INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleedthrough, substandard margins, and improper alignment

can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overlaps. Each original is also photographed in
one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

®

UMI

Bell & Howell Information and Learning
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA
800-521-0600

OBJECT-ORIENTED DATABASE MANAGEMENT
SYSTEM CASE STUDY FOR
DECLARATIVE QUERY LANGUAGE

GEORGES AYOUB

A MAJOR REPORT

IN

THE DEPARTMENT
OF

COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

August 1998
© GEORGES AYOUB, 1998

g |

National Library Bibliothéque nationale

of Canada du Canada

Acquisitions and Acquisitions et)
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Youwr filg Votre référence

Our file Notre rélérence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propnété du
droit d’auteur qui protege cette these.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent &tre imprimes
ou autrement reproduits sans son
autorisation.

0-612-39109-4

Canada

Abstract

OBJECT-ORIENTED DATABASE MANAGEMENT
SYSTEM
CASE STUDY FOR
DECLARATIVE QUERY LANGUAGE

Georges Ayoub

Object-Oriented database management systems (OODBMS)
combine the abstraction power of objects with the query and performance
capabilities of database management systems. Existing query notations
were missing many object related features until recently. The introduction
of a new query notation, known by Object Comprehensions, allows queries
to be expressed clearly and processed efficiently. Our work is to establish a
testbed for the processing of Object Comprehension Language (OCL)
queries using an experimented object-oriented database, Ode. This thesis
overviews object-oriented databases evolution, and object query
processing. then introduces an object-oriented database system, Ode.
whose programming language O++ is based on C++. A university data
model is built using O+, stored into the Ode database, and wtilities, such
as bag, list and set, are written to support the processing of OCL queries.
The translation of OCL queries into O-++ is not part of this thesis, but is
part of a related project.

Acknowledgements

I would like to thank my supervisor, Dr. Gregory Butler, for his patience over the

last three years and for his guidance and encouragement to complete this project.
I would like to present this piece of work to the memory of my parents, also to my

beloved brother, whose presence is always in mind.

v

Contents

List of Figures vii
1 INtrOQUCHION - oottt i et e ieeeee e e ceaaaanaaaeaasecasaarannnsensenss 1
1.1J0verview of the OCL Project CompoRentscoiiiunneennnnnn 3
1.2ZOTZANIZALION . .o oo ooeeeaeiie e e 8
2C0OODBMS and Query Languagesciiniiiiiiiiiiii e 9
2.1CRelational vs Object-Oriented Database Systems coomnnn. 9
2.2”Why We Need Object Oriented Database Systems (OODBMS) 10
2.37O0DBMS EVOIULION .. vvvieeeieceeiien e aeamne et aaeeeesans 12
2.3.12The Object-Oriented Definitionc. oo nnenn. 13
2.3.2000DBMS AQVANIAZES . .o v oot cvnnviminaeaeeen e 15
2.4 _Evolution of the ODBMS Query Languageooieennnnnns 16
P 30 B0 $7:170) o 20 LR 17
2.4.2"Next Generation - Object Query Languageocnnnennnnn 17
2.4.37CUITEnt SHUAION . ..ot va e aee i e cnaneeansaaeacsanaseann e 18
2.5"The Future of ODBMS and Query Languagesccovnnnn. 19
2.6 -Object Comprehensions: Backgroundooiiiiiiiiiiiiiat 20
2.6.100bject Comprehensions Language (OCL) ...t 21
370verview of ODE and O+ ...ttt et 24
3.1 0Database StIUCUTE ... oo ie it e e e iaiie e aeaa e e eeenaannsaases s 24
3.1 1OFE OBJECt ..t 25
3.1.20Data ObJECt .. iivii e ittt 26
3.1.37INdeX ODJECt . oo vvtiie e it 26
3.2CLanguageand DataModel il 26
3.2.100++ - Database Programming Language for ODE 26
3.220DataMode]l ... e 27
3.2.2.1 Objects DEfiMitioncvvinnieeer i 27
3.2.22 INheritancecoueoueueenen i nnaeeaeeeaenneanaaas o 29
3.2.2.3 Named Persistent ObjectSccvuitieeiiniiieeacenennn 30
3.2.2.4 Persistent Objects CIUStersoooninimniiiiiiannceen e, 31
3.3 Database Facilities ccoveiiiii it e s 32
3.3.1 CTransactionNs ... ovvvveememeeeeensueneeanoaeneaseaenasnnnsaasesess 32
3.3.20QUEry ProCessInNgcocuvvnrennareneeecsnernnaaaeannesesesannses 35
3.3.30VErSIONNE . ..vvvtieeeinaieeennaseaeasararaaaaaa e 37
3.3. 47 CONSITANIS .+ .ot vt teteeeeeeeeeianannanaesasaseaseuannsnsesncsesens 37
KT TR TN B o 7=~ 0= <A R R L R R R 39
3.400DE Database Creationand Loado 41

4-0Object-Oriented Case Studyot 44

4.1TUniversity DataModel e 44
VWi Ak 131114 = S AU UG 47
4.3 ”University Data Model Creationoooieiiiiiiiiiiiiinnns 50
4.4 TPIODIEIMIS ot et 52
ST CONCIISION . . e e ottt ittt et e et ee et e e 53
Bibllography e 56
Appendix A : Collection Definition o oo 58
Appendix B:HeaderFiles*.h il 94
Appendix C : University DataModel oo 95
Appendix D : Utility Code i i 103

List of Figures

1 OCLQueryFlowDiagram, 4
2 E-RUniversityModel L 7
3 Object StOTage oot i it e 25
4 Compilation ofan O++Program 28
5 University Model Diagram 45

Chapter 1

1 Introduction

Twenty years ago, relational database systems started playing a dominant role in the
business and academic sectors, but as software systems become larger and even more
complex relational databases proved not to be adequate for the job. Thus, developers have
been searching for mechanisms to control that complexity, while maintaining the main
goals lowering the cost and improving productivity.

A number of programming paradigms emerged as solutions to the complexity problem.
but all indicators point to object orientation as the most promising solution. The
object-oriented paradigm started to gain popularity during the past few years. Many see it
as an opportunity to rethink programming from an entirely fresh perspective [7].

As object-oriented technology started to gain more acceptance, groups such as ODMG
(Object Data Management Group) have made progress towards standardizing data
models. The goal is to provide a common architectural setting for object-oriented
applications.

Effective adoption of standards, enables the portability of customer software across
different products, and encourages software reusability. This in turn will reduce the
complexity and lower the costs and improve productivity, as opposite to relational
databases where the cost is considered as a disadvantage.

Even though object-oriented databases are a growing field, they are still not widely

accepted because most of the market areas are based on relational databases which are
widely used due to many facilities the databases provide, such as the query management
facility.

The database user retrieves data by formulating a query. The formulation of the query is
provided under two options:

* Browsing query used in PC market databases: a user-friendly interface is displayed.
allowing the user to select table names and the corresponding fields. Once
selected. the user can set up values for some fields needed to be included into the
conditions.

When the query gets executed, the result is displayed in tabulated form.

e Declarative query used in most mini and mainframes systems: users build their own
query using the data manipulation language provided with the database.

In both the above formulations, the query processor is used to interpret the online user’s
query and convert it into an efficient series of operations capable of being sent to the data
manager for execution.

After having large satisfaction from using relational queries, developers want to provide
queries for object-oriented databases, but inadequacies still exist and are categorized [1]

into four groups:

» Support of object-orientation: A few object-oriented query languages do not

capture the class hierarchy defined by the ISA relationship between classes of

the database schema.

e Structuring power: refers to the ability to explore and synthesize complex
objects which are the components of object-oriented databases. The creation of
a new object may require a collection of objects as a parameter. To do so. a
query language must provide facilities beyond the standard such as nested

queries. and allow orthogonal composition of constructs.

» Computational power: Recursion and quantification characterize the
computational power of a query language. Traversal recursive queries as well
as quantification are supported poorly. Recursive queries with computation are

supported even worse.

e Support of collection: Usually only one data structure ‘Set’ is widely

supported and its operations are well defined. It is the case for other collection

classes such as list and bag.

Therefore a good query notation, having as characteristics the above features is
introduced. It is known by Object Comprehensions. Object Comprehensions Language

(OCL) is based on List Comprehensions in {1] which is clear, concise and powerful.

1.1 Overview of the OCL Project Components

This report is a part of a team project work, which consists of establishing a testbed for
the processing of Object Comprehension Language (OCL) queries using an AT&T

object-oriented database, Ode, whose programming language O++ is based on C++. For

that reason, OCL queries are to be translated into O++. Translated O++ queries are to be

run against a university database based on Ode (Figure 1).
This idea initialized a team work of three interrelated projects: the first project objective is

to build and manage a database, this constitutes the database project.

OCL QUERY

SYMBOL

TRANSLATOR TABLE

Translatjon Project

OUTPUT
OCL DATA
MODEL INPUT DATA
Schema Project
O++ DATA MODEL
O++ UTILMES O++DB

Database Project

Figure 1 : OCL Query Flow Diagram

A symbol table is required for such a database, which defines another component. the
schema project. This project is concerned with the implementation of the above mentioned

symbol table.

The third team work component is to provide the translation of the user specified OCL
queries into an interface query language that could be recognized by and run against the
target database created in the database project. This last project is known as the translator

project.

The following is a closer look at the above interrelated components:
e Creating an ODE-based university database.
This thesis covers the part of the project whose objective is to set up and
manage the university database. Many models were available to set up this
database.

A. Building the database using the relational model: the relation is the only
construct required to represent the association among the attributes of an
entity as well as the relationships among different entities. A relation can
be considered as a table name. The relations found in the university

database are as follows (Figure 2):

Entities Relationships

Person (Name) Pers_addr (Name. Street, City)
Address (Street,City) Dept_addr (Dept_name, Street, City)
Staff (Name, Salary) Belongs (Name, Dept_name)
Student (Name, Student_id) Teaches (Name, Code)
Visiting_Staff (Name) Major (Name, Dept_name)

Tutor (Name, Salary) Takes (Name, Code)

W

Course (Code, Credits) Assessments (Code, Value)

Department (Dept_name) Prerequisites (Code, Prereq_Code)

Runby (Dept_name. Code)

The following is a tabular representation of some of the relations:

Pers_addr
Name Street City
Ron Guy Montreal
Pam Young Toronto
Sam Shepard Toronto
Teaches
Name Code
Dave Fisher Comp 345
Dave Fisher Comp 520
Johnny Brent Math 201
Prerequisites
Code Prereq Code
Comp 553 Comp 536
Comp 553 Comp 551
Comp 628 Comp 546

Having repeated values into the table as shown above, the representation
of a collection of values is implicit in the case of the relational model, it is
implemented by adding more records with repetitive values into the

tables, as seen in the Teaches and Prerequisites relationships.

6

This does not apply to the object-oriented model where different types of

collection are set up as described in Chapter 4.

Department ———————— < "t

Figure 2 : E-R University Mode!

B. Building the database using the object-oriented model:

The target database is to be based on Ode. an experimental object-oriented

database system from AT&T. It is defined, queried and manipulated in O++.
the database interface programming language which is based on C++. The
university database covers a university model, a schema of classes such as
Person, Department, Staff, Student, Tutor, Visiting Staff, Course. and
Address. The O++ based queries are to be run against the university
database. Those queries are built using the Ode built-in query facilities and

the O++ data structure classes to support OCL concepts, so called wrilities

for query processing such as Set, List and Bag. The query results then would
be printed in the form of a collection of solutions.

e Implementation of a university database symbol table.
The purpose of the schema project is to implement a symbol table for the
above university database. It is to look into a BNF grammar for the schema
definitions and implement the facility to input views described as schema’s for

those OCL queries which create objects of new classes.

o Implementation of the OCL-to-O++ transiator.

This part covers the translation of OCL queries to O++, an interface language
for the Ode database system. Those OCL-to-O++ translated queries are to be
run against the university database built in the database project. Therefore. the
main objective of this component is to design and implement the OCL

translator.

1.2 Organization
The organization of this report is as follows. Chapter 2 covers object-oriented database
systems and query languages. Chapter 3 presents an overview of Ode and O++. Chapter 4

describes the university data model as a case study. Chapter S presents the conclusion.
The Bibliography is followed by appendices which contain the code of the university

model and utilities.

Chapter 2

2 OODBMS and Query Languages

This chapter covers the advantages provided by object-oriented database systems, while
relational database systems seem not to be adequate for certain applications. I describe
the evolution of OODBMS, the query language associated to it, the features found in an
OODBMS and missing in relational system. Then, I provide a high level description of

object query languages, their evolution and the current situation in this field. Finally. a

query notation called Object Comprehension Language [1] is studied in detail.

2.1 Relational Vs Object-Oriented Database Systems

Relational databases were developed in 1970 and gained market acceptance starting in
1980. The first object database implementation did not begin until 1982 [4]. and became
popular in the mid-eighties, as a result of the increased popularity of object-oriented
programming languages suck as C++.

RDBMS now play a dominant role in the business oriented information sector [3].
Although RDBMSs fit the needs of most business applications, they are not adequate for

the needs of information highway, multimedia technologies, time-series and spatial data
applications. For instance, the relation schemes for banking enterprise can be defined
easily using RDBMS:

Branch = (branch-name,asets,branch-city)

Customer = (customer-name,street,customer-city)

Deposit = (branch-name,account-number,customer-name,balance)
Borrow = (branch-name,loan-number,customer-name,amount)

But the declarations defined below for polygon, rectangle and table classes are more
appropriate to object-oriented design than relational one:
Class Polygon

methods
area (Polygon Type, xvalues, yvalues):->float

Class Rectangle isa Polygon
methods
xvalues:->Integer
yvalues:->integer

Class Table isa Rectangle

methods
xvalues:~>Integer
yvalues:->Integer

Currently. most applications are based on object programming, and programmers want
transparent database storage and management of the object data model using inheritance.
encapsulation, overriding, versioning, etc. All these features are efficiently handled by
OODBMS, and application performance is increased accordingly.

Users want to distribute both data and logic throughout their network to deliver

client/server applications: OODBMS provides one solution.

2.2 Why We Need Object Oriented Database Systems (OODBMS)

The need for OODBMS increased due to the shortcomings of the RDBMS
model in the following areas [11]:
* The relational model needs to decompose each application object over several base
relations (tables). For instance, operations, such as rotating an object in space,
would require complex calculations over multiple tables, and extremely complex

queries in order to represent the object in a query using table joins.

10

Another drawback is the need to supply key-attributes to identify each tuple within

each relation so relations can be joined together to represent the object through a
query. Also. values do not have any identifiers, therefore they cannot be referenced
directly. Using the banking information database, a joining procedure is needed to
get the account number and address of each customer by having the customer-name

as key attribute:

select account-number, customer-name, street, customer-city
from deposit, customer

where deposit.customer-name = customer.custmer-name

Referential integrity has to be maintained between relations in order to preserve

the integrity of the data. For instance. a foreign key that references a primary key
must reference a valid primary key. The database is responsible for ensuring the
validity of the references. and managing this responsibility requires extensive

overhead:

Person_table = (person_id, person_name, address, company_id)
Company_table = (company_id, company_name, address)
person_id is the primary kev of Person_table.
company_id is the primary key of Company_table.
company_id is a foreign key in Person_table.
Relational databases have only simple data types, such as strings, Booleans, and
integers. Engineering applications require more complex data types, which do not
exist in the RDBMS. Also, operations such as rotating an object in space. cannot

be maintained by the RDBMS, but have to be stored and maintained in the

application code.

11

2.3 OODBMS Evolution

The concept of object-oriented programming originated in the late sixties to early
seventies when SIMULA and SMALLTALK-72 languages were developed [4].

Objects provided the initiative for the creation of the fifth-generation database technology.
This new generation must be based on conventional database technology and must
incorporate solutions to many problems evident in the use of relational databases.

The transition from the fourth-generation to the fifth-generation happened under three
approaches:

» Extending an object-oriented programming language (OOPL): This approach is

realized by adding persistent storage; concurrent access and transaction support to
an OOPL.This approach has become the most popular in the commercial world as

illustrated by ObjectStore, Versant, Objectivity, Gemstone. IRIS, and O2 [2].

» Extending a relational DBMS: This approach is created by enhancing an existing
RDBMS with object-oriented features such as classes and inheritance, methods
and encapsulation. Exemplary systems are Postgres95 and Starburst [7].
¢ Building an ODBMS from the ground up: This third approach is revolutionary
because the whole system is built from scratch. as represented by UniSQL [4] and
OpenODB. Orion. a research prototype, belongs to this category. These systems
provide their own data models and data manipulation languages [7].
Lately, a new paradigm known as object-relational DBMS (ORDBMS) has emerged. Its

objective is to support both relational and object-oriented database applications. Systems

12

in this category are Illustra and DB2/6000 (for extended RDBMS) and OpenODB and
UniSQL (for ground-up ODBMS) [7].
The real commercialization of ODBMS technology started in 1992. The early market
concentrated on single-user applications, but now object-based multi-user applications are
becoming popular. These applications are concentrated around:

* Office information systems: They include text, graphics. video and voice.

* Manufacturing systems: Hierarchical representation of manufacturing processes is

related to the object concepts.

 Scientific applications: For example, medical and geographical information.

2.3.1 The Object-Oriented Definition

An object-oriented database system must satisfy two criteria:

* It should be a DBMS.
¢ It should be an object-oriented system.

A DBMS is a database system which allows the definition and manipulation of data and
provide services, such as persistence, secondary storage management. CONCUrrency
control, recovery, and ad hoc query facility.

An object-oriented system must support objects, classes, inheritance and aggregation.
encapsulation and methods.

An OO database is a collection of objects whose behavior, state, and relationships are

defined based on the object-oriented data model [4].

13

This data model is defined as a core model augmented with semantic modeling concepts

such as aggregation and generalization.

The basic components of the object-oriented data model concepts are [3]:

Classes: Objects are instances of classes. Classes should have data members and

methods. Data members are also called attributes or instance variables.

Methods: Objects can have behaviors described in the method code.
Object and Object Identifier (OID): Each object should have an unique object

identifier.

Inheritance: Classes can inherit members and methods from other classes.
Polymorphism: Inherited methods can be overridden and late-binding of method

calls can occur based on the object class.

Encapsulation: Methods and values within objects can be protected.

In addition there are two semantic concepts which are essential for many types of

applications:

Composite Objects: known also as complex objects. which are built from simpler
objects. A complex objects is a heterogeneous set of objects which form a part
hierarchy. This is the aggregation relationship.

Version: A version object is a set of objects which are versions of the same original
object. A version object consists a hierarchy which builds relationships among

various versions of the object.

With the above two concepts, the data model definition is complete and ready to be

directly implemented in a database system.

14

2.3.2 OODBMS Advantages

The following advantages are specific to object-oriented databases:

Speed: Queries can be faster because joins (used in relational databases) are often

not needed. This is because an object can be retrieved by following object ids.

No Impedance Mismatch: When both the relational data manipulation language

(SQL) and the classical programming language do not fit together, an impedance

mismatch occurs. This is due to three main causes [2]:

a. Type mismatch: The type system of the programming language and the
database system DDL are not the same. Relational databases deal with set of
flat tuples. while programming languages often deal with single hierarchical
records. Thus, conversion is needed when storing or retrieving data from the
database.

b. Set versus element programming: Relational databases operate on sets of
tuples such as join, select; whereas programming language deal with one
record at a time.

c. Declarative versus imperative programming: Relational query languages are
declarative, in contrast to the most widely used programming languages. which
are imperative.

The impedance mismatch has many undesirable consequences, which are

manifested while extracting or writing data to databases, so more code has to be

written to handle data conversion. and unnecessary communication is established

between the programming language and database system.

15

The mismatch is solved by using persistent programming languages, which use the
same paradigm in the programming languages as the database.

In the case of OO databases, the same object paradigm is used by both
programming language and database. It is not necessary to do any format
conversions when reading the data from disk or writing it to disk.

Programmers need to learn only one programming language: The same

programming language is used for both data definition and data manipulation.

Complex applications: The full power of the classes in the database programming

language can be used to model the data structures of a complex application.

Versions: Object-oriented databases provide better support for versioning (as we

will see later in the case of ODE).

Triggers and constraints: Object-oriented databases (such as ODE) provide

support for triggers and constraints. These form the basis of active databases [14].

Finally. all object-oriented applications that have database needs will benefit from using

object-oriented databases. Specifically, C++ applications that need a database. can benefit

from the use of the Ode database system.

2.4 Evolution of the ODBMS Query Language

In the early days of object-oriented database management systems, it was believed that

query languages were not needed [3], but later this perception vanished totally as ODBMS

acquired an increasing portion of the market place, and the need for certain query

language features became crucial.

16

2.4.1 History

A good example of a “first generation’ object-oriented database language supporting
queries is the O++ database programming language (details later). O++ is basically an
extension of the C++ language with the support of persistent objects. O++ integrates user
queries through the programming language itself. These queries were totally
non-declarative. using pointers to object members to return results [8]. The queries were
specific to the internal representation of the object. thus. they were not portable between

object models and violated the encapsulation rule.

2.4.2 Next Generation - Object Query Language
With time. it was understood that better object-oriented query languages founded on a
well-defined object-oriented data model were needed. The language should be concerned
with the conceptual schema of the data model, not the internal representation of the
model.
The requirements of object query language over relational languages include [3]:
e Method Invocation: to be able to invoke an object’s method as a query predicate:
- Return staff members earning more than $1000.
Set [s <— StaffMembers ; s.salary > 1000 |s] /* salary is the object method */
e Object Equality: A predicate should be able to use several equality comparisons on

objects using operator overloading

e Class Hierarchy: A query expression should be able to query objects for their

place in the inheritance hierarchy, such as the IS-A predicate:

17

- Return Student living in Glasgow.

Set [s <— Student ; s.address.city = “Glasgow” | s]

/* address is the object method inherited from Person */

Class Joins: A query must be able to join together objects based on a predicate

and return tuples based on results from joined objects:
- Return students studying in the same department of Stevel.

Set [x <— Students; y <— Students; x.name = = “SteveJ”,
x.major = = y.major | y |

Recursion: A query must be able to perform recursions, such as all prerequisites of
a course. where the prerequisites themselves are courses:
- Return all direct and indirect prerequisite courses for the ‘DB4" course.

let f (cs : Set of Course) be
cs UNION Set [x <— cs; y <— f (x.prerequisites) | y]
in Set [c <— Courses; c.code = ‘DB4’; p <— f (c.prerequisites) | p]

Integration: The language must be able to be integrated with languages such as

C++.

2.4.3 Current Situation

In 1993. the Object Data Management Group (ODMG) published a set of object

languages. They combine the best features of 02, OQL [9] and SQL’s DML and DDL

languages. The ODMG-93 language is heavily based on programming language standards.

in particular C++ and Smalltalk. Three languages are defined in the ODMG-93 standard:

OQL (Object Query Language), OML (Object Manipulation Language) and ODL (Object

Definition Language).

18

Another candidate for an object-query language, SQL3 [10], which is being promoted by
the SQL legacy, is an attempt to turn the SQL-92 (for relational databases) into an
ODBMS query language. While ODMG-93 is considered a true object-oriented language,

SQL3 is based on the extended relational model.

2.5 The Future of ODBMS and Query Languages

Most likely. future research in ODBMS query languages will take place in industry rather
than in academia. This has been the case with RDBMS query languages. For instance,
SQL was first developed in academia and then further developed by industry.

The most likely candidates for further research and development are the two previously
discussed languages, SQL-3 and ODMG-93 [3]. It seems that most vendors will turn to
the object data model definition proposed by the ODMG-93 data model definition. The
success of SQL-3 in ODBMS is still not sure. While SQL-3 is considered to be the query
language of choice in the extended RDBMS world, it has still to be standardized as the
query language of choice for the ODBMS world.

The market for ODBMS is still quite small. There is no doubt that ODBMSs will gain
increasing market share and the future looks very promising for ODBMS databases. When
we have millions of users working with object-oriented systems in different complex
applications, not only will ODBMS gain market share, but the query languages will be
more developed and standardized. The popularity of the internet will most definitely
encourage the use of object-oriented systems. ODBMSs will not replace relational

DBMSs in conventional database markets such as inventory management, finance, airline

19

reservations. Rather. the use of ODBMS will be restricted to complex applications such as
design engineering and network management.

Finally, as consumer demands grow and technology evolves, applications will support
more complex type information. more relationships and dependencies. All this means, that

as time goes on. more applications will move from the domain of traditional databases to

that of ODBMS:s.

2.6 Object Comprehensions: Background

Existing object-oriented query notations have been criticized for being unclear, inefficient
and computationally weak. According to [1]. the inadequacies are categorized into the
following four items:
e Support of object-orientation: A few object-oriented query languages do not
capture the class hierarchy which is defined by the ISA relationship between
classes.

* Structuring Power: By definition. structuring power refers to the ability to

generate complex objects that are components of object-oriented design. To do so.
a query language must provide something like nested queries and allow orthogonal
composition of constructs.

* Computational Power: The power of a query language is characterized by
recursion and quantification. For instance, the traversal of recursive queries is
only supported by ORION [4], and system supports recursive queries with
computation. The support for quantification is generally poor.

20

Support of Collection: The Set structure is widely supported and its operations are

well defined. but this is not the case for other collection classes. and the interaction
between different collection classes is not defined.
Therefore. a good query notation is introduced taking into consideration the above
weaknesses and the fundamental properties of object-oriented data models. This new
query notation is known as Object Comprehensions, and is clear, concise. powerful and
optimizable. The extension of List Comprehensions [16] to Object Comprehensions was

done by consolidating and improving constructs found in existing query languages.

2.6.1 Object Comprehensions Language (OCL)
The standard mathematical notation for sets was the inspiration for comprehensions. Thus.
Comprehensions languages are based on set notation such as the definition of the
following set of squares of all the odd numbers which is conventionally written as:

{ square X | x € s and odd x}
Comprehensions first appeared as Ser Comprehensions in an early version of the
programming language NPL, which later evolved into Hope [5] but without
comprehensions. They were followed by List Comprehensions [6].
The above mathematical expression written using List Comprehensions is as follows:

[square x | x <-- s; 0dd x]

where s stands for a list instead of a set.

The syntax of List Comprehensions is as follows:

Q:=...[[E|Q]

21

Q:=E|P«<E|[A}]Q:Q
where E stands for an expression, Q stands for a qualifier, P stands for a pattern. and O
stands for an empty qualifier.
The result of evaluating the comprehension [E | Q] is a new list, computed from one or
more existing lists. The elements of the new list are determined by repeatedly evaluating E.
controlled by the qualifier Q. A qualifier is either a filter which is a boolean expression
such as odd x. or a generator such as the (x <— s) above, making x range over the
elements of the list s. More generally, a generator of the form (P <-- E) contains a pattern
P that binds one or more new variables to components of each element of the list.
Recently. List Comprehensions was generalized to Collection Comprehensions [1] which
provides a uniform notation for expressing queries over different collection classes such as
bags. lists, trees. and sets. The major improvement is that only one query notation is
needed for all collection classes.
Here are some examples of object comprehensions using the notation suggested in [1]:
Example 1. Return students having Steve before Bob in their supervisor lists.
Set [s <— Students; s.supervisedBy.[Steve : Bob] ~== List[] | 5]
Example 2. Return students taking exactly two courses given by Steve Johnson.

Set [j <— StaffMembers; j.name = ‘Steven Johnson’;
s <-- Students; SOME s.takes = JUST 2 j.teaches | s]

Example 3. Return a set of staff members from a certain set (StaffMembers) provided they

comply with a specific condition such as earning more than $3000 a month.

Set [s <-- StaffMembers; s.salary > 3000 | s]

22

It is worth mentioning that comprehensions are a declarative specification of a query. and
as is shown in [1], are a good query notation for being concise, clear, expressive and easily

optimized.

Chapter 3

3 Overview of ODE and O++

ODE (Object Database and Environment) is an object-oriented database system developed
for research at AT&T. The primary interface for the Ode database is the database
programming language O-++ [8], which is based on C++. O++ extends C++ with facilities
for creating and manipulating persistent objects stored into clusters, defining and
manipulating sets, querying the database, specifying constraints and triggers and running
transactions.

The Ode database is based on a client-server architecture. Each application runs as a client
of the Ode database. The storage manager used by Ode is EOS [14]. The Ode database
handles single user applications that can run without a separate server. It also supports

multiple applications which can concurrently access the database.

3.1 Database Structure

The Ode database consists of a number of files called areas [12]. Each area is organized as
a tree structure (Figure 3). A number of databases can exist in a single Ode area.
Information about these databases resides in block number two of the area which serves as
roots of the trees for each specific database. Each database entry contains information
about the address location of its root file and the name and version of this specific
database.

There are three basic object types in an area: file object, data object, and index object.

24

DATABASE

/

ROOT FILE
S
INDEX-1 FILE-1 DATA
%\
DATA FILE-2 INDEX-2
/) T~
DATA DATA

Figure 3: Object Storage

3.1.1 File Object

File objects are composed of a file header and a list of block numbers. Each block number
serves as a pointer to the blocks which contain other objects that belong to the specific

file. These objects can be data objects, index objects, or other file objects.

25

3.1.2 Data Object

Data objects contain user data, they are organized into persistent objects identified by a

unique object id.

3.1.3 Index Object

Index objects are composed of an index object header and a list of block numbers, each
block number points to a block representing one of the buckets in the hash table. The
index object header is at the same time the header of the hash table and contains
information such as hash key size, hash value size, key type, etc. Each bucket in the hash
table has a bucket header and a list of bucket slots. The bucket header contains
information about the number of bucket slots in the bucket, space management, hash key
size and value. Each bucket slot indicates the location of key/values pair in the bucket.

File objects, index objects or data objects that have a size greater than a page (4096
bytes) will be organized into large objects. Large objects are also organized as a tree
structure; each node in the tree contains a large object header and a list of number/size
pairs. The large object header has the information about the level of the tree which
indicates the number of nodes that user has to traverse before reaching the final file. index

or data object.

3.2 Language and Data Model

3.2.1 O++ - Database Programming Language for ODE

The Ode database is defined, queried and manipulated using the database programming

26

language O++. The O++ ccmpiler translates an O++ program into a C++ program that
contains calls to the ODE object manager library. The library provides facilities for
creating and manipulating persistent objects. The translated program is then compiled with
the C++ compiler and linked with the object manager library to form a load module ready
to execute (Figure 4).

The C++ object model called the class is used as the basis for the object model of O++.
The class facility supports data encapsulation and multiple inheritance. O++ extends C++
classes by providing facilities for creating and manipulating persistent, volatile objects and
their versions, and associating constraints and triggers. Most of the O++ code interacting
with the database should be within a transaction block. Also. O++ language provides
query facilities on objects found in clusters. The major lack of this query language is that it
can't perform ‘join’ queries, thus O++ alleviates these problems by providing iterators that
allow sets of objects to be manipulated as easily as by declarative query languages (SQL).

The iteration facility of O++ also allows the expression of recursive queries.

3.2.2 Data Model

3.2.2.1 Objects Definition
The O++ object model is based on the C++ object model as created by the class facility. A

class declaration consists of two parts: a specification and a body.

27

Ode

Object
Manager
Library
O++ C++ object executable
O++ | o CH L] Linker [*Xecutable
’ compiler compiler code code

Figure 4 : Compilation of an O++ program

The specification contains the necessary information for the user of a class. For example.

Class address {

private:
char street[20];
char city[20];
public:
address(char*,char*);
char* ret_street();

char* ret_city();

28

the body consists of the bodies of methods declared in the class specification. For

example.
address::address(char *s, char *c)

{
strcpy(street,s);

strcpy(city,c),
b

3.2.2.2 Inheritance

Inheritance allows more specialized objects to inherit properties (data and functions) of
more general objects. A derived class is specified by following its name with the name of
the superclass. A derived class inherits all data items as well as the member functions of
the superclass:

class stockitem: public item {

int consumption; /* gty consumed / year */

int leadtime; I* lead time in days */
pubiic:
int aty;
double price;
stockitem(Name iname, double iwt, int xqty, int xconsumption,
double xprice, int xieadtime);
3

Stockitemn is the same as item in addition to other information such as quantity in stock. its
consumption per year, its price and the lead time.

Multiple inheritance allows a new class to be derived from multiple classes:

class tutor: public staff, public student {

3.2.2.3 Named Persistent Objects
O-++ considers two types of memory: volatile and persistent [14]. Volatile objects are
allocated in volatile memory as those created in any programming languages. Persistent
objects are allocated in persistent store and continue to exist after the program that
created them has terminated. Persistence should be a property of object instances and not
types, and it should be possible to allocate objects of any type in either volatile or
persistent store.
Also. it is possible to copy persistent objects to volatile ones and vice-versa to speed up
performance.
Each persistent object is identified by a unique identifier, called the object identity (oid).
The object identity is referred to as a pointer to a persistent object. Persistent storage
operators pnew and pdelete are used as follows:

persistent stockitem *psip; /* persistent pointers */

stockitem *sip; /* volatile pointers */

psip = pnew stockitem("1m dram"”, 0.05, 5000, 10000, 7.5, 15).

*sip = *psip;

pdelete psip;

30

psip is a pointer to a persistent stockitem object, then copy the object pointed to by psip to

the object pointed to sip, and delete the object pointed to by psip.

3.2.2.4 Persistent Objects Clusters

Persistent objects of the same type are grouped together into a cluster [13]. The name of
a cluster is the same as that of the corresponding type. The Ode object manager views the
global database as a collection of local databases called cluster groups. Each cluster
contains objects of the same type. and they can point to each other within the same
cluster. Each cluster group manages two copies of persistent objects: the one found on
disk and the one found in memory. When a program starts executing and needs to access
the required persistent objects, a process copies the persistent objects from disk to
memory. This process is called activation. The cluster group tracks the objects that have
been activated and where in memory they are located. The reverse operation, writing a
modified persistent object back to disk, is called passivation or synchronization.
Clusters are implemented using the class template CLUSTER, having as parameter the
type of the objects the cluster will contain. The following steps describe the scenario
where a new created object becomes persistent:

e The object manager creates an object by invoking the prnew operator.

» To make the object persistent, it must be inserted into a cluster (created before).

» The insertion is done by saving a pointer to the required object into the cluster

group.

e Later, the object is written to disk, and deleted from memory.

31

3.3 Database Facilities

3.3.1 Transactions

Transactions deal with objects in the database by invoking operations on the objects.
Thus, all code interacting with the database (except database opening and closing) must be
within a transaction block of the form trans { ... } .There are three kind of transactions:

e Update: have the form rrans { ... }

e Read-only: have the form readonly trans { ... }

* Hypothetical transactions allow users to ask ‘what if’ scenarios and they have the

form: hypothetical trans { ... }

The following is an example of an update transaction:

#include <stdio.h>
#include "db.h" /* classes Name and Addr */
#include "supplier.h” /* class supplier */

class ltem {
Name nm;
float wt;
float pr;
public:

persistent {tem *pip, *pip1, *pip2;
I* add two new persistent items and get the expensive one */
trans {

*pip1 = pnew Item("twidleedee",320,125);
*pip2 = pnew Item("twidleedee",350,75);

32

for (pip of item)
suchthat(pip->price() > 100.00)
printf(.....);

In the above example. the creation of new persistent objects is done within the transaction

block. The same applies to the for iteration command.

The ODE database server (EOS) provides transaction management facilities as follows:

Concurrency Control: EOS supports multiple transactions to access a database at
the same time through read mode, and only one transaction to write an object. This
is accomplished using the MultiGranularity 2-version 2-phase (MG-2V-2P) [15]
locking. All transactions acquire locks on data items before they access them, and
all locks are released when transactions are finished (committed or aborted). Three
types of lock granularities are supported: page-level, file-level and database-level.
A page-level lock consists of a page locked in shared. exclusive or commit mode.
The file or database can be locked in one of the following modes: no lock, shared.
intention shared, exclusive, intention exclusive, shared intention exclusive, commit
and intention commit.

EOS avoids the starvation problem associated with 2-version protocol by blocking
all new readers when the writer wants to commit.

Deadlock is also possible in this locking scheme: deadlock detection is performed
each time a lock request is blocked by another transaction which is blocked too.
Read-only transactions are less likely to deadlock because they request only read
locks. The ODE system may also abort transactions to break deadlocks by issuing

the ‘abort” statement which explicitly aborts the transactions.

33

Logging: EOS maintains two types of logs: private and global [15]. Each private
log is associated with one transaction only. The log records are redo records.
which contain the results (after images) of the updates generated by the
corresponding transactions.
The global log contains records that are either commit or checkpoint records.
A commit log record contains the committed transaction’s id and other
information related to the transaction’s updates. The checkpoint record contains
the ids of the committed transactions at the checkpoint time.
Log files are used by EOS for recovery: The EOS server returns the database to
the last consistent state prior to failure as recorded in the log files.
Transaction Commit: A transaction is declared committed if the following steps
are performed successfully:

A. The records. updated by a transaction in its private log, are flushed

onto stable storage.

B. A commir log record is inserted into the global log.

C. The global log is flushed onto stable storage.
Checkpoint: To reduce the amount of work the recovery manager has to do. the
EOS server periodically issues checkpoints. During a checkpoint, dirty pages
found in the shared pool are moved to the stable storage. When the checkpoint

process is completed, a checkpoint record is inserted in the global log file.

34

3.3.2 Query Processing

O++ language can query objects found in a cluster, subcluster or set using a for loop of
the form:
for j in s in set-or-cluster-or-subcluster
[suchthat-clause] [by-clause] statement
For instance. to print the name of people whose city address is Ottawa:
persistent person *pers;

persistent address *per_addr;
for (pers in person)
such that (pers.per_addr.ret_city() == “Ottawa”)

printf(*%s %s\n", pers->get_name());

This loop will iterate over all pers of type person in order to find someone whose city is
*Ottawa’. The such that clause is used to restrict the search of objects that satisfy a
boolean expression. This clause is similar to the where clause in SQL.

Joins can be performed using nested for loops or a loop with multiple loop variables as in:

for (pe in person; ad in address) {

Also. using in all clause instead of in in a ‘for loop’ statement causes the loop to return
results consisting of persistent pointers of all objects of a particular type and types derived

from it through inheritance:

35

for (pe in all person) such that (pe->get_name() == “GEORGES AYOUB")

is equivalent to the permutations of the following two loops:
for (pe in all staff) such that (pe->get_name() == “GEORGES AYOUB")
printf(...........)
for (pe in all student) such that (pe->get_name() == “GEORGES AYOUB")
printf(...........)
provided the classes Staff and Student inherit the class Person.
One restriction to the in all clause is that it works only when the class declaration use
single non-virtual inheritance.
As a more in-depth example of query processing in O++, the following is a manual
translation of object comprehensions queries into O++ queries of Ode. The OCL sample
queries are from chapter 2.
1. Set[s <— Students; s.supervisedBy.[Steve : Bob] ~== List[]| s]

Set<Students> tempset;
for s in Students

List<StaffMembers> tempiist;
if (s.supervisedBy.ssublist("Steve","Bob") | = templist)
tempSet.add(s);

h

2. Set[j <— Staff; j.name = ‘Steven Johnson’;
s <— Students; SOME s.takes = JUST 2 j.teaches | s]

Set<Courses> tempset;

for j in StaffMembers
suchthat (j.name = = String("SteveJohnson"))

for s in Students
suchthat (s.takes.every(j.teaches))

tempSet.add(s);
36

3. Set[s <~ StaffMembers; s.salary > 3000 | s]

Set<StaffMembers> tempset;
for s in StaffMembers
suchthat (s —> salary > 3000)

tempSet.add(s);

3.3.3 Versioning

In Ode., all persistent objects can have versions and there is no pre-defined limit on the
number of versions an object can have [13]. As in persistence, versioning is an object
property and not a type property. All objects of the same type can be versioned and can
have different number of versions.

An object and all its versions are treated as one logical object with one object id.
Accessing an object using a logical object id resuits in access to the current version of the
object.

A new version is created by invoking the macro newversion : vi=newversion(p) where p is a
logical object id. Ode recognizes the fact that the object referenced by v1 was ‘derived"
from the object referenced by p. O++ tracks the relationships between versions and
provides facilities to traverse them. Given a logical object id, operator pdelete deletes the

object and all its versions.

3.3.4 Constraints
Constraints are used to maintain consistency in the Ode database. Providing integrity

constraint facilities in a database is not a new issue since all commercial databases today

37

provide a certain level of integrity. This new integrity aspect is specific to object-oriented
databases. where objects are updated and the database is left in a consistent state.
Constraints are used to ensure this kind of data integrity.
Constraints, which are Boolean conditions, are associated with class definitions. All
objects of a class must satisfy all constraints associated with the class.
Constraints in ODE are of two parts [13]: a predicate and an action (or handler): the
action is executed when the predicate (condition) is not satisfied. Constraints checking is
performed at object level or transaction level, thus ODE supports two types of
constraints:

* Hard constraints are specified in the constraint section of a class definition as

follows:

constraint:

constraint1: handler?

constraint2: handler2

constraint(n): handler(n)

constraint(n): is a Boolean expression that refers to component of
the specified class.
handler(n): is a statement that is executed when a constraint is
violated.

Here is an example of a constraint declaration:

38

constraint:
supplier_state = = Name("NY™) | | supplier_state = = Name(™);

For this type of constraints, checking is performed as soon as the object is updated: if any
constraint associated with an object is not satisfied. and no handler exists to rectify it, then
the transaction causing the violation will abort. If there is a handler associated with the
constraint, then this handler is executed and the constraint is reevaluated immediately. If
the consrraint is still not satisfied. then the transaction in question is aborted.
* Soft constraints are specified like hard constraints except that the keyword soft
precedes the keyword constraint.
For this type of constraint. checking is performed at the transaction - level: that is.
checking is deferred until the end of the transaction causing the update. Therefore.
whenever a constraint violation occurs. it has to be rectified before the transaction

causing the violation can commit.

3.3.5 Triggers

Triggers, like constraints, check the database for certain conditions, except

that these conditions are not related to consistency. A trigger is specified in the class
definition. and can apply only to the specific objects with which they are activated.

A trigger consists of two parts [13]: a condition and an action:

trigger:
[perpetual] T1 (parameter-decl1):trigger-body1

[perpetual] T2 (parameter-decl2):trigger-body2

39

T1,T2 are the trigger names. Triggers parameters can be used in the trigger bodies.

There are three types of triggers: once-only (by default), perpetual (specified using the
keyword perpetual as the example above), and timed trigger.

A once-only trigger is automatically deactivated after the trigger has ‘fired’. and must
then be reactivated explicitly if desired. A perpetual trigger is automatically reactivated
after being fired. A timed trigger must fire within a specified period of time, otherwise the
timeout action is fired. As an example of a once-only trigger:

class inventitem: public stockitem {

pubilic:
inventitem (.....);
void deposit (int n);

void withdraw (int n);

trigger:
order(): qty < reorderlevel() => place_order(this, eoq()):

/* "this" refers to the object itself */
The action associated with the trigger order will be executed after its condition becomes
true.
Triggers are explicitly activated after creating the corresponding associated objects. A
trigger Ti associated with an object whose id is object-id is activated by the following call:
object-id -> Ti(arguments)
If successful, the trigger activation returns a trigger id, otherwise 0 is returned.

Triggers may be deactivated explicitly before they have fired as follows:

40

~trigger-id
~object-id -> Ti (arguments)

An active trigger fires when its condition is true. Firing means that the action associated
with the rrigger is scheduled for action. 7rigger actions are initiated as separate
transactions (friggered transactions). They act independently of the transaction causing the
trigger to be fired (triggering transaction). The reason for this is that the triggering
transaction should be allowed to commit even if the triggered transaction aborts for some
reason.

Finally in Ode. a trigger or constraint is said to be intra-object if it is associated with a
specific object, and the condition associated with it is evaluated only when the object is

updated. Otherwise a constraint is said to be inter-object.

3.4 ODE Database Creation and Load

The steps needed to start Ode and build a database, are summarized as follows:
e QOde uses a client-server environment, thus commands are provided to create the
initialization files:
On the server:
a. Run make_server_init and make_format_init.
b. Start the server using oderserver.
On the client:
1. Run make_client_init and makes_format_init.
2. Make sure that the EOS_SERVER_HOST in file ~/.eos/clientrc for

the client is set to the name of the machine where the server is running.

41

When the server is running, the command odeareaformat (without the -l) is issued

to create a database area. A database area may contain one or more databases.

When the server is down, odeareaformat with the -l option is used to create an area.
odeareaformat -1 database_area -o

(The size of the database _area just created is very big).

Include the header file ode.h which automatically makes available the class

database in order to provide functions for manipulating (open.close, etc.) the

database and naming persistent objects.

Most of the operations interacting with the database are invoked within the

transaction block except the open, close and remove database operations which are

invoked from outside. Update transactions have the form: trans { ... }, which allow

insertion into the database.

The command to open or create the database should be initiated next outside the

transaction body. An O++ database is identified by the name of the file in which

the database resides. When a name (with no embedded */°) is used, O++ creates

the database in the database area.

Otherwise. O++ opens an already existing database after specifying the full path

name:
if ((db = database::open(“~/path/datbase_name”)) = NULL) {
cout << “cannot open database_name” << endl;
exit(1);

}

Define classes whose objects are to be made persistent by using the form:

42

persistent class class-name;

persistent class person { ... };

» Create persistent objects using the operators pnew. This operator returns a pointer

to persistent objects, known as persistent pointers:
persistent class_name *pe; [* persistent pointers */
pe = pnew person;

The creation of persistent objects should be within the transaction block.

43

Chapter 4

4 Object-Oriented Case Study

This chapter covers the university data model built using O++, provides a detailed
description of the corresponding schema of classes and the utilities such as bag, list

and set written to support the processing of OCL queries to be run against the

university database.

4.1 University Data Model

The data model is a simplified university administration system that records information
about students. staff members of a university, its departments and courses. The
relationships between classes are defined in figure 5 .

The class Person has two subclasses: Staff and Student. VisitingStaff is a subclass of Staff.
Tutor inherits from both Student and Staff in case students can do part-time teaching. The
calculation of the salary of a tutor is different from that of a staff member. Every person
has an address which is an object of class Address. Each student can have many
supervisors modeled by the method supervisedBy as a list of staff members. Every staff
member and student are associated to an object of type Department via department and
major respectively. Courses offered by the university, taught by staff members and taken
by each student are also recorded. They are represented by set-valued methods. teaches
and takes. A course may have a set of prerequisite courses (prerequisites) and is
administered by a set of departments (runBy). Also, the percentage weights of assessments

(Credits) is given for each course. A course is an instance of the class Course.

44

It is assumed that the database is made of six set collections:
* Persons : Set<Person>

* Departments: Set<Department>

* Courses: Set<Course>

* StaffMembers: Set<Staff>

* Students: Set<Student>

e Tutors: Set<Tutor>

& i address
| Address = _ Person
sam . (lw) supervisedBy | gy qent
\.

is-a

department kes
o (s
Department | o Course Set)
address & ¢ \Sg)mTB‘, k//

prereq&it{s_)

Figure 5 :University Model Diagram

45

The following is the description of the schema definition of the university database:

Class Person isa Entty Class Department isa Entity
methods methods
: name ->Stnng name ->Stinng
: address ->Address address ->Address
|
r Class Steffisa Person Class Course isa Entity
; methods methods
§ department ->Department code->Stnng
teaches ->Set of Course runBy->Set of Department
salary ->Integer prerequisites ->Set of Course
assessments:->Bag of Integer
Class Student isa Person credits ->Integer
methods

major->Department
supervisedBy ->List of Staff
takes ->Set of Course

Class Address sa Entty
methods
street ->String
aty->String
Class Tutorisa Staff, Student
methods
salary->integer

Class VisitingStaff isa Staff

46

4.2 Utilities

Utilities are used in Object Comprehensions queries and in several object-oriented data
models. They are defined as a collection of objects grouped as list, set, or bag:

* List is a Collection of ordered elements; duplicates allowed.

* Ser is a Collection of elements with no duplicate and no order.

* Bagisa Collection of elements with possible duplicates and no order.
The class collection is defined to manage the above collection of objects (list, set or bag)
by declaring methods to be used by all subclasses representing the three types of collection
objects. In addition, more specialized methods are declared for each one of the subclasses
defining the behavior of the different instance variables.
The following is the schema definition of the collection classes:

(More detailed description in Appendix A)

Template<Type> Tempiate <Type> ‘
Cless _noce Class st 'sa _Collecicn I
methocs methods i
put_nex:->Voic 1s_smpty ->Boolear |
get_nex: ->_nods remove ->vVoic {
search ->integer gl ->Vaid !
get_info -> <Type> findnd ->he ‘
Insert->Voic |
Template <Type> appenc->Vora !
Cless _Collectior: frequency->Integer i
methocs show -> <Type> !
sizo ->In: 1sublist >List of <Type> !
ret_neac ->_Node sublist ->List of <Type> !
membe~ ->Boolean :
remave ->Voc Tempiate <Type> i
intersects ->Booiean Cless bag ise _collection i
Intersecton ->vVod methads
every ->Boolean 2de ->Voig
union_col ~>Voud
atieast ->Boolean frequency ->Infeger I
atmost ->Boolean Tempiate <Type> l
just->Booiean Class setisa _collection !
cffer ->Vord methods |
destroy->vod add->Vord !
display->Voic union_set->Void ;
i
t

47

Many data structures are defined in order to facilitate the access the elements of a
collection:
e Iterators
They are used to access the elements cf a Collection sequentially without exposing
its internal structure. The order in which the objects are visited depends on the
type of the Collection. Objects in a sequential Collection are accessed in the order
in which they are added or sorted. Objects of any other Collections are visited in
an undefined order. The abstract interface of all iterators is defined by the class
_iter_list. An iterator object is responsible for keeping track of the current
element: it knows which elements have been traversed already.
The following iterator template class is used by the Utilities members in order to
visit the elements in any Collection type (set. list, bag):

Template <class Type>
class _iter_list {

private:
persistent _node<Type> *entry;
persistent _node<Type> *pos;

public:
_iter_list(...)
persistent _node<Type> *POS() {return pos;}
void first() {pos=entry;}
void next() {if (pos) pos=pos()->next;}
Type *current() {....}
h

First, the list to traverse must be supplied. Once the _iter list instance is ready. its
elements can be accessed. The _iter_list is made up of two items referring to
position: The ‘entry” and ‘pos’ which are initialized to point at the head of a list

(beginning position).

48

The Pos() returns the position of the current element in the list.

First() initializes the current element to the first element.

Next() advances the current element to the next element.

Current() returns the current element in the list.

The following example shows how iteration is used in the Destroy() method
which deletes all members of a Collection():

_iter_list<Type> iter(this); /* Create an iterator named iter */
iter.First(); /* position the current element pointer to the first element */
cursor=iter.Pos(); /* get the current position and assign it to cursor */

While (cursor) {

tmp = iter.Pos() ; /* get the cursor position and assign it to tmp */

iter.next(); /™ advances the current element to the next element */

cursor = iter.Pos() /* get the current position (next elements) and assign it to
cursor */

pdelete tmp; /* delete the previous to current element */

* Wrapping Methodology

Each type (set, list, bag) of the Collection utility contains instances of the
corresponding classes as found in the schema definition.

When a set of <person> is defined. the address which points to the header of a set
does not point specifically to the head element, but to a sort of “wrapper’ which
envelops each of the object instances of type <person>. <course>, etc... making up
the whole set.

The ‘wrapping’ job is done by using a specific class (_PerPtrWrap). needed when
defining the address pointer of each type of the Collection utility:

Typedef _PerPtrWrap<person> person_wrap;
Typedef set<person_wrap> person_set;

49

Therefore, whenever a searching for a list of objects is needed in the Collection
tvpe. the *match’ method declared in the class _PerPtrWrap is needed, because

objects are accessed through this ‘wrapper’ only.

4.3 University Data Model Creation

The steps needed to build the university data model, are summarized as follows:

e Define class and class templates whose objects are to be made persistent by using

the form:

persistent class class-name;

persistent class person { ... };

template <...>
persistent class class-template-name:

template <class Type>
persistent class colflection { ... };

» (Create persistent objects using the operators pnew. This operator returns a pointer

to persistent objects, known as persistent pointers:

persistent person *pe; /* persistent pointers */
pe = pnew person;

Volatile pointers refer to pointers declared without the persistent declaration:

class *cl;

Both types of pointers are needed while building the constructors of the classes.

* (Collection classes are needed for the data model definition:

Class Course {

50

persistent course_set *prereq:

persistent bag<int> *assess;

The declaration of persistent pointers having as type a collection (set, bag or list)

of objects, need to use the wrapper class as defined before:

persistent person_set *sp;

(person_set is defined using the wrapper class)

Need to use the multiple inheritance facility among classes. as is the case for the
class Tutor which inherits from both Student and Staff.

Need to use method overloading for salary. because the calculation

of the salary of a tutor is different from that of a staff member.

Get the values to be inserted, then create a persistent object having as arguments

the values just entered, then call a method to insert the object into the database:

(

persistent person_set *sp; /* person_set is defined using the class wrapper */
persistent person *pe; * persistent pointer */

const max = 20;

person “pz; I* volatile pointer */

getline(fname,max); /* get first name */

getline(iname,max); " get last name */

getline(s, maxy); I* get street */

getline(ct,max); I* get city */

pe = pnew person (fname,Iname,s,ct); /* create persistent object */

pz = (person *) pe /* assign to volatile object */
sp->add(pz); /* add the object into the person_set */

Iteration is used to add items into the collection in order to avoid duplicates as it is

the case for sets and lists.

51

4.4

Problems

Some of the problems encountered during the implementation of collection classes can be

defined as follows:

Persistence: The declaration of pointers using the wrapper was not evident at first.
but later after seeing some examples, it was more obvious.
The difficulties were in matching elements of certain data type using
the method match defined into the ‘wrapper’ class.
Also I had problems assigning persistent to volatile pointers or
vice-versa, but later I found the solution by reading some papers
describing the topic.
Passing arguments: Some difficulties were encountered while passing arguments to
insert or find any object. I got the solution after applying the same procedure seen
in some examples having the same situation.
Template: By definition, templates are used to define classes with different type
declaration. so no need to define one class per type. The problem
I have, is when having templates in the method declare_xtion and how to
deal with them when creating items. I got the solution after checking
the C++ templates (O++ being an extension of C++) and understood the

real usage of them.

52

Chapter 5

5 Conclusion

The original idea was to study and implement OCL, Object Comprehension Language. a
new powerful query notation.

This idea initiated a team work of three interrelated projects. The main goal of the three
projects was to test OCL. by allowing a user to run OCL queries against a certain
database and view the results. Therefore. the required database to be built, should
constitute one of the project components, the database project. Building a database system
in turn requires a symbol table for such a database. which constitutes another component.
the schema project. The third team has to provide the translation of the user specified
OCL queries into an interface query language that could be recognized by and run against
the database created in the database project.

The main objective of this thesis is to set up and manage the sample university database.
The selected database is to be based on Ode, an experimental object-oriented database
system from AT&T. The database is defined, queried and manipulated using O++. the
database interface programming language based on the C++ programming language. The
University model consists of interrelated objects of O++ classes such as Department.
Course, Student, etc.

The O++ query results are obtained by the use of both Ode built-in facilities, in addition to
utility classes implemented in O++ to support OCL concepts, such as set, bag, and list.

The query results would be printed as a collection of solutions.

53

An overview of object-oriented databases is provided, comparing them to relational
databases and how the latter did not seem to be adequate for certain applications such as
multimedia technologies. The evolution of object-oriented database is also described.
Then. differences between object-oriented query languages and relational query languages
are described. Ode. being an object-oriented database based on C++, is taken as a case
study.

The power of Ode consists of facilities for creating and manipulating persistent objects,
transaction processing, and utilities for querying a database. The Ode queries are based on
O-++ (an extension of C++).

A sample university model database is constructed, and utility classes are written to
support the model and the OCL queries.

The problems encountered with O++ are as follows:

» The persistence issue: How to store persistent objects into the ODE database. and
to remain there. The solution was to use the ‘wrapper’ class declaration
(Appendix A).

* Recursion in class declaration: This situation occurs into the ‘Course’ class
declaration of the university model database where one of the members is of type
*Course” considered as a set of prerequisite courses.

e Templates in O++: The rules applied to templates for O++, are the same as for
C++, which were a new feature of C++ at the time. This required thoroughly

learning C++.

On the other side. these are certain advantages to using Ode and O++ namely:

The O++ based queries are easy to build. and user friendly, specially with the use
of the utilities.

The iteration method is used in searching the elements of a collection sequentially
without exposing its internal structure.

An abstract class collection contains all common methods (behavior) of the
different types of the data structure utilities (set, bag, list).

O++ being an extension of C++, many difficulties were resolved only by having the

same solutions applied on C++ as well as O++.

The following project goals were achieved:

Build the university sample database of interrelated objects of O++ classes.
Build the utility classes in O++ to support OCL queries.
Studied the evolution of object-oriented database systems compared to relational

databases and how the latter are not adequate for certain applications.

Studied Ode as a case study.

Finally, as this thesis is a part of all three projects, the completion of this part will

eventually provide answers as collection of objects, needed by the translated (OCL to

O++) queries of the translation component, which relies also on the symbol table of the

schema project. It can be seen that all three projects were highly dependent on each other.

which required the team members to be in synchronous delivering output and completing

the work.

Bibliography

[1]

(2]

(3]

(4]

[5]

(6]

[7]

8]

[9]

[10]

(11]

D. K. C. Chan and P. W. Trinder. Object comprehensions: A query notation
for object-oriented databases. In Proceedings of the 12th British National
Conference on Databases, Guildford, Springler-Verlag, July 1994.

F. Bancilhon, C. Delobel. and P. Kanellakis. Building an Object-Oriented
Database System. The Story of 02. Morgan Kaufmann Publishers, 1992.

L. B. Bjomnsson and L. Fisk. Object Database Programming Languages.
Term paper, May 1997. Http://www.ecst.csuchico.edu/~leifur/doc/ODBMS. htmi.

W. Kim. Introduction to Object-Oriented Databases. The MIT Press, 1991.

R.M. Burstall, D.B. MacQueen, and D.T. Sanella. Hope: an experimental
applicative language. In In Proceedings of the 1st ACM Lisp Conference,
pages 136-143, ACM Press, 1980.

D.A. Turner. Recursion equation as a programming language. In Functional
Programming and its Applications, Cambridge University Press, 1981.

B. S. Lee. Object-Oriented Databases: Systems and Standards. In JEEE Computer
Society, pages 64-66. IEEE press, Oct. 1995.

R. Agrawal, S. Dar and N. Gehani. The O++ Database Programming Language:
Implementation and Experience. In Proceedings IEEE International Conference
on Data Engineering, pages 61-70, Vienna, Austria, April 1993.

AM. Alashqur, S.Y.W. Su and H. Lam. OQL: A Query Language for
Manipulating Object-Oriented Databases. In Proceedings of the Fifteenth
International Conference on Very Large Data Bases, Amsterdam, Holland.
August 1989.

C. Roderic. Object Data Management. Addison-Wesley Publishing Company
Inc., Menlo Park, CA, 1994.

M. Kemper. Object-Oriented Database Management. Prentice Hall,
Englewood Cliffs, New Jersay, 1993.

56

[12] L. Liu. Odewalker User’s Manual. In AT&T Bell Labs Database Technical
Reports. 1989.

[13] R. Agrawal and N. Gehani. ODE (Object Database and Environment): The
Language and the Data Model. In Proc. ACM-SIGMOD 1989 Int'l Conf.
Management of Data, pages 36-45, May 1989.

[14] N. Gehani and H. Jagadish. ODE as an Active Database: Constraints and Triggers.
In Proc. 17th Int'l Conf. Very Large Data Bases, pages 326-327, 1991.

[15] B. Alexandros and P. Euthimios. EOS: An Extensible Object Store. In SIGMOD
Conference, page 517. 1994.

[16] S. Peyton-Jones. The implementation of functional programming languages. In
Chapter 7. pages 127-138. Prentice-Hall, 1987.

57

Appendix A : Collection Definition

Name

Collection - base class for collection of objects.
Description

The abstract class collection is used to manage a collection of objects. These
objects are instances of classes derived from the class _node: It is basic class whose role
is to create objects and a persistent link between them. provided the information inside the

object and the link to the next object is available.

Collection Types

The subclasses of Collection implement different ways to store and access objects.
These different types ease to handle objects in an efficient and flexible manner.
The major three subclasses covered in this study are : List. Bag and Set.

The inheritance relationship among the different classes is as follows:

Class Collection
Class List : public _Collection
Class Bag : public _Collection

Class Set : public _Collection

Enumerating Objects
Classes are always derived from Collection.

Class Collection is never used directly.

Class Collection is abstract.
Baseclasses: object
Subclasses: List, Bag. and Set.

The class Collection contains two instance variables declared as protected, and
also several methods are declared as public to be called by the needed objects of different
type.

Instance Variables

_node<Type> *head:

mt total:

59

Instance Method List
Creator _Collection. list, bag, set
Destructor ~ Collection
Destruction Destroy

Accessing Size
ret_head
findnb

Manipulation Remove
Intersects
Intersection
Every
Union_Col
Atleast
Atmost
Just
Differ
Del
Insert
Append
Add
Union_set

Debugging Display
Show

Client Interface Member
Frequency
Isublist
Sublist

Testing Is_empty

60

Name

Collection::_collection - instance method

Template
_collection()
Specifiers
public
Description
Collection creator: set the head pointer and the rotal counter to 0.
Arguments

none
Return Argument

none
Categories

creator

First Definition

class _collection

61

Name

Collection::~_coliection - instance method

Template
~_collection()
Specifiers
public
Description
Collection desctructor: Remove all nodes from the collection type.
Arguments

none

Return Argument
none

Categories

destructor

First Definition

class _collection

62

Name

Collection::size - instance method

Template
int size()
Specifiers
public
Description
Get the total number of elements (nodes) into the collection.
Arguments

none
Return Argument

int
Categories

Accessing
First Definition

class _collection

63

Name

Collection:ret_head - instance method

Template
_node<type> * ret_head()
Specifiers
public
Description
Return the node which is the head of the collection type.
Arguments

none
Return Argument
_node<Type>
Categories
Accessing
First Definition

class _collection

64

Name

Collection::member - instance method

Template
boolean member(const Type&)
Specifiers
public
Description
Search for a definit element of the collection.
Arguments

const Type&: value contained in the node to search for.
Return Argument

boolean values (T or F)
Categories

Client Interface
First Definition

class _collection

65

Name

Collection::remove - instance method

Template
void remove(const Type&)
Specifiers
public
Description
Search for a definit element of the collection and delete the corresponding
node where the element in question resides.
Arguments

const Type&: value contained in the node to be removed.
Return Argument

void
Categories

Client Interface
First Definition

class _collection

66

Name

Collection::intersects - instance method

Template
boolean intersects(persistent _collection<Type>*)
Specifiers
public
Description
Check if any two collection of elements have at least one element in
common.
Arguments

persistent _collection<Type>*: a persistent collection of elements in which
the pointer to the header is passed.

Return Argument
Boolean
Categories
Manipulation
First Definition

class _collection

67

Name

Collection::intersection - instance method

Template
void intersection(persistent _collection<Type>*)

Specifiers
public

Description
Find the intersection between the current and _collection<Type> *, and
put the solution into the current one by deleting the complementary
elements found in the current collection.

Arguments

persistent _collection<Type>*: a persistent collection of elements in which
the pointer to the header is passed.

Return Argument

Void
Categories

Manipulation
First Definition

class _collection

68

Name

Collection::every - instance method

Template
boolean every(persistent _collection<Type>*)
Specifiers
public
Description
If current set is a part of specified one (_collection<Type> *) then return
true. otherwise return false.
Arguments

persistent _collection<Type>*: a persistent collection of elements in which
the pointer to the header is passed.
Return Argument
boolean
Categories
Manipulation
First Definition

class _collection

69

Name

Collection::union_col - instance method

Template
void union_col(persistent _collection<Type>*)
Specifiers
public
Description
Add all elements of the specified collection (_collection<Type> *) to the
current one.
Arguments

persistent _collection<Type>*: a persistent collection of elements in which
the pointer to the header is passed.
Return Argument
void
Categories
Manipulation
First Definition

class _collection

70

Name

Collection::atleast - instance method

Template
boolean atleast(int al. persistent _collection<Type>*)

Specifiers
public

Description
If atleast (al) elements or more of current collection are part of the
specified one (_collection<Type> *) then return true, otherwise return
false.

Arguments

persistent _collection<Type>*: a persistent collection of elements in which
the pointer to the header is passed.
Return Argument
boolean
Categories
Manipulation
First Definition

class _collection

71

Name

Collection::atmost - instance method

Template
boolean atmost(int am, persistent _collection<Type>*)

Specifiers
public

Description
If atrmost (am) elements or less of current collection are part of the
specified one (_collection<Type> *) then return true. otherwise return
false.

Arguments

persistent _collection<Type>*: a persistent collection of elements in which
the pointer to the header is passed.
Return Argument
boolean
Categories
Manipulation
First Definition

class _collection

72

Name

Collection::just - instance method

Template
boolean just(int js, persistent _collection<Type>*)
Specifiers
public
Description
If just (exactly) (js) elements of current collection are part of the specified
one (_collection<Type> *) then return true. otherwise return faise.
Arguments

persistent _collection<Type>* : a persistent collection of elements in which
the pointer to the header is passed.

Return Argument

boolean
Categories

Manipulation
First Definition

class _collection

73

Name

Collection::differ - instance method

Template
void differ(persistent _collection<Type>*)
Specifiers
public
Description
Remove all elements of the specified collection
(persistent_collection<Type>*) from the current one if any.
Arguments

persistent _collection<Type>* : a persistent collection of elements in which
the pointer to the header is passed.
Return Argument
void
Categories
Manipulation
First Definition

class _collection

74

Name

Collection::destroy - instance method

Template
void destroy()
Specifiers
public
Description
Remove all elements (nodes) from the current collection.
Arguments

none.

Return Argument

void
Categories

Destruction
First Definition

class _collection

75

Name

Collection::display - instance method

Template
void display()
Specifiers
public
Description
Display the complete elements of the current collection.
Arguments

none

Return Argument

void
Categories

Debugging
First Definition

class _collection

76

Name

List::list - instance method

Template
list()
Specifiers
public
Description
Constructor type method: a /ist of type collection.
Arguments

none

Return Argument

none
Categories

Constructor
First Definition

class list

77

Name

List::is_empty - instance method

Template
boolean is_empty()
Specifiers
public
Description
Return true if the current Zist is empty, i.e. total nb of elements is 0.
Arguments

none

Return Argument
boolean

Categories

Testing
First Definition

class list

78

Name

List::remove - instance method

Template
void remove(const Type &v)
Specifiers
public
Description
Find the position of the element v in the current /ist then remove the node
corresponding to the current position.
Arguments

const Type &v: address value of the element to be deleted.

Return Argument

void
Categories

Manipulation
First Definition

class list

79

Name

List::del - instance method

Template
void del(int pos)
Specifiers
public
Description
Delete the element found at position pos in the current list.
Arguments

const Type &v: address value of the element to be deleted.

Return Argument

void
Categories

Manipulation
First Definition

class list

80

Name

List::findnb - instance method

Template
int findnb(const Type& val)
Specifiers
public
Description
Return the position of element va/ if it exists in the current list.
Arguments

const Type &val: address value of the element to detemine its position in
the current /isz.
Return Argument
int
Categories
Accessing
First Definition

class list

81

Name

List::insert - instance method

Template
void insert(const Type& val.int pos)

Specifiers
public

Description
Insert a new node containing the element val between position pos -1 and
pos of the current Zist. Special case, for a list of one element add the node
at head, or append the new node to the tail in case pos points to the last
node of the list.

Arguments

const Type &val: address value of the element to insert.
int pos: position where to insert.
Return Argument
void
Categories
Manipulation
First Definition

class list

82

Name

List::append - instance method

Template
void append(const Type& v)
Specifiers
public
Description
Append a new node containing the element v after the tail position of the
list.
Arguments

const Type &v: address value of the element to append.

Return Argument

void
Categories

Manipulation
First Definition

class list

83

Name

List::frequency - instance method

Template
int frequency(const Type& val)
Specifiers
public
Description
Determine the number of occurrence of the value val into the current list.
Arguments

const Type &v: address value of the specified element whose number of
occurrence must be found.

Return Argument

void
Categories

Client interface
First Definition

class list

84

Name

List::show - instance method

Template
Type show(int pos)
Specifiers
public
Description
Get the value of the element (node) at position pos of the current list.
Arguments

int pos: an integer value needed to get the content of the node at a certain
position pos of the list.
Return Argument
Type (of the info)
Categories
Debugging
First Definition

class list

85

Name

List::isublist - instance method

Template
list<type>* isublist(int min,int max)
Specifiers
public
Description
Return a sublist of the current list limited by the above arguments.
Arguments

int min. max: two integer values used to delimiter a sublist of the current
list. These numbers represent the position this newly sublist starts and ends
within the current list.

Return Argument
list<Type>*: pointer to a newly created list.

Categories
Client interface

First Definition

class list

86

Name

List::sublist - instance method

Template
list<type>* sublist(const Type& j, const Type &k)
Specifiers
public
Description
Return a sublist of the current list limited by the positions those above
data arguments are found into the current list.
Arguments

const Type &j , &k: value of two elements which should be checked if they
exist into the current list. If this is the case. the corresponding position of
these elements is determined, by which the newly created sublist is limited.
Return Argument
list<Type>*: pointer to a newly created list.
Categories
Client interface

First Definition

class list

87

Name

bag::bag - instance method

Template
bag()
Specifiers
public
Description
Constructor type method: a bag of type collection.
Arguments

none

Return Argument

none
Categories

Constructor
First Definition

class bag

88

Name

bag::add - instance method

Template
void add(const Type& info)
Specifiers
public
Description
Append a new element info into the bag. by creating a new node with info
content linked to the last node of the current bag.
Arguments

const Type &info: value of the element to be added to the current bag.

Return Argument

void
Categories

Manipulation
First Definition

class bag

89

Name

bag::frequency - instance method

Template
int frequency(const Type& info)
Specifiers
public
Description
Determine the number of times the value info appeared into the current
bag. including the duplicate values.
Arguments
const Type &info: value of the element to be checked for times of
occurrence.

Return Argument

int
Categories

Client interface
First Definition

class bag

90

Name

set::set - instance method

Template
set()
Specifiers
public
Description
Constructor type method: a ser of type collection.
Arguments

none

Return Argument

none
Categories

Constructor
First Definition

class set

91

Name

set::add - instance method

Template
void add(const Type& vl)

Specifiers
public

Description
Append a new element v/ into the bag, by creating a new node with v/
content linked to the head node of the current set, after checking that no
duplicate v/ values already exist in the current set.

Arguments

const Type &info: value of the element to be added to the current set.

Return Argument

void
Categories

Manipulation
First Definition

class set

92

Name

set::union_set - instance method

Template
void union_set(set <type>* st)

Specifiers
public

Description
Get the union of the current and specified set s by appending to the current
set new elements which do exist into the specified set but not into the
current one.

Arguments

set <type> * st: pointer to a specified set to make union with.

Return Argument

void
Categories

Manipulation
First Definition

class set

93

Appendix B : Header Files *.h

typedef _PersPtrWrap<person> person_wrap;
typedef set<person_wrap> person_set;

typedef _PersPtrWrap<department> depart_wrap;
typedef set<depart_wrap> depart_set;

typedef _PersPtrWrap<staff> staff wrap;
typedef set<staff wrap> staff_set;

typedef _PersPtrWrap<student> student_wrap;
typedef set<student_wrap> student_set;

typedef _PersPtrWrap<tutor> tutor_wrap;
typedef set<tutor_wrap> tutor_set;

94

Appendix C : University Data Model

#define Max 20
persistent

class address {
private:

indexable char street [Max];

char city[Max];
public:
address(char*, char*);
char* ret_street() {return street;}
char* ret_city() {return city;}
5

address::address(char *s. char *c)
f
1
strcpy(street. s);
strepy(city, ¢);

95

persistent
class person {
private:

indexable char first_name [Max];
indexable char last_name [Max};
persistent address *per_addr:

public:

person (char*, char*. char*, char*);
char* get_name();

char* get_address();

int isequal(person*);

void print_item() {cout << get_name():}

person::person(char* fname. char* Iname. char* s. char* ¢)

I

t
strcpy(first_name,fhame);
strcpy(last_name. Iname);

per_addr = pnew address(s.c);
X
IR

char* person::get_name()

{
char temp[50]:

char* tpname;

tpname = new charf{strlen(temp) + 1];
strcpy(tpname, first_name);
strcat(tpname, “);

strcat(tpname, last_name);

return tpname;

96

char* person::get_address()

{

char temp[50];
char *tpaddr;

tpaddr = new char[strlen(temp) + 1];
strcpy(tpaddr, per_addr->ret_street());
strcat(tpaddr, “ “);

strcat(tpaddr, per_addr->ret_city());
return tpaddr;

]
’

int person::isequal(person *eq)
§
1

return (!strcmp(first_name.eq->first_name) &&
Istrcmp(last_name, eq->last_name)) ? 1 : O;

97

persistent

class department {

private:

public:

¥

indexable char dept_name[Max};
persistent address *dept_addr;

department (char*, char*, char*);

char *dep_name () {return dept_name;}
char *dep_address ();

int isequal (department*);

void print_item() {cout << dep_name();}

department::department (char* dname. char* s, char* s)

{

strcpy (dept_name. dname);
dept_addr = pnew address (s.c);

char* department::dep_address()

f
t

char temp{50];

char* tpaddr;

tpaddr = new char(strlen(temp) + 1];
strepy(tpaddr, dept_addr->ret_street());
strcat(tpaddr, * *);

strcat(tpaddr, dept_addr->ret_city());

return tpaddr;

98

int department::isequal(department *eq)

{

return (!strcmp(dept_name.eq->dept_name)) ? 1 : 0;
}:
persistent

class student: public person {
private:

indexable department* major;
persistent staff list* supervised_by;
persistent course_set* takes;

public:

student(department*, staff list*. course_set*)
department* get_major() {return major;}

staff list* get superv() {return supervised_by:}
course_set* get courses() {return takes;}

X
IR

student::student(department* depart. staff_list* stfl. course_set* crset)

!
t

major = depart:
stfl = supervised_by:
takes = crset;

99

Persistent
class course {
private:

indexable char code[Max]:
persistent depart_set *prunby;
persistent course_set *prereq:
persistent bag<int> *assess;
int credits:

public:

course (char*, depart_set*, course_set*, int)
depart_set *get_runby() {return prunby;}
course_set *get_prereq() {return prereq;}
bag<int> *get_assess() {return assess;
char * get_course() {return code;}

int get_credits() {return credits;}

[

course::course (char* name. depart_set* depset. course_set* crset, int nbcredits)

strcpy(code.name);
credits = nbcredits:
prunby = depset;
prereq = crset;

assess = pnew bag();

-

100

persistent
class tutor: public staff. student {
private:

indexable int salary:
public:

tutor(int)
int get_salary () {return salary;}

tutor::tutor(int sal)

{

salary = sal:
}:
Persistent

class VisitingStaff: public Staff {

3

101

#include <ode.h>

enum Boolean {false.true};
template<class Type>
persistent class _node {
private:

Type info;
persistent _node<Type> *next;

public:

_node<Type> (const Type& v, persistent _node<Type>* n): info(v), next(n) {}
void put_next (persistent _node<Type>* n) {next = n;}

persistent _node<Type> *get_next() {return next;}

int search (const Type& t):

Type get_info() {return info;}

102

Appendix D : Utility Code

template <class Type>
persistent class _collection {

protected:
persistent _node<Type> *head:
int total;

public:

_collection() {total = 0; head = 0}

~_collection() {destroy();}

int size() {return total;}

_node<Type> *ret_head() {return (_node<Type>*)(void*) head;}

virtual Boolean member(const Type&);
virtual void remove(const Type&);

virtual Boolean intersects(persistent _collection<Type>*);
virtual void intersection(persistent _collection<Type>*);
virtual Boolean every(persistent _collection<Type>*);
virtual void union_col(persistent _collection<Type>*);
virtual Boolean atleast(int,persistent _collection<Type>*);
virtual Boolean atmost(int, persistent _collection<Type>*);
virtual Boolean just(int,persistent _collection<Type>*);
virtual void differ(persistent _collection<Type>*);

virtual void destroy(); // remove all items
void display():

¥

/*

template<class Type>

class _PersPtrWrap {

private:
persistent Type *info;

public:
persistent Type* wrap_info() {return info;}
_PersPtrWrap(persistent Type *inf) : info(inf) { }
_PersPtrWrap() : infoONULL) { }

103

_PersPtrWrap(const _PersPtrWrap<Type>& wrap)
{info = wrap.info;}

int match (const _PersPtrWrap<Type> &wrap) {return ((Type*)
(void*)info)->isequal((Type*)(void*)wrap.info);}

void print() const {

((Type*)(void*)info)->print_item();

}

55

/¥

template <class Type>
class _iter_list {
private:
persistent _node<Type> *entry;
persistent _node<Type> *pos;
public:
_iter_list(_collection<Type> *Ist) {
entry = Ist->head;
pos = entry;
}
persistent _node<Type> *POS() {return pos:}
void first() {pos = entry:}
void next() {if (pos) pos=POS()->next;}
Type *current(){
Type* t= NULL:
if (pos) t=&(POS()->info);
return t;

}

—
.

*/

*/

[*

template <class Type>
persistent class list : public _collection<Type> {

public:

list() : _collection<Type>() {};

Boolean is_empty();

void remove(const Type &v) {del(findnb(v));}
void del(int);

int findnb(const Type&);

104

void insert(const Type&, int);

void append(const Type& v) {insert(v, total+1);}

int frequency(const Type&);

Type show(int);

list<Type>* isublist(int,int);

list<Type>* sublist(const Type& j, const Type& k) {return isublist(findnb(j),
findnb(k)); }
|5

J*

template <class Type>
persistent class bag : public _collection<Type> {

public:
bag() : _collection<Type>() {};

void add(const Type&);

int frequency(const Type&);

*/

/*

*/

template <class Type>
persistent class set : public _collection<Type> ¢{

public:
set() : _collection<Type>() {}
void add(const Type& vl);

void union_set(set<Type>*);

R

/*

template<class Type>
int node<Type>::search(const Type& t)

105

*/

§
t

persistent _node<Type>* cursor = pthis;

while (cursor){

if (cursor->info.match(t))
return 1:

else
cursor = cursor->get_next():

[

return O:

’:

/*

template<class Type>
Boolean list<Type>::is_empty()
{

return total == 0 ? true : false:

}:

/¥

template<class Type>
Boolean _collection<Type>::member(const Type& val)

{
if ('head)
return false:

persistent _node<Type> *cursor = head;

if (cursor->search(val))
return true;

return false:

¥

/ *
template<class Type>

106

*/

*/

*/

void _collection<Type>::destroy()

{
persistent _node<Type>* tmp;

persistent _node<Type>* cursor;

_iter_list<Type> iter(this);
iter.first();
cursor = iter.POS():

while(cursor) {

tmp = iter.POS();
iter.next():

cursor = iter.POS():
pdelete tmp:

}
cout << "SET DESTROYED!!" << endl:
head = 0;
total = 0;
}:
/*

template<class Type>
void list<Type>::del(int pos)
{

1
persistent _node<Type> *prev, *cursor = head:

if (pos=1) {
head = cursor->get_next();
pdelete cursor;

total--:
if (total = 0)
head = 0;
h
else
if (pos > 1 && pos <= total)
{

for(int i = 1; (i < pos) ; i++) {
prev = cursor;
cursor = cursor->get_next();

h

prev->put_next(cursor->get_next());
pdelete cursor;
total--;

107

}

1.
,.

/*

template<class Type>

void list<Type>::insert(const Type& val. int pos)
{
persistent _node<Type> *prev, *cursor = head. *temp = pnew _node<Type>(val);

/* check above */

if ('head) {
head = temp:
total++:
j
else
if (pos = 1) { // insert at head
temp->put_next(head);
head = temp:
total++:
}.
else
if (pos>1)
f
[}
for(int i = 1; (i < pos) && cursor->get_next(); i++) {
prev = Cursor:
cursor = cursor->get_next():

)
f

if ('cursor->get_next() && (i < pos))
cursor->put_next(temp);
else {
temp->put_next(cursor):

prev->put_next(temp);

1
s

total++:

}

[
.

*/

*/

J*

template<class Type>
int list<Type>::findnb(const Type& val)

108

{

mt cnt = 0;

if (thead)
return cnt:

persistent node<Type> *cursor = head:

while(cursor) {
cnt++;
if (cursor->info.match(val))
return cnt;
cursor = cursor->get_next():

h

return 0:
}:

/*

template<class Type>

int list<Type>::frequency(const Type& val)

{

persistent _node<Type> *cursor = head;

int count = 0;

if (thead)
cout << "List is empty!" << endl;
else {
while (cursor) {
if (cursor->info.match(val))
count-++;
cursor = cursor->get_next();

b
}

return count;

}s

*/

*/

/*

template<class Type>
Type list<Type>::show(int pos)
{

109

persistent _node<Type> *cursor = head:

if ((pos <= total) && (cursor))
f
1
for (int i=1; i < pos;i++)
cursor = cursor->get_next();

return(cursor->get _info());

h

return 0;

Y-
IR}

/¥

template<class Type>
list<Type>* list<Type>::isublist(int min. int max)

f
v

list<Type> *Ist:
Ist = new list<Type>:

persistent _node<Type> *cursor = head:

if (('head) || (min > max))
return Ist:

for (int i=1; (i <= max) && cursor: i++){
if (1 >= min) && (i <= max))
Ist->append(cursor->get_info());
cursor = cursor->get_next();

}

return Ist;

s

/%

template <class Type>
void _collection<Type>::intersection(persistent _collection<Type> *Ist)

110

*/

*/

f

13
persistent _node<Type> *crsl = head, *temp, *prev = head; // current one
persistent _node<Type> *crs2 = Ist->head;

int flag=1;

while(crs1) {
if (crs2->search(crs1->info.wrap_info()))

flag = 0:

if (flag){
prev->put_next(crsl->get_next()):
temp = crsl;
crsl = crsl->get_next():
if (temp = head)

head = crsl;
pdelete temp;
total--;
if (total = 0)
head = 0;
¥
else
{
prev = crsl:
crsl =crsl->get_next():
H
crs2 = Ist->head:
flag = 1;
}
1.
f-
/*

template <class Type>
Boolean _collection<Type>::intersects(persistent _collection<Type> *Ist)
{

persistent _node<Type> *cursorl = head;

persistent _node<Type> *crs2 = Ist->head;

while(cursorl) {
if (crs2->search(cursorl->info.wrap_info()))
return true;
cursorl = cursorl->get_next();

111

*/

crs2 = Ist->head:
}

return false:

}:

/*

template <class Type>

void _collection<Type>::differ(persistent _collection<Type> *Ist)

{
persistent _node<Type> *crs1 = head, *temp, *prev = head; // current one
persistent _node<Type> *crs2 = Ist->head;

int flag = 1;

while(crsl) {
if (crs2->search(crs1->info.wrap_info()))
flag = 0:

if ('flag){
prev->put_next(crs1->get_next());
temp = crsl:
crsl = crsl->get_next();
if (temp = head && crsl)

head = crsl;
pdelete temp;
total--;
if (total == 0)
head = 0;
}
else
{
prev =crsl;
crsl = crsl->get_next():
}
crs2 = Ist->head;
flag = 1;
}
|5
/*

template <class Type>
void _collection<Type>::union_col(persistent _collection<Type> *Ist)

{
persistent _node<Type> *cursor!l = head;
persistent _node<Type> *cursor2 = Ist->head;

while(cursorl->get_next())
cursorl = cursorl->get_next():

cursorl->put_next(cursor2);
total = total + Ist->total;

1.
§ -

/*

template <class Type>
void set<Type>::union_set(set<Type> *st)

{

persistent _node<Type> *cursorl = head. *prev = head:
persistent _node<Type> *crs2 = st->head;

int flag =1;
while(crs2) {

while(cursor] && flag) {
if (cursor1->info.match(crs2->info.wrap_info()))

flag = 0:
else
prev = cursorl;
cursorl = cursorl->get_next();

1
f

if (flag) {
prev->put_next(crs2);
total++;

}

cursorl = head:

prev = head;
crs2 = crs2->get_next();
flag = 1;

113

*/

/*

template <class Type>

Boolean _collection<Type>::every(persistent _collection<Type> *Ist)
§
t

persistent _node<Type> *cursorl = head;

persistent _node<Type> *crs2 = Ist->head;
int flag = 1;

while(cursorl) {

if (crs2->search(cursor!->info.wrap_info()))
flag = 0;

if (flag)
return false;

else {
cursorl = cursorl->get_next():
crs2 = Ist->head;

*/

flag = 1:
H
!
return true:
|5
/*

*/

template <class Type>
Boolean _collection<Type>::atleast(int al, persistent _collection<Type> *Ist)

{
1

persistent _node<Type> *cursorl = head:
persistent _node<Type> *crs2 = Ist->head;

int flag = 1;

int cnt = 0;

114

while(cursorl) {
if (crs2->search(cursor1->info.wrap_info())) {

cnt++;
flag = 0

1
’

cursor! = cursorl->get_next();
crs2 = Ist->head:
flag = 1:

;

if (cnt >= al)
return true:
else
return false:

template <class Type>
Boolean _collection<Type>::atmost(int am, persistent _collection<Type> *Ist)

f

L
persistent _node<Type> *cursorl = head:
persistent _node<Type> *crs2 = Ist->head:

int flag = 1:
int cnt =0;

while(cursorl) {
if (crs2->search(cursor1->info.wrap_info())) {
cnt++;
flag = O;
i

cursor! = cursorl->get_next();
crs2 = Ist->head;
flag = 1;

115

if (cnt <= am)
return true;
else
return false:

/%

template <class Type>

Boolean _collection<Type>::just(int js, persistent _collection<Type> *Ist)

{

persistent _node<Type> *cursor! = head;
persistent _node<Type> *crs2 = Ist->head;

int flag = 1;
mt cnt = 0;

while(cursorl) {

if (crs2->search(cursor1->info.wrap_info())) {

cnt++;
flag = 0:
]
§

cursorl = cursorl->get_next();
crs2 = Ist->head;

flag = 1:

H
if (cnt == js)

return true:
else

return false;

1.

ye
/*
template <class Type>

void _collection<Type>::display()
{

116

*/

*/

_iter_list<Type> iter(this);
iter.first();
Type* t;

for (; t=iter.current():iter.next()) {
cout << n*n;

t->print(); cout << endl;

}

/¥

template <class Type>
void _collection<Type>::remove(const Type& info)
{

persistent _node<Type> *prev = head, *cursor = head, *temp;

int flag = 1;

while (cursor && flag) {
if (!(cursor->search(info))){
prev = cursor;
cursor = cursor->get_next():
!
else
{
prev->put_next(cursor->get_next());
temp = cursor;
cursor = cursor->get_next();
if (temp = head && cursor)
head = cursor;
pdelete temp;
total--;
if (total = 0)
head = 0;
flag = 0;
}

/*

117

*/

*/

template <class Type>
void bag<Type>::add(const Type &info)
{

persistent _node<Type> *cursor = head, *crs = head:

persistent _node<Type> *temp = pnew _node<Type>(info):

if ('head) {
head = temp:

}

else

f
t
while (cursor->get_next()) {
cursor = cursor->get_next();

}

cursor->put_next(temp);

)
s

total++;
1.
, -

/¥

template <class Type>
int bag<Type>::frequency(const Type& info)
{

persistent _node<Type> *cursor = head:
int count = 0:

if ('head)
cout << "List is empty!" << endl;
else
{
while (cursor)
{
if (cursor->info.match(info))
count++;
cursor = cursor->get_next();

}
}

return count;

}5

/*

118

*/

*/

template <class Type>
void set<Type>::add(const Type& vl)

{
persistent _node<Type>* cursor = head;

if (!cursor->search(vl))
{
head = pnew _node<Type>(vlhead);
total++;

}

[
i

119

*/

