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ABSTRACT

Shapiro's pressure loss calculation method, applied to flows in
constant-area passages, is compared to Benedict's variable-area method.
Both methods are applicable to steady, one-dimensional, adiabatic
coﬁpressible flows. Although the two methods are different in their
respective derivations and mathematical formulations, they prove to

be numerically identical for the constant—area case.

Based on the approaches of Shapiro and Benedict, an altermative
method is developed for estimating pressure losses in variable-area
flow passages. The developed method is a more general and direct

approach to flow loss calculation than either of the two reviewed

methods. .
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NOMENCLATURE

Cross-Sectional Area

Wetted Surface Area

Specific Heat at Constant Pressure

Hydraulic Diameter
Frictional Head
Friction Factor

Fanning Friction Factor

Mean Fanning Friction Factor

Denotes Function
Acceleration of Gravity

Loss Coefficient

Maximum Passage Length for Continuous Flow

Mach Number

Non—-Dimensionalized Pressure Factor

Absolute Pressure

External Heat Transfef per LB.

Pressure Ratio

Renoylds Number

Gas Constant

Absolute Temperature
Specific Internal Energy

Specific Volume
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v Velocity

w Mass Rate of Flow
W External Work per LB
X Distance in the Direction of Flow
z Potential Head
s Inexact Differential
a Flow Number
Y Isentropic Exponent
T Generalized Compressible Flow Function
[} Density
t Wall Shearing Stress
. SUBSCRIPTS
o Denotes Stagnation
1 Denotes Initial Condition
2 Denotes Final Condition
s Denotes Static
t Denotes Total
w Denotes Wall
SUPERSCRIPTS
* Denotes Critical State or Maximum Value
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INTRODUCTION

One of the most common problems in engineering concerns the
determination of pressure losses in flow passages, due mainly to viscous
wall friction. The one-dimensional approach to this problem includes
estimating a loss coefficient for the section of the passage under
consideration. This loss coefficient is generally a function of the
friction factor f which is defined in the well known Moody diagram*.‘
The friction factor, in turn, depends on the relative roughness of the
flow passages and the equivalent flow Reynolds number. After the loss
coefficient is obtained one can follow any of the several available

procedures to estimate the total or/and static pressure drops.

Two of the better known pressure loss calculation methods,
those of Shapiro [1]** and Benedict {2], are discussed in the main body
of this study. The presentation emphasizes the main differences and
similarities in the derivation of the two approaches. An attempt is
‘made to evolve an alternative procedure which combines both methods and

adapts them to the particular needs of aerodynamics flow loss estimationm.

All three above mentioned methods consider compressible sub-
sonic flows with friction. The following are the underlying assumptions
common to the three flow analyses.

1) The flow under consideration is steady and one-dimensional,

i.e. all fluid properties are uniform over any cross-section of the duct.

* gee Appendix A-2
** denotes Reference



(i1) No externmal work is AOne by the flow during the flow
process.
(ii1) Differences in elevation produce negligible changes
compared with frictional effects.
(iv) The analysis is restricted to perfect gases, l.e. a
perfect gas obeys the following two equations:
pv = RgT
Y = constant -

where

p denotes pressure

v denotes specific volume

Rg denotes gas constant

T denotes temperature

y denotes specific heat ratio

W) Within any cross-section of the flow passage the various

fluid properties are related isentropically. Flow between any two
calculation planes, e.g. inlet and exit of duct, is adiabatic with

friction.

Chapter 1 of the present study gives a brief description of
Shapiro's flow loss calculation method for constant-area flow passages.
Shapiro's loss coefficient and pressure correlations are expressed

in terms of the inlet and critical (=1.0) Mach numbers.

The method of Benedict, outlined in Chapter 2, is allegedly
valid fof both constant and variable-area duct flows. The two principal
features of the method are:

a) The loss coefficient, expressed in terms of parameters
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Ry» Rp and the 'total flow number"atl at inlet. Parameters Rj, R,
and % ] are defined as
Ry = ratio of static to total pressure at inlet of flow passage
Rg = ratio of static pressure at exit to total pressure at inlet
of flow passage
'eotal flow number', ogy = Wat@tve,/? - v VRelpyTE
Apel 8 Aptl
The derivation of the loss coefficient relationship is based on the

assumption that the flow passage is of constant area.

b) The Generalized Compressible Flow'Function, Ty, which
may be defined as the ratio of the 'total flow number' at any arbitrary
state to the critical 'total flow number'. The variable-area aspect ié
treated as an isentropic change of the I'-function.

The combination of the two mentioned concepts forms the workings of

Benedict's method.

Chapter 3 presents a discussion of the differences as well as

the similarities of the two mentioned methods.

The Alternative pressure loss calculation approach, described
in Chapter 4, follows Shapiro's line of analysis up to the point of
establishing the final working equations. The resultant working equations
are then expressed in terms of the inlet and exit Mach numbers. The
variable-area case is handled by utilizing the expressions for total
and static flow numbers at two arbitrary duct cross-sections. The
'static flow number' @, may be defined similarly to the 'total flow

number' @, mentioned earlier as



static flow number,us =X kRilg)AI;
s

By expressing ag and ap in terms of Mach number one can write that

Pt2 = A1 %¢1
Prl A2 o¢2

fn My, My, A1/A2)

P52 - Al %s1
Pg1 A2 ®s2

vwhere
subscripts 1 and 2 indicate inlet and exit of flow passage respectively
Pr2/Py1 is the total pressure ratio for flow passage
Ps2/ps] is the static pressure ratio for flow passage

A;/A, is the area ratio for flow passage

Following the Conclusions of this study, Appendixes A, B and
C. present details and/or auxiliary information pertaining to Shapiro's,

Benedict's and the Alternative methods respectively.



Chapter 1 THE METHOD OF SHAPIRO

The constant-area flow loss calculation method of Shapiro is
described in Chapter 6 of Reference 1. The entire analysis is carried
out in differential form employing the infinitesimal control volume
flow model of Fig. 1-1.

control surface

'/, ‘ VINIINZNIIZIINIIININI V4
Azazgau%ggéeg______uj p + dp (static pressure)
T ' \v/, | T+ dT (static temperature)
X v | I V + dv (velocity)
P Il o+ dp (density)
M oC_ "ﬁ%‘ 1 M+ daM (Mach number)
. .

\\—tw (shearing stress)

FIG. 1-1 INFINITESIMAL CONTROL VOLUME

je——dx

1.1 Basic Equations and Definitions

The following is a summary of the basic equations used by
Sﬁapiro in his derivation of the calculation method.
Perfect Gas Law Equation
P = PRGT @i-1)
Definition of Mach number
M2 = V2/yRgT (1-2)

Steady Flow Energy Equation

CpdT + d (_Z‘Lz) =0 (1-3)

Continuity Equation

W/A=pV (1-4)
Momentum Equation

-Adp - AtwdAw = wdV @a-5)
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where A is the cross-sectional area of passage and dAw is the wetted

wall area over which the shearing stress ty acts.

The friction factor* and hydraulic diameter are defined

respectively as follows:

- wall shearing stress
dynamic head

fr

=3 tW (1‘6 )

pVZ/2

fr is also called the Fanning friction factor

D = 4 x (cross-sectional area)
wetted perimeter

dAwla = Ygandx -7

1.2 Main Differential Equations

Applying logarithmic differentiation to relations (-1, (@1-2)
and (1-4), and by modifying equation (1-3), Shapiro arrives at the

following convenient expressions:

dp =dp +dT (1-8)
p o T

dM? = dv2 - 4T -9)
M V¥ T

dp+1d¥ =0 | (1-10)
p 2 V7

dT + y-1,,dv2 = 0 (1-11)
T 2 V2

A subsequent éubstitution of equations (1-1), (1-2), (1-4), (1-6) and

(1~7) into the Momentum expression (1-5) results in

2
dp 4+ M° e dx | My aqv _ (1-12)
- p 2 4fF D +'——2 TV 0

* see Appendix A-1
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Another useful relationship is obtained by logarithmically different-

: - X
iating both sides of the isentropic expression py/p = (1 + xile)Y'l .

This gives
' dpy = dp + _ yM2/2 dM? (1-13)
p 1 +Y-1 M4 M¢
Po P =5

Relationships (1-8) to (1-13) make up the basic differential equations

of the method.

Next, the loss coefficient Angg_is selected as the independent
D
variable. Employing the algebraic procedure of elimination, Shapiro
manipulates equations (1-8) to (1-13) to obtain the following essential

differential equations:

1_1 0
d? = 1 + 2 MB). M2 - (1-14)
Mz 1 - M2 Fg—x
dp = -_yM?[1 + (y-1)M?] (1-15)
P 2(1-M?) z’ff‘?—
dRQ = -YM2 lodex (1-16)
Po 2 D

Equations (1-14) to (1-16) form the backbone of Shapiro's constant-area
flow method. They express the effect of friction upon flow Mach number
and pressure. A cursory analysis of these expressions reveals that in
an adiabatic flow with friction (for M < 1) both static and stagnation
pressures decrease, whereas the Mach number and, hence, velocity increase

in the direction of flow.

1.3 VWorking Formulas

In order to develop the necessary working expressions for the
method, Shapiro chooses M2 as the independent variable. Equations

(1-14) to (1-16) then take the following forms:

4fpdx = 1-M a2 (1-17)
D yMY (L +y=1M%)
2
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_dp=_ 1+ (- o (1-18)
p M2 +y=li?) M
2
dpy = 1 = M? 2 (1-19)
- daM
Po 2(1 +-Y—;—1-M2)
A Subsequent integration of these equations between the limits specified
below,
Variable integration limits
M2 M2 and 1
x 0 and Lnax
P p and p¥
Po Po and po*
yields
4EpLmax = 1=M2 + y+l ln[ _ (r+1)M? (1-20)
D YM< 2Y lz (1 +Y-1 M9) '
2
where
_ KLmax
f.o= 1 fodx
F Lmax Jo F

Lyax 1s the constant—area duct length at the end of which the

flow is choked

=1 y+1 412 @-21)
P* H 20 +Y-1L W)
2. .
Pa =1 (2 +7Z¥)19G-D) (1-22)
po* M y+1

The parameters marked with an asterisk in the above relationships
represent values at the critical state. The above equations are applic-
able for ducts of any length irrespective whether the flow reaches a
critical condition at the exit of the duct or not. In the latter
case the problem is treated by considering an imaginary duct extension
where the flow is choked at the exit.

Expressions (1-20) to (1-22) are the working formulas of
Shapiro's constant-area flow method. They are represented in tabular
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and graphical forms in Table I-1 and Fig. 1-2 respectively.

For practical applications the change in loss coefficient

and the pressure ratios between planes 1 and 2 of a flow channel may be

obtained thus:

4fgL =

L (df}Lgax)M - (4E%Lmax) (1-23)
1 D M,

Py (p7p*)M1 - (1-24)

Poz (Po/Pg)y,

— -2 (1-25)

Po1 (py/ pS)Ml

Appendix A-2 presents a worked example to illustrate the use of Fig. 1-2
and equations (1-23) to (1-25).



TABLE I-1
DATA FOR SHAPIRO'S METHOD

Perfect Gas, Y = 1.4

M p/p* Po/Pp bE Lo/ D
0.00 - - -
.05 21.903 11.5914 280.02
.10 10.9435 5.8218 66.922
.15 7.2866 3.9103 27.932
.20 5.4555 2.9635 14.533
.25 4.3546 2.4027 8.4834
.30 3.6190 2.0351 5.2992
.35 3.0922 1.7780 3.4525
40 2.6958 1.5901 2.3085
.45 2.3865 1.4486 1.5664
.50 2.1381 1.3399 1.06908
.55 1.9341 1.2549 .72803
.60 1.7634 1.1882 .49081
.65 1.6183 1.1356 .32460
.70 1.4934 1.09436 +20814
.75 1.3848 1.06242 .12728
.80 1.2892 1.03823 .07229
.85 1.2047 1.02067 .03632
.90 1.12913 1.00887 .014513
.95 1.06129 1.00215 .003280
1.00 1.00000 1.00000 0
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Chapter 2 THE METHOD OF BENEDICT

The method of pressure loss calculation as developed by
Benedict is outlined in References 2 and 3. The part of the method
presented below is limited to compressible fluid flows in the sub-—

sonic range.

2.1 Basic Equations

The following is a list of basic equations used to derive the
method:
General Energy equation [4]
6Q + W = du + pdv + vdp + yg!_+ dz (2-1)
First Law of Thermodynamics, corollary (4],
8Q + &F = du + pdv (2-2)
where SF is frictional head loss
Darcy - Weisbach Equation for frictional head loss

§F =  dx V2 (2-3)
D 2g

where V is the average velocity of flow. This expression is used here
as a definition of the friction factor f(=4ff)*
Continuity Equation
W/At = AV/v (2-4)
where W/At is the mass rate of flow
Isentropic Gas Law relationship
pvY = c. = constant (2-5)
Perfect Gas Law Equation

p/o = RgT (2-6)

* see Appendix A-1
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2.2 Loss Coefficient Relationship

The loss coefficient is defined by Benedict as
K= nggg
D
The derivation of K relation to other flow parameters is carried out

by considering a flow passage of uniform cross-section.

First, equations (2-1) and (2-2) are combined to give

6F = =vdp - vdv (2-7)
g

Subsequently, relationship (2-5) is introduced into (2-7) and the
resultant expression integrated between the static and stagnation states

at a point (SF = 0), producing

V2 = 2gy(pve - PV) (2-8)
-1

A further combination of the preceding equation with the continuity
relation (2-4) results in

Va 2(gpeve /2 {2-9)
[.R + 2(1-1)] + R
a Y o

'T

where
R= p/ptl’ a variable, a function of static pressure only
(for a given inlet total pressure p¢p)-

apq = W/AL (pev )1/2
tl tVt i
el B , 'total flow number' at inlet, a constant

for given area and pyj
P¢Ve = Rth, a constant for the adiabatic case
Equation (2-9) concludes the first step in the derivation. In the next
step, the joint manipulation of expressions (2-3), (2-4) and (2-6) glves

dk =_8F = - 2gApgy gp - 2dV

————

v/ 2¢ w/ae Vv v
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Substituting expression (2~9) into the above relationship and integrating
[7] the resultant equation, one obtains an expression for the loss

coefficient in the following form:

1

2 -
K,.lB_[32+2(Y1)]1/211+ %_5 | -
2 Gl Ct1 Y 2 atl 2
' 1
Y or [;gl+ Y ey '2

In the above expression the friction factor f is assumed to be either

independent of L or to have an average value over the duct length L.

2.3 Generalized Compressible Flow Function {3]

The Generalized Compressible Flow Function is the chief
innovation of Benedict's method. To derive its characteristic relation-

ship, equations (2-4), (2-5) and (2-8) are rearranged to the following

forms:
PVA = constant (2-11)
p=rppp T (2-12)
Pt
Ve {25 Pe/oepsp )1 M2 (2-13)

Furthermore, introducing relations (2-12), (2-13) and (2-6) into (2-11),

Benedict obtains a new expression for continuity:

y-1 1/2

/zptA [»gZ ]I/Yll'(P/Pt) Y ] = constant

(Rth)-l

which after subsequent generalization becomes

| -1
(T Te) Y 2 (be1/0) (A /A9) (o1 /) MY 1= oy 1) T 1Y/ %)

N
®y/oed Y11=y /0, )Y 1H2 (o4

- 14 -



Considering now expression

. 'Y"]-
P =/ MY [1-(p/p) ¥ 1Y2

one can determine from equation (2-14) that maximum P occurs when

9 v/ (y-1) ]
%t = I755] (v # 1)

which is the familiar relation of p/p, at the critical state, p*/p *.

At the critical condition

1/(y-1
Px = (2/(y+1) /Gr1) [ (v=1)/(y+1) ]1/2

Henceforth, Benedict proceeds to define a Generalized Compressible Flow

Function as

Ir = P/P*
: 1/ 2l .
_ /o )Y =(p/p ) Y 11/2
= [(,"ﬁhz (+1) V7 ‘Y*ﬂl&[ ‘(R‘y-ﬁ“‘—*l) (y+1) /2 (2-15)

where ' varies between 0 and 1 for any flow process. A transformed

continuity equatiom, (2-14), may hence be stated as

1/2
Ty = T[T/ T)

(Pey/Pep) (81/49)] (2-16)
An alternative definition of I' [5] may be obtained by defining the total

flow number as

¢

(W/AL) /2
DA (Rth/g)
t

y-1
= {[2v/ -)/p )Y 1-G/p,) T 13172 (2-17)
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The critical total flow number is then

: 2
ap = [ 2v/ (=1 [2/ (41 ITT (y=1)/ (y41) 1L/

Hence,

' = at/a:
- 1/ v-1 1/
_ o/p )Y 11-(p/o) ¥ 1172

= [T LY 7= (y=1)/ (v+1) 1172 (2-18)

The preceding equation and expression (2-15) are identical.

2.4 Pressure Loss Calculation Procedure

Al A
Pt P22
flow R el S
direction p
2
Py .
i \
! |
1 2

FIG. 2-1 FLOW MODEL

Referring to Fig. 2-1, the entire total pressure loss calculation
procedure may be divided into four steps:

Ai) In the first step Benedict [2,3] handles the effect of
area varlation by representing it as an isentropic change of state. The
change is from a given initial state, corresponding to initial area,
to a new initial state, corresponding to final area. From equation

(2-16) it follows that

] o= T(a /A

where Fi corresponds to the new initial state. From the area-modified

- 16 -



initial state calculation then proceeds via a constant-area flow

process. The 'modified duct' is shown in broken lines in Fig. 2-1.

ii) Utilizing equation (2-17) to express the total flow

number a¢j in terms of Rj,
2 ks
aq = {[Zyl(y-l)lRl,Y[l-RIYFj}1/2 (2-19)
Equations (2-10) and (2-19) are then solved* [2] simultaneously to
yield"‘t2 as a function of the initial conditions, Ry and K.
iii) Having foundcztz one can thus obtain Ty from
Ty= «a / o
iv) Henceforth, from equation (2-16) it follows that
L
Ty =T (Pr1/pey)
or
- - 1
Bpy = pyqy (Ty)-T31)/Ty

The tabulated data and graph pertaining to Benedict's method
are presented in Table II-1 and Fig. 2-2 respectively. A worked example

on the use of the Table and graph is included in Appendix B-2.

*See Appendix B-1 for a possible solution
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TABLE II-1

DATA TFOR BLNEDICT'S METHOD

GENERALIZED FANNO FLOW TABLE

(Ye2n, a®e 68473 )

EXIT STATIC PRESSURE TO INLET TOTAL PRESSURE (92/7‘1). AND INLET TOTAL PRESSURE TO EXIT TOTAL PRESSURE

Teis fach Temp TRlow Mlow (Pgy/P,,) VERSUS LOSS COEFFICIENT (K OR f1/D)

P W, 1T, O v 1 .2 .5 .6 1’ 2 4 6 10 2 xe
599 03 toco oWT o6 980 B0 o0 ooBi  osk0 99700 999 g9a  oess) oTers 493.5268
-9 a2 997 .07 R 1'362877 1Zg§82;3 Jfgggs ::??333 ngggg ss.38177
S8 .m0 g L1978 V3 1059M8  1litn3 1ot 2.3ik3  av.omese
97 .09 ,991 .2810 1225-3'3 1123331 geEeH 16 13.09545
96 .22 088 .z167 1053 1590  1lpn  1ltssas 9.17812

23368 .83216 41 48260
95 .72 985 .3076 1.05838  1.126k8  1.31988  1.72254 6.87217
98 .99 .982 .33 1305 101587 1liea 5.36486
93 3% 919 3599 U367 1sedl el 2.30508
o2 W g6 e v 2 . 353348
91 370 973 .48033 1.11365 1020603 2.94285
S g0 Laz Vit 1308 (e et RR, R B | easeso
89 Bl 567 Laads et 1 S e A Maen | 211056
88 831 .g6a  .asT3 e 66 .79 .885  .6579 .96079 | 1.80925
87 451 (962 a3 1_?3%1 .68 825 .880 6656 .97199 | 1.56034
.86 .63 .98 .u879 LaE .62 855 .872 619 .sB123 | 1.35213
.85 - .487 955 .5018 1:320; .60 .886 .B64 6769 .98859 | 1.17618
B2 505 951 .sug Laee .58 .18 856 .6807 .5ou0s | 1.02621
.83 523 948 S2Th .56 949 847 .6832 .99778 .897ur
82 500 a5 L5391 54 981 838 6815 .99970 |  .78610
81 557 .982 .5%02 .52828 1.00 .83333 68473 1.00 .58537
B0 578,938 L5607 .B18B0 3102437 1l031a3 1.31738  1.31743 52 1.013 .83 .6346 .59985 | .6cusL
9 5% 935 .5T06 L8330 yodeve  1lein 1135l .50 1.086 .80 .6835 .39B25 | .53CE6
78 .67 .93 L5800 .BaTOl  gdebsr 1SR 303Y A8 1080 LBl 6812 99490 | .u6572
T 623 .92 5888 85997 10aha3 1 3ol 1l1ieda A6 1118 801 L6777 .98973 | 40825
76 639 925 .5972  .B1222 1103008 1 Siese M L1509 670 .98201 | L3s7M2
75 ese 921 .6os2 .88y 453303 4053952 A2 185 780 L6671 .o7h2k | 3123
4 670 .19 L6126  .85u69 l;gghgg It R — A0 1.223 .70 6599  .36375 | .z7au3
T3 .68 9w 617 Lgoagr  -SOBEEBISTH S CoFFICISNT IS TABULaTEp | 38 1.262 (758 L6518 o513 | .23692
g2 .01 910 6263 .omes i S3g -3B1% :g’z;b;,:::;: PIOURE AND P, /Pep 36 1.302 .47 L6417 L9372 | 20536
1M .07 633 .9 g Saeol EXAMPLE: ) 36 1,384 .735 L6306 .92088 | .1773L
61361 AT Py/Pyy= 8O M = .574,T/Ty= 938,
70 732 903 L6283 .93222 ) 04275 @) = .5607, I} = .81880, X* = .50431, .32 1.387 .122 .6180 .90298 .15237
.69 .88 899 .6838 94016 1;322%2 AND AT K = .8 Po/P,; = 64437 .13023
68 163 .896 .6ABB 9476 1 'onges VHILE Py /Py, = 1.11718 .11059
NOTE: 1. K* is the value of K evaluated between
the passage entry plane 1 (see Fig.2-1)
and the critical condition.
2. The values of % are the same as o<,

in the text.
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isentropic flow solutions;

2. the above graph is for a constant-
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3. 'locus of maximum flow' line separates
the subsonic and supersonic regimes.

FIG. 2—2 BENEDICT'S METHOD GRAPH
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Chapter 3 COMPARISON OF SHAPIRO'S
AND BENEDICT'S METHOD'S

3.1 Correlation of Loss Coefficients

i) Modification of Benedict's expression for K

Considering equation (2-10)

= 1R [_ 2(y-1) ] 1/2|1 + LR | -
2 o¢1 “tl Y 2 2 acq'2
1
Y+11 {[ Z(Y 1)]1/2+ E__}IZ (2-10)
tl Y “e1

one recalls that

o . = WAt peve 172 _ w/RgTi/g
tl Aptl[ ] Apgy

R = p/py

Hence, one can write

Rfagy = (M/agy) R = [ Aper/w/ReTi/g ] p/pyy

or

(3-1)
R/agy = 1/w/ReT /g /Apg = 1/a,

Subsequent substitution of (3-1) into equation (2-10) results in K as

a function of one variable, the static flow number @ :

} ) L
1,1 2(y- 1) .1/2 I +1
ke il 2001, o |-
2ag Eg v 2 2as 2
1/2
y+1, l/aq]+[1/ac1+ 2(y=-1)/v] (3-2)

AV W Sy Y D Y M R
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ii) Modification of Shapiro's Expression

for Loss Coefficient

Considering equation (1-14)

2 2 2
dM™ O OME14M4 (y-1)/2] dx
MZ ¥ [ 1-M? 4fp 3= (1-14)
denote .
- dx - dx . dx
m = M2

Then equation (1-14) becomes

dm . ym[l+ m(y-1)/2]
m l-m

dK

or after some rearrangement,

= l-m
R (Yo y5)

Integrating now both sides of the above equation results in

2 M2
K= |- %ﬁz + Yo 180 O-1)/2 <;;-1>/2 1172 4 |2

Y ) (3-3)
M1
From the isentropic relationship for ag one can write that
ag = YM2(1+ Mz[y—I]/Z)
which after some algebraic transformation gives
2 -2 B
M =/ -7 4 202/ [y(v-1)] - 1/ (y-1) (3-4)
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A subsequent combination of equations (3-3) and (3-4) produces

- a
K= | 3+ (v+ 1)/ (2y)1n(b) oy
8

where
1

1 1 2ag ]1/2
G-D T2y aeDy

m|
n
< |-

-1 205 172 _ 1
ol [((Y1)2+(Y1)) 1

1 2ag 1/2 1
o2 * YGooD)!

ol

' 2
Part @ is then multiplied and divided by the term [.___ + 20g 1/2
= [i D ¥ G

The transformed a becomes

= 11, 2(y-1)41/2 1 -
— + - ] +ﬁ-§- (3-6)

1
Similarly, multiplying and dividing b by the term {[(Y-l) _zi:—) 1/2 + A

gives, after some algebraic rearrangement and simplification,
B om My e 22 1 G-7)

.

Since K=a + I%%.ln(ﬁ) » a combination of equations (3-6) and (3-7)

results in the following new expression for K.

- 11 2_<_Y:._1_)_1/2‘ +1 -
KegagraZ ¥ =7 10|, T,
b S 1/agy+[1/a2 1+ 2(Y~1)/Y]1/2 } (3-8)

y " ..1/a52+[1/a§2+ 2(y-1)/y11/°
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A comparison of relations (3-2) and (3-8) reveals them to be identical,

proving that both Shapiro's and Benedict's 1loss coefficients are the

same,

3.2 Other Differences and Similarities

Considering Shapiro's expressions (1-23) and (1-25) for total

pressure one can deduce that

2 +1
P Y- 2
02 _ My 1+ (D2 1AL
Poy | Mo L+ (rLM/2 126m1) (3-9)

As for Benedict's case, a combination of equatiohs (2-16) and

(2-18), when Tep E'Ttl and Ay = A,, gives

ptzlptl = O‘tl/mtz

Utilizing the well known isentropic expression for @

t
a HLIrB&/E
t Apy
L
= 11+ (Y_1§}.12[2]\Y+1)/(Y'1)/2
one can express pt2/pt1 as
: 2 y +1
M 1 + (Y-I)M2/2 2 (ve -10
P,/Pey = Mz[ T DM/ ] (y-1) (3-10)

Since equations (3-9) and (3-10) are identical, one concludes that the
total pressure ratios for both methods are the same. Similar reasoning

can be applied to the static pressures.
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The preceding conclusions prove that both Shapiro's and Benedict's
pressure loss calculation procedures are quantitatively identical for the

constant-area flow case.

Considering now the qualitative merits of the two methods it may

be worthwhile to note the following.

.a) From overall considerations, Shapiro's approach éppears
to have more unity, as a whole, and a greater generality. This is mainly
due to the use of Mach number as the common parameter. This fact also
makes Shapiro's approach simpler to derive and understand; as opposed
to Benedict's.

The TI~function in Benedict's approach does not play the

same unifying or other role as does the Mach number in Shapiro's case.
Since values of the total flow number ap are generally available from
aerodynamics and other tables, the I~function concept may be considered

as redundant for the present type of flow analysis.

b) A comparison of Tables I~1 and II-1 reveals Benedict's
tabulated parameters to be more applicable for solving duct pressure
loss problems. This is especially true for 'non-choked' passage flows
where Benedict's parameters ptlpcl' PZ/Ptl’ Ptllptz and K are more to
the point than Shapiro's p/p*, py/po* and 4fpLlmax/D. The vorked

examples in Appendixes A and B give ample evidence to this effect.

c) If both methods are considered for analysis by computer,
it may be conjectured that Shapiro's method would be easier and more
straightforward to use for that purpose. Referring to section 2.3 of

this write—up,'step 1i) in Benedict's method would probably involve some
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iteration which is an added complication to the method.’

d) An added advantage of Benedict's method over Shapiro's
is its adaptability for approximate variable-area flow loss calculation.
The Alternative method described in Chapter 4 demonstrates how Shapiro's

approach can be utilized for that purpose.
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Chapter 4 ALTERNATIVE LOSS CALCULATION METHOD

4.1 Definition of Loss Coefficient

Based on equations (1-20) and (3-2), two auxiliary expressions

for the loss coefficient K are derived as follows.

"a) K Relationship in Terms of M; and M

Consider equation (3-3), which if evaluated between

the indicated limits gives

2 2
JLMomMyH M3 (1+[y-11M%/2) ) (4-1)
Y MiM2 o 2y MZ (1+[y-11M3/2)

Expression (4-1) is a more general version of Shapiro's loss coefficient.
Putting My to 1 in equation (4-1) results in Shapiro's form of the

loss coefficient, (1-20).

b) Approximated K Coefficient

Evaluating equation (3-2) between the stated limits one

obtains

X1 Xy ), X

-1

-z—dsl - Zasz - Y X2
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where

1/2
+ 1/asl

X, = [Mal; + 2(-1)/¥]

2

By further algebraic manipulation the ratio Xj can be simplified to

X
1 1 2(y-1) ,1/2
X & - + =22
il' = gsz___J_%gz, " Y : ] -
2 = =-[= + 2(y=1) 172
%s1 %s1 Y ]

Hencéforth, consider the series expansion of the term (1/a:+ 2[y_1]/Y)1/2_
2 /2 _ -1 3
[ogt 2(-1)/¥17"" = ag™+ o (v-1)/y=al(y-1)/(2y) + ***

Since for subsonic flows @ < 1, the preceding series is a rapidly
converging one. Hence, substituting the first two terms of the above
series expansion into equation (4-2) results in the following approx-

imation of K coefficient.

= 2. . 2 _YH -
K, llas1 1/02, y ln[asz/asll (4-3)*

4.2 Derivation of Pressure Correlations

The development of useful pressure correlations presented in
this subsection follows mainly along the lines of Shapiro's approach.
All pressure correlations are derived as functions of Mach number, at

the inlet and exit of a passage.

. * See Appendix C-2 for error estimation

- 27 -



a) Pressure Ratio Correlations

From equations (1-22) and (1-25), the total pressure

ratio can be expressed as

y+1
12 (v-1) (3-10)

: 2
: M y-1)Mp/2
PealPer = il :

1+ (y-1)M
b TH (P /2

Similarly, by combining expressions (2~21) and (2-24) one obtains

= M1 1Mf(y-1)/2 .1/2 -
Pg2/Ps1 H, ( m%)mj ] 4-4)

Furthermore, the term (1 +-I%lu2)l/2 can be represented as a series

expansion

[1+M2(Y'1)/2]1/2 =1+ (Y—l)[M/Z]z- (y-1) [M/z]l‘.‘,. s =

Where, for our case of M < 1, the series converges rapidly. Substit-
uting then the first two terms of the above series expansion into

equation (4-4) results in the following approximation:

W
(Pszfpsl)l = { PZSNEY } ﬁl (4-5)
1+ =y s
4y 2
B) Pressure Difference Correlations

Referring to equations (3-10) and (4-4), one can define

the pressure difference relations as
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bpe/Pyy = 1-pea/peg (4-6)

and

bpg/pgy = 1-pga/p, (4-7)

Dividing both sides of equation (4-6) by the corresponding sides of

equations (4-7) results in

4pt ps1 _ pro/pey -1 (Yz/Yl)(Y+l)/[2(Y 1)1y o1
8Pg Py Pga/pg; -1 T (X /Y2)1/4 M /M -1

where

- 2.
Y=+ Mly-1)/2)
Y, =+ Miy-1]/2)
If, again, both sides of the preceding equation are divided by the

corresponding sides of the generally known isentropic expression

. =Y/ (-1
Pg1/Pey = [1 + Mf(v—l)/2] /=0

one obtains
¥ _ vh /2
8p, /bp_ = —?17——J~5L—4L-— Y,v)1/2 (4-8)
©S Y, Py a2

= (Y+1)/[2(y-1)]

where

Expression (4-8) can be also presented in an approximated simpler form.
This is achieved by substituting for the terms Y¢ and Y1/2 the

first two terms of their series expansions:

Yqs = [1+M2(v-1)/2]¢ z l+M2(y+1)/4 +M4(y+1)(y+3)/32 +

y1/2, [14-142(7_1)/2]1/25 1-!-Mz(‘r-l)/4 -M4(Y-l)/32 4+ e
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The resulting approximation becomes

[_E.t] L Q-[y+H1 MM /4) (14 Y1 ]“ [4) (1+{y-1 ]M /4)

Aps 1 T+(y-1) CLRIM, + 12)/4 (4-9)

At this point it should be reiterated that all the preceding pressure
correlations of this section were derived on the assumption of an
adiabatic (Typ = Tg31), constant-area flow passage. An adaptation,
following Benedict, of the above correlations for a variable-area case

is presented below.

Utilizing the well known expression for the total flow number Oy

a wv Tth/ g
t Apt

S+ (Y-gnﬂ/zl(Yﬁ)/(v-l)/z

one obtains

ag/agy = p:zA Ipeidy
y+1
[ (Y~1)M2/2 ]Z(Yél)
M2 1 + (r-1)My/2

and thus

y+1

~u 1+ (Y—UMZ/- 2(y-1) A 4-10
Pep/Pe1 = MZ[ 1+ (r=145/2 1= )K;- ( )
Since
a = &%&&/_5 = {YM2[1+(y—1)M2/2]}1/2

one can state that
. My . 1ME(y=1)/2 .1/2
agy/agy Ps28a/Pgy Ay = ﬁ%’ L Tmisy-1)/2 1
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Hence,
= M1 o 1RMPA(y-1)/2 1/2A -
‘p§2/p51 M{‘[ 1+n%(v-1)/2 ] K% (4-11)

For the constant-area case relations (4-10) and (4-11) become respectively

identical to expressions (3-10) and (4-4).

Other useful pressure relationships, Ap:/ptlf APS/Psl and apy/APg,
for the variable-area case can be easily derived, if necessary, employing

similar techniques as were used for the case of constant-area flow.

4.3 Working Graphs

To complete the presentation of the Alternative pressure loss
calculation method, working graphs are presented in Figures 4-1 to 4-4
at the end of this section. These are plots of equations (4-1), (3-10),

(4-4), (4-6), (4-7) and (4-8).

If the graphs are to be used for variable~area passages the

following must apply:

1. Instead of p¢) use P2 A
Pel Pe1 Ay
2;. Instead of pg use Ps2 A
= Pe1 AL
3. Instead of APy use 1 - pyody
Pyy Pe14y
4. Instead of Apg use 1 - P50l
Ps1 Pg1
5. Instead of AP¢ use (-peoA,/peiAy) Py
 Apg (1-Pg,82/P5181) Ps1




From the preceding table it appears that for a variable-area case the
use of Fig. 4-4 is too involved for efficient calculation.

The use of the working graphs is illustrated in Appendix C-1
by means of two examples. In passing, it must be stated that the plots
in Figures 4-1 to 4-4 are only a demonstration of the workings of the
Alternative method. In order for the method to become of general use,
more'detailed graphs and tabulated data may be required. These additional
data can be obtained by means of the computer program used in providing
the data for Figures 4-1 to 4-4. The listing of the program is included

in Appendix C-3.

Expressions (4-3), (4-5) and (4-9) comprise the set of simplified
approximations to be used for hand calculations if necessary. Of these,
(pszlpsl), is correct to within 0.5%7 of exact value, (4-4), for Mach
numbers up to 1.0. The (AptﬁAps),is correct to within 1.0% of exact

value, (4-8), for values of M; and My less than 0.4 and 0.6 respectively.
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CONCLUSIONS

The foregoing study consisted primarily of reviewing two'known
pressure loss calculation methods. A third alternative method,
utilizing the advantages of the two other methods, was developed and
presented as part of this study. The main features of the three

methods are as follows.,

1. Numerical accuracy. Since the expressions for the loss

coefficients of the three methods are identical, numerical calculations
by any of the three procedures must be the same for constant-area flow.
This is further substantiated by the three solutions of the same worked

example included separately in Appendixes A, B and C.

2. Generality of Application. As in the case of Shapiro's

approach, the use of Mach number for the common independent variable
gives the Alternative method a greater unity and generality than that

of Benedict for constant—area flow. On the other hand, the Alternative
approach, by virtue of its added capability of handling variable-area
cases, has a wider range of application than Shapiro's method. Further,
for the case of variable area flow, the greater availability from various
technical sources of tabulated o, data, as opposed to I'-function

data, may give the Alternative approach an added advantage over

Benedict's method.

3.  Directness of applications. Comparing the three solutions

of the same example one concludes that Shapiro's solution is the most
involved one of the three. Indeed, if one takes Shapiro's method in

order to calculate the generally needed pressure loss Apg OT Apgs it 1is
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necessary to go first through determining the flow parameters at the
critical state and only then the final conditions can be found. All
this tends to obscure and lengthen the flow loss calculation procedure.
Both Benedict's and the Alternative methods are more direct and explicit

in this respect.

"4, Method versatility. Shapiro's approach is easier to adapt

for computer analysis than Benedict's method. This holds also for the
Alternative approach. One other feature, peculiar only to the
Alternative method, is the derived set of simplified approximations to
be used for hand calculations, whenever neither proper graphs nor tables
are availlable. The approximate expressions include the loss coefficient

Ka, the pressure ratio (pgo/Psi)y,and (8p./Apg)j.
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APPENDIZX 'A

SHAPIRO'S METHOD



APPENDIX A-1

Friction Factor f

The values for the friction factor may be obtained from the gener-
ally known Moody diagram included in this Appendix. The Moody diagram
defines f values for three different flow regimes: the laminar flow,

fully developed ﬁurbulent flow, and flow in the transitional zone.

The frictioh facfor definition for the laminar zone is based on the
Hagen-Poiseuille equation for pipe flow:

£= 64
Re

where Re is the flow Reynolds number referred to the hydraulic diameter
of the flow channel. The transition zone friction factor is defined on
the basis of Colebrooks' equation [61]:

1=-0.8 1In (e/n + 2.51)
f 3.7 Ret

where
€/D is the relative roughness

Re is the Reynolds number, as above

In general it may be stated that for

laminar zone f = fn(Re) only
transition zone " £ = fn(Re;,€/D)
turbulent zone f = fn(€/D) only

The Fanning friction factor, fp, is defined as

fr = £/4
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APPENDIX A-2

Worked example

In a constant cross-sectional passage through which flows air (¥=1.4)
the following is known:
My = .347
pp = 18.4 psia
p2 = 16.4 psia
Pg1/Pey = 0.92

Find the pressure loss and the loss coefficient of the paésage flow.
Solution:

Knowing pl/pol’ Py1 = 20.0 psia.
F¥om Fig. 2=2 one then determines
Po1/Po* = 1.79
pp/p* = 3.12
(4fp Lmax/D); = 3.53
which enables to calculate p2/p*

p2/p* = py . py/pP*
Pl

= 16.4 (3.12) = 2.78
18.4

Subsequently, from Fig. 2-2, for p2/p* = 2,78, it follows that
My = .39
Po2/Po* =1.63
(4fp Lmax/D)z = 2,5



Hence, one can determine PoZ/pol

p02/pol = Po2 ,Pol

DY £ —

Po* po*

1.63/1.79
= 0.91

Thus :

APo a- Pojs /Pol) Po1l

(.09).20
= 1.8 psi
AP = 18.4 - 16.4 = 2.0 psi
4EEL/D = (4fFLtDnax)l - (4fFL$ax)2

= 1.03

I-4



APPENDIX 'B'

BENEDICT'S METHOD



APPENDIX B-1

Pressure loss calculation, step (ii)

One of the possible ways to express dgyas a function of R2 may be

as follows. First, evaluate equation (2-10) so that K expression obtains

the form
YR L 20001/, Ry L LR 1R 22, 20-1) [ /2 -KR+ax=0
Yo % Y %l 2@y Zaogy gy v

where

2 (e
Y"'lln{[&i__’_ 2(y 1)]1/2+ Ry }
Y “t1 Y %t1
Considering v, K, CK to be known, one can solve for R%(u by using any

of the known numerical method procedures.

In order to proceed further it is useful to redefine Rzlatl as

i S R 1
Gy Qg2 W/ At [P_txt]l/z
Ap2 g

where
g2 - is the 'static flow number' which can be expressed as a

function of Mach number as

Gg, =M (1+ M2 [y-1]/2)"/2 (B-1)

Solving then (B-1l) for M, gives
1/2
My -('/ (Y'l)-2 +2°‘§,z/[Y(Y-1)] -1/ (Y‘l)) (8-2)




On the other hand, the total flow number @, at station 2 may be also

defined in terms of MZ as

(T2
(!tzg [1 + (Y-l)ﬂ;’/z] (Y+l)/ (Y-l)./z (B—3)

A furt_her combination of equations (B-2) and (B-3) produces

o = lr(-1)(-1))1/2
t2 [ (H1)/279

.where

A = [1 + 202, (v-1)/yR31Y/2

¢ = (y+1)/[2(y-1)]



APPENDIX B2

Worked example

Consider the adiabatic flow of air (y=1.4, Rg=53.3 g%L)from the
inlet total pressure of 20 psia and an inlet total temperature of
573°R. Find the static and total pressure drops through a constant-
area‘du;t (25 sq. in.) if the flow rate is 5 lb/sec and the loss

.coefficient is 1.

Solution (see Fig. 2-2):

At

ey = W_/_A_t_ (Eﬂt)l/z
Apey g

= 0.3825

obtain from Table II-1

P1/Pgy = 0.92 p; = 18.4 psia
Po/pPy1 = 0.82034 P, = 16.4 psia
Pe1/Pep = 1.09866 Py2 = 18.2 psia

Thus
Py ~ Py = 2.0 psi
Peg ~ Pep ™ 1.8 psi
Considering now Fig. 2-2,
At r

T = afa®

= ,5586



obtain
pllptl = 0.92
p2/pt1 = (0,82
ptllpt2 = 1.099

These values give substantially the same results as the tabular method.
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APPENDIX C-1

Worked examples

Example 1:

In a constant cross—-sectional passage through which flows
air (y=1.4) the following is known:
M1 = 0.347
Pg1 = 18.4 psia
Pgy = 16.4 psia
Find the total pressure loss.
Solution:
From the static pressures:
psZ/psl = 0.891
Hence, from Fig. 4-3 one obtains
M, = 0.39
Going then to Fig. 4-4 gives
Apt/Aps = 0.9 psi
Hence,
Ap, = (0.9) (18.4 - 16.4)

= 1.8 psi

Example 2:

Change the given conditions in Example 1 as follows
Ml = ,347

Pe1 = 20 psia

K= 1.0

Az/Al = ,96

I-9



Find the total and static pressure losses.
Solution:

From Fig. 4-1 one obtains
M, = 0.39

then from Fig. 4-2

Pr2 42 = 0.91
Pl A

Hence,

APy = Pp1 = DPpafy - Pe1/ (A)/4y)
Pe1dy
= 20(1 - 0.91/0.96)

= 1,02 psi

Going now to Fig. 4-5:

Pt1

Hence,
Pg1 = 20 . (0.92) = 18.4 psia
Then from Fig. 4-3:

Pgg Ay =0.891
Ps1 A1
or

APg = 18.4 . (1 - 0.891/.96)

= 1.325 psi
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™1

*DM

*NDM

XK

*XK2

*XKB1
XKA'.
PTR
DPTR

PSR

DPSR

-+ PSR1

DPR

DPR1
*XKINC

EKA
*EK2

*EKB1

EPSR

EDPR1

*EKINC

APPENDIX C-3

COMPUTER PROGRAM CODE

denotes

denotes

denotes

denotes error of

"

denotes error of

"

denotes error of

My
AM=Mp-My
No. of values of Ml

No. of values. of AM

K
Ky
i3

K«

Pe2/Pe1
Pe2/Pey - 1
Ps2/Pg)
Ps2/ps1 - 1
(ps2/pg3)1
Ap./aPg

K' or X"

(Ps2/Pg1)1

(ap./aPg)y

XKINC

* denotes parameters not pertaining to this study.
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COMPUTER LISTING

(3/7U) 90 IVacu=(eaatnAa9) Z (M) wune=(réi)udx
CurnunAs {9+ (M) WU-HwA=3
CuadnWAs 9+ (C)WU+HWA=U

SR (CYWAF (TYTWA=EWA
(®cay9=caa (1) LWA/Z° L) a (OO WU+ (D) TWA) #9) /(M) wUa2) = (M 1) TENX
CCL) LhAZ (Y Wds*E2+° 1) D0TvadD=v= (") eMX

((eaa (1) WAL+ (D) TWA) /(T ) WU 2+ °T) D0 WVa2O=V= ("% 1) 2NX
(J/74) YOTIVady=v=(¢]) IxX
(CCL) LWAR (D) WwQs* L+l (1) LNA) 0 {9+ L) a (L) LwAsD

Ve (MY wGe* 2+ (1T TWwa=g
Cau(l) (WAal9+*l=1Y
(CCIWAsCe (L) TAA) e (1) LNARY) /7 () W0s* 2=V

WON*1=i" 1t 00
LWANSL=] 0E OU
*Yv/(°1(+9)=%9

T T=9775% (*T+9) =EY
9/5% 5 (*1+9)=¢y
S8 (*1=9)=(9

(/7/7777)1VnE04 22
(¢c¢lv)3ligm
(E°01d8 )lvmwgod V<
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v
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NNa 1SYT(001409)uvdy 1 -
(///7//535507 MOTd HEl) LVWHOS 66

(66%19)311YM
(SLCOL)INIASC (SLe0 L) Yudue (5160 1) pHdUI (STe01)EudUds (Gt
1200)cadude(o1¢01) LadU3® (aLe0L)USdI*(STHUTL)aldd(S1¢0T) LuSde (ST¢01¢
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(91¢0 D) HLaUe (SLOVUD) (HdA (SLC0 1) UaUe (2T 00)a5ac(SLe0L)Hid NOISNIWIU
(G160 EMI (ol 0D ENIC(STC0D)HI (D10 D) THIC(SLOUT)IUMNT NOISNIAWIU

(SLCOLIININX® (STOUL)2adU® (510 L) EHd0® (QTC0 LIBMX® (9L TIENX® (1
STOOL)EAX® (STCOL) XX (SISO UMX® (SLoUT)AX® (S TIWA* (0T) ITWA NOLSNIWIQ
$45S071 MO14

2

vHE4IM WYd90Ud
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