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ABSTRACT

Limit Theorems for the Number of Occurrences of

Consecutive k Successes in n Markov Bernoulli Trials

Shuixin Ji

In this thesis we present a method of deriving the limiting distributions
of the number of occurences of success (S) runs of length k for all types of
runs under the Markovian structure with stationary transition probabilities.

In particular, we consider the following four best-known types of runs:

1. A string of S of exact length k proceded and followed by an F, except
the first run which is not proceded by an F, or the last run which may

not be followed by an F;
2. A string of S of length k or more;

3. A string of S of exact length k, where recounting starts immediately

after a run occurs;
4. A string of S of exact length k, allowing overlapping runs.

It is shown that the limiting distributions are convolutions of two or more

distributions with one of them being either Poisson or compound Poisson,

111



depending on the type of runs in question. The completely stationary Markov

case and the independent and identically distributed case are also treated.
key words and phrases: Runs, consecutive k successes, Markov chains,

stationary transition probabilities, convergence,Poisson, compound Poisson,

reliability, consecutive-k out-of n: F system.
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Chapter 1

Introduction

Problems on and around RUNS have a long history, beginning, to say the
least, with de Moivre’ s The Doctrine of Chances. (See the English edition
De Moivre (1967). The original Latin edition was published in 1717.) In the
last decade, the problems propagate into many other fields, like reliability,
linguistics, test of randomness in statistics, DNA analysis in biology, etc.
Most of the work done have centered around the independent and identi-
cally distributed sequence. In this thesis, we shall extend it to the Markov
dependent case.

Let n > k£ > 1 be two fixed positive integers. For a given sequence of n
randomly arranged S (success) and F (failure), we are intercsted in counting

the number of occurrences of the pattern

$,S,...,S



arunof k Sinatotal of n trials.

There are many way of counting the numr ber of run of S of length k. Four

best-known types are:

I: A run of of length k means a string of S of exact length k preceded and
followed by an F, except the first run which is not proceded by an F or

the last run which may not be followed by an F.
I1: A run of S of length k means a string S of length k or more.

III: A run of S of length k means a string of S of exact length k with

recounting starts immediately after a run occurs.

IV: A run of S of length k means a string of S of exact length k allowing

overlapping runs.

Runs of type 1 are the most restricted ones. In a narrow sense the word
“pattern” means this type of runs. In linguistics, a literary text can be
viewed as sample sequences drawn from a population of possible texts from
an author. ( See Yule (1944).) Counting the number of occurrences of a
particular pattern (a cluster of letters or words ) in a randomly selected text

of an author is equivalent to counting the number of the “runs” of type I of

such a pattern. (See Brainerd and Chang (1982).)



Runs of type II are a natural way of counting runs and the ones most
commonly accepted in the classical literature before Feller (1968) came up
with the definition of type III runs. In the literature, runs of type 1l have
often be referred to as “the classical way of counting” runs. In statistics,

one often wants to know whether a set of observed data available for some

statistical analysis is random. To test the randomness in this situation, one

method is to use the total number of runs above and below the median in
the set of data. The “runs” in the runs test is the type Il runs for k1. (See
Mood (1940).)

In reliability, a “consecutive k—out-of-n:F system” consists of n lincarly
orderer, components. The failure times of the components are assumed to be
independent and identically distributed. The system fails if and only if al
least k out of its n components fail. (see Chiang and Niu (1981).) The study
of the reliability of such a system is equivalent to the study of the number of
type II runs with “failure” substituting for “success”. The reliability of the
consecutive k—out-of-n:F system is the probabilily that a run of “failure” of
length k of type II has never occurred.

An extension of the consecutive k-out-of-n:F system is a system with
m — 1, m > 2, identical back-up systems. Such a system is known as “m

consecutive-k—out-of-n:F system ”. (See Griffith (1986) and Papastavridis

(1991).) For such a system to fail, it is necessary to have m or more repeated



runs of failure of length k of type 1l. Therefore, the reliability of the m-
consccutive-k-out-of-n:F system i1s the probability that there are at most
m-1 runs of failure of length k of type II.

Feller (1968) proposed runs of type 111 from the point of view of renewal
process. Thus runs of type III have been called “Feller’s way of counting”
runs in the literature. As Feller noted (1968, P.279) that “if we are to use
the theory of recurrent events, then the notion of runs of length k must be
defined so that we start from scratch every time a run is completed. This
means adopting the following definition. A sequence of n letters S and F
contains as many runs of length k as there are non-overlapping uninterruped
successions of exactly k letters S. In a sequence of Bernoulli trials a run
of length k occurs at the n-th trial if the n-th trial adds a new run to the
sequence.”

We believe that Feller is the first person to consider the problem of “runs
of length k”. Before him, people were only concerned with the problem of
“runs”, i.e. “runs of length 1 or more”, as the “runs” defined in the runs
test based on the total number of runs. His definition appeared in the first
edition of his book (1968) which was published in 1950.

Three interesting examples of type III runs are:

Example A. (See Aki (1985).) An urn contains w white and r red balls.

Let k be a fixed integer such that k¥ < r. A ball is drawn at random. If it



1s a white ball, it is replaced into the urn, if red it is laid beside the urn.
Another randem drawing is made from the urn. If the ball is red it s lad
beside the urn and the drawing continues. But when a white ball is drawn,

the white ball and all the red balls which have been accumulated beside the

urn are replaced into the urn at the same time. The procedure is repeated in
identical manner as long as the red balls accumulated outside the urn is less
than k. If the number of red balls outside the urn reaches k, all the k red
balls outside the urn are replaced into the urn and the process starts a new
A binary sequence is obtained by recording S or F for each random drawing
according to whether it is a red or a white. In this example, the vecurrence

of consecutive k successes means that the number of the red balls outside the

urn reaching k.

Example B. (See Aki (1985) ) An electric bulb is lit. It is checked whether
it has failed or not at the end of each day. If it is found to be burnt out, then
a new one is replaced immediately. If a bulb has been lit for k consecutive
days, it is replaced with a new one even if it has not failed. Define a binary
sequence by recording S or F every day, according to whether the clectric
bulb is in working condition or has failed. In this example, the occurrence

of consecutive k successes means that an electric bulb which has not failed

being replaced with a new one.

Example C. (Counters of Type I.) A sequence of Bernoulli trails is per-



formed. A counter is designed to register successes, but the mechanism is
locked for exactly k1 trials following each registration. In other words,
a success at the n-th trial is registered if, and only if, no registration has
occurred in the preceding k — 1 trials. The counter is then locked at the con-
clusion of trials number n,n+1,...,7+k —1 and is freed at the conclusion
of the (n + k)-th trial provided that this trial is a failure. However, whenever
the counter is free (not locked) the situation is exactly the same, and the
trials start from scratch. In this example, the occurence of consecutive k
successes means that the counter is locked for a period of k trials, including
the initial trail which locked the counter. (See Feller (1968).)

Type IV runs was recently defined by Ling (1988,1989) in conjunction
with binomial and negative binomial distributions of order k. The following
example is a natural one for type IV runs.

Example D. (Counters of Type 11.) Same as Example C except that each
success locks the counter for k times units (k — 1 trials following the success)
so that a success during a locked period prolongs that period. For example,
take k > 2, if a success at the n-th trail is registered which locks the counter
to the (n + k — 1)-th trail, and another success at the (n + 1)-th trail is
again registered, then the locking period of the counter is prolonged to the

(n t k)-th trail. In this example, the occurrence of consecutive k successes



means exactly the same as in the previous example, but allowing overlapping
in counting of runs of length k. (Feller (1968).)

Let N; be the number of occurrence of consecutive k successes of type
I. the other three counting variables Nj;, Ny;p, Ny are defined accordingly.
(For brevity we suppress the dependence of all four counting variables on k

and n.) For example, consider the following realization, with n  16.

SSSSSSFIFSSSFFSS

If we take k = 3, then Ny = 1; Nyr = 2; Ny = 3; and Ny - 5. Evidently
we have the stochastic ordering of Ny < Ny < Ny < Ny and if k
1, then N;; is the number of transitions from I' to S and Ny = Nyy is
the occupancy time of S. In the recent article of reference, an algorithm for
computing the exact probability distributions under the Markovian structure
with stationary transition probabilities of the four variables is proposed.
The purpose of this thesis is to give a unified approach to the derivation
of the limiting distributions of all the four counting variables for all & .~ |
as n tends to infinity and some minor conditions. We shall show that under
the Markovian structure with stationary transition probabilities the limits

are convolutions of two or more distributions with one of them Poisson for

N; and Ny; and compound Poisson for Nyj; and Nyy. Similar phenomena
~
occur under the completely stationary Markovian structure, But under the



independent and identically (i.i.d.) structure, all the limits are Poisson.

Thoughout this thesis, we adopt the usual convention of denoting “S” by
I and “F” by 0. Let X,..., X, be a sequence of Markov Bernoulli random

variables with the following stationary transition probabilities

1 -« o
< B 1"3) 0<ef<l (1.1)

and the initial probability
0<p<l
The model contains the following two special cases:

1). lf p = a/(a+ B), then {X,} is completely stationary in the sense that

P(X, =1)=pforalli=1,...,n; and with transition probabilities

1-(1-m)p (1-m)p
((1 ~7)1-p) (L—-7)p+n ) (1.2)

where 7 is the correlation coefficient of X, and X,,;. In this model,if 7 — 0
as n -» 0o, we call it asymptotically i.i.d. Markov Bernoulli model. (See
Edwards (1960).)

2). fa =pand 8 =1 — p, then {X,} is the ordinary sequence of i.i.d.
Bernoulli random variables. (The parameters a, 8, p and m depend upon

the index n. For brevity, we shall suppress this index throughout this thesis.)

8




Historically, Koopman (1950) was the first person to take on the problem
of finding limiting distributions of the number of runs under a Markovian
structure. He obtained the limiting distribution of N;;; with k -:1 for the
asymptotically i.i.d. Markovian Bernoulli model. Later, Dobrusin (1953) ob-
tained many interesting limit results for the same model. Today this model
is still being pursued by many authors. See Godbole (1991) and the refer-
ences cited there. Pedler (1978) was possibly the first person to consider the
nonasymptotically independent Markov Bernoulli model (1.1) in his studies
of the limiting distributions of Ny (and others) also for k =1. The re-
cent papers Wang (1991), Gani (1982), Buhler (1989) and Wang and Buhler
(1991) were concerned with the limiting distribution of Nyyy, also for k-1,
of the completely stationary model (1.2).

For k > 2, some results on the limiting distributions of N;;, Nyj; and Ny
in thei.i.d. case can be found in Papastavridis (1987), Goldstein (1990), God-
ble (1991), Barbour et al (1992) and Fu (1993). The recent article Koutras
and Papastavridis (1993) deals with related problems in the i.i.d. case.

To derive our results, we shall take an approach different from all the
approaches used by everybody else on this topic. Our idea can be traced
back to Doeblin (1938). Instead of directly working with the original Markov

Bernoulli sequence, we construct an equivalent parallel sequence for which the



limiting distributions of all the four types of runs are obtained. The problem

is thus to make sure that both sequences are asymptotically equivalent.

10




Chapter 2

The limiting distributions

Define two sequence of random variables {U]} and {V/'} by

U! = the length of i-th sojourn of {X,} in state 1,

V! = the length of i-th sojourn of {X,} in state 0.

The Markovian property and the stationarity of the transition probabili-
ties of {X,} assure that all the components of {U/} and {V/} are mutually

independent with marginal geometric distribution:

P(U =k)=(1-8)%1'68, k=12,...
{ (2.1)

P(‘/" - k)::.(vl—a)k_la, k:: 1,2,

Evidently observing the sequence {X,} is the same as observing U], V/, U, V},

i Xy =1and V{, U], V), U], ..., [ X; = 0. Therefore to study the

11



number of occurrences of success runs of the sequence {X,}, it 1s sufficient
to study this alternating process. As in Wang (1992), we shall modify the
alternating process as follows:

Let {U,} and {V.} be two independent sequences of random variables with
marginal distributions (2.1) and {U,} and {V;} are also independent of each
other. If X} = 0, we let V; = V/. When V; terminates, we start two runs U,
and V, immediately and simultaneously. We let U; run its course, but when
V> terminates we start another two runs U, and V3. The process is repeated
indefinitely, such that U, runs its course, but when V, terminates, two runs
U, and V,,, are started immediately for all z > 1.

If X; =1, let Uy = Uj, and initiate another run V; at the same time
i=1. As before, we let U; run its course, but when V} terminates, two runs
U, and V, are activated irnmediately and simultaneously, and the process is

repeated indefinitely as described above.

Define

wh = I(U, = k)  (1(A) denotes the indicator function of A.)

—
—
—

p—

I(U, > k)

—~
—
—
—~
—
~

[U/k] ( [x] denotes the integral part of x.)

12



) {U,~k+1 fU, >k
W, =

0 otherwise

Since {V/'}, having geometric distribution (2.1), is memoryless, i.c.
P(V! =5V > 1) = P(V/ =5 - 1)

forallz =1,2,..., and 7 > [ > 1, the original alternating process in which
V’ and U’ alternate is asymptotically equivalent to the modified process,

provided that
P(V! > U] forallili<n)—1 as n - oo.

(The proof of the above statement not be given here and shall be found in
the proof of Lemma 1.)

For fixed n > 2, define another stopping time by

0 if Vi >,
M, = (2.2)

max{k: Vi + .-+ Vi <n -1} otherwisec.

Then M, is binomial with parameters (n — 1, ) and independent of WJ(') for

all2 = I,11,11] and IV and j > 1. Denote

SO =w Wi

n

(2.3)

13



Because in the modified process U, may overlap, we have
P(S® > N,)=1

and

PS5 > N,)>0
for all finite n > 2.

Lemma 1 Foralli = I,11,111 and IV, we have

nllorgo P(“r(:) >N)=0

ifna - A >0 asn — oo. (Note that in model (1.1) we assumed 0 < a, f <

1)

Proof: First we have

Pw® > V) < PU, > W)

oo r—1
= Z PUy=r,%1=3s)

r=2s=1

= Y P(li=r)P(Vi=5)

r>s>1

= Z;l(l ~BY 7Bl - ) a

= af 2(1 -B)y! "2::(1 —a)!

14




_ 52(14)"'(1—(1—0)“‘)

= 1-8(1-(1-B)1-a))!
= [a—af}/[l - (1 ~a)(] —B)]
< eaf[l -(1-ea)(1-8),

so that

P(S% > N,)

INA

n-1
STPWYM > Vi, forsomeh=1,2, ..., j|M, = j)P(M, - j)
7=1

n-—-1

> P(Ui > Vi)jiP(M, = 5)

1=1

INA

< P(U; > Vi)na
< na’/[1-(1-a)(1-p).
The last term tends to 0 if na - A > 0 as n — oo.
According to lemma 1, to find the limiting distributions of N, it is suffi-
cient to find those of S,
Denote the probability mass functions (p.m.f.) and probability generating
functions (p.g.f.) of WJ(') to be f, and g,, respectively, for 2 = I, 11,111, and

IV, and all 7 =1,2,.... It follows from the definitions of W’s that:

15




fi(z) = 65(1 — 01)12I for x= 0,1
{ (2.4)
gi(t)=14+6,(t—-1) forallteR
where 0, = (1 - B)18.
fu(z) = 65(1 — 6)' 7= for x=0,1
{ (2.5)
gr(t)=1+62(t—-1) forallteR
where 8, = (1 — B)k-1.
_ [ 1= =B if x =0
flll(:l:)— (l _B)k—l(l_ﬂ)k(:—l)(l_(l_ﬁ)k) if x = 1’2’
gin(t) =1-(1-8)"+ (I—ﬂ):::gzg):ﬁ)k)’for s<(1-8)"
(2.6)
and
[ 1-(1 =By if x=0
Jiv(=) = { (1-B)18(1 — B)*~! ifx=12, ...
av(t) =1-(Q1 -6+ %()E%L;—’- for s < (1-p0)"
(2.7)

Let G, be the p.g.f. of S¢). Then by (2.2), (2.3), and conditioning on X,

we have

16



Gi(2) = [pg.(t) + (1 = P)I[1 + a(gi(t) - D" (2.8)

It is interesting to note that both p.rif. in (2.6) and (2.7) are mixtures
of two p.m.f. with one of them Bernoulli. In Wang (1989, Theorem 6), it
was proved that if & sequence of 1.i.d. discrete random variables {X,} whose
common distribution is mixture of two p.m.f. with one of them Bernoulli,
then its partial sum S, = X; + - + X, has a compound Poisson limiting

distribution.

If the limits of the distributions of N, are to exist, a dominating condition
is that the number of transitions from state 0 to state 1 must be very
moderate, relative to n (as 7 — o0). That is to say , na, the mean number
of transitions from state O to state 1, must approach a constant as n --» co.
We discovered that this is the only condition needed to assure the existence
of the limiting distributions of the number of occurrences of consecutive k
(> 1) successes in the Markov case (1.1) and in the completely stationary
case (1.2). the other parameters p and f in the Markov case and 7 in the
completely stationary case play no roles here. They can stay constant or
have their own limits, such as p — po, 8 — Bo and © - g, for py, Bo, and
7o € (0,1). Therefore, without loss of generality, we shall assume that the

parameters p, B and 7 stay constant in the next four theorems and corollary

17



I. ('The condition “na — A as n — oco” or its equivalent ‘YL, P(Xip1 =
11X, - 0) — Xas n — 00” in the non-stationary case was first used by
Kooprman (1950) and Dobrusin (1953) and has since become a key condition
in Poisson approximation problems for Markovian dependent sequence.)

In the followings we state and prove the four main theorems of this thesis.
Theorem 1 Ifna-— A >0, asn — oo, then the p.g.f. of N| converges to

$i(t) = {1+ p(1 - BY*'6(t — 1)} exp{A(1 - B)* 1Bt - 1)}.

Thus the imiting distribution of N; is the convolution of a Bernoulli with

paramelter p(1 — ¥~ B and a Poisson with parameter A(1 - B)*~143.

Proof: The p.g.f. of ) is

Il

Gi(¢) [par(t) + (1~ p)][1 +ags(t) - DI™

[+ p(1 = B} A= DL ~a(l = gi(®)]"

—  [L+p(2 =B B(t - 1)] expl-M1 — g1(t))]
for na — A asn — oco.
Now, substituting the g;(t) into the above formula, we get that the limit

dy(t) of Gi(t) is

r(t) =1+ p(1 - BY*7B(t — 1)]exp[A(1 - A)* 1Bt~ 1)].

18



This completes the proof.
Theorem 2 Ifna — A > 0, asn — oo, then the p.g.f. of Ny; converges to

¢u(t) = [L+p(1 —B) (¢ - Diexp[A(1 -8 '(t 1))

Thus the limiting distribution of Nyj 1s the convolution of a Bernoullh wath

parameter p(1 — B)*~! and a Poisson with parameter A(1  B)* '

Proof: The p.g.f. of S{/7) is

Gu(t) = I[pgu(t)+ (1 —-p)[L+algu(t) - )™
= [14p1 =8t - D~ a(l - gr(e))" "
— [T +p(1 = B)'(t — 1)]exp[—A(1 - g14(2))]

Now, substituting the g;;(¢) into the above formula, we get that the limit

QS”(t) Of G“(t) is

du(t) = [1+p(1 — BYH (¢ ~ D]exp[M(1 - B)'(t 1)),
This completes the proof.

Theorem 3 [fna — A > 0, asn - oo, then the p.g.f. of Nyj; converges lo

19



. k-1, PL= B (1 - (1 - B)*)t
d’lll(t) - [1 ~—p(1—*ﬁ) + 1“'t(1—ﬂ)k }

. _ ANk
< enplA(1 - BT - 1)

Thus the hmating distribution of Nyj; is the convolution of a mizture of
Bernoulli distribution with parameter p(1 — B)*, and a geometric distribu-
tron with parameter (1 — B)¥, and a compound Poisson distribution with

parameter M(1 — B)*~! and geometric compounding distribution whose p.g.f.

s [(1 - (1= B/ - ¢(1 - B)H).

Proof: the p.g.f. of SU11) is

Gin(t) = [pgira(t)+ (1 — )1 + agrni(t) - 1)}

1 _ aAYk-179 _ _ k
B A ﬁl)_tﬁ_g)k e

x [l =a(l = grm(t))"!

_BY-1(] (1 — @)
— [1—-p(1-—ﬂ)k—1+p(1 [i)—tﬁ—g)k B) )t]

x expl= M1 — grrs(1))
for na — X asn — oo.

20



Now, substituting the gr1;(¢) into the above formula, we get that the limit

brir(t) of Grri(t) is

bunt) = {1- g0 - gyt REZEI 0 (PP

(1-(1- By
ooy W

x exp{A(1l - B

Theorem 4 Ifna — A > 0, as n — oo, then the p.g.f. of Njv converges to

k-1 P(l_ﬁ)k_lﬂt
T -8

Fexp{A(1-B) {13},

¢rv(t) = {1-p(1-p) (i B)

Thus the limiting distribution of Ny is the convolution of mizture of Bernoulli

k-1

distribution with parameter p(1 — () and a geometric distribulion wnth

parameter (1 — ), and a compound poisson distribution with parameter

AM1—B)*"! and a geometric compounding distribution whose p.g.f. is 25— .

Proof: the p.g.f. of S{V) is

Grv(t) = [pgrv(t) +(1 - p)]IL + afguv(t) = D"

p(1 — B)1pt

m][l +a(grv(t) — )"

= [1-p(1-B)"+
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p(1 — B4t

— [1-p(1-B)*"+

1 — t(l _ ﬁ) ]exp[_’\(l - gIV(t))]

for na —» A as n — oo.

Now, substituting the g;i-(¢) into the above formula, we get that the limit

¢[V(t) Of le(t) is

p(1 — B)* 1Bt

k-1 tp

a=p

drv(t) = [1-p(1-B) ' +

This completes the proof.

We shall record that the next results as Corollary 1 without proof. We
call it a Corollary because the completely stationary model (1.2) is a special
case of the Markovian model (1.1). But it is easy to see that it can not be
obtained by substituting the parameters p and 7 in the four Theorems. In
the completely stationary case the three parameters p, & and 8 interweave,
and the values of p and 3 changes as na tends to A, while in the other Markov
mode! all the three parameters act independently. Lemma 1 is still applicable

to Corollary 1.

Corollary 1 Let {X,} be a completely stationary Markov Bernoulli sequence
with transition probabilities defined by (1.2), if np — A > 0, asn — oo, then
the limiting distribution of:

1. Ny is a Poisson with parameter M\(1 — n)2xk-1;
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2. Ny is a Poisson with parameter A(1 — =)r*-1;

k-1

3. Ny is a compound Poisson with parameter A(1 —7)x*~! and geometric

compounding distribution h(z) = (1 — n*)rle-Dk = 2 =12 . ;

k-

4. Niv is a compound Poisson with parameter \(1 )" ! and geometric

compounding distribution h(z) = (1 — =)=*!, z=1,2,....

As noted earlier,if k =1, then S, = X;+---+ X, = N1 == Nyv. Insuch
a case the limiting distributions in corollary 1) - 3) and 4) are identical and
coincide with the one obtained in Wang(1981), Gani(1982), Buhler(1989) and
Wang and Buhler(1991). Recently Godbole (1991, Theorem3) obtained lim-
iting distributions of Ny;r and Ny under the condition “na(1 - 8)¥-1 -» A
as n — oo0”. (a and B are according to our notations.) His limit is a

Poisson. To be so, one must have “(1 — 8) — 0 as n — 00", which is

k-~

' S dasn — o0

not necessarily implied by the condition “na(l — §)
Therefore the proper way to state the limit condition in Godbole’s theorem
3is ‘na(l = B! - ) a—0,and B — 1, as n — oo”. Thus God-
bole is dealing with an asymptotically independent, completely stationary
Markov Bernoulli chain, and it has the same limit behavior as in the next

i.i.d. Bernoulli case. (See Corollary 2.) In probability theorey, most of the

results concerning asymptotically independent cases are identical to those
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concerning i.i.d. cases. Godbale's result is of no exception. Furthermore,
because of lemma 1, it goes without saying that throughout this thesis all

of our results are under condition “a — 0 as n — o0o”. The same condition

evidently also applies to Godbole’s result, otherwise counter examples can
be easily constructed.

in thei.i.d. case, one might think that the limit results would follow from
the corresponding results in the completely stationary case simply by letting
the correlation coefficient of X, and X,;; m = 0. Surprisingly, this is not
so. For example, for all k > 1, if np — A as n — oo, then the limiting
distributions of all the four counting variable N are degenerate at 0 in the
i.i.d. case. Therefore different limit conditions are required to obtain non-
degenerate limits. We shall present thei.i.d. case as Corollary 2 below. Since

LLemma 1 is no longer applicable in this case, the next lemma is needed.

lemma 2 If the sequence {X,} of Bernoulli random variables are 2.1.d., then

foralli=1,11,111 and IV,

lim P(S#) > N,) =0

n—oo
ifnp* - X >0 asn — oco.

Proof: We note here that

24




0 v= 1,11
PWY > Vi) =< p*/(1 - (1-p)p*) =11
P —p(1 - p) =1V
and
P(S% > N,)
n—1
< SSPWY >V, for someh=1,...,j My = 3)P(Myn - 3)
J=1
n—1 )
< Y PWE > W)iP(M, = 3)
1=1
= P(WH > V)n-1)a
Thus,
0 P - L
P(S® > N) =  pk(n-1)a/(1-(1-p)p*) i
P (n - Da/(1 —p(1 -p)) =1V

-— 0 as n — oo.

This completes the proof.
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Corollary 2 Let {X.,} be a sequence of i.i.d. Bernoull random variables,
with P(X, = 1) = p =1- P(X, =0), ifnp* - XA > 0, asn — oo, the
distributions of Ny,..., Niy all converge to the same Poisson with parameter

A

It follows from Corollary 2 that for a sequence of i.i.d. or asymptotically
independent Bernoulli random variables, the limiting distributions of the
number of occurences of consecutive k successes are all Poisson. Furthermore,
for all moderate values of p, say < 1/2 and of k, say > 5, the Poisson
distribution provides very good approximation for all the distributions of the

number of occurrences of consecutive k successes.

Godbole (1991, Theorems 1 and 2 ) obtained the limiting distributions
for Nyj; and Njy identical to corollary 2). As we noted earlier, the study
of a consecutive k-out-of-n:F system in reliability is identical to the study
of the type II way of counting the number of “failure” runs of length k.
Papastavridis (1987), and Chao and Fu (1989) showed that the reliability
of a consecutive k-out-of-n:F system converges to e™* if ng* — X > 0 as
n — oo. Their results are special case of Corollary 2), interchanging q = 1-
p with p. A more general result along the lines was obtained recently by Fu
(1993, theorem 2.1). Fu’s result is the same as Corollary 2) for type II way

of counting.
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An extension of the consecutive k-out-of-n: F system is “m-consecutive-
k-out-of-n:F system”. It is a consecutive k-out-of-n: F system with m - 1
identical back-up systems so that the whole system fails if and only if m or
more of the systems fail. Fu (1993, Theorem 2.2) proved that the reliability
of such a system converges to ¥,y €A%/l if n(1 - p)* > X > 0 as
n — co. Again, this result is an immediate consequence of corollary 2)

To test the hypothesis whether a binary sequence of length n is randomly
arranged, one often uses the statistic R, the total number of runs. (See Mood
(1940).) For k=1, N;; = R/2, if R is even, and Ny = (R + 1)/2, if R is odd
and .X; = 1, and Ny = (R-1)/2,if R is odd and X, = 0. Thus if n,, the
number of 1 in the sequence ( X;, X,,..., X, ) is small relative to n, and the

asymptotical distribution H of R is

exp(—~ )Mk / k! forz - 2k
H(z) = {

pA e 2k + 1)+ (1 —p)Ate /(k— 1) forz= 2k {1

where A = n; and p = ny/n.
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Chapter 3

Discussions

The results obtained in this thesis can be easily extended to many other
problems. As an illustration consider two examples as follows:

A. A combination padlock with a circular dial can be unlocked only if
the dial is turned, from the center, say, to the left k; times and then to the
right k, times. What is the probability of unlocking the padlock if the dial
is turned left and right in the random manner?

B. In a simplified genetics set up, consider a process of random mating
in which there exists a certain arrangemant of genes of two types, A and B
in the chromosomes of each cell of an offspring. A certain arrangement of
genotypes, say, k; of A-type followed by k;, of B-type would reflect a certain
characteristic of the offspring. What would be the probability of observing
such a characteristic in a large population?

These two examples lead Huang and Tsai (1989) to define a “binomial
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distribution of order (ky, k2)”. Their distribution is an extension of Hirano’s
binomial distribution of order k, because by letting one of k; or k, equal
0. theirs is reduced to Hirano’s. ( See Hirano 1984.) In the combination
padlock example and take k; = 3 and k, = 4. As anyone who has ever tried
a combination nadlock knows, the padlock can be unlocked only if is turned
exactly three times to the left and then exactly four times to the right. 1f it
is turned three times to the left and the five times to the right, it will not
do. On the other hand, if one wants to reach a telephone number such as
848-3233 but mistakenly dials two extra digits such as 848-323333, it still

works.

Therefore “a run of k; F and then k; S” can mean two things: One is
that “a string of consecutive k; F, proceded by an S, is followed by another
string of consecutive k, S, which procedes an F” and the other is that “a
string of consecutive k; F, proceded by an §, is followed by k; or more S”.

Evidently the first kind of runs corresponds to the type I runs while the
second kind corresponds to the type II runs. We shall denote the number
of occurrences of the first kind by M; and the second by M,, and call the
distribution of M; the type I bionomial distribution of order (ky, k;), and
the distribution of M, the type II binomial distribution of order (k,, k,).
Huang and Tsai’s distribution is of the type II.

To find the limit of the type I binomial distribution of order (k;, k;) we
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follow the approach taken above: define

W = I(V, = ky, U, = ky), (3.1)

so that
POW" =1) = {(1 - a)*"a}{(1 - B)*7' B}
for all ¢« > 1. Using (3.1), it follows that:

A). Under the Markov Bernoulli structure (1.1), if na?(1 — a)2=! — ),
as n — oo, the p.g.f. of the type I binomial distribution of order (k;, k2)
converges to ®;(t) = e~ -1 where § = (1 — B)F2~' 3, which is the p.g.f. of
the Poisson distribution with parameter A4.

B). Under the completely stationary structure, the limit of the type I bi-
nomial distribution of order (k;, k) is Poisson with parameter A(1~w)3w*=1,
if np?{1 — (1 —7)p}ki~! > X as n — oo,

C). Under thei.i.d. structure, the limit of the type I Binomial distribution

of order (k, k;) is Poisson with parameter A, if npft!(1 — p)b — X as
n — 0o.
For finding the limiting distribution of the Type II binomial distribution

of order (k1, k2), we define

W‘(II) = I(‘/; = kl)Ul :_> k2)a (3.2)
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so that

PO = 1) = (1 - aftla(l - g)k!

forallz>1

Using (3.2), we can verify that:

A’). Under the Markov Bernoulli structure (1.1), if na®(1 — a)k ! - A,
as n — oo, the p.g.f. of the type II binomial distribution of order (k, k2)
converges to ®(t) = e~ *8(¢-1) where § = (1 — 3)k~!, which is the p.g.f. of
the Poisson distribution with parameter A4.

B’). Under the completely stationary structure, the limit of the type 11 bi-
nomial distribution of order (k,, k;) is Poisson with parameter A(l - 7 2mk2 -1
if np?{1 — (1 —7)p}r-! —= A as n - oo.

C’). Under the i.i.d. structure , the limit of the type II binomial distri-

bution of order (k;, k;) is Poisson with parameter X, if np*2(1 - p)fr -» A
as n — 0o.

The result in C’) coincides with Corollary 1 in Huang and Tsai (1991).
The two lemmas in section 2 and 3 apply also to the derivation of the limiting
distributions of M; and M, . Therefore in A), B) and C) the limit conditions

imply “a — 0 and p — 0, as n — c0”.
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