of boxes
available of each type. Their objective was to find a suitable position for packing the
boxes in the container in such a way that all the boxes can be fitted in. The heuristic
algorithm was based on the concept of filling the container layer by layer. The restriction
was that the upper layer starts only if the lower layer is completed. However, they defined
an empty space to be filled at the later time, if there is no box available to fill the space
on the working layer. The problem considered packing groups of identical boxes into
more than one container. The problem was solved under the restrictions that the boxes of
the same type were to be stacked in proximity and adjacent to each other.

Hodgson (1982) discussed the 3D palletization problem by introducing layer palletization
with boxes of similar height, and stacking palletization with pre-specified stacking column
height. In the latter case, the pallet was loaded with columns of boxes such that the stacks
are no higher than the maximum allowable pallet height, however, no results were
reported. He also presented two approaches for reducing the CPU time for the dynamic

programming based on the heuristic algorithm.

Brown (1980), “An Improved BL Lower Bound" (BL stands for Bottom-up Left-justified)
developed an algorithm which packs small rectangular pieces into a larger rectangular.

Completion to that, Tsai et al. (1988) used the Brown's method and developed an Integer
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Linear Programming (ILP) model for a two-dimensional palletization problem, for which
boxes of various types might be loaded on the pallet base. This model only considered
one layer on the pallet, and assumed that all the boxes had the same height Note that in
the ILP the decision variables, which define the number of boxes of each type to be

loaded on the pallet, are restricted to integer values

Loschau (1989) investigated the stability criterion of the column stacks Since stabihity 1s
the major concern of stack palletization, Loschau used the critical inclination angle as the
criterion for the rigid block, and deviation from the centre of gravity for the flexible bar
model. The rigid block was considered as boxes are loaded on the base of the pallet and

the flexible bar was when the boxes are loaded on the top of other boxes

H. Gehring et al. (1990) developed a computer-based heuristic model for packing pooled
shipment containers. It considered the packing of rectangular boxes of different size in
a shipping container of known dimensions. Its objective was to determine positions for
placing the boxes in the container such that the waste of space is minimized. For this
three-dimensional cutting-stock problem various sub-optimal solutions were generated
using computer-based heuristics, Their algorithm consisted of a pre-determined number

and dimension of boxes, and the container was filled layer by layer.

Haessler and Talbot (1990) discussed the problem of packing low density products in

railcars, truck trailers and tandem truck trailers. In railcars and trailers, the boxes had to
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be stacked in layers of unit loads. The restriction was the placement such that the unit
loads were of rectangular shape and were designed to ship in railcars two high and two
across the width of the car. The boxes were grouped in unit size blocks; blocks with

nearly i1dentical box dimenstons.

Chen et al. (1991) presented a mathematical model to pack non-uniform box sizes onto
apallet The problem was formulated as a zero-one integer programming problem, which
included multiple-pallet loading. The mathematical model was a mixed Integer Linear
Programming problem. However, their mathematical model of the pallet loading problem
could not be solved directly since this algorithm depended solely on the number of pallets
"F" used, which was unknown and had to be determined interactively. This formulation
was only capable of finding the feasible solutions for only one layer on the pallet which
in fact can be considered as a model for the two-dimensional pallet loading problem with

different rectangular pieces. The research considered boxes of uniform height.

Dowsland and Dowsland (1992), in their survey, refer to three-dimensional packing
problem as: "Much of the published work in this area has been concerned with packing
of shipping container, often referred to as the container stuffing problem. The increased
combinatorial complexity of this problem over the two-dimensional case means that exact
solutions are unlikely to be effective. Models for the two-dimensional case such as that
suggested by Beasley could theoretically be extended to include the third dimension. We

are not aware of any published results in this area, although Mannchen (1989) has devised
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a tree-search algorithm which he reports as working successfully for packing of non-

identical rectangular pieces in two and three dimensions."

Abdou and Lee (1992) developed an algorithm to deal with the three-dimensional
palletization problem where boxes were grouped with respect to their similar height. The
algorithm is capable of supporting different pallet sizes and different box types if required.
The restrictions in this algorithm were fixed pallet dimensions and the pallet stacking
height. The layer palletization was considered and the maximum area of each layer was
restricted to the pallet size as well as the area of the lower layer. They obtained better
results in terms of pallet utilization, palletization time and the WIP area than the other

algorithm mentioned in their literature.

Abdou and Yang (1993), and Yang (1993) developed an algorithm to deal with multi-
layer palletization of multi-size boxes for 22D and 3D problems. They considered both
the mathematical and heuristic approaches, and emphasized the maximization of pallet
utilization, the minimization of work-in-process area, the minimization of the palletization
time, and static loading stability. Yang employed Linear Integer Programming for the
21D palletization problem, the systematic procedure and the heuristic approach for the
3D Problem. The physica! robot palletization system consisting of Gantry robot, vision
system, detecting sensors and conveyer system was implemented to test the developed

model.
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These studies have approached palletization, cutting-stock and packing, problems from
different angles and have obtained interesting results. However, there are still many
aspects of the palletization problem that have not been thoroughly studied. The lacunae
observed from the literature review are as follows:

+ most studies discussed palletization with identical boxes,

« studies mostly focussed on 2D problems,

« layer palletization has been the target for loading,

+ only few have studied the 3D palletization, using layer pallet loading concept,

* no integer programming model has been reported for 3D problem.

* no 3D stacking palletization with boxes of different dimensions has been found.

The algorithms' limitations and the advantages of the stacking palletization are reviewed

in the following sections.

2.1 Limitations of the palletization algorithms

There have been certain limitations in the algorithms developed by researchers to deal
with the palletization problem. For instance, boxes were only allowed to rotate about the
Z axis. In this case they could only have two orientations. The limitations to multi-layer
palletization algorithm have been observed as follows:

+ boxes of the same dimensions or similar height are used,

+ boxes of multi-size have to be grouped with respect to their height in order to be loaded
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in a layer on the pallet,

« the height of the entire layer remains constant in the layer palletization,

« an upper layer can not be loaded with boxes unless the lower layer is completely filled,
« boxes on the lower layer can not be accessed without removing the boxes of the upper
layers,

« the stochastic process, random sequence arrival, of boxes of different dimensions may
not result to a feasible solution in layer palletization where the availability and the number

of each type of box is not known.

2.2 The main advantages of stacking palletization

The advantages of stacking palletization can be easily viewed from the limitations
mentioned above, and the objectives of pallet loading. In most cases of both pallet loading
and container loading, the concept of loading layer by layer with boxes of identical
dimensions, or at least similar height, have been considered. Hence, the following

highlights some of the advantages of stacking palletization:

* boxes of different dimensions, different lengths, widths and heights can be used,

« the arrival of boxes of different sizes can be in a random sequence,

= the number and the availability of each type of box is not considered,

« any type of boxes can be loaded on any sub-area (small partitioned area) onto the pallet

at any time, depending to the algorithm developed,
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« pallet stacking is suited for the random sequence arrival of boxes of different dimensions
in terms of first come first served, such that the newly arrived boxes can be immediately
placed in a sub-area on the pallet,

» boxes can be loaded on top of each other to stack up, depending on the requirement of
the algorithm, even where there is a sub-space available on the pallet area, providing the
stability criterion is considered,

« stacking the pallet in terms of last-in first-out is best suitable in the case of distributing
centres, where there are boxes of different types and there are different market demands,
such that the large number of boxes can be accessed in any order,

» stacking is also appropriate where boxes can be grouped and stacked up in terms of the
goods they carrying in, their dimensions and in terms of unloading priority requirements,
« each stack may have different locations on the pallet, so that boxes can be easily
accessed,

« stacking height is different on each specific column, since boxes are of different

dimensions and arrive in a random sequence.

The summary of the literature is shown in the table 2.1 in the next page.



Table 2.1 Summary of Literature Review

AbdoulAbdou|Chen|[T'sai lHod son|Proposed
Authors and | and 199111988} 1982 {1993
Yang! Lee
Attributes 199 1992
D: . 2D 71 7
imension 21D P P /
3D v v v/
Availability | limited v/ | 7/ v
unlimited v v v v
Loading nested v 4 /1 v v
Pattern oy
guillotine v/
pallet utilization] | /]| v/ v/ v
Objective | stability v/
WIP v v v
loading speed v v v
Loading single stage v | v v/
Stage .
multi-stage v J/
mathematical v/ v/ v v
Procedure |} o uristic /| v / /
mixed v/ v
layer v |/ /S
letizati Palletization
alletization stacking J
Method layer & stacking] v
| volumetric v
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CHAPTER 3 OBJECTIVES OF THE RESEARCH

The objective of the research is to develop algorithms on stacking palletization, using
different types of multi-size boxes to achieve more efficient solutions to the palletization
problem than those already existing in the literature. Thus, the intention is to review the
research done in the area of palletization and address the unsolved problems. However,
it should be mentioned that the rectangular loading problem is known to be NP complete
(Girkar et. al. 1992), hence, it is often not possible to obtain an exact optimal solution

within a reasonable time.

The emphasis of the research is on the 3D palletization problem, using both mathematical
and heuristic approaches, with consideration of some constraints as follows:

» Boxes of multi-size are used, the boxes are allowed to rotate about the Z axis and their
rotation about X and Y axes is not considered. Hence, boxes may have two different
orientations on the pallet.

* The pallet dimensions and the stacking height are fixed, and pre-determined.

» Stacking palletization is considered.

» No over-hanging is allowed, such that the total area of the boxes on the pallet are less
than or equal to the total pallet area. Also the area of the boxes on each subarea (smaller
area defined on the pallet) on the pallet must not exceed that area.

* The height in each column stack must be less than or equal the pallet maximum

stacking height.
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With respect to the assumptions mentioned above four main objectives are considered in
the research:

* Develop Model 1: A mathematical ILP mod:l for 3D pallet volumetric optimization.
* Develop Model 2: A mathematical model for 3D stacking palletization.

* Develop Model 3: A random sequence heuristic algorithm for 3D stacking palletization,
where the number and the availability of non-identical size boxes are unknown and their
incoming is random.

» Analysis: Compare the results from proposed models with those generated by the

existing algorithms in the earlier literature.

The proposed mathematical Model 1 and Model 2 are suitable for warehouse/distribution
centres, where all the information about the numbers and types of boxes are known
Model 1 optimizes the pallet volume with boxes of multi-size however, it does not
provide a pre-determined location of the boxes on the pallet, and the loading pattern
solely depends on the number and types of boxes obtained, which can be either layered
or stacked palletization. Model 1 may be used for 3D cutting-stock, warehouse allocation
problem and placement. On the other hand, to complement Model 1, Model 2 is
developed to provide stacking procedures for which the I cation of the boxes on the pallet

is pre-determined.

To assess the stacking palletization problem in the stochastic process, random sequence

arrival, with boxes of different dimensions, Mcde! 3 is developed. This model is best
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suitable for the manufacturing systems where the palletization takes place at the end of

production line with a stochastic process of multi-size boxes.
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CHAPTER 4 PERFORMANCE MEASURES

To assess the palletization performance, in the algorithms proposed in the research, some
criteria are required. In most of the studies in this area, researchers have been mainly
focusing on the pallet utilization as the main objective. This has been mostly because of
the requirements of their algorithm and also because they were dealing with boxes of
similar dimensions, where the number and availability of the boxes have been known.
However, when dealing with different types of multi-size boxes for which the number and
types of boxes available are not known in advance, and their arrival is in random
sequence, the solution to the problem should not be limited to the pallet utilization, but,
some other factors must be considered. In the real world where the physical palletization
system is used, the palletization performance could be assessed by: Pallet utilization,

Work-In-Process (WIP) area, Palletization Time and the Stability of the stack.

4.1 Pallet Utilization

Pallet utilization U is expressed as the pallet area utilization UA times the pallet stacking
height utilization UH, where the pallet area utilization UA is expressed as the sum of
areas of boxes which are loaded on each strip/optimum subarea "j" on the pallet divided
by the maximum pallet area.

2N
PILALIA

A = ; vj
U LW J

(4.1)
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Pallet height utilization UH is expressed as the sum of the heights of boxes which are
loaded on each subarea ")" on the pallet divided by the maximum allowable pallet

stacking height.

N
; h*X, 4.2)

UH Y
A 7

In general, pallet utilization in terms of volume can be expressed by the total volume of

the boxes loaded on the pallet divided by the maximum palletization volume.

2N
U = i=1 w
L+WxH
where;
40, if |, = w, for i=N+l,.... 2N; &=1, otherwise,

I, and w, are the length and the width of the box type "i" on the pallet respectively,
is the width of the box type "i" on the pallet,

L and W are the pallet length and width respectively,

h, is the height of the box type "1",

"ill

X, is the number of boxes of height type "i" on subarea "j" on the pallet.

4.2 Work-In-Process (WIP)

Work-in-process is expressed as the waiting area between the conveyer and the pallet for

which boxes are waiting to be loaded on the pallet. The size of the WIP is defined as the
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total area of the boxes held and not loaded on the pallet or the number of boxes held on
the WIP. The size of the holding area changes as the number of the boxes in the WIP

area changes.

In the robotic palletization system (RPS) boxes are moved from the conveyer, by the
robot arm, to the pallet and if the boxes are not of the type to be loaded on the pallet at
the time, they are moved to the WIP area either from the conveyer or from the pallet. The
number of boxes in the WIP area has a direct impact on the movement of the robot arm
and on the palletization time. The increase in the number of boxes in the holding area
increases the robot movement between the conveyer and the WIP and between the holding

area and the pallet, hence palletization time increases.

4.3 Palletization Time

Palletization time in a physical robotic palletization system (RPS) depends not only on
the movement of the robot between the conveyer system and the pallet, the conveyer and
the WIP area, the WIP area and the pallet, the pallet and the WIP area, but also on the
algorithm of the palletization, interfacing between other systems (i.e. computer, etc.) and
the robot arm, the vision system, and the programs used to interface these systems. Since
the CPU time of the conveyer system is considerably shorter it can be neglected.
Furthermore, since the reaction time for different parts of the robot depends on the

commands from the computer, it is difficult to obtain the idle robot time. Hence, in this
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research the palletization time is concluded only for the robot motion during the
palletization process, which undertakes the conveyer speed time, vision time, CPU time

and robot reaction time.

The robot motion during palletization process can be summarized as: moving a box from
the conveyer to the pallet, moving a box from the conveyer to the holding area, moving
a box from the holding area to the pallet, and moving a box from the pallet back to the
holding area. The total palletization time required in a physical robotic palletization

system is:
T = T, * RCP + T, » RCH + T,,p * RHP + Tph * RPH 4.4)

Where; T, T, T,, and T, represent the time required for the robot to move from the
conveyer to the pallet, the conveyer to the holding area, the holding area to the pallet, and
the pallet to the holding area respectively. RCP, RCH, RHP and RPH represent the
number of robot motions between the conveyer and the pallet, the conveyer and the

holding area, the holding area and the pallet, and the pallet and the holding area

respectively.

4.4 Stability

Stability is an important issue in the palletization problems, especially when dealing with

boxes of different dimensions. The stability is measured by an index which indicates the



25
ability of boxes to maintain their positions on the pallet in both static and dynanuc
situations. In the stationary stack boxes are subjected to the forces caused by other boxes.

In addition, boxes are subjected to dynamic forces during transportation.

Very few studies have been reported about the stability criterion in the loading problem.
This has been mainly because most of the studies on the palletization involved loading
with identical boxes. Loschau (1989) discussed the stability criterion of column stacks,
on the basis of an inclination angle, different methods for obtaining the stability criteria
were presented. He defined a "rigid block" model for the case where boxes loaded on the
base of the pallet, and a "flexible bar" model for boxes which loaded on the top of other

boxes and which were the target of vibration during transportation.

Carpenter and Dowsland (1985) developed and discussed three stability criteria for the
pallet loading problem as:

* Supportive criterion: the level of criterion is defined by the percentage area required to
be in contact with two or more supporting buxes. In this case each box must have its base
in contact with at least two boxes in the layer below, for which contact of less than 5%
of the box's base area will be ignored.

» Base contact criterion: Each box must have at least 75% of its base area in contact with
the layer below. This criterion was applied with the percentage of the contact area sct
values between 95% to 75%. Stacks which contain voxes with less than 75% of their base

area in contact with layer below showed susceptibility to cruzhing or toppling
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+ Non-guillotine criterion: There must be no straight or jogged (+/-0 mm) guillotine cuts
traversing more than 100% of the stack's maximum length or width. When applying this
criterion, two variables must be specified; the precision with which a guillotine cut is
defined (I mm), and the length of a cut as a portion of the stack's maximum length or
width (Z%) With 1=0 mm any cut raust be exactly vertical, and considering the case
where such a cut must be extended over the whole of the stack Z=100%. Then 91% of
the pallet combinations proved to be stable. Therefore, there must be no exact guillotine

cut extending above the whole stack dimensions, Z=100%, & I=0 mm.

Note that in some practical situations, where the weight of the transported product is not
distributed over the box base, criterion 1 may not be suitable to use. However it might

be necessary to apply it to the comer boxes in a stack, since those boxes are most critical.

The specifications of the criterion mentioned, by Carpenter and Dowsland, are:

The first criterion ensures that columns of boxes that have little or no "interlock” with the
remainder of the stack are not created, since such a column is potentially unstable when
the pallet is transported. The second criterion eliminates the situation where a box 1s not
supported over most of its base. Since this would result in its failing to meet the
stationary stability requirement. The third criterion considers the problems associated with
guillotine section cutting the pallet stack in a vertical direction. Similar to the columns

of boxes, such sections may be at risk during transportation.
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CHAPTER § PROPOSED MODELS

The research deals with the three-dimensional stacking palletization problem of multi-size
boxes. Three models are presented in the following sections. Model | is an Integer Linear
Programming model (ILP), which is discussed at first. This model modifies the ILP model
developed by Tsai et al (1988) and expands that from 2D to 3D pallet volume
optimization. The boxes, in the physical layout for this problem, can be loaded either
with the layer or stacking procedures Model 2 is developed to complement the proposed
Model 1, for which a stacking procedure can be obtained, this model is an ILP as well.
Unlike Model 1, that does not indicate the location of boxes on the pallet, Model 2
provides a pre-determined locations for boxes on the pallet. Model 1 and Model 2 deal
with boxes of multi-size and both are suitable for the situations in which all the
information about boxes dimensions, the number and availability of types of boxes are
known. However, they can not be applied to the situations where the arrival of boxes of
multiple size is in a random pattern sequence. For such a case, no method is known to
obtain the optimal solution for 3D stacking palletization problem Therefore, the results
obtained are infeasible by computation. For these reasons, and to experience the effect of
the stochastic process on the palletization, Model 3 is developed to accommodate the
situations where arriva' of boxes is in a random pattern sequence. Model 3 employs the
heuristics approaches to maximize the pallet volume utilization, stability of the column

stacks, and to minimize the WIP area and the palletization time.
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5.1 Model 1: A 3D ILP Pallet Volumetric Optimization

In this section ILP procedure is developed to deal with the three-dimensional pallet
loading problem. The procedure optimizes the volume utilization of the pallet with small
rectangular boxes of multiple size. The same idea and procedures may be applied for 3D
cutting-stock, packing, and allocation problems. The problem can be classified as follows:
« the volumetric pallet dimension is known and fixed, which is L*W*H,

* boxes are all of multiple size and of both rectangular and square shapes,

¢ the number and the availability of the boxes are not restricted,

» the demand restrictions on the box quantity is set,

This problem can be characterized as follows:

¢ the three-dimensional mathematical ILP problem is generated,

s the total volume of boxes must not exceed the pallet volume,

« the upper bound for the pallet base dimension is set such that no over hanging is

allowed, hence the total area of the boxes must be less than or equal to the pallet area.

The specifications of the mathematical model to be discussed are as follows:

s there are N type of original boxes of dimension 1*w*h, for i=1,..N

* boxes are allowed to rotate about Z axis, hence the boxes can have two orientations on
the pallet, with their height being parallel to the pallet height. This means that each box

is considered twice on the pallet except for the case where the length and width of the
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box are equal,

* the volume of the pallet is pre-determined,

* boxes are all of different dimensions,

* the number and the availability of boxes of each type are finite and known,

» mathematical ILP procedure is considered.

The solution to the problem is achieved by the mathematical model as:
An ILP model is developed to determine the volumetric optimal layout for the pallet The

objective function is:

N 2N
Maximize { E [xwxhxX, + E di*li*wi*hl*xl} (5.1.1)
i=1 i=N+1

whre;

4, = 0, if |=w, of the box type "i", for i=N+1,...,2N
{é, = 1, otherwise.

1*w,*h, is the volume of the box type "i",

X, denotes the number of boxes of type "i" for i=1,2,..,2N,

The pallet volume utilization is obtained from:

o2
;; AIAIAD S (5.1.2)

L+W+H

U =
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A good optimization could be obtained not only by defining the proper objective functions
but also the practical constraints that the functions are subjected to. The constraints are
the most important elements in any optimization, poor constraints develop a bad Linear
Programming and lead to the infeasible solutions, where proper and good constraints
results in feasible solutions. The following practical constraints are reflected in the

proposed model:

(1) Pallet Volume Constraints

The total volume of the pallet must be greater than or equal to the total volume of the
boxes loaded on the pallet. Also all the selected boxes must fit within the pallet

dimension. This has been considered in the strip constraints.

N 2N
LWl - { S lpwpxX, + 3 Grlpw b X, } 2 0 (5.13)
i=1 i=N+1

(2) Box Quantity Constraints

A new group of boxes are considered with respect to their base dimension. Two
orientations are considered for each box type on the pallet if the length and width of the
box are not equal. The demand restrictions on the availability of each box type with
respect to their base area is as follows:

X, +dxX,.y <D Vi (5.1.4)

Where, D, is the number of boxes with equal base area of type "i" and type "i+N"
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available.

(3) Stability Constraints

The stability constraints are not considered in the formulation of this algorithm, since the
objective is the volumetric optimization of the pallet. However, the stability is considered
in the practical case after the optimal values are obtained by the mathematical model,

such that the boxes with larger base dimension are loaded on top of the smller ones

(4) Boxes of Unit width and length

Boxes of unit length are considered in the generation of the strips types. However, this
box is not used in the strip constraints. The length "1" is considered in the box length set
"s" and the generation of possible types of strips, since the generation of some strip types
combinations can not be made if the number of "1" elements in a strip exceeds the limited
unit length. Since the pallet of length L*W is chopped into W strips of dimension L*1,
then the maximum allowable unit length in each strip combination would be the smallest
dimension of the pallet. Hence, the maximum number of unit length to be used in each
strip constraint must not exceed the width of the pallet. The upper bound on the boxes
of unit length is:

W- Xy, 20 (5.15)
W is the pallet width,
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X.y,, is the number of boxes of unit area.

(5) Strip Constraints

At first general form of strip types is considered. In order to formulate the pallet loading
problem, as a linear programming problem, all the possible strip types combinations
containing the length of the boxes must be determined. Since each box can have two
different orientations, assign the box length set which is a combination of the boxes
lengths and widths to S={1,,w,,l,,w,... ...l Wrslne1, Wi }-

where l,,=w,y,,=1 represent the length and width of the box of unit area respectively.

The combinations of lengths to form all the possible types of strips must be considered.
However, since two elements in the length set "S" could have the same value, a new set
must be defined such that its elements are unique. The new set "s" is the largest subset
of "S" representing the box length set with unique elements, whose elements are used to
generate the possible strip types. This length set can be shown as:

s={" L5, L, 0 L) (5.1.6)
where;

L 2L 2L =2 21,0 1L, =1, k<2N

"s" is the largest subset of length set "S", when all the subset elements are unique, and

are used to generate the possible strip types.

1.” is the length of a box, which is selected from the length set "S" and 1" # I,” if e=f.
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Hence, all the possible types of strips can be expressed in the following equation:

al,"+al +al, + o+ al’ o +al’ +a,k., =L, (5.1.7a)

where, e=1,23,.... k+1

Therefore, in general, for n possible types of strips, all the possible box length
combinations of which their sum is equal to the pallet length can be expressed as,
k+1
j)= { a, | where Y a . =L; e=12,.k+1, Y ) (5.1.7)
e=1
where; "j" is the type of strip on the pallet, for n possible types of strips, j=1,2,...,n
a,, is the number of pieces (lengths) of length 1" in type j strip,

1." is the length of box which is selected from the length set "S", 1< e < k1,

Hence, the following strip constraints are determined:

For j=1,2,...,n types of strip from equation (5.1.7), let y,, denote the number of the strips
of type 1, y,, denote the number of strips of type 2, etc., and y,, denote the number of
strips of type "j". Then the sum of number of strips of each type "j" times the pallet
height H must be less than or equal to the pallet width W times the pallet height H, but,

the height H cancels from the both sides. Therefore, we have the following constraints;

YysW; j=1,2,n (5.1.8)
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The other strip constraints are defined as follows, with respect to the length set "s":

For length 1.°, e=1,2,... k+1.

n N 2N
Eaej*H*yj 2 Zwi*h,*X‘. + E ad*w‘*h‘*xi ;. Ve (5.1.9)
J=1 i=1 j=N+1

a,, =0, if L=w, for i=N+1,...2N

o, = 1, otherwise.

e

If the length and width of a box are equal, then for that type of box no rotation about the

Z axis is considered. Hence, X, = 0, if =w,; i=1,2,...N original box type.

Note that, no over hanging is allowed when loading boxes on the pallet, such that the area
of the total boxes loaded on the pallet and on each layer on the column stacks must be
less than or equal to the pallet area. And since we deal not only with the area of the
boxes but also with their length and width, the total length and width of the boxes laying
along the pallet length must be less then or equal to that length L. Also the total length
and width of the boxes laying along the pallet width must be less than that width W. The
length over hanging problem is solved through strip types equation (5.1.7), for which the
sum of elements (lengths) in each strip is equal to the pallet length L. The width over
hanging problem is solved through the constraint in equation (5.1.8), for which sum of
all possible types of strips y, is less than or equals the pallet width W. Furthermore, the
total height of the boxes stacked on top of each other in each column stack on the pallet
is restricted to the maximum palletization height H. This problem is solved by using the

pallet volume constraint equation (5.1.3).
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5.1.1 The ILP formulation for Model 1 Problem

The general form of the formulation for the Model 1 problem can be shown as follows,

where the objective function in terms of pallet volume maximization is:

N W
Maximize { Y LrwahpX, v Y GrlpwrhaX, }
i i

=N+1

Subject TO:

N 2N
LxWxH - { Eli*w‘*h‘*xl + E dxlrwrh* X, } >0

i=1 i=N+1
W - X,p., 20

X, +dX,y < D;; Vi

n

Zyj s W; j=1,2,...,0

J=1

n N N
Y axHxy; 2 lzl:wi*h,*xl. + ‘;l @, *wrhX, ; Ve
j=l = aN+

X, 20, Vi
X, integer

The optimal values obtained from the formulation above provide solution to the
volumetric 3D pallet loading problem. After the optimal values are obtained, the decision
about how and where the boxes will be placed on the pallet can be made, considering the

stability criterion for the column stacks.
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5.1.2 Algorithm for Model 1

The optimal result to the 3D pallet loading problem, for which a direct ILP programming
to maximize the volume utilization of the pallet is used, can be determined from the
following steps:
I- input the number and the type of boxes, indicating their volumetric dimension, 1,w,h,,
2- input the pallet dimension, length, width and the stacking height,
3- initialize,
4- define the box length set "s", with its unique element.
5- generate the strip types with respect to the unique length and width of the boxes in the
box length set "s",
6~ set the required constraints, equations (5.1.3) to (5.1.9),
7- develop the ILP formulation shown in section 5.1.1,
8- solve the ILP problem,
9- obtain the optimum values for the problem
10- if the values are satisfactory go to next step, or else go back,
11- calculate the pallet volume utilization,
12- present the optimal values on the computer,
13- simulation, considering the stability of column stacks,
- load the boxes on the pallet, step by step,
- draw and present the final results on the computer,

14- End.
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5.2 Model 2: Stacking Optimization for the 3D Palletization.

The Model 2 is developed to obtain solutions to the 3D stacking palletization, for which
the location of the boxes to be loaded onto the pallet is pre-determined, since the Model

1 does not indicate the location of the boxes on the pallet.

Many have shown that the mathematical model for the one and two-dimensional cutting-
stock problems result in optimum values. Such algorithms can be found in the papers
presented by: Gilmore and Gomory (1961-63-65), Haessler (1975), Chambers (1976),
Dyckhoff (1981), Tsai et al. (1988), Farely (1988-90),... Hence, the combination of the
mathematical model of the one and two-dimensional cutting-stock problems can lead to
the development of a mathematical model for the three-dimensional pallet loading
problem. Model 2 employs an ILP procedure to 2D surface partitioning, resulting to some
optimal subareas (small partitioned area) on the pallet, then multi-layer stacking is
considered for each optimal subarea until the stacking height is achieved in all the

columns.

The problem classifications are:

« dimension of the pallet L*W is fixed and known,

* the stacking height on the pallet is pre-determined,

« boxes dimension are known as well as number and the availability of boxes of each

type,
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« the demand restrictions on the boxes base dimension, and their respective height is

predetermined.

Furthermore, this type of stacking palletization is characterized as follows:

« the two-dimensional mathematical ILP problem is generated,

« the optimal layout for the two-dimensional pallet loading is determined, providing the
base dimension of the boxes available,

« there can be number of similar rectangular bases on the pallet,

« the upper bound for the pallet area utilization is set, such that no over hanging is
allowed,

« the pallet stacking height is pre-determined,

« the height of the stack in each optimum subarea is restricted to the pallet allowable
stacking height,

« the multi-process of multi-layer stacking ILP problem is generated,

« the number of boxes in each column stack, even in those with the same base dimension,
may differ from one another, since the height of the boxes may be different,

» the stacking height in each column stack may differ,

The mathematical problem to be discussed has the following specifications:
* there are G types of original boxes, of cubic dimension 1*w*h, for th = 1,2,...,G,
« there are N types of original boxes base area, i=1,2,...N, type 1,., type i,.., type N,

« there are P types of original heights, corresponding to the base type "i", for h=1,2,...,P,




39

s the boxes are of different dimensions,
» since the number and availability of boxes type "ih" is fimite and known, we have

« the number and availability of boxes base of type "1" (D)) 1s finite and known,

« the number of heights with respect to boxes base is known, D,,
+ the dimension of the pallet and the stacking height are fixed,
» boxes are allowed to rotate about the Z axis, so that each box can have two different
orientations on the pallet. Hence, the number of boxes base-area is doubled to 2N,
« multi-stacking palletization is considered,
¢ the maximum volume of the palletization is pre-determined. However, the height of
column stacks not exceeding the pallet stacking height may differ from each other This
may result in lower percentage of volume utilization of the pallet,

« mathematical ILP procedure is considered.

The solution to the problem is achieved as follows

An ILP model is developed with two interactive objective functions, for which the second
one depends on the result of the first one The initial objective function considers the two
dimensional pallet loading problem, such that the area of the pallet is maximized by the
rectangular pieces corresponding to the boxes base dimension. In this case, applying the
guillotine- or the nested-cut pattern, the optimum layout for the pallet area 1s determined

mathematically. The initial objective function is;

2v
Maximize Y G;*l*w X, (5.21)
i
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where, 4=0, if | =w, , for 1=N+1, .,2N, a=1, otherwise.
X, denotes the number of rectangular pieces (corresponding to the boxes base area) |*w,
of type "i", for i=1,2, . N,

N denotes the number of original box type,

The pallet aiza utilization is obtained from:

N
z: axlpwX, (5.2.2)
4

UA =
L*W

After the optimum layout, optimum subarea, on the pallet is determined from the initial
objective function, assign each optimum base area found to a new index:

Z, denotes the number of optimum subarea (boxes base) "j" found on the pallet, for
=12, T

Z,, denotes the number of boxes of optimum base type "j" and height "h".

Then, the specific column corresponding to each subarea is maximized. This procedure
is considered as multi-process stacking problem with multi-layer in each column stack.

The objective function to optimize the stacking height for each subarea is:

T
n
f?i*p

Maximize Y Y hy*Z,
j=1 k=1

(5.2.3)

where, T 1s determined from initial ILP problem, which denotes the number of different
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optimum types of subarea found on the pallet,

n, denotes the number of times each optimum base (subarea) type "T" is repeated on the
pallet, for k=1,2,...,T,

h', denaes the height of boxes of height type "h", in ascending order for index h=1,2, .P,

such that i.e. h';=1, h',.=2, h';=3,

The most essential part of the ILP formulation which conducts the solutions to the
objective function are the constraint. The following practical constraints are reflected in

the proposed modei:
(1) Pallet Constraints

When loading the boxes onto the pallet no over hanging is allowed, therefore, the total
surface area of the pallet must be equal to or greater than the total area of the boxes on

the pallet surface, regardless of their heights.

2N
LxW - ‘f_;d‘.*l‘.*w,*xi 20 (5.24)

(2) Stacking Height Constraints

The total area on the pallet is partitioned into several optimal strips/subareas, and each
column stack corresponding to the optimal subareas contains few boxes of different or

similar height. Therefore, the total stacking height of boxes in each strip must be less than
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or equal to the maximum palletization height (pallet height) H.

P
H-Ymh+Z,20; Yj (5.2.5)
Al

For example, if there are three different heights, h,,h,,h;, a number of layer combinations
can be generated. If the number of layers of the same height on the pallet are denoted by

a, b, and c respectively, the following constraint must be satisfied:

a*h| + bxh] + cxhy < H (5.26)

The total number of layer combinations (a,b,c) is obtained from the number of solutions
of this inequality. In general, if there are N different heights h ,h,, . h,,. hy the number of
combinations of layers on each strip can be generated. Let X, denote the number of layers

of the same heisrht on each subarea, therefore, the following constraint must be satisfied:

H, - iz::Xﬁ*h, 203 Y (52.7)
The number of solutions to this inequality give the total number of layer combinations (
X, Xap--s X,,,). Each layer combination is considered as an alternative for the palletization
problem. So, the solution to the original problem is obtained from one of the alternatives.

(3) Box Quantity Constraints

The number of boxes of each type available is limited and each box can have two
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different orientations on the pallet, considering the base dimension of each type of box

X, + 4+X,, s D, Vi (5.28)

Where; D, is the number of boxes base area of type "i" and type "i+N" available.

The number of different heights with respect to the base dimension of boxes of each type

is finite. Hence, the constraints on the availability of the boxes' height 1s;

S
Z. <D, ; Vkoptimum type , Vh
j,E,k Jh = ik P P (5.2.9)

where; e, =1 +f ., fi=m v fpnfo=0

D,, is the number of boxes of optimum base dimension of type "j" and height "h".
(4) Upper Bound Constraints (for number of boxes of unit area)

Consider a two-dimensional pallet loading problem, with boxes of different dimensions,
where all the dimensions are considered to be integer, divide the pallet of dimension L*W
into W strips of dimension L*1. Assuming that the boxes can have two different
orientations on the pallet, it does not guarantee that the length of each strip L*1 will be
filled 100%, by combination of boxes length |, and width w,. Therefore, some boxes of
unit area, of length and width one can be considered to provide at least one optimal
solution to the total coverage of the pallet. For the proposed model, the upper bound

(maximum number) of boxes of unit area {max(a,,,)} is set less than or equal to the
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smallest dimension of the pallet, which is the pallet width W.

max(a,,,) < W (5.2.10)

Lat X,,., be the box type of unit area, l,\,,=w,\,,=1, Then

max(a,,,) - Xy, 2 0
(5.2.11)

W -Xpng 20

(5) Strip Constraints

The strip types combinations for this model are similar to those generated in the Model
1 problem, however their application is slightly different. Boxes are of different
dimensions, the box length set "s" is obtained similar to that of equation (5.1.6), with its
unique elements. To generate the strip types combination, for n possible types of strip,
all the possible box length combinations of which their sum is equal to the pallet length

L are obtained exactly as those in equation (5.1.7).

The following strip constraints are determined:
For j=1,2,...,n types of strip from equation (5.1.7), let y, denote the number of the strips
of type 1, y, denote the number of strips of type 2, and y, denote the number of strips of

type ")", etc. Then the sum of the number of strips of each type "j" must be less than or

equal to the pallet width W.

n
Yy < W J=1,2,0n (5.2.12)
J=1
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The other strip constraints are defined as follows, with respect to the length set "s":

For the length 1.°, e=1,2,... k+1

n N 2N
Eaej*)’j ZE wi*Xiﬁ- E aq*w‘*Xﬁa:'i*xm‘l ; Ve (5.2.13)
J=1 i=1 i=N+1

where;
o', =0, if 1.#,,,
o', = 1, otherwise. Thi- represents the unit 1*1,
ha =1,
Xane = box type of unit area, 1,,,, =l,w,,,, =1,
a,, is the number of lengths of length type 1" in type j strip,
a,,= 0, if I=w, for i=N+1,...,2N
o= 1, otherwise.
If the length and width of a box are equal, then for that type of box no rotation about the

Z axis 1s considered. Hence,

Xus, = 0, if 1 =w,; i=1,2,..,N original box type.

An example to illustrate the use of strip constraints is provided on the following pages.
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(5a) Example (strip constraints):

Constraints of this type have been developed from Brown's linear equation approach. This
algorithm guarantees that the selected boxes will fit the pallet area with a specific

orientation. The following example is considered to describe the linear equation approach.

Consider a collection of eight small boxes with respective length and width of their tase
dimensions of (3,2), (3,1), (3,1), (2,3), (2,2), (1,3), (1,2) and (1,1). These small boxes are
to fit into a large pallet of dimension (7,4), representing its length and width respectively.
The height of the boxes is discarded at this moment. The total sum of areas for these
eight boxes is exactly equal to the area of the pallet which is 28. Therefore, these eight
boxes have to completely fill the pallet area. The lengths and widths of boxes are
considered to be parallel to the length and width of the pallet respectively. The orientation
of the boxes is considered to be fixed. Note that if the area is the only restriction to be
considered the problem is simplified, and the assigned boxes can fill the pallet area.

However, the boxes are considered not only by area but also by their lengths and widths.

The box length set is the combination of the boxes length and width, these lengths and
widths have to be unique in order to present the length set, which is assigned to
s={3.2,1}. The linear equation techniques can be used to check whether this combination
of the box lengths presented in the set "s" can fit into the pallet area of dimension 7x4.

The procedure is as follows:
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First divide the paliet into four strips of dimension 7x1, and then consider all the multi-set
combinations of the lengths that can fit and fill the strips of length 7 on the pallet. The
feasible combinations to fill these strips are:

a) {3,3,1}

b) {3,2,2}

c) {3,2,1,1}

d) {2,2,1,1,1)

e) {2,2,2,1}

f) {3,1,1,1,1}

g} {2,1,1,1,1,1}

However, since there are only two boxes of the length 2, and three boxes of length 1, the
combination sets of {2,2,2,1}, {3,1,1,1,1} and {2,1,1,1,1,1} can not be possible strip
types. Hence, the only possible strip combinations are strip types (a), (b), (c), and (d). Let
"a" denote the number of the strips combination of type (a), "b" the number of strips
combination of type (b), etc. Where the number of boxes of type 1, type 2, type 3, etc.
on the pallet can be represented by X1, X2, X3, etc. respectively. There are totally

four strip types, thus we can obtain the linear equation;

a+b+rc+ds< 4 (el)

There are two types of boxes of length 3, namely (X,=3*2, X,=3*1,X,=3*1) for which

one has width 2, and two have width 1. Also, there must be four strips of length 3, two
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in each type (a) strip, one in each type (b) strip and one in each type (c) strip. This

provides the linear equation;

2a+b+c22X +2X, (e2)

For the boxes of length 2, the same idea is applied. There are two types of boxes of
length 2, one of width 3, and one of width 2. There must be five strips of length 2, two
in each type (b) strip, one in each type (c) strip, and two in each type (d) strip. This

yields the linear equation;

2b+c+2d23X,+2X, (e3)

Similarly, there are three types of boxes of length 1, one of width 3, one of width 2, and
one of width 1, for which there is one in each type (a), two in each type (c) and three in

each type (d). The following linear equation is obtained;

a+2c+3d23X,+X,+2X (ed)

The linear equations above become constraints when X1, X2, X3, etc. are decision
variables in a model. The number of strip constraints increases with the increase of the
number of boxes Solving the above linear equations (el) through (ed4), the integer
solution obtained is a=1, b=1, c=1 and d=1. Hence, the combinations of the areas of the

boxes will fill the pallet area.
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5.2.1 The ILP Formulation for Model 2 Problem

The ILP Formulation for Model 2 problem for which the optimum layout on the pallet

can be determined is shown as:

W
Maximize Y 4,1 xw X,
i

Subject TO:
w
LxW - Y 4+l xwpX, 20

X, +d4xX,,y <D, ; Vi

W-Xy,20
n
Yy sW j=1,2,em
j=1
n N 2N ,
Eaej*yj 2 Ewi*Xl.+E “ei*wi*xi+°‘e.i*xzmn : Ve
J=1 i=1 i=N+1
X, 20; Vi
X, integer

The optimum value obtained from the above formulation must be used to develop the next
ILP problem, in order to determine the pallet optimum stacking height for each
subarea/strip. Therefore, the second vbjective function to maximize the stacking height

on each optimal subarea on the pallet can be formulated as follows:



T
n
AZ-;‘P

Maximize Y Y h*Z,
M A=

Subject T0:

P
H-Y h*Z, 20 Yj
h=1

h
Y 2, <D, Vkoptimum type , Vh

J=e;

where, e =1+f_, fi=m*fip Jo=0

Z, >0, Z, Integer

For instance; Let "T" represent the number of different optimum bases found, and n,
denote the number times the optimum type T is repeated, for k=1,2,...,T. Where,
h=1,2,...,P is the different heights, then n,*p represents the number of boxes of type "k"
which have the same base dimension, and their heights are h=1,..,P. Assume that two
types of optimal base area are obtained from the first ILP problem. If the optimum type
one is repeated two times, and type two is repeated two times as well, then n;=2, n,=2.
Also consider that there are three different heights for each type, then;

h=1,..,3 so that P=3. Therefore, n,*P = 2*3 = 6, which means the first six types of box
Z,, (k=1,.,T ; h=1,.,P) have same base dimension. The first six types of box are

2,,,2,,,2,,Z,\,2,,Z,;. Where, Z,=2,,, Z\,=Z,, Z,5=1y,.

Also, n,*p = 2*3 = 6, which means the second six types of box Z,, (k=n1+1,.,n1+n2 ;
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h=1,.,P) have same base dimension. The second six types of box are

Z24,2,,,2,,24,2,,,Z,; Where; Z,=Z,,, 2,,=Z,,, X,;=Z,,

Note that the solutions to a problem varies as the demand restrictions on the availability
of the boxes of each type varies. These demand restrictions can be set both when
determining the optimum layout for the pallet area and when determining the optimum
layout of stacking height. Several examples are conducted to verify the changes on the
results obtained with respect to different demand restrictions set in the first layout of the
ILP problem for dimensions L*W, and also in the layout of the stacking heights

corresponding to those optimum results.

5.2.2 Selection of Column Stacks

The selection of column stacks is critical in the pallet loading proble, and it may be
concerned with respect to two major concepts. Stability and utilization. When loading
with boxes of different heights, the stability of the column stacks become one of the
major factors in the palletization .oblem. Since the larger the box the more stable it is,
the boxes with bigger volume, therefore, would be loaded on the smaller boxes in each

column to provide better stability.

In order to maximize the pallet utilization, with respect to the demand restrictions set for

the problem, the boxes with larger base area have the priority to be loaded on the pallet.
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This provides a higher percentage in the pallet area utilization, and also provides a better
chance for the smaller boxes to be loaded on the top of the bigger ones. However, where
the stability of column stacks is under question the larger box must be loaded on the top.
Since the objective is the utilization, after the optimum layout for the pallet area is
determined, the larger optimum subareas have the priority to stack up, so that the volume
utilization of the pallet is maximized. By convention boxes are loaded on the bottom left
hand corner on the pallet. If the optimum type of boxes is found to be repeated a number
of times on the pallet, the procedure of the column selection remains the same. Moreover,
the optimum stacking heights for each optimum subarea is determined, then, for each
optimum type subarea (starting with the larger ones), the boxes with greater height will
be loaded first. This provides a greater volume utilization of the pallet. The algorithm for

this model is given in the following pages.
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5.2.3 Algorithm for Model 2

The following steps are to determine the solutions to the 3D stacking optinuzation
problem, by ILP procedure, for Model 2 problem:
I- input the number and the type of boxes,

2

input the pallet(s) dimension and the stacking height,

3- initialize,

4

extract the base dimension of each type of box and their corresponding heights,

5

generate the strip combinations with respect to the unique lengths and widths of the
boxes,
6- set the required constraints,
7- set the demand restriction constraints on the availability and the number of boxes of
each type,
8- develop the ILP formulation
a) for the two-dimensional pallet loading to maximize number of boxes on the pallet,
- set the upper bound for the pallet dimension, and strip combinations,
- set the upper bound for the unit pieces,
b) for the multi-process multi-layer stacking problem to maximize the stacking height in
each column, with respect to the optimum subareas found,
9- solve the ILP problem,
10- if solved 8-a)

- find the optimum subareas on the pallet,
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- 1f the solution is not acceptable, verify the strip combinations and the ILP
formulations, go to step 5, or else go to step 8-b,
- if solved 3-b)
- find optimum stacking height in each column,
- if the solution is not acceptable and there is residual height on each column
stack, go to 11, else go to 15.
1)- determine the remaining height and the optimum base area,
12- conmder each unfilled base area as a small pallet,
13- set the stacking height to the corresponding residual height on each subarea,
14- set the number and the availability of each type of box to the remaining appropriate
boxes,
o to step 8-a).
15- calculate the pallet area utilization,
16- calculcte the pallet volume utilization,
17- present the valucs on the computer,
18- stmulation
- draw the optimum layout on the pallet area,
- draw the stacking height on each column stack,
- present the final results,

19- End

The flow chart for this model is shown in figure 5.2.1.
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Figure 5.2.1 Flow Chart for 3D Stacking for Model 2
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5.3 Model 3: A Random Sequence Heurnistic for 3D Stacking Palletization

In automated manufacturing systems the palletization takes place at the end of production
lines. The arrival of boxes is in a random sequence pattern, so, the availability of each
type of box is not a constant. The solutions to such a palletization problem, with
stochastic process, can be infeasible by computation therefore, heuristics are required. The
heuristics approaches with some practical assumptions arc appropriate to deal with
complex optimization problems, for which algorithms yielding optimal solutions are not
known or infeasible by computation. So far, no mathematical model, such as those
proposed earlier in Mode! 1 and Model 2, has been developed to solve such a complex
problem. There is no literature on the heuristic for 3D stacking palletization problems.
The proposed Model 3 applies a heuristic to deal with problems with the following
specifications’

» one pallet, or more if necessary, with fixed dimensions,

» number of boxes types is finite, however their arrival is in a random sequence,

+ box are grouped according to their similar height. A group is a collection of boxes with
same height,

+ there are seven types of boxes, such that three types of base, and for some, three
different heights are considered,

« maximum number of different heights is three, hence, the maximum number of groups
1s three,

* boxes in group 1, 2, and 3 have height of hl, h2, and h3, respectively. Height hl is the
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shortest height and height h3 is the tallest height,

« each group has a holding area,

« the objective is to reach the maximum pallet volume utilization and maintain low WIP,
« stacking palletization technique is applied Stacking is considered from the layout point
of view and for each layout stack the layer loading is considered

« there is no restriction on the number of boxes available

« single pallet palletization

In heuristic palletization, the goal of achieving stability does not seem to be realistic since
tie arrival of certain types of boxes is not certain Therefore, the main goal in most
situations is utilization, which is selected as the objective of the proposed model Note
that the proposed Model 3 1s a base ILP heuristic model. The optimal layout on the pallet
with respect to the boxes base area, using LINDO, is determined. Then, cach optimal
layout on the pallet is stacked up providing layers with different heights in each column
stack, such that each column stack may have onc or more layers but the height of the
stack remains less than or equal to the palletization height. Each layer consists of onc or
more boxes. The height of each layer in a column remains constant until the layer is
filled. Boxes can form blocks and then each block is treated as a box and loaded on a
proper subarea on each column stack. The formation of a block 1s only to ease the loading
procedure. The block formation is as follows: A block can contain one or more boxes
Smaller boxes are used to form blocks (1 e block of dimension 40*24*20 can be formed

by four boxes of dimension 20*24*10, or one box of dimension 20*24*20 and two boxes
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of dimension 20*24*10). As the number of boxes of different dimensions increases the
problem of forming block becomes moie complex. The block formation is done at the
loading time, and may be called partial layer formation. This procedure may be defined
as staging procedure for which boxes are selected before loading on the column on the

pallet rather than being loaded in terms of first-in first-served.

The solution to the stacking palietization for Model 3, using heuristic approaches, 1s

determined by conducting several steps. These steps are followed in the following section.
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5.3.1 Algorithm for Model 3

The following steps are to determine the solutions to the heuristic 3D stacking
palletization:

Step 1. Start

Initialize the system. Set the remaining height in each optimal subaiea on the pallet equal
to the palletization height,

Step 2. Checking the remaining palletization height in subarea "j", H , on the pallet. For

"
J=1,2,..,T, being the optimal subareas determined by LINDOQO,

* if H, equal to zero, it means all the space in the subarea "j" has been filled,

o then check the next subarea, until j=T, if all zero, terminate the procedure,

« otherwise continue,

Step 3. Checking the new layer on each column stack ")", for j=1,2,..,T

« if a new layer has to be selected, go to step 4,

« if a layer has already been started and waiting to be filled, go to step 5,

Step 4. Selecting the height for new layer

The height of the 12w layer must be determined before loading any box to that layer.
Since the objective of the model is the maximization of each column stack, the priority
of the selection of the layer height in each column stack is given to the greatest height
possible. Note that there are three heights: h1, h2, and h3, where, hl is the shortest height

and h3 is the tallest height. Also h3 can be formed by combining the height hl and/or h2

The selection of the height for each layer on each column stack, when boxes are coming
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to the system in a random pattern sequence, is.

+ if there is a box of group 3 coming to the system, the height of the layer in column
stack "j", HL, , is selected to be h3,

« if there is no box from group 3 but there is a box from group 2, then the height of the
layer in column stack "j", HL, , is selected to be h2,

« if there is no box from group 3 and there is no box from group 2 but there is a box
from group 1, then the height of the layer in the column stack "j", HL, , is selected to
be hi,

Step 5. Filling a layer in the column stack of the optimum subarea "j" with a box from
group "i", which has the selected height h, for the current layer

The layer in the column stack "j" is filled after the layer height is determined. The height
of the layer remains a constant until the completion of the total space in the layer. Blocks
are also treated as boxes and then a box/block loaded on the current layer on the colum.n.
Furthermore, some rules are followed in the selection of boxes:

+ always a larger box is selected prior to the others if it fits the remaining area of the
layer,

» select the last box in the pool if it can fit and complete the remaining area of the layer
in the column stack "}". Otherwise, leave the smallest box in the WIP area.

« if the new box is too large to fit the remaining area, and there are boxes on the working
layer on the column ")" which are smaller then the new box, remove the smaller box to
WIP, and restart this step,

Step 6. Checking the layer for completion
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o after a layer is completed go back to step 2

Step 7. Checking the height in column stack "j" for completion

« after the remaining height in the column stack "j" is zero, repeat the same procedure for
the next subarea,

Step 8. Terminating the procedure

« stop the procedure if all the column stacks are filled and their stacking height are zero

The flow chart of this heuristic is shown in figure 5.3.1.
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CHAPTER 6 CASE STUDY APPLICATIONS

Several numerical examples have been worked out to demonstrate the validity of the
proposed models. Different types of boxes are considered for the proposed Model 1,
Model 2, and Model 3, with certain demand restrictions on the availability of boxes of

each type. Boxes' dimensions are shown in a few tables presented in each case study.

6.1 Model 1: Case Study

The pallet of dimension L*W*H = 7*4*4, is available. There are six types of original
boxes of multi-size, of both rectangular and square shape. These boxes arc defined in
terms of length, width and height as: B ;=2*2*1, B,=2*2*2, B,=2*2*3, B =3*2*|,
B=3%2%2, B,=3*2*3, B,=4*2*1, B;=4*2*2, B,=4*2*3, table (6.1 1).

Table 6.1.1 Mcdel 1: Input Data (Original Box Type)

Item Length Width Height Volume
Pallet 7 4 4 112
Box 1 2 2 1 4
Box 2 2 2 2 8
Box 3 2 2 3 12
Box 4 3 2 ] 6
Box 5 3 2 2 12
Box 6 3 2 3 18
Box 7 4 2 1 8
Box 8 4 2 2 16
box 9 4 2 3 24




64

Consider the case for which the boxes are allowed to be loaded on the pallet on any of
their side. This leads to the case that boxes rotate about X, Y and Z axe: with no
restrictions; therefore, in this case each box can be represented in six different forms on
the pallet. This number depends on whether the length, width and height of the box are
different from each other. The different representations of the boxes of each type are

shown in the table (6.1.2).

Table 6.1.2 Model 1: Different Onentations of Boxes

Item *w*h | w*I*h | h*w*l | h*I*w | I*h*w | w*h*I
Box 1 | 2*2*1 |- 1*2%2 | ceee 2%1%2 | —eee-
Box2 | 2*2*2 feeem | eeeee | eeee e | e
Box3 |2*2*3 | ---- 3#2%2 | coeee 2%3%2 | —eee-

Box 4 3*2*] 2*%3*1 1*2%3 1*3%2 | 3*1*2 2*1%3
Box § 3*2*2 2%3*2 2%2%3 | cecee | eeeee | eeeen

Box 6 3*2%3 2*3*3 | w--e- 3%3%2 | e | eeee
Box 7 4%2%] 2%4*] 1*2*4 1%4*2 | 4*1*2 | 2*1*4
Box 8 4*2*2 2*4*2 2%¥2%4 | ceeee | cmmee | meeee

Box 9 4*2%3 | 2*4*3 | 3*2%4 | 3%4*2 | 4*3*2 | 2*3*4

In table (6.1.3) the duplicated type of each box for which boxes are allowed to rotate

about the Z , X, and Y axes is shown:
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Table 6.1.3 Model 1: Converted Boxes Data

Item Number L.ength Width Height Volume

Pallet 1 7 4 4 112
Box type 1 X1 2 2 1 4
Box type 2 X2 2 2 2 8
Box type 3 X3 2 2 3 12
Box type 4 X4 3 2 ] 6
Box type 5 X5 3 2 2 12
Box type 6 X6 3 2 3 18
Box type 7 X7 4 2 1 8
Box type 8 X8 4 2 2 16
Box type 9 X9 4 2 3 24
Box type 10 X10 2 3 1 6
Box type 11 X11 2 3 2 12
Box type 12 X12 2 3 3 18
Box type 13 X13 2 4 | 8
Box type 14 X14 2 4 2 16
Box type 15 X15 2 4 3 24
Box type 16 X16 1 2 2 4
Box type 17 X17 3 2 2 12
Box type 18 X18 1 2 3 6
Box type 19 X19 2 2 3 12
Box type 20 X20 1 2 4 8
Box type 21 X21 2 2 4 16
Box type 22 X22 3 2 4 24
Box type 23 X23 ] 3 2 6
Box type 24 X4 3 3 2 18
Box type 25 X25 1 4 2 8
Box type 26 X26 3 4 2 24
Box type 27 X27 2 1 2 4
Box type 28 X28 2 3 2 12
Box type 29 X29 3 1 2 6
Box type 30 X30 4 1 2 8
Box type 31 X31 4 3 2 24
Box type 32 X32 2 ] 3 6
Box type 33 X33 2 ] 4 8
Box type 34 X34 2 3 4 2

It is important to note that if a box has its length , width and height equal, 1ts rotation
about any of X, Y and Z axes is not considered. Similarly, if a box has it length and
width equal then its rotation about Z axis is not considered. Similarly for a box which has
its length and height equal no rotation about Y axis, and for a box with its width and
height equal no rotation about X axis, is considered. Hence:

If 1=w, , no rotation about Z axis,
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If 1=h, , no rotation about Y axis,

If w=h, , no rotation about X axis,

For the case where the boxes are allowed to rotate about all the axes, if the length, width
and height of a box are not equal, a box can be load on the pallet in six different
orientations. Hence, the following box types are equal:

X,=X,= X0 Xa Xo=X,7=Xas Xe=X,=X,5=X0:=X0omX s X=X, =X,

X=X 17X X= X33 X00=X0mX00mXas, Xe=X,7X0, Xo=X, =X 0= X=X 57X

Let's consider the case where boxes are only allowed to rotate about Z axis, for which
two orientations only are considered for each box on the pallet, if the length and width
of the box are not equal. In this case the boxes in the first two column of the table 6.1.2
are the types to be worked with. These box~s are shown with their specified type in table
6.1.3, and are the box type 1 to type 15. Therefore, the following types of boxes can be
shown to be equal: X,, X,, X;, X:=X,o, X=X}, X=X}, X=Xp5, X=X X=Xys.
The rotation of the box type 1, 2, and 3 about Z axis is not considered, since they have

stmilar length and width.

Note that no over-hanging is allowed when loading boxes on the pallet and the height of
the stack on each subarea on the pallet must not exceed the palletization height. These
problems are considered in the generation of strip constraints as follows:

» the length over-hanging is solved by considering that the sum of the elements in each

strip type does not exceed the pallet's length,
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+ the width over-hanging is solved by considering that the sum of all the strip
combinations times the pallet height does not exceed the pallet width times the pallet's
height.

Therefore, the total atea of boxes on the pallet remains less than or equal to the pallet's
area.

» the stacking height is restricted to the pallet height by considering that the total volume

of boxes on the pallet is less than or equal to the pallet's volume.

For this problem, there are nine types of original boxes, and they are allowed to rotate
about the Z axis, and the availability of all type of boxes is certain. The number of boxes
virtually doubles except for those of equal length and width. Hence, N=9, and 2N=18
However, since three boxes have their length and widths equal (k=3), the total type of
boxes to be considered for two different orientations on the pallet (rotation about Z axis)

are type 1 to type 15, in table 6.1.3.

The objective function can be wnitten as:

9 18
Maximize {Z Lrawxh X+ Y d,*l,*wl*h,'«XE} 6.11)
i=1 i=10

The first set of constraints for this problem is the pallet volume constraint

9 18
L+W+H - {E Lrwrhir Xy d:*’:*wi*ht*xt} 20 (6.1.2)
i1 =10
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The second set of constraints correspond to the demand restrictions on the boxes quantity.
Since the length and width of boxes type 1, 2, and 3 are equal their rotation on the pallet
1s not considered. Box type 4 and 10 are the same, box type S and 11 are the same, box
type 6 and 12 are the same, similarly box type 7 and 13 are the same, box type 8 and 14

are the same, and box type 9 is the same as box type 15.

Xl <2 (6.1.3)

' X2 <3 (6.1.4)
X3 <2 (6.1.5)

X4 + X10 < 3 (6.1.6)

X5+ XI11 < 4 (6.1.7)

X6 + XI2 < 2 (6.1.8)

X7+ XI3 <3 (6.1.9)

X8 + XI4 < 3 (6.1.10)

X9 + X15 < 2 (6.1.11)

The upper bound constraint on the number of boxes of unit length is determined; such
that the maximum number of unit elements to be used in the generation of the strip
combinations is restricted to the pallet's width, since the width of the pailet is chopped

into the unit length strips of dimension L*1. Hence we have:

W- Xy, 20 (6.1.12)



69

However, boxes of unit length and width are not used in the formulation of the algorithm

Using equation (S.1 7) and length set equation (5.1.6), where s={4,3,2,1}; nine possible

types of strip combinations are found:

a) {4,3}

b) {4,2,1}

c) {4,1,1,1}
d) {3,3,1}

e) {3,2,2}

f) {3,2,1,1}
g) {3,1,1,1,1}
h) {2,2,2,1}

) {2,2,1,1,1}

Let A denote the number of strips combination of type "a", B denote the number of strips
combination of type "b", etc., with respect to equations (5.1.8), the sum of all possible
strip types must be less than or equal to the pallet width. For the pallet width being W=4,

we have the following constraint,

A+B+C+D+E+F+G+H+Js4 (6.1 13)

The other strip constraints are determined with respect to the specific lengths defined in
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the box length set "s" Applying equation (5.1.9), these strip constraints can be determined

as

For length 1; There is one "1" in stnip types "b", "d" and "h", two "1" in strip type "f",
three "1" in strip types "c" and "j", and four "1" in strip type "g". Note that the box type
X,y of unit length is not considered in this constraint. Furthermore there is not any other
box with length 1, hence:

4B + 12C + 4D + 8F + 16G + 4H + 12J 2 0 (6.1.14)
This is reduced to;

B+3C+D+2F +4G + H+3J >3 (6.1.142)

For length 2; There is one "2" in the strip types "b" and "f", two "2" in strip types "e" and
")", and three "2" in strip type "h". Also there is one box type X1 which has a width of
2 and height I, one box type X2 with width of 2 and height 2, one box type X3 with
width 2 and height 3, one box type X10 which has width of 3 and height 1, one box type
X11 with width of 3 and height 2, one box type X12 with width of 3 and height 3, one
box type X 13 with width of 4 and height 1, one box type X14 with width of 4 and height

2, and one box type X15 with width of 4 and height 3. Hence we have;

4B + 8E + 4F + 12H + 8J 2> 4X, + 8X, + 3X,,

(6.1.15)
+ 6X;, +9X, +4X,; + 8X, + 12X,

Forlength 3; There is one "3" in the strips types "a", "e", "f", and "g", there are two "3"
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in strip type "d". Also there is one box type X4 which has width of 2 and height [, one

box type X5 with width of 2 and height 2, and one box type X6 with width of 2 and

height 3.

44 + 8D + 4E + 4F + 4G 2 2X, + 4X, + 6X, (6.1.16)

For length 4; There is one "4" in strips types "a", "b", and "c". Also there is one box type
X7 which has width of 2 and height 1, one box type X8 with width of 2 and height 2,

and one box type X9 with width of 2 and height3.

44 + 4B + 4C 2 2X, + 4X; + 6X, o117

Note that all the strip types and all X variables are positive integer numbers.



The formulation of ILP Model 1 for this particular problem is:

9 18
Maximize { Y lrwprhaX, + ) di*li*wi*h,.*X,.}
i1 i10
Subject TO:

L*W*H-{Zg: Lxwxh X, + 128 d‘.*l,.*w‘*hi*xi} 20
i=1 i=10
Xl <2
X2<3
X3<2
X4 +X10 <3
X5 +XI11 <4
X6 + XI2 <2
X7 + X13 <3
X8 + X14 <3
X9 + XI5 <2
A+B+C+D+E+F+G+H+J < 4
B+3C+D+2F+4G+H +3] 2 0

4B + 8E + 4F + 12H + 8J > 4X, + 8X,+ 3X,,
+ 6X,, + 9X,, +4X,; + 8X,, + 12X,

44 + 8D + 4E + 4F + AG > 2)1’4+4X5+6X6

44 + 4B + AC 2)(7+4X8+6X9

X, and A, B, (.,....,J are positive integers.
a =0, if l=w, , for i=10,.., 18; 4=1, otheiwise.
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For this particular problem, the value of objective function 1s found to be 112 which 1s
the total volume of the pallet of dimension L*W*H=7*4*4=112. This means 100% pallet
volume utilization. The LINDO ILP formulation can be found in APPENDIX A The
optimal values of the decision variables are as follows, where their dimension ci.o be
found in the table (6.1.3):

X=4, of dimensions 3*2*2,

X,=2, of dimensions 4*2*1, and

Xg=3, of dimensions 4*2*2.

Now that the optimal results are obtained, the loading procedure begins. Loading the
optimal boxes on the pallet as was discussed in the earlier chapters depends on the
pr.iority to which box must be loaded on, and/or unloaded from the pallet, and many other
logical conditions for which, for instance, the loading and unloading time is reduced, etc
The most important aspect in the loading boxes in stack is the stability of the column
stacks, in both static and dynamic conditions. On the other hand to achieve higher
percentage of the pallet utilization the boxes with larger base arca are loaded on the pallet
at first; also boxes of larger volume if any, with the same base dimension as the earlier
ones, can be loaded on the top to provide a better stability in terms of shding and
toppling. Since boxes of bigger volume are heavier, they are more stable with respect to
the smaller and the lighter ones. Also for the case where boxes of larger base arca are
loaded on the pallet, a better chance can be given to the smaller ones to be loaded on top

of them to provide better or higher utilization.
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The optimal physical layout of the boxes stacked on the pallet with their steps of loading

is shown in figure 6.1.1.

(1 2 (3)
(4) (5) (6)
(N (8) 9

Figure 6.1.1 Optimal Physical Layout of Stacking Palletization for Model 1
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6.1.1 Model 1: Case Study, with Specific Demands (Also To Be Used in 6.2 Model 2)

The solution to the Model 1 problem is obtained by employing the boxes type shown in
table 6.1.3 and placing some specific demand restrictions on the number of boxes
available, which are also to be used in the case study of the proposed Model 2. The
number of boxes available for this specific example are:

Two boxes of type 1, one box of type 2, one box of type 4, two boxes of type 5, one box
of type 6, two boxes of type 7, and two boxes of type 8. However, boxes of type 3 and
type 9 having height of 3 are ignored. Therefore, applying the formulation of the Model
1 problem presented in chapter 5.1.1, for volumetric optimization of the pallet, the box
quantity constraints for this problem are’

X,€2, Xo<1, X 43X, € 1, X+ X< 2, Xt X, € 1, XX, € 2, X+ X, = 2.

The optimal solution obtained for this particular problem provides a 100% volume
utilization of the pallet. The value of objective function obtained is 112, and the decisions
variables are:

X,=2,X,=1,X,=1,Xs=2,X,=1,X,=2,X;, = 2.

Since the volumetric solution is obtained from the proposed Model 1, boxes can sit on
the pallet in many different orders and locations. The loading pattern is not restricted and
depends on the preference of the operator, and the priority in which boxes to be loaded
on and/or unloaded from the pallet Considering the stability of the column stacks two
alternative solutions are considered. The graphical representation of the final solutions for

this problem is shown in figure 6.1.2.




Solution 2 Solution 1

Figure 6.1.2 Results Obtained from the Proposed Model 1
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6.1.2 Model 1: Case Study with Practical Dimensions

In the practical situations the dimension of the pallet and the boxes to be loaded on the
pallet differ from those that have been used earlier in Model | problem The real
dimensions of the pallet and the boxes used in most warehouses and industrial

applications are as follows:

Pallet dimension of 48" length by 40" width, the stacking height varies, however i1t 1s
usually considered as 40" height. Boxes are of various dimensions, for instance, A box

of dimension 40"length, 24" width and 20" height.

The formulation of the Model 1 problem for the pallet and boxes with specified
dimension above is exactly as the those mentioned earlier, however, there are shght
changes in the generations of the strips combination. The box length set "s" is defined as
the set in which its elements are the unique values of tne length and width of the boxes
The lengths/widths in this box length set are used to generate all possible types of strip
combination. Therefore, the strips combination must contain the unique lengths from the
box length set "s", for which the sum of their elements does not exceed the pallet length
It is not necessary that the sum of the elements in the each strip type be exactly equal to

the pallet length, because this may prevent the generation of some strip types
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The following original types of boxes shown in table (6.1.5) are taken from Yang (1993);

Table 6.1.4 Model 1: Original Types of Boxes of Practical Dimensions

Item Length Width Height Volume | No.
Pallet 48 40 40 76800 1
Box ] 40 24 10 9600 2
Box 2 40 24 20 19200 2
Box 3 24 20 10 4800 2
Box 4 24 20 20 9600 2
Box 5 24 20 30 14400 2
Box 6 20 12 20 4800 4
Box 7 20 12 30 7200 4

The box length set "s" would be s = {40,24,20,12}

The followings are the 14 possible types of strip combination of boxes length, chosen

from the elements of the box length set "s", for which the sum of their e¢lements is less

than or equal to the pallet length L=48:

a) {40}

b) {24,24}

c) {24,20}

d) {24,12,12}
e) {24,12)

f) {24)

g) {20,20}
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h) {20,12,12}

i) {20,12}

J) {20}

k) {12,12,12,12}
) {12,12,12}
m) {12,12}

n) {12}

From the strip types above it is possible 10 rotice that, because of the dimension of the
boxes, if the sum of the elements in each strip type would have been restricted to be
exactly equal to the pallet length, the generation of the strip types "a", "c¢", "e", ", "g",

"h'!’ "ill’ lljll’ lll"’ "mll’ and |ln" would have heen impossible

Using the strip types shown above, the Mcdel 1 problem can be formulated Boxes are
allowed to rotate about the Z axis, hence the number of boxes used is virtually doubled

The converted box types are shown in the table 6.1.6.
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Table 6.1.5 Model 1: Converted Boxes Data of Practical dimensions

[ Iter Length Width Height Volume | Demand
Pallet 48 40 40 76800 1
Box 1 40 24 10 9600 2
Box 2 40 24 20 19200 2
Box 3 24 20 10 4801 2
Box 4 24 20 20 9600 2
Box 5 24 20 30 14400 2
Box 6 20 12 20 4800 4
Box 7 20 12 30 7200 4
Box 8 24 40 10 9600 2
Box 9 24 40 20 19200 2
Box 10 20 24 10 4800 2
Box 11 20 24 20 9600 2
Box 12 20 24 30 14400 2
Box 13 12 20 20 4800 4
Box 14 12 20 30 7200 4

The ILP formulation of this problem is given in APPENDIX B, which is in fact similar
to the one shown earlier in this chapter, the optimal value of the objective function found
to be 76800, which is exactly equal to the pallet volumetric dimension. This provides a

100% results of pallet volume utilization. The values of the optimal decision variables are:

X\=2, X,=2, X,,=4.
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The optimal physical layout of the stacking palletization for this particular problem s

shown in figure 6.1.3.

(1) 2 (3)
(4) () (6)
(7) (&)

Figure 6.1.3 Optimal Physical Layout of 3D Stacking Palletization

for Model 1, with Practical Dimensions.



6.2 Model 2: Case Study, using Demand Restrictions from 6.1.1 Model 1

An illustration problem is solved using the proposed ILP model 2, the demand restriction
on the number of boxes of each type is considered similar to those 1n 6.1.1 Model 1

However, their application defers in the proposed Model 2. There are seven types of
original box, the input data, of dimension 1*w*h, and boxes type 3 and type 9 of height

3 are ignored, as shown in the table 6 2.1;

Table 6.2.1 Model 2: Input Data {Oniginal Box type)

" Item Demand | Length Width Height Volume
Pallet 1 7 4 4 H12
Box 1 2 2 2 1 4
Box 2 1 2 2 2 8
Box 3 0 2 2 3 12
Box 4 1 3 2 1 6
Box 5 2 3 2 2 12
Box 6 1 3 2 3 18
Box 7 2 4 2 ] 8
Box 8 2 4 2 2 16
Box 9 0 4 2 3 24

To determine the optimum layout on the pallet, at first the base area of the boxes are
considered. Therefore, three types 0. original base area from these boxes can be obtained,

as shown in table 6.2.2
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Table 6.2.2 Model 2: Types of Boxes Base Area

Item | Number | Length Width Area

Pallet 1 7 4 28
Box type 1 3 2 2 4
Box type 2 4 3 2 6
Box type 3 4 4 2 8

Since boxes are considered to have two different orientations on the pallet, the number
of boxes base area is virtually doubled, hence each type of box is converted into two

copies, as shown in table 6.2.3.

Table 6.2.3 Model 2: Converted Boxes data

" Item Number | Length Width Area

Pallet 1 7 4 28
Box type 1 X1 2 2 4
Box type 2 X2 3 2 6
Box type 3 X3 4 2 8
Box type 4 X4 2 3 6
Box type 5 X5 2 4 8
Box type 6 X6 1 1 1

Note that, since box type 1 has its length and width equal, the rotation of this box is not
considered on the pallet. The box type 6 is of unit length and width which is considered
to ensure that at least one optimum solution can be obtained on the pallet. This is only

to be considered in the constraints and it can not be included in the objective function
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formula. Therefore, we have the following demand on boxes type; Where X1 = 3, X2+X4
=4, X3+X5 = 4.
At first, the objective function to determine the optimal layout on the pallet area is
formulated. For this particular problem N=3, 2N=6. However, since the orientation of box
type 1 is not considered, and the boxes of unit area X, can not be used in the formulation
of the objective function, the boxes type 1 to type S are used.
6
Maximize Y dxl+w*X, (6.2.1)
i=1
Furthermore, this Objective function is subjected to some specific constraints, these can
be set as follows; The first set of constraints is about the pallet area
6
LxW - Y d*lxw*X, 20 (622)
i=1
The second set of constraints corresponds to the demand restrictions on the number and
availability of boxes, which in fact is considered as the box quantity constraints.
Considering the fact that box type 1 stands by itself, box type 2 is the same as box type

4, and box type 3 is the same as box type 5, we have:

Xl <3 (6.2.3)
X2 +X4<4 (6.2.4)
X3 +X5<4 (6.2.5)

The constraint of the upper bound on the number of boxes of unit length 1s obtained, for
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which the number of boxes of unit length can not exceed the pallet width W.

W - X, 20 (6.2.6)

The strip constraints can be generated as follows:

(1) First divide the pallet of dimension 7*4 into four horizontal, unit width, strips each
of dimension 7*1.

(2) Determine the box length set "s", with its unique elements s={4,3,2,1).

(3) Determine all the possible sets of strip combination, from eqation 5.1.7, such that sum
of the elements in each strip set is equal to the pallet length of L=7. Nine possible strip
types combination found as follows:

a) {4,3}

b) {4.2,1}

c) {4,1,1,1}

d) {3,3,1}

e) {3,2,2}

) {3,2,1,1}

g) {3,1,1,1,1}

h) {2,2,2,1}

) {2.2,1,1,1}

Note that strip type (i.e. {2,1,1,1,1,1}) is not a possible type of strip, since the upper

bound value for the number of boxes of unit length is 4.
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Let A denote the number of strips combination of type (a), B denote the number of strips
combination of type (b), C denote the number of strips coml nation of type (c), etc.
Hence with respect to equation (5.2.14), the sum of all possible strip types must not
exceed the pallet width, where maximum width of the pallet is 4, the following constraint
exist:
A+B+C+D+E+F+G+H+J<4 (6.2.7)

Now, the strip constraints equation (5.2.15) with respect to the specific lengths can be
determined:

Forlength I, there is one "1" in strip types (b), (d) and (h), two "1" in strip type (f), three
"1" in strip types (c) and (j), and four "1" in strip type (g), also there is only one type of

box , X6, which has a width of 1.

B+3C+D +2F +4G + H + 3] 2 X, (62.38)

For length 2, there is one "2" in the strip types (b) and (f), two "2" in strip types (e) and
(§), and three "2" in strip type (h). Also there is one box type X1 which has a width of

2, one box type X4 which has width 3, and one box type X5 with width 4.

B+2E +F +3H+2J 22X, +3X, +4X, (6.2.9)

The constraints with respect to length 3 and length 4 are found in a similar manner.

For length 3; there is only one box type, type X2, which has a width of 2.

A+2D +E+F+G 22X (6.2.10)
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Ior length 4; there is only one box type, type X3, which has a width of 2.

A+ B+ C 22X (6.2.11)

The ILP model for this problem, for which the optimal layout on the pallet can be

determined, is formulated as shown in the following:

6
Maximize Y 4w *X,
i=1

Subject TO:
6
LW - Y dlxwrX, 20
i=1
Xl <3
. X2 + X4 <4
X3+X5<4
W- Xy, 20
A+B+C+D+E+F+G+H+J<4
B +3C +D +2F +4G + H + 3J 2 X,
B+2E+F +3H +2J > 2X, +3X, +4X,
A+2D +E+F +G 22X
A+ B+ C22X,

X,, and A, B,...,J are positive integers.
a=0, if I=w, , for i=4,...,6; 4 =1, otheiwise.
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For this particular problem, the value of objective function 1s 28, see (APPENDIX ()
This value indicates the 100% pallet area utilization. The value of the dectsion variables
are as follows:
On the pallet area: X, =2, X, = 2, where; X, has dimension (3*2), and X, has dimension
4*2).

The optimal physical layout of the boxes on the pallet is as shown in figure 6.2.1
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Figure 6.2.1 Optimal Physical Layout on the Pallet for Model 2.

Now, that the optimal layout on the pallet is found, the stacking height for each optimum
subarea can be determined. Note that there are two different subareas, n=1,2, T=2, and

each subarea repeats two times n,=2, and n,=2. Assign Z,=Z,=X,, and Z,=2=X,

The objective function to determine the stacking height with respect to the optimal layout
on the pallet can be formulated. There are three different heights for each box, h=1,2,.. ,P,

P=3. Where, h,=1, h,=2, and h,=3.
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2

&™ / (6.2.12)
Maximize Y Y hy*Z,

i1 Al

Some constraints are considered for this objective function:

The first set of constraints relates to the stacking height in each optimum subarea on the

pallet
3 2
H =Y hsZ, >0 Y, j=12,.,m m=Yn, (62.13)
h=1 k=1

The demand constraints on the boxes height quantity can be set.

2

Y Z, < Dy; vh (6.2.14)
j=1

4

Ezjh < Dy,; Vh (6.2.15)
i3

where;, Z, =2Z,, and Z,, = Z,, are the optimal subarea, for all heights h=1, 2, 3

and D\ =2, D\,=2, D,;=0, D,,=3, D,,=3, D,,=1 are the demand restrictions.

The ILP model for this problem, to determine the optimal stacking height in each

optimum subarea, can be formulated as shown on the next page:



9N

Subject to:

k=1
2

Ezjh s Dy Vh

=

4

Ezjh S Dy; Vh

j=3

Z, are positive integer

For this particular case the optimum value of objective function 1s 14, (APPENDIX C)
for which the stacking height in the optimum subareas Z, of dimension 4*2 1s not totally
reached. The value of decision variables are:

Z,,=2, two boxes of dimension 4*2*],

Z.,=2, two boxes of dimension 4*2*2,

Z,.=2, two boxes of dimension 3*2*2,

Z,=1, one box of dimension 3*2*|,

Z,,;=1, one box of dimension 3*2*3,

The procedure is continued to find the optimum layout on the unfilled subarca of
dimension 4*2, and the stacking heights are determined respectively, for which the
optimum results are two boxes of dimension 2*2*1, and one box of dimension 2*2*2

(APPENDIX C).
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Hence the final optimal result is 100% pallet utilization. The complete optimal physical
P

layout of the boxes on the pallet are shown in figure 6.2.2.

(3)

@ ) ®) @)

4

(10) (11)

Figure 6.2.2 Optimal Physical Layout of the Stacking Palletization for Model 2.




6.2.1 Model 2: Case Study, Boxes of Practical Dimensions from 6.1.2 Model 1

The solutions to the Model 2 problem (interactive stacking palletization) is determined
by using the practical dimensions and the demand restrictions on the number of available
boxes used in the proposed Model 1, chapter 6.1.2 case study The procedure described
in chapter 5.2.1 is employed. The number and the box types for this model are as
illustrated in table 6.1.5. The solutions to the Model 2 problem for this particular case are
as follows:

At first the optimal layout on the pallet of dimension 48*40 is determined Two subareas
of dimension 24*40 are found. Then, for each subarea the remaining stacking height is
filled. The optimal decisions values for the stacked boxes in the first subarea are. Two
boxes of dimensicn 24*48*20. The second subarea is filled with two boxes of dimension
24*40*10; this leaves an unfilled subarea of dimension 24*40 and stacking height of 20
The optimal layout of this unfilled area is: Two subareas of dimension 24*20 and height
of 20. The optimal type of boxes found are: two boxes of dimension 24*20*20. The final
result reveals a 100% pallet utilization. The solution to this problem is tllustrated in figure

6.2.3, on the following page.




Layout A (1) (2)
3) 4)
Layout B (5) (6)

Figure 6.2.3 Results Obtained For the Proposed Model 2, Using the Number

of Boxes of Practical Dimensions From Model 1.
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6.3 Model 3: Case Study

The Model 3 has been developed to deal with the random pattern sequence incomung of
boxes of different dimensions shown in table 6.1 5. To show the effect of random
incoming sequence of boxes on the stacking palletization, three sets of simulations have
been conducted for Model 3 problem. The C program developed by Yang (1993) has been
modified for the proposed Model 3, so that the location of the boxes is determined and
boxes are loaded on the pallet. The incoming boxes are generated by a function called
new_box(), which uses a random number generator to simulate the random arrival of

boxes

For the case where the coming boxes are not of the required dimensions, these boxes are
loaded in the WIP area and when a block of the proper size can be formed that block 1s
moved on the column stacks on the pallet. These blocks are formed by functions called
block20_form() and block30_form() The boxes used in the simulation are the same type
of boxes used in the case study for Model 2 problem (see table 6.1 1) and (table 6.1.5 for
boxes of practical dimensions.) The boxes loaded on the WIP area fall into three groups

with respect to their height. These groups are:

Group 1 (height of 10): Type 1 and Type 3
Group 2 (height of 20). Type 2, Type 4, and Type 6

Group 3 (height of 30): Type 5, and Type 7
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A new layer will be selected to fill after the box type and/or the block is selected; the
height of the selected box/block assigns a height to the new layer; this is done by the
function called new _layer() This new layer is then filled by selected boxes with respect
to their heights, the function lo select a box to load is called select_box i(), where "i"
indicates the box of type "i" with respect to the group it belongs to. Several other

functions to load and unload boxes to and from the pallet, and WIP are used throughout

the program as well (see Appendix D for the C programming language).

Three sets of simulation have been conducted with different inputs:

* Simulation 1: the saine input data used by Yang (1993), that is, two Type | boxes, one
Type 2 box, and two Type 5 boxes. However with different sequences than his.

* Simulation 2: the same input data used by Yang (1993), and with the same sequences
as his.

* Simulation 3: the output from the example of practical dimensions for Model 2, section

6 2.1; that is, two Type 1 boxes, two Type 2 boxes, and two type 4 boxes.

Each simulation of Model 3 is run for ten different sequences. The comparison between
each sequence is made by comparing Pallet Utilization, WIP, and Palletization Time.
Pallet utilization is measured using formula (4.3) given in chapter 4. Maximum number
of boxes in the holding area is taken as the index for WIP. The palletization time is

calculated by using formula (4.4) given in chapter 4.

T=T,+*RCP+T, * RCH + T, » RHP + T, * RPH
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The robot arm moves at speed of 4 inches per second, therefore, each motion takes about

40 seconds. Hence the palletization time can be calculated by formula (6.3 1)

T =40 = (RCP + RCH + RHP + RPH) (6.3.1)

The output of the three simulations are shown in table 6.3.1, table 6.3.3, table 6.3.5, and
the robot movement frequency and the palletization time are shown in table 6 3.2, table

6.3.4, table 6.3.6, correspondingly.



Table 6.3.1 Simulation 1: Summary of the Output

No. | Sequence —»— Time (Second) | Max. WIP area Utilization
i 3-3-5-5-1-1-2 | 280 0 100%
2 3-3-2-5-1-2-5-1 | 360 960 100%
3 3-2-5-1-3-1-2-5 | 520 1920 100%
4 2-5-2-5-3-3 | 280 2400 100%
5 2-5-5-2-3-3 | 320 960 100%
_6_ 2-5-2-5-1 | 240 480 100%
7 2-5-1-1-2-5-3-3 360 960 100%
8 2-2-3-1-5-3-1-5 320 960 100%
9 3-5-3-2-5-2 | 320 960 100%
10 3-2-3-5-5-1-2-1 440 960 100%

Table 6.3.2 Simulation 1:

Robot Movement Frequency and Palletization Time

Sequence No. | RCP RCH RHP RPH Time(second)
1 7 0 0 0 280
2 6 2 1 0 360
3 4 4 4 1 520
4 5 1 1 0 280
5 4 2 2 0 320
6 4 1 1 0 240
7 6 2 1 0 360
8 5 3 0 0 320
9 4 2 2 0 320
10 4 4 3 0 440
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The final stacking layout for each sequence (1 to 10) of simulation 1 is illustrated in

v ¢

figure 6.3.1 below.

&

(al) No. 1 (b1) No. 2 & 10 (c1) No 3
(d1) No. 4 & 5 (e1) No. 6 (f1) No. 7
(g1) No. 8 (h1) No. 9

Figure 6.3.1 Stacking Layouts Obtained from Simulation 1



Table 6.3.3 Simulation 2: Summary of the Qutput
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No. | Sequence —»>—| Time (Second) | Max. WIP area Utilization

1 1-3-2-3-5-1-5 | 360 < (440) | 960 < (2400) 100% (100%)
2 5-5-3-3-2-1-1 | 280 < (360) | O < (1440) 100% (100%)
3 5-5-1-3-1-2-3 | 360 < (400) | 1920 < (2400) 160% (100%)
4 | 5-5-1-3-3-1.2 [ 280 < (400) |0 < (1920) 100% > (75%)
5 1-3-1-2-5-5-3 | 320 < (400) | 480 < (1920) 100% (100%)
6 1-5-1-2-5-3-3 {360 < (360) | 1920 = (1920) 100%  (100%)
7 | 2-3-5-5-1-3-1 [ 440 > (400) | 1440 < (1920) [ 100% (100%)
8 3-3-2-5-1-5-1 | 320 < (440) | 480 < (1920) 100% (100%)
9 |3-3-2-1-1-5-5 [ 280 < (400) |0 < (1920) 100%  (100%)
10 | 3-3-5-1-1-2-5 | 440 > (400) | 1920 = (1920) | 100% > (75%)

Table 6.3.4 Simulation 2: Robot Movement Frequency and Palletization Time

*|l Sequence No. | RCP RCH RHP RPH Time(second)
I 5 3 (2 @ [2 @ [0 (0 [360 (440)
2 7 05) |0 @ [0 (2 0 (0 280 (360)
3 5 @ |2 3 |2 3) |0 (0 [360 (400)
4 7 3 |0 @) [0 (3) |0 (0) |280 (400)
5 6 3 [1 @ (1 @3) |0 (0 [320 (400)
6 S5 ]2 @ |2 @ 0o (0 360 (360)
7 s @ |2 3 [3 3 1 (0) |440  (400)
8 6 3) |1 @ |1 @ o (0 [320 (440)
9 7 @) B) [0 (3) |0 (0) |280 (400)
10 5 3 |2 @ |3 @ 1 (0) |440  (400)

The results in the parentheses "( )" in tables 6.3.3, and 6.3.4 are obiained by Yang (1993)
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for the same sequences.

The final stacking layout for each sequence (1 to 10) of simulation 2 is illustrated in

figure 6.3.2.
(a2) No. 1 (b2) No. 2 (c2) No. 3
(d2) No. 4 (e2) No. 5 (f2) No. 6
(82) No. 7 (h2) No. 8 & 10 (i2) No. 9

Figure 6.3.2 Stacking Layouts Obtained from Simulation 2



Table 6.3.5 Simulation 3: Summary of the Qutput
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No. | Sequence —»— Time (Second) | Max. WIP area Utilization
1 2-2-1-4-1-4 280 480 100%
2 2-2-4-4-1-] 240 0 100%
3 2-1-4-2-1-4 320 1440 100%
4 1-2-1-4-4-2 240 0 100%
5 1-4-4-1-2-2 240 0 100%
6 1-4-2-2-4-1 320 1920 100%
7 4-1-1-4-2-2 320 960 100%
8 4-2-2-1-4-1 440 2400 100%
9 2-1-4-4-1-2 320 960 100%
10 4-1-1-2-2-4 400 1440 100%

Table 6.3.6 Simulation 3:

Robot Movement Frequency and Palletization Time

Sequence No. | RCP

RCH

RHP

RPH

Time{second)

1

—

—

280

240

320

240

240

320

(=38 Rl Nl No Bl ol Ro i K~

320

440

O [0 3O Wl |wiN

320

(=]

S fw s |l ||

NN W I IO o v o

WIS NI IO |l N O

400




102

The final stacking layout for each sequence (1 to 10) of simulation 3 is illustrated in

figure 6.3.3 below.

AR

(a3) No. 1 (b3) No. 2,3 & 8 (c3) No. 4 & 6
(d3) No. 5 (e3) No. 7 (f3) No. 9 & 10

Figure 6.3.3 Stacking Layouts Obtained from Simulation 3
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CHAPTER 7, ANALYSIS OF RESULTS

Two different examples from the recent literature have been used in the research to
demonstrate the efficiency and the practicality of the proposed models 1, 2 and 3.
Comparison is also made between the results of the three proposed models. Tsai et al.
(1988) considered a pallet of 7*4 and three types of boxes: 4*2, 3*2 and 2*2. Their
method gives two optimal solutions of 2D (one layer) as illustrated in figure 7.1. The
same set of data is used in the proposed Models 1 and 2. However, the third dimension
is added to the boxes as well as the pallet. Therefore, in the proposed Model 1 the pallet
dimension is 7*4*4, and the boxes have the same base dimension with heights of 1, 2,
and 3 for each base type. In this case there are nine types of boxes, as shown in table
6.1.1. Also, another constraint, which is the number of boxes available for each type, is
added. Defining the boxes type in the table 6.1.1, the number of boxes available are 2,
3,2,3,4,2,3, 3,2, for box Type 1 to Type 9 respectively. The optimal results obtained
are: Four boxes of type 5, (3*2*2), two boxes of type 7, (4*2*1), and three boxes of type

8, (4*2*2). The volumetric result of the proposed model 1 is shown in figure 7.2.

// ,
’ e
e ~ L
.~ ~ 7

h\ /,/ ,//”
N ,//’
\ /
S

Solution 1 Solution 2

Figure 7.1 Results Obtained from Tsai's Model
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Figure 7.2 Volumetric Result Obtained from the Proposed Model 1

The pallet volumetric utilization reached by the proposed model is 100%, for this

particular example. The practical difference between the solutions obtained from the

proposed Model 1 compared with Tsai's solution are illustrated in table 7.1

Table 7.1 The Main Differences Between Model 1 and Tsai's Solution

Characteristics Tsai's model Proposed model
Pallet and Boxes of 3D NO YES
Volumetric Solution NO YES
Limits on the Number of Boxes NO YES

Comparing Tsai's algorithm with the proposed Model 2, the proposed Model 2 employs
the same boxes as Tsai's. However, Tsai assumed that all the boxes were of the same
height and he did not include these heights in his model, since he considered only one
layer on the pallet, for 2D palletization. Whereas, the proposed Model 2 includes the third
dimension (height) for the boxes and pallet as shown in the table 6.1.1 with some demand

restrictions on the availability of boxes of each type. For this case, the stacking
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palletization procedure is applied. The optimal results found are: Two boxes of type 8
of dimension (4*2*2), two boxes of type 7, (4*2*1), two boxes of type 5, (3*2*2), one
box of type 4, (3*2*1), and one box of type 6, (3*2*3), one box of type 2, (2*2*2), and
two boxes of type 1, (2*2*1). The solution obtained for the proposad Model 2 is shown

in figure 7.3.

Figure 7.3 Result Obtained from the Proposed Model 2

Model 2 provides an optimal solution with stacking procedure, and for this particular

example the pallet volumetric utilization found to be 100%.

Table 7.2 The Main Differences Between Model 2 and Tsai's Solution

Characteristics Tsai's model | Proposed model
Pallet and Boxes of 3D NO YES
Solution for Stacking NO YES
Volumetric Solution NO YES
[[Timits on the Number of Boxes NO YES

Another case discussed by Abdou and Yang (1993), they considered a pallet of dimension
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48*40 and the stacking height of 40, (Dimension of 48*40*40), and boxes of practical

dimensions, shown in table 6.1.5. They employed systematic procedure using the concept
of layer palletization, and obtained the following optimal solutions, figure 74 Unlike
Abdou and Yang (1993), the proposed Model 1 applies an ILP procedure to direct
volumetric solutions te the pallet loading problem. The proposed Model 1 employs boxes
of the same dimension as their's. However, with some different demand restrictions, it

achieves the optimal result in figure 7.5.

Solution 1 Solution 2

Figure 7.4 Optimal Results Determined by Abdou and Yang

Figure 7.5 Optimal Result from the Proposed Model 1,
(with the Practical Dimensions)

The differences between two models are illustrated in the table 7.3, next page.
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Table 7.3 The Main Differences Between Model 1 and Abdou & Yang's Model

Characteristics Abdou & Proposed model
Yang's model
Pallet and Boxes of 3D YES YES
Limits on the Number of boxes YES YES
Solution for Stacking NO YES
Ir Direct ILP Volumetric Solution NO YES

In another case, the comparison between the two proposed models is made. The solutions
to the Model 1 and Model 2 problems are obtained by employing the same type and
number of boxes available for both cases from table 6.2.1. The solutions obtained for both
models are the same; however, the loading pattern in the proposed Model 1 is not
restricted and depends on the preference of the operator, so that the stability and the
priority of loading and/or unloading the boxes to and from the pallet can be considered..
The graphical representations of the final solutions to the Model 1 and Model 2 problems

are shown in figure 7.6 and figure 7.7 respectively.

Solution 1 Solution 2

Figure 7.6 Results Obtained from the Proposed Model 1
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Figure 7.7 Result Obtained from the Proposed Model 2

Also, comparison is made between the two proposed Model 1 and Model 2, where boxes
of practical dimensions are used with the same demand restrictions. The boxes type and
number are illustrated in table 6.1.5. Comparing the results obtained from the proposed
Model 2 and Model 1, it can be noted that Model 1 employs a solution to 3D volumetric
optimization by mathematical procedures. In this model boxes of larger volume are
selected prior to others, if they fit the pallet's upper bound dimensions. The loading layout
is optional and depends on the operator's desire. The solution to the Model 1 can be either
layered or stacking, depending to the boxes determined, and there are no pre-determined
locations for the boxes. Whereas, Model 2 employs mathematical procedures for 3D
stacking layout. At first, it determines an optimum layout (subareas) on the pallet with
boxes of larger base area, and then optimizes the stacking height for each optimal subarea
by selecting the boxes of proper base dimensions and tallest height, if any available and
if the remaining stacking height permits In this model the location of the boxes on the
pallet is pre-determined. Both models provided optimal solutions and 100% volume

utilization.
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Solution from Solution from
Model 1 Model 2

Figure 7.8 Results from the Proposed Model 1 and 2, with Same Demand

Three simulations for the Model 3 show the effect of random incoming boxes on the
palletization patterns. Simulation 1 uses the same type of boxes used by Yang (1993),
however, with different sequences. The results shown in table 6.3.1 reveals that all the
sequences generate 100% pallet volume utilization, for these particular examples. The
loading time in that table is reasonably low since the number of RCP, shown in the
column two of table 6 3.2, for each sequence is relatively high. The optimal layout of
each sequence for simulation 1 is illustrated in figure 6.3.1. The stacking layouts obtained
from this simulation shows that the sequence 2 and 10, and sequence 4 and 5 lay the

same results. The layouts obtained for the other sequences are different from one another.

Simulation 2 uses the same type of boxes with the same sequences used by Yang (1993).
The results obtained from this simulation, table 6.3.3 and 6.3.4, show that all the
sequences reach 100% volume utilization, for this particular example. Whereas, the results
obtained by Yang for the sequence number 4 and 10 only reach 75% utilization. The

results obtained from the proposed Mcdel 3 show a significant improvement in
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palletizationn time and WIP area. The palletization time in all the sequences, except
sequence 7 and 10, are lower than those obtained by Yang. Similarly, the work-in-process
(WIP) area is much lower than his result in all the sequences, such that the WIP in
sequence number 2, 4, and 9 is zero. Note that, similar to the simulation 1, layouts for
the sequences are different from each other except the sequence number 8 and 10 that

give the same layout.

Simulation 3 uses three types of boxes obtained from the output of Model 2 problem The
results for this simulation, table 6.3.5 and 6.3.6, reveals that all the sequences give 100%
utilization. The palletization time is much lower than those sequences in simulation 1 and
simulation 2, since the type of boxes are different. The WIP area remains low whereas,
the WIP in the sequence number 2, 4, and 5 is zero. Some sequences in this simulation
result in the same layout, such that the layouts obtained from sequence number 2, 3, and
8 are the same; also the layouts obtained from the sequence number 4 and 6, and the
results of sequence 9 and 10 are the same. The stacking procedure in this model is base
on loading boxes onto a column stack at the time, and the next column stack starts
loading as soon as the previous one is completely filled A lower stacking palletization
time and lower WIP can be obtained if several columns can stack up at the same time,
such that if a box is not of the required type at the moment it can be loaded in the next

subarea and so forth.

Comparing the results obtained from the case study of Model 2 and Model 3, one
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significant difference is that the layout obtained mathematically from the Model 2
problem is always the same for the same type and number of boxes. Whereas, the layout
in Model 3 differs for different sequences. In the 10 sequences shown in table 6.3.5 only
the sequence number 1 gives the same layout obtained from Model 2. Theoretically,.
Model 2 is suitable for the situation to deal with the 3D stacking palletization problem
mathematically. Whereas, from the practical point of view, Model 3 is more suitable for

the robotic palletization systems (RPS).



CHAPTER 8. CONCLUSIONS AND FUTURE STUDIES

The thesis has focused on maximization of pallet utilization, reduction of work-in-process
(WIP) area, and reduction in pallet loading time most important criteria in the
manufacturer and distribution centres palletization objectives. Two common approaches,
mathematical and heuristics have been worked with. Each approach has its particular
advantages: since distribution centres deal with a known number and types of boxes, the
mathematical approaches are used in the development of algorithms to obtain solutions
to the palletization problem. On the other hand, the mathematical approaches do not
always give feasible results if all the required data, about the number and types of boxes
and the pallet dimensions, are not known. This can be referred to the busy and fully
automated manufacturing systems with multiple production line where the stacking
palletization takes place at the end of production line with boxes of multiple size, and for
which their incoming sequence is in random. Therefore, the heuristic approaches are used

to deal with the solutions to such a palletization problem.

Three models are developed in this research. Model 1 provides an incitement to the
mathematical ILP programming procedures for the 3D pallet volumetric optimization. The
result shows that the model is capable of optimizing the pallet volume utilization to 100%
with boxes of different dimensions. The result obtained can lay either in layer or stacking
palletization pattern. Model 2 provides a solution for the 3D stacking palletization

problem by combination of 2D palletization and stacking multiple-layer procedure. The
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result obtained from Model 2 is optimal. Model 3 is developed to show the effect of
random sequence incoming of boxes of multi-size on the stacking pattern. The case study
shows that Model 3 gives 100% utilization in all the sequences, in all three simulations,
for these particular examples with the assigned multi-size boxes. Model 3 is based on a
heuristic procedures and it is suitable for the automated robotic palletization in industries.
The heuristic column stacking procedures for Model 3 show a great improvement in the
palletization time and maintain lower WIP with respect to the heuristic model used by
Yang (1993) for the layer palletization. However, since interlocking can be done in the
multi-layer palletization, the stability is higher than column stacks with the guillotine cut

pattern.

This study extended the research horizon from one and two-dimensional cutting to a 3D
column stacking palletization and developed a mathematical ILP programming procedures
for the pallet volumetric optimization. Furthermore, it extended the layer palletization to
the 3D column stacking palletization, considering multi-layer in each column, by both
mathematical and heuristic approaches, and used boxes of multi-size with rectangular and

square shapes. However, the proposed models only considered a single pallet palletization.

The results obtained from the three developed models have shown many improvements
compared to existing models. However, as a result of this experience, it is found that the
palletization problem is more complex than it seemed to be, and it requires more research

and investigation in this area for other improvements and more efficient results. The
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future study will focus particularly on the following topics:

1- since the heuristic developed in Model 3 considers stacking columns on the pallet for
which second column can be started if the first column is completed, it is necessary to
develop multi-column stacking heuristic procedures where many columns can stack up at
the same time, such that the loading time and WIP can be greatly reduced.

2- develop CAD simulations for the proposed Model 2 and Model 3.

3- develop the physical robotic palletization system (RPS) for the heuristic Model 3.
4- implement multi-pallet system for 3D stacking of Model 3, such that two or more

pallets can be loaded at the same time
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APPENDIX A

LINDO Program for Formulation ILP Model 1




| M1_A3.DAT

! ROTATION ABOUT Z AXIZ
bat

MAX 4X1 + 8X2+12X3 +6X4 +12X5 +18 X6 +8 X7
+ 16 X8 +24 X9+ 6 X10 + 12 X111 + 18 Xi2 + 8 X1I3
+ 16 X14 + 24 X15

SUBJECT TO
! VOLUME CONSTRIANT (RESTRICTIONS ON THE MAXIMUM VOLUME)

1) 4X] + 8X2+12X3 + 6X4 +12X5 + 18 X6+ 8 X7
+ 16 X8 +24 X9+ 6 X10+ 12 X11 +18 X112+ 8 XI3
+ 16 X14 + 24 X15 <= 112

2) X0 <=4 ! Box of unit volume 10=w0=h0=1

! DEMAND RESTRICTIONS ON THE BOX QUANTITY.

3) X1 <=2
4) X2 <=3
5) X3 <=2
6) X4 + X10 <=3
7) X5 + X11 <=4
8) X6 + X12 <=2
9) X7 + X13 <=3
10) X8 + X14 <=3
11) X9 + X15 <=2

! STRIP CONSTRAINTS.

1I2)A+B+C+D+E+F+G+H+J<=4

! For length one

13) B+3C+D+2F+4G+H+31>=0

! For length two

14)4B+8E+4F+12H+81J -4X1-8X2-12X3-3XI0
-6 X11-9X12-4X13-8X14-12X15>=0

! For length three

15)4A+8D+4E+4F+4G-2X4 -4X5-6X6>=0
! For length four
16)4A+4B+4C-2X7-4X8-6X9>=0

17) A>=0

18) B>=0



24) H >= 0
25))>=0
END

GIN 25

bat

leave

! GIN 44, indicates that the first 25 variables are integer,
! including the strips A to J.
! By convention LINDO assumes all the variables are non-negative.
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! M1_A3.out

LP OPTIMUM FOUND AT STEP 5

124

OBJECTIVE VALUE = 112.000000

SET X15TO<= OAT 1,BND= 1120 TWIN= 1120 8

SET X9TO <= O0AT 2,BND= 1120 TWIN= 1120 12

NEW INTEGER SOLUTION OF 112.000000 AT BRANCH 2 PIVOT 12

OBJECTIVE FUNCTION VALUE

1) 112.00000
VARIABLE VALUE REDUCED COST
X1 .000000 .000000
X2 .000000 .000000
X3 .000000 000000
X4 .000000 .000000
X5 4.000000 000000
X6 .000000 .000000
X7 2.000000 000000
X8 3.000000 .000000
X9 .000000 .000000
X10 .000000 000000
X11 .000000 .000000
X12 .000000 000000
X13 .000000 .000000
X14 .000000 .000000
X15 .000000 .000000
X0 .000000 000000
A 4.000000 .000000
B .000000 .000000
C .000000 .000000
D .000000 .000000
E .000000 .000000
F .000000 .000000
G .000000 .000000
H .000000 .000000
J .000000 .000000
ROW  SLACK OR SURPLUS  DUAL PRICES
2) .000000 1.000000
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3) 4.000000 .000000
4) 2.000000 .000000

5) 3.000000 .000000
6) 2.000000 .000000

7) 3.000000 .000000

8) .000000 .000000
9) 2.000000 .000000
10) 1.000000 .000000
11) .000000 .000000
12) 2.000000 .000000
13) .000000 .000000
14) .000000 .000000
15) .000000 .000000
16) .000000 .000000
17) .000000 .000000
18) 4.000000 .000000
19) .000000 .000000
20) .000000 .000000
21) .000000 .000000
22) .000000 .000000
23) .000000 .000000
24) .000000 .000000
25) .000000 .000000
26) .000000 .000000

NO. ITERATIONS= 12

BRANCHES= 2 DETERM.= 1.000E ©

BOUND ON OPTIMUM: 112.0000

DELETE X9 ATLEVEL 2

DELETE XI5 ATLEVEL 1

ENUMERATION COMPLETE. BRANCHES= 2 PIVOTS= 12

LAST INTEGER SOLUTION IS THE BEST FOUND
RE-INSTALLING BEST SOLUTION...



APPENDIX B

LINDO Program for Formulation ILP Model 1,
with Practical Dimensions



! MMM.DAT Rotation About Z Axis

BAT

MAX 9600 X1 + 19200 X2 + 4800 X3 + 9600 X4 + 14400 X5
+ 4800 X6 + 7200 X7 + 9600 X8 -+ 19200 X9 + 4800 X10
+ 9600 X11 + 14400 X12 + 4800 X13 + 7200 X14

SUBJECT TO

1) 9600 X1 + 19200 X2 + 4800 X3 + 9600 X4 + 14400 X5
+ 4800 X6 + 7200 X7 + 9600 X8 + 19200 X9 + 4800 X10
+ 9600 X11 + 14400 X12 + 4800 X13 + 7200 X14 <= 76800
! DEMAND RESTRICTIONS ON THE BOXES QUANTITY
2) X1 +X8 <=2
3) X2+ X9 <=2
4) X3 +X10 <=2
5) X4+X11 <=2
6) X5+ X12 <=2
7) X6+ X13 <=4
8) X7+ X14 <=4
I STRIP CONSTRAINTS
9A+B+C+D+E+F+G+H+1+J+K+L+M+N<=40
10)80D+40E+80H+401+ 160K +120L +80 M + 40N
- 400 XI3 - 600 X14 >=0
11)40C+80 G+40 H+401 +407J - 240 X6 - 360 X7 - 240 X10
- 4800 X11 - 720 X12 >=0
12) 80B+ 10 C+40 D +40 E +40 F - 400 X4 - 600 X5 - 400 X8
- 800 X9>=0
13) 40 A - 240 X1 -480X2>=0
14) A>=0
15) B >=0
16) C >=0
17) D>=0
18) E>=0
19) F>=0
200G >=0
21 H>=0
22) 1 >=0
23) J >=0
24) K>=0
29YL>=0
260 M>=0
27) N>=0
END
GIN 28, BAT, LEAVE
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! MMM.OUT

LP OPTIMUM FOUND AT STEP 7

OBJECTIVE VALUE = 76800.0000

ENUMERATION COMPLETE. BRANCHES= 0 PIVOTS= 7

LAST INTEGER SOLUTION IS THE BEST FOUND
RE-INSTALLING BEST SOLUTION...

OBJECTIVE FUNCTION VALUE
1)  76800.000

VARIABLE VALUE REDUCED COST

X1 .000000 -9600.000000
X2 .000000  -19200.000000
X3 2.000000 -4800.000000
X4 .000000 -9600.000000
X5 .000000  -14400.000000
X6 .000000 -4800.000000
X7 .000000 -7200.000000
X8 .000000 -9600.000000
X9 2.000000  -19200.000000
X10 .000000 -4800.000000
X11 .000000 -9600.000000
X12 .000000  -14400.000000
X13 .000000 -4800.000000
X14 4.000000 ~7200.000000
A .000000 .000000
B 20.000000 .000000
C .000000 .000000
D .000000 .000000
E .000000 .000000
F .000000 .000000
G .000000 .000000
H .000000 .000000
1 .000000 .000000
J .000000 .000000
K 15.000000 .000000
L .000000 .000000
M .000000 .000000
N .000000 .000000
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ROW  SLACK OR SURPLUS DUAL PRICES

2) .000000 .000000
3) 2.000000 .000000
4) .000000 .000000
5) 000000 .000000
6) 2.000000 .000000
7) 2.000000 .000000
8) 4.000000 .000000
9) .000000 .000000
10) 5.000000 .000000
1) .000000 .000000
12) .000000 .000000
13) 000000 .000000
14) .000000 .000000
15) .000000 .000000
16) 20.000000 .000000
17) .000000 .000000
18) .000000 .000000
19) .000000 .000000
20) .000600 ,000000
21) .000000 .000000
22) .000000 .000000
' 23) .000000 .000000
24) .000000 .000000
25) 15.000000 .000000
26) .000000 .000000
27) .000000 .000000
28) .000000 .000000
NO. ITERATIONS= 7

BRANCHES= 0 DETERM.= 1.000E 0
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APPENDIX C

LINDO Program for formulation ILP Model 2
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| M2_A DAT

I Determining the optimum layout for the pallet of dimension L*W=7*4,

bat
MAX 4X]I +6X2+8 X3+6X4+8X5

SUBJECT TO

1)4 X1+6 X2+8X3 +6X4 +8X5<=28
! Box quantity constraints, demand restrictions.
2) X1 <=3
3) X2 + X4 <=4
4) X3 + X5 <=4
5) X6 <=4
6)A+B+C+D+E+F+G+H+J<=4
N"B+3C+D+2F+4G+H+3J-X6>0
8)B+2E+F+3H+2J-2X1-3X4-4X5>=0
9A+2D+E+F+G-2X2>=0
1) A+B+C-2X3>=0
1) A >=0
12) B >=0
13) C >=0
14)D >=0
IS)E >=0
16) F>=0
17) G >=0
18) H >=0
19) J >=0
END
GIN 15 ! GIN 15, indicates that the first 15 variables are integer,
bat ! including the strips A to J.
leave ! By convention LINDO assumes all the variables are non-negative.
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| M2_A.OUT

LP OPTIMUM FOUND AT STEP 4

OBJECTIVE VALUE = 28.0000000

ENUMERATION COMPLETE. BRANCHES: 0 PIVOTS= 4

LAST INTEGER SOLUTION IS THE BEST FOUND
RE-INSTALLING BEST SOLUTION...

OBIJECTIVE FUNCTION VALUE

1)  28.000000

VARIABLE VALUE REDUCED COST
X1 .000000 -4.000000
X2 2.000000 -6.000000
X3 2.000000 -8.000000
X4 .000000 -6.000000
X5 .000000 -8.000000
X6 .000000 .000000

A 4.000000 .000000
B .000000 .000000
C .000000 .000000
D .000000 .000000
E .000000 .000000
F .000000 .000000
G .000000 .000000
H .000000 .000000
J .000000 .000000

ROW SLACK OR SURPLUS DUAL PRICES

2) .000000 .000000
3) 3.000000 .000000
4) 2.000000 .000000
5) 2.000000 .000000
6) 4.000000 .000000
7) .000000 .000000
8) .000000 .000000
9) .000000 .000000
10) .000000 .000000
11) .000000 .000000
12) 4.000000 .000000

13) .000000 .000000
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14) .000000 .000000
15) .000000 .000000
16) .000000 .000000
17) .000000 .000000
18) 000000 .000000
19) .000000 .000000
20) .000000 .000000
NO. ITERATIONS= 5

BRANCHES= 0 DETERM.= 1.000E 0




! M2_B.dat

! Using the optimum results(optimum subareas) optained from M2_A.DAT
! to determin the optimum staking height.
! The following ILP can be set up with the specified demand restriction.
! note that the height in some columns remain unfille, because of the
! unsufficient boxes provided.
bat
MAX 1Z11+2Z12+3Z13 +12Z21 +27Z22+3223
+ 1231 +2232+37Z33+ 1241 +2 2742+ 3 Z43

SUBJECT TO

1) Z11 +2Z712+3Z7Z13<=4
2) Z21 +2722+327223<=4
3) 231 +2Z32+3233<=4
4) Z41 + 2742 +3 243 <=4
| Box quantity contraints, demand restrictions.
5)  Z11 +2721 <=2

6) 212 + 222 <=2

7 Z13+Z23<=0

8) Z31 +Z4l <=1

9y Z32 +Z742<=2

10) Z33 + 743 <=1

END

GIN 12 | The first 12 variables are considered Integer.
! By convention the variables are non-negative.

bat

leave
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! M2_B.OUT

LP OPTIMUM FOUND AT STEP 8
OBJECTIVE VALUE =

ENUMERATION COMPLETE. BRANCHES=

LAST INTEGER SOLUTION IS THE BEST FOUND

14.0000000

RE-INSTALLING BEST SOLUTION...

OBJECTIVE FUNCTION VALUE

1) 14.000000

VARIABLE

Z11
Z12
Z13
721
222
723
231
232
233
241
Z42
Z43

ROW SLACK OR SURPLUS

2)
3)
4)
5)
6)
7)
8)
9)
10)
1)

VALUE

.000000
2.000000
.000000
2.000000
.000000
.000000
1.000000
.000000
1.000000
.000000
2.000000
.000000

.000000
2.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000

NO. ITERATIONS=

BRANCHES=

8

REDUCED COST

-1.000000
-2.000000
-3.000000
-1.000000
-2.000000
-3.000000
-1.000000
-2.000000
-3.000000
-1.000000
-2.000000
-3.000000

.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000

0 DETERM.= 1.000E

0 PIVOTS=

DUAL PRICES

0
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| M2_A1.DAT

! Determining the optimum layout for the subarea of dimension Lj*Wj=4*2
! this subarea was unfilled.

bat

MAX 4X1 +6X2+8X3+6X4+8XS

SUBJECT TO

1)4XI+6X2+8X3+6X4+8X5<=8

2) X1 <=4 ! Box quantity constraints, demand restrictions.
3) X2+X4 <=2

4) X3+X5<=0

5) X6<=2

6) A+ B+C+ D+ E+ F+ G+ H+J<=2
7YB+3C+D+2F+4G+ H+ 3J- X6>=0

8y B+2E+F+3H+2J-2X1-3X4-4X5>=0
9YA+2D+E+ F+ G-2X2>=0

100) A+B+C-2X3>=0

11) A>=0

12) B>=0

13) C>=0

14y D>=0

15) E>=0

16) F>=0

17) G>=0

18 H>=0

19) J>=0

END

GIN 15 ! GIN 15, indicates that the first 15 variables are integer.
bat ! including strips A to J.

leave ! By convention LINDO assumes all the variables are non-negative
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' M2_A1 OUT

LP OPTIMUM FOUND AT STEP 5

OBJECTIVE VALUE = 8.00000000
~ET X2TO<= O0AT 1,BND= 8000 TWIN= 89000 8

SET HTO>= 2 AT 2, BND= 8.600 TWIN= 8.000 14

NEW INTEGER SOLUTION OF 800000000 AT BRANCH 2 PIVOT
14

OBJECTIVE FUNCTION VALUE

1) 80000000
VARIABLE VALUE REDUCED COST
X1 2.000000 .000000
X2 .000000 .000000
X3 000000 .000000
X4 .000000 .000000
X5 .000000 .000000
X6 .000000 .000000
A .000000 .000000
v B .000000 .000000
C .000000 .000000
D .000000 .000000
E .000000 .000000
F .000000 .000000
G .000000 .000000
H 2.000000 .000000
] .000000 .000000

ROW SLA”K OR SURPLUS DUAL PRICES

2) .000000 1.000000

3) 2.000000 .000000
4) 2.000000 .000000
5) .000000 .000000

6) 2.000000 .000000
N .000000 .000000
8) 2.000000 .000000
9) 2.000000 .000000
10) .000000 .000000
11) .000000 .000000

12) .000000 .000000
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13) .000000 .000000
14) .000000 .000000
15) .000000 .000000
16) .000000 .000000
17) .000000 .000000
18) .000000 000000
19) 2.000000 .000000
20) .000000 .000000

NO. ITERATIONS= 14

BRANCHES= 2 DETERM.= 1.000E 0

BOUND ON OPTIMUM: 8.000000

DELETE H AT LEVEL 2

DELETE X2 AT LEVEL 1

ENUMERATION COMPLETE. BRANCHES= 2 PIVOTS= 14

LAST INTEGER SOLUTION IS THE BEST FOUND
RE-INSTALLING BEST SOLUTION...

OBJECTIVE FUNCTION VALUE

1)  8.0000000

VARIABLE VALUE REDUCED COST
X1 2.000000 -4.000000
X2 .000000 -6.000000
X3 .000000 -8.000000
X4 .000000 -6.000000
X5 .000000 -8.000000
X6 .000000 .000000

A .000000 .000000
B .000000 .000000
C .000000 .000000
D .000000 .000000
E .000000 .000000
F .000000 .000000
G .000000 .000000
H 2.000000 .000000
J .000000 .000000

ROW SLACK OR SURPLUS DUAL PRICES
2) .000000 .000000
3) 2.000000 .000000
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4) 2.000000 .000000
5) .000000 .000000
6) 2.000000 .000000
7) .000000 .000000
8) 2 000000 .000000
9) 2.000000 .000000
10) .000000 .000000
1) .000000 .000000
12) 000000 .000000
13) 000000 .000000
14) .000000 .000000
15) .000000 .000000
16) .000000 .000000
17) .000000 .000000
18) .000000 .000000
19) 2.000000 .000000
20) .000000 .000000

NO. ITERATIONS= 14
BRANCHES= 2 DETERM.= 1.000E 0
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! M2_B1.dat

! Using the optimum results(optimum subareas) optained from jt1_2A dat
! to determin the optimum staking height for the unfilled column.

! The following ILP can be set up with the specified demand restrictions
bat

MAX 1 Z11 +2 Z12+1 221 +2 222

SUBJECT TO

! remaing height

1) 1Z11+22Z12<=2

2) 1 Z21+2Z12<=2

! Box quantity contraints, demand restrictions.
3) Z11 + 221 <=2

4) 212 + 222 <=} | these should not exceed the the allowable heights
END
GIN 4 I The first 12 variables are considered Integer.

! By convention the variables are non-negative.

bat
leave
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| M2_Bl. OUT
LP OPTIMUM FOUND AT STEP 2
OBIJECTIVE VALUE = 4.00000000
ENUMERATION COMPLETE. BRANCHES= 0 PIVOTS= 2

LAST INTEGER SOLUTION IS THE BEST FOUND
RE-INSTALLING BEST SOLUTION...

OBJECTIVE FUNCTION VALUE

1) 4.0000000
VARIABLE VALUE REDUCED COST
ZI1 .000000 -1.000000
212 .000000 -2.000000
721 2 000000 -1.000000
722 1.000000 -2.000000

ROW SLACK OR SURPLUS  DUAL PRICES

2) 2.000000 000000

3) 000000 000000

4) 000000 000000

5) 000000 000000
NO. ITERATIONS= 2

BRANCHES= O DETERM.= 1.000E 0
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APPENDIX D

C Program for Model 3
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#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int check, s[20], HA[4], G[4],HL, X[4][10], Type[10], nn, mm, LN, No;
intL, W;

int WW[10]={0,24,24,0,0,0,0,0,0,0};  /* width of subareas */

int LL.[10]={0,40,40,0,0,0,0,0,0,0}; /* length of subareas */

int T=2; /* Number of the optimum subareas */

float S,U,UL;

/* MAIN PROGRAM */

* - I */

void main()
{
int jj,i;
void main_pal_let();

G[1]=0; G[2]=0; G[3]=0,
» check=0;
for(i=0;i1<10;1++)
{
X[1][]=0;
X[2][1]=0;
X[3][1]=0;
Type[i]=0;
}

for(jj=1; jj<=T; jj++)
{
printf("****** Stacking the subarea No. %d *****\n" jj);
HL=0; UL=0
L=LL[jj}; W=WWI[jj];
main_pallet();

}
} /* END OF THE MAIN PROGRAME */

/* *

/* GLOBAL DATA FOR FOLLOWING SUBROUTINES */

it 1[9]=1{0,40,40,24,24,24,20,20,40} ;




int w[9]={0,24,24,20,20,20,12,12,24};
int h[9]={0,10,20,10,20,30,20,30,30},

int N=7;

int H=40;

int HG[4]={0,10,20,30};

static int RN[20],G[4], TY PE[6],HR x[10].y[10].Is,ws.
static int pallet[S0][50],i,5,k,kk;

[*.. e mmeeemm————m—————— . -

void main_pallet()
{
/* check=0, if there is no box on the pallet.
check=1, if there are boxes on the pallet, but the layer is not
completed.
check=2, if there are boxes on the pallet, a layer is completed.

U is the pallet utilization
HR is remaining height
HL is the height of a selected layer
HGi] is the height of boxes in group i
G[i] is the total number of boxes of type i in the system
B[i] is number of boxes on layer i
M is the total number of box groups
N is the total number of box types
n is the total number of boxes
n[i] 1s the number of boxes of type i
*/

printf("\n"),

printf("***** Program for 3D Stacking Heuristic Procedure *****\n");

printf("\n");

/* initailizing */
S=L*W;
No=1; LN=I; nn=1; mm=0;

for(i=1;1<=N+1;i++) s[i]=1[i]*W[i];
U=0.0; UL=0.0;

check=0;
HR=H;
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randomize(),

while(HR != 0)

{

switch(check)

case 0:

case |:

}

return;

}

[¥=--

{

new_layer();
check=1;
break;

fill_layer();

++LN;

nn=1,;

printf("The utilization of layer[%d] is %f\n",LN-1,UL);
printf(" \n");

UL=0.0;

HR=HR-HL,;

printf("The remaining pallet height is %d\n",HR);
printf(" \n");

check=0;

break;

}

G[1]=Type[1]+Type[3];
G[2}=Type[2]+Type[4]+Type[6];
G[3]=Type[5]+Type[7].

printf("G[11=%d G[2]=%d G[3]=%d\n",G[1],G[2],G[3]):
printf(" \n");
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*/

/* Function for New Layer Selection */

new_layer()

{

switch(HR)

{

case 10:

HL=10;
break;
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case 20:

if (G[2] != 0) HL=HGJ2]:
else if (G[1]==0)
{
new_box();
block20_form(),
if(G[1] > 0) HL=HG[1],
else if(G[2] > 0) HL=HG[2];
else { while( G[1]==0 && G[2]==0) new_box(),
if (G[1]==1) HL=HG[1],
if (G[2]==1) HL=HG[2],
}
}
else HL=HG[1],
break,
case 30:

if (G[3] != 0 ) HL=HGI3],
else if (G[2] '= 0) HL=HG]2};
else if (G[1]==0)
{
new_box();
block30_form();
1f(G[3] > 0) HL=HG][3],
else 1f(G[2] > 0) HL-~=HG[2],
else if(G[1] > 0) HL=HGI{1];,

}

else HL=HGJ1];

break;

case 40:

if (G[3] != 0 ) HL=HG]3];
else if (G[2] != 0) HL=HG]J2],
else if (G[1]==0)

{
new_box();
if(G[3] > 0) HL=HG[3];
else if(G[2] > 0) HL=HG[2],
else if(G[1] > 0) HL=HG]1];
}
else HL=HG[1];

break;




default.
printf("**********NO SUCH HR**********\n");

}

printf("The height for this layer is %d\n",HL);
printf(" \n");
return,

}

break;

/* . - -

fill_layer()
{

int size,

printf("Initialize the subareas on the pallet:\n");
printf(" \n"),

for(i=1; i<=W,; i++)
{
for(j=1, j<=L; j++)
{
pallet[i][;]=0;
}
}

switch(HL)
{
case 10:
select_bnx1();
break;
case 20:
select_box2();
break;
case 30:
select_box3();
break;

}

return,

}

JF emeenmeeeeemeeneemee
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/***** Function for Selecting Boxes to load *****/

select_box1()
{
for(i=1;;i++)
{
if(G[1] > 0)
{
if(Type[1] >= 1) X[LN][nn]=1;
else X[LN][nn]=3;
printf(" \n");
printf("X[%d]}[%d]=%d\n" ,LN,nn,X[LN][nn]),
printf(" \n");

load_box();

if(G[1] == 1)
{
for(i=1; i<=8 ;i++)
{
if(Type[i] == 1 && h[i] == 10)
{
if((UL+s[1]*1.0/S) == 1)
{
X[LN][nn]=i,
load_box();
}
break;
}
}
}

if(UL == 1) break;
}

else new_box();

}

return;

}

L eeemmmmmmmemmcamneaes e mmemmmmmn mmmmmmmm— e amenn

select_box2()
{
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for(1=1,,i++)

{

if(G[2] > 0)
{
if(Type[2] >=1) X[I.N]Inn]=2;
else if(Type[4] >= 1) X[LN][nn]=4;
else X[LN][nn]=6;
printf("X[%d][%d]=%d\n",LN,nn,X[LN][nn]);
printf(" \n"),

load_box();

if(G[2] == 1)
{
for(i=1; 1<=8 ;i++)
{
if(Type[1] == 1 && h[i] == 20)
{
if((UL +s[i]*1.0/S) == 1)
{
X[LN][nn]=1;
load_box();
!
break;
}
}
!
if(Ul, == 1) break;
}

else new_box();

}

return;

}

/..
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select_box3()

{

for(1=1;;1++)

{
if(G[3] > 0)

{
if(Type[8] >= 1) X[LN][nn]=8;

*/
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else if(Type[S] >= 1) X[LN][nn]=5,
else X[LN][nn]=7,
printf("X{%d][%d]=%d\n",LN,nn,X{LN][nn]),
printf(" \n"),

load_box();

if(G[3] == 1)
éorﬁ=1;i<=8;i++)
i{f(Type[i] == | && h[i] == 30)
i{f(({UL+s[1 ]*1.0/S) == 1.0)

X([LN][nn]=;
load_box();

}
break;
o}
3
}
if(UL == 1) break;
}
else new_box();
}
return;
}
/* — . e e e e e e e e e *
load_box()
{
int k;

for(i=1, i<=L; i++)
{
for(j=1, j<=W; j++)
{
if(pallet[j][i] == 0)
{

ws=0; 1s=0;
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for(kk=1, kk<=W, ++kk)

{
if(pallet[kk][i] == 0) ++ws;,

}

for(k=1, k<=L; k++)

{
if(pallet[j][k] == 0) +tis;

}

x[nn]=)-1; y[nn]=i-1;

printf("ws=%d Is=%d %d %d\n", ws,Is,x[nn],y[nn]);
printf(" \n"),

1f( WOI[X[LN][nn]] == 0.0)

{
if(Is >= w[X[LN][nn]] && ws >= I[[X[LN][nn]])
{
if(I[X]L.N][nn]] == 20 && I[X[LN][nn-1]] == 20 && x[nn-1] == 0)
{
x[nn]=0; y[nn]=y[nn-1]+12;
}
put_box(x[nn],y[nn],w[X[LN][nn]}LI[X[LN][nn]});
++nn;,
mm=1;
}
}

else if( W%w[X[LN][nn]] == 0.0)

{
if(Is >= I[X[LN][nn]} && ws >= w[X[LN][nn]])

1{f(w[X[LN][nn]] == 20)
i{f(x[nn] == 20 && y[nn] == 12)
>{([nn] = 0; y[nn] = 24;
lf(7}([nn] == 0 && y[nn] == 12)
’:&[nn] = 20; y[nn] = 24,
}

put_box(x[nn],y[nn],I[X[LN]}{rn}],w{X[LN][nn}]),




++nn;
mm=1;
}
}
break;
}
}
if(mm==1) break;
}
if(mm == 0) remove_box(),
else
{
printf("Type %d box is loaded\n", X[LN][nn-1]);
printf(" \n");

UL=UL+s[X[LN][nn-1]]*1.0/S;

printf("The layer utilization UL=%f\n",UL);
printf(" \n");

for(i=1; i<=8 ,i++)

{
if(X[LN][nn-1] == i)

{
Type[i]=Typeli]-1;

switch(i)

{

--G[1}];
break;

case 1:

case 2:
--G[2);
break,

case 3:
--G[1];
break;

case 4:
--G[2];
break,

case 5:
--G([3];
break;

case 6:



--G(2];
break;
case 7:
--G[3];
break;
case 8:
--G[3];
break,
}
break,
}
}
}

printf("The boxes in the holding area are:\n");
printf(" \n"),

for(i=1;1<=8;1++)

{
if(Typel[i] = 0) printf("Type[%d]=%d\n",i,Typel[i]),

}

printf(" \n");

printf("%d %d %d\n",G[1], G[2], G[3]);
printf(" \n");

mm=0,

return,

YL -- .- -

put_box(xx,yy,ww,ll)
{

int a,b;
/* printf("%d %d\n",ww,ll); */

for(1=1; i<=ll, 1++)

{

a=xx+i;

for(=1I; j<=ww; j++)
{
b=yy+.
pallet[a][b]=1;
}
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}

return;,

...................................................................................................

remove_box()

{

int a,b,c.d;

printf("nn=%d\n",nn);
printf(" \n");

for(i=1; i<=nn-1, i++)
{
printf("X[%ed][%d]=%d\n",LN,i, X[LN](i}),
printf(" \n");

If(((s[X[LN][nn]]-s[X[LN][i]D*1 0/S+UL) == 1)
{
ifl W%I[X[LN][1]] == 0.0)
{
for(a=1; a<=I[X[LN][i]]; at++)
{
for(b=1; b<=w[X[LN][i]], b+t)
{
c=a+x[i];
d=b+y[i];
pallet[c][d]=0;
}
} }
else 1f( W%w[X[LN]}[i]] == 0.0)
{
for(a=1; a<=w[X[LN]|i]]; a++)
{
for(b=1; b<=I[X[LN]{i]}; b++)
{
c=a+x[i];
d=b+yli];
pallet[a][b]=0;
}
}
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UL=UL-s[X[LN][i]]*1.0/S;

printf("x[%d]=%d y[%d]=%d\n" 1,x[1],i,y[1]);
printf(" \n");

for(k=1, k<=8 kt+)
{
if(X[LN][1] == k)
{
printf("%d ", Type[k]);
++Type[k];

printf(" \n"),
printf("%d  \n ", Type[k]);
printf(" \n"),

printf("Put type[%d] box back to the holding area\n" k),
printf("\n");

switch(k)
{
case |:
++G[1}];
break;
case 2:
++G[2],
break;
case 3:
++G[1];
break;
case 4:
++G[2],
break;
case 5:
++G[3],
break;
case 6:
++G[2],
break;
case 7:
++G[3];
break;
case 8:
++G[3];
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break;
}
break;
}
}
}
}
return;
}
S e - e eammtmm—mna */
new_box() /* Function for New Box Generation */
{
int ok=0;

if(TYPE[1+*TYPE[2]+TYPE[3]+TYPE[S] == 8) exit(0);

while(ok != 1)

{

RN[No]=random(5)+1;

if(RN[No]!=4)
{
++TYPE[RN[No]];
if(TYPE[RN[No]]<=2) ok=1;
else --TYPE[RN[No]];
}

else ok=0,
}
printf("No. %d box is a type %d box \n", No, RN[No));
printf(" \n");

for(i=1;i<=7;i++)
{
if(RN[No]==i) ++Typelil;
}

if(h[RN[No]]==10) ++G[1};
if(h[RN[No]]==20) ++G[2];
if(h[RN[No]]==30) ++G[3];

++No;



1
for(=1;i<=5;i++) pnntf("TYPE[%d]=%d\n", 1,TYPE[1]);

return;,

block20_form() /* Function for Generating Blocks with height of 20 */
{

while(Type[3] >= 2)
{
Type[3]=Type[3]-2;
Type[4]=Type[4]+1,
++G[2];
}

while(Type[l] >= 2)
{
Type[1]=Type[1}-2;
Type[2]=Type[2]+1;
+HG[2];
}

while(Type[l] >= 1 && Type[3] >= 2)
{
Type[l1]=Type[1]-1;
Type[3])=Type[3]-2;
Type[2]=Type[2]+1],
++GJ[2],
}

return,
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*/

block30 form() /* Function for Generating Blocks with height of 30 */

{
while(Type[3] >=1 && Type[4]>=1)

{

Type[3] = Type[3]-1;
Type[4] = Type[4]-1,
Type[S] = Type[S]+1;
++G[3],

}



while(Type[3] >=1 && Type[6]>=2)
{
Type[3] = Type[3]-1;
Type[6] = Type{6]-2;
Type[5] = Type[5]+1:
++G[3],
}

while(Type[3] >=3)
{
Type[3] = Type[3]-3;
Type[S] = Type[5]+1;
++G[3];
}

while(Type[1] >=1 && Type[2]>=1)
{
Type[1] = Type[1]-1;
Type[2] = Type[2]-1;
Type[8] = Type[8]+1,
}

while(Type[l] >=1 && Type[4]>=]1 && Type[6]>=2)
{
Type[1] = Type[1]-1;
Type[4] = Type[4]-1;
Type[6] = Type[6]-2;
Type[8] = Type[8]+1,
}

while(Type[l) ~=1 && Type[4]>=1 && Type[3]>=2)
{
Type[1] = Type[1]-1;
Type{4] = Type[4]-1;
Type[3] = Type[3]-2;
Type[8] = Type[8]+1;
}

while(Type[1] >=1 && Type[4]>=2)
{
Type[1] = Type[1]-1,
Type[4] = Type[4]-2,
Type[8] = Type[8]+1,
}



while(Type[1] >=1 && Type[3]>=2 && Type[6]>=2)

{
Type[l] = Type[l]-1;
Type[6] = Type[6]-2;
Type[3] = Type[?]-2,
Type[8] = Type[8]+1;
}

while(Type[1] >=1 && Type[3]>=4)
{
Type[1] = Type[1]-1,
Type[3] = Type[3]-4;
Type[8] = Type[8]+1;
}

while(Type[1] >=1 && Type[6]>=4)
{
Type[1] = Type[1]-1;
Type[6] = Type[6]-4,
Type(8] = Type[8]+1;
}

while(Type[1]>=3)
{
Type[l] = Type[1]-3;
Type[8] = Type[8]+1;
}

while(Type[1] >=2 && Type[3]>=2)
{
Type[l] = Type[1]-2;
Type[3] = Type[3]-2;
Type(8] = Type[8]+1;
}

while(Type[2] >=1 && Type[3]>=2)
{
Type[2] = Type[2]-1;
Type[3] = Type[3]-2;
Type[8] = Type[8]+1;
}

for(i=1; ;i++)

{
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if(Type[8]==1) G[3]=G[3]+i;

break;
}
return,
}
/* —— —— — e e —— oo e— e ———————— */






