INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleedthrough, substandard margins, and improper alignment
can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overlaps. Each original is also photographed in
one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9” black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

®

UMI

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

ARCHITECTURAL SUPPORT FOR

MASSIVELY-CONCURRENT PARALLEL COMPUTING

JAYA NARAIN

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
For THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

JUNE 1998
© JAYA NARAIN, 1998

l*l National Library
of Canada
Acquisitions and

Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et .
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
Our file Notra référence
The author has granted a non- L’auteur a accord€ une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle~ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. . autorisation.

Canada

0-612-39489-1

Abstract

Architectural Support for Massively-Concurrent Parallel Computing

Jaya Narain

Parallel computing is an intricate mix of marketplace requirements, architectural
understanding, technology issues, and issues concerning costs. One controlling myth
is that high-volume commodity processors must, by the nature of things, be the
common building blocks for both desktop clients and room-size servers. This myth—
and the supporting myth of architectural convergence of clients and servers—should
be subject to dispassionate analysis.

With only one program counter per processor, conventional processors are be-
coming increasingly unresponsive in spite of faster clock rates. We will show that
reliance on Instruction-Level Parallelism (ILP) for performance drives processor state
upwards. When this massive state is not distributed across multiple program coun-
ters, processors choke on their own expensive context switches, here reconceptualized
to show their true cost.

Within the framework of Little’s law from queueing theory, we analyze conven-
tional RISC superscalar processors as a case study of the inadequacy of the class of
“ILP” processors. We contrast this to multithreaded processors that exploit both
ILP and Thread-Level Parallelism (TLP).

As a contribution to parallel programming, we show how data caches in multi-
threaded architectures can be used to manage speculative state, and perform atomic
updates involving multiple variables.

There is no “convergence architecture”; there are only divergence architectures.

il

Acknowledgments

Thank you Dr. David Probst for being my friend and guru! Without your excellent
supervision, intellectual drive, continuous motivation, patience and financial support,
this work would not have been realised so effectively in just 12 months.

I am grateful to the other members of the thesis committee, Drs. R. Jayakumar,
H.F Li and Peter Grogono, for their valuable suggestions and reading my thesis in
limited time. Dr. Li was, throughout, a virtual sounding board on architectural
issues, and a feedback control on excessive religious zeal! I owe a particular debt of
gratitude to Dr. Li and Dr. Probst for their generosity in extending financial support
to me when I really needed it. My thanks to the Department of Computer Science
for awarding me Teaching Fellowships and to the School of Graduate Awards for a
partial tuition waiver.

My thanks to all faculty members, the System Analysts Pool and the secretaries
for providing an environment congenial to academic research with fewer frustrations.
Many thanks to Guy Dumais for answering all my LATEX questions, to Rachit,
Manolo, Bhaskar, Sriram, Venkat, Jennifer, Manu, Rajat, Shilpee, Vinu and Manish
who have provided priceless friendships and made my life in Montreal fun and exciting.
I am particularly grateful to Krishna for his magnanimity. I cannot thank enough
Ganesh (often my greatest critic!) for being an unfailing friend and standing by me,
no matter what.

I am eternally indebted to my parents, my family and my relatives for their love
and intellectual motivation. I adore my father for his countless sacrifices and constant
struggle to provide me with the best education. I thank my little nephews, the desire

to see whom has hastened the completion of this thesis.

v

Contents

List of Figures
List of Tables

1 Introduction

1.1 Motivation: The crisis in high-end computing
1.1.1 Why thecrisisisreal
1.2 Little’slaw
1.2.1 Twowaystogo
1.3 Contributions of this thesis.

2 Superscalar Architectures

........

2.1 Caches e e e e e e e e
2.2 Superscalar techniques to implement and exploit concurrency . . .
2.2.1 Historical perspective o000
2.2.2 Model of a superscalar processor
2.2.3 Instruction fetching and branch prediction

2.2.4 Instruction decoding, renaming, and dispatch

2.2.5 Instruction issuing and parallel execution
2.2.6 Handling memory operations
2.2.7 Committing or retiring instructions
2.3 Out-of-order issue/execution of instructions
2.4 Speculative Execution

2.5 Summary of the disacdvantages of superscalar machines

........

........

........

vii

viii

00 =~ =~ U1 =

3 Multithreading 31

3.1 Early multithreading oo 36
3.1.1 Coarse-grained or blocked multithreading 37
3.1.2 Fine-grained or switch-on-every-cycle muitithreading 39

3.1.2.1 Fine-grained multithreading with full single-thread sup-
port and caching 39
3.1.2.2 Fine-grained multithreading without caches 41
3.2 Simultaneous multithreading oo 42

3.2.1 Simultaneous multithreading with heavyweight threads (SMT1) 43
3.2.2 Simultaneous multithreading with lightweight threads (SMT2) 46

3.2.2.1 Architectural overview of SMT2. 46
3.2.3 Qualitative and Quantitative Comparisons between SMT1 and
SMT2 . . i i e e e e e e e e e e e e e e e 49
4 Shared Responsibility for Parallellism 53
4.1 Explicit Programmer Control Decomposition 55

4.1.1 The CC++ Programming Model (Explicit Control Constructs) 55
4.1.2 The OpenMP Programming Model (Control Constructs as Com-

piler Directives) oo e 60

4.1.3 Tera Loop Directiveso oo 65

4.2 Examples of Explicit and Implicit Parallelism 68
4.2.1 Examples of exlicit and implicit parallelism in loops and vectors 69

4.2.2 Parallelization versus vectorization 75

4.3 Wait-free or lock-free transactions 77

5 Conclusions and future work 83
Bibliography 86

vi

List of Figures

1.1
2.1
2.2
2.3
2.4
2.5
2.6
2.7
3.1
3.2
4.1

4.2
4.3
4.4

Little’s law says: concurrency equals bandwidth times latency 7
Memory hierarchy with primary (L;) and secondary (L2) caches . . . 13
Flow Diagram of Lockup or Blocking Cache 13
Flow Diagram of a Lockup-free or Nonblocking Cache 14
Stages of parallel processing in a superscalar execution. 17
Organization of a Superscalar Processor. 18
A Sample Program with corresponding Control-flow and Dataflow Graphs. 23
Areorder buffer. e e 28
Comparison of issue slot partitioning in various architectures. 44
Empty issue slots as vertical or horizontal wastes 45

An example of cyclic reduction using 9 threads to compute the sum of

the first 9 array elements starting from 1. The maximum number of

stepsis [10929 1. .« v v v o oo e T4
Thread 1’s transaction on variablesaand 4. 80
Thread 2’s transaction on variablesbande. 81

The simple address register AR[] required to increment the multiword

syncvariableme. oo oo e 82

vii

List of Tables

viii

Chapter 1

Introduction

“There is nothing more difficult to take in hand, more perilous to conduct, or more

uncertain in its success, than to take the lead in the introduction of a new order of

things.”
— Niccolo Machiavelli, The Prince (1532)

Today, high-end computing is at a crossroads. We offer a possible scenario as
to how we arrived at this crisis. The thesis itself provides increased architectural
understanding of a proposed solution to this crisis in the time frame of the next five
years. In a word, we explain why multiple program counters matter: they are the
prequisites for the massive concurrency required to run a new class of large-scale

irregular problems.

1.1 Motivation: The crisis in high-end computing

The traditional design space of parallel computers is fairly well agreed on. In group-
ing processors together, one chooses weak or powerful processors, and one chooses
few or thousands of processors. Few, powerful processors is the world of conventional
mainframes and supercomputers. Thousands of weak processors is the world of the
traditional massively parallel processors. The former are costly, with limited scala-

bility, while the latter are often special-purpose machines. Designers have looked for

1

a “sweet spot” in this design space by designing parallel computers with hundreds
(rather than thousands) of rather more powerful uniprocessors, or tightly-coupled
SMP clusters as the basic repeatable computer engine. While we cannot address all
the issues in this design space, we can refer to some trends that will help situate the
problem of this thesis, and its proposed solution.

Five years ago, there was little talk of the “end of architecture”, and little sense of
a crisis in high-end computing. Some users had migrated to symmetric multipro-
cessors (SMPs) because they had modest performance needs. They benefited from
the standard programming model (i.e., performance model). The performance of an
application on a true SMP is independent of data layout. And this has enormous
benefits for programming, for the availability of independent software vendor (ISV)
applications software, etc. The problem with SMPs is that the computer industry
has no way to scale them to higher and higher number of processors without losing
memory uniformity, and hence the desirable programming model.

If SMPs are not enough, then—always in the view of the computer industry—
we are left with two! alternative architectures that might possibly permit high-end
computation. The first architecture is that of parallel vector processors like the
Cray T90 and the NEC SX-4. A significant portion of the technical community has
grown dependent on vector processors, and is loath to give them up. There are
problems, however. First, for economic reasons, vector vendors cannot afford—aside
from the Japanese manufacturers of course—to invest the R&D money necessary
to design follow-on generations. Hence, users are either deserting vector processors
for mid-range machines with better price/performance, or are very, very unhappy at
the unavailability of new generations of vector machines. They may certainly buy
Japanese machines, however, when this is permitted by law.

Why is it difficult for vector users to switch? Simply because legacy vector codes
do not port to other parallel architectures without profound reprogramming, which is
often prohibitively expensive. Also, vector processors have trouble attracting new user
communities because many of the new application programs—coming from commer-
cial users or sophisticated technical users with modern simulation and visualization

codes—do not match well with vector strengths. These applications have short vector

lWe could also mention message-passing multicomputers, which forsake shared memory alto-
gether, but multicomputers are outside the scope of this thesis. Although much work has been done
on them, they are not the royal road to general-purpose parallel computing.

or even scalar arithmetic, frequent conditional branches, etc., which do not perform
well on vector machines.

The crisis in high-end computing started with the realization that SMP multipro-
cessors and vector machines were together inadequate to meet the needs of several
important user communities. The most prominent of these are: weather-prediction
agencies, automobile and aircraft manufacturers, the Pentagon, the DoD’s High-
Performance Computing and Modernization Office (HPCMO), and the intelligence
community (e.g., the standard three-letter agencies).

Vector processors and SMPs provide complementary approaches to supporting
parallelism. Vector processors exploit parallelism in inner loops, and use a very fast,
very expensive, memory system. Ironically, parallel vector processors do not scale
because of memory contention at memory banks. Commodity processors exploit
parallelism by aggressive attempts to expose instruction-level parallelism (ILP), and
avoid latency by heavy reliance on data caches—so as to require less parallelism. As
clock rates scale, vector lengths must become longer, and caches must become larger
and hierarchical. The result is that such machines support an increasingly smaller
fraction of application programs. Cray Research could not scale the Triton: as proces-
sors beyond 32 were added, it became impossible to sustain flat memory. Essentially,
Cray did not spend enough money on its interconnection network. The inadequate
bandwidth impeded scalability because of memory contention. Both vector proces-
sors and SMPs are predicated on flat memories, and cannot reconcile high processor
count and flatness. Because there appeared to be no alternative, computer vendors
turned to the idea of grouping together large numbers of “commodity” processors
into parallel computers.

The second basic architectural alternative for high-end computing in 1998 might
as well be called massively parallel processing (MPP). The idea is to take large
numbers of scalar processors that are produced in great volumes by Intel, MIPS
Co., Sun Microsystems Inc., etc., and to group them together into larger and larger
multiprocessors—conceivably with as many as 10,000 or 20,000 CPUs. The computer
industry of the MPP flavor is reconciled to nonuniform shared memory, which aban-
dons the SMP programming model, but tries to find a middle ground by building
reasonably large SMP clusters, and then going out to a more loosely-coupled inter-
connect as the computation outgrows its SMP node. Hence, the trend now is to back

off from uniform shared memory, and to pay for scalability with nonuniform shared

3

memory as a programming/performance model. These attempts are called scalable
parallel systems (e.g., the IBM SP), massively parallel systems (e.g., ASCI Red), or
cluster computers (e.g., the SGI/Cray Origin2000). Nonuniform shared memory re-
sults in reprogramming, and extensive retuning to minimize communication cost and
enhance cache effectiveness.

With the exception of Intel processors, most commodity processors are conven-
tional Reduced Instruction Set Computing (RISC) superscalar designs. These designs
share the design decision that there should be one program counter per processor. The
problem is that the limited ILP budget must be spent on both high superscalar issue
rate and sustained feeding of multiple function units. The solution as understood
was in finding many parallel operations by developing sophisticated approaches to
mining individual threads for ILP. Also, aggressive branch prediction was a standard
technique to increase ILP by creating larger and larger basic blocks.

Nonetheless, the RISC processors in MPPs suffered from latency disease except for
easy cases such as applications where either working sets could be held in the cache, or
data-access patterns were regular and predictable. Increasing memory nonuniformity
in cache-coherent non-uniform memory architecture (CC-NUMA) machines produced
an unfortunate coupling between control and data decomposition. One important
question is, is it possible to retain the basic design decisions of conventional RISC
superscalar processors and extract enough parallelism to overcome latency disease?
We think the answer is no. We believe that there are fundamental limits to ILP. ILP
needs to be supplemented by other forms of parallelism. We have spent considerable
time in this thesis, analysing the consequences of single-program-counter design. We
show that as one attempts to extract more ILP, threads become heavyweight, making
it impossible to benefit from thread-level parallalism (TLP). Since ILP is limited, so is
sustained performance of multiprocessors whose only source of processor concurrency
is ILP.

Our abstract goal is to increase the degree of processor-operation concurrency.
Cache-based systems rely on massive data locality. RISC superscalar designs and
Merced rely on out-of-order execution permitted by ILP. The problem is that ILP
is limited. Vector processors rely on long vectors and massive vectorization. Only
multithreading allows us to find concurrency in both ILP and TLP. Although we do
not discuss Merced, which uses an alternative to speculative branch prediction to get

more ILP, and which moves out-of-order control from the hardware to the compiler,

4

there are reasons to believe that, because it depends on ILP alone for parallelism,
it too has no fundamental solution to providing massive concurrency of processor
operations. We leave to future work the demonstration that Merced is intrinsically
unable to profit from TLP, albeit for very different reasons than the ones that make
RISC processors unscalable and unable to tolerate latency. Another problem for
future work would be to point out that parallel computers built from Merced suffer

the low processor utilization of their RISC based cousins.

1.1.1 Why the crisis is real

The crisis in high-end computing is real because major (e.g., mission-critical) software
applications (e.g., structural-analysis simulations) do not scale on existing parallel
computers. Urgent large problems exist that do not run well on any existing parallel
machine. Many experts believe that large applications with irregular, dynamically
changing grids or poor data locality due to algorithmic constraints will not scale on
any of today’s highly parallel systems.

The difficult larger applications that require the reinvention of computer architec-

ture can be characterized as follows:

1. They require large amounts of time and memory, and produce large amounts of

output.
2. Data is organized using irregular meshes rather than simple arrays or grids.
3. Memory accesses exhibit very little spatial and temporal locality.
4. The shape of the problem changes as the computation proceeds.

Thus, while there are many applications that do run well on existing parallel com-
puters, there is a growing class of large problems with novel computational attributes
that cannot be solved efficiently unless we succeed in implementing programmable,
scalable, general-purpose parallel computers. In this thesis, we explore how massive
concurrency is the key to successful implementation of such computers.

Until net-centric computing takes over completely—and perhaps even after then—
there are powerful, significant user communities who desperately need massive com-

puting engines. Some customers can, of course, design or buy special-purpose parallel

5

computers. But, if the parallel computing industry is to survive, then market share

must grow, and this means that someone has to design, implement, and sell
e easily programmable,
e general-purpose parallel computers (which we may call, servers),

e with multiteraflops (or whatever) performance.

This is our problem domain. The solutions are often guided by some myths that are

widely shared:

e Myth 1: There is no way to build a parallel computer unless you use high-
volume commodity processors. Competing approaches are doomed to fail-

ure for reasons of economies of scale. Clients and servers should use the same

Pprocessors.

e Myth 2: Nowadays, there are no significant architectural differences between
one multiprocessor and another. SMPs and CC-NUMA DSM machines have
identical cache-coherence protocols. Shared-memory machines are moving to a
universal ”convergence architecture.” If you really need message passing, we’ll

add it for you! Etc.

These myths are a recipe for stagnation. But, reality is sinking in slowly. In

general, the hardware prerequisites for scalable, parallel servers are:

e scalable bisection bandwidth (which is an interconnection problem),
e scalable latency tolerance (which is a processor problem),

e fine-grained synchronization facilities (which is a processor/memory problem).

Roughly, processors must request and receive data constantly in order to compute.
High bisection bandwidth in 2 multiprocessor allows all processors to do this. Scalable
latency tolerance is essential to keep processor utilization high. And, finally, fine-
grained synchronization is required to support fine-grained parallelism. All this is
intimately related to architectural support for massive concurrency. We do agree
though, that not all machines must have these properties; some machines must have
these properties. Customers will, for example, buy low- or high-bandwidth machines

depending on their needs.

1.2 Little’s law

Elementary queueing theory places easily understood limits on any architecture that

supports massive concurrency. Little’s law says that,
C=bxt

where C is concurrency, b is the bandwidth (desired machine performance) and ¢ is
the latency of processor operations, where we have taken averages everywhere. This
means, for example, that if a processor accepts b operands and delivers b floating-
point results per cycle, and if the average flop latency is ¢ cycles, then the number of

concurrent flops in progress during each cycle must be at least C = b x &.

— C=bXt — .

Figure 1.1: Little’s law says: concurrency equals bandwidth times latency

Suppose, for example, that we have a processor that is required to sustain 1013
operations per second. Suppose also, that the average processor-operation is 10-°
second. An inevitable consequence is that the processor must have 10° operations in
progress at all times to sustain this bandwidth (that is performance) in the face of this
latency. Concurrency hence implies and becomes a shorthand for “has large number of
operations in progress at all times.” We also see that to achieve a petaflops (10%%) per
second performance we will require memory-reference concurrency of up to a billion
outstanding memory references, and up to ten million concurrently executing threads
assuming 100 outstanding operations per thread per cycle. We believe that it is
possible that superscalar processors are incapable in principle of supporting the large
number of real or virtual threads that are required for massively-concurrent parallel

computing. The question is how do we generate this massive concurrency?

1.2.1 Two ways to go

There are essentially two alternatives that hope to provide massive concurrency:

7

— having a single program counter per processor or,
— having multiple (100) program counters per processor.

Our study and analysis in Chapters 2 and 3, proposes that the use of multiple
program counters per processor provides support for massive concurrency by sharing

the enormous processor state among those multiple program counters (see Section-

3.2.3).

1.3 Contributions of this thesis

The major contribution is analytical: we explain why certain architectural distinctions
matter, and why. Although we do make some architectural proposals, our real work

has been to compose in a new way two well-known architectural families: RISC

processors and multithreaded processors. Specifically,

1. we explain why conventional RISC superscalar processors do not provide archi-

tectural support for massive concurrency (see Chapter 2).

2. we explain why multithreaded architectures do support fine-grained parallelism
and fine-grained synchronization by providing architectural support for massive

concurrency (see Chapter 3).

3. we propose a division of labor between the programmer and the compiler in
extracting and exploiting parallelism that places a reasonable burden on the

complexity-management skills of programmers (see Chapter 4).

4. we make a contribution to parallel programming methodology by extending
the full/empty bit structure of memory words in the Tera MTA architecture
[Tera, SC97] to implement a Multiword Compare-and-Swap operation. In par-
ticular, we shift the problem of the atomicity of a set of transactional variables
to the problem of the atomicity of a single multiword synchronization variable
which has been partitioned into counters, thus providing a practical and efficient

implementation (see Chapter 4).

In Chapter 2, we explain simply and clearly, with novel analysis, why conventional
RISC superscalar processors do not provide architectural support for massive concur-
rency. Our fundamental conclusion is that, because concurrency is sought exclusively
from instruction-level parallelism (ILP), and because data locality is fundamental in
determining performance, threads depend on the state built up in both their data
cache and the caches that are used for branch prediction. When context switching
occurs, this state must be laboriously rebuilt, leading to a long interval during which
threads that resume, regain their former performance levels. We quantify all this
by including the time to rebuild this nonarchitectural state as part of the “effective
context-switch time”. When this is large, it is the same thing as heavyweight threads,
and also means absence of support for fine-grained parallelism—the biggest downside
of conventional RISC superscalar processors. This is the fundamental reason that
grouping larger and larger number of such processors is unlikely to lead to multi
teraflops performance.

In Chapter 3, working as analysts rather than as designers, we explain why multi-
threaded architectures can support fine-grained parallelism and fine-grained synchro-
nization, and relate the costs of context-switching on a multithreaded machine (which
only sometimes involves movement of execution contexts in or out of processors) to
the corresponding effective context-switch time of RISC superscalar processors.

Finally, we propose a division of labor in extracting and exploiting parallelism
that reconciles the need for truly massive concurrency with the limitations of the hu-
man mind in managing complexity. Reasonably, we leave most of the burden to the
compiler. The compiler needs some help, however, so we advocate both explicit par-
allelism (within reason) and compiler directives which lead to more effective language
translation.

We also make a contribution to parallel programming methodology by extending
the full/empty bit structure of memory words in the Tera MTA architecture to design
a Multiword Compare-and-Swap operation. The primary value of this is to allow
database-like programming where agreed-upon lock orderings are hard to come by,
when we do not wish to be bothered by the danger of deadlocks.

Other authors [Herlihy, Moss 91] [Herlihy, Moss 93] have suggested implementing
Compare-and-Swap-Two using the conventional hardware-managed cache-coherence
protocol. We do not use such protocols in multithreaded machines, and find an

efficient dynamic (i.e., addresses of shared transaction variables are known only at

9

runtime) implementation that allows us to do transactional programming in the spirit
of optimistic concurrency control. Apart from the sector data-cache, the only new
hardware instructions we require are a few multiword synchronization variables and
the ability to increment indexed fields in these shared variables. The fully dynamic
solutions do require some address registers so that shared variables whose addresses

are disambiguated at runtime can be associated with counters in the multiword syn-

chronization variable.

10

Chapter 2

Superscalar Architectures

“He is one of those people who would be enormously improved by death.”

— H. H. Munro

Since the beginning of this decade, seeking microprocessors with higher and higher
performance has led to many advanced microarchitectural designs. There is a heavy
emphasis at present on superscalar microprocessors [Smith, Sohi]. These are
multiple-issue machines which contain a number of micro-architectural features specif-
ically designed to achieve concurrency by exploiting the parallelism contained in a pro-
gram at the instruction level called instruction-level parallelism (ILP) [Jouppi, Wall].
ILP is the parallelism within single threads. A general outline of superscalar machines
is given in Section 2.2.

The major drawback of the ILP processors is that they create heavyweight hard-
ware threads leading to slow context-switching and poor fine-grained synchronization
which often results in the disciplined avoidance of both features. The amount of par-
allelism that can be exploited depends on the controlflow and also on the dataflow
inherent in the code. There are problems not only with context switching but also
with frequent branches. Frequent branching, for example, limits the performance of a
superscalar processor due to the maintenance of a large number of registers and cache
footprints. We discuss this issue in detail in Section 2.4. Another major design issue

is out-of-order ezecution in a superscalar machine which we discuss in Section 2.3.

11

As systems scale up, the data-locality requirements grow larger and so does the
need to avoid and tolerate large-scale latency. Object-oriented or multithreaded ap-
plications strain cache capacity, adding to the bandwidth and I/O burden. Caches are

essential to parallel superscalar processors and we discuss them briefly in Section2.1.

2.1 Caches

One of the major obstacles limiting application performance of superscalar machines is
long latency of remote memory operations. Wide-issue multiprocessors issue multiple
instructions per clock cycle. Instruction pipelines must be well fed in order both to
avoid bubbles in the pipelines and to maximize performance. As the gap between
processor and memory speeds continues to grow, there is need to develop and exploit
techniques to avoid or tolerate such memory latencies, thereby improving processor
performance.

Caching of data has been the most popular way to avoid memory latency. A
cache is a small, higher speed memory system which stores the most recently used
instructions or data from a larger but slower main memory system. The larger the
cache, the more instructions and data it can store, and higher is the probability of
finding the data or instruction in the cache. When a memory request does not find
an address in the cache—a cache miss is incurred; whereas, if the search is successful
a cache hit is supposed to have occurred. An nt* level cache is n — 1 levels away
from the CPU. The first level (L1) or primary cache is the fastest in the memory
hierarchy. It resides on the processor chip itself and runs extremely fast. Each time
the processor requests information from memory, the cache controller on the chip uses
special circuitry to first check if the memory data is already in the cache. If it is,
then the system is saved from accessing the slow main memory. Most computers also
use a secondary or second level (L2) cache, to catch some of the recently used data
that does not fit in the smaller primary cache. The L2 cache is much larger but also
much slower than the primary cache. Most modern processors, for example Pentium
II processors actually have both L1 and L2 caches built into the processor chip. The
rest of the n — 2 higher level caches reside outside the processor chip. Caches each

level away from the processor are typically larger and slower than the levels closer to

the CPU.

12

Secondary cache
(L2)

Main
CPU Memory

A g

(' /70
A}

Primary cache
(L)

/0o

Figure 2.1: Memory hierarchy with primary (L,) and secondary (L) caches

The first level cache is relatively small and has split instruction and data caches.
It is usually direct-mapped or, has low associativity. L2 is much larger, is shared by
both instructions and data, and usually has high associativity. L1 and L2 caches are
located on-chip for fast access times. In case of a cache miss, the processor stalls until
such time as the memory address is found in one of the cache levels. Figure 2.2 shows

a flow diagram of a blocking cache, which stalls the CPU in case of a cache miss.

Start
1
Flnslruction Execute J
Hi A Mi
i Data Fetch 158

| Stall CPU |
Update Cache

Figure 2.2: Flow Diagram of Lockup or Blocking Cache

(Supply Registers }————

Start

As remedies lockup-free or non-blocking caches [Kroft] (see Figure 2.3) were de-

signed to enable processing cache-accesses inspite of cache misses. Special registers

13

Start

Instrcution Execute

Hit (D Miss

ata Fetch

i
Supply Yes Data No
Registers Dependence
'

Start l Stall CPU'
Update
Cache

To Registers

Figure 2.3: Flow Diagram of a Lockup-free or Nonblocking Cache

called miss status holding registers (MSHR’s) along with the necessary control logic,
contain adequate information to enable the processor to overlap processing of a cache
miss with processing of subsequent instructions in the instruction cache. Nevertheless,
with rise in the number of MSHR’s, complexity and cost associated with non-blocking
schemes rose quite rapidly.

In case of a cache miss there are overheads incurred in searching for the memory
address in the cache. A single cache miss taking place is pipelined to higher and
higher levels of caches until there is a cache hit—the processor remaining stalled until
such a time. Thus, if the hit rate is too low, the overhead incurred as a result is very
high and the processor stalls frequently.

Recently, integration of the two cache levels L1 and L2 into a single cache has
been successful. Nevertheless, this has a major disadvantage in that the size of the
cache footprint grows massively, which in turn causes context-switching to become
increasingly more expensive.

The faster the processor, the more acute is the need to keep them fed with newer
instructions and data. More and more instructions and data require more and more

levels of cache in order to avoid misses. In events of higher context-switchings there

14

are overwhelmingly large cache-footprints making context-switching sluggish. More-
over, the problem of available memory bandwidth becomes all the more acute when
systems scale up, given the memory overhead associated with building large cache-
coherent systems. Caches are useful only to the extent that cache-lines are small and
are managed by users and compilers rather than automatic c_ache-coherence protocols.

Thus, the state penalty of context-switching makes caches a bad implementation

technique in avoiding latency tolerance.

2.2 Superscalar techniques to implement and

exploit concurrency

Superscalar processing is the technique used to fetch, decode and execute multiple
instructions in parallel (out of order ezecution) from an instruction stream executing
on a single processor. Typically, the state of the instruction stream is stored in reg-
ister files, various buffers and a single program counter. Indeed, we will use the term
instruction-level parallelism (ILP) in the restricted sense of extracting and exploiting
the parallelism in an instruction stream using a single program counter as architec-
tural support. Though viewed by many as an extension of the Reduced Instruction
Set Computer (RISC) [MIPS RISC] movement of the 1980’s, superscalar implemen-
tations have forever been heading toward increasing complexity. These superscalar
methods have been applied to a wide spectrum of instruction sets, ranging from the

DEC Alpha [DEC Alpha, to the latest RISC instruction set, to non-RISC Intel 86

instruction set.

2.2.1 Historical perspective

Pipelining of instructions in order to exploit instruction-level parallelism has been in
use for many decades. A pipeline acts like an assembly line with instructions being
processed in phases, as they pass down the pipeline. With simple pipelining, only
one instruction at a time is initiated into the pipeline, though multiple instructions

may be in some phase of execution, concurrently. The CDC 6600 used some degree

15

of pipelining and achieved most of its instruction-level parallelism through parallel
functional units. The 360/91 was heavily pipelined, and although it provided a dy-
namic instruction-issuing mechanism known as Tomasulo’s algorithm, could sustain
only a single instruction per cycle and was not a superscalar processor. The pipeline
initiation rate of one instruction per cycle was perceived to be a serious practical
bottleneck. There exist several implementation techniques for exploiting instruction-
level parallelism, such as vector processing, multiprocessing and others. Superscalar
processors succeeded in eliminating the single-instruction-per-cycle bottleneck by ini-
tiating more than one instruction per cycle. Ever since their invention in mid 1980s,
superscalars became the standard method for implementing high-performance micro-

processors.

2.2.2 Model of a superscalar processor

In the sequential execution model, a program counter is used to fetch a single in-
struction from memory. The instruction is then executed and the program counter
incremented to fetch the next consecutive instruction from memory or a nonconsec-
utive instruction in case of a branch or jump instruction.

A superscalar machine eliminates much of the non-essential sequentiality (out-of-
order execution) to turn the program into a parallel, high-performance version, yet
retaining the outward appearance of sequential execution. Often, instructions are
written in sequence in a program because of the language syntax with no implication
that they need be executed in that order. The sequential program text, in effect masks
the intended program order. A number of techniques including dependence analysis,
attempt to recover the intended (essential for correctness) program order from the
sequentially-written program order. Although this is certainly not an algorithm for
uncovering it, formally we may say that the essential partial order among instructions
(say, within a basic block) is conserved.

Parallel processing of instructions involves the following stages:

1. Instruction fetch
Simultaneously fetching multiple instructions (which are partially predecoded)
for later decode, using aggressive branch prediction (state explosion), and out-

of-order issue (hardware complexity) and an instruction cache (conservative and

16

Instruction Instruction -
Dispatch Issue

............

Instrcution Instrcution
Execution Reorder

RN

Instruction Fetch
&

t
‘
Branch PnedicM
)
static i

s (et | | [T

Commit

Window of Execution

Figure 2.4: Stages of parallel processing in a superscalar execution.

well accepted).

2. Instruction decode _
Breaking apart instructions for determining true dependencies and other types

of dependencies.

3. Dispatch and schedule

Initiating or issuing multiple instructions in parallel.

4. Execute
Contains the functional units (FUs).

State update

(%1

Handling (precise) interrupts and instruction reordering.
Maintaining the process state in a coherent sequential order and implement-
ing precise interrupts in the presence of out-of-order execution and superscalar

execution.

Figure 2.5 illustrates the microarchitecture, or hardware organization of a typical
superscalar processor. A static program in essence describes a set of executions, each
corresponding to a particular set of data that is given to the program. Implicit in the
static program is the sequencing model, i.e., the order in which the instructions are
to be executed.

As a static program executes with a specific set of input data, the sequence of

executed instructions forms a dynamic instruction stream. As long as instructions

17

Floating Point 3 :
Register File : : 1o
_ | floatingpoint el Eynctional
—— mstruction _—. Units Memory |— o
\ buffers —1
= Interface
[~} l— e
2 : S 2 25 decode, integer/address functional units ——
8 [g 8 > EE rename, instruction [] &
-g_ [| < ? 2 dispatch buffers ™ data cache]]
Integer = r
o vy
Register File
t f instruction re-order and commit

Figure 2.5: Organization of a Superscalar Processor.

to be executed are consecutive, static instructions can be entered into the dynamic
sequence simply by incrementing the program counter, which points to the next in-
struction to be executed. When there is a conditional branch or jump instruction the
program counter is updated to a non-consecutive address. An instruction is control
dependent on its preceeding instruction(s) if the flow of program control must pass
through the preceeding instructions first.

The most vital step in increasing instruction-level parallelism is to overcome con-
trol dependencies incurred due to incrementing or updating program counters. A
static program can be taken as a collection of basic blocks—a contiguous block of
instructions with a single entry point and a single exit point. Once a basic block has
been entered by the instruction fetcher, all instructions in the basic block are executed
eventually, i.e., any sequence of instructions in the basic block can be initiated into
a conceptual window of execution, and they are free to execute in parallel subject
merely to data dependence constraints.

Control dependencies due to updates of a program counter, especially due to
conditional branches, must be overcome to get more parallelism. One way to do this
is to predict the outcome of a conditional branch and speculatively fetch and erecute
instructions from the predicted path. Instructions from the predicted path are moved
into the window of erecution. If the prediction is later found to be correct, then the
speculative status of the instructions is removed, and their effect on the state is the
same as any other instruction. If the predicted path is later found to be incorrect,

the speculative execution was wrong, and recovery actions must be initiated so that

18

process-state is not corrupted; all effects of the wrong speculative execution (mis-
speculation) are nullified.

Instructions in the window of execution begin execution subject to data depen-
dence constraints. The precedence requirements in executing some instructions is
that operations can not be issued before their operands are available. Data dependen-
cies occur among instructions due to the possibilities (hazards) of these instructions
accessing the same storage location. Ideally, instructions can be executed subject
only to true dependence constraints. These true dependencies appear as read-after-
write(RAW) hazards, so that the consuming instruction can only read the value after
the producing instruction has written it.

There is also a possibility of having artificial dependencies which have to be over-
come during the execution of the program to increase the available level of paral-
lelism. These artificial dependencies result from write-after-read(WAR), and write-
after-write(WAW) hazards.

After resolving these kinds of dependencies, instructions are issued and begin exe-
cution in parallel. In essence, the hardware forms a parallel ezecution schedule which
takes into account necessary constraints, such as true dependencies and hardware
resource constraints of the functional units and data paths.

A parallel execution schedule often implies that instructions complete in an or-
der diffrent from that indicated by the sequential execution model. Thus, architec-
tural storage cannot be updated immediately when instructions complete execution.
Rather, the results of an instruction must be held in a temporary status until the ar-
chitectural state can be updated. Eventually, when it is determined that the parallel
model conformed to the sequential execution model, the temporary results are made

permanent by updating the architectural state. This process is called committing or

retiring the instruction.

2.2.3 Instruction fetching and branch prediction

The multiple instructions fetched in the instruction fetching phase feed the rest of
the pipeline in a superscalar. A small memory called an instruction cache (different

from data cache) containing the most-recently used instructions, reduces latency and

19

increases bandwidth of the instruction fetching process. The instruction cache is or-
ganized into blocks or lines containing several consecutive instructions. The program
counter is used to search the cache contents associatively to determine if the instruc-
tion being fetched is present in one of the cache blocks; if present there is a cache hit,
if not a cache miss and the instruction is fetched from the main memory.

The number of instructions thus fetched per cycle should be equal to at least the
peak instruction decode and execution rate. The extra margin of instruction fetch
bandwidth allows for instruction cache misses and for situations where fewer than the
maximum number of instructions can be fetched. There is often an instruction buffer
designed to hold multiple fetched instructions in order to feed the processor pipeline
during periods of instruction fetch restriction or processor stall.

The default mechanism of fetching, involves incrementing the program counter
by the number of instructions fetched and fetching the next block of instructions
[Lee, Smith]. In case of branch instructions which alter the flow of control, the fetch
mechanism must be redirected to get instructions from the branch target buffer(BTB).

Processing and handling of branch instructions can be broken down into the fol-

lowing parts:

¢ Recognizing a conditional branch

Special instruction decode information is contained in some extra bits in the
instruction cache, which assists in speeding up the process of identification of all
instruction types not just branches. These extra bits allow very simple logic to
identify the basic instruction types. For example, the pre-decode logic generates

pre-decoded bits and stores thermn alongside the instructions as they are placed

in the instruction cache.

e Determining the branch outcome (taken or not-taken)

In case of data dependence between a fetched branch instruction and a pre-
ceeding uncompleted instruction, the outcome of a conditional branch can be
predicted using one of the several types of branch prediction techniques. rather
than waiting for the uncompleted instructions to terminate. There are broadly,

two types of conventional branch prediction techniques, namely—

— Static branch prediction using information from the binary which is put

there by the compiler. Often the profiling information, or the program

20

execution statistics collected during previous runs of the program are used

by the compiler as an aid for static branch prediction.

— Dynamic branch prediction where, as program executes more information
becomes available, which is used for further prediction. A branch history
table or branch prediction table contains information regarding the past
history of the branch outcomes. These tables are typically organized in a
cache-like manner and accessed with the address of the branch instruction

to be predicted.

e Computing the branch target

Branch targets are computed relative to a program counter and using an offset
value held in the instruction, in order to eliminate the need for read-registers.
This requires a program counter and a number of register counters which slow
down the process. A branch target buffer (BTB) that holds the target address
that was used the last time a particular branch was executed, can be used to

assist in finding the target address.

e Transferring control by redirecting fetch (taken branch)

There can be bubbles in the instruction pipeline if there is a delay in recognizing
the “taken branch,” modifying the program counter, and fetching instructions
from the target buffer. Usually, instruction buffers are used to minimize such

delays and hence avoid bubbles in the pipeline.

2.2.4 Instruction decoding, renaming, and dispatch

In this phase of execution, instructions are removed from the instruction fetch buffers
and examined. Control and data dependence linkages are then set up for the remain-
ing pipeline phases. True data dependencies (RAW hazards) and resolution of other
register hazards (WAW, WAR) are detected.

Instructions that have been placed in the window of execution may begin ex-
ecution, subject to data-dependence constraints. Data dependencies occur among
instructions because the instructions may access (read or write) the same storage (a
register or memory) location. When instructions reference the same storage location,

a hazard is said to exist— i.e., there is the possibility of incorrect operation unless

21

some steps are taken to make sure the storage location is accessed in the correct order.
Ideally, instructions should only be ordered according to true dependence constraints.
These true dependencies appear as read-after-write (RAW) hazards, because the con-
suming instruction can only read the value after the producing instruction has written
it.

Artificial dependencies result from write-after-read (WAR) and write-after-write
(WAW) hazards. A WAR hazard occurs when an instruction needs to write a new
value into a storage location, but must wait until all preceding instructions needing
to read the old value have done so. A WAW hazard occurs when multiple instructions
update the same storage location; it must appear that these updates occur in proper
sequence. Artificial dependencies can be caused in a number of ways, for example, by
unoptimized code, by limited register storage, by the desire to economize on main-
memory storage, and by loops where an instruction can cause a hazard with itself.

For example, here is some dummy machine code:

r3 <--- r7 // move r7 to r3
r8 <--- "r3 // load word at r3
r3 <---r3 + 4 // increment r3

The move instruction produces a value in 3 that is used by both the load and add
instructions. A dynamic execution must ensure that accesses to r3 made by instruc-
tions that occur after the add, access the value bound to r3 by the add instruction.
Moreover, it must ensure that the value of 3 used in the load instruction is the value
created by the move instruction.

Thus, there are mainly two types of instruction dependencies, namely, coptrol-ﬂow
and dataflow dependencies. A possible change in control flow causes a control-flow
dependency. For instance, a branch instruction that does not always go in the same
direction causes a control-flow dependency on instructions that follow it, because the
execution of the branch instruction determines whether these instructions execute.
Control-flow and dataflow dependencies can be explained as shown in Figure 2.6.

The directed graph has nodes representing instructions and edges that connnect
instructions that may follow one another. In Figure 2.6 the statements X =3 and
X = 4 are both control dependent on the statement IF(X = 0). However, note that

Y = X is not control dependent on any of the other instructions because it executes

22

IF (X==0)
{X=3;
Y=1,}
ELSE X=4;
Y=X;

(b) Control-flow graph

(a) Sample Code

(IF (X==0))

=D G=9

(c) Dataflow graph

Figure 2.6: A Sample Program with corresponding Control-flow and Dataflow Graphs.

regardless of the path taken from the IF statement.

In the example, the statement Y = X has a data dependency with both statements
X = 3 and X = 4. True dependencies are typically viewed in a data flow or data
dependency graph. Each node represents an instruction and each edge represents a
true data dependency in Figure 2.6. In the example, the statement X = 3 causes an
antidependency with the statement JF(X == 0). The result of the second update
should be seen by all instructions following the second instruction. In the example,
the statement ¥ = 1 has an output dependency with the statement ¥ = X.

A parallel-execution schedule often means that instructions complete execution
in an order different from that dictated by the sequential-execution model. Conse-
quently, the architectural storage (the storage that is outwardly visible) can not be
updated immediately after instructions complete execution. Rather, the results of an
instruction must be held in a temporary status until the architectural state can be
updated. Meanwhile, to maintain high performance, these results must be used by
dependent instructions. Eventually, when it is determined that the sequential model
would have executed an instruction, its temporary results are made permanent by
updating the architectural state. This process is typically called committing or retir-
ing the instruction. This instructions are dispatched into the window of execution,

issued from the window of execution as allowed by dependences, complete, and are

23

finally reordered at the time they commit.

The decode phase sets up one or more tuples for each instruction. Each tuple
consists of information like what operands to execute, the location where the operands
can be found and where to store the results. These locations are generally memory
locations or logical registers.

The register renaming methods are used to replace the logical register name in
the instruction’s execution tuple with the real name of the physical storage location.
A method of register renaming uses a physical file of the same size as the logical
register file and a one-to-one relationship is maintained. In addition, there is a buffer
called the reorder buffer with one entry per active instruction (an instruction that
has been dispatched but has not yet been committed). The reorder-buffer stores
instructions that have been dispatched but have not yet been committed, is used
to maintain proper instruction ordering for precise interrupts. As the number of
instructions become large, the size of the reorder-buffer becomes increasingly large

leading to larger state. Reorder-buffers are discussed in detail later in Section2.3.

2.2.5 Instruction issuing and parallel execution

An ezecution tuple consisting of opcode plus physical register storage locations is
formed in the decode/rename/dispatch phase. Once these tuples have been created
and buffered, they are examined to decide upon which ones to be issued for execution.
Instruction issue is defined as runtime checking for the availability of data (operands)
and resources such as execution units, interconnect, and register file (reorder buffer)
ports. This is an area of the processing pipeline which contains the “window of
execution” and is at the heart of many Superscalar implementations.

Instruction issue buffers can be organized in a number of ways in order of increasing
complexity, namely—

— Single, Shared Queue: There is a single queue with no out-of-order issue and
no register renaming. A register is reserved for any instruction that modifies the
register after being issued. This register is cleared when such an instruction completes.
Instructions may be issued as soon as operands are available.

— Multiple Queue Method (Out-of-order execution): Multiple queues (one per

24

instruction type) may issue out-of-order with respect to one another, though in-
structions from each queue are issued in order. The individual queues are organized
according to their instruction type, for example, floating point instruction queue or
integer instruction queue or a load/store instruction queue.

— Multiple Reservation Stations one per Instruction Type: The idea of reserva-
tion stations was first proposed in Tomasulo’s algorithm wherein, instructions were
supposed to be issued out-of-order, i.e., there was no strict FIFO ordering. Thus,
all reservation stations simultaneously monitor their source operands for data avail-
ability. Reservation stations hold the operands or pointers to the register file where
the operands may be found. When all operands for an instruction are ready in the

reservation station then the instruction may be issued.

2.2.6 Handling memory operations

To reduce memory latencies, memory hierarchies are used so that most data requests
will be serviced by data cache memories (Section 2.1) residing at the lower levels of the
hierarchy. It is not possible to identify the memory locations that will be accessed
by load/store instructions until after the issuing phase. Address calculation and
address translation are required to generate the physical address of a memory location.
A translation lookaside buffer(TLB) which is a cache of translation descriptors of
recently accessed pages is used to speed up the addess translation process. Once a
valid memory address has been obtained, the load or store operation can be submitted
to the memory.

In most fast Superscalars, the idea has been to overlap the address translation and
memory access. The initial cache access is done in parallel with address translation
and the translated address is then used to compare with the cache tags to determine if
it was a cache hit. The key issue then is to allow memory operations to be overlapped,
or to proceed out-of-order to ensure that hazards are properly resolved and that
sequential execution semantics are preserved. Store address buffers, or store buffers
are used to make sure that operations submitted to the memory hierarchy do not
violate hazard conditions. The store buffers contain addresses of all pending store
operations. Prior to issuing an instruction to memory, the store buffer is examined

to see if there is a pending store to the same location.

25

2.2.7 Committing or retiring instructions

This is the final phase of the lifetime of an instruction where the effects of the in-
struction are allowed to modify the logical process state. This phase implements
the appearance of a sequential execution model even though the actual execution is
non-sequential due to out-of-order execution and speculative execution. The actions
necesssary in this phase depend on the techniques used to recover a precise state,
discussed in detail in Section 2.4.

The state of the machine is saved or checkpointed in history buffers. Instructions
update the state of the machine as they execute and when a precise state is needed,
it is recovered from the history buffer. Finally, in this phase the history buffer is
discarded because it is no longer needed.

The state of the machine is separated into two parts, namely, the implemented
physical state which is updated immediately as the operations complete, and a logical
state which is updated in the sequential order as the speculative status of operations
is cleared. The speculative state is maintained in the reorder buffer from where it
is moved into the architectural register file or memory, and space is freed up for the
reorder buffer.

In most superscalar implementations the reorder buffer is used as a method of
register renaming, though it also holds useful control information used to move phys-
ical registers to the free list. In case of interrupts, the control information is used to

adjust the logical-to-physical mapping table so that the mapping reflects the correct

precise state.

2.3 Out-of-order issue/execution of instructions

The in-order-issue of instructions implies that instructions be issued sequentially in
order as they appear in the program code. The problem with in-order-issue is that
the processor stops decoding instructions whenever there is a dependency or the
functional units are busy. Such wastage of CPU time can be avoided by just keeping
decoding instructions and issuing them when dependencies have been resolved and
busy functional units are clear. This is accomplished by simply adding an instruction

window or buffer between the decode and execution stages. Instructions are issued

26

from the window whenever all dependencies are clear and a functional unit is available,
regardless of instruction order as specified in the code.

The technique however introduces the problem of antidependencies or WAR haz-
ards which happens when one instruction requires a register value for input, but a
later instruction writes to this register. If the execution of these instructions are
reversed then the first instruction reads a wrong value from its source register.

The key issue in allowing memory operations to be overlapped, or to proceed out-
of-order is to ensure that hazards are properly resolved and that sequential execution
semantics are preserved. Register renaming can be used to overcome both output and
antidependencies. If register B4 is assigned a value, another register R4’ is allocated
and all reads of register R4 in the future are directed to R4’. When a new assignment
to register R4 is made another register R4” is allocated and this process continues.

Out-of-order execution implies the extensive use of reorder buffers to maintain
proper instruction ordering for precise interrupts. Should the execution of the pro-
gram need to be interrupted and restarted later in case of external or internal inter-
rupts, the state of the machine needs to be captured. The sequential execution model
has led to the idea of precise state.

In case of an interrupt, the pipelined instruction may modify the process state
in an order different from the sequential order. The state of the interrupted process
is saved by the hardware or software or a combintion of both. The process states
consists of a program counter, registers and memory. If the saved process state is
consistent with the sequential architectural model than the interrupt is said to be a
precise inlerrupt.

There can be two kinds of interrupts, the first one being called program-interrupts
or traps which result from exception conditions detected during fetching/execution
of the program. These are caused by an illegal opcode, overflow of arithmetic data
or page faults. The other kind called external interrupts are caused by sources out-
side the executing process, for example, I/O or timer interrupts. At the time of an
interrupt, a precise state of the machine is the state that would be present if the se-
quential execution model was strictly followed and processing was stopped precisely
at the interrupted instruction. Restart can then be made by simply executing that

interrupted instruction.

The reorder buffer can be imagined as a FIFO queue implemented in hardware

27

After execution, data

is placed in entry
Entry is reserved at
the tail of the queue __1 o o

Vo b Remove entry from head

. ¢ o when instructions complete

e o o Results may be bypassed or read
————
whenever needed

Figure 2.7: A reorder buffer.

as a circular buffer with head and tail pointers, and gets entries as instructions are
dispatched according to sequential program order. As instructions complete execu-
tion, the results are inserted into their previously assigned entry, wherever it may
happen to be in the reorder buffer. At the time an instruction reaches the head of
the reorder buffer, if it has completed execution, its entry is removed from the buffer
and its result value is placed in the register file. An incomplete instruction blocks at
the head of the reoder buffer until its value arrives.

The disadvantage of using reorder buffers is that as more and more instructions
are pumped into the instruction pipeline, the size of the reorder buffer grows sub-
stantially. The buffer must be able to store the results of all outstanding operations.
Vendors regularly increase the size of their reorder buffers with successive processor
generations. Think of the total register size as proportional to the amount of ILP

being used.

2.4 Speculative Execution

When a branch is encountered in the instruction stream, it can cause a change in
control flow. This change in control flow can cause branch penalties that can sigf-
icantly degrade the performance of superscalar pipelined processsors. To overcome
these penalties, these processors typically provide some form of control-flow predic-
tion. Speculative execution means the execution of code at one or more destinations

of a branch before the branch outcome is known [Calder et al.]. The basic purpose

28

of speculative execution is to speed up program execution by running some code seg-
ments before it is known whether or not they are actually taken. This technique is
primarily used in trying to prevent branches from disrupting long execution pipelines.
Speculative execution is an integral part of modern ILP processors, be they statically-
or dynamically-scheduled designs. Speculation may take two forms, namely, control
speculation and data speculation. Control speculation implies the execution of an
instruction before the execution of a preceding instruction on which its control is
dependent. Data speculation implies the execution of an instruction before the exe-
cution of a preceding instruction on which it may be or is data dependent.

Control flow speculation uses several branch prediction mechanisms to enhance
performance of the superscalar machines. Opportunities for parallelism can be in-
creased by performing control-dependent analysis, in which a program trace is ana-
lyzed to decide on exactly which branch each block is dependent. Speculative exe-
cution implies executing the code at one or more destinations of a branch before the

branch outcome is known. The following steps are involved:

— Adding branch prediction to processor core.
— When branch is predicted, begin executing instructions until outcome is known.
— Mark these speculative instructions in the reorder buffer.

— If the branch is predicted Taken(NotTaken) and it is actually NotTaken(Taken),
then:

— Flush all instructions from branch to end of reorder buffer.

— Resume execution at correct path of branch.

When there is a taken (or predicted taken) branch there is often at least a clock
cycle delay in recognizing the branch, modifying the program counter, and fetching
instructions from the target address. This delay results in pipeline bubbles unless
remedied steps are taken. The most common solution is to have an “instruction
buffer” with an abundance of instructions to mask the delay. Still complex buffers
contain instructions from both the taken and not-taken paths of the branch.

In case of mispredictions the penalty is very high. All instructions along the wrong

path and the modifications in the state made by them have to be squashed leading to

29

a wastage in processor cycles.The size of the Branch Translation Buffer (BTB) grows
exponentially with the number of branch predictions made due to the combinatorial
explosion of nested branches.

To expose parallelism that is hindered by ambiguous dependences, data depen-
dence speculation may be used. In data dependence speculation the load is allowed
to execute before a store on which it is ambiguosly dependent. If no true dependence
is violated in the resulting execution, the speculation is successful. If, however a true
dependence is violated, the speculation is erroneous (i.e, mis-speculation). In the
latter case the effects of the speculation must be undone. Consequently some means
required for detecting erroneous speculation and for ensuring correct behaviour. As
window sizes grow larger, the mis-speculation becomes more frequent, and the cost

of mis-speculations becomes very high.

2.5 Summary of the disadvantages of superscalar

machines

Superscalar processors because of their ambitious attempts to exploit ILP have steadily
raised the heaviness of threads to the point where context switching is now a high-cost
operation. The process or thread state has grown incrementally with new superscalar
techniques. At the bottom, large state is simply large number of registers and large
cache-footprints. As other techniques, such as speculative execution are added, state
includes new things like branch-target buffer foot-prints. The state mostly affects con-
text switching, but superscalar features also have large negative impact on programs
with frequent conditional branching. The result is that we may be shy about pro-
gramming with either frequent context switching (i.e., fine-grained parallelism with

fine-grained synchronization) or fine-grained conditional branching.

30

Chapter 3

Multithreading

“Everything comes to him who hustles while he waits.”

— Thomas Edison

The problem that multithreading comes to solve is latency tolerance at all levels
of granularity. Both SRAM and DRAM speeds are increasing much slowly than the
processor speeds—in fact the gap between processor and memory speeds is growing
exponentially. Small operations and large operations alike incur some non-zero la-
tency. For example, memory references have to wait a finite amount of time before
loads or stores complete. The longest latencies come from synchronization operations
that do not succeed. Small but important latencies come from (for example) floating-
point operations. We will discuss caches as a latency-avoiding technique below, as
this is a long story. The waiting time for (remote) memory accessing is called mem-
ory latency and can be long enough to pose a major threat to the performance of
any computer system. Approximately, every third instruction in a modern parallel
program is a memory reference. The latency of memory operations is determined by
the access time, which is growing exponentially larger than the processor clock cycle
time. The numbers are dramatic when memory latency is expressed in clock cycles.

As is well known, when a user program blocks for disk I/O in a multiprogramming
environment, the operating system blocks that program and merely switches to some

other user program in the ready queue. This overlapping of disk latency with useful

31

work done by some other program is appropriate for the granularity of the context
switching, which is a function of burst size and quantum size. Typically, many ma-
chine instructions are required to switch from one process to another. Although the
execution time of the blocked process is not reduced in any way, the throughput of
the system improves drastically.

Hardware-supported multithreading is the hardware analogue of multiprogramming
(which tolerates disk latency). Ideally, in multithreading, independent parallel activ-
ities (threads) not only context-switch freely, but also frequently synchronize and
communicate with each other. In a multithreaded processor, the essence of multipro-
gramming is implemented at a much smaller granularity of switching, with a much
smaller switching cost, and cheaper and better inter-thread communication. In this
way, the focus shifts from switching between jobs to switching between threads, which
may well, belong to a single program. Moreover, memory latencies and latencies of
functional units in a multithreaded processor are much smaller than disk latencies
in multiprogramming; and are usually not visible to the operating system. As re-
sult, such latencies can not be dealt with by the operating system, where the cost of
context switching that saves and restores processor-state is very high.

A multithreaded processor holds a large number of threads inside separate hard-
ware contexts. A successful multithreaded processor can sustain a high issue rate
of instructions from a parallel program. The large number of threads inside hard-
ware contexts makes context switching have an essentially zero cost. In simultaneous
mﬁltz'threading, a multithreaded processor issues multiple instructions from multiple
enabled threads, and then repeats with another group of enabled threads in round-
robin fashion. The central idea, both in traditional fine-grained multithreading and
in the newer work on simultaneous multithreading, is to emphasize per-program con-
currency. Program concurrency is referred to as thread-level parallelism (TLP) while
thread concurrency is called instruction-level parallelism (ILP). Multithreading has a
radically different philosophy of waiting involving fast switching. If context switching
can be implemented to be essentially free, a whole New World of performance archi-
tectures opens to us. In multithreaded multiprocessors, waiting—for the completion
of nonzero-latency processor operations that may not be concurrent with other op-
erations in the program—is accepted as inevitable, and the main idea is to seek to
minimize the cost of waiting, not eliminate it. In traditional multithreaded proces-

sors, performance is achieved from concurrency of memory accesses rather than from

32

locality of data, and from continual issue of memory references rather than contin-
ual re-placement (i.e., shifting) of data. The general philosophy of waiting is more
abstract. It establishes a hierarchy of waiting places/costs; and distributes waiting
parallel activities at the appropriate cost-level.

With multithreading there is some hope that we can actually achieve petaflops
performance. According to Little’s law, assuming average porcessor-operation as
107° second, with 100 outstanding operations per thread per cycle, we would need
up to 10° outstanding processor operations in each clock cycle in order to sustain
petaflops 10'® computing. A general purpose petaflops parallel computer needs a
lot of parallelism, and must be equipped with latency-tolerant processors which can
concurrently handle about a billion memory references per processor cycle. A high-
bisection-bandwidth interconnection network needs to be provided along with a fast
memory subsystem for a sustainable high delivery rate of operands to the processors.
Today, the long-latency of remote memory operations is a major limiting factor for
applications performance. Technology forecasts indicate that memory latencies will
improve very slowly, but memory bandwidths will improve very rapidly. From the
processor’s point of view, the memory is getting slower at a very dramatic rate.
The latency problem becomes increasingly serious with high-speed and large-scale

multiprocessors, for three reasons—
() Distance between memory and processors increases,

(i2) Remote memory latencies only increase with increasing clock rates as technology

advances,

(¢iz) Remote memory latencies also increase with decreasing spatial locality, which

is unfortunately more and more prevalent in modern parallel programming.

Latency tolerance has a long history. The four classical techniques for achieving

latency-tolerance are:

(2) Vector pipelining—requiring the inner loops in the program to be parallelizable

and the resulting vectors to be long enough;

(7¢) Dynamic scheduling—provided that there is instruction-level parallelism in the
program, and that the architecture does not lead to excessively heavyweight

threads;

33

(#72) Long cache lines—provided that there is good spatial locality that scales;

(fv) Simultaneous multithreading—in which many fine-grained and lightweight threads

issue operations to multiple functional units in a superscalar fashion.

Vector processors perform operations on sequences of data elements, that is, a
vector, rather than scalars. Vector operations support more parallelism within a sin-
gle thread of control. Their primary benefit is to supply a steady stream of operands
to the processor. In addition, as programmers moved along the learning curve, pro-
gramming with vector processors became easier. Vector processors were implemented
in very fast, expensive, high-power circuit technologies. Among the high-end parallel
vector processors, three machines stood out,namely, Fujitsu’s VPP-700, NEC’s SX-4,
and Cray’s T-90, built from proprietary vector processors with peak performances of
2.2, 2.0 and 80 gigaflops per second, respectively. Parallel vector processors necessar-
ily used large amounts of expensive shared memory in order to keep memory latency
low and memory bandwidth up. Still, with vector pipelining, it was far more diffi-
cult to improve the scalar-processing rate than it was to improve the vector-processing
. rate, causing a mismatch between scalar and vector speeds. Most of the more modern
scientific and engineering simulations have frequent conditional branches and short-
vector or even scalar arithmetic. Clearly, on the average, we continue to find vector
lengths that are not long enough to effectively use vector machines. Moreover, the
vector systems were not scalable except as Single Instruction Multiple Data (SIMD)
systems.

Some people hold the view that vector processors have, over time, been overtaken
by superscalar processors (as discussed in Chapter 2), which issue many concurrent
operations using a single program counter. As microprocessors are becoming faster,
in order to avoid memory latency, the caches in such superscalar systems are becom-
ing larger, and the cache hierarchies are becoming deeper. The size of register files
has also been growing rapidly with each new processor generation, in part to hide
the predictably increasing latency of the functional unit pipelines, and to support dy-
namic scheduling. Large size of register files and large cache-footprints lecad to what
are called heavyweight threads. The major disadvantage of superscalar processors is
that the actual architectural (visible) and non-architectural (invisible) state size grow
massively. By the architectural or visible state, we mean the processor registers, the

program counter, the stack pointer and some per-process parts of the processor status

34

words. In contrast, by non-architectural or invisible state we mean the caches, the
reorder buffer, the branch history buffer (BHB) and the branch translation buffer
(BTB). We shall be talking more about heavyweight threads later in this chapter.
Though the goal of superscalar processors is to exploit the instruction-level parallelism
(ILP) in a thread, the synchronization costs force parallel activities in the programs
with large amounts of fine-grained parallelism to communicate rarely.

The simplest solution to memory latency tolerance is the use of cache memory.
To reduce the average latency experienced by the processor and to increase the band-
width, people tried making a more effective use of the levels of memory hierarchy
lying between the processor and the DRAM. As the size of memory increases, the
access time increases due to address decoding, internal delays in driving long bit lines,
selection logic, and the need to use a small amount of charge per bit. All micropro-
cessors today have one, two or more levels of caches on chip. Primarily, caches exploit
the spatial locality of data by the use of long cache lines. Though obviously caches
have been useful, they are not a panacea. There has been a vast improvement with
lock-up free or non-blocking level-1 caches and pipelined level-2 caches, but these lin-
early better solutions fail to keep pace with exponentially growing problems. Cache
misses may still cause the processor to wait for a long time.

Dynamic pre-fetching is based on the idea of predicting the future use of data items
and fetching them prior to their use, in order to prevent waiting. When instructions
are involved, this is called dynamic scheduling. Instructions are scheduled dynamically
and allowed to complete out-of-order so as to overlap the waiting time of a particular
instruction encountering a cache miss, by processing other instructions ahead of the
former in the instruction window, as long as they do not depend on the results of
the former. More generally, out-of-order execution can be used to tolerate moderate
latencies of various sorts. Relaxed memory consistency models are among several
other latency-tolerating schemes that were designed. These models allow buffering
and pipelining of memory references to loosen the various ordering constraints among
memory operations. Despite of these techniques, there still remains a fair amount of
latency to be dealt with.

Vector processors, caches, and dynamic pre-fetching techniques have failed to pro-
vide a satisfactory solution to the ever-growing latency problem. As chip density is

growing rapidly leading to extremely large transistor budgets and high clock speeds,

35

the idea of exploiting instruction-level parallelism, with only a single thread of con-
trol in order to tolerate latency, raises serious doubts. This is where multithreading
can play a vital role. The emphasis shifts from instruction-level parallelism (ILP) to
thread-level parallelism (TLP). Note that this shift is common to all fine-grained mul-
tithreading approaches not just those that use simultaneous multithreading (SMT)
(see Section 3.2). That is, we extract and exploit all the concurrency in a program,
not just all the concurrency in each thread. Using lots of lightweight threads that issue
lots of operations in every processor-clock cycle fulfills the prerequisite for exploit-
ing all of the fine-grained parallelism in a program. For high processor-utilization,
instructions should be issued from every slot in every processor, during every clock
cycle. Also, it is now becoming necessary to have a good integration of processors
and memory, and the interconnections between them, in order to achieve a balanced

petaflops design.

3.1 Early multithreading

We now know that by exploiting techniques to avoid or tolerate long-latency mem-
ory operations, we can enhance application performance significantly. It is beyond
the scope of the thesis to treat latency avoidance or indeed deep memory hierarchies
(caches) in general. That is, we defer discussion of ideas for integrating caches with
multithreading. We understand from the previous discussion, that vector proces-
sors, caches and dynamic pre-fetching techniques have failed to provide a satisfactory
solution to the problem of memory latency and memory bandwidth, and that multi-
threading can play a vital role in providing a solution to this problem.

Multithreaded or multiple-context processors tolerate latency by overlapping the
non-zero latency operations of one thread of computation with the execution of op-
erations from other threads. The idea is to share a single processor among several
threads of computation and tolerate the waiting time of one thread by switching con-
texts and executing another ready thread during that period. This kind of frequent
context switching needs to be radically inexpensive which obviously requires hardware
implementation.

The first multiple-context multiprocessors were used in CDC 6600, back in the

early 1960’s in order to time-share a CPU and memory interconnect between a number

36

of peripheral processors. Multiple-context processors such as Denelcor HEP used
fine-grained multithreading and switched contexts every cycle, making the cost of
context-switching essentially zero. Though this low switching cost allowed all forms
of latency tolerance, the designs were limited to single-instruction pipelines. For
full utilization of the model, a large number of threads were required to fill the
pipeline and hide memory latency. To address pipeline stalls, a context was prevented
from issuing a subsequent instruction earlier than eight cycles after the previous
one. There were no pipeline dependences and hence the compiler and hardware
were saved from resolving such dependency conflicts. The ability to tolerate the
latency of a memory request was dealt with by removing an instruction from the
issue queue while memory was being accessed. Data caches were not supported and
hence a large number of threads were required to hide both the pipeline and memory
latency. Single-thread performance was very poor because of the fact that each thread
could issue a new instruction only at every pipeline-depth cycles at best. Some
people (quoting Amdahl’s law) have argued that even a small serial portion in the
program could reduce performance significantly. Such multiple-context processors
laid stress on fine-grained architectures, but still ended up sitting idle for a significant
amount of time. The ultimate escape from these difficulties lay in tolerating latency
by having multithreaded multiple-context processors share a single processor among
several threads of computation, overlapping the latency encountered by one thread
with useful work done by another thread. Before this solution was invented the

empbhasis switched from fine-grained multithreading to coarse-grained multithreading.

3.1.1 Coarse-grained or blocked multithreading

The later designs for multiple-context processors suggested by Gupta and Weber
[Gupta et al.] share a single processor among several threads. In such a design, a
single context utilizes all of the processor’s resources until it reaches a long-latency
operation (such as a cache-miss, a synchronization event, or a high-latency instruction
such as a divide), whereby it switches to another ready-active thread. By ready-active,
we mean an active processor-resident thread which has been assigned a hardware copy
of its register file and program counter and is ready to issue instructions. Ready (not

active) threads are those that are not stalled and are ready to run but are waiting to

37

be assigned the appropriate hardware resources. Such blocked multiple-context pro-
cessors provide hardware for a small number of resident threads, but execute only a
single thread at any given time. Long-latency operations are masked by switching
to another thread. Blocked multiple-context processors are also called coarse-grained
multithreaded processors. Several early blocked multiple-context processors were pro-
posed for hiding specific long-latency operations or allowing expensive resources to be
shared. Although such blocked multiple-context processors address both poor single-
thread performance and the need for a large number of contexts of the fine-grained
schemes, they do not attempt to reduce the context switch cost to zero. Consequently,
they differ from switch-on-every cycle multithreading, which can be implemented to
provide a better cost synchronization and communication, in addition to compara-
tively low-cost context switching.

Blocked multithreaded processors use caches for hiding memory latency and do
not switch threads on cache hits, thus rendering a good single-thread performance.
They also need only a small number of processor-resident threads in order to avoid
pipeline stalls. However, the use of caches leads to large cache footprints and hence a
large context-switch cost. Blocked multiple-context processors are unable to tolerate
smaller latencies as result of the large context-switch cost. The high switch-cost
limits the types of latencies that can be tolerated, and places an upper bound on
the potential performance of the multiple-context processor. Moreover, the processor
utilization increases linearly with the number of threads only up to a threshold, at
which point it saturates.

In another attempt to reduce the high switching cost, a few blocked architectures
have been proposed which replicate the pipeline registers. The hardware supports
several active threads in that there is a hardware copy of each register file and support
for other processor resources needed to hold the thread states. This means simply
switching from one set of architectural state to another upodn a context switch. The
context-switch cost falls to as low as a single cycle but pipeline-register replication
results in a substantial implementation and performance cost. The state-size grows

larger and hence the need for another technique to deal with the associated problems.

38

3.1.2 Fine-grained or switch-on-every-cycle multithreading

In fine-grained, or switch-on-every-cycle, multithreading, a new instruction is cho-
sen every processor clock cycle from among different ready-active threads, enabling
threads to be switched every cycle rather than only on long-latency events. A variant
of this idea developed by Laudon [Laudon] is known as interleaved multithreading,
which we discuss in the next section. A thread encountering a long-latency event is
simply disabled or removed from the pool of ready threads until that event completes
and the thread is labeled ready again. There is a cost-hierarchy on which threads
busy-wait? for low-latency events and they become inactive, unready or unavailable,
only when a certain threshold is crossed. The main advantage of interleaved multi-
threading is that there is no context switch overhead because the hardware state is
not physically saved or restored. No event needs to be detected in order to trigger a
context switch, since this is done every cycle anyway. Segmented or replicated reg-
ister files are used to avoid the need to save and restore registers. Thus, if there are
enough concurrent threads, in the best case, all latency will be hidden without any
performance cost, and every cycle of the processor will perform useful work. Nev-
ertheless, the corollary is that fine-grained multithreading is incapable of providing
benefits, if implemented with a small, hardware-context replication count.
Fine-grained multithreading has undergone a fair amount of evolution. The early
techniques severely restricted the number and type of instructions from a given thread
that could be in the processor’s pipeline at a time. This reduced the need for hardware
pipeline interlocks and simplified processor design, but had negative implications
for the performance of single-threaded programs. Interleaved multithreading can be
broadly classified in to two categories on basis of whether or not, they use caches
to reduce memory latency. The Tera and Horizon do not use caches, whereas the
interleaved scheme suggested by Laudon uses caches for hiding memory latency. Next,

we discuss each kind in brief.

3.1.2.1 Fine-grained multithreading with full single-thread support and

caching

The interleaved scheme of Laudon suggests the possibility of having fine-grained mul-

tithreading using caches, and supporting a full single-thread pipeline. In contrast to

2Note: This is a programmer specified retry limit which does not imply instruction re-issue.

39

the blocked approach, the interleaved scheme has a lower context switch cost over-
head. Every cycle, the processor selects instructions from a thread from among a set
of ready threads, in round-robin fashion. Each thread has its own set of registers and
status words. A thread upon encountering a long latency event, becomes unready and
hence, unavailable. The pipelines used in this scheme are the same as those used in
standard superscalar microprocessors, and have the capability of issuing instructions
from the same thread in consecutive cycles without any minimum delay. In the best
case, with no pipeline bubbles due to dependences, a k—deep pipeline may contain k
instructions from a single thread.

The use of caches in the interleaved scheme to reduce memory latency implies a
reduction in the number of long-memory latency events, which in turn implies that
a given thread is ready and available for a larger fraction of time. The number of
threads required to hide latency is thus kept small. This also poses a disadvantage
for the scheme in that, there might be many dependent instructions from a single
thread in the pipeline as there are not many threads available. On a cache miss,
all dependent instructions may have to be squashed from the pipeline making them
unready. Typically, the cost associated with squashing dependent threads is smaller
than the cost of context switching in the blocked approach. Nevertheless, in order to
refrain from squashing dependent instructions in events of cache misses, the number
of ready threads may be increased in order to accommodate instructions from differ-
ent available threads in the pipeline—which in turn leads to a large degree of state
replication of the available threads.

The interleaved scheme requires a complex hardware support in order to switch
contexts every clock cycle. The processor-state is altered every cycle and the instruc-
tion issue unit is capable of issuing instructions from multiple active threads. The
advantages of interleaved scheme are found to be the greatest in case of applications
that incur a lot of short-memory latencies, such as awaiting results of floating point
operations. The most obvious and potential disadvantage of the blocked and inter-
leaved schemes (both use caches), is that multiple threads share the same cache, TLB
and branch prediction unit leading to interference between them. In addition, the

pipeline squashes significantly increase the effective context switch time.

40

3.1.2.2 Fine-grained multithreading without caches

The Tera [Tera] and the Horizon multiprocessors do not use caches to reduce latency,
relying completely on the latency tolerance provided by multithreading, for all mem-
ory references. They have also alleviated the restrictions of allowing only a single
memory operation to be issued from a single thread in the pipeline at a time. The
current design allows multiple memory operations from a thread to be in the pipeline
and be executed in order to achieve peak performance.

Tera supports 128 active hardware-resident threads. It replicates all processor
state (i.e., program counter, status word and registers) 128 times, resulting in a to-
tal of 4096 64—bit general-purpose registers and 1024 branch target registers. The
processor is designed taking locality management away from software, and with the
primary focus on supporting latency tolerance through hardware. The Tera system
issues three operations per cycle—memory, arithmetic aﬁd control (MAC) opera-
tions. The packing of operations into wider-instructions is done by the compiler.
The hardware chooses a three-operation instruction from a single thread every cycle.
Memory operation (M-op) dependences in Tera’s Multithreaded Architecture (MTA)
are handled using the technique called ezxplicit-dependence lookahead—wherein each
instruction contains a three-bit look-ahead field that explicitly specifies the number of
immediately following instructions within that thread which are independent of that
particular memory operation. The analysis of dependences is left to the compiler
whereby every instruction is tagged with the three-bit lookahead field. With a three-
bit lookahead field, seven is the maximum possible number of instructions that can
be explicitly declared as being independent of a particular memory instruction (i.e.,
simultaneously outstanding from a given thread). This implies that at most eight
instructions and twenty-four operations (Tera issues three operations per cycle) can
be concurrently in execution from each thread. A particular thread becomes ready to
issue a new instruction when all instructions with look-ahead values referring to the
new instruction have completed. Thus, with explicit-dependence lookahead, when a
long latency event is encountered, the thread does not immediately become unready
but can issue more instructions, which are independent of that memory operation,
before it becomes unready. Lookahead across one or more branch operations can
be done by explicitly specifying the minimum of all distances involved. The major

benefit of lookahead is that it allows memory latency to be tolerated within a thread.

41

It also allows instructions from the same thread to be co-resident in the pipeline,
handles register dependence on loads, and handles any sort of dependence between
memory operations.

A single-issue thread usually does not have enough instruction-level parallelism to
fill in the available issue-slots every cycle, especially in high-width superscalar archi-
tectures. Since many threads are available anyway, an alternative is to let available
operations from different threads to be scheduled in the same cycle, thus filling the
instruction slots more effectively. This is called simultaneous multithreading which is

discussed in detail in the next section.

3.2 Simultaneous multithreading

In simultaneous multithreading (SMT) the processor’s functional units are fed by
multiple instructions issued from multiple independent threads (or programs) each
cycle. Unlike conventional multithreaded architectures, which depend on fast context
switching to share processor-execution resources, all hardware contexts in an SMT
processor are active simultaneously, competing each cycle for all available resources.
At least, this is feasible when the number of contexts is small. This dynamic sharing
of the functional units allows simultaneous multithreading to substantially increase
throughput, attacking the two major impediments to processor utilization—long la-
tencies and limited per-thread parallelism.

We observe that there are at least two possible interpretations of SMT. The
first examines integrating multithreading with conventional superscalar design. This
means adopting superscalar ideas, such as caching and speculative execution in a
complete fashion (superscalar-SMT or SMT1) (see Section 3.2.1). Whereas, the other
interpretation proposes to integrate SMT with fine-grained multithreading with mod-
est instruction-issue width (SMT without heavyweight threads or SMT2) (see Section
3.2.2). In fairness, there may well be some slight alleviation of problems associated
with expensive context switching in conventional superscalar design when SMT is
added. Nevertheless, the first school of thought has its own limitations which we
shall discuss in the next section. We believe that the integration of multithreading
with the gentler forms of the superscalar techniques, which are aggressive precisely

when they are directed at extracting maximal single-thread parallelism, would be the

42

suitable architectural set up of future simultaneous multithreaded microprocessors.
Here by “gentleness” we mean, having a moderate amount of ILP—since we aim at
compensating for the need of high ILP, by making available more instructions from
multiple threads. Hence, the essential idea in future multithreaded processors would
be to enable utilization of high degree of context replication in order to make it un-
necessary to harvest large amounts of ILP in a thread. Symbolically, we seek only to
maximize the product ILP x TLP, not ILP itself.

3.2.1 Simultaneous multithreading with heavyweight threads

(SMT1)

Simultaneous multithreading with heavyweight threads and multiple-issue multipro-
cessors (SMT1) [Lo, Eggers], permits multiple independent threads (or programs) to
issue multiple instructions each cycle to the multiprocessor’s functional units. SMT1
combines the multiple-issue features of modern superscalars with the latency-hiding
ability of multithreaded architectures. Unlike conventional multithreaded architec-
tures, which depend on fast context switching to share processor-execution resources,
all hardware contexts in an SMT1 processor are active simultaneously, competing
each cycle for all available resources. This dynamic sharing of the functional units al-
lows simultaneous multithreading to substantially increase throughput, attacking the
two major impediments to processor utilization namely, long latencies and limited
per-thread parallelism. SMT1 does not compromise single-thread performance.
Whereas wide-issue superscalar processors exploit ILP by executing multiple in-
structions from a single program every cycle, multithreaded multiprocessors exploit
thread-level parallelism (TLP) by executing different threads (or programs) in par-
allel on different processors. An SMT1 processor accommodates variations in ILP
and TLP. That is, when a program has only a single thread (lack of TLP), all of
the SMT1 processor’s resources can be dedicated to that single thread. Whereas the
existence of more TLP in the program can compensate for lack of per-thread ILP.
Simple multiple-issue processors suffer from two inefficiencies. First, due to limited
ability to find and exploit instruction-level parallelism, not all slots are filled in a

cycle. Second, due to long-latency instructions, many cycles go wasted without any

43

useful work done. Simple multithreading though addresses both long- and short-
memory latency problems it fails to provide a concrete solution to the first problem.
An SMT1 processor is capable of exploiting either kind of available parallelism and

utilizes the functional units more effectively, hence achieving better throughput and

higher speedup.

Issue slots Issue slots Issue slots

F i I { P

- WA EEO0] BEESHE
%. oooOono NS0 SNEBLMRE Thread 1
s HE0O0 BEBO0O BESS N Thread2
i EBOCO0 NOOO ESEE (B s
= Ooooo soo0 BommE (B T
: EEENE EEND EEEN [Theas
= oanOong SESESEE| S MMM B Threads

l) R BUUOO EEEE

ooono BRI EEnn

Superscalar Fine-grained Simultaneous

Multithreading Multithreading

Figure 3.1: Comparison of issue slot partitioning in various architectures.

Figure 3.1 compares the issue-slot (functional unit) utilization in various archi-
tectures. Each square corresponds to an issue slot of the multiprocessor and the
white squares are symbolic of the unutilized slots. Lack of utilization or ineffective
utilization of available parallelism in a thread, leads to poor hardware-resource uti-
lization. A superscalar processor relies on the amount of ILP in a thread, for its
performance and thus, suffers from low hardware-resource utilization due to low or
in-exploitable ILP in its single thread. Multiple-instruction-issue has the potential
to increase performance, but is ultimately limited by instruction dependences (i.e.,
available parallelism) and long-latency operations within the single executing thread.

The effects of these are shown as horizontal- and vertical-waste in Figure 3.2.

44

Empty issue slots discussed above can be classified as either vertical- or horizontal-
waste. Vertical-waste comes as result of no instruction issue in a cycle. Horizontal-
waste is introduced when not all issue slots in a cycle, can be filled. Superscalar ex-
ecution introduces horizontal-waste and increases the amount of vertical-waste. Tra-
ditional multithreading starts losing its ability to utilize processor resources with in-
crease in instruction issue-width. SMT1 attacks both horizontal- and vertical-wastes.

Classical multithreaded multiprocessors exploit TLP for performance but we ob-
serve that TLP is low in serial portions of programs due to inadequate compiler tech-
nology and expensive inter-thread synchronization. SMT1 allows multiple threads to
compete for all resources in the same cycle, and avoids hardware-resource partitioning
among different threads of execution. SMT1 can cope with varying levels of ILP and

TLP; consequently, utilization is higher and performance is better.

Issue slots
7 EEN B Full issue slot
'g, BE [[] Empty issue slot
¢ 0OO0 .
§ D I:I D Horizontal slot waste
g . D D Vertical slot waste
=) EEEN

Wm0
l O 0O

Figure 3.2: Empty issue slots as vertical or horizontal wastes

Usually, issue-slot waste is introduced by wrong-path instructions (branching) and
optimistically issued instructions. In case of cache misses or data conflicts, all op-
timistically issued instructions need to be squashed to save issue-slots from being
wasted. In SMTI, right-path instructions are intermingled in the instruction queues
with wrong-path instructions. Thus, SMT1 is more tolerant of branch mispredic-
tions, because it is less dependent on techniques that expose single-thread parallelism
(for example, speculative fetching and speculative execution based on branch predic-
tion) due to its ability to exploit inter-thread parallelism. SMT1 differs from SMT2

primarily in that it is multithreading of lesser degree.

45

3.2.2 Simultaneous multithreading with lightweight threads

(SMT2)

We now, turn our discussion to simultaneous multithreading with lightweight threads,
i.e., essentially using simultaneous multithreading to refine Tera’s fine-grained multi-

threaded architecture (MTA). Our goals mainly are to achieve both:

(2) fine-grained multithreading in order to sustain the concurrent processor operations

every clock cycle as required by Little’s law; and

(¢¢) fine-grained synchronization in order to permit frequent inter-thread communi-

cations.

We start with a brief description of Tera’s MTA which is the soul of SMT2. Then
we go on to show the advantages that SMT2 has over SMT1 and over superscalar
processors and other multithreaded architectures. We also describe the qualitative

comparisons between SMT1 and SMT2.

3.2.2.1 Architectural overview of SMT2

The Tera MTA implements a physically shared-memory multiprocessor with multi-
stream processors and interleaved memory units interconnected by a packet-switched
network [Tera]. The MTA does not use caches for latency avoidance, instead it
relies completely on latency tolerance provided by multithreading, for all memory
references. Each processor of Tera supports 16 protection domains and 128 streams.
A protection domain implements a memory map with an independent set of registers
maintaining stream resource limits and accounting information. Hence, 16 distinct
applications maybe run in parallel on a processor. The 128 active contexts, or threads
(or streams) supported simultaneously, enable concurrent issue of instructions. Each
stream possesses its own register set and is hardware scheduled. Threads are switched
every clock cycle, irrespective of whether they block. The hardware provision of 128
active threads per processor is more than necessary to keep the processor busy at any
moment of time. The extra threads enable a processor to remain saturated during

periods of higher latency such as synchronization waits and memory contention.

¢ Stream-state and Branch target registers
Each stream has a Stream State consisting of the following three:

46

a) 1 64—bit Stream Status Word (SSW),
b) 32 64—bit General Registers (R0 — R31),
c) 8 64—bit Target Registers (70 — T'7).

Context switching is rapid (every cycle) and there are 128 SSW's, 4096 general
registers, and 1024 target registers. Tera replicates all processor-states 128
times and relies completely on latency tolerance rather than latency avoidance.
The large number of threads brings in many advantages. First, the fact that
some instructions might not have much lookahead and can always be replaced
by instructions from other threads. Second, some memory references might
face contention in the network, resulting in long memory latencies. This event
can be well tolerated by bringing in instructions from many other available
threads. Third, the synchronization waits, which can be long enough due to
load imbalances and resource-contention, can be tolerated if there are plenty of

threads available.

The program addresses are 32 bits long. There are multiple program counters
and each stream has its program counter stored in the lower half of its SSW.
The target registers are used as branch targets. Determination of branch target
addresses is independent of the decision to branch, which proves beneficial as the
hardware prefetches instructions at the branch targets, thus avoiding delay when
branch decisions are made. Using target registers also makes branch operations
smaller, resulting in tighter loops. Skip operations enable to alleviate the need
to set targets for short forward branches. The target register T0 always points
to the trap handler and this makes trap handling extremely lightweight and

independent of the operating system.

o Horizontal Instructions

A horizontal instruction consists of several operations specified together within
a single instruction. Tera instructions are mildly horizontal and a typical in-
struction consists of three operations: a memory reference-, an arithmetic- and
a control-operation (MAC). Such horizontal instructions enable processing of

vectorizable loops, at a nominal vector rate of one flop per cycle.

e Explicit-Dependence Lookahead

47

Memory-operation dependences in Tera’s MTA are handled, using the technique
called explicit-dependence lookahead (EDL)—wherein each instruction contains
a three-bit lookahead field that explicitly specifies the number of immediately
following instructions within that thread which are independent of that particu-
lar memory operation. Every instruction is tagged with the three—bit lookahead
field, by the compiler. With the three-bit lookahead field, seven is the maximum
possible number of instructions that can be explicitly declared as being inde-
pendent of a particular memory instruction (i.e., simultaneously outstanding
from a given thread). This implies that at most eight instructions and twenty-
four operations (Tera issues three operations per cycle) can be concurrently
in execution from each thread. SMT2 has a very high instruction issue-width
and better fine-grained multithreading due to EDL and can actually hope to
achieve the large concurrency required by Little’s law for gigaflops computing

performance.

Efficient Synchronization

Fine-grained synchronization is essential to enable frequent inter-thread com-
munication. SMT2 or Tera uses a full/empty bit with each memory word to
achieve synchronization. When a memory access for synchronization is made
and the full /empty bit is in the empty state, the request returns to the processor
with a failed status. The hardware keeps the request in a retry queue and keeps
retrying for a sufficient number of times. These retry requests are interleaved
with new memory requests, in order to avoid congestion on the network. While
the hardware retries memory synchronization operations, the processor contin-
ues to issue instructions in the normal fashion. The retry count is maintained
with each protection domain and is incremented with each retry or failed status
of its threads. On reaching, a retry-count limit, the stream traps using the
lightweight trap handling facility. The value of the retry-count is set in a way,

to effectively balance the cost of saving and restoring the state of the blocked

or swapped thread.

48

3.2.3 Qualitative and Quantitative Comparisons between

SMT1 and SMT2

1. Zero-cost context switch time

The major advantage of SMT?2 is that it provides zero-cost context switch time.
The large number of available threads and rapid context switching every clock-
cycle enables cheap context switching between processor-resident threads. The

two primary causes for the zero-cost context switching are that:

e The state of the switched-out thread need not be saved or restored (later)
due to the fact that, a thread does not lose its state when it is switched out.
Each thread has a program counter, which keeps track of the last issued
instruction from the thread, while the multiple registers belonging to each
thread keep track of the rest of the thread-state. Moreover, the thread-
state of a switched-out thread needs no rebuilding upon its return to the

ready-active state, as it does not lose its state after the context-switch.

e Threads do not become inactive quite frequently. In cases when a thread
fails to get memory access for a synchronization operation, the hard-
ware retry mechanism retries the request a sufficient number of times,
before switching the thread out of the processor. Such switching out of a
processor-resident thread to memory, and switching in a memory-resident
thread to the processor is what we call a context-swap. Context-swaps are
few in SMT2, and when they do occur, they are not expensive as compared

to the context-swaps in superscalar processors and SMT1.

In SMT1, the context-switch cost is high because each context-switch is actually
a context-swap. Every time that a thread is switched out, its state has to be
saved; and every time that a thread is switched in, its state has to be restored.
In order for a switched-out thread in SMT1, to regain most of its former speed,
its thread-state has to be rebuilt. Such rebuilding of thread-state is expensive

and relates to the nonzero context-switch cost of the superscalars and SMT1

Processors.

2. Effectively small processor-state of SMT1 as compared to SMT2

49

Zero-cost context switches are the main architectural precondition for fine-
grained synchronization. We need a theory that relates context-switch cost to
the architectural features. Qur primary notion is that of an effective processor
state, which we propose to be a weighted sum of the architectural and non-
architectural state. The architectural state as mentioned before, includes the
processor registers, the program counter, the stack-pointer and some per-process
parts of the processor status words. The nonarchitectural state of the system
includes the cache footprint, the reorder buffer and the branch translation buffer
(BTB), which if abandoned (or not saved) incurs enormous performance con-
sequences. In traditional superscalar processors or in SMTI, there is a very
simple relation between processor-state and context switch time; namely, twice
as much state implies twice as much context-switch time. In multithreaded pro-
cessors, the relation between state (and space) and time is not quite as direct.
In fact, we need to articulate a notion of an effective processor-state. We have
done this in two stages. First, we proposed an effective context-switch time for
superscalar or SMT1 processors. Now, we propose a corresponding (suggestive)
notion of effective processor-state. Our goal here is to be as quantitative as

possible.

We suggest here a the notion of effective processor-state that captures the effec-
tive context-switch time in a semi-quantitative manner. We propose to measure

effective processor-state psmt; of a superscalar or SMT1 processor as,
psmt; =a+nfk,

where a is the architectural state and n the non-architectural state. What is
a good value for k? One line of reasoning suggests that k should be equal
to 2. The assumption here is that if 50% of the non-architectural state is
recovered, the performance will be an appreciable fraction of the pre-switch
performance. If more non-architectural state recovery is required to regain
acceptable performance, we would consider decreasing k.

In superscalars, when a thread encounters a nonzero-latency operation, it is
switched out, and another ready thread is switched in; the processor saves
or restores the architectural state a of the switched-out thread. When the

switched-out thread returns after the memory latency has been resolved, it

50

must rebuild its nonarchitectural state to re-attain its former speed. The value
n/2 indicates the amount of nonarchitectural state that a thread has to rebuild
in order to regain at least half of its former speed. The above formula, though
merely suggestive, clearly has some strong correspondence to context-switch
time. In traditional superscalar multiprocessors, the architectural and non-
architectural state size has grown massively over the years. This implies that

the effective processor state psmt, has been growing enormously.

MTA has less effective processor-state consisting of only its architectural-state
a’ as compared to the traditional non-multithreaded processors. MTA does not
have any nonarchitectural state because it does not support caches, reorder
buffers, branch history buffers (BHB), and branch translation buffer (BTB).
The need for nonarchitectural-state does not arise due to its reliance on high
concurrency, rather than spatial locality. As we have seen earlier, in superscalars
the size of register files increases to squeeze out the last drop of ILP—the
higher the issue-rate of instructions, the larger grow the reorder buffer and
the branch translation buffer. This massive growth of non-architectural state
can be avoided by SMT2, wherein concurrency brings in performance. The

effective processor state-size for SM'T2 can be quantified as,
psmits = ad' << a

This smaller effective state size psmi, enables an essentially zero-cost context
switch. It is obvious that psmt; > psm¢, and hence, it is emphatically more
beneficial to integrate Tera’s MTA with simultaneous multithreading (SMT2)
which can generate zero-cost, frequent context switching in a high performance

supercomputer.

Hence, we conclude three points of vital importance from the above discussion.

e First, we observe that SMT2 provides a zero-cost context switching when com-
pared to SMT1, because the state of a processor-resident thread need not be
saved or restored, during or after a context-switch, respectively. Moreover,
there is no rebuilding of thread-state to be done when a thread returns to the

processor from the memory, as it carries its own state.

51

e Second, we observe that the effective processor-state in SMT2 consists of only

the actual architectural state a’, and no nonarchitectural state.

e Third, we notice that the large context-switch cost in case of SMT1 with su-
perscalar processors (or heavyweight threads) is mainly due to their massive
non-architectural state n. The effective state psmt; = a + n/2 gives SMT1

machines a high context-switch cost.

52

Chapter 4

Shared Responsibility for

Parallellism

“The real problem is not whether machines think—but whether men do.”

— B. F. Skinner

This chapter explores the programmer’s role in massively concurrent parallel pro-
gramming, and proposes a reasonable division of labor between the computer sys-
tem (i.e., the hardware architecture, the system software including a parallelizing
compiler), and the programmer. Our recommendation is that the computer sys-
tem should be responsible for discovering, extracting and exploiting 85% of all the
parallelism in a computation, while the programmer should be responsible for the
remaining 15%. Throughout this chapter, we assume a shared-memory programming
model, which should be viewed as a performance model. There are two performance
models, viz., uniform memory architecture (UMA) and non-uniform memory archi-
tecture (NUMA). As will be seen, we favor the uniform-memory model and see great
promise in massively concurrent parallel programming of uniform shared-memory
multiprocessors.

In the earliest shared-memory architectures, the processors were connected to a

single shared memory by a shared bus. There was a uniform access time from each

53

processor to the single main memory. Data decomposition was irrelevant because all
data was stored in a single shared memory. This type of centralized shared-memory
architecture was a popular organization. Later, a type of multiprocessor called SMP
achieved essentially this shared-memory performance model using interconnections
that were not buses. However, not all SMPs were as uniform as they should have
been when they grew in scale. Bus-based multiprocessors do not scale. For this reason,
all large multiprocessors have physically-distributed shared memory. The interesting
question for any machine with physically-distributed shared memory is: what is the
degree of nonuniformity in their shared memory performance model. Of course, the
physically separate memories are addressed as one logically shared address space, in
the sense that a memory reference can be made by any processor to any memory
location. When the logical non uniformity is noticeable it is called a distributed
shared-memory machine (DSM). Such machines are also called non-uniform memory
architectures (NUMA)s. In these machines the access time depends on the location
of a data word in memory.

The significance of UMA as compared to NUMA shared-memory performance
model lies in the effects on control and data decomposition in parallel programming.
In UMA machines, data and control decomposition are decoupled because data de-
composition does not really affect performance. On the other hand, in NUMA ma-
chines, especially as the degree of non-uniformity increases, the problems of data
and control decomposition become tightly coupled, in fact. This makes parallel pro-
gramming hard. Thus, we primarily address the uniform shared-memory architecture
wherein we discuss the shared responsibilities of the compiler and the programmer
for control decomposition in the program.

Before proceeding, it might be useful to recall some of the major taxonomies for
parallel programming. One distinguishes state-based from functional programming.
Another distinguishes ezplicit from implicit parallel programming. In implicit parallel
programming the programmer writes a Fortran or C program without any parallel
constructs, and a parallelizing compiler breaks apart loops and loop nests into threads
that run in parallel. The programmer may provide clues to the compiler, either about
control decomposition or data decomposition, which can be very useful to compiler
decisions. In explicit parallel programming, the programmer does some of this work
upfront using parallel constructs. As stated above, if a shared-memory multipro-

cessor has a non-uniform memory, then both the programmer and the compiler are

54

burdened with the tasks of both data and control decomposition. Such tasks tend
to become more tightly coupled as non-uniformity increases. On the other hand, if
the shared-memory multiprocessor has a uniform memory, then the problem of data
decomposition largely goes away, and the programmer and compiler may concentrate
on control decomposition without being troubled for data decomposition. There is an
enormous difference when neither the programmer nor the compiler needs to worry
about data decomposition. The distinction between explicit and implicit parallel pro-
gramming is sharp, perhaps and reduces to helping with loops (implicit) as well as
showing control flow explicitly (explicit).

Of course, we may have parallel programming methodologies that are partly ex-
plicit and partly implicit. For example, we might use a single assignment variables
at coarse granularity but leave all loop processing to the compiler. Indeed, this is
quite close to our proposed work-load sharing between the compiler and programmer
as 85% and 15% respectively. This is a goal. These numbers represent intuitions of
designers of parallel computers with vast experience. We may have to change any

number of things to achieve our goals, including our programming languages.

4.1 Explicit Programmer Control Decomposition

4.1.1 The CC++ Programming Model (Explicit Control

Constructs)

A good example of an explicitly parallel programming language is Compositional
C++ (CC++). It is a distinct programming language that contains C++ and an
added set of explicitly parallel constructs. The programmer may explicitly parallelize
code through the use of these special parallel constructs. First, we discuss the three
constructs for parallel composition that are available in CC++ and then we go on to

discuss the synchronization constructs [CC++].

(i) The par Block
This is the most elementary way of specifying parallel composition in CC++. The

55

syntax of a par block is that of the compound statement in C or C4+ with the
keyword par preceding the block. A par block can lexically contain any CC++
statement with the exception of variable declarations and statements that result in
nonlocal changes in the flow of control. The statements in the par block can contain
simple statements, sequential blocks or, even nested par blocks. A simple example

of a par block is given below.

{
int a, b, d;
c=1;
par {
a = 2;
b=c+ 3;
}
d =b + 1;
}
An example, of a nested par block follows.
par {
par {
S1;
S2;
}
{
S3;
par {
S4;
S5;
}
S6;
}
S7;
}

The semantics in both the examples is what you would expect in a sequential

program. A new thread of control is created for each top level statement in a par

56

block. A par block terminates after all its statements have terminated. As defined by
fair, interleaved execution of the top level statements in the block, every executable
statement in a par block will eventually execute, even though the block might not

terminate.

A par is useful when there is a need to create a fixed number of threads and
that number is known at compile time. Recursion within a par block can be used to
create an arbitray number of concurrent threads, although iteration using the parfor

statement is often a better way of expressing such computations.

(ii) The parfor Statement
This is a parallel loop construct in which the iterations are executed in parallel with
each other. The body of each iteration is executed sequentially and there is an implicit
barrier at the end of a parfor, in that it completes only after all its iterations have
completed. The syntax of a parfor statement is exactly like the for statement in
C++. The loop body can be a simple statement, a sequential block, or a parblock.

A easy example of a parfor could be:

{
int A[N]; BIN]; CINI;
parfor (int index = 0; index > N; index++)
{
A(index);
B(index);
C(index);
}
}

Each iteration of a parfor creates a new thread which executes in parallel with
all other iteration bodies. The threads have the same interleaved execution semantics
as the par block. The parfor terminates when all the loop bodies have terminated.
Each thread has a local copy of the value of the index variables at the time that the
thread was created. In the above example, each loop body will have a local variable
called inder with a value set to the value of indezr in the parfor loop at the time of

creation of the thread for the loop body.

57

In the above examples of parallel composition, there was only one mechanism of
synchronization between concurrently executing threads of control viz., the implicit
barrier at the ends of par blocks and parfor statements. CC++ has a powerful
complementary mechanism for explicit parallel programming. This new mechanism

expresses arbitrary synchronizations between concurrent threads of control, which we

discuss next.

(iii) Single-assignment Variables
CC++ introduces a new type of variable — a single-assignment variable denoted
by the keyword sync. We show below how single-assignment variables can simplify
parallel programming. The single-assignement variables are very much like the future
variable in MultiLisp. A sync variable in CC++ is treated ezactly like a const

variable in plain CC++ with two exceptions:

e Unlike a constant const, the initial value of a sync variable need not be defined
when it is declared. Initialization can be delayed. Nevertheless, once defined,
there is no difference between a single-assignment variable and a constant. The
value of a defined single-assignment variable cannot be modified. Attempting

to modify the value of a defined single-assignment variable is a run-time error.

e Any process that attempts to read an undefined sync variable suspends, until

such a time when the variable becomes defined.

Thus, single-assignment variables like sync provide a cheap means for synchro-
nization because they support the following rule: if a thread of control attempts to read
a single-assignment variable that has not yet been defined, that thread suspends eze-
cution until that single-assignment variable has been defined. This allows the threads
of control that share access to a single-assignment variable to use that variable as a

synchronization element.
We mention some examples of how sync variables can be declared.

sync int a;
sync int b[10];
sync char *p;
char *sync q;

sync UserDefinedClass u;

58

We, now provide a simple example of data dependency and flow control using

sync.
{
sync int a,b,c,d;
par {

a = b+c; // the first thread of control
= 2; // the second thread of control
= 3; // the third +thread of control

d= a+b; // the fourth thread of control

} // here, a=5, b=3, c=2, d=8
}

The data dependencies in the above example dictate the flow of control. The
first thread of execution, that defines the sync variable a will not proceed until both
b and ¢ have been defined. The second and third threads of control will proceed
immediately after b and ¢ have been defined. The fourth thread defines d after a and
¢ have been defined. Another interesting example could be the problem of calculating
all the powers of 2 from 0 to N-1. We know the fact that the i** power of 2 can be

calculated as 2 * 2¢-1.

{
sync int P[N];
Plo] = 1;

parfor (int i = 1; i < N; i++4)
P[i] = 2 * P[i-1];
}

In the above example, the order in which the threads of execution created by
the parfor statement, are interleaved or executed, is uncertain. However, the sync
variable P/N] ensures that a value will not be assigned to Pfi] until a value has been
assigned to Pfi-1].

Single-assignment variables can also be used as function arguments. The pass-
by-value semantics of function invocation in C and C++ guarantees that the single-
assignment variable can be copied (and hence has been defined) before the function

begins execution. For example:

59

void SomeFunction(sync int i)
//Suspends here until i is defined

// At this point, we can
// assert that : has been defined

}

Similarly, a function can return a single-assignment type. The single-assignment
nature of a sync variable cannot be cast away, either implicitly or explicitly. This
guarantees that a sync variable cannot be misused (i.e., modified) in a thread of

control. For example, we consider the following:

{
void f(int *);

sync int a;

int b;

b= a; // This is correct and 0.K

b = (int)a; // This is also correct and 0.K
(int)a = 3; // This is an ERROR !

f((int *)&a); // This is also an ERROR !

}

The concept of sync variables can also be used in higher levels of the memory
hierarchy. Thus, we see that in a continuum of sharing possibilities, depending on
the degree of use of explicit parallel constructs, what remains unchanged is the fact

that managing the fine granularity is always left to the compiler.

4.1.2 The OpenMP Programming Model (Control Constructs

as Compiler Directives)

The OpenMP [OpenMP] is a proposed industry-standard application-program in-
terface (API) for explicit parallel programming of shared-memory multiprocessors.

OpenMP provides moderate scalability of applications performance to programs with

60

moderate amounts of interthread synchronization and communication that run on
true SMPs. The OpenMP API uses a fork-join model of parallel execution which is
somewhat simpler than the CC++ model. When a parallel construct is encountered,
the master thread creates a team of threads, and the master thread becomes the mas-
ter of the team. Upon completion of the parallel construct, the threads in the team
synchronize, and only the master thread continues execution.

In the OpenMP Fortran Application Program Interface, the directives are special
Fortran comments that are identified with a unique sentinel. The directive sentinels
are structured so that the directives are treated as Fortran comments and not as

executable statements. Let us consider a few interesting examples from the OpenMP

Fortran API.

(i) The parallel region construct
The PARALLEL and END PARALLEL directives define a parallel region—a
parallel region being a block of code that has to be executed by multiple threads in
parallel. This is the fundamental parallel construct in OpenMP that starts parallel
execution. It is basically the same as par blocks in CC++. The PARALLEL
directive can be used in coarse-grained parallel programs. When a thread in execution
encounters a parallel region, it creates a team of threads, and itself becomes the master
of the team with its thread number as 0, within the team.

The parallel block denotes a structured block of Fortran statements. Attempting
to branch out of the block is an error, as it is in CC++. The code contained within
the dynamic extent of the parallel region is executed on each thread, and the code
path can be different for different threads. The END PARALLEL directive denotes
the end of the parallel region and there is an implied barrier at this point. The only
thread that continues execution at the end of the parallel region is the master thread.
The parallel regions can also be nested within one another. We, thus find that the
PARALLEL and END PARALLEL directivesin OpenMP Fortran API are almost
equivalent to the par block in CC++.

In the following example, each thread in the parallel region decides what part of

the global array X to work on based on the thread number:

1$OMP PARALLEL DEFAULT (PRIVATE) SHARED(X, NPOINTS)
IAM = OMP_GET_THREAD_NUM()

61

NP = OMP_GET_NUM_THREADS ()

IPOINTS = NPOINTS/NP

CALL SUBDOMAIN(X, IAM, IPOINTS)
1$O0MP END PARALLEL

(ii) The DO directive
The DO directive specifies that the iterations of the immediately following DO loop
must be executed in parallel. The iterations of the DO loop are distributed across

the already existing threads.

1$0MP DO
DOI=1, N
AfI]l =0

END DO // the NOWAIT clause can be included here

If the NOWAIT clause is not specified with the END DO directive, the threads
do not synchronize at the end of the parallel loop. Threads that finish early, proceed
straight to the instructions following the loop without waiting for the other members
of the team to finish the DO directive.

(iii) The SECTIONS directive
This is a non-iterative work-sharing construct that specifies that the enclosed sec-
tions of code are to be divided among threads in the team and that each section be
executed once by a thread in the team. The code enclosed in a SECTIONS/END
SECTIONS directive pair must be a structured block. In addition, each constituent
section must also be a structured block. It is illegal to branch into or out of the

constituent section blocks. It is similar to the par block construct in CC++.

1$0MP SECTIONS [clause,...]
['$0OMP SECTION]

block

62

[1$OMP SECTION]

block

1$OMP END SECTIONS [NOWAIT]

(iv) The BARRIER directive
The BARRIER directive synchronizes all the threads in a team. When encountered,
each thread waits until all of the others in that team have reached this point. Such
a barrier is implicit in CC++ wherein, all threads of execution within a loop wait
until a time when all have finished execution. In the following example, the call from
MAIN to SUB2 is legal because the BARRIER (in SUB3) binds to the PARALLEL
region in SUB2. Similarly, the call from MAIN to SUBI is legal.

PROGRAM MAIN
CALL SUB1(2)
CALL SUB2(2)
END

SUBROUTINE SUB1(N)
1$0MP PARALLEL PRIVATE(I) SHARED(N)
1$0MP DO

DOI=1, N

CALL SUB2(I)

END DO

END PARALLEL

END

SUBROUTINE SUB2(K)
1$0MP PARALLEL SHARED(K)
CALL SUB3(K)

END PARALLEL
END

63

SUBROUTINE SUB3(N)
CALL WORK(N)
1$0MP BARRIER
CALL WORK(N)
END

(v) The ATOMIC directive
The ATOMIC directive avoids race conditions by protecting all simultaneous up-
dates of a location, by multiple threads. It ensures that a specific memory location
is to be updated atomically, rather than exposing it to the possibility of multiple, si-
multaneous writing threads. The ATOMIC directive in OpenMP has an equivalent

atomic construct in CC++.

1$0MP PARALLEL DO
DOI=1, N
CALL WORK(XLOCAL, YLOCAL)
1$0MP ATOMIC
X(INDEX(I)) = X(INDEX(I)) + XLOCAL
END DO

(vi) The FLUSH directive
This directive identifies synchronization points at which the implementation is re-
quired to provide a consistent view of memory. Thread-visible variables are written
back to memory at the point at which this directive appears. FLUSH does not have

any matching or equivalent directives in CC++-.

1$0MP FLUSH(ISYNC)
DO WHILE (ISYNC(NEIGH). EQ. 0)
// C WAIT UNTIL NEIGHBOR IS DONE
t$OMP FLUSH(ISYNC)
END DO

64

4.1.3 Tera Loop Directives

We have already seen how the parallel constructs and directives when added to a
program can influence its translation by the compiler in CC++ and the OpenMP
programming model. Now, we discuss the Tera loop directives many of which explic-
itly guide compilation by a parallelizing compiler without altering the semantics of

the program. Tera directives are grouped into five general categories viz.,
o compilation directives,
o parallelization dz'fectives,
e semantic assertions,

tmplementation hints,

o language extension directives.

We describe each of them in brief below. The Fortran version of these directives

is used in the following descriptions.

1. Compilation directives
A compilation directive is a command to compile a program in a particular way.
These directives apply to whatever follows them textually, and they apply until the
end of the file or until another directive of the same kind is encountered. Of the
many different compilation directives, we just mention a few interesting loop control
directives. The two directives shown below control the choices made by the compiler
while parallelizing a particular loop. We also note that the compiler makes reasonable

decisions on its own without any directives.

e CS$TERA block schedule
When this directive appears before a loop that the compiler parallelizes, each
thread assigned to the execution of the loop, performs a contiguous subset of the
total iterations. For example, if 100 itereations are performed by 20 threads,
the first thread executes the first 5 iterations of the loop, the second thread

executes the next 5 iterations, and so on.

e CSTERA interleave schedule
Unlike the block schedule, this scheduling interleaves threads while distributing
them their share of load. For example, if 100 iterations are to be done by 20
threads, the first thread executes iteration 1, iteration 21, iteration 41, etc. This

scheduling leads to a better load balancing especially for triangular loops. For

example:

C$TERA INTERLEAVE SCHEDULE
DOI=1,N
SUM = 0.0
DO J=1, I
SUM = SUM + X(I,J)*Y(J)
END DO
Z(I) = SUM
END DO

2. Parallelization directives
These tell the compiler how to parallelize various sections of a program. We discuss

briefly the various types of parallelizations that are allowed.

* Single processor parallelism—This form of parallelism, also known as fray paral-
lelism, has low overhead. However, the code is parallelized in such a way that

it can only take advantage of the 128 threads on the Tera processor on which

the code is running.

* Multi processor parallelism—This form of parallelism, also known as crew paral-
lelism, has higher overhead than single-processor parallelism. The number of

threads available is bounded by the size of the entire machine rather than the

size of a single processor.

e CSTERA parallel [on | off | default | single processor | multiprocessor]
— this directive enables/disables automatic generation of parallel code for a
section of the program as well as choosing the form of parallelism to use viz.,

single processor or multiprocessor. The off flag turns off parallelism until it is

66

turned back on or until the end of file. By default, automatic generation of

parallel code is enabled and single-procesor parallelism is used in Fortran.

¢ CSTERA restructure [on |off |default] — this directive enables/disables
loop restructuring and loop transformations. By default, this directive is on
in areas in which parallelization is being performed and off in areas in which

parallelization is turned off.

3. Semantic assertions
These provide information to the compiler that could be proved true about the pro-
gram even though that proof may be beyond the capabilities of the compiler. Assert-

ing semantics often yields more effective compilation.

e C$TERA assert parallel—This directive can appear before a loop constuct
and asserts that the separate iterations of the loop may be executed concurrently
without synchronization. The use of this loop does not ensure that the loop
is parallelized, but it does strongly suggest so. This directive affects the loop

following it.

e CS$TERA assert no dependence variable-list—The directive can appear be-
fore a loop construct and asserts that if a word of memory is accessed during
execution of the loop through any load or store derived from a variable in
variable-list, then the word is accessed from exactly one iteration of the loop.

The word nodep may be used in place of no dependence. For example:

C$TERA ASSERT NO DEPENDENCE IA
DOI=1,N
IA(I,1) = IA(I, INDEX(I))
END DO

4. Implementation hints

These directives intend to provide guidance to the compiler for effective optimization

about the expected behaviour of the program.

e CSTERA expect [true|false] —This directive can appear before a logical IF
and specify the expected value of the associated predicate. This is also used for

67

branch prediction and choosing the best parallel implementation of a containing

loop depending on sparse versus dense branching.

5. Extension directives
The language extension directives allow the programmer to specify special parallel
semantics for variables and statements without compromising the portability of their

programs. Some of them are:

e CS$TERA volatile variable-list—This directive specifies that the variables in

variable-list should be marked volatile-qualified, similar to the C volatile type

declaration.

e C$TERA future variable-list—This directive specifies that the variables in
variable-list should be marked future-qualified, similar to the FUTURE type
qualifier in MultiLisp.

e C$TERA sync variable-list—This directive specifies that the variables in the
variable-list should be marked sync-qualified as in the SYNC type qualifier in
CC++.

4.2 Examples of Explicit and Implicit Parallelism

In Section 4.1, we discussed various flavours of explicit control decomposition by the
programmer. Because this was so straightforward, we have actually demonstrated
that occasionally parallel programming can be quite easy indeed. In this section, we
continue to examine explicit and implicit parallelism. We explore our recommenda-
tion that the computer system should be responsible for discovering, extracting and
exploiting 85% of the total parallelism in a single program or application, while the
programmer should be responsible for the remaining 15%. An appropriate division of
labour between the programmer and compiler will enhance exploitation of parallelism
within programs given the relative “clerical” strengths of these two entities. In Sec-
tion 4.2.1, we illustrate examples of explicit and implicit parallelism so that we can
better understand both the cost issues and the ease-of-use issues associated with mas-
sively concurrent parallel programs. In Section 4.2.2, we provide various examples to

show that implicit parallellism works especially best when utterly cheap threads—for

68

switching and synchronizing—are available because the load is distributed appropri-
ately to entities that can bear it. Our compilers are actually good at extracting
fine-grained parallelism and it is wise to have cheap threads that will free the com-
piler to exploit as much fine-grained parallelism as it can find—a lot actually!. The

following kinds of parallelism demand fine-grained synchronization:

— scans (prefix computations) and reductions
— DAG parallelism within large basic blocks
— parallel, possibly conflicting memory updates

— parallelism in inner loops exceeding one processor’s needs

Another powerful technique is to uncover large amounts of both instruction-level
parallelism (ILP) and thread-level parallelism (TLP). The amount of parallelism that
can be pulled from ILP x TLP is vastly greater than which can be extracted alone from
ILP. ILP processors are certainly limited in generating parallelism. In the next sec-

tion, we provide several examples of explicit as well as implicit parallel programming

techniques.

4.2.1 Examples of exlicit and implicit parallelism in loops

and vectors

To begin with we illustrate a simple example of computing the rank of each number

in a given vector.

1. Parallelizing loops in a simple counting sort example

Most people are familiar with “counting sort” and so we will not discuss the
algorithm in detail, but instead we will just lock at the sequential and parallel
implementation. To start with, we first accumulate, in vector[r], the number
of keys with value n. The next step would be to compute a starting location,
start[n], for each possible key value n. Thus, all 0’s would come first, starting
at location 0, then all the 1’s, follwed by all the 2's and so forth. Finally, the
rank of each key value would be computed and would lie between start[n] and

start[n + 1] — 1 inclusive. The algorithm could be expressed in C as follows:

69

for (i = 0; i < key_bound; i++) \\ Loop 1

vector[i] = 0;

for (i = 0; i < nkeys; i++) \\ Loop 2
vector[key[i]l]++;
start[0] = 0; \\ Loop 3

for (i = 1; i < key_bound; i++)

start[i] = start[i - 1] + vector[i - 1];

for (i = 0; i < nkeys; i++) \\ Loop 4
rank[i] = start[key[il]++;

The above sequential code could be parallelized using a parallelizing compiler,

as follows:
for (i = 0; i < key_bound; i++) \\ Loop 1
vector[il = 0;
for (i = 0; i < nkeys; i++) \\ Loop 2
vector[key[il] = vectorl[key[il] + 1;
start[0] = O; \\ Loop 3

for (i = 1; i < key_bound; i++)

start[i] = start[i - 1] + vector[i - 1];

start$ = (sync int *) start;

#pragma tera assert parallel

for (i = 0; i < nkeys; i++) \\ Loop 4
rank[i] = start$lkey[i]]++;

70

The single-assignment variable sync has already been explained in sufficient
detail in Section 4.1.1. The compiler generates parallel code for each of the
above loops and distributes each iteration in each loop to a thread chosen from a
set of acquired threads. The compiler recognizes Loop 1 as trivially parallel and
distributes iterations among threads on all P processors, so that computation
progresses at the rate of P iterations per clock cycle. On a single processor, the
iterations are distributed across multiple threads, with each thread executing a

single instruction per iteration.

Loop 2 is not trivially parallel as there is a loop-carried dependence caused by
the increment of vector[key|[z]] which becomes unproblematic if we can perform
atomic updates of the memory locations. The atomic update can be done by a

simple fetch-and-add instruction.

Loop 3 is a linear recurrence which the compiler automatically recognizes and
generates parallel code to solve it using the technique called cyclic reduction.
We will discuss more about recurrences and cyclic reduction in examples 2 and
3, respectively.

In Loop 4, the programmer has to explicitly inform the compiler that the loop
is parallel, using the assert parallel statement. Normally, the compiler tries
to maintain the semantics of the original code. However, in this example, the
programmer does not care about the order in which the different 0’s or 1’s
appear. Thus, the clustering of the keys can be done in parallel. The variable
start$ is declared as a pointer to sync int, implying that each integer in the

vector should be treated as a sync variable by the compiler.

. Parallelizing recurrences

A recurrence refers to a loop where values computed in one iteration are used in
subsequent iterations. The subsequent use of a value computed in a previous it-
eration is called loop-carried dependence [Wolfe]. Such loop-carried dependences
usually prevent parallelization. Some really aggressive compilers are able to gen-
erate parallel code for a special class of recurrences called linear recurrence rela-
tions. A linear recurrence relation is of the form z; = 1., ¢ixZx + ¢i, where m
is the order of recurrence, a; « is called the recurrence coefficient, and ¢; is a con-

stant term. A first-order linear recurrence is simply of the form z; = a;z;1 + ¢

71

which can be rewritten as x; = a;(ai~17i-2 + ¢i-1) + ¢; making it independent of
z;-1. This process of substitution changes the order of arithmetic computation.

For example, in the following loop:

DOI=1, N
X(I) = X(I-1) + Y
END DO

the computation of X(7) depends upon the previous iteration value X (I — 1).

This particular case is easy to parallelize if the code is rewritten without loop-

carried dependences as follows:

DOI =1, N
X(I) = X(0) + IxY
END DO

Alliterations can be done in parallel in the above rewritten code. However, some
other types of linear recurrences may not be parallelized as easily as shown
in the above example. These more difficult loops can be rewritten using a
technique called cyclic reduction [Callahan] and thereafter easily parallelized.
In general, recurrences of the form

X(I) = X(I-K) * F(I) + G(I)
are identified by the compiler as linear recurrences and are parallelized if the

following two conditions hold:

o The operators * and + are sufficiently like multiplication and addition
(e.g., bitwise and and or).
o All loop-carried dependences are simple and cross a small constant number

of iterations (e.g.,/{ iterations).

We now discuss in more detail a specific linear recurrence and its implementa-
tion by cyclic reduction. The loop

X(K) = X(K-1) + Y(K)
is a fairly common structure, which we may assimilate to perform radiz or bucket

sort. We will translate this into the following threads (described here in SPMD

72

Fortran).

sync real MSGS (log:T,T)

me =1

hop =1

DO 100 step =1, log,T
IF (me+hop < T) MSGS (step,me+ hop) = sum
IF (me—hop > T) sum = sum+ MSG$ (step, me)
hop = hop * 2

100 continue

Here, sum is thread local and is initialized to Y [me] for each thread. Its final
value is X[me], for the loop body X(k) = X(k — 1) + Y (k). me is a thread
index very much like the PID used to index arrays of process control blocks,

i.e., it is just the thread name.

The cyclic reduction algorithm was derived from the cascade sum method to
solve a particular case of a general first-order recurrence. We provide below, a
situation in which the first N elements of an array are to be added together in
parallel. We will use the cyclic reduction algorithm to rewrite and parallelize

the sequential code for the addition.

We assume, we have T threads that execute the parallel code. Each worker
thread is permitted to accumulate a private partial sum for the iterations as-
signed to it. The algorithm computes the partial surns Sum; = No@ N1 B...@N;,
for 0 <z < N —1 assuming one input per thread (or processor as the case may
be). The final global sum is then accumulated from the partial sums computed
by the worker threads. Initially, the vector value /V; is loaded into thread T;.
Each thread 7} has a local variable Sum; which is the data to be transferred
in every step of the computation. The maximum number of steps that the
algorithm goes through is [log,T] or [3.32(l0og10T)]. The cyclic reduction
algorithm can be explained with the aid of Figure 4 shown below.

73

Number of threads, each having a distinct value from the vector

Tl T2 T3 T4 TS T6 T7 T8 T9

= NN
I

Step=2
l-;o:z \3;
Step=3 g ey gy Sy, S
1 6 10 15 2i 28 36 44
\
Step=4 \\\‘\
\\—b

Number of steps in the computation; the maximum being 1gT

Hop=8
45

Figure 4.1: An example of cyclic reduction using 9 threads to compute the sum of the
first 9 array elements starting from 1. The maximum number of steps is [log,9 |.

Each thread or processor contains a value from the given vector. In this case,
the goal is to compute the sum 1+ 2+ ---+ 8 + 9. The maximum number
of steps in the computation will be [log9 | = [(3.32 % log109)] = [3.168]
= 4. The threads execute in parallel and use the sync variable MSG$ (,) to
synchronize. This aids in synchronization of concurrent addition of the various

local sum values. Use of sync variables has been discussed in Section 4.1.1.

Hop values increment in powers of two, starting from 2°, running through 2!,

22, and so on, up to 2"~ where n is the value of the final nt* step or, [log,T 1.

3. Reductions
Reduction operations involve reducing a large vector of scalar values to a single

scalar value. As discussed in the above example, reductions in a concurrent loop
can be efficiently done when the reduction is associative and commutative. An

extremely common reduction is accumulating the sum of a vector or an array.

For example,

74

SUM = 0.0
DOI=1,N

SUM = SUM + X(I)
END DO

computes a sum of the first NV elements of the vector array X. Another example

from linear algebra is the calculation of the dot product of two vectors:

SUM = 0.0
poiI=1, N

SUM = SUM + X(I)*Y(I)
END DO

In general, reductions are easier to solve in parallel than recurrences, and usually

involve less overhead.

4.2.2 Parallelization versus vectorization

Parallelization and vectorization are closely related, though not identical. Parallel
compilers are able to parallelize code that cannot be vectorized. This is because
vector machines are able to take advantage of only inner-loop parallelism, but a
parallel machine can take advantage of parallelism at any loop level.

Loops with output dependences are impossible to parallelize. For example,

DOI=1,N
Z(G(I)) = A * X(I) + Y(I)
END DO

Here, the parallelizing compiler is unaware of the values of G(I) and hence is not
sure that every iteration writes a different location in Z. Such loop-carried output
dependences cannot be parallelized.

Since vectorization applies only to inner loops, outer loops can be parallelized in

order to minimize parallel overhead. For example, the following can be parallelized:

75

DO I = 1, NROWS

DO J = 1, NCOLS
Z(I) = 2(I) + AT, J) * X(D)
END DO

END DO

The I loop can be easily parallelized but the J loop has a reduction. Thus, the
parallelizing compiler parallelizes the outer loop and compiles the inner loops in a
sequential fashion. There is a set of parallel startup overheads with the outer loop.

Whereas, the vectorizing compiler will interchange the two loops as follows:

DO I = 1, NCOLS
DO J = 1, NROWS
Z(I) = Z(I) + ACI, J) * X(J)
END DO
END DO

The vectorizing compiler will vectorize the new inner loop while compiling the
outer loop sequentially. Here, there are multiple vector startup overheads, one for
each iteration of the J loop.

Our proposition is that, if threads that synchronize frequently are cheap, the
overhead of parallelization would be much less. Parallelization of loops and vectors
using cheap threads and implicit/explicit parallel programming techniques can be
implemented easily and in a cost-effective manner using multithreaded hardware.
The job of the parallelizing compiler becomes simpler and cost-effective with multiple
inexpensive threads executing in parallel. The kind of architectural support that
we have proposed in Chapter 3, best assists the compiler in exploiting parallelism
for massively concurrent parallel programs. The compiler runs iterations of each
parallel loop with multiple hardware threads. These threads communicate frequently
among themselves at negligible synchronization cost. Our multithreaded hardware
architecture supports cheap synchronization among threads, and also allows easy and
cost-effective implicit and explicit parallel programming in order to exploit parallelism

in loops and vectors.

76

4.3 Wait-free or lock-free transactions

Continuing with our proposition of shared responsibilities between the compiler and
programmer, we examine and propose a method of implementing lock-free transac-
tions for multiword shared variables, which will greatly facilitate synchronization and
consistent updates by the compiler, without the use of conventional ‘locks’. The
primary motivation is to allow both the programmer and the compiler not to worry
about deadlocks when it is difficult or inconvenient to define an ordering on a set of
locks. Wait-free techniques are a standard solution to this problem. Ultimately, we
will demonstrate an efficient dynamic hardware implementation.

The most common technique for updating shared variables is through the use
of control variables called semaphores or locks. Many synchronization operations
involve an atomic Read/Modify/Write operation of some form. Some of the methods

implemented for synchronizing processes are:

o Test-and-Set which operates on a single bit,
e Increment-Decrement which produces sums and differences,
o Compare-and-Swap with high consensus number,

e Fetch-and-Add for fast atomic updates.

In this thesis we do not discuss each of them in detail. Instead we attempt to give
an overall view of the methods mentioned above. Lock and Unlock statements have
many drawbacks, including tending to serialize processors’ requests. This leads to
deadlocks and convoys for example, Read/Modify/Write operations are implemented
with locks, where only one request of a set of multiple concurrent requests gets past
the Lock to update the shared variable. When a process holding the Lock gets blocked
for some reason, many useful cycles are simply wasted. Spin-locks [Anderson] were
introduced in order to avoid processor cycles from being wasted. Spin-locks let pro-
cessors do busy wait, but instead end up wasting processor cycles in an effort to
repeatedly testing a semaphore, and cause memory contention at the semaphore. In
fact, when multiple processes are waiting at a semaphore, the contention causes addi-
tional delay while a process is attempting to release a Lock. All the methods namely,

test-and-set, fetch-and-add and increment-decrement use locks and critical sections

7

that lead to performance degradation. A single process either busy or blocked inside
a critical section can keep multiple processes waiting at the entrance of the Eiitica,l
section.

The Compare-and-Swap (CAS) reduces locked regions of a program to a single
compare-and-swap instruction [Herlihy, Moss 91]. The shared variable is locked at
the start of the instruction, updated during the execution of the instruction, and
unlocked at the end. In contrast to the other methods of synchronization, CAS does
not create a critical section. It has been successfully implemented on the IBM 370
architecture, among others. A shared variable is read into a local register and a
newly computed value of the shared variable is stored in another local register; the
C AS statement compares the current value of the variable in memory to the old value
stored in the register. If the values are equal, the instruction completes by writing the
updated local copy back to the main memory. The C AS assures the atomicity of the
Read/Modify/Write sequence because the shared variable is updated only after the
old counter value is found to be the same as the current value, thus ensuring that the
shared variable has not been updated by another process in the meantime. However,
the Compare-and-Swap suffers from the A-B-A problem and does not completely
serve the purpose. The A-B-A problem occurs when the original value of the shared
variable is read as 4, and while a process tries to evaluate a new value for the shared
variable, it has already been changed from A to Band back to A by different processes.
This can cause inconsistencies in results and thus Compare-and-Swap fails to provide
consistent updates.

The more interesting problem with CAS is that most implementations are re-
stricted to a single-word comparison. We suggest a Multiword Compare-and-Swap
(CASn) for a multithreaded multiprocessor. The Compare-and-Swap-Two (CAS2)
instruction has been successfully implemented in the M68000 architecture.

[Stone, Stone] discusses a viable solution to the problem using the multiple reserva-
tion approach which allows atomic updates of multiple shared variables, and simplifies
concurrent nonblocking codes for managing queues and linked lists. The disadvantage
of the proposed implementation of Stone’s multiple reservation scheme is that it is
based upon cache-coherence protocols. '

We explain in stages our multiword atomic Read/Modify/Write operation, which
are notorious for their bandwidth attenuation. In all cases, we assume a special

machine instruction for atomic increment of indexed fields of multiword sync variables

78

with full/empty bils [Tera, SC97]. The stages are that we will first explain the use of
this Multiword Compare-and-Swap operation where it is assumed that all addresses of
variables in the transaction set, and their correspondence to fields in the multiword
sync variable, are known at compile time. The algorithm holds for commutative
transactions and alike. Later, we generalize this to allow dynamic runtime memory
disambiguation leading to the same power. Again, the real motivation is to enable
complex “database-like” programming without having to worry about deadlocks. We
propose a hardware-managed technique which is faster and cheaper to implement.
Our transaction algorithm is memory based and is for “lock-free” transactions with
optimistic concurrency control. It does not depend on any invalidation-based cache-

coherence protocol. The algorithm is provided below, where:

— the multiword sync variable nc = <ncla}], nc[b], nc[c], nc[d]> indicates the total

number of commits for each of the words that indexes a wraparound counter in

ne,
— a, b, ¢,d are shared variables,
— D is the sector data cache,

— old = <old[a], old[b], old[c], old[d]> and

new = <newla], new[b], newlc], new[d]> are multiword thread local values.

A sector cache is a D_cache that allows wholesale (single-instruction) flushing of a
set of tagged dirty values. The benefit is that if n dirty words need to be flushed, this
can be done using a single machine instruction rather than n separate instructions.
The full-empty bit is used for lightweight synchronization. There are two modes of
interaction with the full/empty bits: (i) Future variables—read and write the memory
word only when the bit is full. Leave the bit full; (ii) Synchronized variables—read
only when the bit is full and set the bit to empty, and write only when the bit is
empty and set the bhit to full.

Circular counters (i.e., wrap around to 0 rather than overflow) are used for keeping
count of the number of commits for each of the transaction variables. They are simply
implemented as in any Modulo — N counter. The value of N here is large enough to

safely wrap around, for example N = 232,

79

AN
The simplest way of explaining our transaction algorithm is to suppose that there
are two commmutative transactions executed by two threads with transaction sets a, b
and b, c, respectively. Thread 1’s transaction is on a and b, that is, its t_set is a, b,
and its code reads as follows:
trans (a,b) =

loop
start_trans () ; cache.color ;= next ()

[record number of commits for a,b]

<wait/f, set/f: load (old := nc)> ; atomic multiword read of nc
loadc (a) ; read t_set into D_cache
loadc (b)

[local computation]

a’:=f(a,b) ; compute locally, store in D_cache
b’ :=g(a,b)

(check if commit enabled]

<wait/f, set/e: load (new := nc)> ; atomic multiword RMW of nc

t := < new[a], new[b],> = <old[a], old[b] >
if t then
tnc := < new[a]+1) mod N, (new[b]+1) mod N, new|[c], new[d] >

store (nc := tnc)
sector_flush () ; write back t_set from D_cache

fi
<set/f: nc>

[test for successful commit]

if t then
exit ; then exit loop

fi
forever

Figure 4.2: Thread 1’s transaction on variables ¢ and b.

The first thread T hread 1 runs concurrently with another thread Thread 2 whose

t_set is not disjoint. The transaction algorithm works on the other two shared vari-

ables b and c:

80

trans (b,c) =
loop
start_trans () ; cache.color :=next ()

[record number of commits for b,c]

<wait/f, set/f: load (old := nc)> ; atomic multiword read of nc
loadc (b) ; read t_set into D_cache
loadc (c)

[local computation]

a’ :=f(b,c) ; compute locally, store in D_cache
b’ :=g(b,c)

[check if commit enabled]

<wait/f, set/e: load (new :=nc)> ; atomic multiword RMW of nc

t := < new[b], new[c],> = <old[b], old[c] >
if t then
tnc := < new(a], (new[bj+1) mod N, (new[c]+1) mod N, new[d] >

store (nc := tnc)
sector_flush () ; write back t_set from D_cache

fi
<set/f: nc>

[test for successful commit]

if t then
exit ; then exit loop

fi
forever

Figure 4.3: Thread 2’s transaction on variables b and c.

81

Let us discuss the action of the algorithm. This is optimistic concurrency control.
If there is no interference to T(a,b) by T'(b,c), there is no retry of T'(a,b). Only if
T (b, c) actually interferes with T'(a, b), is it necessary for T'(a, b) to retry the loop. We

throw more light on the second phase of the exposition. The two critical issues are:

¢ dynamic runtime memory disambiguation, and

e runtime association of shared variables to counters.

The above algorithm as proposed by us admits an efficient hardware implemen-
tation. It is not difficult to bind nc to a,b, ... at run time. We need an array of ad-
dress registers. The underlying implementation resembles Stone’s Oklahoma Update
[Stone, Stone]. The goal here is to implement C ASn(a,b,...), where the parameter

addresses are known at run time.

Address register AR]

N - O

© nc<nc[0l,nc[1],... nc[m-1]>

m-1

Figure 4.4: The simple address register AR[] required to increment the multiword
sync variable nc.

The conclusion is that we do need to set aside dedicated multiword sync variables,
and to implement the standard “synch ops” on them. However, the nc variables are
few and known at compile time, and the atomic component increments are trivial from
a hardware point of view. Thus, we have a very simple and efficient implementation of

Compare-and-Swap2 [Herlihy, Moss 91] without any of the downsides of the proposed

implementation.

82

Chapter 5

Conclusions and future work

“To stay ahead, you must have your next idea waiting in the wings.”

— Rosabeth Moss Kanter

We want to repeat a point. We did not invent RISC superscalar processors and we
did not invent multithreaded processors. What we did was to bring out an analytical
point that has not been properly appreciated. Essentially, we showed that high-end
computing requires massive concurrency, and tht this concurrency is available from
multithreaded architectures, but not from RISC superscalar architectures. This is

the central thesis of this thesis. The specific conclusions of this thesis are:

e Massive effective processor state is a consequence of single program counters,

and makes context switching unreasonably expensive.

e Multithreaded processors both exploit ILP and TLP, and distribute processor

state across multiple program counters making context switching extremely

cheap.

e Programmers and compilers should cooperate, not compete—although the com-

piler must do the bulk of the parallelization work.

e We hope that transactions will be the new parallel-programming methodology
and that multiword compare-and-swap will be generally useful in parallel pro-

gramming.

83

Broadly speaking, this thesis has looked at some of the architectural trends that
will affect how computer architecture will play out in the next fifty years. We have
used conventional RISC superscalar design as the archetype of the current conven-
tional wisdom, both because there are a lot of RISC and because alternatives such as
Intel’s Merced chip are closely held proprietary secrets. Taking an abstract view,
however, we may argue generically about ILP chips (ones that focus exclusively
on instruction-level parallelism) and ILP/TLP chips (ones that trade off dynami-
cally between instruction-level and thread-level parallelism), which—for all practical
purposes—means multithreading. Both conventional RISC superscalar designs and
the Merced design (but perhaps not the Deschutes design) are ILP processors in that
they are hardware unithreaded processors that use various techniques to expose and
exploit the parallelism in individual threads (i.e., ILP).

As clock speeds increase, there is a steady upward pressure on processor state. Of
course, the precise details depend on how much of the state is architectural (example,
registers with fixed names) and how much is nonarchitectural (example, data caches
and branch-target buffers). If you have any nonarchitectural state at all—even a
simple data cache—it will necessarily grow as clock speeds scale up, primarily because
you need to keep filling multiple functional units and multiple pipelines, and caches
help avoid processor stalls. But, this means that context-switch times will scale up
to match the growing processor state. We know that data and other caches build up
state to enable high performance of threads. When this state is lost, performance
suffers. The correct way to view context-switch time is not merely as the time to
save and restore registers, but rather as the sum of the times to 1) save thread t’s
architectural state when ¢ is suspended, 2) restore thread ¢’s architectural state when ¢
is resumed, and 3) rebuild thread ¢’s nonarchitectural state sufficiently so that thread
t regains the bulk of its previous performance.

This can only be called massive effective processor state. Normally, it makes
context switching unreasonably expensive. But, there is a way out. To some extent,

large processor state is inevitable. But there is a fundamental alternative:

— do you load the whole processor state onto a single program counter? If so, you

can afford to switch but rarely.

— do you distribute the processor state across multiple program counters? If so,

you can easily implement low-cost context switching, and switch whenever you

84

want.

Thus, there is almost a binary choice between pure-ILP processors which do not
distribute state and therefore cannot switch, and ILP/TLP processors which do dis-
tribute state and therefore can easily switch. The latter, but not the former, provide
appropriate architectural support for massive concurrency. This is the thesis of this
thesis. The rest is details. Now, we explain some of these ideas.

The focus of this thesis is to show clearly how, as conventional RISC superscalar
processors become increasingly aggressive about extracting ILP from threads, they
become increasingly unable to benefit from TLP. Since ILP is limited, so is the sus-
tained performance of multiprocessors built from conventional processors.

In this thesis we have spent considerable time analysing the consequences of single-
program-counter design, and show that as one attempts to extract more ILP, threads
become heavyweight, making it impossible to benefit from TLP. Although we do not
discuss Merced, which uses an alternative—viz., predication—to speculative branch
prediction to get more ILP, and which moves out-of-order control from the hardware
to the compiler, there are reasons to believe that, because it looks to ILP alone for
parallelism, it too has no fundamental solution to providing massive concurrency of
processor operations. We leave to future work the demonstration that Merced is
intrinsically unable to profit from TLP, albeit possibly for very different reasons than
" the ones that make RISC processors unscalable. Both probably are unable to tolerate
memory-reference latency for much the same reasons.

There are still multiple open problems related to this work:

e To what extent does our criticism of RISC superscalars carry over to Merced?
to any processor with an exclusive focus on ILP? What governs thread weight
in general? What governs latency tolerance in general? What governs context

switching in general?

e Can complex hardware multithreaded systems be radically simplified? What
happens to the network as the number of processors grows? What happens to
the cost of the network? its latency? its bandwidth? Could a network with a
high processor count still be relatively immune to “hotspots” (i.e., memory and
network contention)? Is high bandwidth all we can provide in the hardware

to reduce memory contention? What memory management is appropriate for

85

parallel computers? Do we want hardware address translation without faults?
How should locality of various kinds be integrated with multithreading? Is
there an absolute distinction between control and data locality? Can dataflow
ideas obviate this distinction? How should latency avoidance of various kinds
be integrated with multithreading? How should memory-bank interleaving be

set up in large scale parallel architectures? Is it scalable?

e Can our wait-free transaction solution be generalized? What does this imply
for cache architectures? How can it be turned into a compiler algorithm that
parallelizes loops? In the context of fine-grained synchronization, is ours the
first cost-effective wait-free primitive implemented (on paper, anyway)? How
can it be tried out on other difficult programming problems? Can one write a
simulator? What is the right mix between explicit (programmer-directed) and

implicit (compiler-directed) transactional programming?

e Finally, is it really true that practically no reprogramming is required to port
codes from parallel vector processors or mid-range SMPs to a flat-memory,

cacheless, multithreaded machine?

This list reads more like a list of open problems in parallel computing than it does
a set of minimal extensions to this thesis. However, in computer architecture, think
about one thing and you soon are thinking about a thousand things. Equivalently,
the ideas explained in this thesis point the way to fresh thinking about many aspects

of computer architecture. It is a modest contribution to the reinvention of computer

architecture.

86

Bibliography

[Anderson]

[Calder et al.]

[Callahan]

[CC++]

[Culler et al.]

[DEC Alpha)]

[Eggers et al.]

[Gupta et al.]

T.E. Anderson. “The Performance of Spin-Lock Alternatives
for Shared-Memory Multiprocessors,” IEEE Trans. Parallel and
Distributed Systems, Vol. 1, No. 1, pp. 6-16, Jan. 1990.

Brad Calder, Dirk Grunwald, and Joel Emer. “A System Level
Perspective on Branch Architecture Performance,” 28th Int’l.

Symp. on Microarchitecture, Jun. 1995.

David Callahan. “Recognizing and Parallelizing Bounded Recur-

rences,” Tera Computer Company, Seattle, WA, Aug. 1991.

http://www.cs.caltech.edu/~paolo/ccpp/tutorial/tutorial.html.
A Tutorial for CC++, First Edition, 1994.

David Culler, Jaswinder Pal Singh, with Anoop Gupta. Parallel
Computer Architecture: A Hardware/Software Approach, Mor-
gan Kaufmann Publishers, 1998.

R. Sites. ed., DEC ALpha Architecture, Digital Press, Burling-
ton, Mass., 1992.

Susan J. Eggers, Joel Emer, Henry M. Levy, Jack L. Lo, Rebecca
Stamm and Dean M. Tullsen. “Simultaneous Multithreading: A
Platform for Next-generation Processors,” IEEE Micro, Vol. 17,
No. 5, Sep/Oct. 1997.

Anoop Gupta, John Hennessy, Kourosh Gharachorloo, Todd
Mowry, and Wolf-Dietrich Weber. “Comparative Evaluation of

87

[Herlihy 90]

[Herlihy, Moss 91]

[Herlihy, Moss 93]

[Hwu, Patt]

[Jouppi, Wall]

[Kroft]

[Kruskal et al.]

[Laudon]

Latency Reducing and Tolerating Techniques,” Proc. 18th Int’l
Symp. Computer Architecture, pp. 250-263, May 1991.

M.P. Herlihy. “A Methodology for Implementing Highly Con-
current Data Structures,” Proc. Second ACM SIGPlan Symp.
Principles and Practice of Parallel Programming, SIGPlan No-
tices, Vol. 25, No. 3, pp. 197-206, Mar. 1990.

M.P. Herlihy and J.E.B. Moss. “Lock-free Garbage Collection
for Multiprocessors,” Proc. 3rd Annual ACM Symp. Parallel Al-
gorithms and Architectures (SPAA °91), pp. 229-236, 1991.

M.P. Herlihy and J.E.B. Moss. “Transactional Memory: Archi-
tectural Support for Lock-free Data Structures,” Proc. 20th Int’l
Symp. Computer Architecture, IEEE Computer Society Press,
Los Alamitos, Calif., pp. 289-300, 1993.

W. Hwu and Y. N. Patt. “Checkpoint Repair for High-
Performance Out-of-Order Execution Machines,” IEEE Trans.
Comput., Vol. C-36, pp. 1496-1514, Dec. 1987.

N.P. Jouppi and D.W. Wall. “Available Instruction-Level Paral-
lelism for Superscalar and Superpipelined Machines,” Proc. Ar-
chitectural Support for Programming Languages and Operating
Systems (ASPLOS-III), Boston, MA, Apr. 1989.

D. Kroft. “Lockup-free instruction fetch/prefetch cache organi-
zation,” Proc. 8th Annual Int’l Symp. Computer Architecture,
pp 81-85, 1981.

C. Kruskal, L. Rudolph, and M. Snir. “The Power of Parallel
Prefix,” Proc. 1985 Int’l. Conference on Parallel Processing, pp.
180-183, Aug. 1985.

J. Laudon. Architectural and Implementation Tradeoffs in De-

sign of Multiple-Context Processors, Ph.D Dissertation, May
1994.

88

[Lee, Smith]

[Lo, Eggers]

[MIPS RISC]

[OpenMP]

[Perleberg, Smith]

[Rau, Fisher]

[Smith]

[Smith, Sohi]

[Smith, Pleszkun]

[Sohi]

[Stone, 93]

J.K.F Lee and A.J. Smith. “Branch Prediction Strategies and
Branch Target Buffer Design,” IEEE Computer, Vol. 17, pp.
6-22, Jan. 1984.

J.L. Lo, S.J. Eggers, J.S. Emer, H.M. Levy, R.L. Stamm,
and D.M. Tullsen. “Converting Thread-Level Parallelism into
Instruction-Level Parallelism via Simultaneous Multithreading,”

ACM Trans. on Computer Systems, Aug. 1997.

G. Kane and J.Heinrich. MIPS RISC Architecture, Prentice Hall,
Englewood Cliffs, N.J., 1992.

http://www.openMP.org/. Fortran Language Specification, ver-
sion 1.0, Oct. 1997.

Chris H. Perleberg and Alan Jay Smith. “Branch Target Buffer
Design and Optimization,” IEEE Trans. Computers, Vol. 42,

No. 4, Apr. 1993.

B. Ramakrishna Rau, Joseph A. Fisher. “Instruction-Level Par-
allel Processing: History, Overview and Perspective,” Journal of

Supercomputing, Vol. 7, No. 1, pp. 9-50, Jan. 1993.

J. E. Smith. “A Study of Branch Prediction Strategies,” Proc.
8th Annual Int’l. Symp. Computer Architecture, May 1981.

J. E. Smith and Gurindar S. Sohi. “The Microarchitecture of
Superscalar Processors,” Proc. IEEFE, Dec. 1995.

J.E. Smith and A.R. Pleszkun. “Implementing Precise Interrupts
in Pipelined Processors,” IEEE Trans. Computers, Vol. 37, pp.
562-573, May 1988.

Gurindar S. Sohi. “Instruction Issue Logic for High-Performance,
Interruptible, Multiple Functional Unit, Pipelined Computers,”
IEEE Trans. Computers, Vol.39, No. 3, Mar. 1990.

H.S. Stone. High-Performance Computer Architecture, third edi-
tion, Addison-Wesley, Reading, Mass., 1993.

89

[Stone, Stone]

[Tera)

[Tera, 1993)

[Tera, SC97]

[Theobald et al.]

[Tullsen]

[Wall]

[Wolfe]

[Yeh, Patt]

Janice M. Stone, Harold S. Stone, Philip Heidelberger, and John
Turek. “Multiple Reservations and the Oklahoma Update,” IBM
T.J. Watson Research Center, IFEFE Parallel and Distributed

Technology, 1993.

Robert Alverson, David Callahan, Daniel Cummings, Brian
Koblenz, Allan Prterfield, and Burton Smith. The Tera Com-
puter System, in Proc. 1990 ACM Int’l. Conference on Super-
computing, pp. 1-6, Jun. 1990.

TERA Principles of Operation, Tera Computer Company, Seat-
tle, WA, May 1993.

Gail Alverson, Preston Briggs, Susan Coatney, Simon Kahan,
Richard Korry. Tera Hardware-Software Cooperation, SC97,
Tera Computer Company, WA, 1997.

Kevin B. Theobald, Guang R. Gao, Laurie J. Hendren. “Specual-
tive Execution and Branch Prediction on Parallel Machines,”
Conference Proceedings, International Conference on Supercom-
puting (ICS’93), Tokyo, Japan, pp. 77-86, ACM, Jul. 1993.

D.M. Tullsen, S.J. Eggers, and H.M. Levy. “Simultaneous Mul-
tithreading: Maximumizing On-Chip Parallelism,” Int’l. Symp.
Computer Architecture, Jun. 1995.

D.W. Wall. “Limits of Instruction-Level Parallelism,” Proc. Ar-
chitectural Support for Programming Languages and Operating
Systems (ASPLOS-IV), pp. 176-188, Apr. 1991.

Michael Wolfe. High Performance Compilers for Parallel Com-
puting, Addison-Wesley Publishing Co., 1995.

Tse-Yu Yeh and Yale N. Patt. “A Comprehensive Instruction
Fetch Mechanism for a Processor Supporting Speculative Exe-
cution,” 25th Annual Int’l. Symp. Microarchitecture, Portland,

Oregon, pp. 129-139, Dec. 1992.

90

