NUMERICAL METHQDS FOR SOLVING SCHRODINGER’S EQUATION

MOHAMED TAWHID

A Thesis
m
The Department
of

Mathematics and Statistics

Presented in Partial Fulfillment of Requirements
for the Degree of Master of Science at
Concordia University

Montreal, Quebec, Canada

(©Mohamed Tawhid
November 1995



l*l MNational Library
of Canada

Acquisions and

Bibliotheque natic nale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

45, WEBnOtOn Sl
(ttawa Ontano
F1AONA F1A ONA

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to ieproduce, loan,
distribute or sell copies of
ais/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

195 rue Welhngton
Ottawa (Ontane)

vour e Lot g plerence

Tt et rettrEnLe

L'auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
these. Ni la theése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-18467-6

Canada



Abstract

Numerical methods for solving Schrodinger’s equation

Mohamed Tawhid

Two kinds of numerical problems arising from the Schrodinger
equation are studied: the eigenvalue (or Sturm-Liouville) problem
and the initial value problem (known also as the Cauchy problem).
Algorithms for the Cauchy prolLlem allow the second problem to be
solved numerically by the use (for example) of a shooting procedure.
In other words, the knowledge of algorithms for the Cauchy (sub)
problem is of great importance. Numerical methods for first order
differential equations are surveyed. Schrodinger’s equation is then
broken into a system two first order differential equations which are
solved numerically. The most effective methods chosen by physicists
and numerical analysts for the numerical solution of Schrodinger’s
equation are studied. Two computer programs for this purpose are
developed. The first program treats Schrodinger’s equation as an
initial value problem and is applicable for any symmetric potential.
This program is applied to some specific examples, namely: the har-
monic oscillator, sech-squared and finite square well potentials. In
the second program Schrédinger’s equation is treated as a boundary
value problem, in which case the computer program is applied to the
Woods-Saxon potential. In the calculations of the eigenvalues, the

dependence of the errors on the integration step size is studied.
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Introduction

Many problems in areas of application, such as pollution of the atmosphere,
theoretical chemistry, astrophysics, laser physics, nuclear reaction, etc. reduce to
a system of sccond order ODEs of Schrodinger form. Schrodinger’s equation is the
fundamental equation of nonrelativistic quantum mechanics which involves ordinary
differential equations of second order in which the first derivative does not appear
cxplicitly. Its importance for physicists is obvious and for numerical analysts it is
often taken as an eloquent test equation for the comparison of the quality of various
numerical approaches [1-5]. Therefore many authors have given intense interest to

it over many years. The time-independent radial Schrodinger equation is

o= 10ty = 0, 1) = utr) - B,

dr

u(r) = (2-’3) [V(r)+ M] E= (%?) ., (0.1)

h? r?
where k is the Planck’s constant, € is the particle energy and m is the mass of the
particle in the potential V(r) [6-8]. It is important to note that the one-dimensional
Schrodinger equation can be obtained by putting £ = —1 in Eq.(0.1). For a few
limited forms of simple potentials energy functions the one-dimensional Schrédinger
equation can be solved analytically [9-12]. However, in most cases one would use

numerical methods or some rough approximations.



Numerical methods for obtaiming bound-state solutions of the one-dimensional
Schrédinger equation may be classitied broadly into two types: numencal mtegra-
tion (shooting methods) [13--21] and matrix methods [22-30].

In general, numerical integration of small sets of coupled equations has be-
come feasible on microcomputers [17]. The solution of large sets remains a time-
consuming, expensive and difficult operation. 1t is of considerable interest to find
the most efficient method. However, for many applications solutions are often not
required to be of very high accuracy and it is possible 1o design or accept methods
that work very quickly for low accuracy, although they may lose their advantages
for higher accuracy [77].

The integration process may start from both ends of the interval of integra-
tion with matched slopes at the meeting point, as Cooley [13] has done in solving
Schrddinger’s equation numerically. The eigenvalue was found by extrapolation or
by successive trials. This method was discussed further and extended [14 -15]. Inte-
gration may start at a point inside the interval and go in two opposite directions as
was done by Hajj at el [16). Hajj [17] found the eigenvalue by using only outward
integration, this method has been discussed by Killingbeck [31-36).

Because Eq.(0.1) has been studied so extensively, many numerical methods
have been proposed for its solution. Two of these methods are very popular, namely
those of Numerov and De Vogelaer. Numerov’s method is the optimal linear two
step method [37]. Although Numerov’s method is only of order 4, it has been found
in practice to be often superior to higher order methods. However, Cash at el {38]
have suggested a class of Runge-Kutta methods for numerical integration with a
fixed step length which are superior to Numerov’s method. For the error analysis
of these methods see Ref. [39]. Raptis at el [40] developed a two-step method to

approximate the solution of Schrodinger’s equation via exponential functions.



Other authors have extended the work of Raptis at el and reported improved algo-
rithms for the solution of the Schrodinger equation [41-15].

De Vogelaere’s method enjoys wide popularity among physicists who are inter-
ested in solving the Schrodinger equation [46-50], because of its simple initialization
as well as flexibility in allowing changes in stepsize during the integration.

For the discussion of the error analysis for De Vogelaere's method see [51-52].
Chandra [53] has published a computer program utilizing De Vogelaere’s method to
solve the differential equations arising in a close-coupling formulation of quantum
mechanical scattering problems. Chandra’s program makes no attempt to monitor
the local truncation error and leaves the choice of the initial step length to the user.
Coleman at el [54] also published a computer program using De Vogelaere’s method
to solve the single-channel Schrodinger equation for the scattering of an electron by
the static potential of atomic hydrogen for specific energy and angular momentum.
Their program automatically chooses the step-lengths in accordance with a local
accuracy criterion supplied by the user.

A noniterative method for solving the one-dimensional eigenvalue problem was
devised by Truhlar [25]. The method is based on treating the problem as a boundary
value problem. For the application of this method to multidimensional eigenvalue
problems see Refs. [55-57].

The contribution of physicists has also stimulated the introduction of numeri-
cal methods to problems originating in various branches of mathematical physics;
specifically, perturbation theory and the method of potential envelopes. The method
of potential envelopes gives us simple formulae for bounds to the eigenvalues [58-61]

and has had applications to a variety of physical problems [61-68].
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Perturbation theory was thought of for a long time as an efficient tool to desenbe
physical phenomena in terms of analytic formulae thus postponing (or avoiding at
least) a numerical approach. The complementary attitude, is to use perturbation
theory as the very tool for computation itself [69-87].

Gordon [77] developed very efficient algorithms for the solution of Eq.(0.1).
Since then, important progress has been made on their algorithms [70,76,78,79],
and several problems of quantum mechanics and mathematical physics were solved
[69,72,80,81]. Gordon [77] was the first to exploit perturbation theory in order to
improve the solution furnished by this approach.

A perturbative numerical method (PNM) is suggested in each of the Refs.
[70,74,77-79] . Two classes of PNM were examined. To distinguish between them,
we shall note that the perturbative series giving y(r) and y'(r) are uniquely deter-
mined by the choice of the approximating function. Thus PNM in Refs. |71,78]
utilizes step functions PNM [SF-PNM|, while in Refs. {77,79] piccewise continuous
linear functions PNM [PCLF-PNM)] are used. Comparisons have been reported (for
scattering problems) between an SF-PNM and the well-known Numerov method
[78], as well as between the PCLF-PNM of Gordon and the same Numerov method
[37]. The authors of these studies conclude that, in general, the Numerov method
would be preferable to PNM. Adam at el [82] derived an improved SF-PN algo-
rithm via first order perturbation theory, then compared these algorithms with the
Numerov’s method and concluded that this algorithm in the region of very small
stepsize shows stability of the computed eigenvalues against round off error (in
contrast with the instability of Numerov’s method).

Our objective in this thesis is to study numerical methods for solving Schrodinger’s

equation. We organize our thesis as follows:
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In Chapter I we review some basic ideas such as the difference approximation in
which one uses a computer to transform a differential equation into recurrence re-
lations or matrix calculations. In Chapter II we discuss some numerical methods
for rolving the initial value problem. We also show how a boundary value problem
like (Schrédinger’s equation) can be reduced to a sequence of initial value problems,
which (in turn) are amenable to the numerical techniques studied previously. We
further examine the extrapolation technique for increasing the accuracy of approxi-
mate solutions and we apply this to study the truncation error arising from various
numerical methods.

In Chapter III we investigate how Schrodinger’s equation is considered both as a
IVP and as a BVP. We briefly examine the most popular numerical methods such
as Numerov’s method and de Vogelaere’s method. We also describe some specific
contributions of mathematical physics such as the method of potential envelopes
and perturbatio;‘theory. In Chapter IV we develop some computer programs to
treat Schrodinger's equation numerically, first as a IVP and second as a BVP. In
both cases we give some examples to examine the efficiency of the programs. We
give as a result some tables to indicate the efficiency of the programs and highlight
the importance of choosing the appropriate step size. The relationship between
the error in the final eigenvalue approximation and the local integration error is

explored and some useful rules of thumb are proposed.



Chapter I

Preliminaries

In this chapter we shall review some basic facts concerning ordinary differential
equation (ODEs), that will be useful later. In Section I.1 we describe what is the
initial value problem (IVP) for first-order ODE as well as for a system of n ODEs
of first order. This will guide us in treating Schrodinger’s equation numerically by
breaking it into two first order ODEs. In Section 1.2 we show how the boundary
value problem (BVP) can be reduced to a sequence of initial value problems. In
other words, we can apply the nuraerical techniques of solving initial value prob-
lems to solve boundary value problems. In Section I.3 we mention a difference
approximation which represents a way to translate problems of calculus into dis-
crete numerical ones which the computer can handle. Difference approximations
help us to derive multi-step methods and to study the error arising from numerical

methods.

I.1. Generalities and Definitions

The equation

y' = f(z,9) (1.1)

is called an ordinary differential equation of the first order, where f(z,y) is a real
valued function of two variables defined for all real y and real z € [a,b]. If any

real valued differentiable function y(z) satisfies Eq.(1.1) for z € [a,b] then we say
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y(z) is solution. This solution in general is not unique, one of the reasons being
the arbitrariness of the constant of integration. if we want to make this solution
unique in terms of the constant of integration, then we must impose a condition on

the solution to make it assume value yp at a particular point 7 € [a, b}, namely

y(7) = wo. (1.2)

Eq.(I.1) and Eq.(1.2) are called an initial value (or Cauchy) problem I'VP, Eq.(I.2)
is called an initzal condition and yp is the initial value of y.
For practical reasons we will take 7 as the left-hand end of the domain of the

equation - i.e. ¥ = a; thus Eq.(I1.2) becomes

y(a) = yo. (1.3)

Our interest is in a system of first-order differential equations, especially a couple
of first-order ODEs. The system is formulated as follows.

Consider

1

v = 'z, 9%, 9%, y") (1<i<n), =z€lqb], (1.4)

which represents a system of n first-order ODEs. Here f!, f2,--+, f™ are known
real functions of their arguments z,y',y?,---,y™ The initial condition for given
v € [a,b] are given by

¥'(7) = o, (1.5)

where y!,y?, -, y"™ satisfy Eq.(I.4). Let us write Eq.(1.4) and Eq.(I.5) in vector

form

y'(z) = f(z,y),  ¥(7) =yo, (1.6)



8
where y,f, and yg are real n-dimensional vectors
y: f:(m)y:)yz)"'iyn) yé‘
y z, ’ T n :
y=|Y ] fey= | TV B @
yn fn(‘r)yl)yzx"'ryn) y(')1
We will concentrate on the case when v = a, that is to say
yl = f(:E)Y)v y(a‘) =Yo. (18)

1.2. The Boundary Value Problem (BVP)

In this section we will prove that any boundary value problem can be reduced
to a sequence of initial value problems. In other words, the techniques of solving
initial value problems can be used to solve any boundary value problem.

Let us define the simplest BVP, which can be written as

y' = f(z,v) (z € [a, b), y(a) = C, y(b) = D, (I.9)

where C and D are constants. The existence of solutions of Eq.(1.9) depends not
only the properties of f(z,y) but also on the values of constants C and D. One
interesting way to solve a BVP numerically is to reduce it to a sequence of IVP -

i.e. we refer to Eq.(I.9) to which the following IVP

y' = flz,y) (z€(ed]), yla)=C, y'(a)= (1.10)

is associated. Here, f(z,y) and C are the same as in Eq.(1.9), while y is an arbitrary

parameter. The solution y(z,7) of Eq.(I1.10), computed by any of the methods in
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Chapter II, is also the solution of BVP Eq.(1.9) only if y(b,7) = D for some value
¥ of 7. In other words, y(z,v) is a solution of Eq.(I1.9) when v =4, where 7 is the
root of the equation
V() =y(b,7) - D =0.

By trying successive values 7g,7;,72, -+ we construct the corresponding values
V(7),V(71),V(72), -+ until it is observed that V(y,) and V(73+1) have differ-
ent signs, then 7 lies somewhere between v, and 7,41. By using some standard
rootfinder technique as for example bisection or regula falsi [88,89], we can deter-
mine 74 with the desired accuracy. However, if the computation indicates that V()
has no root, then Eq.(I.9) may have no solution.

The technique which uses a numerical method for IVP plus some rootfinder
technique is known as a shooting technique. Actually this approach is used by many

authors to treat Schrédinger’ s equation as a BVP,

I1.3. Difference Approximation [90]

We consider three different approaches for deriving difference approzimations.
The first uses a difference operator, the second is based on a Taylor expansion of
the function about a grid point and the third involves an interpolating polynomial.

Let us briefly describe the three approaches.
I1.3.1 Difference Operators [9,90]
We define the following three difference operators; in particular
Afv=forr = fo Vhi=fi - ficr, §fi=fiyy — fiiy,

which are called the forward, backward and central difference operators respectively.

We further note

Sy = fon=fu  fuy = flmt )
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The higher n-th order difference operators may be written as powers of the preceed-

ing difference operators
A™f =AM (Af) = A" (fir - f),

V=V = VA - fia),

§°F =87 (8f) =67 (fury — finy).

2
1.3.2 Taylor Expansion [89,91,92]

We derive the difference approzimation for f] = f'(z,) using f, = f(z,) and
firr = f(2141), where z,41 = i + h. The f values of all data points other than =,

are expanded in Taylor series. The Taylor expansion of f,,; about z, is
Y TR rY 14 pa)
Forr = o hfL 4 SRAE 4 SO 4 S g (1.11)

from which

fa+1 fi 1 1
I — — ,' — — 2 "' —— . e s
fi = - 2hf' 6h /i (I.12)

follows. Truncating the first term of Eq.(I.12) yields the forward difference approz-
imation™

fi=I=h oy o), (113)

where the error is approximately —%hf,-" - i.e. approximately proportional to the
grid interval h. The backward difference approzimation is similarly derived. From

the Taylor expansion of f;_;,

1 1 1
fi-1=fi—hfl + -2-h2f," - gh“f,’" + ﬁh“f,“) 4o, (1.14)

* To say that some quantity f is O(h?) as b — 0 means that there is a number

C independent of h such that |f| < C|h?].
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we solve for f] and thereby obtain the backward d:ifference approzimation

=t o, (115)

where the error is approximately —%hf," - i.e. approximately proportional to the
grid interval h. The central difference approzimation using f,41 and f,_, may be
derived by the Taylor expansion of f,;; and f,_; already given - i.e. as Eq.(I.11)

and BEq.(1.14) respectively. Subtracting Eq.(I.11) from Eq.(I.14) leads to
! 1 3 pint
fitr = foor = 2hfi 4 SR 4

where the f!' term has been eliminated in the process of solving for f;. Thus we

get the central difference approzimation

v ferr = fica
fi= R + O(R?). (1.16)

The difference approximation for f! needs at least two points. In general, the

smallest number of data points necessary to derive a difference approximation of
order pis p 4 1.
I.3.3 Interpolation Polynomial [88,93,94]

Let us explain this part in more detail because we shall use it to derive the multi-
step method. The divided difference of f with respect to z¢,z;,-: -, 2, is derived
by showing that P, (the nth Lagrange polynomial agreeing with the function f at

distinct numbers zg,z1,- -, z,) has representation
Pn(z) = ao+ai(z —z0) + az(z —zo)(z —21) + -+

tan(z —zo)(z —21) - (2 — Tn-1) (1.17)



12
for appropriate constants ag,ay, -+, a,. To determine the a's, we set & - ry in
Eq.(1.14), which yields

ag = Pa(z0) = f(z0), (I.18)
whereas setting ¢ = z; in Eq.(I.17) leads to
@) = f(zo) (1.19)

Ty — Xp

Let us denote the O-th divided difference of the function with respect to z, by
flz.}, where f(z,) = flz,], and the other divided difference are defined inductively.
The first divided difference of f with respect to z, and z,.1, denoted by f(z,,z,}1),

is defined as

f(mt,zz+1) ~ f(@ag1) = f(:l:,),

Tipy — L,

whereas the k-th divided difference relative to z,, @41, , @4k 1

fl@igr, - Ttk) — f(-’vn""”ﬂk-‘), (1.20)

f(mnzﬂ-l:"'-‘m*‘f"‘l’mﬂ'k) = Ttk — Ty

Therefore, we may write Eq.(1.19) as a; = f(zo, 1) and similarly obtain as, - -, ax

-i.e. ag = f(zo, 1, -, Zk). Thus Eq.(I.14) can be written as

P, = f(zo) + (2 — 20)f(z0, z1) + (z — zo)(z - 21) f(z0, Z1,22) + - -~
ot (2 —zo)(z —z1) (2~ za-1)f(z0, 21,00, 2)

= f(=o) +Z($ —z9) - (2 — 1) f(z0, 21, -, k), (1.21)
k=1

which is known as Newton’s interpolatory divided difference formula.
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By arranging the order zy,- -, z, consecutively with equal spacing h = ¢, - =,
(0 < ¢ < n-1), writing z = zo + Sk and noting z — =, = (f — i)h, Eq.(1.21) is

rewritten as
Pn(z) = Pn(zo + Bh) = f(-’co) -+ ﬁhf(mo,-’h) + B(8 — 1)h2f(330,931,232) + -

BB -1)B-n+1)h"f(zo,z1, ", Tn)
= D BB ~1)(B ~k+ DA f(zo, -, 2) (1.22)

with binomial coefficients

(k> TE@ k)Y Aol k,(ﬁ +1) (1.23)

Thereafter Eq.(1.22) becomes

Pa(e) = Pa(zo 4 B1) = 3 (3 bth# sz, 20), (1.24)

k=0
which equation is referred to in the literature as the Newton forward divided differ-

ence formula.
To derive Newton forward difference formula; we write Eq.(I.20) in terms of the
forward difference operator as

flzo,z1) = _f.(m_l);]lﬂl = %Af(-'vo)

Ty — o

f(z0,21,22) = 51Z Af(.’cx);Af(zo) — 2;2A2f(z0),

which is generalized to

fzo, - 12x) = rp A* f(za).
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Consequently, Eq.(1.214) becomes Newton forward-difference formula

Pa(e) = k}j (f) A*f(zy).

To derive Newton backward-difference formula, we reorder the interpolating nodes

as Zn, ' -,Tg, so that

Pn(m) = f(mn) + (33 - mn)f(zn—l )mn) 1 (-C - mn)(l” - mn—l)f(rn ~2,-’3n~l,-nn.)

tod (2 =zn) e (z— 1) f(z0, -, Tn) (1.25)

Using equal spacing with ¢ =z, + fhand ¢z —z, = (8 + n ~ i)h we get
Pn(z) = Pa(zn +Bh) = f(za) +Bhf(zn-1,2:) +B8(B — DA*f(2n_2,Tn 1,&n) |

+,B(ﬁ-1)'-'(ﬁ+n——1)h"f(.’co,1:1,--~,1:,,) (126)

Eq.(I.26) is called the Newton backward divided difference formula. By means of

Eq.(I.20) and backward difference operator

1
f(on-1:0) = 39F(an),  Flon-2,6n-1,2n) = 55 V2 (2n)

In general
1
f(zn—k) tre 7mn—l)zﬂ) = k!hkka(mn))

Pae) = fan)+B9f(zn) + EC g2 g

SR CAR) B CE L IR LY/

[

mn)+...
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Using the generalized form of the binomial coeflicients

([H E—-1\ (B+k-1)(B+k-2)---(B+1)8
k )‘ k!

with (°7) = 1, (§) = B and (°}") = Z5H gives

Hdﬂ::fun)+<§>Vf@nyk(ﬂgl)iﬁf@"y+“

B+k-1
+( L )V"f(zn)

i
M,-

(“j”)v’fn ~k< B8<0, (1.27)

0

i

7

which is known as the Newton difference formula.
Note that the equivalence of the forward and backward differences V*f, = A™f,_,

allows ¥q.(I1.27) to be rewritten as

k .
fux):§:<ﬂ+;_l>vng (—k<B8<0). (1.28)

=0

The following theorem will be useful in Chapter II.
Theorem I.1. (Weighted Mean Value Theorem for Integrals)

If f € Cla,b),g is integrable on [a,b] and g(z) does not change sign on |[a, b],

then there exists a number §; a < ¢ < b such that

/ ' f(e)a(e)dz = £(6) / ' g(e) da.

For the proof of this theorem see for instance [95].



Round-Off Error [91]

We say numbers contain round-off errors if these numbers are rounded-off to

fit into computer words of limited length.

Truncation Error

Truncation error (Discretization error) arises from truncating an infinite pro-
cess and is due to approximations of the mathematical formulas utilized. The
remainder in Taylor’s theorem is always an estimate of the size of the truncation

€rror.

Definition.
The initial value problem y' = f(z,y) (a <z < b) with y(a) = a is said to be
a well posed problem if

1. A unique solution y; () exists.

2. For any § > 0 there exists a positive constant M such that for all ¢ with
lef < 6 and A € Cla,b] with |Mz)] < § (e < z < b), the unique solution
yo(z) of the IVP y' = f(z,y) + A(z) (a < = < b) with y(a) == a 1 ¢ satisfies
12(2) - 1a(2)] < M6 (e <2 < b).

Stability [96]

Stability means that errors made at one stage of the computations do not cause

increasingly larger errors as the computations continue, but eventually dampen out.
Convergence

A numerical method is said to be convergent if

h'n}) Yn = y(zn) forall z, =a+nhe€ (a,b),
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where y,, is the computed solution and y(z, ) the true solution (see for details Jean
[97]). Note: convergence requires stability, whereas the converse is false. Henrici

[98] has proved the following theorem which is very useful in the next chapter.

Theorem 1.2. If f is sufficiently differentiable and p is the order of numerical

method, then ¢, satisfics

en = hP8(zs) + O(KP*1), (1.29)

where €, = yn — y(z.) and the magnified error function §(z) satisfies the initial

value problem

yp+l(m)

(p+1)!

d'(z) = fy(z,y(z))b(z) - with §(zo) = 0.
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Chapter 1I
Numerical Methods for

Initial Value Problem of ODEs

Problems of ODEs are classified into initial value problems (IVP) and bound-
ary value problems (BVP). Although many authors have worked with Schrodinger’s
equation as a boundary value problem, we will work with it as initial value problem
with solutions selected to satisfy also the boundary conditions (shooting method).
Thus, in this chapter we focus on numerical methods for solving the IVP of ODEs.
Numerical techniques usually start with the division of the domain [a,b] into sub-

domains, by means of the points
Tp = a,T1,T2, ) Ta—1, 01 = b

The problem is then solved progressively outwards by use of initial data Eq.(1.3) or
Eq.(I.10) and the function f to estimate the solution at z;. Next, this estimated
solution at z, is then used as initial data to estimate the solution at z; in same
fashion and so on.

We consider two classes of numerical techniques: the one-step method and the multa-
step method. The one-step method computesthe solution at z41 usinginformation
only from the immediately preceding mesh point zx, whereas the multi-step method
requires information from several previous points. In addition we investigate ex-
trapolation methods, which are very useful for the calculation of the error and

improvement of the accuracy of the approximation.
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I11.1 One-Step Methods

Any scheme for solving a differential equation, in which the approximation y;4

to the solution at the point 2,4, can be estimated only if y,, z, and h are known,

is called a one-step method.

I1.1.1 Euler Methods [96,99)

We start our study with Euler methods which are easy to analyse and can
be used to construct and examine more advance methods. However, in practical
numerical problems they ~re not recommended because their accuracy is very lim-
ited. We consider three versions of Euler methods: forward, modified and backward

Euler methods. The goal of these methods is to solve the well-posed initial value

problem

¥ =f(z,9) (a<z<d), yla)=c (11.1)

Forward (Explicit) Euler Method

We obtain the forward Euler method for Eq.(1I.1) by rewriting the forward

difference approximation

Yi+l1 — ~ y: (11.2)

as

Yit1 = % + hf(zi, ), (11'3)

from which proceeds

Y = Yi-1 + hf(2i-1,30-1)

N
with h = U’—:—“-Z This h is called the step-size (mesh spacing) and z, € [a,b] is

called mesh point. We assume these points equally spaced to make the construction
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of polynomials easier. This method is called ezplicit because we can compute y, 4,
without having to solve any equation. We can apply the forward Euler method to
a set of first order ODEs and to higher order ODEs. The latter may be reduced to

a set of coupled first order differential equation, e.g.
y' = f(z,y, 2)with y(0) = yo, (11.4)
z' = g(z,y, z)with 2(0) = zo. (I1.5)
The Euler method for Eq.(I1.4) and Eq.(II1.5) becomes
Yor1 = 3+ by, = g+ hf(2, 9, 2), (11.6)

Zip1 =2+ hz: =2z, + hg(mnyn Z;), (11'7)

where the error in one interval (local) is proportional to A%, while the global error

is proportional to h [100].
Modified Euler Method

We derive the modified Euler method by applying the trapeziodel rule to inte-

grate Eq.(II1.1), namely

Yatl = ¥Yi + ’;'h[f(zt+1)yz+l) + f(=., vi)] (I1.8)

with error in one interval proportional to h*® and global error proportional to h2.

This method is more accurate and stable than the forward Euler method [93].

Backward (Implicit) Euler Method

A straightforward calculation, by means of the backward difference approxi-

mation, leads to the formula

Yi+1 =% + hf($:+1,y:+1) (II.Q)
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of the backward Euler method, which is as accurate as the forward Euler method.
This method is also called implicit, because y,4., appears on both sides of Eq.(II.9)
and we must solve an implicit equation to get it. Hindmarsh at el [101] have
described why and how the implicit Euler method can provide useful solutions of

stiff systems and they estimated the errer.

11.1.2 Runge-Kutta Methods [96-98]

These methods use a weighted sum of the values of f(z,y) evaluated at the
starting point of each step and at various points across the integration step. If
f(z,y) is a complicated function, the computer time spent to evaluate specified
functions may be excessive. However, these method are stable and relatively efficient
if the function f(z,y) is not too complicated. Furthermore, they have the advantage

that a change of step causes no problem.
Second-Order Runge-Kutta Method :

The construction is by assuming the solution to have form
Yi+1 = % + R(CK, + DK>) (11.10)

with K; = f(z.,1), K2 = f(zi + ah,y, + bhK;) and arbitrary constants C, D, a
and b. We expand y,+: and y(z;;1) using Taylor’s theorem in terms of h. Assuming
¥ = y(z:) with yit1 # y(ziy1), we find in general that
y(es + h) = y(z:) + hy'(z:) + %h’y”(m) + %hsy’"(f) = y(e:) + hf(zi, yi)+

%hz [fo(@i,33) + fy(mi ) @i, 9:)} + %hSy"'(E)(ma <{ < ziy) (I1.12)
with f; = %5 and fy = %5. Next we find
th+1 = ¥i + R[CK, + DK,) = y; + Chf(=zi,yi) + Dhf(z, + ah,y; + bhK,) =

¥y + Chf(zi, 1) + Dh[f(z,, 1) +ahfo(zi,yi) + bhfy(zi, ) f (i, yi) + O(R?)] (11.12)
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with O(h?) standing for the sum of all terms in A of degree two or higher. Equating
coefficients of h®, k!, h? in Eq.(11.11) and Eq.(I1.12) leads to y, = y(z,),

(C + D)f(=.,9) = f(=i,y(z.)) and Dafz(z,,4:) + Dbfy (2, 10)f (24, 3) =
3 [fz (=, 9i) + Fy(=i,¥i)f(=zi,vi,], from which in turn the two conditions [C + D] =1
and aD = bD = % follow. Therefore, we can create different methods, because we
have only threc conditions for four coefficients sought after. We have namely:
1.C =D = };a=05=1 Thisis Heun’s method {104], procceds in the two
stages ¥iq1 =y + hf(zi, ) =3 + $h[f(z:, %) + (2141, %41)], uses an Buler
estimate for y;4; to find an approximation at z,4; and is a one slep predictor
corrector method.
2D=1,C=0a=0b= % This yields the modified Luler’s method, whose
procedure is y;, 1 =y, + Thf(z,,yi) and gup1 = 3 + hf(a, + %lL,y,+1i). It is
more accurate than Euler's original method because the slope at the (estimated)
midpoint is more representative of the whole interval slope than the slope at

the left end.

In summary, the second-order Runge-Kutta method may be written as

1
K, = hf(mmyn)» K, = hf(3n+1:yn + Kl): Ynt+1 = Yn + ”2‘ [Kl + K2]-

Third-Order Runge-Kutta Method

A Runge-Kutta method of order three is more accurate than second order
Runge-Kutta method. We will derive it by using a high-order numerical integration

scheme for the second term of equation

Tit1
Yit1 = Ui +/ f(z,y)dz. (I1.13)
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Using the Simpson’s j rule, Eq. (11.13) is approximately

1 - -
Yot1 =%+ ch [f(:n,,y,) +A4f(Zip 1, 8041) + f(31+1,yz+1)] (I1.14)

with estimated #,4+; and Jit 1 since Yip and y;41 are not known. We obtain

- 1
Gy = %+ ghflzo0) (11.15)

from the forward Euler method and the further estimates

Y1 = ¥i + hf(2a, 1), (11.16)
Yr1 = Y+ hf(zi-f-%)g:-{-%)) (1117)
o1 =4+ h [/\f(“‘uyz) +[1- '\]f(‘”i+§,'§i+%)] ) (11.18)

where the last equation is a convex combination in terms of parameter A of the
previous two and ] is so determined that it maximizes the accuracy of the numerical

method. From Eq.(II.18), we write the schemein the following form:

Ky = hf(z, ), (11.19)
Ky = hf(e, + Lk + 5K2), (11.20)
Ki = hf(zi + h,yi + AK1 + [1 - A K>), (11.21)
ass = v + é[xl +4K; + Ks). (11.22)

After expanding the expressions for K;, Kz and K3 using Taylor’s theorem in two
variables, for purposes of optimization, we have
K, =hf (11.23)
1., 1. 2
K =hf+ §h [fz + fuf] + gh (fzz +2fzyf + Fuy f°] (11.24)
1
KS = hf + hz[f: + fyf] + ‘2'h3 [fzz + zfzyf

+f PP+ 1= Afz + fu f1 ] (11.25)
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where f and its derivatives are estimated at z,. On the other hand, a direct expan-

sion of the exact solution y,+; by means of Taylor’s theorem leads to

vorr =4+ A+ SRS+ fyf]

4 38 [fon + 2fagf + fugf? 4 fofy + [21) + O(K).  (11.26)

By introducing Eq.(I1.23)-Eq.(11.25) into Eq.(I1.22) and comparing it to
Eq.(II.26), we obtain A = —1, because Eq.(II.22) agrees with Eq(II.26) up to
the third-order term. To summarize the preceeding, the third-order Runge-Kutta

method is

K1 = hf(:z:,,y,), Kz = hf(:n, + %h,y, + %Kl), K3 = hf(:l:, + h,y, - Kl + 21{2)
1
Y41l = W + 6 [I(l + 41{2 + Ka] (1127)
Fourth-Order Runge-Kutta Method

Fourth-order Runge-Kutta is the most commonly used and is accurate to the
fourth term of the Taylor expansion with local error proportional to h®. The
derivation of the fourth-order Runge-Kutta method is similar to that of third-order
method except for an additional intermediate step needed for evaluating the deriva-
tive. There are two versions of the fourth-order Runge-Kutta method:

(i) The first version is derived by using the Simpson’s ; rule and is written as

Ki =hf(z.,u), K2 =hf(zi+ th,y + ; K1),

K3 =hf(z, + 3h, o+ 3K2), Ks = hf(za + b,y + K3),

1
Yot1 = Yi + 6 [Kl + 2K, +2K;3 + K4] . (11.28)

(i) The second version is derived by using the Simpson’s 2 rule and is written as

K, = hf(zi,yi), K, = hf(mi + %h)yt + %Kl))
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Ky =hf(z. + 3h,y ~ Ko + 3 Ka), Ky = hf(z, +h,3i + K1 ~ Kz + Ky),
1
Yit+1 = Yi + g[Kl + 3K2 -+ 3K3 + Kq] (1129)

Application of the fourth-order Runge-Kutta method to higher-order ODEs is
straightforward. As an illustration, we consider the second-order differential equa-
tion

y' = f(z,y,¥'), yle)=yo, ¥'(ea) = oo

and reduce it to two first order ODEs, that is
2(z) =y'(z),  2(a) = yoo,

y' = g(:v,y, z)) y(a) = Yo,
z' = f(m’y) z)) z(a') = Yoo.

Thus the fourth-order Runge-Kutta becomes
Ky = hg(z., ¥, zi), In = hf(zi 3, 2i),
Ka = hg(zi + 3h,y + 3K, 2 + 111), Ly = hf(zi + Lhyyi + 1Ky, 2+ L Ly),
Ks = hg(wa+ L,y + 1Ko, 20+ 1Lo),  Ls = hf(zi+ 1h,yi + 1Ko, 2, + 3 L),
Ky = hg(zi + h,yi + Ks,2i + L3), Ly = hf(zi + h,y; + K3,z + L3),
Yit1 = Yi + %[K1 +2K; + 2K3 + Ky,
zip1 = zi + 5 [L1 +2L2 + 2Ls + L.

Runge-Kutta-Fehlberg Method (RKF45) [104]

This technique consists of using a Runge-Kutta method with local truncation
error of order five, which has the following two advantages:
(i) Only six values for the function f are required per step, whereas in general, a

Runge-Kutta method of order four or five requires four values for the function.
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(i) This technique determines if the proper step size h is being used. At each step
two different approximations for the solution are made and compared. The
step is reduced if the answers do not agree to a specified accuracy, and the
required step size is increased if the answers agree to more significant digits

than required.

The RK F45 formulas are

1 1
Kl = hf(miyyt)) K2 = hf(m't + Zhﬁyi + ZKI))

3

3
K3 = hf(xi + gh,yi + 33

9
K+ §§K2),

Ky =hf(z, + %—gh,yz + ;Sl)gifﬁ - '27?38 2 + 5%;976{!(3),

Ks = hf(oi + by + oo K ~ 8Ky + T Ki— DU K)

Ko = hf(zi + %h,y. - %Kl + 2K, — 22231\’3 + %2—2](4 - %%Ks),
Yir1 = o + [221—561(1 + ;gggm + 31311(4 - -;—Ks] , (11.30)
Yit1 = ¥i + {113—651(1 + 162685265 s+ zgzg; K4 - 3961(5 + 32-5—1(5] ) (11.31)

To use Runge-Kutta method of order four - i.e. Eq.(I1.30) - to approximate the
solution of the IVP, we need the four quantities K;, K3, K4, and K.

A better value for the solution is estimated by using a Runge-Kutta method of order
five Eq.(11.31) . The optimal step size Bh can be determined by multiplying the

scalar 3 times the current step size, where

__[ Tol h }%

— 11.32
2l Yit1 = Yat1 | ( )

and the specified error control tolerance Tol as well as the derivation of Eq.(II.32)

may be found in [105].
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Sixth-Order Runge-Kutta Method

There are three versions of Runge-Kutta of order six. The first version, due to

Huta, was analysed by Butcher [97] with

Yokt =¥+ 840

where

Ki = hf(z.,y.), K2 = hf(z, +

1
"’L, yg

K3=hf(mz+6

1
KS = ’Lf(:l!, + —h,y; +

2

2
Ke = hf(zi + zh,yi +

3

5
K7 = hf(z, + éh,y, +

Ks = hf(zi + h,yi +

1
+ ﬁ [K1 +3K2D, K4 = hf(:l,', +

1
45 (183K + 678K —

[41K; + 216K, + 27K, + 272Ks + 27Kg + 216 K7 + 41 K,]

1 1
_h 3 ~ )

%h,y; + %[KI - 3K2 + 4K’i]))

1
g [=5K1 + 27K, — 24K + 6K4)),

1
5 [221K1 — 981K, +867K; — 102K, + Ks]),

472K; — 66 K4 + 80K5 + 3Kg)),

1
5 (761K, — 2079K, + 1002K;3 + 834K, — 454K — 9K + T2K7)).

The second version due to Butcher [103] has

Y4l = Yi +

where

4 11
Kl + -—[Ka + K4) - ——[Ks + Keg] + — K+

120 120

1 1
K = "’f(mnyz) K, = hf(:l!, + "h Ui + §K1);

K3 = hf(ll), + =

Ks = hf(z: +

1
Ko = hf(z, + §h,y.

Kr=hf(zi+ h,yi +

2
hy‘l+ K2) K= hf(:c,+ hyt

1 1
3 1—2[K1 + 4K, — Kj)),

1
=h,yi + ﬁ[-m + 18K, — 3K; — 6K,)),

1
4 §[9K2 - 3K3 - 6K4 + 4K5]))

1
7119K1 — 36K + 63Ks + 2Ky — 64KG)).
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On the other hand, the third version, due to Shanks [102], written as follows
Yit1 =% + §61§ (198K, + 1225K3 + 1540K,4 + 810K — TTKg)
has
Ky = hf(z,3), K2 = hfi(z + sshyy+ oK),
300 300
K =hf(es+ ghoyn + %[—291{1 + 30Ks)),
Ky = hf(z, + gh,yi + %[3231(1 — 330K, + 10K3)),
Ks = hf(z, + —i—:h, vi + 8—1—6[—5101041{1 + 521640K, — 12705 K5 + 1925K,)),
K¢ = hf(z; + h,y: -+ %[——417923[(1 + 427350K; — 10605K3 + 1309K, — 54K5]).

I1.2 Multi-Step Methods [99)

In these methods we use the approximation at more than one previous mesh
point to determine the approximation at the next point. For instance, to esti-
mate y;+1 we must know y, and a certain number of preceding values y,_;, y,—2,
Y:—3, -+ +; whereas in one-step methods ¥, is estimated in terms of y; only - i.c. no

information is needed about the preceding values.

II.2.1 Predictor-Corrector Methods

A predictor-corrector-method consists of a predictor step and a corrector step in
each interval. The predictor estimates the solution for the new points and then the
corrector improves its accuracy. Predictor-Corrector methods use the solutions for
previous points instead of using intermediate points in each interval. The starting
value in these methods must be specified by assuming ¥, = a followed by the

use of one-step techniques to generate the remaining values. For further extensions
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and discussion see [106], and {107] for application to stiff systems. Let us derive
multi-step methods to calculate y,4, at 2,4, = z, -+ h from a known value y,. We

first integrate Eq.(I1.1) over the interval [z,, 4]

wi == [ vde =) -ve) = [ feue)ds, (113

where the integrand f(z,y(z)) is replaced by an interpolation polynomial P deter-
mined on the previously obtained data points (zo,%0), (Z1:91), =, (2:,%:). If yi =
¥, then Eq.(11.33) becomes

Tit

Yir1 R Ys +/ P(z)dz. (T1.34)

£

To derive an Adams-Bashforth explicit m-step technique, we form the back dif-
ference polynomial P,,-; through the points (z,41,%+1), (25, %), (Taz1,¥Yi1)5e
(Zs4+1-m) Ys+1-m). However, Pm_; is an interpolation polynomial of degree m — 1,

thus we have

f(.'z:,y(:c)) = Pm—l(‘c) + %fm(fny(fz))(a’ - ma)(“’ - 7’1—1)"'(1’ - mi+1—m)'

for some number & (Zi41-m < € < 2,41). The substitutions ¢ = 2, + sh and

dzr = hds yield

z‘+1 m-1

/:w‘ f(z,y(z)) dz = é(_l)k(_’:) T* (s, 4(2:)) d

+ /:m r_ylz-!fm(fny(fi))(z —2i)(e - zi-1) (2 — Tit1-m)dz =

g V"f(mny(-’b‘:))h(—l)k/01 (—:) ds
1

eSS /0 o(s + 1) (s +m = D)™ (&, y(&)) ds. (11.35)
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The integrals I = (—1)* fol (7)) ds for various values of k are easily evaluated from

the subsequent table.

[ ]
w
—
©
w

-
nN
xie
-
(%)
(=]
a2
o

As a consequence thereof,

[ ewade = b |fauw) + 9Se0) + 15T ) o

1 e
+-1;1.—ihm+ A s(s + 1)" ' (s +m— l)f(m)(ény(ft))dsv (II'36)

since s(s+1) -+ (s+m—1) does not change sign in [0, 1]. We can apply the Weighted

Mean Theorem I.1. to the error term for ;41 -m < gy < Z,+1 and thus the error

term in Eq.(II1.35) becomes

1
— ™t /0 s(s+1)--- (s +m—1)f™ (&, y(&)) ds

= L pmy, 1 1 1)d
= A g [ sle+ 1) (o m - 1)d

L e (7). (11.37)

m

Utilizing Eq.(11.37) leads to
zits 1 5,
/ f(z)y(z))dz = h f(zhyi) +§Vf(m‘l)yl)+ ﬁv flza,p) + -+

R Gy ) 1" [ 1 (52 s (11.38)

m
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and applying Eq.(I1.38) to Eq.(I1.33) implies

1 5
it = W +h f(ml)yt)+ _vf(mtayt)+ _'vzf(miyyt)+"'
2 12

PR () )(-1) / ‘ (’) ds. (11.39)

m
Eq.(I1.39) is called the Adams-Bashforth explicit m-step technique. For instance,

when m = 3, Eq.(I1.39) gives us

1 5
Vat1 =Y+ h {f(mnyt) + évf(-""ny:) + ﬁvzf(m‘,y,)] =

bt b F(o ) + 517 = Floror, o)

+‘1§2‘[f(fﬂz,yx) - 2f(13i—1,yz—1) + f(m;-z,y.~2)]] =

y(.’ﬂ,) + ’lléh [23f(mnyt) - 16f(:B,_1 )yt-—l) + 5f(mi—2,yt—2)] ’ (1140)

which relations carry the name of Three Step Adams-Bashforth Technique. There-

fore, for various values of m, Eq.(II.39) produces the subsequent table.

Order = m Adams-Bashforth(explicit) formula with order 1 to 6

1 Yup1 =+ byl

1
2 Y11=yt §h[3y: - y:—l]

1
3 w1 =9+ b (28 - 164, + 5%, 5]

1 ! ! ! !
4 Y41 =% + ézh [55y1 - sgyt—l + 37y1—2 - gys—3]

1
5 yop1 =Y+ 7—26h [1901y; — 2774y!_, + 2616y, _, — 1274y;_; + 251y;_,]

1
6 Yip1 =Y + mh [4227y, — 7673y, _; + 9482y._, — 6798y, _3 + 2627y}_, — 425y} ;]
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The Corrector formulas or Adams-Moulton technigues may be derived by using

(141, f(z1+1,y(z14+1))) as an additional interpolation node. In the approximation

of the integral f:“ f(z,y(z)) d=

= ~s+1
Pn(=) z;(—l)"( k )ka(mt+1)yﬂl) =

> (-1)* <—8k+ 1) AFf(Zapr—ks Yor1-k)- (11.41)
k=0

The use of Eq.(I1.33) yields the Adamas-Moulton corrector formula

y;+l == y; + h [coy:,'.l + CIAy: + v '*— CmAmy:-—m )

cx = (~1)* /01 (‘T 1) ds. (11.42)

It i1s easy to evaluate this integral for various values of k via the table appearing

next.

|
|
|

e
—
™
[X]
-
-
N
[=]

o

|
—

|
—

|
—

|
—
©

Ck

By setting m = 2 in Eq.(II.42), we obtain the third-order Adamas-Moulton Cor-

rector method

1 1 1 .
Yit1 =Y+ h y:+1 - ’2'Ay: - l_éAzy:—l =1+ ﬁh [5y:+, + 8y, ~ 3/:—1] :
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Order = m — 1 Adams-Bashforth (implicit) formula with order 1 to 6

1 y1 =y + hy]

2 Y=y + %h[y:-u + y,]

3 Y1 =yi+ 115’1 [5yi+1 + 8y, - y:~1]

4 =t ok (Ol 199~ 5yl 4]

5 irs = v+ oach [251yL,, +646y! — 264y]_, + 1063]_, — 199!_,]

720

1
6 wna=u+ mh [475y,1 -+ 1427y, — 798y,_, +482y,_, — 173y]_5 + 27y; _4)

Disadvantages and Advantages of a Predictor-Corrector Methods

Some disadvantages are as follows:

(a) The predictor-Corrector method cannot be used if ' becomes discontinuous.

(b) Changing the interval size in the middle of solution is not easy, because of the
use of previous points.

(c) The method cannot be started by itself because previous points are used until
the solutions for enough points are determined; instead, another method, such
as a Runge-Kutta methods must be used. [108]
Nevertheless, there are some advantages, which are as follows:

(a) The local error can be detected at each step with a small computing effort.

(b) These methods use information from previous steps - i.e. f(z,y) is evaluated
twice in each step, regardless of the order of the predictor corrector method.
On the other hand, the fourth-order Runge-Kutta method evaluates f(z,y)

four times in cach interval.
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Summary of previously discussed methods occurs in the following table:

Other
Methods Relevant formula Local Global features
Euler methods
Forward Forward difference O(h?) O(h) SS,SC
Modified Trapeziodal rule O(h®)  O(K})  SS,5C
Backward Backward difference  O(h?) O(h) SS,SC
Runge-Kutta
Second-order Trapezoidal rule O(h*)  O(h?)  SS,5C
Third-order Simpson’s L rule  O(h')  O(h®)  SS,8C
Fourth-order Simpson’s 3 or § O(h®) O(h*) SS,SC
Predictor-Corrector
Second-order Trapezoidal rule O(h3) O(h?) SS,SC
Third-order Newton backward ~ O(h%)  O(k®)  NS,DC
Fourth-order Newton backward O(h®) O(h*) NS,DC

.................................................................................

where the symbols SS, SC, NS and DC stand for self-starting capability, stepsize can

be changed easily in the middle of solution, no self-starting capability and difficult

to change the stepsize respectively.
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I1.3 Approximation of Truncation Error [99]

Suppose we calculate y(z) using a certain h and y,(h), then we repeat the

calculation using % and thereby obtain y,(%). It follows from Eq.(I.33) that
Ya(h) = y(zn) + hP6(zn) + O(RPH), (11.43)

yn(g) = y(za) + (g)p6(mn) + O(hP*1). (I1.44)

We now have two computed values for y,. The objective is to use these two values
to produce a more accurate approximation of y(z, ). From Eq.(1.33) and Eq.(II1.44)

it becomes apparent that

1

(W) = un(3) = (1= ) K8(za) + O(A*1), (11.45)

and Eq.(II1.44) and Eq.(11.45) let us conclude

2P

En =1

n(h) - un(5)] + 0082 (11.46)

Herewith we obtain the Richardson eztrapolation to the true solution at mesh point

z,, namely

y(zn) = 2"”"(2%,) = L L] (I1.47)

These last two results - i.e. Eq.(I1.46) and Eq.(I1.47) - we write as follows:

En = 2p2i 1 [yn(h)—yn(g)], (I1.48)
Py (LY —
Y(zn) = 2 yn(;;)_ 1yn(h). (11.49)

Eq.(II.49) is a new approximation to y(z,) and it differs from y(z,) by only
O(h?*!). Hence, by forming an appropriate linear combination of the numerically

evaluated results by using h and %, we have eliminated the leading error term in
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the asymptotic error expansion. This procedure can be repeated indefinitely with
%, %, etc.
For estimating the accumulated truncation error and the true solution at =z, the

error of order exceeds the order of the method by one. If we assume P, to be the

predicted accumulated error and T), the actual error in the extrapolated solntion,

then

P Pun(2) -y,
Po= gt i) - ()] = T2

I1.4 Extrapolation Method

The goal of this technique is to obtain results of high accuracy from a formula
of lower order. The history and application of extrapolation techniques is discussed
in a very interesting article by Joyce {109] aad for further discussion see Deuflhard
[110].

Richardson’s extrapolation technique for estimating the accumulated truncation
(discretization) error and improving the approximate value of y(z,) has the advan-
tage that its order exceeds the order of the numerical method by one. We shall now
discuss a successive repeated application of this procedure so that the approximate
value of the solution tends to the exact value as h — 0. Let y(z) be the true solution

of differential equation

y, = f(:c)y)v y(mo) = Yo, T € [zoab]'

Let us denote the approximate solution by y(z, k), which is obtained by using step
length A and a suitable numerical method; the value of y(z, k) will contain an error.

We assume that y(z, k) admits an asymptotic expansion in h of the form

y(z,h) = y(z) + x1h"* + x2h° + x3h™ + -+ + Xnh"" + Xng 1A + -+, (I1.50)
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where: 0 < 8; < 83 < -+ < 8,, X1,X2, -+ are independent of h and are de-
termined by evaluating y(z,h) with step length h, (z = 0,1,2,--:). For pur-
poses of practicality, we take either s; = is with step sequence h; such that
ho > hy > hy > -+~ or h; = hob* 0 < b < 1 (b = 1 preferably). The case
s, = ts with hg > hy > hy--+ > hy, in which the approximation y(z,k) could be
improved in accuracy by forming linear combinations of y(z,h) at various values
of h, is called “‘ the deferred approach to the limit’’ because after a large number
of linear c>mbinations one has a very close approximation to the true value y(z).

Eq.(II1.50) thus becomes
y(z, h) = y(z) + x1 5" + x2h" + x3hP 4 -+ xnh™ Fhin RO L (11.51)

We now eliminate x1, X2, X3, -+ by evaluating y(z, k) for ho > hy > hy---,

and thereLy get
y(2, ho) = y(x) + xah§ + X2h3* +x3hd* + -+ + Xah* + -

y(z, h1) = y(=) + x1h} + x2h3* +xsh}* + - + xnh]* + -

y(z, ha) = y(2) + xah3 + x2h3* +x3hy" + -+ + xnh3" + -

Y(2,hn) = y(2) + x2h + x2h3' + x3h3 + -+ xnhp 4 - (11.52)
Further, eliminating x; in Eq.(I11.52) gives

hﬂy(fﬂ: hl) - h;y(m’ ho)
Ry — R

hiy(z, ha) — h3y(z, h1)
hi — kg

= y(z) — hghixz — hoh [hg + hi]xs — -

= y(z) — hihaxz — hih3 [h] + h3]xs - -
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h:;—ly(w)hn) - h;y(myhn—l) —

haoy — b
y(z) — ha_shaxe — b1k [h':z—l + h:;] X3 — . (11.53)

Let us introduce the following notation:

s y(k+1 s k
vk = hi st—1 ) k+n Yrs-—)l
AE) =

h’i - hi-{-n ,

where the subscript n denotes the number of times the linear combination has been
applied to eliminate x1,%a2," ", Xn and the superscript k stands for y(z,hy) - ie.
the approximation obtained by the numerical method with step length hx. Thus
Yo(k) = y(z, hi) and Y, (¥ imply that n linear combinations have been performed to

eliminate x,. Eq.(II.53) can now be written as
Y(O) — — kR — hehS RS hs] .
1 -—y("’) 01X2 ohi[hg + A1l xs

Y = y(z) — hihjxz — hih3 [h] + h3lxs — -

YV = y(a) — hishixa = booibd (B ) xs =

Eliminating x2, we obtain
;) =y(z) + hihihixs + - -

YS = y(z) + hihjhixs + -

Yz(nsz) =y(z) + by _shn_1hnxa + -

Therefore, we need Y® for eliminating xn, which means

Y = y(e) + (~1)"hihisy - hpn (Xnss + O(RE)],  (I154)
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where the calculation of Y*) can be simplified by means of the triangular array

called Y-scheme.

Y-scheme
y(oho) = ¥
y(©
y(o hy) = ¥ ¥
y Y
y(z, hy) = Y v 17528
v Y
y(o hs) = ¥® v
y(®

y(z’ h4) = Y0(4)

Here, two values are used to form the next approximation according to the rule

RYat” = by ¥ith

Y E) = AR , (11.55)
which for A, = hob* with 0 < b < 1 becomes
Yt = Y’ﬁll)_* :::Y’Ef)‘- (11.56)
Eq.(11.56) for b = ; simplifies to
Yy = 2"’”%5)_—; Yol (s=1) (11.57)
and
YR = v, 0 - v (s=2). (I1.58)

qn -1

From Eq.(II.55) we notice that each Y{* is a linear combinaiion of y(z, hy)



(t=k,k+1,---,k +n), which can be written in the form
Y =3 Cppno, Y4 (11.59)
1=0

with constant coefficients Cp n—;. Substituting Eq.(I1.59) into Eq.(I1.55) yields

the following recursion relation for these coefficients:

hicn—l,n—] - h)’c.*.ncn—l,n—]—-l
s s

Cnn-j = ,  Caoin=Cn_y_1=0. (IL.60)

Using Eq.(I1.60) and Eq.(II1.59) we write

(0) Coo (0)
Yo(o) Ciun Cho Yo )
1
| Yy
: ~ | C2 Can C2o .
éo) yo(")
Cnn CnO

It is desirable that numerical methods converge to the true solution as the step size

tends to zero - i.e.

lim Y(z,hs) = Y® = y(z). (I1.61)

The convergence of Yo(") to y(z) can be readily seen from Eq.(I11.54). Eq.(II.54)
states that each column of the Y-scheme converges to y(z) faster than the preceeding

one. Indeed, the principal diagonal converges faster than any column.
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Chapter III
The Numerical Solution

of Schrodinger’s Equation

In this chapter we examine the Schrédinger equation as an initial as well as
boundary value problem. We also investigate some popular numerical methods
which are commonly used in the literature to solve the radial Schrodinger equation

and also a version for dimension one.
11I.1 Schrodinger’s Equation

We consider two approaches. First we treat Schrédinger’s equation as a Cauchy
problem and second (the most common approach) as a boundary value problem.

(a) The one-dimensional Schrédinger equation may be written as

| - 1) sle) =0, flo) = u(e) - E,

where u(z) and E represent the potential and the energy in dimensionless form.

For the purpose of numerical treatment, we write it as

y" +[E~u(z)y=0. (II1.1.0)




(b)
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If the symmetric potentials u(—z) = u(x) are given, then the solutions y(z) are

classified as even or odd and the following two sets of initial conditions arise.

When u(z) is even, we impose the initial conditions

y(0)=1, '(0) =0, (II1.1.b)

and in case of u(z) being odd, the conditions

y(0)=0, ¥'(0)=1. (III.1.c)

The problem to be considered numerically, called the radial Schrédinger equa-
tion, is

y' +(E-u(r))y=0, re€(0,00), (111.2)

with the conditions

y(0) =0, (111.3)

y(r) isfinite »>0. (111.4)

We note that Eq.(III.3) is similar to the preceeding odd case (a). Our first
goal is to transform Eq.(III.4) into a standard mathematical form. Therefore,
we make the following assumptions: lim,_, oo u(r) = O and there exists some
Tmaz in the asymptotic range of » such that |E| > |u(7)| for 7 > rpmez. If this
is the case, then the approximation E — u{r) ~ E is justified and Eq.(I11.2)

becomes approximately

y' +Ey=0, r2rme. (111.5)

We distinguish for E the following three situations:
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(i) E < 0. The general solution of Eq.II1.5) is

(1)

(2)

(3)

y(r)=A ezp((—E)%r) + B e:cp(——(—E)%r), (I11.6)

where A and B are arbitrary constants. The only point where condition
Eq.(III.4) may be violated is the point at infinity; but it shall be immedi-
ately satisfied if A = 0 - i.e. the condition Eq.(III.4) is equivalent to the

behaviour

y(r) = B exp(~(~E)ir), > Pz (111.7)

However, y(z) is the solution of the following differential equation

y'(r) + (—E)*y(r) =0, 3 Tma, (I11.8)

so that it can altogether be said that Eq.(III.4) is equivalent to the condi-
tion Eq.(III.8), which looks like the second boundary condition of a standard
Sturm-Liouville problem (see Appendix C, Eq.(C.1)). The original problem
Eqs(III.2, 3, 8) corresponds to a Sturm-Liouville problem (SLP) with the fol-
lowing three differences:

p,q, and r of the SLP described in Eq.(C.1) were continuous, whereas u(r)
appearing in problem Eqs.(III.2, 3, 8) may be singular.

The domain in the SLP is finite, whereas it is infinite in problem Eqs(III.2,
3,8).

The last coefficient of the boundary condition Eq.(III.8) is strictly E-depen-
dent, while in the Sturm-Liouville problem the boundary conditions are totally
independent of A. Thus the problem given by Eqs(II1.2, 3, 8) is actually an
eigenvalue problem just like the original Sturm-Liouville problem, but some of

the properties (1)-(4) enumerated for the latter in Appendix C will change.
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For instance, property (1) is changed in the sense that the set of eigenval-

ues Ey, Ey, By, -+ (called eigenenergies) is generally finite, although the corre-

sponding eigenfunctions y,(r) (: = 0,1,2,---, N) remain orthogonal (Appendix

C, Eq.(C.3)) if the integration limits are taken from zero to infinity. The rest

of the properties remain unchanged.

Now we want to solve the problem in Eqs(III.2, 3, 8) numerically. We con-
sider two main issues, namely tle singularity of u at » = 0 and the infinite range of
the independent variable. The first issue is treated by separating a small subrange
(0,a] on which the solution is constructed by some ad-hoc numerical procedure.
For the second issue it must be noted, that any attempt to make the range finite
by a suitable change of variables may produce a complicated equation with sin-
gular coefficients. Thus it is preferable to deal with the original equation and to
approximate the infinite range. Two recipes are often taken. First, simply replace

condition Eq.(III.7) or Eq.(III.8) (both imply that y(r) — O when # — oo ) by
y(b) =0, (111.9)

where b is some value in the asymptotic zone - i.e. b > rpe:. The second consists

of treating Eq.(I11.8) at r = b,
y'(b) + (—E)¥y(b) = 0. (111.10.a)

Both of these approaches are used in practical applications. The latter is more
realistic in the sense that it simulates better the original condition Eq.(II1.4) - i.e.
A = 0 in Eq.(II1.6). The first condition guarantees that coefficient A is a small
number not exactly zero (as it must be). Also, the first condition requires values of
b larger than the second and conesquently a longer time to compute the solution.

Using Taylor’s theorem, Eq.(I11.5) and Eq.(III.8) we get

y(r — h) = y(r) Eop (- B)HH],
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wherein we replaced r by b and thereby arive at
y(b — h) - Ezp [(—E)%h] y(b) = 0. (I11.10.5)
(ii) E > 0. In this case, the general solution of the asymptotic Eq.(II1.5) is
y = A sin(Eir) + B cos(FE3r) (III.11)

and hence, condition Eq.(III.4) is satisfied.
(iii) E = 0. The general solution of Eq.(II1.5) is y(r) = Ar + B, so that |y(r)|

increases with 7.
I111.2 Numerov’s Method [15,16,99]

Many authors have praised the virtues of the Numerov’s method [15,37,111].

We can write the Schrodinger equation Eq.(I11.2) in the more general form

y" = f(ry), (I1I1.12)

which reduces to Eq.(II1.2) if f(r,y) is linear in y. Now we can derive difference
equations corresponding to Eq.(III.12) by either: transforming it into a system
of two first order equations, or proceeding directly from Eq.(III.12) and noting
the absence y' in it. Proceeding by means of the latter, we consider the uniform

partition of the finite interval (0,7):
O=rp< <Py <rp=rrp,=kh (k=0,1,2-.-,n).

Using Taylor’s theorem under the assumption that f and y(r) are sufliciently

smooth, we write

rs 4 B) = alren) = (re) + () + oy () 4 (111.13)



46
Replacing h by —h in Eq.(II1.13) entails
{ h2 "
ylr = h) =y(ria) = y(r) - hy'(n) + 57y'(m) — -, (T11.14)
and Eq.(II1.13) combined with Eq.(III.14) leads to
2h? 2ht
Y(ree1) — 2y(n) + y(ri-1) = ——2~!-y"(r,) g — () b, (111.15)
which equation we differentiate twice and thus write
2h2 2h!
() = 200) + 3'(ri1) = Sy + ey D)4 (TILI6)
From Eq.(III.15) follows
2h*
Ky O(n) = ¥ (rve) =20 () + " (nr) — )+ (TILID)
and this equation yields in turn, with the use of Eq.(II1.17) in Eq.(II1.15),
y(rit1) = 2y(r) + y(ri-1) = h%'(ra)+
R 1, 2h 2h8
2 [Ealy'(ﬂﬂ) 29" (r) + ¥"(r-1) — (6)(&) ol -y (r,) =
h
[y (Pat1) +105"(r) + ¥" (1)) - ©}r) + O(h"). (111.18)

Substituting by means of Eq.(III.12) and eliminating the sixth—order terms in
Eq.(III.18) gives us Numerov’s method of order four, which is a two-step method.
Numerov’s method is generally implicit and is reducible to an explicit equation
whenever f is linear in y, as is the case with Schrodinger's equation. We may

consider two methods to derive higher order schemes, namely
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(i) increasing the number of steps if we use f(r,y) only
(ii) keepitig the same number of the steps and then using the derivatives of f - i.e.
for gy fryy o
For the second method, it nust comented that in general the potential V(r) may
be given discretely and hence, the derivatives are difficult to calculate. For Nu-

merov’s method of order six see Hajj at el [16], and for further extensions as well

as applications see [112-122]
I11.3 The Method of De Vogelaere [46-54]

The method of De Vogelaere enjoys a large popularity, especially among physi-
cists who are involved in solving Schrodinger’s equation (for instance [48-50]). This
method is attractive because of its simplicity as well as its flexibility for allowing
changes to the step size during an integration. We now derive De Vogelaere’s algo-
rithm for the solution of the initial value problem of a second-order equations with
the first derivative absent. Consider equidistant points ¢ = a,z;, 23, -, T2, = b
with mesh spacing k. It is important to note that the odd- and even-labelled points
play distinct roles since the last point for the computati~.n must be even-labelled. At
each iteration k (k=0,1,2,---,n — 1) the De Vogelaere algorithm consists of three
formulas which compute (in the stated order) {#z2x+1, F2k+2, U342} in terms of given
{92k-1, T2k, 92, }. Using Taylor’s theorem to expand y(z) and f(z) = f(z,y(z))
about the point z;; we obtain

A? AP
y(z2k + A) = y(z2x) + My (z2x) + -2—!-y"(z2k) 4ot ;Ty”(mzk) + .-+ (II1.19)

and

2
f(z2k +A) = f(zak) + Af'(zar) + %!—f"(wzk) + 4 gf"(m) + -+, (I11.20)
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where y"'(z) = f(z), ¥"(z) = f'(z), y*(z) = f"(z), etc. The first expression is
h?
I = - [4f(z2k) = f(z28-1)],

which we want to transform into a suitable form of order h%. On using Eq.(II11.20)
with A = —h, we have

%2 [4f(z2k) — f(z2k-1)] =

%ﬁ [4f(zzk) - {f(:czk) —~ hf'(z2k) + %z—f”(:czk) + 0(),3)” _

2 h?
o 370 + bron) = 5 £ aan)| + 00 =
h? h3 ht
o7 (z2k) + §'!'f'(:c2k) + Z!-f"(:rzk) -..<%2- + :11—|> hE f'(z2k) + O(R®) =

h? " h® " h* (4) \ 1 4 o1 5
'QTy (@2k) + 3r (z2k) + ;1—,y (z2k) — gh f'(z2x) + O(R°) =

1
y(z2k+1) — y(zax) — hy'(z2k) — §h4f1,(332k) +O0(h%),

where the first and last terms give

Wesenn) = p(eae) + by (e2e) + o ]2k — flzaes)

+éh4f”(a:2k) + O(h%). (111.21)

The second expression to be dealt with is

hz
I, = ) [4f(z2k+1) + 2f(z2x)] -

Similarly, by setting A = h in Eq.(II1.20) and retaining terms up to order h® we

write
h2
—3_ [4f(z2k+l) + 2f(22k)] =
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o [ { o) # 07 w) + B 1 wre) + e+ 00 ) 4 21| =

2 3
T [65Gea) + 4k (w1282 £ (ws) + 2 1 (aae)] -+ O =

(2h)*
2!

f(zar) + (‘gg—!)‘f'(mzk) + ngﬁf”(z“) + (2:') F"(20x) + <g _ 257)

h® f"'(z2k) + O(h®) = y(z2k+2) — y(z2k) — 2hy'(z2k) - %hsf'"(“’zk) + O(h®),

from which we solve {or
Y(z2k+2) = Y(z2k) + 2Ry (z2k )+

%3 [4f(z2r41) + f(z2k)] + fghsf"'(wzk) +O(R°). (111.22)

The remaining third expression to be calculated is
h
I = 5[flea) + 4f(zaes1) + floarsa)|

and we evaluate this up to terms of O(h®), namely
h h
3 [f(z2k) + 4f(z2k+1) + f(22k42)] = 3 [f(ivzk) +

A{ fon) +hfon) + 5 £"(0a0) + T (o) + 5 f P om) + O(A)  +

2 3 4
fGaan) + @) 7 (man) + L () 4 BB gy 4 B ey 1 o(n)] =

(2R) f(z2k) + (2;!)2 f'(z2k) + L%)-:if"(mzk).}_

1 e + CE 10 + (- F) w9 + o) -

(2h)

(2h)y" (z2x) + (—2—2’%3/’"( o+ L h) ¥ (zax) + (—%:—l!):y(s)(zzkH

LYy ome)  goh® 19 (eae) +0(A) = y'(zzk+a)-y'(zzk)+9—15h5f(zzk)+0(h°),
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so that
Y (T2k+2) = y'(z2k )+
g [f(:nzk) + 4f(z2r4+1) + f(22k+2)] - §lah3f(4)(m2k) + O(h®). (111.23)

The De Vogelaere algorithm consists of the three formulas Eq.(I11.21), Eq.(I1I1.22)
and Eq.(III.23), wherein the terms of order A*, h® and h® are neglected. Therefore,

the algorithm is as follows.

Given {g2k-1,72k, Jpi}, compute first {far = f(22k, Jar), for—1 = f(T26-1,F26-1)}

and thereafter Jag41 from

_ h?
Jak+1 = Jak + hiyy + - [4fk — fak-1], (I11.24)

compute second fox+1 = f(T2k+1, J2k+1) and thereafter fog 42 from
h2
Gok+2 = G2k + 2hijy, + 3 [4f2k+1 + 2f2x] (I11.25)
and compute third fari2 = f(z2r+2,J2¢+2) and thereafter 7, . , from

_ _ h
k2 = P + 3 (fok + 4fak+1 + far2]. (I11.26)

Note that the derivatives at the odd-labelled mesh points are absent in this algo-
rithm and the values of the resultant solution at the even labelled points are more
accurate than those at odd-labelled ones. For the error analysis of this method sec

Coleman [51].
I11.4 Piecewise perturbation methods [42,77,79,82]

In a perturbation approzimation the given equation is replaced by another dif-

ferential equation (called a reference differential equation), which can be solved
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exactly. Perturbation theory estimates the deviation of the solution of the reference
cquation from the solition of the original equation. To derive numerical perturba-
tion methods means necessarily to follow the idea of the perturbation approxima-
tion, which in mathematical physcis is applied globally (on the whole domain of the
equation at once, see Bellman [123]), however it in the spirit of numerical analysis
- i.e. piecewise. The condition, that the reference equation must admit an analytic
solution, significantly restricts the class of differential equations for which piece-
wise perturbation can be formulated. Fortunately however, linear equations belong
to this class. We discuss the case of homogeneous second order linear equations,
which includes the Schrédinger equation. The first proposal for piecewise pertur-
bation techniques may be found in Ref.[77]. Each piecewise perturbation method is
defined by the recipe used for the piecewise approximation of the coeflicients of the
differential equation considered: if they are approximated by piecewise constants,
then the method is referred to as a constant perturbation method, whereas if they

are approximated by piecewise lines, then it is called a line perturbation method.
General Piecewise Perturbation Approach

If we have a homogeneous second order linear differential equations without

the presence of a first order oderivative, then the IVP takes the form

!

y"' = f(z)y(e € [a,8]), y(a) =3, ¥'(e)=1yo,

where f(z) is some given bounded real function. Note that algorithms for such an

equation are equally applicable to linear homogeneous second order equations of

the general form

2" +a(z)2' + b(z)z =0,

whose general solution may be written in the form

2(z) = exp [:2—1 / ’ a(z')dm'] y(z)
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with y satisfying " = f(z)y and
1, 1,
flz) = 5% (z) + ° (z) — b(z). (III.27)
We introduce a partition of [a,b] : 29 =a < #; < @3-+ < n = b. There is no

special restriction upon the manner of distributing the mesh points except if f(=z)
is discontinuous at some point, then such a point should be taken as a mesh point.
We concentrate on the interval [zx,zx+;) of length hy and look for a piecewise
perturbation algorithm which propagates the solution from zx all the way up to
Zi+1. We introduce variable § = z —zx, where § € [0, k), and if we denote X = xi

and g(8) = f(X + ), then the one step problem is

y" (X +8) = g(8)y(X +8) (111.28)

with the given initial conditions y(X) = 4 and y'(X) = B. Let us denote by u and

v the two solutions of Eq.(I11.28), which satisfy the particular initial conditions
u" = g(6)u, u(0)=1, u'(0)=0 (111.29)

and

v" = g(6)v, v(0)=0, ¥'(0)=1 (111.30)

By construction, the functions u and v are linearly independent - i.e. the Wronskian
Wlu,v] = uv' ~u'v = 1 at ¢ = 0. The solution of Eq.(III.28) with initial conditions

A and B can be written in matrix form as follows:

- ) () o
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The role of u and v is that of propagating the exact solution from zj to the desired
z) + 6 and consequently, © and v are called ezact propagators. We associate with

Eq.(I1I.28) an equation of the same form
7(X +8) =g(8)F(X +6), 6€l0,hs], (I11.32)

where §(6) is selected in such a way that this equation has known analytic solutions.
We are interested in the propagators @ and ¥ associated with Eq.(III.32) - i.e.

solutions of the IVPs
a" = g(8)u, a(0)=0, @'(0)=0 (111.33)

3" = g(6)s, #(0)=0, ¥'(0)=1. (111.34)

The function §, Eq.(I11.32) and its propagators @ and ¥ will be called a reference
function , equation and propagators respectively. Our goal is to construct the un-
known propagators v and v in terms of the known reference propagators « and #.
We apply perturbation theory to achieve this goal. The idea is to introduce a para-
metrically dependent function F(§;) (A € [0,1]), which reproduces the given g(})
and the reference §(A\) when X assumes its extreme value viz. F(§;0) = §(6) and
F(6;1) = g(8). Once F(6;A) is constructed, the propagators u and v sought and
the ones i and v given are the particular cases A = 1,0 of the propagators u(6; A)

and v(8; A) of the differential equation
y'(X +62) = F(6N)y(X + 6; ), 6§ € [0,h]. (I11.35)
The simplest form of F(§; ) is

F(6; A) = g(8) + AAg(6), (I11.36)
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where the deviation
Ag() = 9(8) - §(6) (111.37)
is called @ perturbation. The propagators u(§; ) and v(§; A) are sought as power

series in the coupling parameter A - i.e.
w(§A) = ) Mug(6), v(51) =) Aug(s). (111.38)
9=0 g=0

Both propagators will be generically denoted by P. Eq.(III.38) are thus collectively

written as
P(8;2) =) ATP(6), (111.39)
q=0

where P = u if P(0;A) = 1 and P'(0;)) = 0, and also P = v if P(0;A) = 0 and
P'(0; A) = 1. To calculate P, we introduce P(6; ) into Eq.(II1.35), namely

P"(50) = (3(8) + AAg(8)) P(8;), (II1.40)
and rearrange the terms in powers of A - i.e.
X [Py = G(8)Po) + ) A? [P} — §(6)P, — Dg(8)Py-1] = 0. (111.41)
g=1

This is identically satisfied for any A € [0,1] if the § dependent weight of A? vanishes
for any ¢ =0,1,2,--- - i.e.

Py = §(8) Py (II1.42a)

Py = §(6) Py + Ag(6)Py—1(6)(q = 1,2,3,- ). (111.42b)

To find suitable initial conditions for these differential equations, set A = 0 in
Eq.(I11.39) and thereby obtain P(§;0) = Po(é). On the other hand, we also get
P(8) = Py(6). Thus the initial values of the differences P(8; A)—P;(6) and P'{§; A)—

Fy(6) are forced to vanish, namely

i AT P,(0) = 0, i A?7P,(0) = 0(A € [0, 1]), (I11.43)

whence P,(0) = P'(0) = 0(g = 1,2,3,--).These results we now summarize in the

following
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Theorem.

Eq.(111.28) with the initial conditions A and B has the solution Eq.(III.31),

where the propagators u and v are written as the perturbation series
P(6) = Py(8) + Pi(8) + Pa(6) + -~ (111.44)

with P standing for both u and v. The 0-th order propagator Py(d) is exactly the
reference propagator P(8), while the correction P,(8) (¢ = 1,2,3, - --) is the solution

to the problem
P = §(8)P, + Ag(6)Py—1(8), Pg(0) = P,(0) = 0. (T11.45)

In practice, only a finite number of terms are retained in the sum Eq.(1II1.44). If

Ps is the last term retained, then P(§) is approximated by

P(6) = P(0) + Pi(8) + --- + Ps(6)

and the resultant algorithm

(5539)= (& &) (5) (11460

is called called a S-th order perturbation algorithm with respect to the reference
function §(8). The quality of this algorithm depends upon the approximation of the
given g(§) through the reference function §(6) and also the number of perturbative

corrections retained.
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II1.5 The Method of Potential Envelopes of R. Hall
The Schrédinger equation in three dimensions has the form
2 At ()] 80) = & ") LT
om 0 @ r ) =& r) ( . )

where Vp,a, m are physical parameters, ¢ is the energy and Vof(%) is a central

potential. Eq.(III.47) may be transformed to dimensionless form Hi) = Ei) by

scaling; thus:
o "o _ 2mVed® | 2mead’
r—;, P(') =Y(r), v= e E——f?—
and Eq.(I11.47) becomes
[—A+vf(r))¥(r) = E¥(r) (v>0, r=]r]), (II1.48)

where we can write Eq.(I11.48) in the form Hy(r) = E¢¥(r). H = —A +vf(r) is
called the Hamiltonian, f(r) is a central potential and v is a positive coupling con-
stant. Let us assume f(r) is monotone increasing, smooth and has a nice behaviour
at the origin - i.e.

f'(r) >0, lim |r? f(r)| = 0. (111.49)

With these restrictions and sufficiently large v, the bottom E of the spectrum of I
will be a nondegenerate discrete eigenvalue E,; (I =0,1,2, ) and the Hamiltonian
H is self-adjoint on some suitable domain D(H) C L*(R3). Eigenvalues so labelled
have degeneracy precisely (2{+1) and these I’s are called angular-momentum quan-

tum numbers. The relation between E,; and v is described by curves

En = Fnl(v) (111.50)
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called energy trajectories of f. We consider a new Hamiltonian —A + V(r) in
which the potential V is a smooth increasing transformation V(r) = g(h(r)) of the
potential h, which is the curve tangent to V. We assume that g is either convex
or concave - i.e. g > 0 or g" < 0. These cases give rise respectively to lower and
upper energy bounds.

Now we can describe the situation by the following two expressions
A+ vh(r) — Fylv), (111.51.a)

—-A+V(r) — Enyv). (II1.51.b)

For definiteness, we suppose that g is convex so that g” > 0 is convex - i.e. the

tangent lines to g(h) all lie below g - and we can consequently write
V(r) =g(h(r)) 2 A + vh(r), (I11.52)

where A = g(h(t)) — h(t)g(h(t)), v = g'(h(t)) (¢t € (0,00)) and h(t) is the point of
contact of V'(r) with its tangent potential

V() = A(t) + v(t)h(r). (111.53)

Since the Hamiltonians we consider are self adjoint and bounded below, we can
use the variational characterization of the eigenvalues to deduce that the potential

inequality Eq.(III1.52) implies the corresponding spectral inequality
Eni 2 A(t) + Fui(o(t)) = g(k) - hg'(h) + Fu(g'(h)) (1I1.54)

expressed in terms of A = h(t). We now maximize the lower bound Eq.(I11.54). By
differentiating the right-hand side with respect to h and canceling the factor g" > 0

we get the equation for the critical point

h = F,,(g'(h)). (I11I.55)
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Now by use of a Legendre transformation we may reformulate the expression for

the best lower bound as

E.> rrn>151 (Kni(r) + V(r)], (I11.56)

where

Kni(r) = Fui(u) — uFp (u), h(r) = Fa(u). (111.57)

Eqs(III1.57) representing the functions (K1) are well defined because of the con-
cavity of Fy;: F!, is monotone and therefore invertible. Eq.(III.56) represents a
semi-classical approximation, which is valid whenever the potential V(r) is a convex
transformation g(h(r)) of the potential h(r).

We note that if the transformation g is concave, then we reverse the inequalities
to obtain upper bounds. A more general description of this geometrical theory may
be found in Refs. [58-60] and applications of the method are discussed in Refs.[61-
68].
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Chapter IV

Practical Applications

In this chapter we develop two computer programs for solving the Schrédinger
equation with spherically symmetric potentials. Both of these programs are ap-
plicable to Schrédinger’s equation in one as well as three-dimensions. The one-
dimensional case is obtained simply by putting £ = ~1, where £ is the angular mo-
mentum quantum number. The first program treats Schrédinger’s equation as an
initial value problem and, as examples of this, we solve the following cases: the har-
monic oscillator, sech-squared, and the finite square-well potentials. We note that
the corresponding eigenvalues of these Schrodinger equations are known exactly.
The second program treats Schrdodinger’s equation as a boundary value problem
and as an example of this we study the Woods-Saxon potential. For the conve-
nience of the reader, we exhibit the programsin Appendix A. They are written for
a microcomputer using Turbo Pascal version 6; however, the logic of the programs

can easily be translated to any computer language accessible to the reader.

IV.1 Program (1)

The program consists of two separate modules, namely the main program and
nine subprograms (comprising 3 functions and 6 procedures). The main program
controls the solution of the problem, which is executed by the subprograms la-

beled: Initialize, Goalnodes and Squeeze (which includes the subprograms Nodes
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and Iteration). Thereafter, the resulting eigenvalues with the exact eigenvalues and
corresponding error are printed. We carry out the program with various values of A,
the results of which are collected in the tables of Appendix B. Further, stepsizes of
the form h = 27" (n = 2,3,4,5,6) may be used for any of the integration methods
discussed in Chapters II and III. In addition, the user is free to substitute any

other numerical integration procedure,

Function Pot
This is a function-subprograin which calculates the value of u(z) as given in

Eq.(III.1). When we write the potential or any other expressions to be pro-

grammed, we keep in mind the following:

(1) Among the four elementary arithmetic operations, multiplication and division
utilize much more computational time than addition or subtraction. Conse-
quently, we try to keep the number of multiplications and divisions to a bare
minimum in expressions which include these arithmetic operations.

(2) The retrieval of data from the core memory is one of the fastest operations
in computers; in particular, significantly faster than any arithmetic operation.
For this reason, if a program involves repeated calculation of one and the same
quantity, then the computation effort is significantly decreased provided that
this quantity is computed separately and stored in the core memory for further

use.

Functions F} and F,

Here we break down Schrodinger’s equation into a system of two first order
differential equations in order that we may apply the methods in Chapters IT and

III.
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Procedure Initialize

The program reads the initial data by this procedure, the interval of integration
[a,b] for instance. Therealter, we force the value of the eigenfunctions to decay
to zero at the boundary point £ = b. 1o find such a suitable b, we first graph
the approximate wave function for a given problem and determine therefrom the
nearest value of ¢ where the wave function can be assumed to have funciion-value
close to zero. This is called a practical infinity for the problem (or for a class of
problems). Further, let E, and E; be the upper and lower bounds for the eigenvalues
respectively. They are first determined by general mathematical estimates and are
inserted into the program. That is to say, we determine two numbers E, and E|
such that the desired eigenvalue E, lies between them - ie. E; < E, < E,. We

then utilize the value

E =0.5(E; + E,) (1v.1)

and ascertain by reans of the program whether F lies above or below the desired
E.. E in Eq.(IV.1) represents a trial value for E. This process is called halving
or bisection; however, this situation is complicated by the fact that the program’s
decision depends on the integration step-size h while E depends on h. We shall

discuss this further in Section IV.3.

Procedure Iteration

In this procedure we can use any integration technique discussed in this thesis
to compute the eigenfunctions. This procedure further counts the number of nodes
- .e. as soon as the eigenfunction-value equals zero, or the product of the compute
eigenfunction-value with the previously computed eigenfunction-value is negative,

it augments the node counter P by one.
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Procedure Nodes
In this procedure we repeat the iteration of the eigenfunctions, count each node
and augment. The process is repeated until the node counter P exceeds the node
goal ng or the absolute value of the eigenfunctions exceeds the value Y B. YBis a
somewhat mysterious entity in the program, typically Y B = 4. We have found that
if |y| exceeds Y B and the node goal is not met, then E is too small. In other words,
we suppose that the wave function shall not become small again after exceeding

Y B (as z increases) and produce another node.

Procedure Goalnodes

The purpose of this procedure is to classify two sets of the initial conditions
corresponding to the eigenvalues. The even set of eigenvalues En(n = 0,2,4,...)
corresponds to y(0) = 1 and y'(0) = 0, while the odd set En(n = 1,3,5,---)
corresponds to y(0) = 0 and y'(0) = 1. The idea is to look (numerically) for a wave

function which is L? but not necessarily normalized (i.e of norm one).

Procedure Squeeze

Here we recall the procedure ncdes in which we count each node and accu-
mulate. If the node count (at any stage) exceeds ng, then the first trial value E
from Eq.(IV.1) was too high. In other words E lies above the desired En; there-
fore, we replace E, by E and repeat the bisection step with the new trial value for
E = 0.5(newE, + E;). Conversely, if at the end of generating y(z) (by procedure
Iteration) the node count is below the node goal ng, then the first trial value for
E in Eq.(IV.1) was too low; therefore, we replace E; by E and repeat the bisection
with the new value for E = 0.5(E, + newE;). To guarantee the accuracy of the
desired eigenvalue, we repeat this procedure until the difference between E, and E;

is less than the choosen tolerance (say 10~%).
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IV.2 Program (2)
Here we consider the Schrédinger equation
¥ +[E —u(z)]y =0, € [Tmn =0,Tmaz), E<O (1v.2)
with boundary conditions y(0) = 0 and P(E) = 0, where
P(E) = ¥(2maz) + (~E)*y(¢maz) (Iv.3)
of Eq.(III1.10.a) or
P(E) = y(maz) - Ezp [(—E)%h] Y(Tmaz + ) (1V.4)

of Eq.(II1.10.b). A shooting method is used to compute the eigenvalues, which
shall require the calculation of P(E) at any E. The objective of this program is to
solve Eq.(IV.2) with initial condition y(0) = 0 and arbitrary y'(0) # 0 by generating
Y(Tmaz ) and ¥ (Tmaz) OF Y(Tmaz ) and Y(Tmaz +k). The value of P(E)is determined
either by Eq.(IV.3), if one uses one-step methods, or by Eq.(IV.4), if one uses multi-
step methods.
Let us explain quite briefly the role of the shooting method in this program. In
practice, the energy domain is so chosen that the values E® = Epin < E* < E? <
. and the values P(E°), P(E'),P(E?),--- are successively calculated until the
signs of P(E*) and P(E*~!) becomes different. This means that the first eigenvalue
lies in the interval (E*~1, E*), which can be located by computing the root of P(E)
via some standard rootfinding procedure such as the bisection method. Once the
first eigenvalue is determined, the process goes forward to calculate and compare
P(E'), P(E**1), etc. with the objective of looking for the next eigenvalue, and so

on.
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Four numerical methods are used in this program to generate P(E), in partic-
ular: Standard Numerov Method, De Vogelaere Method, Runge Kutta Method of
Order Four and Piecewise Perturbation Methods of Zero Order Corrections. The
first two methods belong to the multi-step class, the third belongs to the class of
one-step methods and the last one belongs to the class of piecewise perturbation
methods.

The program consists of six separate modules, namely the main program and

five subprograms labeled as Pot, Prelim, Numsol, P and Root.
Main Program

The reference eigenvalues, energy, stepsizes h and h.,, the energy domain E,,,,
and Ep;q: and the parameters aq, zo, PP aad QQ of the potentials are given. The
main program organizes the solution of the problem and is executed by subprograms
Prelim and Numsol. The computed eigenvalues and the reference eigenvalues are

finally compared and the errors are printed.
Procedure Numsol

This subprogram explores the mesh points E' of the energy interval (Eppin,
Emaz) to determine the positions of the eigenvalues. P(E*) is computed and its
sign is compared with that of P(E*~!). Whenever these signs are different, the

subprogram Root is called upon to localize the eigenvalue with the desired accuracy.
Function Root

In this subprogram, successive bisections are used to compute the root of P(L£)

until the length of the interval containing the root is smaller than T'ol = 1078.
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Function Pot

This function computes the value of u(z) in an efficient way - i.e. in terms of

the conditions described in Function Pot (Program 1).
Procedure Prelim

In this Procedure the scaled potential values needed by the numerical meth-

ods are generated. Prelim calculates the total number of steps in the interval

(mmmyzmaz)-

1v.3 Applications

We apply the two computer programs to some potentials to confirm the quality

of the algorithms.
Example 1: Harmonic Oscillator Potential

The potential function is given by
u(z) = az?, (Iv.5)

where a is a free parameter.The vibrational behaviour of continuous physical sys-
tems such as an elastic medium can be described by a superposition of harmonic
oscillators. One simple and important property of the harmonic oscillator (in one-
dimension) is that the potential is an even function of z - i.e. u(z) = u(~z) - and
consequently the solution y(z) of Schrédinger’s equation is either even or odd (the
eigenvalues are of multiplicity 1).

The harmonic oscillator problem is an excellent example to test the accuracy of

numerical methods, because the exact eigenvalues are well known [6]. We test the
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efficiency of our numerical method by comparing the computational results with

the exact eigenvalues (see Appendix B)
En=2n+1(n=0,1,2,3,--).

We compared our computations result for various numerical methods with the exact

values for different stepsize in tables B.1-20 of Appendix B.
Example 2: Sech-squared Potential
Here the potential function is given by
u(z) = —vsech?(z), (1v.6)

where v is a coupling constant taken to be v = 100 so that 10 exact eigenvalues
exist. The problem is also solved analytically Fligge [124] and the exact eigenvalues

are well known (see Hall [62]), specifically

1., 1.1
E, =~ (v+Z)5—(n+—2—) .

We apply various numerical methods with different stepsizes and we compare our
computations with the corresponding exact values. The results are exhibited in

tables B.20-40 of Appendix B.

Example 3: Woods-Saxon Potential

The potential u(z) is given by

u(z) = C},D(f) + Cf%m) exp <"" ;0%) (C(z) =1+ezp (” ;Om")) o (1v)

where PP, @, ap and zo are numerical parameters. The Woods-Saxon potential

is very popular in nuclear physics. The exact solution is available to be used as
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reference to check for the accuracy of the numerical scheme [82] . We will be

interested in the numerical computations of the eigenvalues. The following choice
of parameters
PP
zg=17, a =06, PP=-50, Q=—

Qo

has been studied by Adam at el [82].

Example 4: Finite Square Well Potential

- [ X[<a,

0 elsewhere.

The finite square well is used as a one dimensional approximation to the potential
function for an electron moving through a piece of metal or neutron moving through
a nucleus. The potential is —V} in the region from ¢ = +a and zero elsewhere; that
is to say, the square well potential is attractive. Now, suppose that a stream of
electrons is directed at it from the left. According to classical physics, no electrons
would be turned back, but from the wave theory, electrons will be reflected from
the sharp edges at € = +a and as a result, there will be a reflected and transmitted
wave.

The eigenvalue for the square well are well-known (Fliigge [124]), they are given

in parametric form by the equations (Hall [127))

—-B%*tan?B n even,
a2En(V0) =
—B%cot?f n odd,

. B2sec?p n even,
a‘Vy =

—B%cosec’B n odd,
where 8, = &F (n = 0,1,2,---) and B € [Br, Ba+1)-
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IV.4 The Error in the Eigenvalues

Our goal is to study the error of the computed eigenvalues and Eq.(1I.49)
and to determine whether the simple extrapolation formula is suitable for every
numerical method herein mentioned or not. This is very important for reducing the
computational effort and for improving the accuracy for the approximate solutions.
The reader is referred to sections I1.3 and II.4 before reading this section. We

assume E(h) admits an asymptotic expansion in h of the following form

E(h) = Eg+ ) _ axh*. (1V.5)
k=1

If ¢ = 2,3, 0r 4, then the numerical method we used is of order 2, 3, or4 respectively.
For illustration, we use Runge Kutta of order four - i.e. 72 == 4 - and if we replace h

by —2'5 % g 2 nd s then we get

E(h) = Eo + alh + a2h2 + a3h3 + a4h4

o) - men () onll) o) o)
E(g) - Bt (g)+(—> ms( ) m( )
£(3) - mon (3) v () s () v (3

These equation represent a system of five equations in five unknowns - i.e. Ey,a,,az,

) e (3)

I

4

ol &> o
ool AT N

a3 and a4. We can solve this system for the unknowns using any method from linear
algebra, Gauss elimination for instance.
For example, we applied the Runge Kutta method of order four to the first

eigenvalue of the harmonic oscillator and obtained thereby the following results



The Coeff. of RK4

Ey 0.9999999961
ay 0.0000004489
ap —0.0000169927
as 0.0002478665
a4 0.0091858586

TableIv.1 HO
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Similarly, if we apply Runge Kutta of order three and two for the first eigenvalue of

harmonic oscillator we get a system of 4 equations with 4 unknowns and a system of

3 equations 3 unknowns respectively, for these two situations we found the following

respective results

The Coeff. of RK3

Ly 1.0000001694
a, 0.3761060421
as 0.1487586475
as 0.0227654900

Tableiv.2 HO

The Coeff. of RK2

Ey 1.0000148055
a; -~0.0007620016
az -0.2405022891

TableIVv.3 HO

Consequently, we found extrapolation equation Eq.(II. 49) is suitable for the

Runge Kutta method of order two and four while is unsuitable for the Runge Kutta
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method of order three. In other words, for Runge Kutta of order three we have to
apply a more elaborate extrapolation formula, that is to say we have to find the
coefficients a;, a3, a3 in terms of E(k), E(2), E(%), E(%). We applied Runge Kutta

of order four, three, and two and thus got the following respective results

The Coeff. of RK4

Eq —9.2992585452

a4 —2.1351567705
az —102.2667998834
as —1581.1403537262

aq 7053.6274812330

TableIv.4 SQ

The Coeff. of RK3
Eq ~9.3059819404
a; 0.126644037

a; —8.0314568192
as 72.5502757937

TableIV.5 SQ

The Coeff. of RK2

E, —9.2891510897
a —1.0718564672
ay 7.0520485547

TableIV.6 SQ

From these tables we conclude that the extrapolation Eq.(II.49)is not suitable

for Runge Kutta of order two, three and four. Therefore, it is desirable to find the
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coefficients a; and a, for Runge Kutta of order two in terms of E(h) and E(2) to
ensure an accurate approximation. Similar conclusions hold for for Runge Kutta of
order four and three.

The finite difference table is one of the most effective procedures for studying
polynomial dependence on small parameters. The reader is referred to sectionII.4.
We use Eq.(11.58) for the first eigenvalue of the harmonic oscillator and the po-

tentials sech-squared and finite square well. For these we obtained the following

results
E(}l) = 1.0000388015
0.9999904179
E(}) = 1.0000025135 0.9999999707
0.9999993739 9999999997
E(&) =  1.0000001585 .9999999994 0.9999999999
0.9999999602 0.9999999998
E(&) =  1.0000000099 1.0000000004
0.9999999979
E(&) =  1.0000000005

TableIV.7 Finite Difference Procedure of the First Eigenvalue of the HO
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E(3) = —90.4645098981
—90.4923040706
E(}) = —90.4853555276 ~90.4877437287
—90.4880287499 —90.4875083955
E(5)=  —90.4873604446 —90.4875120727 —90.4875078035
—90.4875443649 ~90.4875078059
E(&)=  —90.4874983851 —90.4875078727
—90.4875101529
E(&) = ~90.4875072109

TableIV.8 Finite Difference Procedure of the First Eigenvalue of the Sech-Squared

E(}) = —9.2931486868
—9.3480466042
E(3) = —9.3343221249 -9.3011153360
~9.3040485402 ~9.3065474168
E(L)=  —9.3116169366 —9.3064625407 ~9.3159115440
—9.3063116656 —9.3158749651
E(&)=  —9.3076379834 —9.3157278960
—9.3151393816
E(5) = —9.313240321

TablelV.9 Finite Difference Procedure of the First Eigenvalue of the SQ

As evident from the finite difference table for harmonic oscillator and sech-
squared potential, strong convergence of the computed eigenvalue to the exact ecigen-
value takes place. Each column converges to the exact eigenvalue faster than the

preceeding one. Moreover, the principal diagonal converges faster than any column.
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This justifies the use of Richardson extrapolation Eq.(I1.49) for RK4; nevertheless,
the finite difference table for the first eigenvalue of the finite square well potential
indicates no convergence of the computed eigenvalue to the exact eigenvalue in each

column. We can hence say that Eq.(I1.49) is unsuitable for SQ.



Chapter V

Conclusion

In this thesis we have studied some effective methods for finding numerical
solutions to the time-independent Schrodinger equation. The numerical solution
of the time-dependent Schrédinger equation has been discussed in Refs. [125,126).
We have addressed many issues regarding numerical methods for the solution of
Schrédinger’s equation. In Chapters I and I1 we surveyed some numerical methods
for the initial value problem of ordinary differential equations. We have considered
two approaches for solving IVP, in particular the one-and multi-step methods. T'hese
methods are applicable to any boundary value problem and yield a sequence of ini-
tial value problems in the numerical calculation scheme. We further discussed the
extrapolation technique and explained why this technique is so effective in reducing
the error arising from the numerical methods. In Chapter I1I we studied various
ways of treating the Schrodinger equation numerically. Although the most common
approach is to treat it as an eigenvalue problem, in this thesis we have treated it
as a Cauchy problem as well as a boundary-value problem. Morcover, we have in-
vestigated some analytic approximation methods, such as the method of potential
envelopes, which give us formulae for upper and lower bounds for the cigenvalues,
and also perturbation theory . We have studied two of the most powerful numer-
ical methods to be found in the literature, namely Numerov’s and De Vogelaere's
methods. In Chapter IV we developed two computer programs for Schrodinger’s

equation considered asa IVP and as a BVP. We applied these programs to the spe-
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of the harmonic oscillator, the sech-squared potential and the finite square well

and Woods-Saxon potentials. We have also explored the question of the relation

between the local integration error and the final error in the eigenvalue estimate.

e The advantages of our program are as follows.

(1) We can easily change the stepsize. Of course, the smaller the stepsize, the more
accurate the numerical solution.

(2) Flexibility: the user can use any convenient method in the procedure Iteration.

(3) The procedure Squeeze in Program (1) expresses a simple but powerful idea
that easily yields accurate eigenvalues with tolerance (difference of the upper
and lower bounds) as small as 107°,

{4) The procedure Numsol in Program (2) determines the eigenvalue in the interval
(Eminy Emaz) by computing P(Ei) and comparing its sign with the sign of
P(E*!). Once it detecis that both signs differ, the procedure Root is called
upon to find the eigenvalue with the desired accuracy.

e We have explored the error of the eigenvalue and found that the simple extrapo-

lation technique in Eq.(II. 49) can be applied to numerical methods of order two

and four such as the Runge-Kutta methods of order two and four. However, this
simple formula cannot Le applied to numerical methods of order three, specifically

Runge-Kutta of order three. In the Runge Kutta method of order four (i.e p = 4in

Eq.(11.49), we get the following Richardson extrapolation for the eigenvalue

_16E(%) - E(h)

E 15

+ O(R%). (v.1)

We applied Eq.(V.1) to the harmonic oscillator, assuming in program(1) that the
parameters have the following values: b = 8, h = 0.25 and NSTEPS = 32. Eq.(V.1)

gave vs accurate eigenvalues with errors of order h® and thus the following table.



RK4

RK4

RK4 with Richardson extrapolation

1.0000388015
|-

1.0000000943

3.0005638208

3.0000023124

TableV.1 Comparison Two Eigenvalues of HO
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If we apply Richardson extrapolation Eq.(V.1) to SQ, then the assumption in

program(1) of the parameter values & = 18, A = 0.25, and Vp = 10 yields the

following

RK4

RK4

RK4 with Richardson extrapolation

—9.2931486868

—9.337067207

—7.2078134296

—17.3811028167

TableV.2 Comparison Two Eigenvalues of SQ

From this and results from Chapter IV, we found by using Eq.(V.1) that

the computed eigenvalues fail to converge to the exact eigenvalue, in other words

Eq.(V.1) is unsuitable for SQ. Consequently, we conclude that the applicability of

Richardson extrapolation for the numerical computation of the eigenvalues of the

Schrodinger equation depends on the nature of the potential. More specifically,

if the potential vanishes very quickly as |z| increases (that is to say, faster than

exponential), then in the asymptotic expansion

E(h) = Ey + arh + azh? + .-

none of the coefficients may a priori be assumed to be small.



Appendix A

Program 1

Program Schrodinger;

o o oo o oo oK ook ok o ook o ok ok ook Rk oo sk e ok ok ok oo ok ok ok ok ok ok ok ok ok ok o ok ok ok o kK ok ok

This program is for solving Schrodinger’s equation
[-V? + v+ u(z)]¥ = EY,

where v is coupling constant and u(z) is symmetric potential.
Use any method from Chapter IT and III
to solve Schrodinger’s equation Eq. by breaking it up into two first ODEs.

A e e a0 e ol o ot e e ok ek ok ok ke R ot sk ok ek ok ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ki ok ok ok o ok ok 0K kok ok dk sk ok okok ok

{$N+}
{$F+}
{SR-}
Uses crt, dos, graph, nrinter;
Const
prog = ’Second crder Diff. Eqn. by using Runge Kutta of order 4 *;
TOL = 0.000000001;
Type
secondrow=array|0..50)] of extended;
Var
X,a,b,Y,Z,Y0,Z0,h :extended;
E, EU, EL, P, YB, ERR :extended;
I, J, Nsteps, n, ng :integer;
replyc :char;
EXEV :secondrow;
elarge :boolean;

Function POT( X : extended): extended;

Begin
POT := u(X);
End;
Function f1( X,Y,Z : extended): extended;
Begin
fl :=7Z;

End;
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Function f2( X,Y,Z : extended): extended;

Var

Z1 : extended;

Begin

End;

Proc

Z1 := POT( X )-E ;
= Z1*Y

edure setparams;

Begin

End;

Proc
Var

Begin

Clrscr;

Wbl (7 e "
Writeln(’ ’,prog);

Writeln( oo e e B}
Writeln;

Writeln(’ We shall solve y” = f(x,y) with:’);

Writeln;

Writein(’ f(X,Y) = (u(x)-E)*Y *);

Writeln;

Writeln("#¥#* FEEEEEEXXRXRREL R KRR REXER KRR,

Writeln(’ Any method of from chapter II, II1 °);
Wiriteln(P*H ¥ KX FkXREKRRARREE KRR AR B ERRR K RER R KRk A1),

Writeln('’,’ Exact EXEV ’, ' COMPUTED EV. '’ ERROR ’);
B 4L T )

edure Iteration;

This procedure is to compute the eigenfunctions
as soon as the value of the eigenfunction is zero or
the product of the computed eigenfunction-value
and

the previous computed eigenfunction-value is neg-
ative it counts the nodes.

We can use any method from Chapter 1I and III.

_

End;

Proc

edure Nodes;

Begin

P.=0;

Repeat

Solve;

Until ( (I = Nsteps-1) Or ( P>ng )Or(abs( Y ) > YB ));
If P > ng Then elarge := true Else elarge := false;

End;
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Procedure Goalnodes;

Begin
If Odd(n) Then
Begin
ng := round((n-1)/2);
Y0 := 0.0; 20:=1.0
End
Else
Begin
ng := round(n/2);
YO0:= 1; 20 :=0.0
End;
End;
Procedure Squeeze;
Begin
Repeat
Nodes;
If elarge Then
Begin
EU:=E;
E:= (EU+EL)/2;
End
Else
Begin
EL:= E;
E := (EU+-EL)/2 ;
End;
Until (EU-EL) < TOL ;
End;
Procedure Initalize;
Begin
a:=0.0; b:i=7; {End points}
Nsteps := 7 ; {Number of steps}
EU:=7; EL:=7; {The upper and lower bound}
YB:=7;
E := (EU+EL)/2 ;
End;
Begin {main Program}
clrscr;
Setparams;
EXEV[0] :=?; EXEV[1] := 7
EXEV[?] :=7; EXEV[3] := 7;
EXEV[4] :=7; EXEV[5] :== 7
EXEV[6]) := ?; EXEV(7] :=17;
EXEV[8] :=7; EXEV[9] := 7}
EXEV[10] :=7?; EXEV[11]) := 7;

EXEV{12] :=7;



For J:=0 To 12 Do
Begin

n:=7J;

Initalize;

Goalnodes;

Squeeze;

ERR := EXEV([J]-E ;

Writeln( J ,’)’, EXEV[J] :15:10,"",E: 15: 10, ', ERR :

Eri;

Wiriteln;

Writeln(’Step size =, h: 13 : 8 );Writeln;
Writeln(’Number of steps = ’, NSTEPS : 8 );

replyc := readkey
End.

Program 2

Program Schrédinger;

sk ok s e ok ok o e e o sk koK ok ke ok ok sk ok R Rk ok ok Rk ko R Sk ook ok Rk R Rk Rk Rk Rk ko kR

This is program for solving Schrodinger’s equation

Where v is coupling constant and u(z) here is the Woods-saxon potential.

[~V 4 v+ u(z)]¥ = EV.

Using any method from chapter 11, III.

e ek o ook ko ko ok ok o o ok ok ok ook koK kok ok ok ek ok ok ok ok ook ok dokok o ko ok R ok sk koo R Rk kR ko Rk ok ok ok

{$N+}

{$F+}

{$R-}

Uses crt, dos, graph, printer;
Type

Var

lastrow = array[0..200] of extended;
firstrow = array [1..1500] of extended;
secondrow = array[0..13] of extended;
func = function(X : extended) : extended;

tt, ss, A0, X0, PP, QQ, ERR, hi, h2, H, xmin, xmax
,emin , emax, xminl, xmax1, eminl, emax1 : extended;
nstep, nstepl, nstep2 : integer;
L,Liref,imax,hen,henl,imax1 : integer;

EXEV : secondrow;

Compev,COMPEV1 : secondrow;

replyc : char;

V,V1,V2: firstrow;



81

Function POT(X : extended): extended,;
Var

EXPON,B : extended
Begin

EXPON := EXP((X-X0)/A0);

B := 1+EXPON;

POT := PP/B+QQ*EXPON/(B*B);
End;

Procedure PRELIM(Var xmin,xmax,h : extended; Var nstep : integer);
Var

K,N : integer;

X,HH : extended;
Begin Procedure

NSTEP := round((xmax-xmin)/ H); {Numerov's Method}
1= xmin;
N := nstep+1;

HH := B*H/12;
For K:= 1 To N Do

Begin
V(K] := HH*POT(X);
X = X-+H;
End;
V{N+1} := 0.0;
End; {end of the procedure}

Function P(Var NSTEP : integer; Var H,E : extended) : extended;
Var

EN,Y0,D0,D1,D2,Y1,Y2 : extended;

k,NMAX : integer;
Begin

EH := H*H*E/12;

NMAX := nstep-+2;

D0 := EH-V[1];

D1 := EH-V|2};

Y0 := 0.0;

Yi:=H;

For K := 3 To NMAX Do

Begin
D2 := EH-V[K];
Y2 := ( (2-10*D1)*Y1-(14D0)*Y0)/ (14 D2);
D0 := Djy;
D1 := D2;
Y0:=Y1;
Y1l:i=Y2

End; {for}

P := Y1-YO*EXP(-H*SQRT(-E));
End; {Function}



Function Root(Var EA,EB,PA PB,h2 : extended; Var nstep2 : integer) : extended;
Var

E1,E2,P1,P2,PTEST,ETEST,PROD,DEV,tol : extended;

label 10,20,30,40;

Begin
TOL := 8.E-5;
El := EA;
E2 := EB;
Pl := PA;
P2 := PB;

20: ETEST := 0.5*(E1+E2);
PTEST := P(nstep2,h2, Etest);
If PTEST = 0 Then GoTo 40;
PROD: = P1*PTEST;

If PROD > 0 Then GoTo 10;
E2 :== ETEST;
P2 := PTEST;
GOTo 30;
10 :E1 := ETEST;
Pl := PTEST;
30 :DEV := ABS(E2-El);
If DEV > TOL Then GoTo 20;
ROOT := (E1*P2-E2*P1)/(P2-P1);
40 :ROOT := ETEST,;
End;

Procedure NUMSOL(Var nstep2,imax1,henl : integer;
Var hl,eminl,emax1 : extended;Compevl : secondrow);
Var

E,PROD,P1,P2,ENEXV : extended;

label 10,20;
Begin

IMAX1 :=0;

E := EMINY;

P1 := P(nstep2,H1,E);

20 :ENEXT := E4+HEN];

If ENEXT > EMAX! Then ENEXT := EMAXY;

P2 := P(nstep2,h1,ENEXT);

PROD := P1*P2;

If PROD > 0 Then GoTo 10;

Compev[imax1] := ROOT(E,ENEXT,P1,P2,h],nstep2);

imax1 := imax1+1;

10: P1 := P2;

E := ENEXT;

If(E < EMAX1)Or(E > EMAX1)Then Go'To 20 ;
End;

Begin {main Program}
clrscr;
EXEV[0] :

= —49.457788728; EXEV[1] := —48.148430420;
EXEV[2] := —46.290753954; EXEV[3] :=

—43.968318432;
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EXEV[4) := ~41.23607772; EXEV[5) := —38.122785097;
EXEV([6] := —34.672313206; EXEV([7] := —30.912247488;
EXEV[8] := —26.873448916; EXEV[9] := —22.588602258;
EXEV[10] := —18.094688282; EXEV[11] := —13.436869040;
EXEV[12]:= -8.676081671;  EXEV[13] := —3.908232481;
A0:=0.6; X0 := 7.0;

PP := -50.0; QQ := -PP/AQ;

Xmin := 0; Xmax := 10;

Emin;=-50; Emax := 0.0;

Hen := I;

h:= 1./16;

Writeln(’ **********************************’);

Writeln(’ Standard Numerov method °);

Writeln(? ##++ £ 5 R F 00K R RRRERRRR AR R R AR
Writeln;

WRITELN(’STEPSIZE’ : 25,H : 12);
PRELIM(xmin,xmax,H,nstep);
NUMSOL(astep,imax,hen,H,emin,emax,Compev);
Writeln('imax =’,imax);

]

Writeln;
Writeln(’Number of steps ’,nstep);
writeln;
WRITELN(' ’,’ Exact EXEV ’,” COMPUTED EV.’, ’ERROR ’);
writeln(’ ’, ’: o= ’I ? oI mE === ,, ! :::::::’);
For I := 1 To imax Do
Begin
iref := I-1;

ERR := EXEV/iref]-Compev|iref];

Writeln(iref,’)’, EXEV[iref] : 12: 6,Compev[IREF] : 12 : 6,err : 12: 6);
End;
replyc := readkey

End.
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Appendix B
Harmonic Oscillator
ho= 1 |

Exact value Computed value Error

1 0.9854297898 0.0145702102
3 2.9303924393 0.0696075607
5 4.8282392420 0.1717607580
7 6.6876854659 0.3123145341
9 8.5162673836 0.4837326164
11 10.3205286474 0.6794713526
13 12.1061731813 0.8938268187
15 13.8781912748 1.1218087252

Table B.1:

Harmonic Oscillator

Runge-Kutta of Order Two

b=

Exact value Computed value Error

1 0.9961617070 0.0038382930

3 2.9810304274 0.0189695726

5 4.9513353367 0.0486646633

(f 6.9077545496 0.0922454504

9 8.8509406854 0.1490593146~ﬂ
11 10.7815220106 0.2184779894
13 12.7001035193 0.2998964807
15 14.6072679637 0.3927320363 |

Table B.2:

Runge-Kutta of Order Two



Harmonic Oscillator

ho= L

16

Exact value Computed value Error

1 0.9990277183 0.0009722817
3 2.9951527833 0.0048472167
5 4.987439664Y 0.0125603351
7 6.9759332562 0.0240667438
9 8.9606780164 0.0393219836
11 10.9417179785 0.0582%20215
13 12.9190967463 0.0809032537
15 14.8928575091 0.1071424909

Table B.3:

Harmonic Oscillator

Runge-Kutta of Order Two

b= %
Exact value Computed value Error
1 0.9997561274 0.0002438726
3 2.9987815290 0.0012184710
5 4.9968346510 0.0031653490
7 6.9939183395 0.0060816605
9 8.9900354345 0.0099645655
11 10.9851887703 0.0148112297
13 12.9793811723 0.0206188277
15 14.9726154600 0.0273845400

Table B.4:

Runge-Kutta of Order Two
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Harmonic Oscillator

h= &

64

Exact value

Computed value

Error

0.9999389816

0.0000610184

2.99966949637

0.0003050363

4 9992070735

0.0007929265

6.9984754897

0.0015245103

8.9975003899

0.0024996101

10.9962819528

0.0037180472

12.9948203569

0.0051796431

14.9931157808

0.0068842192

Table B.5:

Runge-Kutta of Order Two

Harmonic Oscillator

ho= 1

Exact value

Computed value

Error

1 1.1036320144 —0.1036320144
3 3.1971210487 —-0.1971210487
5 5.2387846232 —0.2387846232
[ 7.2709872086 —O.2709872086,—
9 9.2790935615 —0.2790935615
11 11.2714398805 —-0.2714398805
13 13.2398519246 —0.2398519246
15 15.1875183693 —0.1875183693

Table B.6:

Runge-Kutta of Order Three
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Harmonic Oscillator

=

Exact value Computed value Error

1 1.0493822424 —0.0493822424
3 3.0964610785 —~0.0964610785
5 5.1199007106 —0.1199007106
7 7.1427271846 —0.1427271846
9 9.1589229000 —0.1589229000
11 11.1740694575 —0.1740694575
13 13.1850172625 ~0.1850172625
15 15.1944594759 —0.19445¢ {759

Table B.7: Runge-Kutta of Order Three
Harmonic Oscillator
=

Exact value Computed value Error 1
1 1.0240934435 —0.0240934435
3 3.0476082626 —0.0476082626
5 5.0593969665 —0.0593969665
7 7.0711356763 —0.0711356763
9 9.0799022556 —0.0799022556
1 11.0886023692 —0.0886023692
13 13.0957599396 —0.0957599396
15 15.1028232450 —0.1028232450

Table B.8: Runge-Kutta of Order Three



Harmonice Oscillator

ho= ]

32

Exact value

Computed value

Error

1 1.0118991501 - 0.0118994501

3 3.0236521141 ~0.0236521 M—{- ‘
S 5.0205377€R1 —0.0‘29.‘.’)37768“1w
7 7.0354162977 —0.035416297;7_“
9 9.0398264863 —0.0398264863
11 11.0442316617 -0.0442316617 -
13 13.0478990327 ~0.0478990327
15 15.0515603389 B

--0.0515603389

Table B.9:

Runge-Kutta of Order Three

Harmonic Oscillator

Exact value

Computed value

Error

1.0059132312

-0.0059132312

3 3.0117893955 ~-0.01 17893955

5 5.0147296599 —0.0147296599
7 7.0176683513 - 0.0176683513
9 0.0198731757 —0.0198731757
1 11.0220773777 _0.0220773777
13 13.0239143791 0.0239143791
15 15.0257508851 ~0.0257508851

Table B.10: Runge-Kutta of Order Three
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Table B.11: Runge-Kutta of Order Four

Harmonic Oscillator

h" = ;
| Exact value Computed value— Errm_'
1 1.0000025135 O Mh()_UOTJOOZ Hl i"
3 3.0000374067 - 0. ()000 374()67
5 5.0001607859 » -0 00016(}7;3—6
7 7 0004290056 ] *()(-)(;0;129—0“0 6
g 9.0008961311 | 00008961311
11 11.0016139750 _— 0 00161 397‘30
13 13.0026321340 --0. 0026 321340
15 15.0039980179 N —0.0039;)—8-61-7—;

Table B.12: Runge-Kutta of Order Four
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Harmonic Oscillator

Y
h—lﬁ

Exact value Computed value Error

1 1 0000001585 -0.0600001585
3 3.0000023721 —0.0000023721
5 5.0000162601 —0.0000102601
7 7 0000275621 —-0.0000275621
9 9.0000579830 -0.0000579830
11 11.0001051879 -0.0001051879
13 13.0001728078 -0.0001728078
15 15.0002644374 —0.0002644374

Table B.13: Runge-Kutta of Order Four

Harmonic Oscillator

b d
Exact value Computed value Error
1 1.0000000099 —0.0000000099
3 3.0000001485 —~0.0000001485
5 5.0000006450 --0.0000006450
7 7.0000017348 —0.0000017348
9 9.0000036549 —0.0000036549
11 11.000066429 ~0.0000066429
13 13.0000109326 —0.0000109326
15 15.0000167600 —0.0000167600

Table B.14: Runge-Kutta of Order Four
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Harmonic Oscillator

64

Exact value

Computed value

—— e e g

i FError

1

1.0000000005

() 0000000005

-0 0000000094

0 0000001087

3 3 0000000094
5 50000000406 | 00000000406
7 70000001087 | 0 00000C

9 90000002202 | - 00000002292
1 11.0000004166 | -0.0000004166
13 13 0000006857 - 0.0000006857
15 15 0000010508 0. ;

~0.0000010508

Table B.15: Runge-Kutta of Order Four

Harmonic Oscillator

h o= !

4

Exact value

Computed value

Error

1

1.0000006753

~0 0000006753

3 3.0000232258 -0.0000232258

) 5.0000972900 ~0.0000972§06 —
7 7.0003069600 —0.00030696(.)6”—
9 9.0007316931 ~0.0007316931 —
11 11.0015234027 ~0.0015234027 |
13 13.0028093698 —-0.0028093698
15 15.0048015891 -0.0048015891

Table B.16: Runge-Kutta-Fehlberg
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Harmonic Oscillator

fre— -

o

i

Exact value

Computed value

Error

1 0.9999999996 0 0000000004
W3 3 0000004773 -0.0000004773
| 5 5.0000018624 ~-0.0000018624

7 7.0000057958 —0.0000057958

9 9.0000134296 —0.0000134296

11 11.00002/6795 —0.0000276795
) 13 13.0000505613 —0.0000505613

15 15.0000861997 -0.0000861997

Table B.17: Runge-Kutta-Fehlberg

Harmounic Oscillator

e
Exact value Computed value Error
1 0.9999999996 0.0000000004
3 3.0000000111 ~0.0000000111
5 5.0000000380 —0.0000000380
7 7.0000001164 —0.0000001164
9 9.0000002558 —0.0000002558
11 11.0000005145 -0.0000005145
13 13.0000009149 —0.0000009149
15 15.0000015368 —0.0000015368

Table B.18: Runge-Kutta-Fehlberg
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Harmonic Oscillator

h - 31'.3

Exact value Compu_t;(i valuem” - Er:r()r

1 1.9999999996 N I)-&)Boommn 1
~—:—3———--~—- 2.9999999999 o () 1)&)1;665001

) 5.000000001—1 “ (1 0000()0()(“ 1

7 7.00000000‘2é—m“ O ()0()()()()()()22

9 9.0000000051 | 0.0000000051

1 11.0000000105 - 0.0000000105

13 13.0000000177 N 0 ()O()(-)'(;{)—()} 77

15 15.0000000292 “W—Z) ()()()0()()()2‘)2

Table B.19: Runge-Kutta-Fehlberg

Harmonic Oscillator

b= 4

Exact value Computed value Erro; ______
1 0.9999999996 0.0000000004
3 2.9999999999 0.0000000001 )
) 5.0000000002 ~‘0.0000()6~()(3£i2__
7 6.9999999999 0.000000006 l—~ |
9 8.9999999999 0.0000000001
11 11.0000000002 ~0.000000000£ B
13 13.0000000005 - 0.0000000005
15 15.0000000008 —0.0000000008 -

Table B.20: Runge-Kutta-Fehlberg




-

Sech-Squared

— 1
h,—4

Exact value

Computed value

Error

- 90.4875078027

-91.1605761376

0.6730683348

- 72.4625234082

—7T74.5795545958

2.1170311875

56 4375390137

—59.5550202375

3.1174812238

-42.4125546192

—45.5827409936

3.1701863744

—-30.3875702247

-33.0154670275

2.6278968028

- 20.3625858302

—22.2585385087

1 8959526784

-12.3376014357

—13 6041233683

1.2665219326

-6.3126170412

—-7.1231442114

0.8105271702

Table B.21: Runge-Kutta of Order Two

Sech-Squared

b=
Exact value Computed value Error
_‘—90.4875078027 —90.7669172386 0.2794094358
—72.4625234082 —173.5746112518 1.1120878435
—56.4375390137 | —58.6577966296 2.2202576159
—42.4125546192 —45.6129557100 3.2004010908
—30.3875702247 | —34.2496564106 3.8620861859
—20.3625858302 —24.4893933155 4.1268074853
—12.3376014357 —16.3135724393 3.9759710036
—6.3126170412 —9.7364327699 3.4238157287

Table B.22: Runge-Kutta of Order Two

94




|

Exact value

- 90. 18730 78027

-72.462523 1082

-56.437 3'3901 37

-42.11 21)5-1() 192

b e e e ——

. e e

—30 3875702247

Sech-Squared

1
h 16

Computod value

()() 667569201

- 7 2 t‘)GQO?l )()l

’)z 1112 ll()()‘)

‘1.3. 19.38()7 364

- 31 152()0() 7()7

--20.3625858302

21 8()73887346

-12.3376014357

1 l 81()677‘2 3()1

n‘ —6 3126170412

~~7 r)74457’68.21

Error
00792191173
- 0 3343837500
0 7()‘): 121171
1 ()81 31 ")l 71
l 3()1“‘)5 I‘)
l ..)() 18()29l)44

1 4730757944

{

1 2618106109

Table B.23: Runge-Kutta of Order Two

Sech-Squared

Exact value

Computed value

—-90.4875078027

~-90.5079601329

—72.4625234082

-72.5501146091

—-56.4375390137

—-56.6261775140

—-42.4125546192

—-42.7033875163

~30.3875702247

-30.7573431219

—20.3625858302

—~20.7713935877

—12.3376014357

—-12.7362316223

Y SR ——

Error

00201 2“()1

U

U (J87r‘)12()()‘)
() 1886 38! )()() }

0 zQOB 528‘)71
() i()()772897l

0. 4088077 HTH

0 3986 30]866

—6.3126170412

-6.6496727017

0.3\170.

Table B.24: Runge-Kuttia of Order Two

,)66()4

— e e e




Sech-Squared

ho= )

84

Exact value

l
Computed value

Error

-90 4875078027

—-90.4926617910

0.0051539882

- 72 4625234082

—72.4846792076

0.0221557994

-56.4375390137

-56.4854258413

0 0478868276

-42 4125546192

—-42.4865903155

0.0740356962

--30.3875702247

~-30.4818494678

0.0942792431

bo—

—-20.3625858302

-20.4668290960

0.1042432658

-12.3376014357

- 12.4390773290

0.1014758932

—-6.3126170412

-6.3980503768

0.0854333356

Table B.25: Runge-Kutta of Order Two

Sech-Squared

96

ho= )

4

Exact value

Computed value

Error

-90.4875078027

—-86.9178263663

—3.5696814364

—72.4625234082

—68.3373018477

—4.1252215605

—56.4375390137

—-54.2257432146

—2.2117957992

—42.4125546192

—-43.2058485687

0.7932939494

—30.3875702247

—-32.9542488991

2.5666786744

—20.3625858302

—24.8278532785

4.4652674482

-12.3376014357

~17.2923638816

4.9547624459

—-6.3126170412

-10.9213095533

4.60856925121

Table B.26: Runge-Kutta of Order Three




Sech-Squared

— 1
h‘a

Exact value Computed valuv En or
—-90.4875078027 -88. QIQ;gl 16\)1 D l—"680266373"
—72.1625234082 - 69. 937037592 ] 2 )2 ) 18 58157
—56.4375390137 -53. 9845710.)&7.—”1_ -2. 102‘)() lA‘_)"-
—42.4125546192 —-40.2489540658 -‘2 163()0() 534
-30.3875702247 —28.7495362132 B 1. 6380:;161 15

~20.3625858302

—19.2345317850

—12.3376014357

~11.6746881580

l 1280510153

0 66‘2()1 32777

~6.3126170412

—-5.9768588286

() H 7 821‘27

Table B.27: Runge-Kutta of Order Three

Sech-Squared

L
16

h =

Exact value

Computed value

Error

—90.4875078027 —89.7559819528 —0 731.)2084‘)9
—172.4625234082 —-71.2100221190 —1. 25250128{”
—-56.4375390137 —55.1244200415 -1 ’313ﬁ1—if—3$“)_7h2i "
~42.4125546192 —41.1062600786 —1.30629454(]_:(“m
~30.3875702247 —29.2151969919 -1.1723732328
~20.3625858302 —19.3534882663 —1.0090975640 |
—12.3376014357 —11.5414480370 —-0.7961533988

—6.3126170412

—5.7360259361

~

-0.5765911051

Table B.28: Runge-Kutta of Order Three




Sech-Squared

98

h = 2

32

Exact value

Computed value

Error

- 90.4875078027

~90.1346479110

—-0.3528598918

—72.4625234082

~71.8448675561

—0.6176558521

-96.4375390137

--55.7824266714

—-0.6551123423

~-42.4125546192

—~41.7504425397

—0.6621120795

—-30.3875702247

—29.7819173971

—-0.6056528276

—20.3625858302

—19.8304207119

-0.5321651184

--12.3376014357

—11.9085558410

—0.4290455947

-6.3126170412

-5.9956512207

—-0.3169658206

Table B.29: Runge-Kutta of Order Three

Sech-Squared

ho= 2

84

Exact value

Computed value

Error

—90.4875078027

—90.3142374267

—-0.1732703760

—~72.4625234082

--72.1559198024

-0.3066036059

-56.4375390137

—56.1113825195

—0.3261564942

—42.4125546192

—42.0818213668

-0.3307332524

~30.3875702247

—30.0840602224

-0.3035100024

—20.3625858302

—20.0949556256

~0.2676302046

—-12.3376014357

—12.1210115813

—0.2165898545

-6.3126170412

—-6.1519251660

-0.1606918753

Table B.30: Runge-Kutta of Order Three



Sech-Squared

Exact value

~ 1
h 3

Computod valuc

-90.4875078027

- 90.46- 100()8981

~72.4625234082

-72 ‘2987673038

v --06.4375390137

)G 097287030 3

-42 4125546192

—12 218685 7682

—-30.3875702247

- 30 622384 1640

—20.3625858302

-21. 6195348915

Error

() ()22()‘)7()()

() 1637')()10

0 3 1()251‘)781
() l() 38()885 1 ()

() 2318] 123()3

.‘25694 90642

—12.3376014357

-13. 9487999269

--6.3126170412

—8.8576210010

Table B.31:

16111()61()1‘2

2 .)flo()()fﬂ 98

Runge-Kutta of Order Four

Sech-Squared

1
h=g

Exact value Computed value Error
~90.4875078027 ~90.4853555276 O 00215227

—72.4625234082

—72.4410969935

O 0214264148

—56.4375390137

—-56.3701154595

~42.4125546192

—~42.2853068743

- O 0674 230‘342

—-0.1272477449

99

17
B!

H2

—30.3875702247

—30.2058322228

—-0.181 738002’.)

—20.3625858302

—-20.1478929066

—-0.21469292

~12.3376014357

—12.1210861984

-0. 2160152374

-6.3126170412

-6.1277632161

Table B.32:

Runge-Kutta of Order Four

~0.18480.38251

36




Exact vaiue

e e

90 4875078027

72.4625231082

- 56.4375390137

Sech-Squared

100

ho -

is

: Computed value

Error

j - 90 4873604446

—-0.00014773581

I
| —72.1609778346

—-0.0015455736

g —_

--56 1324365394

-0.0051024743

42.1125546192

-42 4024195989

—0.0101350204

-30.3875702247

-30.3723757363

—0.0151944885

-20.3625858302

-20.3438391127

—0.0187467176

- 12.3376014357

—-12.3179812301

-0.0196202057

-6 3126170412

—-6.2953503195

-0.0172667218

Table B.33:

Sech-Squared

Runge-Kutta of Order Four

b g
Exact value Computed value Error
w—90.4875078027 —-90.4874983851 ~0.0000094176
- 72.1625234082 —72.4624234161 —-0.0000999922
-56.4375390137 —56.4372062741 —0.0003337397
—-42.4125546192 —42.4118843144 —~0.0006703048
~30.3875702247 —30.3865551574 —0.0010150674
—20.3625858302 —-20.3613226538 —0.0012631764
-12.3376014357 —12.3362701106 —-0.0013313251
—-6.3126170412 l —-6.3114390348 —0.0011780064
Table 8.34: Runge-Kutta of Order Four




Sech-Squared

Exact value

<M>18750,\u’”
T2 162523 10382
0 }37.")39\)137
12 H'Jf):')“l(il‘.)’.l
Z;H 84 5T02247

20 mz )‘%08 302
12 33760 l~1$.)n

63126170412

30 38THNDT

h (““
O I8TOUT2108
T2A625171019
a6 137TH1THIY
121125121372
T
20 3625051175
12 3375165169

6 3125118372

Computed value

Ervor
U 000t0uH9 1Y
{1 0H00063033
00000210917
0 0000 F2 182 ]
O OOBVGLERTH
U 00080127
0 DDDOBIBREY

0 0000752011

Table B.35: Runge-Kutta of Order Four

» e —— PR

|
Exact value

- —p—

‘90 187:)0 8024

e —— y -

72 162023 1082

S U U

’1 - )6 13 5390137

e

-42. 1125016102

30 3875702247

I
|
- ‘
} - 20 3625858302 |

- 1‘2 .5&7601 4357 1 -

€ ——

L - 6.3126170412 5

Sech-Squared

!
h s

90 -180(1 150026
72 .170.’).32 180Y

)f) 1812231()31
1l 83020330)5

‘29 )U 30887862
19 1 )887782().)
11 ()()2348194()

-5 l77i240 %48

RSO SR O S T

| (‘omput(‘d \mluv

-

— e e— =

'
b e e e o e
t

Error
0 0071628002
0 0919912274
0 25331565503
0 H823013139
() 8839811385
1.2037080097
1 2452520411
1 1352925064

Table B.36: Runge-Kutta-Fehlberg




Sech-Squared

102

k-

Exact value Computed value Error
[ 90.4875078027 —-90.4873875679 —0.0001202348
- 72.4625234082 —72.4604887280 —0.0020346802
» -56 4375390137 —56.4314216059 —0.0061174079

h~-42.4125546192

—-42.3987040169

—0.0138506024

—-30.3875702247

—-30.3652726139

—-0.0222976108

-20.3625858302 —20.3324157894 —0.0301700409

-12.3376014357 -12.3043940064 —-0.0332074293

-6.3126170412 —-6.2818776354 —0.0307394058
Table B.37: Runge-Kutta-Fehlberg

Sech-Squared

h=

Exact value Computed value Error

—-90.4875078027 —-90.4875068303 —0.0000009724
~72.4625234082 —~72.4624819359 —0.0000414724
—-56.4375390137 —56.4374198777 —0.0000191361
—-42.4125546192 ~42.4122850036 —0.0002696157
—-30.3875702247 —-30.3871433538 —0.0004268709
—~20.3625858302 —-20.3620092067 —-0.0005766236
-~-12.3376014357 —-12.3369694480 ~0.0006319877
—-6.3126170412 —-6.3120311988 —0.0005858424

Table B.38: Runge-Kutta-Fehlberg




Sech-Squared

103

1
h = 35

Exact value

Computed valuc

Error

—90.4875078027

—90.4875078191

0.0000000164

—~72.4625234082

—72.4625225022

—0.0000009060

—56.4375390137

—-56.4375366408

- 0.0000023729

—42.4125546192

—42.4125492897

--0.0000053296

—30.3875702247

—30.3875621405

--0.0000080843

—20.3625858302

—-20.3625750179

-0.0000108124

—12.3376014357

~12.3375898245

-0.0000116112

—6.3126170412

-6.3126063153

-0.0000107260

Table B.39: Runge-Kutta-Fehlberg

Sech-Squared

ke

Exact value Computed value Error
—90.4875078027 —-90.4875078038 0.0000000011
—172.4625234082 —72.4625233863 ~0.0000000220
—56.4375390137 —-56.4375389618 -0.0000000519 )

—42.4125546192

—42.4125545036

—-0.0000001156

—30.3875702247

—30.3875700589

—-0.0000001659

—20.3625858302

—-20.3625856124

—-0.0000002179

—12.3376014357

—12.3376012085

~0.0000002273

—6.3126170412

—6.3126168327

~0.0000002086

Table B.40: Runge-Kutta-Fehlberg




Woods-Saxon

ho=1

4

Exact value

Computed value

Error

—49.457758728

—-49.4578247070

0.0000359790

—48.148430420

—48.1484985352

€.0000681152

:6.290753954

—46.2914428711

0.0006889171

—43.968318432

—43.9710083008

0.0026898688

—41.236077720

—41.2406616211

0.0045839011

—38.122785097

—38.1427612305

0.01997613358

—34.672313206

—24.7153930664

0.0430798604

—30.912247488

—30 9955444336

0.0832969456

Table B.41: Standard Numerov’s Method

Woods-Saxon

104

h e

Exact value Computed value Error
—49.457788728 —49.4578247070 0.0000359790
—48.148430420 —48.1483764648 —0.0000539552
—46.290753954 —46.2908325195 0.0000785655
—43.968318432 —43.9684448242 0.0001263922
—41.236077720 —41.2330932617 —0.0029844583
—38.122785097 —38.1239624023 0.0011773053
~34.672313206 —34.6749877930 0.0026745870
—30.912247488 ~30.9172973633 0.0050498753

Table B.42:

Standard Numerov’s Method




Woods-Saxon

]

b=

Exact value Computed value _ E;r—(;;ﬁyww
—49.457788728 —49.4578247070 0.0000359790
—48.148430420 —48.1483764648 —0.0000539552
—46.290753954 —46.2907104492 0.0000435048
—43.968318432 —43.9683227539 0.0000043219
-41.236077720 —41.2326049805 —0.0034727395

—38.122785097

—38.1228637695

0.0000786725

~34.672313206

—34.6724243164

0.0001111104

--30.912247488

—30.9125366211

0.0002891331

Table B.43:

Standard Numerov’s Method

Woods-Saxon

ke

Exact value Computed value Error
—49.457788728 ~49.4578247070 0.0000359790
—48.148430420 —48.1483764648 ~0.0000539552
—46.290753954 —46.2907104492 0.0000435048

-43.968318432

—43.9683227539

0.0000043219

-41.236077720

—41.2326049805

—0.0034727395

—38.122785097

—38.1227416992

—0.0000433978

-34.672313206

—34.6723022461

—0.0000109599

-30.912247488

—30.9122924805

0.0000449925

Table B.44:

Standard Numerov’s Method




‘Woods-Saxon

106

ho= &

64

Exact value

Computed value

Error

~49.457788728

—49.4578247070

0.0000359790

—48.148430420

—48.1483764648

—0.0000539552

—-46.290753954

—46.2907104492

0.0000435048

—-43.968318432

—-43.9683227539

0.0000043219

~41.236077720

—41.2326049805

—0.0034727395

—38.122785097

—38.1227416992

—0.0000433978

-34.672313206

—34.6723022461

—0.0000109599

-30.912247488

—30.9122924805

0.0000449925

Table B.45:

Standard Numerov’s Method

Woods-Saxon

h =

1
4

Exact value

Computed value

Error

—49.457788728

—49.4558715820

—0.0019171460

—48.148430420

—48.1426391602

—0.0057912598

—46.290753954

—46.2804565430

—0.0102974110

--43.968318432

—-43.9530639648

—0.0152544672

—41.236077720

—41.2125854492

—0.0234922708

—-38.122785097

—38.0984497070

—0.0243353900

~-34.672313206

—34.6444702148

—0.0278429912

—-30.912247488

—-30.8820190430

—0.0302284450

Table B.46: Piecewise Perturbation Method



Woods-Saxon

107

h =

9
8

Exact value

Computed value

Error

—49.457788728 -49.4573364258 —0.0004523022
—-48.148430420 —-48.1470336914 —-0.0013967286
-46.290753954 —46.2881469727 —0.0026069813

—-43.968318432

—-43.9645385742

—-0.0037798578

—-41.236077720

—41.2276000977

—0.0084776223

—-38.122785097

-38.1166381836

—~0.0061469134

—-34.672313236

—-34.6652221680

-0.0070910380

-30.912247488

—-30.9046020508

—0.0076454372

Table B.47: Piecewise Perturbation Method

Woods-Saxon

o 7

b=k
Exact value Computed value Error
—49.457788728 ~49.4577026367 —0.0000860913
—-48.148430420 —48.1480102539 —0.0004201661
—46.290753954 —-46.2901000977 —0.0006538563
—43.968318432 -43.9673461914 -0.0009722406 B

—41.236077720

—41.2313842773

—-0.0046934427

—~38.122785097

~38.1212768555

—0.0015082415

—34.672313206

—-34.6705932617

—0.0017199443

—30.912247488

—-30.9103393555

—0.0019081325

Table B.48: Piecewise Perturbation Method




Woods-Saxon

108

Exact value

Computed value

Error

—-49.457788728

—49.4577026367

—-0.0000860913

—-48.148430420

~48.1483764648

-0.0000539552

~46.290753954

~46.2905883789

~0.0001655751

—-43.968318432

~43.9680786133

—0.0002398187

-41.236077720

—41.2322387695

—0.0038389505

—-38.122785097

—38.1223754883

—0.0004096087

—-34.672313206

—34.6718139648

-0.0004992412

—~30.912247488

—30.9118041992

-0.0004432888

Table B.49: Piecewise Perturbation Method

‘Woods-Saxon

b= &
Exact value Computed value Error
—49.457788728 —49.4578247070 0.0000359790
—48.148430420 | —48.1483764648 —-0.0000539552
—46.290753954 —46.2907104492 —0.0000435048
—43.968318432 -43.9682006836 —0.0001177484
—41.236077720 —41.2324829102 —0.0035948098
—38.122785097 —38.1227416992 —0.0000433978
—34.672313206 —34.6721801758 —0.0001330302
—~30.912247488 —30.9121704102 —-0.0000770778

Table B.50: Piecewise Perturbation Method



Woods-Saxon

ho= )

4

Exact value

Computed value

~49.457788728

—49.4578247070

—48.148430420

—-48.1481323242

~46.290753954

~-46.2886352539

—43.968318432

—43.9596557617

Error

0 00003")9700

0 ()002‘)80‘)58

- 0. 002] 187()01

0 008()()2()70 3

—-41.236077720

—41.2075805664

-0.02849715

109

3()

—38.122785097 —38.0646362305 —0 0081488‘)().)

—34.672313206 —34.5574340820 -0. 114879124()

—30.912247488 —30.7116088867 -0. 2()06386()13
Table B.51: Runge-Kutta of Order Four

Woods-Saxon

T

ho=;
Exact value Computed value Error -
—49.457788728 | —49.4578247070 0. 0000309700_”
_48.148430420 | --48.1483764648 —0.0000539552
—46.290753954 | —46.2005883789 —0.0001655751
—43.068318432 | —43.9677124023 0.0006060297
_41.236077720 | —41.2307739258 -0.0053037942
~38.122785097 | —38.1183471680 ~0.0044379290
34.672313206 | —34.6620028320 ~0.0094103740
_30.012247488 | —30.8945922852 —0.0176552028

Table B.52: Runge-Kutta of Order Four
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= %
Exact value Computed value Error
-49.457788728 —49.4578247070 0.0000359790
—-48.148430420 -48.1483764648 —-0.0000539552
—~46.290753954 —46.2907104492 —0.0000435048
—-43.968318432 —-43.9683227539 —0.0000043219
—-41.236077720 —41.2324829102 —-0.0035948098
—-38.122785097 —38.1224975586 -0.0002875384
-34.672313206 —-34.6716918945 —-0.0006213115
—30.912247488 -30.9110717773 —-0.0011757107

Table B.53:

Runge-Kutta of Order Four

Woods-Saxon

h= g5
Exact value Computed value Error
—49.457788728 —-49.4578247070 0.0000359790
—48.148430420 —48.1483764648 —-0.0000539552
—46.290753954 -46.2907104492 —0.0000435048
—43.968318432 —-43.9683227539 —0.0000043219
—41.236077720 —-41.2326049805 -0.0034727395
—-38.122785097 —-38.1227416992 —0.0000433978
i —-34.672313206 —-34.6723022461 —0.0000109599
—~30.912247488 -30.7121704102 —0.0000770778
Table B.54: Runge-Kutta of Order Four



Woods-Saxon

11

]

h =
Exact value Computed valuc-m M-__Er;:xj—wm
—49.457788728 | —49.4578247070 0.0000359790
—48.148430420 | —48.1483764648 —0.0000539552
_46.200753954 | —46.2907104492 | -0.0000435048
_43.968318432 | —43.9683227539 | --0.0000043219
—41.236077720 | —41.2326049805 -0.0034727395
_38.122785097 | —38.1227416992 ~-0.0000433978
~34.672313206 | —34.6723022461 - 0.0000109599
~30.012247488 | —30.9122924805 —0.0000449925
Table b.55: Runge-Kutta of Order Four

Woods-Saxon

=i

Exact value Computed value Error
—~49.457788728 —49.4577026367 —0.0000860913
—48.148430420 —48.1464233398 —~0.0020070802
—46.290753954 —46.2767944336 —0.0139595204
—43.968318432 —43.9152221680 —0.0530962640
—41.236077720 —41.0936889648 —0.1423887552
—38.122785097 —37.8512573242 ~0.2715277728
~34.672313206 —34.2846069336 —0.3877062724
—~30.912247488 —30.6085815430 —0.3036659450 )

Table B.56: De Vogelaere’s Method
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[

k =

1
8

b

Exact value Computed value Error
F—“—49.457788728 —49.4578247070 0.0000359790

—48.148430420 —48.1482543945 —0.0001760255

—46.290753954 —46.2898559570 -0.0008979970

—43.968318432

—43.9644165039

—-0.0039019281

--41.236077720

—41.2211303711

—0.0149473489

—38.122785097

—38.0952758789

-0.0275092181

~34.672313206

—34.6155395508

~0.0567736552

—30.912247488

—30.8074340820

—0.1048134060

Table B.57: De Vogelaere’s Method

Woods-Saxon
=

Exact value Computed value Error
—49.457788728 | —49.4578247070 0.0000359790
—48.148430420 —48.1483764648 —0.0000539552
—46.290753954 | —46.2907104492 —0.0000435048
—43.968318432 | —43.9680786133 —-0.0002398187
~41.236077720 | —41.2318725586 —0.0042051614
—38.122785097 | --38.1209106445 —0.0018744525
-34.672313206 | —34.6685180664 —0.0037951396
—30.912247488 | —30.9049682617 —-0.0072792263

Table B.58: De Vogelaere’s Method



Woods-Saxon

h -

.;lA
32

Exact value

Computcd value

—49.457788728

Errm

~49.4578217070

0 ()000.35‘)7‘)0

—48.148430420

-48. 1483764648

—46.290753954

—-46.2807101 1()‘2

—43.968318432

-43. 0683‘.27539

—41.236077720

-41. 232604980

—38.122785097

—38.1226196289

—34.672313206

—34.6720581055

—30.912247488

-30.91 18041992

0 0000 130() 18

() ()00()() 132 l 9

0. 00& 17').7 395

—~0 0001604()81

—— e e o

- ()()02551(!()"

-0 ()0041 i2888

Table B.59: De Vogelaere’s Method

Woods-Saxon

- &

Exact value Computed value B Er;(:r o
—49.457788728 | —49.4578247070 0. 0000300790
—48.148430420 | —48.1483764648 -0. 00000:3);;5:2
—46.290753954 —46.2907104492 | 0.00004:

—43.968318432

—-43.9683227539

O 0000043219

O 000003‘ 552

(.00004 !’048

-0. 0034727 59"

113

_41.236077720 | —41.2326049805

~38.122785097 | —38.1227416992 ~0.0000433978
~34.672313206 | —34.6723022461 00000109599
—30.912247488 | -30.9121704102 -0, 0000449925

Table B.60: De Vogelaere’s Method
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Appendix C

Sturm-Liouville Boundary Value Problems

Sturm-Liouville boundary problems consists of a second-order homogeneous

linear differential equation with linear homogeneous boundary conditions in the

form

(P(z)y']' - q(z)y' + Ar(z)y = 0(0 <z < 1), (c.1)
a1y(0) + a2y'(0) = 0, biy(l) + byy'(1) = 0, (c2)

where the functions P,q, and r are real valued continuous on the interval [0,1],
A is an arbitrary parameter and a;,a;,b; and by are given numbers satisfying
lar] + |az| # 0 and |by] + |b2| # 0. We summarize the basic properties of Sturm-
Liouville problem as follows.

(1) Solution to Eq.(C.1) and Eq.(C.2) exist for an infinite number of J,
A= (n=0,1,2,-+), Ap < daj1, Ay > o0 (n - o0).

Each A, is called an eigenvalue and the solution y,(z) (corresponding to ;) is called
an eigenfunction cot, ..onding to eigenvalue A,. For the proof that Eq.(C.1) and
Eq.(C.2) have eigenvalues and eigenfunctions see Refs. {128,129}, and for applica-
tions of the Sturm-Liouville problem see Ref. [130].

(2) All of the eigenvalues of the Sturm-Liouville problem Eq.(C.1,2) are real.

(3) The eigenfunctions yo(z), y1(z),y2(z), - - are orthogonal in the sense of
1
[ gm(ein@)r(a)dz = 0 (m £n) (c3)

(4) The number of points in (0,1) at which y,(z) vanish is n.
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