CONSTRUCTING BLACK-BOX TEST SUITES FOR

SYSTEMS SPECIFIED IN LARCH/C++

ANTONIOS PROTOPSALTOL

A THESIS
N
THr DEPSRIMENT
O}
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
For 1HE DEGREE OF MASTER OF COMPUTER SCIFNCL
CONCORDIA UNIVERSITY
MoNTREAL. QUEBEC. CANADA

JUNE 1996
© ANTOA10S PROTOPSALTOL. 1996

N fub
Bl

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

3395 W elington Street
Ottawa Ontano
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa (Ontano)

vaur e Volre rétérence

Qur le Notre réiérence

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniere et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thése a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-18426-9

Canada

Abstract

Constructing Black-Box Test Suites for Svstems Specified in

Larch/C++

Antomos Protopsalton

The selection ol appropriate test-cases. in the testing process of an object-oriented
software componeni. is an essential and critical issue. for it provides the confidence
to assert that a certain software component i< correct. A number of methods for
the selection of a test suite. based on specifications. have been developed over the
vears. Informal specifications are usually ambiguons and incomplete. Formal specifi-
cations provide precise definitions of functionalities and properties of a <vstem using
mathematical abstractions and semantics. These precise definitions supply useful
information that may be exploited in the testing of an implementation. This thesis
presents a new test suite selection method based on Larch/(C++ formal specifications.
The method convert« Larch/C++ specifications into a finite state machine (FSM) by
partitioning function input spaces and reducing them to disjunctive normal forms
(DNF). Given a FSM. a technique for the generation of test-cases is also developed.
The technique provides test coverage equivalent 1o “switch coverage™ and in parallel
it tries to minimize the size of the suite. Finally. the design of a tocl that implements

the technique is also presented in this thesis.

i

Acknowledgments

I wish to express my deepest gratitude to my supervisor Dr. V.S, Alagar. His academic
intuition was fundamental to the successful completion of this work. T would like to
thank him for the moral support. patience. encouragement and the good advices he
always gave me. Without him thi< work would not be possible.

I would like to thank professor Gary Leavens from: lowa State University for many
lengthy discussions on Larch/C++ and sub-typing. Also. I would like to thank Mr.
Jeremy Dick. from B-Core UK. for many discussions about testing and VDM.

I would also like to thank the Computer Science svstem administrators. Stan
Swiertz. Michael Ascels and Paunl Gill. for the help and the Unix tips that they
provided me.

My good friends George harabotsos. Dharmalingum Muthiaven, and 1 hanas<s
Michailidis have always been there for me. and I thank them from the bottom of nny
heart.

I would like to give special thanks to five people that stood by me for my entire
stay in (‘anada. The Katergaris family. my aunt. my uncle. and my cousins. helped
me go through every difficulty.

I wish to thank my family in Greece for their continuous love and support. I would
like te thank them for believing in me. and making me understand that nothing is
unachievable.

Last but never least. I wish to thank Dimitra Tzima for her love. sacrifices. moral

support. and patience for all the vears that I have been away.

Contents

List of Figures viil
List of Tables 1x
1 Introduction 1

2 Basic Concepts in Functional Class Testing of Object-Oriented Soft-
ware 3

2.1 The Object-Oriented Paradigm . . s

2.2 Formal Specifications and Software Development 00 000 000 L 3
2.3 Functional Class Testing .. C e C e . t
21 Scopeof Thesis © 0 o000 oo o T

3 Recent Improvements to Larch/C++ 8
3.1 Introduction - A quickoverview . . .00 o000 oL N
32 Improvements on Larch/C++ . C C e 9
3.2.1 Composite Sorts Lo 9

3.2.2 The Formal Model of Objects. Values. and States 10

3.2.3 Declarations and Declarators 11

3.2.4 State Functions00 Lo o 13

3.2.5 New Features in Function Specifications 14

3.2.6 New Features in Class Specifications I8

4 A Functional State-Based Testing Methodology 21
1.1 Primitive Definitions 0oL o 21
4.2 LSL Analvsds .. . o 23
4.3 LCC Analysis .o o o oo 24

44 FSM Derivation L 25
4.5 A Simple Example oo oo 26
4.5.1 LSL Analysis of Queue LSL Trait 26
14.5.2 LCC Analysis of Queue Class Specification 29
4.5.3 FSM Derivation o 0L 31

4.6 Limitations of Methodology 32
4.6.1 Non-Determinism 33
4.6.2 Consideration of Class Destructor 34
4.6.3 Considering the New Larch/C++ Features 34
1.6.4 Relation Between Sub-type and Super-tvpe FSMs . . T
4.6.5 Test-case Generation 35

5 FSM Derivation: A Revised Technique 36
5.1 Non-Determinism and its Consequences 36
5.1.1 Complications in State Constraint Selection 36
5.1.2 Legahtyofa Test-Case 37
5.1.3 Eliminating the Non-Determinism 39

5.2 FSM Expressing Class Behavior 12
3.3 Involvement of Class Destructor R 8
5.4 FSM Derivation and the New Larch/C++ Constructs 19
54.1 State Functions oo 15
5.4.2 Modifies Clause o L. 16
5.4.3 Larch/C++ Kevwords 16
3.4.4 TImplicit Functionso oo I8
5.4.3 History Constraints 50

5.5 Multiple Constructors Lo 50
6 Test-Case Generation 52
6.1 Previous Work on Test-C'ase Generation 52
6.2 Test Cases versus Legal Traces 34
6.3 Satisfaction of State Constraints 57
6.4 Proposing a Test-Case Generating Methodology 58
6.5 Sufficiency in Testing Canonical Test Cases 64
6.6 Axiomatization of Black-Box Test-Case Adequacy 65

vi

6.7 More Exampleso 63
6.7.1 Example1: Stack oL 63

6.7.2 Example 2: Bounded Stack 75

6.8 Test Coverage 3 |
6.9 Test-Case Execution 83

7 Supertype - Subtype Relationship of Finite State Machines 86
7.1 Informal Definition of Behavioral Sub-typing 86

7.2 Formal Semantics for Specificatiou Inheritance 88

7.3 Super-tvpe/Sub-type FSM Relationship 90
b oExamples oL 93

8 Conclusions 100
N1 Summary o L 100
N2 FutureWork . . o0 o000 R L 1]
Bibliography 101
A Design of the Test-Case Generation Tool 108
Al Assumptions . oo 0L e 108
\.2 Svstem Specification Lo L 109
A2.1 Object Model 00 000 110

A.2.2 C(Classes: fsm. state. transition 110

A.2.3 C(lasses: pareer. rule. predicate. lexer 111

A201 Classes: teg_tyvpe. tegiint. teg bool . . . 0. o0 .00 112

A25 Class:test_case o0 o o e 113

List of Figures

1 Larch/C++ Model of a List Object
2 The Queue Class State Machine
3 Non-determinism L
4 A Conditioned FSM for the Queue Class

The Queue Class State Machine with Destructor Transitions

5)
6 The Queue Class State Machine with Multiple Constructors

0 A Few Simple Test-Clases o 0oL
8 FSM of a Bounded Stach
9 ATCGGraph. C
100 AFSMwithalLoop
11 Infinite Test Case Tree
12 TCG derivation
13 Conditioned FSM for Stack
14 TCG Derivation for Stach
15 Conditioned FSM for Bounded Stack -
16 TCG graph for Bounded Stach0
17 Test Cover Strategy Hierarchy
18 Test Case Execution Flowchart
19 The Hierarchical FSM of a Subtvpe
20 Object Model of the toolo

Viii

ot
ot

H6
60
60

List of Tables

1 Sorts of Global Variables
2 Sorts of Formal Parameters
3 Classification of Queue Trait Operations
] Quene Class Transitions L Lo
3 Queue Class States o Lo
6 ("lassification of StackTrait Operations
T ("lassification of BStackTrait Operations

N Classification of BSub_BStackTrait Operations
9 .mac and .sem files for the Stack class

10 CFG for predicate and rule classes 0.0 00

Chapter 1
Introduction

The Software development process has gone through many changes since the first
software system was developed fifty vears ago. In the past few vears. software en-
gineers have been successfully practicing the principles of software reuse. Software
development has been shown to benefit from software reuse of well tested software

components.

Testing is an important part of a software development. However. it does not get
the attention it deserves from researchers and developers. The main goal of testing is
to detect faults in a software svstem. Dijkstra [21] states that the only thing testing
can tell us is that the svstem has failed. It cannot tell us that the system is correct.

This is true for all testing methods that are currently in use.

Formal methods promise high product confidence through mathematical proof of
system correctness. The use of formal methods aims in replacing the large amount
of effort spent in error detection. by effort spent in the construction of “error free”

svstems.

The dependability of a software component relies on its testing and its formal
verification. Both testing and formal verification provide the foundation for a scien-
tifically based engineering approach to software development. Even though this might
be true. the software engineering industry is reluctant to move in that direction be-
cause formal methods require abstract mathematical knowledge that many employees

do not possess.

Object-oriented methods are considered to be a great advance in the pursuit of
quality software because of their foundation on the principle of reusabibty. However.
a verv substantial amount of effort has to be devoted to the task of testing object-
oriented components. The use of inheritance and dynamic binding require that the
software component should be tested more extensively than other non-object-oriented

components,

This thesis addresses only one part of a much broader research on black-box reuse
of ohject-oriented software: constructing adequate black-box test suites for imple-
mentations based on Larch/C++ specifications. This research is sponsored by BNR-
NSERC under a Collaborative Research and Development Grant to Dr. V.S, Alagar.
This research is currently on its second phase [3. 4]. The first phase was completed

by members of the previous group {1, 17. 10. 60.

The organization of the remainder of this thesis is as follows. Chapter 2 presents
concepts of vbject-orientation. formal methods. functional testing. and the scope of
the thesis. A brief overview and the latest improvements on Larch/C++ are given
in Chapter 3. Chapter 4 describes a methodology that converts Larch/('++ spec-
ifications to a finite state machine. along with its limitations. Chapter 3. proposes
solutions to the limitations of the methodology 1in Chapter 4. A test suite deriva-
tion technique is proposed in Chapter 6. Chapter 7 presents some issues related to
sub-typing in Larch/C++ and investigates the relationship between the finite state
machines of a super-type and its sub-tvpe. Chapter 8 summarizes the work presented
in this thesis and identifies some future work. Appendix A contains the design of a

tool that implements the technique described in Chapter 6.

Chapter 2

Basic Concepts in Functional
Class Testing of Object-Oriented

A

Software

In the past decade. object-oriented software d«velopment has been considered the
most important software development method. Object-orientation is a specific way
of structuring applications. To apply this technology successfully in software devel-
opment. however. different ways of thinking about programs must be adopted. The
most common characteristic of object-oriented programming and design is the exten-
sive use of akstractions. An abstraction is a high level description or a model of a
detailed or complex concept. In this Chapter. the basic concept< of object-oriented
programming will be introduced. Also. comments on how formal methods are use-
ful in the software development process and a description of fundamentai concepts

in testing of software systems will be given. Finally the scope of this thesis will be

defined.

2.1 The Object-Oriented Paradigm

Object-orientation can be seen as a kind of technique of organizing a system in terms

of objects. An object is a named entity that combines a data structure with its asso-

ciated operations:

object = unique identifier + data + operations

An object can therefore be regarded as a state machine. with an internal state
that remembers the effect of operations. Because the statc can be manipulated oniy
by those operations exported in the object 's interface, the details of itsinternal imple-
mentation are protacted from external views (with exception in special cases). This
guarantees that an object may interact with other objects only at a desired level of
abstraction. The concept of an object. therefore. unites the principles of data ab-
straction and information hiding :nto a single concept. The foundation of the whole
approach is called encapsulation. This means that the properties of data and the
functions for the manipulation of this data are combined into an object. The objects
communicate through messages which invoke the functions within these ohjects: these

functions are usually called methods.

An object is the basic building block in an object-oriensted software development.
It models an entity. It is composed of a set of attributes and a set of operations.
The data constitutes the information in the object (the state of the object). and
the methods. which are analogous to procedures and functions in non-object-oriented
langnages. manipulate the data. In most applications. there are many objects of a
certain type. An object has an identity that can be used to uniquely identify and
distinguish it from other objects of the same type. In ("++. the data and the methods
for objects of the same tvpe are defined in a data type called class. In object-oriented
programming. each object is an instance of a particular class. In C++. the data items

are called data members. and the methods are called member functions.

The object-oriented paradigm can be characterized by the following principles:

¢ Encapsulation.
Encapsulation can be thought of as a form of information hiding. It is the
technique by which an object’s data is packaged together with its corresponding
methods. This data can only be accessed through the message interface for a

particular object.

¢ Message Passing

Message Passing is the principle of one object O, sending a signal to another

4

object O, to request one of Oy’s services. This service is going to be carried out

by one of the 0;’s methods.

¢ Inheritance
Inheritance is the mechanism that allows reuse of the behavior of an existing

class in the definition of a new class.

¢ Polymorphism
Polymorphism is a word of Greek origin that means “having multiple forms”.
It is the mechanism that allows the same message to be interpreted differently

by objects of different classes.

Object-Orientation has the capability of reducing the application maintenance load
because of modularity and low coupling among object-oriented constructs provided
by encapsulation. A key concept in object orientation is that a new application can
be built from existing modules. If those modules are well tested, the new appii.ation
will be built with a large proportion of high quality code, and the maintenance load
will be reduced. Furthermore. the use of already existing modules facilitate the reuse

of code and model.

2.2 Formal Specifications and Software Develop-
ment

One of the main goals of Software Engineering is the production of correct software.
The development process of a large and complex system necessitates the gathering

and management of a great amount of information and details about the system.

In Software Engineering, the term “correctness” does not have a precise defini-
tion. Most of the definitions agree that a software system is correct if it follows its
specification. Therefore, the software development process heavily relies upon the
correctness of the software specifications. One of the ways that validation of a soft-
ware systern may be achieved is by testing the existence of the properties, stated by

the specification, on the implementation of the system.

(1]

Since informal documentation can be vague and ambiguous, the use of formal
specifications has gained much popularity during the past decade. Formal specifica-
tion of a system denotes a precise description of the essential properties of the objects
in the system to be developed. This precision is accomplished through mathemati-
cal notations and semantics which are used to guarantee that a software system will
exhibit a certain behavior. which becomes observable when the system is interacting

with the users or other client software components.

The two important tools to cope with the enormous complexity of software sys-
tems. are decomposition and abstraction. In this thesis, we are going to deal with
algebraic and model based specifications in Larch/C++. Using algebraic specifica-
tions. a system is specified as a collection of abstract data types. each of whichincludes
a specification of all the operations. syntax and semantics with type signatures and
algebraic axioms. included in the abstract data type. With Larch/C++. develop-
ers specify the functionality of class implementations using an interface specification.

which uses Hoare logic of pre- and post-conditions (the requires and ensures clauses).

2.3 Functional Class Testing

Class testing is the first formal activity performed in the object-oriented software life
cycle. It occurs during the implementation phase soon after a class is coded. Class
tests are designed to test individual classes. and they form the basis upon which the
system tests are built. Since classes and class tests are fundamental entities. class

testing is critical to ensuring the final quality of a system.

Specifications are of great importance in testing. for they determine what the
software ought to do, and must necessarily form the basis for the testing of the func-
tionality of the system. This kind of testing is called functional, or black-bozx, or
specification-based, or behavioral testing. The goal of functional testing is to find dis-
crepancies between the actual behavior of the implemented system’s functions and
the desired behavior as described in the systemn's functional specification. There-

fore, functional testing provides confidence in the correctness of a program. With

testing. the only way to guarantee a program’s correctness is to execute it on all pos-
sible inputs. In practice, such an exhaustive testing may be impossible. Therefore,
systematic testing techniques generate a representative set of test-cases to provide
coverage of the program according to some selected criteria. Black-bor testing treats
the software as a box whose internal structure is unknown. but for which the required

behavior is known from the functional specification.

The first activity. in the generation process of specification-based functional test-
cases. is the partitioning of the input space of the function under test, into equivalence
classes. Subsequently, test-cases may be selected from each equivalence class of the
partition. The key concept to partitioning a function’s input space is that the function
should exhibit the same functional behavior for all elements within an equivalence

class.

Functional test-cases attempt to find errors in the following categories:
e initialization and termination errors

e incorrect function results

e incorrect or missing functions

e interface errors

2.4 Scope of Thesis

Based on the foundation work of Celer [10] we extend and improve the methodology
for generating a finite state machine from Larch/C++ specifications. In this thesis.
a method for generating the test suites from a finite state machine is given. The
adequacy of the test-cases generated by our method is formally proved. We also
discuss the relationship between the finite state machines due to inheritance relation-
ship between classes. Finally, we present the design of a tool which generates minimal

canonical test suites; the tool has also been implemented.

-1

Chapter 3

Recent Improvements to
Larch/C++

3.1 Introduction - A quick overview

Larch/C++ is a Larch-style interface specification language tailored to the C++
programming language. Its main objective is the formal specification of ("++ program

modules. Larch provides a two-tiered approach to specification:

o In the first tier. the semantics of a program module written in a particular pro-
gramming language is described. This tier is called Larch Interface Language
(LIL). LIL is not one particular specification language but a family of inter-
face specification languages. Each specification language in the LIL family is
designed for a specific programming language. Since programming languages
differ in how components communicate across the interface. it is easier to be
precise about communication when the interface specification language reflects
the programming language. LIL specifications specify the interface of a proce-
dure and its behavior. To formally specify the behavior of a function, Larch
provides some clauses that assist the specifier to describe the states on which
the function is defined. what the function is allowed to change (modifies clause),
the restrictions on the states and the arguments with which the client is allowed
to call the function (requires clause), and the constraints on the function’s be-
havior, when the function is called properly. which relate the pre-state and the

post-state of the function (ensures clause). The pre-condition. expressed in the

requires clause, and the post-condition, expressed in the ensures clause, are ex-
pressed in predicate logic. using logical assertions that contain terms of which

formal meaning is specified in the second tier of Larch (LSL tier).

¢ In the second tier, auxiliary specifications are written to provide semantics for
the primitive terms used in the requires and ensures clause of the LIL spec-
ifications. These specifications are mathematical abstractions that are state
independent. These abstractions are called traits and are written in the style of
an equational algebraic specification using the Larch Shared Language (LSL).
These specifications, written in LSL. are programming language independent

and they can be used by any member of the LIL family.

Some of the Larch languages that have been developed are LCL (Larch C)(28. 11].
LM3 (Larch Modula-3)[34], Larch Smalltalk [14]. Larch/C++ [40, 41]. This Chap-
ter summarizes the recent additions and improvements to Larch/C++ specification

language. See [40] for a complete analysis of the extensions.

3.2 Improvements on Larch/C++

Larch/C++ is still in the process of development. Not all parts have been imple-
mented. Currently only the parser is available, some parts of which are still in the
development stage. Many versions and upgrades have been created with numerous
changes in the syntax and semantics of the language. The Larch/C++ manual [40]
is a very fast changing document describing the language as the changes take place.
In this section a summary of the most important new features is given. These new
features have been added recently to the language and have been discussed in detail

in the Larch/C++ reference manual [40].

3.2.1 Composite Sorts

Composite sort names have been added only recently to Larch/C++. In the absence
of any documentation, several users of the Larch/C++ community were consulted.
The consensus is that composite sort names are to be treated exactly as atomic sort
names except that when it comes to renaming. The rule is that the rename binding

is propagated through the components. For example. if Loc/E] is a composite sort

and E'is an atomic sort. with the renaming £ to F. the bindings

e:— L

f:— Loc[E]

become
e:— F

f:— Loc[F]

Composite sorts are not parameterized sorts: *Loc[E] is a sort name that has *Loc
and 'E as components: ‘'E" does not have any special status. In particular E'is not a

parameter.

Composite sort names are used in order to be able to distinguish between T values
and T objects. In the past. an object of type T was denoted by Ob)_T. One problem
with this approach is that while renaming T. the specifier had to rename 0b;.T. With
the composite sort names. as shown in the example above. the renaming of the object
sort (Loc[E] in the example) is done implicitly. Also. 0T did not have any fixed
semantics. The specifier had to explicitly specify the semantics of an object in an LSL
trait. The new version of Larch/C++ has provided a few LSL traits that generally
specify the behavior of objects (mutable. immutable. tvped and untyped). and the

semantics of states [42].

3.2.2 The Formal Model of Objects, Values, and States

According to the designers of C++, “an object is a region of storage.” All objects
have an address, or location. They store values, which in the context of a speci-
fication are called abstract values. Figure 1 illustrates the corcept of objects and
values by showing the Larch/C++ model of a list object in a certain state. A state
associates each object with an abstract value. In this example the object My_List is
associated with the abstract value append(19. append(7, append(89, empty))). Ob-
jects in Larch/C++ are modeled using several traits. The main trait is TypedObj,

which handles the translation between typed objects and values and the untyped

10

objects and values used in the trait State. Objects can be either mutable or con-
stant (immutable). Mutable objects are modeled by sorts with names of the form

Obj[T]. which is the sort of an object containing an abstract value of sort T. The

My _list: (append(19, append(7. append(89, empty)))]
\

Figure 1: Larch/C++ Model of a List Object

trait MutableObj gives the formal model of mutable objects by adding the capability
of mutation to the trait TypedObj. Constant objects are modeled by sorts with names
of the form ConstObj/T]. which is the sort of a constant object containing abstract
values of sort T. The trait ConstObj gives the formal model of constant objects. A
state is a mapping from objects to values. During the course of execution. a program
creates objects and binds values to objects. A state captures the set of objects that
exist at a particular time and their bindings. The trait State gives the formal model
of states used by Larch/C++. It defines a state (sort State) as a mapping between

untyped objects (sort Obj) and abstract values (sort Val).

3.2.3 Declarations and Declarators

C++ provides numerous kinds of declarators for every possible declaration. Larch/C++
has incorporated these declarators both in syntax and semantics. In Larch/C++. a
declaration is needed to specify that the C++ module that implements the specifi-
cation must have the same declaration. and to give information about the declared
construct’s type. and other attributes. Although Larch/C++ syntax for the declara-
tors tries to be identical to the C++ one. there are some minor differences which were
created purposely in Larch/C++ in order to resolve some parsing ambiguities in the

C++ grammar.

In a declaratior a declarator defines a single object, function or type, along with
its name. The semantics of each declarator is defined using LSL traits which are built
in Larch/C++. For instance when declaring an integer global variable. Larch/C++
implicitly uses the int LSL trait. Using the following operators a declarator may
refine an object’s type : * (pointer). ::* (pointer to member), & (reference). [] (array).

() (function). A variable declared globally. or a formal parameter passed to function

11

using one of these declarators. has a particular sort. Pointers have the Ptr sort
generator as part of the sort name of the term. References use the Obj sort generator.
and arrays use the Arr sort generator. ConstObj[cpp-function] is the sort of a non-
member function and ConstObj[cpp.member_function] is the sort of a member
function. The semantics of these sorts are described using the LSL traits discussed
previously. In Tables | and 2 there is a summary of the sorts that global variables.

and formal parameters take when declared with the various declarators:

const T ™ x
T = const x

int x(int 1)

Declaration | Sort of x (x is global)
T x Obj[T]

const T x ConstObj[T}

T & x ObjIT)

const T & x | ConstObj{T]

T & const x | Obj[T]

T = x Obj[Ptr{Obj[T]]

Obj{Ptr[ConstObj[T]])
ConstObj[Ptr[Obj[T]]]

T x[3] Arr[Obj[T]]
const T x[3] | Arr[ConstObj[T]]
Int List x ConstObj{IntList]

('onstObj[cppfunction]

Table 1: Sorts of Global Variables

Tables 1. 2 assume that IntList is a structure of the following type:

struct IntList{
int val:
IntList “next:

)

In these tables a term r of sort Pir[Obj[T]] is a pointer that points to an object
that contains an abstract value of sort 7. To obtain the object that the pointer
points to. the operator * must be used. Therefore. xr would be of sort Obj[T]. A
term « of sort Arr[0b){T]] is an array of objects that contain abstract values of sort
T. To obtain anv of these objects. the operator [] and the integer index of the partic-

ular object are used. A structure or a union declared globally is an object. Since in

12

C++ parameters are passed by value (except for reference parameters), a structure
or a union passed as a parameter to a function is not an object but simply a tuple
of fields. That is the reason why in the first table the sort of the global variable
of tvpe IntList is ConstObj[IntList] and in the second table the sort of the formal
parameter of type IntListis Val[IntList].

Declaration | Sort of x (x is formal parameter)
T x T

const T x T

T & x Obj[T]

const T & x | ConstObj{T]

T & const x | ConstOb)|T)
T>x Ptr[Obj[T]]
const T = x | Ptr[ConstObj{T}]]
T * const x | Ptr[Obj[T]]

T x]] Ptr[Obj[T])

const T x| Ptr[ConstObj[T]]
IntList x Val{IntList]

Table 2: Sorts of Formal Parameters

3.2.4 State Functions

An object can be in an infinite number of states throughout its entire life. Not all
states are visible to the client of a class interface. In particular. only a very limited
number of states are visible. The states that are not visible to a client are called
internal object states. Therefore. the states that are of particular interest to the class

interface are:

e the pre-state. which maps objects to their values just before the function body

is run, but after parameter passing.

e the post-state. which maps objects to their values at the point of returning from
the call (or signaling an exception), but before the function's parameters are

out of scope.

To obtain an object’s abstract value in a particular state (provided that the object is

assigned in that state). a state function must be used. There are four state functions

13

in Larch/C++ :
e \pre or ": it obtains the abstract value of an object in the pre-state.
e \post or ’ : it obtains the abstract value of an object in the post-state.

e \any : it obtains the abstract value of an object in any arbitrary state. This
state function is usually used when the object is immutable (not modifiable)

and therefore, its abstract value is the same in both pre-state and post-state.

e \obj : it is used to explicitly refer to an object itself. instead of its abstract

value. It is only used for emphasis.

The state functions can only be applied to terms that denote objects and their sort is
either Obj[T'] or ConstObj[T] for some type T. The sort of any object of type T that
has been applied one cf the first three state functions (\pre, \post, \any) is the
same as that of the object but without the leading Obj or ConstObj sort generator.
When the \any state function is applied to an object. the sort of the term associated
with the state function is the same as the sort of the object itself. For example. if

the sort of r is Obj[int] then the sort of 2’ is int and the sort of r\any is Obj[int).

3.2.5 New Features in Function Specifications

Several new clauses have been added lately to the syntax and semantics of Larch/C++.

e The constructs clause is an equivalent of the modifies clause. Larch/C++
provides this clause for the added convenience of the reader/specifier. This
clause is used in constructor functions in order to express that an object is
not only modified but there is memory allocated for it, and its attributes are
initialized.

o The trashes clauseis used for any function that trashes objects. In Larch/C++
the trashing of an object is done whenever the object was assigned in the pre-
state and not assigned in the post-state. or when the object was allocated in

the pre-state and not allocated in the post-state. The trashes cl.use lists a set

of objects that may be trashed from the function.

14

e The claims clause. as in LCL. contains a predicate which does not affect the

meaning of a function specification, but rather describes redundant properties

which can be checked by a theorem prover. The following example illustrates

the use of the trashes and claims clauses.

void dec_ref(char *cp, int & ref_count)

{

requires allocated(cp. pre) A assigned(re f_count. pre)A
ref.count” >=1:
modifies re f_count:
trashes x cp:
ensures ref_count' = ref_count’ — 1A
(if re f.count’ = 0 then trashed(*cp)
else —isT'rashed(*cp.pre. post)):
claims re f_count’ > 0 = —isTrashed(xcp.pre. post):

e The let clause can appear in any function specification. It can be used in

order to abbreviate expressions that will be used many times in the function

specification (requires, ensures. example clauses). The following example

illustrates the use of this clause.

imperts BankAccount:

void transfer(Bank Account&: source, BankAccount& sink, long int cts)

{

let amt:Q be dollars(cts).
presrc:Q be source’, presink:Q be sink”.
oldsrc:(Q) be presrc.credit, oldsink:Q be presink.credit;

requires source! = sink A assigned(source,pre) A assigned(sink, pre)
Noldsrc >= amt A amt >= (;

modifies source. sink;

ensures sink’ = set_credit(presink.oldsink + amt)

15

Asource’ = set_credit(presre. oldsre — amt):

o The example clause can be used to give the reader/specifier a concrete ex-
ample of the function behavior. Examples do not change the meaning of a

specification.
The new keywords that have been recently added in the language are the following:

o The keyword allocated can be used in a predicate (requires. ensures clauses)
in order to specify that an object is alloc.ird at a certain state. An object can

exist without being allocated.

e The kevword assigned can be used in a predicate (requires. ensures clauses) in
order to specify that an object has a well-defined value [11}. In other words an

object is assigned if its value is initialized.

e The kevword fresh can only appear within an ensures clause predicate and it
is used to specify that an object was not allocated in the pre-state. but it is
allocated in the post-state. The following example illustrates the use of fresh

in function specifications.

typedef int xratl:
rat] make_ratl(int n. int d)
{
requires d > 0:
ensures assigned(result. post) A size(Iou(/csult)) 2
A(resull{0]) = n A (result[1])
Afresh(result{0]. result(l]):

e The kevword unchanged is used within predicates when there is a need to

express that a modifiable object is indeed not modified.

e The kevword reach can be used with an object to denote the set of all objects

reachable fiom that object.

16

o The keyword liberally can be used in an ensures or claims clause when the
predicate gives a partial-correctness specification. In any partial-correctness
or total-correctness specification [21]. if the pre-condition is true. and if the
function terminates normally, ilien the post-condition must be true. In partial-
correctness specifications normal termination is not guarantecd. even when the
pre-condition is true. Therefore a specification that does not use the keyword
liberally is a total correctness specification and a specification that uses the

keyword liberally is a partial-correctness specification.
Following are some more new constructs recently built in Larch/C++.

¢ In C++, a default value can he given for a formal argument of a function.
This means that when calling the function without supplying a value for one of
its particular formal arguments. the argument takes the specified default value.
This is also the case in Larch/C ++. The syntax is identical.

e Often functions are specified using different cases. Larch/C++ provides the
specifier with the ability to specify a function using many cases. For every
case. the specifier is able to specify a set of different requires. modifies. trashes.
ensures. let. and claims clauses. The predicates in the requires clauses should

be exclusively disjoint.

o In C++. the interface of a function can declare what exceptions the function
can throw. The same 15 also true in Larch/C++ which specifies a function
that throws an exception by considering its result to be either the normal
result or an exception result. The following example illustrates the

spacification of exceptions, and the use of cases in a function specification.

imports Overflow:
void incZ(int& i) throw(Overflow)
{
requires assigned(i,pre) A"+ 2 <= INT_MAX;
modifies i:
ensures result = theVod ANi' =1+ 2:
requires assigned(i.pre) A"+ 2> INT_MAX:

ensures throun(Over flow) = the Exception:

17

3.2.6 New Features in Class Specifications

o C++ implicitly defines several member functions for the user if they are not
explicitly defined. These are default constructor. copy constructor, destruc-
tor. and assignment operator. provided that they are not explicitly declared.
Larch/C++ implicitly provides an appropriate specification for these implicitly

defined functions. These are called implicit specifications.

o Larch/C++ provides the simulation clause whereby a user may specify the
relationship between super-type and sub-type. As will be seen in Chapter 7. a
specification of the super-tvpe might be expressed in a different mathematical
domain. The use of the simulation function gives valid meaning to a super-
type’s specifications in the context of a sub-type. The behavior of the simulation

function is specified using an LSL trait.

o Larch/C++ allows the specifier to specify history constraints on the values
that an object may take. It specifies a relationship between each pair of visible
states ordered in time. An object may remain immutable through its entire
life. As an examplc. in a Person object with fields Name and Age. the Age
field may only be increasing. These cases can be specified using the history
constraint clause. A history constraint is a syntactic sugar in Larch/C++.
The same behavior can be specified in the predicate of every member and friend

function’s postcondition, except for the constructors.

e Larch/C++ provides an invariant clause which allows the user to specify an
invariant property that must be true during the entire life time of an object.
There are two equivalent ways of interpieting invariants. The first is that an
invariant is conjoined with the pre and post-condition of each member function
in the specification. The second is that the invariant is considered to be true in
all visible states. Within an implementation of a member function, an invariant
may be temporally violated. This is acceptable, since any intermediate state of

the class variable is invisible to clients.

18

e Larch/C++ can also specify friendship relationships. A friendship specifi-
cation records information that may be needed in the implementation phase of
a class. Asin C++, friendship grants access to private interface of a class to

some or all member functions of a class.

The following is a class interface specification that includes many of the features

mentioned in this section.

class Person
{
uses PersonTrait, cppstring: // age interpreted as number of years old
invariant len(self\any.name) > 0 A sel f\any.age >= 0;
constraint self .age <= self'.age: /[age can only increase
public:
Person(const char *moniker. int vears)
{
requires nullT erminated(moniker. pre) AlengthToNull(moniker,pre) > 0
Ayears >= 0;
modifies self;
ensures sel f'.name = uptoNull(moniker,pre) A s lf'.age = years:

}

virtual —Person()

{

ensures Irue;

}

virtual void change_name(const char *moniker)

{

requires nullTerminated(moniker, pre) AlengthToNull{moniker,pre) > 0;
modifies self;
ensures sel f'.name = uptoNull(moniker,pre)

Aself'.age = self".age;

}

virtual char * name() const

{

19

ensures nullTerminated(result, post) A fresh(objectsToNull(result. post))
AuptoNull(result, post) = sel f\any.name;

}

virtual make_year_older()

{
requires self’.age < INT_MAX:
modifies self;
ensures self = set_age(self . self.age + 1):
example self.age = 29 A self'.age = 30:
claims self' .name = sel f".name:

}

virtual int years.old() const

{

ensures result = self\any.age:

20

Chapter 4

A Functional State-Based Testing
Methodology

A lot of research has been conducted around the subjects of fu- “tional and state-
based testing techniques [16. 35, 19. 20. 31, 32, 59, 45, 46, 47, 10]. The research
presented in this thesis is a continuation of the one initiated by Celer in [10]. Celer
proposed a Finite State Machine derivation methodology. given Larch/C++ interface
specifications. by partitioning the input space of all functions in the interface. In this
Chapter. we summarize that methodology, and present its limitations. In the next
Chapter we propose ways to overcome these limitations. We first state the definitions

followed by the methodology and then its limitations.

4.1 Primitive Definitions

Distinguished Sort : It is the sort that is generated (all its values) by a set of gen-
erators (ie. all operators in the generated by clause). It is also called type of interest

or data sort.

Generator : A set of generators is the set of operators whose range is the distinguished

sort and are those which produce all the abstract values of the distinguished sort.

Extension : An extension is an operator whose range is the distinguished sort

but that does not belong to the set of generators.

21

Observer : An observer is an operator whose domain includes the distinguished

sort and whose range is some other sort (excluding the distinguished sort).

Observable Behavior of a Sort : Let the set of observers in an LSL trait be
denoted by Obs. The set of different abstract values that the distinguished sort
may take is denoted by Abs. The set absiract values that can be returned from all
observers is denoted by ObsRet. The observable behavior of the distinguished sort in
an LSL trait is a function @ from Obs, Abs to ObsRet (® : Obs x Abs — ObsRet)

Basic Distinguishable Domain: It is a set of abstract values of the distinguished
sort D, D C Abs, such that for any observer in Obs, the observable behavior re-
mains the same. This set of abstract values is produced by the generators of the
trait. Two basic distinguishable domains are always disjoint. The union of all
possible basic distinguishable domains is the set Abs of abstract values that can

be produced by the set of generators of the trait.

Distinguished Sort Initializer: It is any of the generators of the trait which
appear on the generated by clause. Its signature resembles New :— Sort. It doesn't
have any arguments (besides the ones thut compose the sort type or convert some

other sort to the distinguished one).

Initial Sort State: It is the basic distinguishable domain in which the ab-

stract value of a distinguished sort initializer belongs to.

Distinguished Sort Partitioner : It is any qualifying observer defined in an LSL
trait which is applied only to the distinguished sort. A “qualifying observer™ is
any observer that evaluates in a limited number of abstract values. For example,
in the stack trait the isEmpty operation is a distinguished sort partitioner be-
cause it may only evaluate to two different abstract values (¢rue, and false), and not

the top operation which evaluates in the range of integers.

Alteration : It is the modification of the distinguished sort abstract value. Al-

teration of an abstract value may or may not change the basic distinguishable

22

domain of the distinguished sort.

Distinguished Sort Alterator: It is any generator, excluding the distinguished
initializers. or any extension operator. An alterator is assigned to a term, whose
sort is the basic distinguishable sort. It modifies the abstract value of that term
and therefore, it may or may not change the basic distinguishable domain of the

term.

Distinguished Sort Examiner: It is any observer, excluding the distinguished
sort partitioners. Examinersdo not change the abstract value of the distinguished

sort and therefore they do not change the basic distinguishable domain either.

Input Domain : It is the set of basic distinguishable domains for which an
LSL operation is defined (pre condition for LSL operation). Those abstract values for

which the operation is not claimed to be defined are specified in the ezemption clause.

Output Domain :The set of basic distinguishable domains to which an LSL

operation can lead the distinguished sort to (post condition for LSL operation).

Class Variable : It is described in the interface specification as self and is mod-

eled by its respective LSL trait (distinguished sort).

State Variable : It is a vector of variables which define the state of the class.
This vector contains the following: the class variable, and the global variables
in the interface specification. In addition. the variables which “compose” (the word
compose refers to a sort type which is a tuple or a union) the distinguished sort.
but are not modified, are included in that vector. If any variabie is of the composed

distinguished sort (e.g. union. tuple), it consists of a set of variables.

4.2 LSL Analysis

This stage of the methodology assumes that there is a given LSL trait that abstractly

models a certain data type. The result of this step will provide the required input

and output domains of all the LSL operations used in the Interface Specification.
These will be used in the LCC Analysis which is described in the next section. The
LSL Analysis has the following steps:

Step 1: Identify alldastinguished sort initializers, partitioners, alterators,

examiners.

Step 2: Apply all distinguished sort partitioners to all generators to ob-
tain all basic distinguishable domains. For every partitioner, the axioms that
define it and the corresponding exemption clause assertion are examined. By doing
this. a number of different sort domains are determined where each partitioner
has consistent behavior. If all partitioners behave consistently in the same domains

then. these domains are the basic distinguishable domains.
Step 3: For all sort alterators determine the input and output domains. To
obtain the input domains the signature and the exempting clauses are examined. To

obtain the output domains, axioms involving the operation are examined.

Step 4: For all sort examiners. determine the input domains. To achieve that.

the signature of the operation and the exempting clause are examined.

4.3 LCC Analysis

This stage of the methodology assumes that. for all LSL traits appearing in the uses
clause of the class interface specification. the LSL Analysis is complete. The LCC
Analysis has the following steps:

Step 1: Determine the set of variables under the test.

Step 2: Apply LSL analysis to all traits that appear in the uses clause as described

in the previous Section.

Step 3: Establish an invariant on the state variable. This invariant appears in

24

the invariant clause of the interface specifications.

Step 4: Determine the class invariant. It is composed of three parts as described in
section 8.4 of [10].

Step 5: For all member function specifications extract all relevant parts (pre/post-
conditions, invariants) for the composition of the Spec.OP:
Spec.OP = Pre A Post A Inv

Step 6: Transform Spec.OP into DNF to obtain disjoint sub-relations.

Step 7: Simplify each sub-relation. possibly splitting it into further sub-relations.

by using semantics of First Crder Logic.

Step 8: Extract from each sub-operation two sets of constraints, one describing
its before state, and the other describing its after state. This is done by existentially

quantifying every variable external to the state in question, and simplifying.

Step 9: Perform partition analysis. by reduction to DNF. of the disjunction of the sets
of constraints found in Step 8. The resulting partitions will describe disjoint states
in which at least one sub-operation either creates the state (corresponding to the

post-condition), or is executable in that state (corresponding to the pre-condition).

4.4 FSM Derivation

Step 1: Steps 5, 6, 7 of LCC analysis have provided the transitions of the FSM. and
Step 9 has provided its states. The FSM can now be constructed by resolving the
constraints of sub-operations against states. A transition labeled OP is created from
state S1 to state S2 for every sub-operation OP and every state S1 and S2 satisfying
(S1, S2) € rel-OP where rel-OP is the relation on states defined by the constraints

on OP resulting from partition analysis.

Step 2: If possible, simplify the FSM using classical FSM reduction techniques.

25

4.5 A Simple Example

In this section the FSM construction methodology is illustrated with a simple exam-
ple. The example of a Larch/C++ specification of the class Queue is used to present

this methodology.

4.5.1 LSL Analysis of Queue LSL Trait

Following is the LSL specification of an abstract queue. This trait is taken from the
LSL handbook [28]. The specification is straight forward. There are eight operators
that are defined. The empty operator specifies an empty queue. The append operator
adds an element at the end of the queue while the tail operator removes an element
from the front of the queue. The isEmpty boolean operator evaluates to whether the
queue is empty or not. The len operator evaluates to the length of the queue. The
count operator evaluates to the number of times that a specific item exists inside the

gueue. Finally the head operator evaluates to the first item in the queue.

Queue(E.C) : trait
% FIFO operators
includes Integer
introduces
emply :(— C
append : E.C - C
count : E.C — Int
--€ _.: E.C — Bool

head : C —- F
tail : C - C
len : C — Int

isEmpty : C — Bool

asserts
C generated by emply. append
Vgq:C,e,e;: E

count(e, empty) == 0
count(e, append(e,,q)) ==
count(e,q) + (if e = ¢; then 1 else 0)
e € g == count(e,q) >0
head(append(e,q)) ==
if ¢ = empty then e else head(q)
tail(append(e, q)) ==
if ¢ = empty then empty
else append(e, tail(q))
len(empty) == 0
len(append(e,q)) == len(q) + 1
isEmpty(q) == q = empty
implies
Container(append for insert)
C partitioned by head. tail, isEmpty
Vq:C
len(q) >0
converts head. tail, len

exempting head(empty), ta:l(empty)

Operator Type | Operator Name
Initializers empty
Partitioners isEmpty
Alterators append, tail
Examiners count, €, head, len

Table 3: Classification of Queue Trait Operations

We can now proceed with the analysis of the above LSL trait. Table 3 gives the
classification of the operators in the Queue trait. The classification is easy to obtain
except for the Partitioner where one out of the three operators in the partitioned by
clause had to be chosen. The choice was made according to the number of returned
values that these operators have. Both the head and the tail operators can evaluate

to an infinite amount of abstract values. The isEmpty operator can evaluate to true

27

or false.

Next, the partitioner is applied to the initializer. This is done by the last axiom
of the trait which states that isEmpty(q) can be either true or false, depending on
whether q has the same abstract value as the one evaluated from the initializer empty.
Therefore, a queue can be either empty or non_empty which implies that there are

two basic distinguishable domains. d.empty and d.non_empty.

Using these two basic distinguishable domains, the input and output domains of

the operations are determined:

¢ len operator:
input domain : ¢ < d.empty V q € d_non_empty
output domain : Not needed.

output domain is not needed because len is not an alterator.

e tail operator:
input domain : q € d_-non-empty

output domain : ¢ € d.empty V q € d_non_empty

¢ head operator:
input domain : ¢ € d_non_empty
output domain : Not needed.

output domain is not needed because head is not an alterator.

e count operator :
input domain : g € d_empty V ¢ € d_non_empty
output domain : Not needed

output domain is not needed because count is not an alterator.

¢ € operator :
input domain : ¢ € d_empty V q € d_-non_empty
output domain : Not needed

output domain is no’, needed because € is not an alterator.

¢ append operator :

input domain : q € d_empty V q € d_non_empty

28

output domain : ¢ € d_non_empty
The output domain can be derived with a small proof using the axioms in the

assertions clause.

4.5.2 LCC Analysis of Queue Class Specification

Given the results of the LSL analysis, the LCC analysis is ready to be illustrated .
Following is the Larch/C++ specification of an integer Queue class, which contains
a constructor, a destructor, and a few member functions. As member functions it
contains : an Enqueue function, which appends an integer object at the end of the
queue, a Dequeune function, which removes the integer object from the front of the
queue and returns it, a Length function which returns the length of the queue
without modifying the queue object, and a Find function which searches the queue
for a particular integer and returns true or false according to whether the integer

was found in the queue or not.

uses Queue(Queue for C, int for E):
class Queue
{
Queue()
{

contructs self:
ensures is Empty(self'):
}
“Queue()
{

trashes self:

ensures trashed(self):

}

void Enqueue(int a)

{

modifies sel f:

ensures sel f' = append(self’,a):

29

}

int Dequeue()
{
modifies self:
ensures result = head(self) A self' = tal(self"):
}
bool Find(int a)
{

ensures result = a € sel f\any:

}
int Length()

{

ensures result = len(self\any):

LCC Analysis of member functions

From the above specification. it is clear that there is no invariant clause.

o Queue() (Constructor)
pre-condition: true
post-condition: isEmpty(self’)
Spec.OP: self’' € d_empty
simplified:self’ € d_empty
DNF: self' € d.empty

e Enqueue(a)
pre-condition: true
post-condition: self’ = append(self . a)
Spec.OP: (self” € d_empty V self € d_non_empty) A self' € d_non_empty
simplified:(self” € d_empty V self € d_non_empty) A self' € d_non_empty
DNF: (self € d_emptyAself' € d-non_empty)V (self € d-non_emptyAself’ €
d_non_empty)

30

o Dequeue()
pre-condition: true
post-condition: sel f' = tail(self) A result = head(self)
Spec.OP: self" € d-non_empty A (self' € d_empty V self' € d-non_empty) A
self € d_-non_empty
simplified: self € d_non_empty A (self' € d_empty V sel f' € d_-non_empty)
DNF: (se.f" € d-non_empty Aself' € d_empty)V (self € d_non_empty Aself' €
d_non_empty)

e Find(a)
pre-condition: true
post-condition: result = a € (self\any)
Spec.OP: (self\any € d_empty V sel f\any € d_non_empty)
simplified:(self\any € d_empty V sel f\aay € d_non_empty)
DNF: (self\any € d_empty V self\any € d_non_empty)

¢ Length(a)
pre-condition: true
post-condition: result = len(self\any)
Spec.OP: (self\any € d_empty V sel f\any & d_non_empty)
simplified:(self\any € d_empty V sel f\any € d.non_empty)
DNF: (self\any € d_empty V self\any € d_non_empty)

4.5.3 FSM Derivation

Now that both the LSL and LCC analysis are complete, the construction of the finite
state machine may begin. First let us determine the transitions tliat are going to be
contained in the FSM. Table 4 gives information about any transition that can be

derived from the Larch/C++ specification of the Queue class.
From Table 4 it is obvious that the derived state machine ~an have two states.

Table 5 summarizes the two states along with their constrainis. For the sake of sim-

plicity the states have been given a number for name.

31

Using Table 5 we can construct a state machine that represents the Queue class

specification. This state machine is shown in Figure 2.

Transition | Label | pre-state post-state
1 Queue | true sel f € d.empty
2 Enqueue | self € d_empty self € d.non_empty
3 Enqueue | self € d_non_empty | sel f € d.non_empty
4 Dequeue | self € d_non.empty | sel f € d_empty
5 Dequeue | self € d_non.empty | sel f € d.non_empty
6 Find self € d_empty sel f € d.empty
7 Find self € d_non.empty | sel f € d.non_empty
8 Length | self € d_empty sel f € d.empty
9 Length | self € d_non_empty | sel f € d_-non_empty
Table 4: Queue Class Transitions
State | Constraints
1 self € d_empty
2 self € d_non_empty
Table 5: Queue (lass States
Enqueue
Enqueue
Queue Length
2 Find
Dequeue
Dequeue
Dequeue
Length
Find

Figure 2: The Queue Class State Machine

4.6 Limitations of Methodology

In the previous section, the methodology. proposed in [10] was illustrated with an

example sp-cification of a Queue class. Although the methodology in theory satisfies

32

many testing objectives as described in [10], the example shows that there are some
issues that have not been taken into consideration. In this Section, these issues will

be addressed, while in the next Chapter a solution will be proposed.

4.6.1 Non-Determinism

As already seen in the previous sections, the methodology derives a finite state ma-
chine where the transitions are labeled with class function names, and the states
contain constraints specific to the class variable. In the simple Queue example that
was illust rated in the previous section, a finite state machine was derived by analyzing
Larch/C++ specifications. This finite state machine is non-deterministic. The non-
determinism is clearly noticeable in state 2, where there are two departing transitions

with label Dequeue.

The finite state machine that is derived from formal specifications is used in the
test-case generation and test-case execution processes. During the test-case genera-
tion process, test-cases will be selected. At the stage of the test-case execution, the
validity of the system will be checked against the constraints of the current state in
the finite state machine. This is going to be done by selecting paths in the finite
state machine. When non-determinism appears in a finite state machine, the issue of
selecting a test sequence from a finite state machine becomes a lot more complex. The
non-determinism in a finite state machine that is derived from a class specification
affects the test-case generation process. For instance, using the FSM in Figure 2 the
tester will not be able to decide if the following test sequence should lead to state I

or 2

Queue q;
q.Enqueue(6);
a = q.Dequeue();

Therefore. the tester would not be able to claim that the above test sequence was
tested successfully or not, because there is no way to resolve the non-determinism
and test for the validity of one of the two state constraints. Of course, in this simple

example the tester can guess which state the test sequence should lead to. Guessing

33

is an absolutely not reliable method to resolve non-determinism in a finite state ma-
chine that is used for testing. Also, in more complicated cases with more complex
specifications and greater number of member functions, the derived finite state ma-
chines would be more complex and the tester would not be able to guess in order to

resolve non-determinism.

The issue of non-determinism in the derived finite state machine is not only present
in this methodology. but is also in the methodology developed in [20, 19] which
motivated Celer’s work. Non-determinism in this case was to be expected. since the
finite state machine is a finite abstraction of the infinite number of states that the
class variable is allowed to be in, by the specification. Often the non-determinism is
a result of a loose specification and may not be resolved until the implementation has
been completed. The issue of resolving non-determinism is going to investigated in
this thesis.

4.6.2 Consideration of Class Destructor

One other issue that is to be investigated is the Destructor of a class. A Destructor
is a major part of a C++ class and its specification. It should be part of the test
sequences that are derived for the testing of a particular class. In the Quere example
that was shown in the previous section. the Queue destructor was not used to derive
the finite state machine. Consequently, the FSM contains neither a state that a

destructor would lead to, nor a transition with the name "~ Queue.

4.6.3 Considering the New Larch/C++ Features

As seen in the last Chapter, Larch/C++ has gone through many changes since this
methodology was developed. It is therefore expected that many of the new constructs
and features that have been added in the language, are not taken into consideration
when deriving a finite state machine. The derived finite state machine <hould reflect
the formal specification of the class as it is documented in Larch/C+ | in order for
the entire behavior of the class to be tested and not only partial. In this thesis,
ways to involve all the current features of Larch/C++ in the finite state machire

construction will be investigated.

34

4.6.4 Relation Between Sub-type and Super-type FSMs

As already noted, one of the most important characteristics of C++, and of all object-
oriented languages, is inheritance. Celer's work did not address this issue. In the next
Chapter, we will see that Larch/C++ provides a mechanism that enables inheritance
of specifications. This mechanism allows the user to specify behavioral sub-types.
In this thesis, the relationship between finite state machines of a sub-type and of a

super-type will be examined.

4.6.5 Test-case Generation

The methodology provides a finite state machine that expresses the formal specifica-
tion of class. Given such a state machine, the final goal is to derive test sequences
that will be executed in order to test the implementation of a class against its speci-
fication. The work described in [10] does not contain a technique or algorithm that.
given such a state machine, will produce a set of test sequences, execute them and
check the constraints of the states that the class variable passes through. In this

thesis. a test-case generation technique will be investigated.

35

Chapter 5

FSM Derivation: A Revised

Technique

In this Chapter, the weaknesses of the FSM generation methodology are studied in
detail and some solutions for the strengthening and enhancing of that technique are

proposed.

5.1 Non-Determinism and its Consequences

In Chapter 4. a technique that uses formal specifications, in order to produce a finite
state machine was studied. The primary goal for translating formal specifications
into a finite state machine was to automate the test-case generating process. Since
the finite state machine is a finite abstraction of the infinite number of states that the
class variable is allowed to be in, the finite state machine contains non-determinism.
The presence of non-determinism in a finite state machine makes the test-case gen-

eration process rather complicated and not accurate.

5.1.1 Complications in State Constraint Selection

During the test-case generation process, the tester selects representative test se-
quences which are going to be used for the testing of the associated class implemen-
tation. While selecting the test sequences, the tester also selects the state constraints

that the class variable should satisfy after the execution of a test sequence.

36

When non-determinism appears in a finite state machine, the selection of a state
constraint for a particular test-case is impossible and therefore the testing of the class
variable cannot be completed. Let u: illustrate this with the queue example seen in
Chapter 4. Using the finite state machine that was created from the formal specifi-
cation of the class Queue, the following test sequence may be generated:

{

int a, b;

Queue q;
q.Enqueue(a);
b = q.Dequeue():

In order to test the class variable with the above test sequence, state constraints
for every operation in the test sequence must be selected . These constraints are
going to be the constraints of the states that each operation leads to. Therefore, after
executing the constructor of the Queue object, the constraints of state 1 should be
checked (self € d_empty). After sending the Enqueue message to the Queue object
q. the constraints of state 2 should be checked (sel f € d_non_empty).

After sending the Dequeue message to the Queue object g, there are two transitions
with the label Dequeue that have state 2 as source state, but. different destination
states. Consequently, it is not possible to decide the state that the operation leads to.
Therefore, it is obvious that the finite state machine does not reflect the specification
of the class very accurately. The reason for this inaccuracy, is the non-determinism

that appears in the derived finite state machine.

5.1.2 Legality of a Test-Case

Another issue that results from the existence of non-determinis;:a in a finite state ma-
chine is the construction of illegal test-cases. As iv will be seen in the next Chapter,

an tllegal test-case is a test-case that is not faithful to the class specification.

Let a finite state machine M; contain non-determinism in state “A™ with the

following transitions #;, t5. ... t,; these transitions correspond to the same member

function “F”,

Figure 3: Non-determinism

t; has the state “B;" as destination. while ¢, has the state *B,".... .and ?,, has the
state "B, " (see Figure 3). In the context of finite state machines, the transitions ¢, t,
... tn may be followed at any time. given that the current state is "A”. In the context
of black-box and state-based testing. only a legal transition may be traversed at a
specific time. t;. { ... ¢, may correspond to the same member function, but they all
refer to a different sub-state of the class variable according to the class specification.
In particular, the sets of sub-states that ¢,. t,. ... t, are allowed to be traversed are
mutually exclusive. A transition t; is legal when the constraints of the sub-state of
the class variable. that t; refers to. are satisfied. Otherwise, the transition is illegal.
Therefore, only one of the transitions that create the non-determinism may be tra-
versed at a time. These sets of sub-states can be derived from the class specification.

A test-case becomes illegal when the test-case contains an illegal transition.

Let us illustrate this with the Queue example from Chapter 4. In state 2 of the
finite sta.. machine, there is non-determinism on the two transitions that are labeled
Dequeue (see Figure 2). In the test-case generating process we can derive the following
test-case with two different state constraints for the last operation:

{

int a, b;

Queue q:
q.Enqueue(a):
b = q.Dequeue(); }

The first test-case requires the class variable to be tested against the state constraints
of state 1 while the second test-case requires the class variable to be tested against
the state constraints of state 2. According to the class specification, the second test-
case is illegal because when the queue object, that contains only one item, is sent a
Dequeue message, the object would never arrive at a non-empty state. Therefore, the
second test-case is not faithful to the class specification. This does not mean that
the transition Dequeue, that has source state 2. and destination state 2, is always
unfaithful to the specification. For other test-cases, the transition might be legal. For
example, in the following test-case, we can derive two different state constraints for
the last operation.
{
int a, c, b:
Queue q;
q.Enqueue(a);
q.Enqueue(c):
= q.Dequeue():
}
The non-determinism appears again in state 2 with the same two transitions. This
time, the transition that leads to state 1 (empty state) is illegal, while the transition

that leads to state 2 (non-empty state) is legal.

5.1.3 Eliminating the Non-Determinism

In the above two sections, the problems that result from using a finite state machine,
that contains non-determinism, to generate test-cases were analyzed. In this section
a solution is given in order that the tester may be able to generate legal test-cases.
That is, only test-cases that would test a class implementation correctly would be
generated. Since the cause of the above mentioned problems is the existence of non-
determinism in a finite state rmachine, a valid solution to these problems, would be its
elimination. Next is a presentation of the proposed solution which extends the finite
state machine, that is constructed from Larch/C++ specification, to a Conditioned
Finite State Machine. Let us first introduce the notion of a Conditioned Finite State
Machine.

39

Definition: A Conditioned Finile State Machine consists of a six-tuple (S, . B,
6,1, F), where:

e Sisthe finite set of states,
® Y isthe machine’s alphabet.
e Bisa set of Boolean expressions.

e ¢ is a function (called the transition function) § : S x ¥ x B — S such that,
4(p,z,c) = qif and only if the machine can move from state p to state ¢ while

reading the symbol r and the boolean condition ¢ is true.

e i (an element of S) is the initial state.

F (a subset of S) is the set of accept states.

Statement: \With a Conditioned Finite State Machine, as defined above, since 6 is
a function. it follows that any two distinct transitions that start from the same state

sy with the same input symbol r, must have different boolean conditions ¢; and ¢;.

As seen in the above definition. a Conditioned Finaite State Machine is a finite
state machine with conditions on every transition. In the previous section, it was
seen that, whenever we have non-determinism. there is atmost one transition that
can be followed. depending on the sub-state of the class variable. The condition
associated with each transition is meant to question the class variable. Therefore.
when generating a test-case, a transition may be followed, if and only if the condition

associated with the transition is satisfied.

We now demonstrate how the conflict of the previous Queue example is resolved
using a conditioned finite state machine instead of a plain finite state machine. Figure
4 shows an FSM for the Queue class, along with a condition for the transition that

causes the non-determinism.

Using this statemachine, the following test-case does not derive two different state

constraints. One of them is characterized illegal from the condition on the transitions.

40

We now show how the original methodology is modified in order to be able to cre-
ate a conditioned FSM instead of a plain FSM. The steps to deriving a conditioned
finite state machine would be the same as the ones described in Chapter 4 but with

some changes:

After creating the finite state machine, according to the steps in Chapter 4, if
the machine contains non-determinism on a particular set of transitions related to
a particular member function, a further analysis of the function specification should
be done in order to derive necessary conditions for the set of transitions that cause
the non-determinism. This analysis should be done on the set of transitions that is
causing the non-determinism, using the constraints of the pre and post states of a
particular transition along with the defined LSL axioms. Since these conditions are
supposed to be questioning the class variable, they should contain observers defined
on the distinguished sort.

Note: Transitions that do not cause non-determinism are not required to have

Enqueue

Length
Find

size = | Enqueue

size> |

Dequeue Dequeue

Length
Find

Figure 4: A Conditioned FSM for the Queue Class

conditions. In this case, the value true is assigned for the particular transition.

Let us illustrate the method with the Queue example trom Chapter 4. By observ-
ing the finite state machine it is clear that the machine contains non-determinism at
state 2 on the member function Dequeue. First analyze the transition that leads from
state 2 to state 1. For this transition the following predicates can be derived from
the specification :

self" € d_non_empty A self’ € d_empty
self" € d_non_empty = sel f = append(z, €)
self' € d_empty = self’ = empty

41

self' = tail(sel f)

emply = tail(append(z.€)) == = = empty
len(sel f°) = len(append(empty,€)) = len(empty)+ 1 =0+ 1 =1

Now analyze the transition that leads to state 2 from state 2. Using the specifi-
cation the following predicates hold from this transition :

self € d-non_empty A sel f' € d_non_empty

self € dnon_empty = self = append(r.¢€)

self' € d_non_empty = self’' = append(y, a)

self' = tail(self")

len(y) > 0

append(y. a) = tail(append(r.€)) == 1 = append(y.a)
len(sel f7) = len(append(append(y. a).€)) = len(append(y.a)) + 1 =
len(y)+2>2

These two conditions are mutually exclusive and their union results to the set of
all possible values that the length of a queue may take in state 2. Therefore. in order
for the first transition to be traversed, len(self’) = 1 has to be to true. and in order

for the second transition to be traversed, len(se/f) > 1 has to be true.

Sometimes. the class specification is loose or incomplete. In these cases. the
derivation of necessary conditions for every transition may not be possible. The only
solution to eliminate non-determinism, is to complete the specification according to
the criterion of sufficient completeness that was derived by Umansky and Colagrosso

in [60, 17].

5.2 FSM Expressing Class Behavior

Looking closely to the state constraints, it can be concluded that the methodology
enables us only to check constraints that deal with whether or not the Queue is empty.

It does not enable the tester to test the F/FO (First In First Out) property of a queue.

For instance, when executing the following test sequence:

int c;

Queue a;
a.Enqueue(6);
a.Enqueue(7);

¢ = a.Dequeue();

it would be expected for the object ¢ to contain the value 6. According to the
information that the FSM provides, the value 6 may be an incorrect one. The object
¢ may actually contain any value and the class variable would not be empty. The
tester would detect no error in the implementation because the FSM does not provide
any constraints that will make the tester check if the returned value of the Dequeue
function is correct, or if the object a actually contains two elements (6 and 7) after

the second invocation of the Enqueue function.

The methodology succeeds to provide the tester with valid test sequences of func-
tions for which the class variable would arrive at a valid state after executing them.
The derived FSM cannot be expected to fully express the specified class behavior.
The result of a function is specified in the function specification. Therefore. when a
particular class implementation is being tested with test-cases, constructed using a
finite state machine, the result of a certain function is checked against the predicate

given in the function specification.

5.3 Involvement of Class Destructor

A destructor in Object-Oriented programming plays a very important role in the im-
plementation of a class. In C++. a destructor’s primary responsibility is to deallocate
objects that the constructor. or other member functions. may have dynamically allo-
cated through the object’s life time. When a constructor is used to create an object,
the program undertakes the responsibility of tracking that object until it exnires. At
that time. the program auton.atically calls the destructor of ti.at object. Since such

dynamic allocations, that are done from a constructor or any other member functinns,

43

are usually invisible to the clients, the deallocaticns are also usually of no concern to
clients. Thus a specification of a destructor. merely states that calling the destructor

modifies nothing and terminates.

Therefore, it is clear that since a destructor is of no concern to the client of a
class and since it is called autumatically. there is no reason for it to be part of a test-

case, and therefore there is no need for it to be part of the derived finite state machine.

In order for the derived finite state machine to be complete, as far as the speci-
fication of a class is concerned, we are going to propose a simple way to include the
destructor of a class in the derived state machine. The destructor of a class is called
automatically by the client program as soon as the object expires. An object is valid
only in the block of code that it has been constructed. When the control of the client
program gets past the end of the block. the object expires. Therefore. a destructor
can be called at any time during the object’s life time. This implies that. from any
state in the derived finite state machine a destructor transition may be traversed
which will lead to a destruction state that will contain no state constraints. Figure 5

shows the queue example with the optional (dotted) destructor transitions and states.

Enqueue

Enqueue
Length
Find
Dequeue

Figure 5: The Queue Class State Machine with Destructor Transitions

44

5.4 FSM Derivation and the New Larch/C4+

Constructs

As seen in Chapter 3, Larch/C++ has evolved since the original methodology was
developed. Many constructs have been added and some of the already existing ones
have been modified. In this Chapter, the methodology will be modified accordingly.
in order for the derived finite state machine to reflect the exact behavior of the class
variable that is specified in Larch/C++.

5.4.1 State Functions

The state functions are not new in Larch/C++. The \pre and \post functions ex-
isted from the initial construction of the language and they are also part of the original
methodology. The new state functions that has been recently added to Larch/C++
are the \any and \obj.

The \any state function is used whenever an object is immutable and the specifier
wants to state something about the object but in no particular state (pre and/or
post). Therefore, when stating something about an object using the \any state func-
tion, it is equivalent to stating the same thing for both pre and post states of the
object. Consequently. every application of the \any state function to self in a cer-
tain expression, will be replaced by the conjunction of two occurrences of the same
expression where in the first occurrence the \any function will be replaced by \pre

and in the second occurrence it will be replaced by \post

In following example, there is a predicate that states that a queue object (self) is
empty in any state.
self\any = empty
By applying the above mentioned ruie, the following equivalent predicate may be
derived:
self\pre = empty A\ sel f\post = empty or
self = empty A self’ = empty

45

5.4.2 Modifies Clause

The modifies clause is not new to Larch/C++ either. This clause has always been
part of any Larch specification language. It was not taken intc consideration in the
original methodology. In many cases this would not cause any harm. But in some

other cases it would cause a lot of trouble in deriving state constraints.

In particular, function specifications that state that a certain object may e mod-
ified (in our case self) have special assertions that specify how this object is modified.
In cases where the modifies clause does not list all the objects visible by the client
and the function. Larch/C++ implicitly states that these objects remain immutable
after the execution of the function terminates. Therefore. if self is omitted from the
modifies clause. then Larch/++ implicitly states:

unchanged(self)

or as will be seen in the next sub-section.

sel 7= self’
Definition: We define Modifies_Predicate to be:

sel "= self' if self is omitted from the modifies clause

Modi fies.Predicate = {

true otherwise

Therefore. the Spec.OP is modified as follows:
Spec_OP = Pre A Post A Inv A Modifies_Predicate

5.4.3 Larch/C++ Keywords

Let Clause:

A specification using a let clause is syntactic sugar for a specification written with-
out it. The meaning of such specification is given by textually replacing the definrd
variables with their definitions. This “de-sugaring” is required before analyzing the

inter. «ce specification.

Case Analysis:

The case analysis is also syntactic sugar. Given a specification Sy that uses n cases:

16

requires Pre;;
modifies O ;

ensures Post;;

requires Prey;
modifies O;;

ensures Post;;

requires Pre,;

modifies O,:

ensures Post,;
where Pre;, Post,, and 0,, 1 <i < n. are the pre, post conditions and the set of ob-
jects that may be modified by the ith case. An equivalent “de-sugared” specification
S, can be obtained as follows:

requires Pre; V Prég V..V Preg:

modifies O, UQ; U ... U O,;:

ensures Post; A Post, A ... A Post,:

This “de-sugaring” is required before analyzing the interface specification.

Liberal Specifications:

Liberal specifications add looseness to the specification of a class. This looseness con-
tributes to the existence of non-determinism in the finite state machine. As noted
earlier the problems that non-determinism brings, can be avoided if we replace the
FSM with a conditioned FSM. The non-determinism that is resulting from the loose-
ness of a specification cannot be avoided with a conditioned FSM. Therefore, the
following assumption will be made: the user does not specify a class with partial

correctness specifications.

Claims Clause:
A claim is valid for an entire function specification if it is proved. To prove a claim,
the truth of the following expression has to be established:

(Pre A Post ANInv AMPATP A Hist) = claim

where Pre, Post, are the pre and post conditions, Inv is the invariant of the class,

47

Hist is the specified history constraint for the class. Finally, TP and MP, are the
predicates that code the trashes clause and modifies clause respectively [40]. Given
that a claim is already proved. it may assist in the partition analysis that is performed
during the LCC analysis, by defining the Spec_OP as:

Spec_OP = (Pre A Post A Inv A Modi fies_Predicate) = claim

Unchanged:

Informally, unchanged asserts that its argument objects are not mutated. Since, the
only visible states, for a client, are the pre and post states, then unchanged(z) may
be “de-sugared” with 7" = z’, which means that the value of the object in the post

state is the same as the value of the object in the pre state.

Allocated and Assigned:

Allocated is used to explicitly state that an object has allocated memory for. As-
signed is used to explicitly state that an object has memory allocated for, and it is
also initialized with a well defined value [11]. These two primitives are going to be
used as part of any Spec_ OP that is derived for any member function specification.
Consequently, any state constraint may contain the terms allocated and assigned, and

the tester will have to verify their correctness.

Reach:

Since reach(z) denotes the set of all objects that are directly reachable from z, it is
necessary for the Larch/C++ user to explicitly state which objects are directly con-
tained in each sort of abstract value. This could be accomplished, by specifying the
trait function contained objects [40]. In this way, reach(z) can be replaced by the

set ot objects directly reachable from z, whenever used in a function specification.

5.4.4 Implicit Functions

Since C++ defines implicit functions and Larch/C++ implicitly specifies them, the
FSM deriving methodology should consider these function specifications when con-

structing the machine.
As already discussed in Chapter 3, these functions are: the default constructor, the

48

copy constructor, the destructor, and the assignment operator. Following, we show

the specification that is implicitly generated for the above mentioned member func-

tions, for a class T. by Larch/C++.

T()
{

constructs self:
ensures irue;

claims assigned(sel f, post);

T(const T& arg)
{

requires assigned(arg.any):

constructs self;
ensures sel f' = arg\any:

claims assigned(self. post):

ensures ltrue;

T& operator = (const T& from)

{

requires assigned(from,any):

modiies self;

ensures resull = self A self' = from\any;

claims assigned(result, post);

These member function specifications should also be included in the LCC analy-

sis when deriving the finite state machine for a certain class that the specifier did not

49

explicitly specify.

5.4.5 History Constraints

The history constraints are not part of the original methodology because they were
introduced recently to Larch/C++. This clause states a particular property that the
class implementation should preserve. As already stated in Chapter 3, it is syntactic
sugar for Larch/C++, as the same behavior can be specified in the ensures clauses
of every function of the specified class. Therefore, the Spec_OP expression takes the
following form:

Spec. OP = (Pre A Post A Inv A Hist A Modi fies_Predicate) = claim

5.5 Multiple Constructors

The methodology as presented in [10]. creates a finite state machine with the initial
state being the state that the class constructor leads to. In most cases. a class may
have more than one constructor. Each one may lead the class variable to another
state. This would mean that the derived finite state machine would have more than

one initial state which is inconsistent with the definition of a finite state machine.

Enqueue
Enqueue
Length

Dequeue ueue
Length Deg
Find

Figure 6: The Queue Class State Machine with Multiple Constructors

A simple solution to this problem would be to employ an additional state with no
state constraints. This state would be the only initial state in the machine. The initial
transition that would lead to this state would not be associated with any member
functions. This state would be the source state of all the constructor associated

transitions. Consequently, for everv state machine, with n states, derived by the

50

original methodology, another machine with the same structu:e and n + 1 states
may be derived using this new approach. All transitions remain the same except for
constructors which they now require a source state. The conditioned FSM that is

derived for the Queue class is shown in Figure 6.

31

Chapter 6
Test-Case Generation

We have seen so far how to create a finite state machine from Larch/C++ specifica-
tions. In this Chapter we first study some of the previous methods used in order to
generate a test suite from a finite state machine, and we argue the point that these
methods are not suitable to derive a test suite in our methodology. Next, we develop a
new algorithm to derive test sequences using a finite state machine, and we comment

on the test suite adequacy.

6.1 Previous Work on Test-Case Generation

The frequent use of finite state machines for the specification of software has led to
much research in constructing test suites from such specifications. A test suite should

be able to “cover” the entire specification of a software system.

Many methods have been developed in the context of communication protocol
testing. The goal of the test-cases derived from these methods is to validate whether
the properties stated by the protocol specification are satisfied by the given proto-
col implementation. The most popular methods are the “Automata Theoretic” {16}
developed by Chow, the “Distinguishing Sequence” [26] developed by Gonenc, the
“Unique Input Output” (UIO) [54] developed by Sabmani and Dahbura, and the
“Partial W-method” [35] developed by Fujiwara et al.

Although these techniques achieve acceptable test coverage for protocol testing.

52

they don't seem to be applicable in the context of object-oriented class testing. The
protocol methods have a few basic requirements which restrict the wide use of any
FSM. In particular. the above mentioned protocol techniques require a deterministic
and minimal finite state machine. In addition, they require every transition in the

FSM to output a value which is used to construct the test suite.

In the technique proposed in this thesis, the resolution of non-determinism is
achieved with the notion of the conditioned finite state machine. A transition may be
followed only © :n its associated condition is satisfied. The same does not hold for

the above mentioned protocol methods since a transition may be followed at any time.

The “automata theoretic” and the “partial W-method™ assume the existence of
a correctly implemented function Reset. A Reset function is a function which when
invoked forces the system to safely return to the initial state. Even though a Resef

function may be correctly implemented. it is not required by our method.

In addition, most of the protocol techniques mentioned earlier assume a minimal
finite state machine as input. LSL and LCC analysis cannot guarantee the con-
struction of a minimal finite state machine. This issue depends entirely on the class

specification.

Finally, a part of every protocol method, mentioned above, is the existence of a set
of output responses (including the null output) that are emitted when a transition is
followed. Each transition may emit only one output. These output responses are used
to derive the characterization set of the FSM. The characterization set [24] consists
of input sequences that can distinguish between the behaviors of every pair of states
in a minimal automaton. The behavior of a pair of states is the output response of a
transition that connects this pair. In the method proposed in this thesis, a transition
corresponds to a member function invocation. Each member function specification
contains the specification of its result which is analogous to the notion of output
responses. A function result is specified using abstract mathematical domain. This
means that a property of the result is known by the specification and not the actual
result. The abstract value that specifies the function result may correspond to a set of

actual results and not only one, as it is required the by the above mentioned protocol

33

testing techniques.

For the above stated reasons, we are going to propose a new test sequencing
technique that will apply to object-oriented class testing and it will require as input

a finite state machine that is constructed with LSL and LCC analysis.

6.2 Test Cases versus Legal Traces

In the original methodology that was proposed in [10], Larch/C++ specifications were
translated into a non-deterministic finite state machine. Let us recall the definition
of a non-deterministic finite state machine:

Definition: A non-deterministic finite state machine consists of a quintuple (S, .p,

1. F). where:
e S is the nite set of states.
o ¥ is the machine’s alphabet.
e p is the Cartesian product § x ¥ x §
¢ i (an element ~f S) is the initial state.
e ' (a subset of S) is the set of accept states.

Definition: A Test Sequence generated from a formal specification is a sequence of
member function invocations. Such a sequence must always begin with the invocation
of a class constructor. A class constructor may not appear in a test sequence in a

place other than the beginning of the sequence.

A test sequence corresponds to the notion of legal trace described in [17)]. The set
of all traces of a class C is the set of all permutations, of any length, of the member
functions in C, with two restrictions: the first member function should be a class
constructor, and the rest of the permutation does not contain any constructors of
class C. Therefore, a trace of a class C represents a sequence of messages that may
be sent to an object of the class C, starting at the initial state. A legal trace is a trace
which is faithful to the class specification. A legal trace ensures the correct usage of

the class’ methods. The set of legal traces is a subset of the set of all Traces of a class.

54

Any trace that is not legal is called illegal. Therefore:

o LegalTr(C) C Traces(C)

o IllegalTr(C) C Traces(C)

o LegalTr(C)U IlegalTr(C) = Traces(C)
o LegalTr(C)N IllegalTr(C) = 0

From the above we can conclude that the notion of a legal trace is equivalent to the

notion of a test sequence.

In a finite state machine derived from a class specification, a path originating from
the initial state corresponds to a legal trace of that class. Since the finite state ma-
chine is faithful to the class specification. the set of all legal traces, LegalTr(C), may
be produced by the finite state machine. In the case where the finite state machine

contains non-determinism. a subset of the set of illegal traces may also be produced.

In the remaining part of this thesis, a lest sequence or a trace will be denoted by a
string of transition labels separated by semicolons. Figure 7, is an example of a finite

state machine, and three arbitrary fest sequences. In this example, there is a state

Paths
d;d;c;b;c
ceb
cieidiesbid;d

Figure 7: A Few Simple Test-Cases

machine with three states, namely A, B.(C. State A is the initial state. Usually. the

Ot
(14

notation of an accept state in a finite state machine. is different from the notation of
non-accept states. In this methodology, any state can be an accept state. Therefore,
there is no need of adopting the accept state notation. Furthermore, we see that the
labels of the transitions are simply letters. In practice, the labels of the transitions
are names of interface operations. Therefore, in the following bounded stack exam-
ple. (Figure 8) the sequence [Binit; Bpush: Bpush; Bpop; Bpush; Bpop| is a trace and

therefore, a test sequence.

The non-determinism that may appear in a finite state machine, may affect
the test-case generation process. Since a finite state machine, that allows non-
determinism, is able to produce both legal and illegal traces. the test-case generator
would be confused when generating test-cases by traversing paths on the finite state
machine. For instance, the test-case {Binit; Bpush; Bpop] is unable to be charac-
terized as legal or illegal, since there are two paths in the finite state machine that
can be followed and produce this test-case. Since the specification of the class states
that a Bpop message sent to a stack object with one element. would lead the class
variable to an empty state, the test-case that leads to state 1 (empty state) is legal.
while the test case that leads to state 2 (not empty and not full) is illegal. Therefore.
using a non-deterministic finite state machine for the test-case generation provides

a set of test-cases that are both legal and illegal. As already seen in Chapter 5, the
(:) Binit (: >

Bpop

Bpush @

[Binit; Bpush; Bpush; Bpop; Bpush; Bpop]
Figure 8: FSM of a Bounded Stack
revised methodology translates Larch/C++ specifications into a conditioned finite

96

state machine. A path originating from the initial state of the conditioned finite state
machine corresponds to a legal trace. Since the problem of the non-determinism is
resolved with the conditioned transitions, the machine does not produce illegal traces.
Therefore, any trace generated from a conditioned finite state machine corresponds to
a legal trace. Conversely, the entire set of legal traces for a class C, can be produced

by the conditioned finite state machine of C.

6.3 Satisfaction of State Constraints

In the previous section, it was observed that to produce any test-case (legal trace), it
is sufficient to translate the formal specification of a class into a conditioned finite
state machine. In this section. a criterion wili be introduced which will assist the

tester in classifying the test-cases into categories.

Definition: Given two test-cases S) and S,. the is_prefir relation is defined by the

following LSL trait:

PrefirTrait : trait
includes String(E.S)
introduces
is_prefir : §,5 — Bool
asserts
Vsi.sp:Sef:E
is.prefir(empty, s1)
—is_prefiz(si, empty)
is_prefir(e 4 sy, f 1s2) == €= f ANis_prefiz(s),s2)

Definition: Let p be a test-case that can be generated by a conditioned finite

state machine M. Define p to be the set of all test-cases that have p as prefix:

p ={qlis-prefiz(p.q)}.
p is called the generator of the set p.

Statement: If a test-case p is tested correct, with respect to its state constraints.

|

v

then the remaining of the test-cases in the p set, can be tested without re-checking

the state constraints of the generator test-case p.

Therefore. the testing process of any of the test-cases of the p set. consists of only
executing the generator test case p and then executing the rest of the sequence. while

checking the state constraints of every state that the class variable arrives at.

Statement: If a test-case p fails to place the class variable in a specific state. then

the entire p set will also fail.

The testing process is very time consuming. One of the goals of this research, is
to reduce the time spent on testing without sacrificing the quality of testing. The

above two statements can save a great deal of effort and time to the tester.

6.4 Proposing a Test-Case Generating Method-
ology

In this Section. we make all the necessary definitions that will assist us in proposing
a new methodology for generating sufficient test-cases. The goal of this new method-

ology is to reduce the amount of testing without sacrificing the testing quality.

As stated in previous sections. a test-case (legal trace) may be generated from a
conditioned finite state machine by traversing a path that originates from the ini-
tial state. To be able to create all the necessary test-cases. a special kind of acyclic
graph called TCG graph (lest Case Generation graph) will be defined. This graph

has many similarities with a general tree. Let us recall the definition of a general tree:

Definition: A general trce is a set of nodes that is either empty or has a desig-
nated node, called root, from which zero or more subtrees (disjoint set of nodes)

descend Each subtree itself satisfies the definition of a tree.

Let us now introduce the nodes of the T'CG graph:

Definition: Given a conditioned finite state machine M, = (S. ;. By. 6;. 1. F). a

(&)
on

TCG quadruple t, =< sy, di, Opy, ¢; >, is defined to represent a transition in M,.
where s;, d; € S, Op, € £,, and ¢; € B,. s; and d; are the source and destination
states of transition !;. ¢; is the boolean condition which must be satisfied in order for
t) to be traversed. Op, is the member function which is associated with the transition
t.

Statement: A test sequence can now be thought as a scquence of TCG quadru-
ples. In any sequence of TCG quadruples, for any two consecutive quadruples T} and
T,, where

Ty =< $,0py, ¢1, di > and

T, =< sy, Opy, cy. dy >, we have:

d, = s,.

Here. the source state of the second quadruple should be equal to the destination
state of the first quadruple. That is. thr state constraints of d; should match the

state constrainis of s,.

Definition: A node that consists of a TCG quadruple t, and a set of values g;.
is called a TCG node. The set g, contains the values of the variables in the boolean
condition of ¢;.

Definition: A TCG graph (Test Case Generation graph) is an acyclic graph which
is derived from a conditioned finile si1te machine and behaves as a general tree. The
nodes of the graph. are the above defined TC'G nodes. There are three kinds of 1CG
nodes: the 1.0t the leaf and the non-leaf nodes. The root node, which is on the top
of the tree. may have many children and no parent. The last node of a branch is
caied a leaf node if and only if, that node exists twice in the path from the root down
to this node (once at the eud of the path and once at some point between the root
and the end of the path). A leaf node may have only one parent and no children. A

non-leaf node is any node that is not a leaf. It may have one parent and many children.

Statement: A TCG graph path is complete when it terminates with a leaf node.
A TCG graph is complete when all paths from the root are complete.

A TCG graph is pictorially represented by a general tree. Figure 9 shows an
example of a TCG graph which is not complete. It is clear that the path a-b-a is

99

complete (since “a” appears twice in the path) and therefore the third node is a leaf
node. The path a-b-b is complete (since “b” appears twice in the path) and therefore
the third node is a leaf node. The path a-c-b is not complete (because “b” appears
only once in the path) and therefore all nodes of that path are non-leaf. Alsoa TCG
graph represents the total set of test-cases that can be derived from the respective
conditioned finite state machine. Each path represents a particular set of test-cases.
For instance, the a-b path represents the set that is generated from the test case [a;b].
In order to generate the rest of the test cases that exist in that set, only the path a-b

and all its descendants have to be followed.

a non-leaf

PN

non-leaf b ¢ non-leaf

@{ \t@ inon-lear

leaf leaf

Figure 9: A TCG Graph

A TCG graph. as seen already. seems to L2 a general tree with finite height. Since
any finite state machine mav have loops. the corresponding T('G graph will have infi-
nite height. This is expected since the testing process could be endless and therefore
the set of possible test-cases is infinite. Many of the test-cases in that set, as it will
be seen in the next section. are redundant. Our methodology eliminates redundant

test-cases. That is the purpose of incorporating the notion of leaf nodes in a TCG

graph.

A leaf node is the last node in any complete TCG graph path. The purpose
of having leaf nodes is to reduce the height of the infinite-height TCG graph. For

instance, when having a machine like the one in Figure 10. the actual graph would

—(L__ 1

Figure 10: A FSM with a Loop

look like the one in Figure 11. In that figure, part of the actual tree is showed, since

the actual tree has an infinite height. Therefore, a TCC graph with no leaf nodes

60

produces an infinite amount of test sequences. We can also note that the first few

test sequences that will be produced from the tree would be:

Ta— PP T e Pel

Y

Figure 11: Infinite Test Case Tree

The sequence [a] will test the transition that has state “1” as source, state “2" as
destination, input “a”, and no boolean condition. Given that the firs. test sequence
was tested successfully, the sequence [a; b] will test the transition that has state “2”
as source, state “1” as destination, input “b”, and no boolean condition. Given that
the first two test sequences were tested successfully. the sequence [a; b; a] tests the
transition that has state “1” as source, state “2” as destination, input “a”, and no
boolean condition. It is now obvious that the third sequence has identical testing ob-
Jectives as the first one. Also, further analysis of this prc ~lem, shows that the fourth
sequence has the same testing objectives as the second sequence, etc. By studying
carefully the tree (Figure 11). it can be noted that the pattern “a; b” is repeated an

infinite number of times. This is perfectly logical since the state machine contains a

61

loop with these two transitions. Therefore. we can conclude that of all the infinite
number of test sequences that are generated by the actual tree, only two sequences

are sufficient in order to test the class without reducing the reliability of testing.

Statement: The purpose of a leaf node in a TCG graph is to reduce the height

of the tree by eliminating the repetition of certain parts of it.

As previously seen in the definition of the TCG graph, a complete path ends with a
leaf node if and only if the last node of the path exists twice in the path. This means
that whenever the path is traversed, the leaf node can be considered as a branch to the
other occurrence of the node in the same path. In this way. the TCG graph is a tree
that contains all the possible paths that can be traversed in a finite state machine.

and its height is finite.

Basically. a canonical test-case is any sequence of operations derived from the re-
spective FSM that does not contain the same transition more than once. Therefore.
a canonical test-case may be produced by following any path in the FSM that does

not contain a repetitive sequence of transitions.

Definition: We define a Canoncal test-case to be a test-case which is generated
by following any path on the TCG graph. starting from the root node and finishing

at any non-leaf node without treating any leaf nodes as branches.

Definition: We define a lalid test-case to be a test-case which is generated by
following any path on the TCG graph, starting from the rooi node and finishing at

any non-leaf node with or without treating the leaf nodes as branches.

Theiefore. given a TCG graph. the set of Canonical test-cases. Can, is a subset of
the set of Valid test cases Val: Can C Val. Furthermore, from the previous definition
of Valid test-cas- and the definition of a leaf node. we can conclude that the set of

Valid test-cases Val is infinite.

During the process of constructing a TCG graph. many paths have to be followed

in the finite state machine. The root node is always the first transition label in

62

the path. If there is more than one different starting transition label in the set of
paths (say n number of starting labels), then n TCG graphs will be constructed. The
following rules should be followed in order to construct a TCG graph

1. While constructing each path, visit states of the state machine by following a

particular transition.

2. At any state in the FSM. create a child node for every outgoing link of the state.
unless the same node already occurs in the path traversed from the root node
to the current node. In that case, terminate the path by creating the child node

as a leaf node. (see Figure 12).

Finite state machine

—C_02
U
b/ \C b/ \c
N

i
@

Figure 12: TCG derivation

A TCG graph has the property that. given any path in the graph. there is no
two identical non-leaf nodes. Figure 12, shows an example of a state machine and its

corresponding TCG graph.

Now that all the basic required definitions have been introduced, here is a proposal
of a new test-case generating methodology. This methodology tries to minimize the
number of test-cases that are required for testing a C++ class implementation without

affecting the quality of testing. The method has the following steps:

1. Step 1. From a state machine M,. create the set of TCG quadruples contained
in ‘M] .

63

2. Step 2. Given the set of TCG quadruples, create the necessary TCG graphs by

traversing many paths on M;, until all the required TCG graphs are complete.

3. Step 3. Given all TCG graphs that were created in step 2. create all the
Canonical test-cases by traversing the TCG graphs without treating the leaf

nodes as branches.

6.5 Sufficiency in Testing Canonical Test Cases

The overall goal of testing is to provide confidence in the correctness of a program.
The only way to guarantee absolute correctness of a program is to execute it on all
possible test-cases. which is usually impossible. In the previous section the notion ot
a TCG graph was introduced. The two sets of test-cases, Canonical and Valid. that
can be generated from it were also defined. It was also noted that the set of Valid
test-cases. V'al. is infinite, where the set of Canonical test-cases. Can. is finite. and
that C'an C V'al. Furthermore. it was claimed that any test-cases that belong to Val

but not to Can. are 1cdundant. In this section. this claim will be proved.

Theorem: (Adequacy) Let Can denote the canonical test-cases generated by the
FSM F constructed from the specification of a class C". Testing the implementation
of class using test-cases in ('an is equivalent to testing the implementation of class

C using all the test-cases in Val.

Proof:

Our hypothesis is that the implementation of class C' has been tested for all test-
cases from Can and the behavior of class (' is correct. Let us choose a. any test-case,
from Val — Can (in other words. the set of test-cases that we want to prove redun-
dant). We construct a set {27.22....z¢}. k > 1, of canonical test-cases corresponding

to a. This will establish that testing with a is equivalent to testing with {z,,zs....74}.
Since a is valid and not canonical, we can write a = 1,3 , where r; is canonical.

B is the rest of the test-case a after removing r;, and |3| > 1 . So, the leaf node v

of r; can be used to generate 3. This means that a particular transition has been

6

reached for the second time in the same path. Since this leaf node v also corre-
sponds to a unique non-leaf node w in the same path, the unique prefix y of the path

terminating at this non-leaf node w, satisfies the following properties:
o y = prefiz(zy)
o |yf < lay
°* yF# I

o Post(y) = Post(x;)

Post(y) = Pre(8)

yB € Val

Let a; = y3. Consequently. testing the implementation of class C' with o is equiv-
alent to testing it with r;. followed by testing it with yf8 (or just a;). Due to the
above properties. a; has a unique canonical prefix on the tree. Moreover, |a;| < |a].
Hence, by repeating the above process on a, and its successively obtainable strings
of smaller lengths. a set {z,,x,....7} of canonical test-cases will be constructed. The

process terminates due to the finiteness of |a|.

6.6 Axiomatization of Black-Box Test-Case Ade-
quacy

In the past, some research has been conducted in the context of test-case adequacy.
The most important work is due to Weyuker [61]. In this work, Weyuker developed a
general axiomatic theory of test data adequacy. In this section, it will be seen whether
the test-case generating methodology that was proposed in this Chapter. agrees with

that theory.

A program is adequately tested if it has been covered according to the selected
criteria. These criteria are dependent on the form of testing that is performed. As we
already know, there are two forms of testing: specification based (black-box) and pro-

gram based (white-box). It has been already seen that the goal of black-box testing

65

is to determine whe her the program meets its specification. The goal of white-box

testing is to inspect hic source rode as opposed to its specification.

Claim: Let the specification of a class implementation I; to be S;. Let also the
derived conditioned FSM to be M; and the associated TCG graph T;. The set of

canonical test-cases C; that are derived from T3, is adequate ta black-box test I;.

[S-]

. Applicability: “For every program, there erists a finite adequate test set.”

As stated in a previous section, a TCG graph has finite depth. Therefore, the
set (', of canonical test-cases is finite. Due to the adequacy theorem. C is

adequate to test I;.

Non-Exhaustive Applicability: “There is a program P and "est set T such
that P is adequately tested by T, and T is not an exhaustive test set.”

In the previous section, it has been proved that the set of canonical test-cases is
equivalent to the set of 1alid test-cases. The set of Valid test-cases is exhaustive,

while the set of canonical test-cases is finite and non-exhaustive.

. Monotonicity: "If T is adequate for P, and T C T’ then T' is adequate for

P' »
Let T be a set of test-cases such that C'an C T. Testing a class implementation
with T ensures that the class is being tested with at least the set Can. Therefore,

since C'an is adequate, T is adequate also.

. Inadequate Empty Set: “The empty set is not adequate for any program.”

If the set Can can be empty. that would mean that the TCG graph would
have no nodes (root, leaf, non-leaf). Furthermore. it implies that none of the
states, of the associated FSM. are reachable from the initial state which implies
that the CUT (class under test) does not provide any constructors. This will
not occur in a C++ class. Therefore, the set of canonical test-cases cannot be

empty and consequently, the empty set is inadequate to test any program.

Antiextensionality: “There are programs P and Q such that P = Q, T is
adequate for P, but T is not adequate for Q.”

66

This axiom is not true in the case of a specification-based testing. If two pro-
grams P and @ have the same specification, then any black-box test set 7" that

is adequate for P is also adequate for Q.

6. General Multiple Change: “There are programs P and Q which are the same
shape, and a test set T such that T is adequate for P, but T is not adequate for
Q.

This axiom is only applicable to white-box testing since the notion of two pro-
grams having the same shape is only defined for the internal structure of a

program implementation [61].

7. Antidecomposition: “There erists a program P and a component Q such that
T is adequate for P, T' is the set of vectors of values that variables can assume
on entrance to @ for some t of T, and T’ is not adequate for Q.”

This axiom is not applicable for class testing. It is intended for integration

testing.

8. Anticomposition: “There exist programs P and Q such that T is adequate
for P and P(T') is adequate for Q. but T is not adequate for P: Q."
This axiom is not applicable for class testing. It is intended for integration

testing.

Therefore. the methodology that was proposed in this Chapter, constructs a test
suite which satisfies four of the eight axioms proposed by Wevuker. The fifth axiom,
was stated for white-box testing and it was modified for the sake of black-box testing.
Tlie sixth axiom is only applicable to white-box testing, while the last two are only
applicable for integration testing. The satisfaction of the above axioms by the pro-

posed methodology gives better confidence to the test suite produced by a TCG graph.

Although the test-cases derived from a TCG graph provide confidence in testing a
class implementation, that does not imply that the testing process should be termi-
nated. Formal specifications cannot express every requirement of the system. J. Wing
in [63] states that a specifier should first decide what aspect of the system should
specified, and then take a specification approach. For instance, a specification that

is indented only for additional documentation would not be sufficient to be used for

67

constructing an adequate test suite. Therefore, a system should be tested also against

its design and its implementation.

6.7 More Examples

In previous Chapters we studied how to derive a finite state machine given formal
specifications written in Larch/C++. In this section we are going to illustrate chis
new test suite generating method with a few examples : the Stack. and the Bounded

Stack classes.

6.7.1 Example 1: Stack

Stack LSL Analysis

StackTrait (E, Stack) : trait
includes Infeger
introduces
new :— Stack
push : Stack. E — Stack
pop : Stack — Stack
isEmpty : Stack — Bool
size : Stack — Int
top : Stack —» E
asserts
Stack generated by neuw. push
Stack partitioned by top. pop. isEmpty
Vs: Stack.e: E
top(push(s, e

pop(push(s.e
size(new) ==10

)==e
)==s
size(push(s. €)) == size(s) + 1
size(pop(s)) == size(s) — 1
isEmpty(new)

—~isEmpty(push(s, €))
isEmpty(s) == size(s) =0
implies
converts top, pop, isEmpty

exempting top(new), pop(new)

Operator Type | Operator Name
Initializers new

Partitioners isEmpty
Alterators push, pop
Examiners size, top

Table 6: Classification of StackTrait Operations

® size operator:
input domain : ¢ € d_.empty V q € d_non_empty
output domain : Not needed.

output domain is not needed because size is not an alterator.

® pop operator:
input domain : ¢ € d_non_empty

output domain : ¢ € d_empty V g € d_non_empty

e top operator:
input domain : ¢ € d-non_empty
output domain : Not needed.

output domain is not needed because fop is not an alterator.

e push operator :
input domain : ¢ € d.empty V ¢ € d_non_empty
output domain : g € d_non_empty

The output domain can be derived with a small proof using the axioms in the

asserts clause.

69

Stack LCC Analysis

class Stack

{

imports StackTrait(int, Stack);
Stack()
{
constructs self:
ensures self' = new;

}

virtual void Push(int a)
{
modifies self;
ensures self = push(self", a):

}

virtual int Pop()

{
requires !isEmpty(sel f):
modifies self;

ensures self' = pop(self”) A result = top(sel f*):

e Stack() (Constructor)
pre-condition: true
post-condition: self' = new
Spec.OP: self’ € d_empty
simplified:self' € d_empty
DNF: sel f' € d_empty

e Push(a)
pre-condition: true
post-condition: self’ = push(self’, a)
Spec.OP: (self € d_empty V self € d_non_empty) * self' € d.non_empty

70

simplified:(self € d_.empty V seif € d_non.empty) A sel f' € d_non_empty
DNF: (self" € dempty Aself' € d-non_empty)V (self € d_non_emptyAself' €
d_non_empty)

e Pop()
pre-condition: lisEmpty(sel f7)
post-condition: self’ = pop(self’) A result = top(self’)
Spec.OP: self” € dnon.empty A (self’ € dempty V self' € d_non_empty) A
self" € d_non_empty
simplified: self" € d.non_empty A (self' € d_empty V sel f' € d-non_empty)
DNF: (self € donon_empty Aself' € d_empty)V (self € dnon_emptyAself' €
d_non_empty)

Stack FSM Derivation

After completing the LSL and LCC analysis the finite state machine can be derived.

Figure 13 shows the derived conditioned finite state machine.

Push:true

2
. Pop.size>!

Figure 13: Conditioned FSM for Stack

Pop,size=|

Test-Case Generation

Let us now follow the proposed methodology.

Step 1. Derive all TCG quadruples from the finite state machine. For every transi-
tion in the original state machine that departs from state s, (2 > 0A7 < num_trans),
arrives at state d,. has label op,, and boolean condition c,, create a TCG quadruple
< si, op,, ¢, d, >. Fur our ease of understanding this method we are going to denote

every quadruple with a unique name.

Init.l :(—< 0, 1, true, Stack >

Push_l :—=< 1. 2. true. Push >
Push_ 2 :—< 2.2, true. Push >
Pop.2 :—=< 2,2, s1z¢ > 1. Pop >
Pop.l :(=< 2. 1. size = 1. Pop >

Step 2. Given all the above TC'G; quadruples. the test-case derivation algorithin
is now applied. The T(G graph will be constructed by completing the left most

incomplete path at a time.

o Current state : 0.

o Observing the finite state machine. there is only one starting label. Therefore.
only one TCG graph will be constructed with a root node "Init_1". Note that
no variable value exists in that TC'G node label since the boolean condition is

true. Current state: 1.

v Since there is only one outgoing link from state 1. create a child to the current

node called "Push_1". Current state : 2.

L a) ? b) 9 c) ,
¥ '
ln_l) it 1
v v v
/Push__ 1 Push_1 Push_1
' Push_2 1->Pop_l Push_2 1->Pop_l Push_2 1->Pop_|
i _Push 2} 2->Pop_2 Push. 2, 2->Pop_2

@ 1->Pon |

Push_1 Push_1
/P"Sh 2 1->Pop_1 P"Shiz‘ 1->Pop_}
. 2->Pop_2 (Push.2) 2->Pop_2 Puth | .
1->Pop_1 Push.2) 15pop)
;

Figure 14: TCG Derivation for Stack

~1
ro

e In this case there are three outgoing links from state 2. Therefore, create three
children called : “Push 2", *1— Pop_1" (Fop operation when the size is equal
to 1), and “1—Pop_2". Since the size of the stack at this point is: size = 1
the transition “Pop_2” is impossible to ve followed. Therefore we create only
the two children “Push.2” and “1— Pop_1" (see Figure 14a). Continuing with

“Push_2", the current state is :2.

e Again there are three outgoing links from this state. Therefore, creat: three
children nodes: “Push.2”, “2—Pop_1", and “2—Pop.2". Since at this stage
the size of the stack is 2 the transition “2—Pop_1" is impossible tu be followed.
Therefore, create only the two children "Push_2" and “1—Pop.1". By traversing
the path from the “Push_2" node up to the root of the graph it can be seen
that the node “"Push_2” appears twice. Therefore. this node is a leaf node (se>
Figure 14b). The leftmost incomplete path to be traversed is the [Init: Push_i:
Push.2: Pop_2]. Current state:2

e “2-—Pcp._2" has three children :*Push2". *1— Pop_.". and “1—Pop_2", from
which "1—-Pop_2" is impossible to follow. Therefore the grapl becomes as in
Figure 14c. It is easy io sec that the first child (*Push.2") is a lcaf node and
that the second (*1—Pop_1") is a non-leaf node. The leftmost incomplete path

to be traversed 1s the [Init: Prsh_1: Push_2: Pop 2: Pop_t]. Current state: 1.

e “1—Pop.1" has only one child : “Pnsh_1" which is clearly a /eaf node (see
Figure 14d,. The leftmost inconiplete path to be traversed is the /Tnit- Push_l:

Pcp_1]. Curreni state: 2.

e “1—Pop_1" has only one child : “Push_1" which is clearly a leaf node (see

Figure 1ae). All paths of the TC'G graph are compiete.

tep 3. The last step of the procedure is to traverse the TC'G graph in every possible

way. Following. are the test sequences derived from the TC'G graph.
1. [Init.]]
2. [Init.1: Push_1]

. [Init.1; Push_1: Push_2

4. [Init_1: Push_1; Push_2; Pop_2]

5. [Init_s; Push_1; Push_2: Pop_2; Pop_1]
6. [Init_1; Push_1: Pop.1]

The above six test-cases are the canonical test-cases that are derived from the TCG
graph. Testing the class implementation with the last two test-cases. cover the testing

objectives of the first four test-ceses. The-efore, Lhe minimal canonical test-cases are

e [Init_1: Push_.1: Push_2; Pop_2: Pop 1]
¢ [Init_1; Push_1; Pop_1]

The fcllowing is a demonstration of the redundancy of any non-canonical test-
case. Let the Valid test-case a to be :
a = [Init_1: Push_l: Pop_l: Push_1: Push.2
Given that the above six canonical test-cases have been tested successfully. it will be
shown that a is redundant. Let r; be the sixth canonical test-case and
.3 = [Push_1: Push.2] and

y = [Init_1] Then the {ollowing properties hold:
o y= prefir(ay)

lyl <]

.y#l‘l

o Post(y) = Post(ry)

Post(y) = Pre(3)

|
|
|
|
|
\
|
\
|
|
s ys3€ Val

Let, a; = y3. then |a| < |a] Consequently. testing the class implementation with a
is equivalent to testing with the set of test-cases {r;.a;}. Now we repeat the same
process on a;. Since a, is identical to the third canonical fest-case. testing the class
implementation with a is equivalent to testing with the third and sixth canonical

test-cases.

6.7.2 Example 2: Bounded Stack

Bounded Stack LSL Analysis

BStackTra-*(E, BStack) : trait
includes Integer
introduces
new :— BStack
push : BStack, E — BStack
pop : BStack — BStack
isempty : BStack — Bool
isfull : BStack — Bool
mazEl :— Int
ze : BStack — Int
top : BStack — FE
asserts
BStack generated by new, push
BStack partitioned by top. pop. isempty. isfull
s: BStack,e: E
mazEl > 0
top(push
pop(push
size(new
(

—_
Cn
o

~— =
I
il

0
size(push(s,e)) == size(s) + 1
size(pop(s)) == size(s) — 1
isempty(new)
—isempty(oush(s,e))
~isfull(new)

—sfull (pop(s))

isfull(s) == size(s) = maxEl
isempty(s) == size(s) =0
isfull(s) = —isempty(s)
isempty(s) = —isfull(s)

implies
converts top, pop, isempty, isfull

exempting top(new), pop(new)

Operator Type | Operator Name
Initializers new

Partitioners isempty
Alterators push, pop
Examiners size, top
Constants maxEl

Table 7: Classification of BStackTrait Operations

® size operator:
input domain : ¢ € d_empty V q € d.non_empty/ fullV q € d_full
output domain : Not needed.

output domain is not needed because siz¢ is not an alterator.

e pop operator:
input domain : ¢ € d-non_empty/full v q € d_full
output domain : g € d_empty V q € d_non_empty/ full

e top operator:
input domain : ¢ € d-non_empty/ fullv q € d_full
output domain : Not needed.

output domain is not needed because top is not an alterator.

e push operator :
input domain : ¢ € d_empty V q € d_non_empty/ full
output domain : g € d_non_empty/full v ¢ € d_full
The output domain can be derived with a small proof using the axioms in the

assertions clause.

Bounded Stack LCC Analysis

class BoundedStack

{

uses BStackTiait(int, BoundedStack):
BoundedStack()
{
constructs self;
ensures self' = new;

}
void Push(int a)

{
requires !is full(self"):
modifies self;

ensures self' = push(self . a):
int Pop()

requires !is Empty(sel [):
modifies self:

ensures self' = pop(self) A result = top(self):

¢ BoundedStack() (Constructor)
pre-condition: true
post-condition: self’ = new
Spec.OP. self’ € d_empty
simplified:self’ € d_empty
DNF: self' € d_empty

» Push(a)
pre-condition: 'is full(sel f7)
post-cordition: self’ = push(self . a)
Spec OP: (sel[" € d_emplyVsel "€ d_non_empty/ full)A(self' € d_non_empty/ fullv
self € d_full)
sunplilied:(self € d_emptyVself € d_non_empty/full)r self' € d_non_empty/ fullv

T

self' € d_full)

DNF: (self" € dempty A self' € d_non_empty/full)V (sclf € d-non_empty A
self' € donon_empty/full) Vv (self € d_empty A self’ € d_full) Vv (self €
d_non_empty/full A self' € d_full)

* Pop()
pre-condition: sempty(sel f)
post-condition: self' = pop(scl) A result = top(sel [*)
Spec OP: (self € dnon_empty/full v self € d_full) A (self' € d_empty Vv
self' € d_non_empty/ full) A sel f* € d_non_empty
simplified: (self” € d_non_emnty/full V self € d_full) A (self' € d_empty V
self' € dnon_empty/ full) A sel f € d_non_cmpty
DNF: (self € dnon_empty/ fullhsel f' € d_empty)V{self € d non_empty/ fullA
self' € donon_empty/ full) Vv (self € d_full A self' € dnon_empty/ full) v
(self ed_fullAself' € d_empty)

Bounded Stack FSM Derivation

After completing the LSL and LC(analysis. the finite state machine can be derived.

Figure 15 shows the derived conditioned finite state machine.

BoundedStack
__..‘/6\ (‘_lj)

‘ ! Bpop,size=1

Bpush.
P V"‘%
b g ’cé“\‘\

t
Bpush.size<max- P 27
2 W
og%w

Bpop.size>|

Figure 15: Conditioned FSM for Bounded Stack

Test-Case Generation

Given the bounded stack class specification that was converted into a finite state ma-
chine. the proposed methodology is used in order to derive the necessary test-cases.

As in the previous example. the steps of the proposed method are followed. Since

-3

o &

the state machine represents a bounded stack. the maximum number of elements.
MaxEl, that can exist in the stack will be given a value. For the sake of this example

four will be the given value (the maximum size of the stack is 4).
Step 1. This step produces the following TCG quadruples:

Binit.l :—<0, 1. true, BoundedStack >
Bpush_1 :(—< 1, 2, true, Bpush >

Bpush 2 :—»< 2, 2. size < max - 1, Bpush >
Bpop.2 :—< 2,2, size > 1, Bpop >
Bpop.1 :—< 2. 1. size = 1, Bpop >
Bpush.3 :—< 2. 3. size = maxr ~ 1. Bpush >
Bpop.3 :—< 3, 2. true, Bpop >

Step 2. Tollowing the same procedure as in the first example. we derive the fol-
lowing TCG graph (Figure 16).

Binit_1I
Bpush__|
/ \
1.>Bpush_2
/ P _\ — l.>Bmp"l
2->Bpush_2 2->Bpop_2 Bpush_1

B
\
/,
/

1->Bpush_2 1->Bpop_1

beush 3 3 >Bpop_2
4->Bpop 3 \";Bpop

(3->Bpush_3) z 3 >Bpon<‘ I->Bpop_)
2:>Bpop.2

\
Spon.

Figure 16: TCG graph for Bounded Stack

[}

g /

Step 3.Traversing the above derived TC'G graph. the following set of test sequences

is obtained:

. [Binit_1]

—_—

(8]

. [Binit_1; Bpush_l]

3. [Binit_1: Bpush_1; Bpop_l]

4. [Binit.1: Bpush_1; Bpush_2]

5. [Binit_1: Bpush_1; Bpush2: Bpop.2

6. [Binit_1: Bpush_.1: Bpush_2: Bpop_2: Bpop.1]

. [Binit_1: Bpush_1: Bpush_2: Bpush_2

-1

oL

. [Binit_1: Bpush_1: Bpush_2: Bpush_2: Bpop_2]

9. [Binit .1: Bpush_1: Bpush.2: Bpush_2: Bpop_2: Bpop.2]

10. [Binit_1: Bpush_l: Bpush.2: Bpush 2: Bpop_2: Bpop.2: Bpop_1]

11. [Binit_1: Bpush_1: Bpush2: Bpush_2: Bpush_j]

12. [Binit_l: Bpush_1: Bpush_2: Bpush_2: Bpush_3: Bpop_3]

13. [Binit.1: Bpush_l: Bpush2: Bpush_2: Bpush.3: Bpop_3: Bpop.2]

14. [Binit_1: Bpush_1: Bpush_2: Bpush_2: Bpush.3: Bpop_3: Bpop_2: Bpop.2]

15. [Binit_1: Bpush_1: Bpush_2: Bpush_2: Bpush_3: Bpop.3: Bpop.2: Bpop_2: Bpop_1]

The above fitteen test-cases are the cononical test-cases that are derived from the
TC & qraph. The testing objectives of all the above test-cases are covered by the

following set of mumimal canonical test-cases:
e [Binit_1: Bpush_1: Bpop_i]
s [Binit_1: Bpush_1: Bpush_2: Bpop_2: Bpop_l]
e [Binit_l: Bpush_1: Bpush.2: .Bpush_'Z: Bpop.2: Bpop.2; Bpop.-1|

e [Binit_1: Bpush_1: Bpush_2: Bpush_2: Bpush 3: Bpop_3: Bpop_2: Bpop_2. Bpop.1}

9]
(==

6.8 Test Coverage

Test effectiveness usually depends on the coverage strategy that was used to con-
struct the test suite [49]. The most commonly used coverage strategies are the state,
transition, switch and erhaustive coverage. Each strategy provides some degree of
error detection and carries some cost based on the size of the suite that must b
constructed. Figure 17 illustrates the hierarchy of these strategies according to the
degree of error detection and size of the repective test suite. Strategies at the top
exhibit higher degree of error detection, while strategies at the bottom require test

suites of smaller sizes.

Exhaustive

Coverage
—

PR
Switch

Coverage

N

JE—
Transition |

Coverage |

State
Coverage

Figure 17: Test Cover Strategy Hierarchy

Let us briefly describe the different types of errors that can be detected from from

the above stated coverage strategies:
e missing state
e extra stale
e missing transition

e corruption

oL
—

Almost all of the above errors are self explanatory. Corruption is the error that oc-
curs when a particular function executes correctly but it has a side effect that modifies
the state of the object in such a way that some subsequent operations perform incor-

rectly. Les us now briefly describe each strategy:

State Coverage: The goal of this strategy is to place the object under test in
every state in the FSM at least once. A test suite constructed following this strategy
will be able to detect the following types of errors:

Any missing states will be detected since every state is scheduled to be visited by
the test suite. Also. some extra states. some errors in transitions, and some
instances of corruption may be detected but there is no systematic coverage ot

these errors.

Transition Coverage: The goal of this strategy is to traverse every transition in
the FSM at least once. If an FSM is not disconected. traversing all transitions implies
the state coverage strategy. A test suite constructed following this strategy will be
able to detect the following tiy ~s of errors:

Any missing states and any missing transitions will be detected since every
transition (and every state) is scheduled to be traversed by the test suite at least
once. Also. an improved detection of some extra states. and some instances of

corruption may be performed but there is no systematic coverage of these errors.

The FSM construction process describad in Chapters 4 and 5. ensures that an
I'SM cannot be disconnected. A test suite generated with the TC(i technique satis-
fies transition coverage because it traverses every transition in the finite state machine.

Since fransition coverage implies state coverage it also satisfies state coverage.

Switch Coverage: The goal of this strategy is to traverse all possible sequences
of transitions in the FSM at least once. The sequence of transitions may have a
predefined length. For instance. when the sequence length is 3. the coverage is called
3-switch. 1-switch is equivalent to fransition coverage. Any n-switch coverage with
n > 1 implies the fransition coverage strategy. A test suite constructed following this
strategy will be able to detect the following types of errors:

Any missing states or transitions will be detected since the strategy is at least

82

equivalent to the transition coverage. Also. a much more improved detection of extra
states and instances of corruptioncan be performed. Even though this strategy
provides a systematic coverage of these errors. it is not able to produce a test suite

that will detect all faults.

The TCG graph construction and traversal ensures switch coverage. The degree of
the switch cover is not constant. It depends on the TCG graph that was derived from
the corresponding finite state machine. The depth of the TC'G yraph would be the
degree of the switch cover. Therefore, the test suite for the BoundedStack example is

a 9-switch cover and the test suite for the Stack example is 5-switch cover.

Exhaustive Coverage: The goal of this strategy is to traverse every possible path
in a finite state machine. This strategy becomes an infinite process when there is at
least one loop of transitions in the FSM. Therefore. it should be able to detect all
errors. It is the most expensive strategy and due to the infinite number of test-cases

it 1< infeasible.

A test suite generated by a TCGG graph is not an exhaustive test suite. The adc-
quacy theorem states that any test-case that is not part of the test suite is redundant

and therefore. the test suite is "equivalent” to an exhaustive test suite.

6.9 Test-Case Execution

Dick and Faivre [20]. describe a methodology that derives a finite state machine from
VDM specifications. This methodology is similar to the state machine derivation from
Larch/C++ specifications methodology. Additionally to the technique. they provide
a few guidelines that can be used during the execution of the test-cases in order to
detect the maximum amount of faults with one test-case. Modifying these guidelines.

an efficient test-case execution process is obtained.

Figure 18 shows a flowchart which describes the guidelines in a form of an algo-

rithm:

1. Construct the TCG and produce the canonical test-cases.

2. For each test-case choose test data values which satisfy the constraints. That is,
the values of the arguments of the member functions should satisfy the function

pre-condition.

3. Perform the first (next) test. and check the result against the specification.
That is. the result of the invoked member function should satisfy the function

post-condition,

(a) If the test is successful. then

i. If the system is in the expected state for the currently selected se-
quence. continue with the next operation in the test sequence. That
is. if the state of the system satisfies the constraints of the expected
state in the FSM. continue with the next member function invocation
in the same test sequence.

ii. If the system state does not satisfy the constraints of the expected state
of the FSM, the test has failed and therefore. the process continues

from step 3 for another test-case.
(b) Otherwise, if the test is unsuccessful. check the after-state of the system

i. If the system is in the correct state, continue with the next operation
in the test sequence
ii. It the system is not 'n the correct state. then the test has failed com-

pletely. Continue with another test sequence.

4. Repeat for another test sequence.

Remark: We assume that a specification is complete according to the complete-
ness criteria [17. 60]. Hence. even if a test is unsuccessful. the system cannot enter

into a state which is not in the FSM,

!

Note failed
operation
(result)
Incorrect
Y
‘ES Operation
¥ Failed hut

« System in
«correct State

N

NO
-
Note failed
operation
{result - state)

e N
Start | —————
Fnd
—
! | NO
Constructand | B
traverse TCG ! ‘
] N
, YES // An) more .
| Choose test data ™ Test-Cuses? -
| for firat (neat)
Sequence N ’
\\
. Perform first 1 _ —
\nest) operation
in the sequence
\
Chech
result against Correct
Specification
Y
" Chech o
System State Correct
< against) -
~ Specification
\\
N
~
+ Incorrect

(U SE—
Note failed
operation
(stute)
——

1

@

Figure 138: Test Cawe Execution Flowchart

2
v

Chapter 7

Supertype - Subtype Relationship
of Finite State Machines

One of the most important characteristics of ('++ and of all Object-Oriented lan
guages is the Inheritance of classes. Larch/C++ follows C++ very closely and pro-
vides mechanisms of specifving inherited class interfaces. As already shown in a
previous Chapter. Larch/C'++ allows the specifier to reuse the base class specifica-
tions. In particular. a derived class (subclass) inherits its base class’ speciiications by
inheriting the data memb=r declarations and virtual member function specifications
from the base class (superclass). Specification inheritance is the mechanism. provided
by Larch/C++. which allows the user to specify a derived class by adding additional
properties without re-specifving all properties stated in the base class specification.
n this Chapter. we discuss how the relationship between sub-type and super-type
specifications affects the relationship between FSMs derived from the specifications

of the sub-type and super-type classes.

7.1 Informal Definition of Behavioral Sub-typing

A substantial amount of work has been conducted lately in the field of Behavioral
Sub-typing. The most important ones are due to Liskov and Wing [44. 43]. America
[5]. and Leavens [38. 18]. Although all of them are very close to each other. thev also

contain semantic differences. Larch/C++ follows Leavens' approach.

Let two Larch/C+4+ class interface specifications be called Iy and [,. I, is the
sperification of the C++ class ("), and [, the specification of the ('4+ class (72 Also.
let m be a member function in ('} which is inherited by (. Its interface specification
in I; would be:

requires rec ..

modifies ModListgy,.,:

ensures FPostgype,:
where Presupe. Posts,,., are assertions using terins defined in Ty LSL trait. and
ModList gy, is the list of objects that may be modified by m. Al<o the inherited
function’s interface specification in /, would be:

requires Fre. .

modifies Mod/l it

ensures Post.,.:
where Preggs. Posts, are assertions using terms defined 1n Tr, LSL trait. and
ModListey is the list of objects that may ne modified by m. In order for (; to

he a behavioral sub-tyvpe of (') the following implications must be true:
AN 1 g Lnp
1. Pre Super = PI'(Suh
2. Postsy = Post oy,

These reguirements en<ure (et there may be used an object of class (7 in place
of an object of class (*}. Therefore. when a inessage m 1« sent to an object of class (.
using it as an object of class ('y. and given that Preg,,.. holds. by implication (1) we
can conclude that Pre gy will also hold. After the execution and termination of the
method m. it follows that the post-condition Posts,, will be true. and by implication
(2) we can conclude that Posts,,., also holds as required by the specification I for

an object of class ('y.

Although these requirements seem. at first. to be a satisfiable and an adequate
definition of a behavioral sub-type. they fail to take into account that /; and /; might
be expressed using different distinguished rorts and different abstract values. This
creates a problem when abstract values of the sub-type are used in place of abstract
values of the super-type. America [3] proposes a solution to this problem by requiring

a mapping function that maps the abstract values of the sub-type. to the abstract

on
-1

values of the super-type. Thic mapping function o America calls the cotrcion func-
lwn:

0:5-T
where 5 is the set of abstract values of the sub-type. and T is the set of abstract

values of the super-type.

In the context of Larch/C++. Leavens uses the notion of the coercion function
and names it simuletion function. The simulation function should have the property
that. it cornmutes with all the trait functions that take the super-type as argument.
Technically. this property makes the simulation function a homomorphism on the ab-
stract values and hence. is called the homomorphism propcrty. The homomorphism
property allows Larch/C++ to define all the trait functions that take as argument
abstract values of the super-type. making these trait functions applicable and mean-
ingful to the abstract values of the sub-type. Larch/C'+4 provides a special clause for
the simulation function. This clause is called the simulation clause and it allows the
specifier to state the simulalion function with which the sub-type’s abstract values
are mapped to the super-tvpe’s abstract values. It also allows the specifier to state

whether the derived class is a weak or a strong behavioral sub-type.

In a strong behavioral sub-type. the history constraint of the super-type must
be satisfied by all of the sub-type's member functions. That means that a strong
beharvioral sub-type inherits its super-tvpe's history constraint. In a weak behavioral
sub-type. only the virtual member functions that are inherited from the super-type
must satisfy the super-type’s history constraint. The use of weak behavioral sub-typing
in Larch/C++. is currently under research. In the next section. the formal definition

of specification inheritance will be shown as defined in [18].

7.2 Formal Semantics for Specification Inheritance

As seen in the previous section. Larch/C++ creators provide the simulation clause
in order to assist the user in specifving inherited class interfaces without having to
re-specifyv inherited functions. In this section the formal semantics of specification

inheritance and the two types of behavioral sub-typing. as defined in [18]. will be

o
[0 4]

introduced.

Behavioral sub-typing in Larch/C++. is defined using syntactic and semantic con-
straints. The former are used to ensure that an expression of a sub-type can bhe used
in place of an expression of its super-tvpe without any type error. The latter are
used to ensure that when a sub-type object is used in place of a super-type object.

no unexpected behavior is produced.

Let us now see how specification inheritance is formally defined in Larch/C++
by its creators. The notation used below is as follows. The set of all super-types of
a class S is given by Sups(S). The set of all member functions of a class T is given
by meths(T). added_Is. added _pre s(m). and added_posts(m) are the predicates that
are added in the specification of the sub-type. for invariant of 5. and the pre and post

conditions of a method m in S respectively.

Specification Inheritance: Let S be a strong behavioral sub-type of all the classes
in Sups(S). and ¢f .y : U < V', be the specified family of simulation functions. The
completed specification of S is:

Invariant:

s = added_Is A A IT(cs—T)
T € Sups(S)

Pre Condition: For all virtual member functions m of §

pres(m.self.T) = added pres(m. sel f. 1)

V prer{m.cs—tlself).T)
T € Sups(S5),
m € meths(T)

Post Condition: For all common virtual member functions m of S

89

poste(m.sel f . self'. T .7 . result’)
= (added pres(m.self.T) = added_posts(m.self . self'. 7. F'result’))

prer'm.cs_r(self). 1)
A = (postr(m.cs—_r(sel f).cs_7(self').)

T e Sups(S). F.¥.cr,—v, (result’)))

m € meths(T)

A

The above formal definition of specification inheritance applies onlv to virtual
member functions of public subclasses. In cases where non-public subclasses or non-
virtual member functions are specified. specification inheritance cannot be applied
[40].

7.3 Super-type/Sub-type FSM Relationship

In the previous two sections we studied the work that has been done regarding ~peec-
ification inheritance in the context of Larch/C++. In order to specify the behavior
of the sub-type. a stmulation function is vsed. which maps abstract values of the
sub-type to the abstract values of the super-tyvpe. and reuse the specification of the
super-type. In this section. the reused specification of a sub-type will be used in
order to derive a finite state machine for it. Finally. the relationship between the

super-tvpe’s state machine and the sub-tipe’s state machine will also be studied.

In the process of LSL analvsis. not many modifications have to take place from
the original methodology. As was studied in Chapter 3. the simulation function is
an LSL operation. The only addition would be the new kind of operation in the
classification of operations. The simulator is the simulation function which takes as
arguments the sort of the sub-type class and evaluates into the sort of the super-type
class. For this operation. the input domains are determined from the signature of
the operation and the exempting clause. Also. the mapping of the sub-type domains
to the super-type domains is determined from the axioms that define the operation.
Using this mapping. a constraint can be derived that will be used in LCC analysis.
Since this constraint is derived through the simulation function. we will call it the

simulation constraint.

For example. let an object S that takes abstract valves from 4, U A,. and the
following mapping be derived from the simulation function TO_Sup:
A - B
A, — B,
The simulation constraint would he:
(S € Ay ATOSup(S) € By)v
(S € AonTOSup(S) € B,)
The stmulation constraint will be used in the LCC analysis to eliminate all impossible
cases. of the Spec OP (in DNT).

When specifying a derived class. a lot of Larch/C++ syntactic sugar is used for
the ease of the specification process. To obtain the actual specification of the derived
class. the specification must be “de-sugared” as shown in Larch/C++ manual [10].
This “de-sugaring” is motivated from the definition of specification inheritance that
was studied in the previous section. For instance. in a case where a sub-tyvpe & has
only one public super-type T. and a virtual member function M of which signature
and behavior are defined in the super-tvpe’s specification. M is inherited in the sub-
type S. To determine the specification of the member function M both specifications
of M in § and T are considered. The “de-sugaring”™ of the pre-condition. is done by
taking the disjunction of the pre-condition of M in S. Pres. and the pre-condition
of M in T. Preg: PresV Preg. The “de-sugaring” of the post-condition. is done by
taking the conjunction of the following two implications :

Pres = Posts

Prer = Postr
After reducing the above into DNF the following expression is obtained:

(Prer A Postt A —~Pres) VvV (Prer A Postt A Posts)V

(Pres A Posts A -Prer) vV (Pres A Posts A Postr)
Prer and Postr are expressed with terms in the context of the super-type T with the
assistance of the simulation function. The sub-type's derived FSM will have states
that are refinements of the states of the super-type’s FSM. Since for any inherited
member function. the pre-condition is a disjunction of the super-tvpe's pre-condition
and the sub-type's added pre-condition, the “de-sugared” pre-condition will ensure
that the pre-states of all member functions in the super-tvpe are present in the sub-

tvpe's FSM because the super-tyvpe’'s pre-condition is weakened. In other words. the

91

FSM of the sub-type is a hierarchical FSM.

Furthermore. the post-condition of any sub-type's member function is the super-
type's post-condition but strengthened with the added post-condition. This makes
any post-state in the super-type’s FSM to get decomposed in a number of sub-states
in the context of the sub-type’s FSM. These sub-states have as state constraints
the assertions that are added to the sub-type’s member function post-condition. An
important property of a sub-type object is that at any state. it may behave as a super-
type object. To maintain this property preserved in the derived FSM. the following

rules for creating an FSM are applicéble:

1. For any transition in the super-type’s FSM. a corresponding transition should

appear in the sub-type's FSM.

2. For any state in the super-tvpe's FSM. a corresponding state should appear in

the sub-type's FSM.

3. For any case where a new state is to be added to the super-type’s FSM in order
to derive an FSM for the sub-type. this new state must be a sub-state of one of

the super-type’s states.

In the process of LCC analyvsis. not many modifications have to be done from
the original methodclogy. All interface member functions have to be analyzed by
extracting the Spec_OP from the pre-condition. the post-condition. the invariant and
the history constraint of the “de-sugared” interface specification. In the case of the
sub-type. the Spec_OP would contain basic distinguishable domains of the sub-type.
as well as of the super-type. Spec.OP terms that relate to a basic distinguishable
domain of the super-type specify constraints of the particular state in the context of
the super-type. Spec_.OP terms that relate to a basic distinguishable domain of the
sub-type specify constraints of the particular state in the context of the sub-type. If
for a particular member function. in the context of the sub-type. it is obtained that
the pre or post-state must satisfy a constraint of the form Cr A Cs. where Cr and Cs
are predicates containing terms that take abstract values from the super-type’s and
sub-tvpe’s set of basic distinguishable domains respectively. then the derived FSM
must include a state with Cr as a state constraint. This state must contain a sub-

state with Cg as a state constraint. The derived transition for that member function

92

would depart from. or arrive at. the sub-state (' and not only from the state (7.
After the derivation of the Spec.OP for a particular function and the conversion to
DNF. the mapping. derived from the sumulation function in the LSL analysis. will be
used in order to eliminate impossible cases in the Spec. OP. In the following section.

the LSL and LCC analysis of a subty pe will be illustrated.

7.4 Examples

Let us consider. once again. the stack example. In a previous Chapter. the two finite
state machines were created from the two classes Stack and BoundedStock. These
two classes were not inheriting each other. In this section. the two classes are
redefined so that one inherits the other. The class BoundedStack is a behavioral
sub-type of Stack. The two finite state machines will be derived. and their
relationship will be shown. The interface specification of the class Stack is the <ame.

while the BoundedStack uses the BSub_BStack Trait LSL trait defined below:

BSsub_BStackTrait (E. BStack) : trait

includes Infeger. StackTrait(E. BStack). StackTrait
introduces
TOStack . BStuck — Stack
full :— BStack
wfull @ BStack — Bool
marEl :— Int
asserts
Y bs: BStack.c: E
marEl > 0
TOStack(new) == new
TOStack(full) == push{TOStack(pop(full). top(full))
T'OStack (push(bs.€)) == push(TOStack(bs).c)
TOStack (pop(bs)) == pop(TOStack(bs))
size(full) == markl
=isfull(new)
~tsfull (pop(bs))

93

sfull (full)
wfull(bs) == size(bs) = marll
sfull(bs) = —wisEmpiy(bs)
isEmpty(bs) = —isfull(bs)
implies
converts full
exempting
\ forall e:E
push(full.¢)

Let us now proceed with the LSL analysis of the above trait. Table 8 shows the
classification of the operations that take as arguments or evaluate the distinguished

sort BStack. Next. the partitioners are applied on the initializers. By the axioms. it

Operator Type | Operator Name
Initializers new. full
Partitioners isEmpty. isfull
Simulators TOStack
Alterators push. pop
Examiners size. top
Constants maxEl

Table 8: Classification of BSub_BStackTrait Operations

is concluded that a bounded stack can be ¢mpty but not full. not empty and not full.
full and not empty. A bounded stack can never be empty and full because maxEl >

0. Therefore. there are three basic distinguishable domains: d.emp. d-n_emp_n_full.

and d_full

e push operator:

input domain : s € d.empV s € d_n_empn_full

output domain : s € d-n_empn_full Vs € d_full

e pop operator:

input domain: s € dn.empn_full Vs € d_full
output domain : s € dempV s € d-n_empn_full

94

e size operator:

input domain : s € deemp Vv s € d.n_empn_fullv s & d_full
output domain : Not needed.

output domain is not needed because ~iz¢ is not an alterator.

e top operator:
input domain : s € deemp/ s € dnempn_fullv s e d_full
output domain : Not needed.

output domain is not needed because top is not an alterator,

e TOStack operator:
input domain : s € deempV ~ € d_n_empn_fullv s € d_full
output domain : Not needed.
output domain is not needed hecause TOStack is a simulator.
domain mapping : d_cmp — d_emp
dn_empan_full - dn_emp

d_full - d.n_emp

The mapping derived from the simulator shows what states and sub-states are go-
ing to exist in the FSM. In this case. the FSM will contain two states (just like the
super-type). The first one will contain one sub-state. while the second will contain
two. Following is the simulation constraint:

(TOStack(s)Y e donemp A s € d_full)V

(TOStack(s) € dnemp A € dnempn_full)v

(TOStack(s) € d_emp A s € d_emp)

The interface specification of the BoundedStack class. which is a behavioral

sub-tvpe of the class Stack. is shown next.

imports Stack:

class BoundedStack: public Stack

{
uses BSub_BStackTrait{int. BoundedStack):

simulates Stack by TOStack:

BoundedStack()

{
constructs self:
ensures self’ = neu:

}

void BPush(int a)

{
requires 'tsfull(self°):
modifies self:

ensures self’ = push(self . a):
int BPop()

requires 'is Empty(self):
modifies self:

ensures self = pop(sel ™) Aresult = top(self):

At a first glance. the specification of the class is not very different. A closer look
shows that the simulates clause makes all the difference. The above specification is
not the complete specification of the class BoundedStack but only the “added
specification”. Previously. the specification showed that BoundedStack was a
stand-alone class. This time it is inheriting from the Stack class specification which

follows.

class Stack

{

imports StackTrai‘(int. Stack):
Stack()
{

constructs self:

ensures self' = neuw:

96

}

virtual void Push(int a)
{
modifies self:
ensures self' = push(self.a):

}

virtual int Pop()

{
requires '1sEmpty(sel f):
modifies self:

ensures self = pop(self™) Aresult = top(self™):

In order to proceed with the LCC analysis. the specification of the BoundedStack
class must he “de-sugared” using the definition of specification inheritance. Note that
only virtual member functions in public subclasses can have specification inheritance.

The rest of the functions simply keep the given specification.

e BoundedStack() (Constructor)
Pres : true
Posts : isEmply(self')
DNF: self’ € dempty

o Push(a) (virtual member function)

Prer : true

Postt : TOStack(self') = push(TOStack(sel). a)

added_Pres s full{sel)

added_Posts : sel f' = push(self.a)

Posts : (true = TOStack{self') = push{TOStack(self).a))A
(Yisfull(sel[) = self = push(self.a))

DNF: (TOStack(self') € d-n.emp A TOStack(self’) € d.empA
self' € don_empn_full)v

(TOStack(self’) € dn.emp ATOStack(self) € d.empA
self' € d_full)v

97

(TOStack(self') € d-n_emp A TOStack(self) € dn_empn_fullr
self' € dn.empon_full)v

(TOStack(self'Y € d-n_emp A TOStack(sclf) € don_empon_fullA
self' € d_full)

e Pop() (virtual member function)

Prer :hsEmpty(TOStack(sel)

Posty : TOStack(self'Y = pop(TOStack(sclf))

added_Pres :las Empty(self)

added Posts : self' = pop(sclf)

Posts : (lts Empty(TOStack(self)) = TOStack(self') = pop(TOStack(sclf)))A
(hsEmpty(selfV = sel f' = pop(~el)

DNF: (FOStack(self) € d.n_emp h TOStack(self') € d_cmpn
self € dfull Nself' € demp)y

(TOStack(sel) € d-n_emp A TOStack(self’) € d_empn
sl € dimempon_full Aself’ € d.omp)v

(TOStack(sel ") € dn_emp A TOStack(~elf') € dn_empA
sclf € dnempn_full Aself' € dn_empon_full)v

(TOStack(sel) € d-n_emp A TOStack(self') € dn_emph
self € d_full Nself' € dnempon_full)

In the above expressions. only the final form of the Spec.OP in DNT is given. All

eliminations. due to the sunulation constraint. are omitted.,

As seen previously. the predicates that contain the simulation function TOStack
refer to the behavior of the object when it is acting as a super-type object. Any
predicates that do not map the se/f object to the super-type refer to the behavior of
the object when it is acting as a sub-type. In order to construct the state machine
for the BoundedStack the above DNF expressions are used in the same way as used
in simple non-derived class. The only difference is that both behaviors of the super-
tvpe and sub-type are used to construct the state machine. Furthermore, the state
machine of the sub-type should be the same as the state machine of the super-type
when eliminating any nested states and transitions. Figure 19 shows the state machine

for the subclass BoundedStack.

BoundedStack

Figure 19: The Hierarchical FSM of a Subty pe

9y

_

Push_2

Chapter 8

Conclusions

8.1 Summary

The overall goal of black-bor object-oriented class testing is to assure the proper func-
tioning of a class’ implementation. The only way to guarantec a class’ correctness is
to execute it for all possible inputs or conduct a formal verification. Formal verifica-
tion requires a formal semantics of the language and i< quite expensive to conduct.
Exhaustive testing is usually impossible since a class may have an infinite amount of

possible inputs.

In this thesis we developed a methodology that. given a Larch/C++ specifica-
tions. generates a minimal and adequate test suite for testing a class implementation.
The research in this thesis is a continuation of the methodology developed in [10].

which constructs a FSM from Larch/C++ specifications.

Since Larch/C++ is still unide development. the methodology developed in [10]
did not capture all its new features. These new features were outlined a1 a revis’»n
of the methodologyv was proposed in order to capture them. 4dditionallv, since many
protocol test suite generation techniques do not satisfy the requi. >ments of the FSM
constructing methodology. a new technique was developea. Following. is the summary

of contributions made by this thesis:

o All the new features and improvements of Larch/C++ have been illustrated.

e The FSM generating methodology is updated to resolve limitations and also

100

make it support the new features of Larch/C++ specification language.

o A new test suite generation technique has been proposed. for ohject-oriented
class testing. This method generates a minimal number of test-cases without

sacrificing the power of testing.

o The test suite generated from the FSM is shown to be adequate and to meet

all the axioms relevant to black-box testing.

e The relationship between the FSMs of a sub-type and its super-type. in the

context of test-case generation has been identified.

8.2 Future Work

This thesis does not address how the relationship between the FSMs of a sub-type and
a super-tvpe may be used for test-case reuse. Also. issues related to fault detection
may be used to correct and debug a class implementation are not investigated either.

All these issues are still open for research.

A very essential future research objective is to design a tool that implements the
first part of the methodology. Celer [10] has presented a preliminary design of the
tool. This tool will be linked with the test-case generation tool developed as part of
this thesis The final aim is to automate as much as possible the test suite selection

and executicn and use it in the context of reusing class libraries [1. 3. 1].

101

Bibliography

[1]

2]

[4]

(6]

[7]

[8]

V.S.Alagar, P. Colagrosso. R. Achuthan, A.Celer, .Umansky. “Formal Specifi-
cations for Effective Black-Bor Reuse - Phase I Progress Report”. Department

of Computer Science. Concordia University. Montreal Canada, September 1994.

V.S.Alagar. P. Colagrosso. R. Achuthan. I.Umausky. “ Evaluating the Complete-
ness of C++ Class Interface Specifications for Software Reuse”. Technical Re-
port. Department of Computer Science. Concordia University. Montreal Canada.
1995.

V.S.Alagar, P. Colagrosso, A.Loukas. S.Narayvanan. A.Protopsaltou. “Formal
Specifications for Effective Black-Bor Reuse - Revised Phase I Progress Report ™.
Department of Computer Science. Concordia University, Montreal Canada.
February 1996. |

V.S.Alagar. P. Colagrusso. A.Loukas. S.Narayanan, A.Protopsaltou. “Formal
Specifications for Effective Black-Bor Rcuse - Final Report”, Department of

Computer Science. Concordia University. Montreal Canada. February 1996.

P. America. “Designing an Object-Oriented Programming Language with Behav-
ioral Subtyping” Lecture Notes in Computer Science 489. pp 60-90, Springer-
Verlag. New York, N.Y., 1991

Thomas R.Arnold and Williain A. Fuson. "Testing in a perfect World”. Commu-
nications of the ACM. September 1994. Vol 37. No 9.

B.Beizer. “Software Testing Techniques”, Van Nostrand Reinhold, New York.
second edition, 1990.

J.P. Bowen. M.G. Hinchey. “Seven More Myths of Formal Methods”, Oxford
University. Computing Laboratory. Technical Report PRG-TR-7-94, June 1994.

102

(9]

[10]

[11)

[13)

[14]

(18]

J.P. Bowen. M.G. Hinchey. “Ten Commandments of Formal Mcthods™. Comput-

ing Laboratory. Oxford University.

A.Celer. “Role of Formal Specification in Black-Bor Testing of Object-Oriented
Software”. Master of Computer Science. Department of Computer Science. Con-

cordia University. Montreal Canada. 1995.

P.Chalin. On the Language Design and Semantic Foundation of LSL. a Larch/C
Interface Specification Language. Ph.D. Thesis. Department of Computer Sci-

ence. Concordia University. 1995.

Betty P. Chao. Donna M.Smith. “Applying Software Testing Practices to an
Object-Oriented Software Development™. OOPSLA’93. Addendum to the Pro-

ceedings.

Y.Cheon. G.T. Leavens. " Gentle Introduction to Larch/Smalltalk Specification
Browsers™. Department of Computer Science. lowa State University. TR #94-01.

January 1994.

Y. Cheon. G.T. Leavens. "The Larch/Smalltalk Interface Specification Lan-
guage". ACM Transactions on Software Engineering and Methodology. 3(3):221-
253. July 1994.

Y.Cheon. G. Leavens. A4 Quick Overview of Larch/C++.". Journal of Object-
Oriented Programming. 7(6):39-49. October 1994.

T.S.Chow. “Testing Software Design Modeled by Finite-State Machines™. IEEE

Trausactions on Software Engineering. May 1978.

P. Colagrosso. “Formal Specification of C++ Cluss Interfaces for Software
Reuse”, Master of Computer Science. Department of Computer Science, Con-

cordia University, Montreal Canada. 1993.

Krishna Kishore Dhara. Gary T. Leavens. “Forcing Behavioral Subtyping
Through Specification Inheritance™, TR #95-20a. Aulowa State University. Au-
gust 1995.

103

[19]

[20]

[21]

22]

[23]

[24]

[30]

[31]

J.Dick. A.Faivre. “Adutomatic Partition Analysis of VDM Specifications™. TR
RAD/DMA/92027. Research and Advanced Development. Bull Systems Prod-
ucts. 1992,

J.Dick, A Faivre, “Automating the Generation and Sequencing of Test Cases
from Model-Based Specifications ™, FME'93 Industrial Strength Formal Methods.
Lecture Notes in Computer Science 670. pp.286-284, Springer-Verlag. 1993.

E.Dijkstra. "A Discipline of Programming . Prentice-Hall. 1976.

S.P.Fiedler. “Object-Oriented Unit Testing”. Hewlett-Packard Journal. pp 69-74.
April 1989.

S.V.Garland. J.V.Guttag. “A Guide to LP. The Larch Prover”™. MIT. March
1993.

A.Gill. “Introduction to thc Theory of of Finite-State Machines™. New York:
McGraw-Hill. 1962.

J.A.Goguen. T.Winkler. “Introducing OBJ". TR SRI-CSL-889. SRI Interna-
tional, 1988.

G.Gonenc. "A Method for the Design of Fault-Detection erperiments”. IEEE
Trans. Comput.. vol C-19. pp. 531-558. June 1970.

J.Guttag J. Horning. “Report on Larch Shared Language™. Science of Computer
Programining. vol 6. pp.103-134. 1986.

J.Guttag J. Horning. “Larch: Languages and Tools for Formal Specification”.
Springer-Verlag. 1993.

P AV Hall. “Relationship Between Specifications and Testing”, Information and
Software Technology, vol 33 no 1 January /February 1991.

Mary Jean Harrold. John D.McGregor and Kevin J.Fitzpatrick. “/ncremental
Testing of Object-Oriented Class Structures”, Proceedings of the 14th Interna-
tional Conference on Software Engineering. ACM, 1992, pp. 68-80.

Daniel Hoffman, Paul Strooper, ~4 Case Study In Class Testing”, Proceedings
of CASCON 93, pp. 472-482. IBM Toronto, October 1993.

104

[32] Daniel Hoffman. Paul Strooper. “Graph-based Class Testing”. The Australian
Computer Journal. Vol 26. No. 4. Nov 1994. pp.158-163.

{33] C.B.Jones. “Systematic Software Development Using VDM, Prentice Hall In-

ternational. second edition. 1990,

(34] K.D.Jones, “LM3: A Larch Interface Language for Modula-3. A Definition and

Introduction”, TR 72. Digital Equipment Corporation System Research Center.
1991.

[35] S.Fujiwara et al. “Test Selection Based on Finute State Models™. IEEE Transac-

tions on Software Engineering. vol 17. June 1991.

[36] Shekhar Kirani. W.T.Tsai. "Specification and Verification of Object-Oriented
Programs”. Technical report. Computer Science Department. University of Min-

nesota.

[37) David Kung. Jerry Gao et al. "Dereloping an Object-Oriented Software Testing
and Maintenance Environment”. Communications of the ACM. Vol 38. No 10.

October 1995, pp.75-87.

[38] G.T. Leavens. "Modular Verification of Object-Oriented Programs with Sub-
types”, Department of Computer Science. lowa State University, TR 90-09. July
1990.

{39] G.T.Leavens. Y.Cheon. “Preliminary Design of Larch/C++ " Proceedings of the
First International Workshop on Larch. Springer-Verlag. 1992.

[40) G.T.Leavens. “Larch/C++ Reference Manual™. Draft. $Revision 4.15. December
24 1995.

[41) G.T.Leavens. “An Overview of Larch/C++ . Behavioral Specifications for C++

Modules”, Department of Computer Science, lowa State University.

[42] R.A. Lerner “Specifying Objects of Concurrent Systems”, School of Computer
Science, Carnegie Mellon University. CMU-CS-91-131, May 1991,

[43] B. Liskov. J. Wing. “4 Behavioral Notion of Subtyping”. ACM Transactions on
Programming Languages and Systems. 16(6): 1811-1841, November 1994.

105

[44] B. Liskov. J. Wing. “Specifications and their Use in Defining Subtypes™. ACM
SIGPLAN Notices. 28(10):16-28. October 1993. OOPSLA 93 Proceedings.

[43] J.D. McGregor. “Constructing Functional Test Cases Using Incrementally De-
rived State Machines™, Object Technology Group. Department of Computer Sci-

ence. Clemson University.

[46] J.D. McGregor. “Functional Testing of Classes”. Object Technology Group. De-

partment of Computer Science. Clemson University.

[47] J.D. McGregor. D.M. Dyer. “Selecting Functional Test Cases for a Class™. Pro-

ceedings of the Pacific Northwest Software Quality Conference. 1993.

[48] J.D. McGregor. "Testing Object-Oricnted Software Systems™. OOPSLA "95. Oc-
tober 1995.

[49] G. Myers. “The art of Software Testing™. New York: Wiley. 1979.

[50] Kurt M. Olender. James M.Bieman. “Algebraic Specifications and Sequencing:
A defect Detection Method ™. Software Testing. Verification and Reliabilitv. Vol3.
1995. pp 49-70.

[51] T.J.Ostrand. M.J.Bacler. "The Calegory-Partition Mcthod for Specifying and
Generating Functional Tests™ Communications of ACM, Vol 31. No 6. June 1988.

(52] D.E. Perry, G.E.Kaiser “Adequate Testing and Object-Oriented Programming”.

Journal of Object-oriented programming. January/February 1990.
(53] Rogue Wave. “Tools.h++ Class Library v6.0", Rogue Wave Software. 1993

[54] K.K.Sabmani, A.T.Dahura. “A Protocol Testing Procedure”, Comput. Networks
and ISDN Syst.. vol 15. no 4. pp. 285-297. 1988.

[55] M.D.Smith. D.J.Robson. “Object-Oriented Programming - the Problems of Val-
idation”. Proceedings of the IEEE Conference on Software Maintenance, Sep
1990, pp. 370-281.

[56] J.M.Spivey. “The Z Notation: A Reference Manual”, Prentice Hall. New York.
1989.

106

[57] B.Stroustrup. “The C++ Programming Language " second edition. Addison Wes-
ley. 1992.

(58] B.Stroustrup. "The Design and Evolution of C++", Addison-Wesley. 1994.

[539] C.D.Turner and D.J.Robson. “Thr State-based Testing of Object-Oriented Pro-
grams”. Proceedings of the IEEE Conference on Software Maintenance. Sep 1993.
pp 302-311.

[60] I.Umansky. “Completeness of Larch/"++ Specifications for Black-Bor Reuse ™.
Master of Computer Science. Department of Computer Science. Concordia Uni-

versity. Montreal Canada. 1993.

[61] E.J. Weuyker. “Ariomatizing Software Test Data Adequacy™. IEEE Transactions
on Software Engineering. Vol. SE-12. December 1986,

(62] J.M. Wing. A Specifier’s Introduction to Formal Methods™, IEEE Computer.
1990.

[63] J.\L. Wing. “Hunts to Specifiers™. Proceedings of the Fourth International Con-
ference ANTAST "95. July 1995.

107

Appendix A

Design of the Test-Case

(Generation Tool

This Appendix describes briefly the design of the test-case generation tool developed
as part of this thesis. This tool was designed to be integrated with a larger tool which
will implement the entire methodology. Section 1 presents the assumptions that were
made in order to develop the system. Section 2 presents a brief description of the

system.

A.1 Assumptions

For the design and implementation of the test-case generation tool a few assumptions

were made. These are:

The existence of input files that contain the description of the finite state ma-

chines in a certain format.
» Rules and predicates may involve only integer arithmetic.

Input Files: There are two input files associated with each test suite generation.
Both have t..e same name but different extension. For instance, in the Stack example,
the two files will have the names: Stack.mac and Stack.sem. The file with extension
.mac is a data file that contains the structure of the finite state machine. The number
of states in the finite state machine is at the top of the file. Successively. the names

of the states follow. After, the names of the states. the number of transitions in

108

the finite state machine is given. Following this. for each transition the number of
the source state and the number of the destination state is given followed by the
name of the transition. An example of such a file is given in Table 9 Stack mac.

The file with extension .sem contains the semantics of each transition and state in

| Stack.mac | Stack.sem |
3 1 size int
I [true.
E E size==0.
NE \E size>0.
3 size=0. Init_1 true.
12 size=size+1. push.l true.
Init_l size=size+1. push.2 true.
23 size=size-1. pop.l size==1.
push_l size=size-1. pop.2 size>1.
313
push.2
32
pop.1
33
pop-2 |

Table Y: .mac and .sem files for the Stack class

the finite state machine that was described in the corresponding .mac file. At the
top of the file. the number of variables that mayv be contained in the predicates and
rules is given. followed by the name and the type of the variable. Cousecutively. for
every state that was described in the .mac file. the associated name and predicate
is given. Following. for every transition in the mac file. the associated rule, name.
and predicate (condition) are given. An example of such a file is given in Table 9

(stack.sem).

A.2 System Specification

In this section, the object model and the interface specification for most of the classes
will be shown. Some of the classes are best specified using a context {ree grammar

(CFG) because they implement parsers.

109

A.2.1 Object Model

Following the Object Modeling Technique (OMT). this section presents the object
model of the system which captures the static structure of the system. This static
structure shows the relationships between the objects of the system. Figure 20, shows
the object model for the test-case generation tool that implements the technique

presented in Chapter 6.

2,

I® SoALLIR

wouj suedap

L

Figure 20: Object Mbodel of the tool

A.2.2 Classes: fsm, state, transition

The class £sm represents the finite state machine that is inputed from the two data
files .mac, .sem. It contains a list of state objects and a list of transition objects.
These two lists of objects represent the states and transitions inputed from the two
data files. An £sm object contains also a list of test_case objects which represents
the test suite that is derived for the current fsm object. Also, an £sm object contains
a list of tcg_type object which serves as a symbol table for the variables that are

part of a predicate.

110

A state object contains a predicate object which represents the predicate that

is associated with the state object.

A transitionobject contains a predicateobject which represents the predicate
that is associated with the transition object. It also contains a rule object which
specifies how the symbol table variables may be modified when the associated tran-

sition is traversed.

A.2.3 Classes: parser, rule, predicate, lexer

As can be seen from the object model. the rule and predicate classes are both
subclasses of the class parser. Therefore both rule and predicate are parsers but
they may parse different expressions. Table 10 shows the LL(1) grammars for these
two classes. along with the lookahead symbols. Clearly. many rules in these two
tables are identical. These common rules are implemented by the superclass parser.
A predicate object represents a predicate that may be associated with a state or a
transition. A rule object specifies how the symbol table variables may be modified
when a particular transition is traversed. The internals of both objects are inputed
from the .sem input file.

A lexer object is a lexical analvzer that is associated with a rule or predicate

object. It implements all the lexical conventions that follow:

An identifier is a sequence of letters and digits. It may only start with a letter.

It is specified as I(l + d)*. where [is any letter and d is any digit.
e A numerical constant (integer) is a sequence of digits specified as ddx.

e String constants are not defined.

The language is case sensitive.

White spaces may not appear in any expressions

111

| predicate grammar | LL(1) symbols

|| rule grammar | LL(1) symbols |

Pred — L. i ni (| true false Start — S,. 1

U - W ini({true false S — S5, i

C,—=C ini(' S, —: 85,

C] - [(] [SQ — A .

W — O AND OR S =k i

H — A . K —-=FE =

C - EOrE ini(E—-FJ i ni

E - FJ i ni(F — RJ, i ni(

F - RJ, ini(Jy — OmRJ, */

Ji — OmRJ, =/ Jp—= A Coe
) <> >=<=

Ji— A ==!'= ANDOR .| [|Om — =

Om — * 8 Om — / /

Om — / / R — i

R - i R — n ni

R—m ni R — (F) (

R - (F) (J — Oaf'J + -

J = 0aFJ + J — A)
) < > <= >=

J =) =='!= AND OR. | Oa — + +

Oa — + + Oa — —

Oa — —

Ob— AND AND

Ob— OR OR

Or —< <

Or -»> >

Table 10: C'FG for predicate and rule classes

A.2.4 Classes: tcg_type, tcg-int, tcg_bool

In Figure 20. it is shown that the tcg_int and %cg.-bool objects are subclasses of
tcg_type. These three classes define integer and boclean data types. These data types
are used for the definition of the symbol table and manipulation of the values stored
in it. In this version of the tool only integer and values are allowed. The system is
designed in a way that more data types may be added in the future without having

to make many changes in the entire system.

112

A.2.5 Class: test_case

A test._case object represents a test sequence generated from the methaodology de-
scribed in Chapter 6. It contains a snapshot copy of the symbol table. This facilitates

in identifving a certain test-case as legal /illigal or a certain TCG node as leaf/non-ledf.

113

