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ABSTRACT

In this investigation it has been attempted to
present in a broad spectrum, the compiex inteructioﬁ,
nature and influence of the many factors that basically
affect the mechanical forming of metals during the rolling
process. The basic physical phenomena, that occur within
the arc of contact between the metal and the cylindrical
rolls causing deformation of metal through plastic yielding,
are complex and have been the subject of extensive research

and experimentation for the past several decades.

The first two chapters of this work describe the
tundumeintul teams und concepis used in rolling parlance
and present some of the theoretical analyses for their
prediction and explanation. The behaviour of metal under
plastic yielding conditions of hot and cold rolling has
been discussed, leading to the introduction of the concepts

of roll force and torque.

Chapter 3 is devoted to the presentation of some of the
more popular and general theories of flat rolling which, in
their approach, attempt to explain the force inter-relation=-
ships existing within the roll gap and, from the analysis
of these, deduce expressions for the specific roll force
required for the deformation. To be of practical use, in

the design of rolling mills, it is necessary for a theory
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of rolling to be reasonably accurate in its analysis while,
simultaneously, to be capable of presenting formulae and
graphs which can be used with convenience and rapidity for
design calculations. Accordingly, a method has been
selected from the theories presented and its validity has
been tested and reviewed by means of measurements taken

from o production mill.

There are, however, many factors and phenomena in the
rolling process which have not been satisfactorily analysed
and incorporated in the popular rolling theories, and
recommendations are made in the concluding chapter, for

topics of further research and experimentation.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

The mechanical forming of steel and other non-ferrous
metals from cast ingots, slabs and billets into various shapes
and sections such as flat strip, structural sections, rounds,
squares, hexagons, etc. by passage through plain or grooved
cylindrical rolls, is what is referred to as the "Rolling
Process". As is well known, the process of rolling, in its
early rudimentary form, originated several hundred years ago,
with the rolling of hot material. As often happens in an
industry which has its roots in the past, knowledge of how
to obtain the desired result was gained without, in most cases,
the knowledge of why the metal and the equipment reacted in
a particular way under a given set of conditions of rolling.
However, as the state of the art had to progress and come up
to the challenges posed by the rolling of new types of alloy
steels, the rolling of wider plates and strip to close
dimensional tolerances at higher speeds, it became increasingly
.necessary to re-evaluate the basis of the design, control and

operating parameters influencing the rolling process.

There has been, in the last fifty years or so, a great
deal of research into the mechanics of the rolling process,
both by fundamental research workers not directly connected
with the industry and also by those who, pressed by the need
to produce increasingly higher tonnages within exacting

standards of gauge and surface finish, have combined the
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findings of fundamentalists with their own empirically-
established conclusions, to elevate the rolling process to its
present importance in the area of semi-finished and finished
metal products. However, despite this progress and despite

the increase in research and investment of large sums in steel
‘rolling plants, there still remains many fundamental questions
of practical importance to be answered. For example, the (21)*
choice of work-roll diameters in the rolling of thin strips

is a matter of vital importance. The larger the diameter of
the work rolls, the greater is the rolling torque required

to achieve a given rolling operation. Conversely, the smaller
the work-rolls, the more difficult they are to cool, even at
lower rolling speeds. There are several other factors both

for and against the selection of larger or smaller roll
diameters. Yet, the choice of the diameter and percent reduction
reflect themselves in the overall cost of the rolling mill
selected and in the number of stands required, and thus in

the initial capital investment necessary to accomplish a

specified rolling operation.

The need thus becomes emphasized of having a reliable
and accurate method of calculation which, as the primary
standard, can serve as the basis for evolution of more
simplified calculations, nomograms and the like and alsc for
the verification of other simplified and empirical methods

of calculation.

* Figures in brackets refer to bibliography.
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1.2 SCOPE OF THE INVESTIGATION

This work will be concerned mainly with the brief
presentation of various parameters that aoffect the rolling
process and also with some of the major theories that have
been presented by recent researchers on the subject. Emphasis
will be laid more on the mechanics of flat strip rolling, with
a critical appraisal of the various theories available on the
subject, from the point of view of suitability of use for the
establishment of parameters leading to the design and choice
of equipment for a specific process. A typical case-study
will be made, towards the end of this paper, using one of

the techniques selected for the purpose.

1.3 PARAMETERS INFLUENCING THE FORMULATION OF ROLLING THEORY:

The main objectives of rolling theory are to predict the
manner of the plastic deformation, the derivation of formulae
for the calculation of forces involved, the establishing of
control factors of product geometry and quality, and to
provide a basis for the appraisal of the operation of planned
new rolling mill facilities and thus, to make it possible to
compare various alternative plans on a rational basis. This
sort of appraisal is essential in the choice of new equipment
and procedures, and also the degree of automation and the

provision of control criteria.



.

The main factors that influence the mechanics of rolling may

be listed as given below:

1.
2.
3.

10.
11.

12,
13.
14.

The roll diameters.

Reduction in one pass.

The initial thickness of the stock.

The speed of rolling (which decides the strain-
rate).

The front and back tensions (in the case of cold
rolling).

The nature of friction between the roils and the
material rolled.

The temperature fYeld in the material and the rolls.
The physical properties of the material being rolled.
The shape of the roll contour or roll pass in which
the material is being deformed.

The mill behaviour under load.

The effect of previous treatment of the material
resulting in work-hardening or other effects.

The elastic deformation of the rolls under load.

The state of anisotropy of the material.

The aspect ratio, or the ratio of the width of stock

to the initial thickness.

These above parameters may singly or jointly, in combinations

of two or more, create secondary parameters and phenomena

more directly related to and commonly associated with the

rolling process, such as:



15.

16.

17.

18.

19.

20.

Coefficient of draught, absolute draught and relative
draught, which are established by the initial and
final mean thicknesses of stock.

"Slip", which is characterized by the difference of
the linear speed of stock and the peripheral speed

of the rolls. "Neutral Angle", which is determined
by the point of no slip.

"Spread"”, which is the difference in width of the
exit material as compared to the ingoing stock.
Coefficient of elongation, which is dependant on

the relative values of draught and spread.

"Bite", which is a function of draught, roll diameter
coefficient of friction and ingoing thickness.

Roll Pressure, Torque, Work and Power which are

influenced by the above factors.
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CHAPTER 2

BASIC CONCEPTS IN THE ROLLING PROCESS

2.1 GEOMETRICAL RELATIONS

Figure 1 shows the fundamental representation of the
rolling process, that of a flaot, rectangular-section bar
being passed through a pair of plain cylindrical rolls of
equal diameter. The height (h) of the rolled stock is
measured normally to the roll axis. The breadth (b) is
measured parallel to the roll axis. The dimension of metal
in the direction of rolling is denoted as the length (1).
The dimensions may be expressed as:

height of stock at entry

>
—
1]

h2 = height of stock after rolling, at exit
by = breadth of stock at entry
b2 = breadth of stock after rolling, at exit

length of stock at entry

[
w—t
1

12 = length of stock after rolling, at exit

A] = cross-sectional area of stock at entry
A2 - cross-sectional area of stock after rolling, at exit
X; = volume of stock at entry

X, = volume of stock after rolling, at exit.



Generally, and without much inaccuracy, it is assumed that

the law of constant volume holds, i.e.:
X" = x2 = K] Xn, Of'ter n pOSSeS

The following geometrical relationships will follow, based
on the condition of constant volume:
From the geometrical relationships of Figure 1, we obtain

the relation:

hpebpely cig.n. Unity. T
hy by L
where ¥ = Coefficient of draught
p = Coelficient of spread
M\ = Coefficient of elongation
and hy = hy = Ah, is referred to as the

absolute draught

Other geometrical and trigonometrical definitions and relations

shown in Figure 1 are:

1y = Projected arc of contact between rolls and
metal
¢ = Chord of the arc of contact

h5 = The height of bar at the neutral point, to

be elaborated later
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6 = The rolling angle, as defined by the roll centre,
the neutral point and the point of exit of the
bar from the rolls

X = The angle of bite, as defined by the roll centre,
the point of entry of the bar into the rolls and
the point of exit of the bar from the rolls.

From these, the following trigonometric relation can be

established:

hy - h
R Cosa¢= R - 12
2
h, - h
or: 1 ~Cosex = i
2 R

Thus, the formula for the angle of bite is found as:

hy - h
1- 1~ 2 _ ; _ Ah_ . .2.1-2

2R D

Cos

The projected arc of contact between the metal and the rolls

is calculated from the geometrical relatibnship:

2
h, - h
1§ - R2 -[R--_-L——z_]
2
) 2 7
hence 1, - IR -(R-_&) = [RAR - (AR
' 2 4

eeeee 2.123
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When Ah <0.08 R, which is generally the case in actual
rolling operations, we can make the following assumption

involving an error of approximately 1%: (2)

1, = [R.Ah S ceeee2.1-4

This simplification also leads to another expression for the

angle of bite, viz.,

1, = RSinxx ,

hence  Sine . ld  _fhe - awZ/a _ Jrab [an
R R R VR

When & is small and expressed in radians, one can make the

assumption of:

q -l Ah -.coqo’2-l"’5

2.2 INTER-RELATIONSHIP BETWEEN DRAUGHT,
ELONGATION AND SPREAD IN HOT ROLLING

As mcationed before, the increment in the width of a
bar after passage through a pair of rolls, is called spfead.
Figure 2 shows the phenomenon of spread, as represented by
the projected contact area of o narrow bar and a wide bar.
In the case of hot rolling of wide bar, as with wide sheet

and strip, it is found that the spread is negligibly small.

- e e et ¢
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This may be explained by the fact that when the metal is
compressed between the cylindrical rolls, the effective total
frictional resistance to metal flow in the transverse direction
is much greater than that in the direction of rolling; thus,
the bar is encouraged to elongate in the direction of rolling.
On the other hand, in the case of a narrow bar, this resistance
to flow is lower and the stock thus spreads in the lateral

direction as well as elongates.

The amount of spread that a given bar will have, is (22)
influenced by several parameters; such as draught, temperature,
rolling speed, the entering cross-sectional contour, the
manner of presenting the bar to the rolls, the shape of the
roll pass (or groove), the type of steel, the ratio of bar
diameter to the roll diameter, condition of roll and metal
surface, etc. The importance of accurate prediction of

spread under a given set of conditioﬁs cannot be over-
emphasized, particularly in the rolling of structural sections
and merchant bar shapes such as rounds, squares, flats,
hexagons, half-rounds, etc. There have been several formulae
evolved by different researchers and mill operators. For
unrestricted spread in the rolling of hot metal between plain

cylindrical rolls, Siebel has derived the following formula:

= M . Ah 1 - M . Ah / RAD where
. T h '
’00.50202—]
Ab = spread
Ah = absolute draught = hy - h2 (16)
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hy = ingoing thickness
R = roll radius
M = an empirical coefficient = 0.35 for steel,

0.33 for lead, 0.36 for copper and 0.45 for

aluminium

Tselikov's research led to the publication of this

formula ( 2):

Al Y
"»(1._-‘5::—)(]—; 1)] Cerei2.2-2

Here, b
1
C2 2 ——— and varies from 0.5 to 1.0
,,R . Ah
f = coefficient of friction between the metal and the
rolls
r =__Al

hy

Several other formulae are also available from other authors

( 2).

Wusatowski's investigation (22) into the phenomenon of spread
take into account not only the draught on the metal and other
related factors, but attempts to correlate the coefficients

of draught, elongation and spread. As these three phenomena
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occur simultaneously in any plastic working process, (23)
including rolling, his approach may be considered to be the
closest to the actual physical phenomena. From the condition

of constant volume, it follows that

x‘l = x2 - eoecoce = xn
Eg. x ..t.,_g. x .1_2 = 1
hy by 4

Wusatowski introduces two additional factors, to take into
account the initial shape of the rolled stock and the manner

in which it is introduced in the pass, viz.,

A form factor: $
w

b
hy
and a roll factor : €w — ﬁ
' D

The inter-relationship between draught, spread and elongation

is then found in the form

P - K-w 00-0'2.2-3
| 0.56.8
where - W = -10-1°269€w ¥ oeeed2.2-4
From the relation J. ﬁ.) = 1, the expression for coefficient
of elongation is obtained as
> = y-(1-W) . eee.2.2-5
Also, we get ﬁ = )\W/(I-W) ceeed2.2-6

The graphical relation between éw, € W W ? , 8 & A

are shown in Figure 3.
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To obtain a greater accuracy in the relationship between
draught, spread and elongation, additional correction factors
are introduced as follows: (23)
B = a.q.d.f. X veeea2.2-7
a; = correction factor depending on practical
temperature of rolling steel
¢y = correction factor depending on rolling speed

d
i

correction factor depending on grade of steel

correction factor depending on type of rolls

and their surface condition.,

Formulae and experimentally determined values for the

correction factors have also been established:

1.005 for 750°C T < 900°C

a, =

= 1 for Ty 950°C
¢ = (0.002958 + 0.00341¥) v + 1.07168 - 0.10431 ¥,

where § = coefficient of draught
v = rolling speed in metres/second

f, = 1.020 for cast iron and rough steel rolls

= 1.000 for chilled and smooth steel rolls

= 0.98 for ground steel rolls
d = experimentally determined values tabulated for

various grades of steels, varying from 0.99741

to 1.02719
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2.3 FRICTiON, BITE, NEUTRAL ANGLE
AND FORWARD SLIP:

With the exception of cold rolling with strip tension,
it must be said that external friction, or the friction
between the surface of the rolls and the material rolled, is
the fundamental factor in the reduction of material by |
rolling; it is the force which draws the material between
the rolls, and is what marks the basic distinction between
rolling and drawing. Friction greatly affects the magnitude
and distribution of the pressure acting between the rolls
and the material, and consequently, affects the power required
for the reduction of the material. It also controls the
amount of reduction that is possible to take. Generally
speaking, the higher the coefficient of friction, the greater
is the possible draught. Depending on the conditions under
which the metal is introduced into the roll gap, two situations
can occur:

a) The metal is gripped by the rolls and pulled

along into the roll gap.
b) The metal slips over the roll surface, is not

gripped and rolling does not take place.

The two conditions, as mentioned above, are illustrated in
Figure 4. The magnitude of the frictional force depends on
the conditions of the surfaces in contact and increases with
increasing roughness, on {he relative velocity between the
rolls and the roll pressure exer ted. Referring to Figure 4,

the following conditions may be elaborated:
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Where f

-19-

Pressure exerted by metal on rolls = Pressure
exerted by rolls on metal

Frictional force arising due to this roll
pressure

Vertical component of roll pressure Pr tending
to compress stock

Horizontal component of roll pressure PR tending
to eject stock from the rolls

Vertical component of frictional force F, tending
to compress stock

Horizontal component of frictional force F,

tending to draw the metal into the rolls

= f . PR 0.000203"']

coefficient of friction = tanf , where P

is the angle of friction.

Also, Ph

Fh

- PRSin"( eee12.3=-2

F COS“ 0000‘203"3

For a condition of equilibrium, the algebraic sum of

horizontal forces pulling and rejecting the metal must be

equal to zero, i.e.,

or

hence

Ph + Fh = 0 ceeee2.3-4
-PR SindA = F Cose
= f PRCos°<
f = _Sin0< = tanX ... 2.3-5

Cos o
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We thus find that, at the limiting condition, when the
forces tending to pull the material into the rolls are equal

to those tending to eject it, o is given by:

tanoX = tan e

fo= max
hence, o&ux = F + which is the condition of the maximum
Qngle Of bi'te. | » 00000213-6

The following conclusions may be drawn from the above (2)
considerations:
a) the rolls bite and rolling commences when the
angle of contact at entry is less than or equal

to the friction angle, ie.,.when O<<P

ck

b) free entry and rolling takes place within
limits
0 {ex (P
c) As shown in Figure 5, the angle of the resultant
'roli force K moves to a position that is equal
to about &2 .Thus, it is theoretically possible,once
rolling has commenced, to further reduce the roll
gap and have a contact angle = 2 f . Thus,
after biting and filling the roll gap, free rolling
can take place within the theoretical limits:
oL xg 2P
We now introduce the concept of the "Neutral Angle". As
is apparent from the mechanism of bite, the rolled stock
enters the roll gap with a speed less than the peripheral
speed of the rolls. On the other hand,
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by means of a simple experiment, it can be shown thot the
exit speed of stock is greater than the peripheral speed of
rolls. If transverse grooves are cut on the surface of the
roll and the linear distance between these grooves is
measured accurately, it will be found that the distance
between ridges on the emerging rolled stock is greater than
that between the grooves on the roll, i.e., the stock is
leaving the rolls at a faster velocity than the peripheral

speed of the rolls.

Thus, considering the velocity of the stock at entry and
exit, it is concluded that there is a point somewhere in the
arc of contact, where the speed of the stock is equal to the
horizontal component of the peripheral speed of the rolls.
This point defines the "Neutral" point or plane and also the
"Neutral Angle". At the neutral plane, furthermore, the
frictional forces, between the rolls and the bar, change

direction. The above phenomenon is shown in Figure 6.

This postulation of the nevtral point involves the assumption
that plane vertical sections of the bar remain plane during
rolling, that is, the rolls slip on the bar everywhere

except at the neutral point and also that the radial roll
pressure is constant along the arc of contact. Thus, from
the point of entry to the neutral point, the peripheral

speed of the rolls is greater than the bar, while from the

neutral point to the point of exit, the reverse is true.
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We shall later discuss, in the treatment of some theories

of rolling, some considerations used to evaluate the neutral
angle when the assumptions of slipping friction, homogeneous
compression and plane sections are not made. If the product
of the coefficient of friction and the radial roll pressure
equals or exceeds the yield stress in shear of the material,
then in the region of the arc of contact in which this
condition holds, the surface of the bar and the roll surface
will move together without slipping, and the neutral point
becomes a neutral zone of "sticking". It has also been
found that, in general, the radial roll pressure is not
constant, but increases from the plane of entry to a maximum
value somewhere along the arc of contact, and then decreases

to zero towards the plane of exit.

An expression is first derived for the no-slip angle,

making the simple assumptions of uniform pressure distribution
and constant coefficient of friction. As seen in Figure 7,

if & is the angle of contact and & is the angle between

the radius to the neutral point and the line of roll
centres, then the angle § is defined as the "no-slip" angle
and is determined from the condition of equilibrium of the
horizontal components for the slipping friction. This

condition may be written as:

. cere.2.3-7
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If P is the friction angle, i.e., f = tunf> and © is the
angle between the radius to any point on the arc of contact

and the line joining the roll centres, then we get from

Figure 7,

of S

> K Cos(90°-p+ ©) = S K Cos(90°-p -0 )

é °
Since K= P2 + F2 where P, = Rd© d

=/ PR ’ R =Py X an
F=+¢Ff. PR
p..Rdé
We have |<=|-=§+F2xr - P [1+f% . p_ . RO
PR ‘
% 5

then, fsm(?..e)de = fsn(he) dé , as f, p_ and R

8 , (]
are assumed to be constant.
After integration, we get:

Sin& = Cos(? —“) = COSF 000-0203-8
2 Sinp
This may also be written as
Sind - Sin« _ Sin? of 2, or when « and & are
2 f
small and expressed in radiuns} 6 = % -1 (Zi)z teeee2.3-9
2 f\ 2
We also know that gip & = li - [Ah
R R

Thus we may obtain the following approximate form for the

no-slip angle:

D

xOh oy where

2

s - i

-+ |+

N
o
(w)

ve...2.3-10
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D is the roll diameter and & is again in radians.

The formula shown on the previous page was derived by (4)
Ekelund and, as mentioned earlier, is based on the assumptions
that the radial roll pressure p_ is uniform along the arc

of contact and the coefficient of external friction f is
constant. It may be concluded that the formula is accurate

only when the draught is small compared to the bar thickness.

The importance and role of "forward slip" is now introduced.
As mentioned in the discussion on NeutralAAngle, the material
emerges from the roll gap at a velocity greater than the
peripheral speed of the rolls. Forward slip is defined as

equal to !2_:_!__: where V, is the velocity of the material
v

and v is the peripheral speed of the rolls. Forward slip
is perhaps the most obvious and easily measured manifestation
of external friction between rolls and stock, which, while
being the most important phenomenon in the rolling process,
is incapable of accurate determination. It is known that
the manner in which the coefficient of friction changes from
point to point along the arc of contact, has considerable
effects on the magnitude and nature of pressure distribution
between the roll and material, and hence on the power
consumption of the mill. The direct measurement and
evaluation of forward slip from rolling tests, offer a
valuable tool in the verification of theories involving the

behaviour of frictional forces and roll pressure distribution.
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FIGURE 8 : Ekelund's derivation of forward slip (4)
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Ekelund (4) deduced an expression for forward slip in terms
of the no-slip angle based on the assumptions that initially
plane vertical sections of the bar remain plane during
rolling, that the density of the bar is constant, that
lateral spread is negligible and that the rolls are rigid

and no flattening takes place. Referring to Figure 8,

Vi = Velocity of the bar entering the rolls

Vo = Velocity of the bar leaving the rolls

Vg = Horizontal velocity of the bar in the plane
of the neutral point .

v = The peripheral velocity of the rolls

On the assumption of plane sections of the bar, the velocity
V], V2 and Vg will be uniform throughout the thickness of
the bar, at these planes.

Now’ v6 = v COS 6 » ) o-.o¢203-]]
and from the condition of constant density,

From Figure 8, h6 = h2 + 2R(1~Cos é ) ceeee2.3-12

Thus, V2 = _1 . vCosé h2 + D(1-Cos &)
. h2

As earlier defined,
V2.-.V

Forward Slip
v

From the above, the following relation is obtained:

Forward Slip = (1 - Coséd) . [D Cosé - } eee2.3-13

hy
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When &§ is expressed in radians, an approximate form of this

expression may also be written as:

2

Forward Slip = L1.0+|2 - . ...2.3-14
2 h,

Ekelund had conducted a series of rolling tests with rolls
of various diameters and with bars having initial thickness
ranging from 7.87" down to 0.47", width from 9" to 2" and

at rolling temperatures of 1500°F to 2000°F, in order to

- examine the validity of the above formula on Forward Slip.
The tests were carried out on a 2-HI slabbing mill

and the exit velocity V, of the bar was found by noting the
time taken by the bar to traverse a known distance marked out
on the runout table, while the peripheral velocity of the
ro!;s was determincd by mccns of a revolution counter weld
against the roll surface. From these measurements the value
of *the Forward Slip could then be caléuluted by means of the
defined relation of Forward Slip = Vo _ vV . The tests

v

were carried out at a low rolling speed. The theoretical
values for Forward Slip were calculated in the following
steps: (a) Coefficient of friction f was calculated from
an empirical relation deduced by Ekelund, (b) The no-slip
angle $ was determined, using this.value of f, (c) The
calculated value of § was inserted into the expression for
Forward Slip given eérlier. The experimental and calculated
data are as given in Table 1. Considering the nature of
calculation and the doubt that is always associated with the

correct value of f to be selected in any given case of rolling,

(¥
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the agreement between experimental and calculated values is
satisfactory. However, divergence appears to be noticed
mostly in the results with thicker bars. This may be due
to the fact that the assumption that plane sections remain
plane during rolling is farther from the truth for thick

than for thin bars.

For the case ofvrolling where lateral spread is not negligible,

Ekelund's formula for Forward Slip takes for form:

2
Forward 35lip =.':‘_.(‘|.|._D_)C056 _b D Cosé_1
b h b h
2 2 2 2
where b and b2 are the widths of the bar at the neutral

point and at exit respectively.

Several experiments were carried out by different researchers,
to find the effect of various factors on Forward Slip. The
effect of steel composition and rolling temperature were
investigated by G. Weddige. He found that at a rolling (26)
temperature of 685°C, the difference in Forward Slip exhibited
by the various steels was very slight and that Forward Slip
decreased as the temperature rose. At proper rolling
temperatures, around lZOOOC, non-scaling high alloy Ni-Cr
steels exhibit very low Forward Slip (of the order of 1%),
while the low carbon steels exhibit higher slip, of the

order of 3%. This may be explained by the fact that carbon
steels produce larger quantities of scale than alloy steels

and thus we have more a case of friction between steel on
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scale rather than steel on steel. Figure 9 shows the
behaviour of Forward Slip as determined for different steels

at various temperatures, under a constant reduction of 30%.

Weddige also carried out tests to determine the behaviour
of Forward Slip in steels of different compositions with
increasing percentage reduction, at a constant rolling
temperature. As shown in Figure 10, it was found that the
Forward Slip rises directly and proportionately with the
reduction per pdss; also, lower carbon steels have

substantially higher forward slips than the high-alloy steels.

Other experimental findings regarding the influence on
Forward Slip of factors such as roll diameter, width of stock,

external friction and rolling speed are shown in Figures

11-14,

2.4 FLOW OF METAL IN ROLLING:

The first attempt to investigate the flow of metal
during rolling was carried out in 1883 by A. Hollenberg, (29)
using flat hot-rolled wrought-iron bars. A se;ies of holes
were drilled in the bar, perpendicular to the surfaces that
would come in contact with the rolls. The holes were then
fillgd with wrought-iron plugs. Subsequently, the bar was
heated, fed into the rolls and the mill stopped after partial
rolling had beeh done. After removal of the bar from the
rolls, a longitudinal section was made, in the direction of

rolling to examine the deformed shape of the plugs.
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The test revealed that the plugs had curved in the direction
opposite to that of the movement of the bar, indicating a
flow of material in the inner portions of the bar relative

to the surface in a backward direction.

Further tests were devised by subsequent researchers to prove
the effect of elongation, spread and slip of the rolls with
respect to the rolled stock. Ekelund carried out a series of
tests on soft carbon steel rectangular bars which had been(4)
covered by a grid of shallow V-shaped grooves, equally spaced
longitudinally and transversely at a distance of 30 mm. The
bars were rolled at temperatures of 1740°F and 2010°F between
plain rolls of a 28-inch two-high reversing mill. Figure 15
a, b, ¢, d and e show the appearance and dimensions of the
bars before and after rolling. It was observed that the
vertical grooves on the sides of the bar in the region of
contact show a backward bend with respect to the direction

of rolling, this tendency originating at the beginning of

the pressure zone, increasing up to a certain point, and then
decreases as the bar is forced towards the plane of exit.
Bending of the vertical lines was found to commence before
the bar entered the rolls, reaches a maximum at the neutral
point and decreases somewhat up to the exit plane. Regarding
the behaviour of the horizontal surfaces, the tests indicated
that the rectangular network of grooves before rolling
remains rectangular after rolling, but the distance between
the longitudinal iines increases during rolling, the

increases in distance between the several lines being
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approximately the same near the edge of the bar as near the
centre. This distance between the longitudinal lines was
found to increase with higher reductions, understandably, due

to spread.

On the basis of Ekelund's tests and investigations by others,
it is possible to make the following conclusions: In
general, straight lines on the sides of the bar, perpendicular
to the direction of rdlling, do not remain straight during
or after rolling, but become curved backward, as compared

to the direction of rolling. This applies particularly to
flat product. This, then, refutes the previous assumption

of plane vertical sections remaining plane during rolling.
Material within the bar tends to lag behind that on the
roiled surfaces. 'Straight lines marked-across the rolled
surface, at right angles to the direction of rolling, remain
approximately straight after rolling. This leads to the
conclusion that material flows forward at en equal speed at

all points from the edge to the centre of the bar. (3)

Refutation of the assumption, of plane vertical sections
remaining plane during rolling, leads to the conclusion that
internal slip occurs within the material at the same time
that external slip occurs between the rolls and the bar.

The existence of this internal slip shows that there is a
definite possibility that the "neutral point", as described
earlier, is really a neutral or no-slip "zone". Deformation
of this nature is defined as "inhomogeneous". Orowan (10)

conducted a classical experiment of rolling specially prepared
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laminated plasticine bars through wooden rolls. The coeffi-
cient of friction between the wooden rolls and the plasticine
bars being of the order of 1, a value much higher than in any
case of practical rolling, one would expect to see a much
exaggerated departure, in the behaviour of the stock, from
the hypothetical assumption of homogeneous compression as
discussed earlier. The shape of the laminated plastic bars,
as shown in Figure 16, clearly bear this out, as the initially
plane vertical sections become markedly curved in a direction
opposed to that of rolling. It can also be observed that the
extension of the surface of the bar takes place mainly near
the plane of entry, whilé for a large part of the remainder
of the arc of contact, the distances between the ends of the
lominae remain approximutély the same, indicating that little
or no slip takes place here. It may also be observed that,
at the plane of entry, the deformation is localised near the
surface of the bar, with no deformation at the centre; while
as the material passes between the rolls, the deformation
penetrates deeper into the bar. This may be interpreted as
proof of the existence of a non-plastic region in the plane
of entry. Figure 17 indicates the non-plastic region at
entry, as readily deducible from the deformation pattern of
the laminated plasticine bar shown in Figure 16. As
discussed later, there are also two wedge-shaped regions

of non-plasticity near the middle of the arc of contact
similar in character to slip-cones noted in parallel-plate
compression of cylinders, etc. Another region of non-

plasticity, though not proven by tests, is deduced to exist
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at the plane of exit. As shown in Figure 17, the unshaded
portion of the diagram represents the zones of plastic
deformation, while the shaded portion represents the non-
plastic areas. The boundary between the plastic and non-
plastic regions runs along the slip-lines which, in the ideal
case where the material has a sharp yield point and suffers
no work-hardening, are approximately cycloid at the plane of

entry.

2.5 PLASTIC DEFORMATION IN ROLLING

FACTORS AFFECTING YIELD STRESS

2.5.1 CRITERIA FOR PLASTIC YIELDING

Rolling is a process of plastic deformation and
achieves its objecl by subjecting the material to forces
of such magnitude that the resulting stresses produce perma-
nent change of shape. A typical stress-strain curve for, say,
mild steel at room temperature, would show that the strain
or extension of unit length of the specimen under test is
extremely small until a stress of the order of 62000 p.s.di.
is reached, after which a further increase of stress produces
a propértionafely much greater strain. This point which is
the yield point is sharply defined for steel, and does not
necessarily exist for several other ductile materials such as

copper alloy in the fully annealed condition.

The forces which act between the rolls and the material are
complex. Reduced to their simplest form aﬁd with the

assumptions of homogeneous compression and neglecting the
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effect of shearing forces on the yield of the muteiiul, these
forces may be represented by vertical pressures, horizontal
pressures which act with and against the direction of rolling
and are induced by friction, and lateral pressures which
restrict flow in the direction of the roll axes. With these
simplifications, any element of the material between the
rolls may be considered as being acted upon by three mutually

perpendicular stresses, all compressive.

To determine the conditions under which a body will yield.
under the action of external forces, i.e., tc determine the
"Criteria for Yielding", various theories have been offered.
One of these theories st&tes that yielding occurs when the
"maximum principal stress" S reaches a certain value.
Another theory states that yielding occurs when the "maximum
principal strain" reaches a certain value, while a third
theory states that the governing factor is the energy of
deformation. However, these theories all fail when applied
to material subjected fo hydrostatic pressure as, according
to them, the material should yield under this condition,
whereas experiment has shown the contrary. The "Maximum
Shear Stress Theory", which does not have the above flaw,
states that the intermediate principal stress 52 has no
influence whatsoever on yielding and that the material yields
plastically when the maximum shear stress in the material
reaches the yield stress in shear. Under these conditions,
we get the criteria for yielding according to the theory, as

$1 - 33
T max = L = Constant = Yield stress in shear



44

It follows from this theory that permanent deformation should
take place in the planes of maximum shear, which are at 45°

to the maximum and minimum principal stresses 1 and 53.

This theory gives a better approximation to the yielding

of metal in plastic deformation than the previous two
theories. However, it has been proved experimentally that
the intermediate principal stress 52 does have an infldence
on the yield strength of the material, and cannot be
neglected. Most theories of rolling are based on the theory
of Maximum Strain Energy which offers one of the most recent

explanations of plastic deformation.

The Von Mises-Hencky Theory (32) of "Maximum Shear Strain
Energy" gives an expression for the condition of plasticity
in which the intermediate principal stress 52 has a definite
effect on yielding and this has been proved by experiment.
The criterion of yielding, as defined by his theory, can be
deduced as follows:
‘If we consider a point P in a body, having

principal stresses S], 52 and 53 and if P

is visually represented by rectangular co-ordinates

S], 52 and 53, then the totality of the points P,

representing different states of stress in the

body and at the point of yielding, would, according

to Nadai, form a surface which is referred to as the (18)

“limiting surface of yielding". Nadai further showed
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that this surface, as would be derived by the Maximum Shear
Stress Theory of Yielding”, is a regular hexagonal prism
whose axis mokés equal angles with the three co-ordinate
axes. Thus the limiting surface of yield, by the Maximum
Shear Stress Theory, consists of six different planes in the
stress space. The discontinuities revealed by this theory
were eliminated by Von Mises who assumed an expression for a

continvous surface: (33)

(S] - 52)2 + (32 - 53)2 + (53 - 51)2 = 8k 2 = a constant,

which represents a circular cylinder circumscribed about the

regular hexagonal prism of the maximum shear stress theory.

Now, the elastic stroin'énergy per unit volume of a material
subjected to the action of the principal stresses S], S

2
and 53 is:

v o= _1_[_1_ (s]+52+s3)2+L{(31-52)2+
2

9Kpg 6CR
(s, - 53)2 + (sS4 - 51)2} ceeea2.5.1-1
where Kg ; Bulk modulus = __E
_ 3(1 - 2)
Cp = Modulus of Rigidity = 2_(1%5—)
E = Young's Modulus

Q
3
Q.
&
n

Poisson's ratio for the material.



-46~

If Kg is assumed infinite, then :

v = 1 [(s] - é2)2 + (52 - 53)2 + (53 - s] )2

12CR 101002.501-2
Thus (s, - 502 + (5, - 5502 + (55 - s;)? =
2
v x 12Cp = 8k = Constant

by the Von Mises-Hencky criterion for plastic yielding.

To find the Constant, we consider the case of pure tension

for which 52 = 53 =0

Then v x 12 G = 2 ;2

If S, is the yield stress in tension, than at the time of

yielding, S; =S andux 126; =2 so2

Thus the Von Mises-Hencky criterion for plastic yielding is

2
(5y - 5,02 + (5, - 53)2 + (sS4 - s)2 = 2%

....02-5.]-3
assuming S-l } S2 > 53.

Now, if we are to assume a plane state of strain, i.e.,
for rolling conditions without spread, the lateral strain
52 is zero, and, we obtain the magnitude of the average stress

for the plastic range of the materiol:

' + S
€, -1 _.ls,- 320 o o
E 2

Hence Sl + S3
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By substituting this in the Von Mises-Hencky equation, the

first boundary condition is obtained:

Y

2. s,
J3

or S] - 53 10155 so = S ...,.2.5.]’—4

The Constant S is termed by Nadai as the "Constrained Yield
Strength" for tension since it is the tensile stress in a

bar which is allowed to contract freely in one of the lateral
directions, while it is constrained against deformation in

the other lateral direction.

The factors which affect yield stress vary with cold or

hot rolling. In cold rolling, the chief factors which
influence the yield stress are the nature of the material,
the amount of cold reduction, or the deformation work which
has been applied to the material before it is rolled in the
pass considered, i.e. the amount of work-hardening the
material has undergone before the pass, the extra amount

of work-hardening that occurs during the pass and the nature
of the deformation, either homogeneous or inhomogeneous. In
cold rolling, the strain rate, or the rate at which the
deformation takes place is a minor factor, usually of little
importance. In.hot rolling, the chief factors influencing
the yield stress are the nature of the material, the tempera-

ture at which the material is rolled and the strain rate, i.e.
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the rate of deformation. When the working temperature is only
slightly hlgher than the temperature of recrystallisation,

the speed of recrystallisation and grain growth in the hot
metal is usually so slow that the deformed structure is
maintained to the next pass. This results in partial

strain-hardening of metal, similar to that occurring in cold

working.

2.5.2 "YIELD STRESS IN HOT ROLLING

The accurate determination of yield stress in hot |
rolling is a difficult Proposition, as it depends on material
composition, temperature of rolling aond strain rate. The last
two criteria pose the biggest problems for any accurate and
meaningful calculations to be made and most researchers have
been forced to make different degrees of approximation in the
prediction of temperature and true strain rate in the rolling
operation. Several methods of testing have been evolved, in
an effort to determine the yield stress under laboratoryr‘
conditions approximating the actual working process during
hot rolling: (7)

a) Tension testing which is more conveniently carried
out at or below room temperatures, but fails to be
suitable for testing hot material. The reasons for
these are that 1) necking and fracture do not allow
sufficiently large strain rates, opproxlmatlng the
rolling process, to be applied, and 2) the tensile

tester is incapable of applying a high enough strain

rate. The normal tester has a maximum strain rate
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of about 10-1 sec-1, i.e., about 10% per second,

while strain rates during rolling operations can

go as high as 10° sec_].

Compression testing of hot specimens is more
suitable, since the stress system is closer to
those found in deformation processes and basic
instabilities of tension testing, such as necking
do not occur. It is possible to aetermine the
complete true stress-true-strain curve, however,
the friction between the specimen and the anvils
can lead to erroneous results, caused by barreling

of the cylindrical test specimen at the mid-section.

To obtain plane strain deformation, a narrow band
across a wide strip is compressed by means of (Fig.18)
platens, which are wider than the strip specimen.
Fairly high strains, up to 2.3, have been attained
by this method. The constraints of the undeformed
shoulders on both sides of this platen prevent
extension parallel to the long dimensions of the
platens. The result is a groove and extension
normal to the long dimension of the platen,
approximating the conditions in flat rolling, which
is also a form of plane strain compression. In this
test also, if lubrication between platen surface

is insufficient, a dead zone will form in the

specimen next to the face of each platen, and the
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effect of friction will increase with increasing

reduction.

The Cam Plastometer: For strain rates between (43)
1 sec—] to lO3 sec-], applicable to rolling
conditions, the Cam Plastometer is eminently suited
for compression testing. The equipment, originally
developed by the British Iron and Steel Research
Association (B.I.S.R.A.), consists of platens which
are driven together by a cam whose radius increases
with the angle of rotation, so that a constant
strain rate can be maintained through the
deformation period. With the specimen inserted
between.the anvils, the test is carried out by
inserting a block, called the cam follower, between
the movable anvil and the rotating cam at the
instant the minimum radius of the cam is opposite
the anvil. After compression is done, the cam
follower is withdrawn with equal rapidity, both
these actions being performed by fast-acting
pneumatic cylinders. The cam driveshaft is driven
by an oversized motor and flywheel, to maintain
constant angular speed during compression.
Different strain rates can be obtained by changing
the speed of the drive motor. The cam plastometer
produces the deformation defined by the cam in a

single operation. The strain rate profile of a
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particular process can be reproduced with the proper
cam contour. The stress can be measured by a load
cell on the fixed anvil. The strain is defined

by the cam, with allowance for elastic distortion.
The strain, strain rate and uniformity of strain

are observed for room temperature experiments by the
high-speed photography of specimens marked with a
gridwork. The cam plastometer was extensively

used by Cook & McCrum in the B.I.S.R.A. experiments
to determine specific rolling properties of different
grades of steel under varying conditions of rolling.
Their results were widely utilised through the
B.I.S.R.A. publication, "The Calculation of Loads

& Torques in Hot Flat Rolling". (15)

The Hot Torsion Test: This test, which consists
of twisting a specimen with a heated gauge section,
is capable of producing strains of the order of
20. The shear stresses and strains as measured,
are converted to equivalent tensile stresses and
strains by the Von Mises criterion. The torsion
flow curves are found to be almost identical to
tension or compression flow curves for the same
strain rate and temperature. The difficulties
with fhe hot torsion test arise from the variation
in the axis to the surface strain and strain rate,

and the influence on the ductility of a shear-to-
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normal stress ratio of unity,'which is much hkigher
than that commonly found in forming operations.
When a solid cylinder is twisted, the strain and
stress rate vary from zero at the axis to a
maximum at the surface. This variation gives rise
to problems of interpretation because the surface
wo;k-hurdens more than the core and the mechanism
of deformation may also be different from that in
rolling operations. However, correction factors
can be introduced into calculations with hot tension
test data, to arrive at more meaningful figures.
In torsion testing, the strain rate is altered by
changing the rate of rotation. It is possible to

3

achieve strain rates from 107 to 10 sec-1 by this

test.

The Plane-Strain Drop Test: This test was developed
bylA.S. Weinstein and A. Matsufuji as part of an (8)
A.I1.5.E. (Association of Iron and Steel Engineers)
research program. The plane-strain drop test appears
to be the most promising among all the hot~testing
methods, for the prediction of resistance to

deformation of metal, mill loads and torques.

Since its issue in 1958, the B.I.S.R.A. publication
of Cook and McCrum's "The Calculation of Loads and
Torques in Hot Flat Rolling", has been most widely
used for calculation to predict mill forces and

torques.
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After the publication of the'B.I.S.R.A. results
using the Cam Plastometer, and their wide usage,

it became apparent that reliable prediction of
rolling torques was not always possible, particular-
ly for rolling conditions of high average strain
rate and large reductions. This deficiency was
shown very clearly by Dahl who compared resistance
to deformation figures, calculated from actual (45)
rolling mill tests, with the B.I.S.R.A. figures,
and found large variations. Generally, he found
that the B.I.S.R.A. data underestimated the defor-
mation resistance at higher values of mean strain
rate and reduction. Weinstein and Matsufuji argued
that this divergence could be explained by the fact
that in addition to the approximations inherent

in basic theory, there were two additional
assumptions which had to be made in order to use
the deformation resistance obtained from uniaxial
compression tests at constant strain rate, in the
theory of hot flat rolling: (a) the deformation
process occurring in flat rolling is very nearly
one of plane strain and not uniaxial compression,
Thus it was necessary to assume that the theory,
relating the deformation resistance in uniaxial
compréssion to that in plane-strain compression,
was valid. This has been demonstrated for cold

deformation of steel at low strain rates, however,
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it has not been verified for hot deformation at
high strain rates. (b)" Furthermore, the B.I.S.R.A.
data were obtained by compressing cylindrical
specimens at constant strain rate. As is well
known, the strain rate, within the contact arc
during rolling, varies significantly. Typically,
the maximum strain rate occurs near the entry of
the contact arc and is of the order of twice the
mean value for the process, while decreasing to
zero at the exit plane. Thus, to use the constant
strain rate data in the rolling model, it was also
necessary to assume that the characteristic behaviour
of the deformation resistance du;ing rolling varied
with overall changes in reduction and mean strain
rate in the same way as that observed from the
constant strain rate tests on the cam plastometer.
It was tentatively concluded that the most likely
cause of the disagreement between hot rolling theory
and experiment was due primarily to the use of
constant strain rate, uniaxial compression test
data to simulate the plain strain, variable strain
rate behaviour of metal occurring in the actual

hot rolling process.

Weinstein and Mastufuji devised and built a drop hammer (Fig.19)
to carry out the plane-strain drop test. By adjusting the
amount of weight and the distance through which it was dropped,

they obtained varying reductions and mean strain rates



56~

on I" and 1" thick samples of hot steel, through indenters
of ‘1" and 1" width, by 6" inch length. The test pieces
3" x 4" x 4" and " x 4" x 4", Figure 20 shows one of th;
many curves that were drawn by Weinstein and Matsufuji in
their comparison of variable and constant strain rate
deformations. The first observation to be made is the
distinctly different local behaviour of the plane-strain
stress curves compared to that of uniaxial compression. The
stress level in plane-strain compression reaches a peak
value very soon after the beginning of deformation and then
continually decreases to the end of the process. The second
point to be noted is the contrast in the behaviour of the
mean stress levels, in relation to different amounts of

" reductions.

There was a considerable amount of work done by these two
researchers, in trying to explain the differences between
the B.I.S5.R.A. data and values deduced from actual rolling
experiments. Although their drop test results showed better
qualitative agreement with the rolling tests, there were
discrepancies in the magnitude of the deformation resistance.
The drop test also showed that the stress-strain curve for
steel at high temperatures has a different character for
different reductions, even though the mean strain rate is
kept constant. This effect is not revealed by the uniaxial
constant strain-rate tests. Furthermore, it was found that
the mean stress, as determined from a drop-test, is more

sensitive to differences in mean strain rate but is less
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sensitive to differences in reduction than given by the

uxiaxial constant strain-rate tests.

Weinstein and Matsufuji, in spite of their pioneering work
in the evaluation of deformation resistance, could not
explain the discrepancy between their results and those of
Dahl's rolling tests, whereby values were calculated from
actual observed values of load and torques in a rolling

operation,

2.5.3 MEAN STRAIN RATE IN ROLLING

In the determination of yield stress and deformation
resistance, it is thus evident that, in the usage of the
various available curves and monograms put out by B.I.S.R.A.
and other researchers, one of the first steps is to determine
the mean strain rate that applies to the rolling process
being considered. There is quite a diversity of formulae

put out by various workers.

Very basically, the mean strain rate undergone by a material

during any deformation process is defined as:

€
qm = e—— ..0..2-5'3-1
to
where am = the mean strain rate (]/sec.)
€ = the logarithmic strain of the
material (ln/in;)
to = the total time taken to achieve

the strain (sec.)
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To relate this expression to the rolling process, the time
that an element of the material is in the roll gap, must
be calculated. By assuming the rolls to be rigid and that
the material assumes the tangential velocity of the roll at
only one point in the contact arc, the neutral point, the

mean strain rate can be shown  to be

W B () A [T« i)
60 h]+2h2 JT hy 1 - r

®e o8 020503—2

where N the roll speed (r.p.m.)

o
n

the strip thickness at the neutral point (in.)
hy, h2 = entry and exit strip thicknesses,

respectively (in.)

. hi = h
r = reduction = —l—F——g
1
R = the roll radius (in.)_

Except for the strip thickness at the neutral point, all
parameters in the above equation are known or can be calculated.
To obviate the problem of determining the thickness h6'

several different assumptions have been made by various
investigators. Among these are that the material has the

same tangential velocity as the roll throughout the contact

arc, or that the neutral point thickness is the average
thickness of the strip during reduction. Depending upon the
assumptions, there results g different expression for the

mean strain rate. For exam le, Sims' assumption of the (11)
p p



-60~

correspondance of material and roll velocities at every
point in the contact arc, i.e., an assumption of "sticking",

results in:

2TIN 1 R 1
qm - X ——— X — X ln ( )
60 VT hg 1 =1

LI I} -205.3"'3

Wusatowski's formula for mean strain rate in the case of

"sticking" is: (50)

2TN R

= X — X T .oc.-205¢3"‘4
m 60 hy

Still another formula, by Ford and Alexander, gives the
form:
"2TN

1 r
q = X e X (]+ _)00000205.3-5
m 60 Rh, 4

'2.5.4, EFFECT OF TEMPERATURE ON YIELD STRESS

As is to be expected, there is a marked reduction
of resistance to deformation with increase of temperature,
for the same rate of deformation. The yield stress for carbon
steels under hot working conditions can be calculated,
without taking into account the rate of deformation, i.e.,
under assumption of nearby static conditions of deformation,

by using the formula given by S. Ekelund:

S = (14 - 0.01 t) (1°4 + C'+ Mn + 0.3 Cr) Kg/mn?,
ceere2.5.4-1
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where t = temperature of steel in C
C = carbon content of steel, %
Mn = Manganese content of steel, % (max. 1%)
Cr = Chromium content of steel, %

This formula is applicable only for values of t above 700°C.

Certain steels show a "hump" in the resistance to deformation/
temperotufe curve near the temperature at which the steel
changes from o - structure to Y- structure. This (3)
phenomenon was noticed by Houdremont and Kallen. Figure 21
shows the change in deformation resistance with temperature,

as deduced with the Ekelund formula, for 0.22% C steel.

Geleji (51) considers the values obtained from the Ekelund
formula to be too high and has arrived at the following

formula for steels with C 0.6%, Si 0.5% and Mn 0.8%:

0.015 (1400 - t ) Kg /mm? erri2.5.4-2

The variation of yield stress at different temperatures

and strain-rates is shown in Figure 22.

2.5.5. YIELD STRESS IN COLD ROLLING

It has been stated before that the yield stress in
cold working dépends on the kind of metal, amount of cold
work or initial strain-hardening, strain-hardening during

the rolling pass being considered and, to a very small degree,
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the strain-rate of deformation. The yield-stress-percentage
reduction curve naturally depends on the material concerned.
In commercial testing practice, such diagrams are plotted

by calculating the stress at any elongation, or compression,
from the measured load and the original cross-sectional area
of the test specimen. For purposes of studying the relation-
ship between stress and strain under plastic conditions,

it is better to consider the actual reduced area in case of
tension or the actual enlarged area in the case of compression.
The stresses are termed "true stresses". Figure 23 shows
some true stress-strain curves obtained by tension tests for
some common metals. From this, it may be noted that not only
does the initial stres#, at which plastic flow commences,
vary widely for the different metals, but also that the
variation of resistance to deformation with increasing

strain is markedly different between the various metals.

Regarding the effect of strain-rate on the yield stress in
cold rolling, it has been found by accurate tests that, at
very low strain rates, there is an increase in the yield
stress of the material. Figure 24 shows the results of
tension tests on mild steel at strain rates varying from
.00003 sec™! to .074 sec-]. It will be observed that as
‘the strain rate increases, the initial yield point also
increases appreciably, but that after an extension of about

8%, the effect of strain-rate on yield stress is very much

reduced. In cold rolling, compression rates or strain rates
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rarely fall below 15 sec'1 and maybe up to 3,000 sec'], in
modern continuous strip mills. It may thus be inferred,
and this fact has been borne out by actual rolling tests,
that at the rates of strain prevalent in cold rolling,~the

effect of strain-rate variation is almost negligible.

There is, however, a major influence on yield stress in cold
rolling, brought about by work-hardening or strain-hardening.
It is a common property of most metals that cold plastic
deformation results in an increased yield stréngth. As is seen
from Figure 23, the true-stress increases with strain, for
most metals, with the exception of tin and lead which exhibit
almést no strain hardening. The British Iron and Steel
Research Association (B.I.S.R.A.) developed an indentation
test and published yield stress curves for different metals,
corresponding to measuring amounts of reductions from the
annealed condition of the metals. Figure 25 shows typical
curves for carbon steels. For rolling calculations, it is
necessary to evaluate a mean value of the yield stress during
the pass. It has been experimentally determined that the
yield stress at a total reduction r corresponding to 60%
of the reduction in the pass, can be taken as this mean.

This may be expressed as: (25)

60
100

[a]
u

where r = Initial reduction of strip from annealed
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condition, prior to pass being

. h, - h
considered = —1l—;——l
o
Iy = Reduction of strip from annealed condition,
' - h
after pass being considered = : 2
o

The initial and final yield stresses are read off the curves
in Figure 25, for values of 1 and Iy, and the mean yield

stress is computed thereafter.

2.6 SPECIFIC ROLL PRESSURE, ROLLING LOAD AND TORQUE

One of the first quantities that has to be determined
in any systematic procedure for mill design, is the specific
roll pressure and, from it, the rolling load, éorresponding
to the assumed data of material specifications, rolling
temperature, rolling speed, reduction in the pass, etc.
This, naturally, has been the prime objective of various
rolling mill researchers and experimentalists, leading to
several qualitatively-approximate theories and also empirical
formulae which are evolved and modified from actual rolling

mill tests.

The "rolling load" ( P) is defined as the vertical force
with which the rolls press on the stock, thus causing it to
reduce in height and cross-sectional area. It is also
referred to as the "separating force" in the mill. The
"mean specific roll pressure” (pr) by definition, is the

rolling load divided by the horizontally projected contact
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area between the rolls and the material being rolled. This
applies particularly in the case of hot rolling, where elastic
deformation or "flattening” of the roll surface is usually
negligible. As given earlier, the horizontal projection of
the arc contact, from which the area of contact is usually
contacted, is given by:

| (hy - hy)?
ld ‘..'\/;(h.l -hz) - __I___ 00-025-10

Hence mean specific roll pressure can be expressed as:

S 2
r =
bm X ld
where bm = mean width of the material between the rolls.

The various theories of rolling, however, attempt at first to
establish an expression for the mean specific roll pressure.
It is known that the specific roll pressure varies along the
arc of contact, between the rolls and the material, rising
sharply from zero at the plane of entry, reaching a maximum
value somewhere along the arc of contact and falling sharply
to zero at the plane of exit. Friction is one of the factors
causing non-uniform pressure distribution during rolling.
‘The frictional forces arising in the roll gap act in two
directions opposite to each other. The zone in which the
slipping forces disappear and static friction arises is, as

mentioned earlier, called the neutral zone. Other factors
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which affect the distribution of specific pressure along the
contact arc are: 1) the roll.diameters, 2) the speed of
rolling which influences the variation of strain rate which,
in turn, affects the constrained yield stress of the mate-
rial, 3) the amount of reduction which, in cold rolling,
affects the strain-hardening and thus the constrained

yield stress and 4) in general, all the factors discussed
earlier which affect the constrained yield stress of the
material during rolling. Figures 26, 27, 28 aqnd 29 show

the influence of some parameters on the specific pressure

distribution.

It is important to determine the true nature of this pres=-
sure distribution as this will decide the position of the
resultant vertical force acting on the rolls, and its
distance from the roll centers, in order to be able to
determine the torque required to be applied on the roll, for

a given reduction.

Siebel and Lueg (19 were one of the earliest researchers

- to carry out experiments, with a speciolly-constructed scaled=-
down mill, in order to actually measure the pressure dis-
tribution along the contact arc, fer several metals under
mostly cold and some hot rolling conditions. Using a

pressure sensing device mounted in the surface of the roll,
pre-calibrated and wired to amplifying and recording
instruments, they obtained detailed readings for pressure

distribution. Figures-30 and 31 show some typical curves
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obtained by them. Figure 31 which shows the pressure
distribution during a hot rolling operation, seems to suggest
that in hot rolling of a thick bar, the radial pressure
distribution is approximately uniform;. This is in sharp
contrast to Figure 30, which shows a distinct rise of
pressure to a peak and a decrease to zero thereafter.

Further experiments by Smith, Scott and Sylwestrowic:z (37)
and Korolev (36) have also corroborated the findings of

-Siebel and Lueg.

2.6.1 CALCULATION OF ROLLING LOAD

The rolling load may be obtained by :integrating the.
vertical component of the specific roll pressure over the
length of the contact arc and multiplyina by the mean width

of the material in the pass.

. g=x
Thus, P = Ah‘]~p.d = Ap-Kum L e eeees2.5-2
6=0

where P = the Rolling Load

o = Contact angle

A, = Projected horizontal area of contact

= 1y x by
me = Mean resistance to deformation.
| (h1-hp)”
1, = Length of contact arc = J/R(h] - h2)_- -

©
i

Specific vertical rolling pressure, which
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for small angles of contact may be, without

much error, assumed to be = Py the specific

radial roll pressure.

by + by ) b1+2b2

" 2 3

It is in the treatment of Kwm, i.e., the integral in equation
2.5-2 that much of the divergence of the theories of rolling
and their proposed calculation methods and formulae, is

-present.

2.6.2 CALCULATION OF TORQUE

Figure 32 shows the case of stock being rolled between
rolls of equal diameter and equal circumferential speeﬂs and
the resultant rolling load is shown passing through the
center of gravity of the roll pressure distribution diagram,
at a horizontal distance ay from the line of the roll centers.
This distance a; is referred to as the "lever arm” and from
this the torque acting upon the roll can be calculated. The
lever arm a; is normally expressed in terms of the horizontal
projection 14 of the contact arc:

01 = Cl . ld eesecccscsce 2-5-3

The value of ¢y has again been a matter of extensive research
and experimentation and various formulae have been published
by several researchers for different rolling conditions.
Underwood (3 ) published values of ¢y varying from 0.39 to
0.5, depending on the type of operation.
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FIGURE 32 : Resultant roll force and torque arm
relative to projected arc of contact (2)
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Thus, the general expression for rolling torque may be

written as:

g«

Mw = Ahoul’f pode l.02.5-4
B=0
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CHAPTER 3

THEORIES OF STRIP ROLLING

The theories of strip rolling aim at providing means
and methods of calculating roll force and torque in terms of
certain measurable quantities. These are the ingoing and
outgoing thickness of the strip and the roll radius, all of
which are easily measured; the yield stress of the strip
which is measured, -not on the strip itself in the roll gap,
but on a sample taken from it or on the basis of experimental-
ly determined curves and empirical average values; and the
coefficient of the friction, a factor assumed to be constant
in the roll gap and measurable only by rolling experiments
carried out for condition similar to those for which a

calculation is being made.

Much of the classical work in the theory of rolling was done
by Siebel, Von Karman, Tselikov and Nadai. All of these
theories had similar assumptions, many of which have later
been, proven to be erroneous. They all have as their starting
point, a differential equation which represents the condition
of equilibrium of an elementary vertical plane section of the
strip between the rolls. The theories differ in the further

development of this differential equation.

3.1 THE BASIC DIFFERENTIAL EQUATION FOR PRESSURE

DISTRIBUTION IN THE ROLL GAP
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The following assumptions are made in the derivation

basic differential equation:

1.

The material does not spread laterally, i.e.,
a condition of plane strain exists. This
condition is approximately satisfied if the
thickness of stock is small compared to the

width,

The coefficient of external friction between
the stock and the rolls is constant at all

points in the arc of contact.

Plane vertical sections before rolling remain

plane after rolling.
There is no elastic deformation of the rolls.

Elastic deformations in the arc of contact are

negligible in comparison to plastic deformations.

The metal being deformed is a continuous ‘isotropic

medium,

The Hencky-Von Mises criterion for plastic yielding,
i.e., S] - S3 = 1.15 So = §, holds for the material

and the rolling conditions.

The yield stress of the material, S, remains

constant throughout the contact length, i.e.,
there is no work-hardening of the material or
variation of yield stress due to the variable

strain-rate conditions in the roll gap.
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FIGURE 33 : Forces and stresses acting upon an

- elemental vertical section of the

sheet between the rolls (3)
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The peripheral velocity of the rolls is uniform,
i.e., that the rolls are neither accelerating

nor decelerating.

Slipping takes place along the arc of contact

at all points except the neutral point.

The contact angle is small.

hows the reduction of a sheet, of initial

thickness h], between plain cylindrical rolls, down to a

final thickness h

considered,

92¢ The equilibrium conditions are

for a vertical elemental plane section of height

h and width dx. With reference to Figure 33, the following

may be stated:
Normal force on elemental section = p_ x ~dx
Cos O
Horizontal component of normal force, tending to
oppose entry = pr'dx x Sin®©
Cos©
=P, tan €@ dx.
Tangential frictional force = F = ‘F.pr dx
Cos@
Horizontal component of tangential force
tending to draw the bar between the
rolls = f.pI. dx .Cos®
CosB
= fuprdx

Hence, for

of the hori

equilibrium of the section under the influence

zontal forces, we have
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2pr tanbdx - 2f prdx = (h + dh)(oc+ do) - ha =
d (hq) '....'....'..'l"....s.]-]

From Figure 33, we also get:
p.dx = Vertical component

of the normal

force o dx
Cos .
=p dX__ x Cos®
¥ Cos®
= pr dx
. P =P,

Substituting this and writing f = tanpP, wheref is the

friction angle, we get:

p (tan® - tanf )dx =d(—%} eeeedel=2

As is seen from the figure, the elemental section was
considered between the plane of entry and the neutral plane.
If o similar elemental section is considered between the
nevtral plane and the plane of exit, with the direction of
frictional forces reversed, we would get

p (tan ©® + tanr ) dx = d (Jgi) eee3.1-3

Combining these equations and substituting tan® = % %E
14
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(ho')

1 h = dV\ 2

t - - —— + t = 00001003.]-4
ve 9¢ 2 P dx P un? o dx

In order to express ¢ in terms of p, the criterion for
plastic yielding, S-l - 53 = S is applied along with the
assumption of the mean vertical pressure and mean horizontal
stress acting on the section dx, as principal stresses, in

this case both compressive.

Now, total vertical force on element = pdx + F Sin ©

pdx +fp tan® dx
p(1 + f tan6 )dx.

Assuming S, p(1 +f tand )

a

and 53

we get, from S] - 53 =S
p(l + ftan® ) -a = S

When a further assumption is made, of small angles of contact,

it is possible to conclude that f tan® = 0.
This then gives p -a = S.

Substituting this in the differential equation, we get:
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EE{% (p - Sﬁ'..e., dh

dx 2 dx

or tptan(’: 0

which expressed thus or in other alternative forms, is the
starting point of the work of the classical theories of

rolling.

3.2 VON KARMAN'S THEORY (17)

In the formulation of his theory (in 1925), Von Karman
considered the forces acting on an elemental vertical section
of the material between the rolls and made further
approximations whereby he assumed that:

Radial pressure P, is replaced by a vertical pressvure

p and x is small compared to R.

g h
(<2) |
This gave the relation = p(Sin @ ¥ f Cos 6) which
dx
| a(Z"
is also given as y 2 = p Cos 6 (tan © ¥ tcmF)
x

He next assumed that for small angles of contact Cos 6 =1,

thus obtaining d(g-—h) =p (tan 6 F tanf’) dX eeeees 3°2-1
2

or: ) d{g (p - S)} = p (tan 6 ¥ tonf) dx

e e o0 00 3-2-2
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The solution was of the form:

- tanP/h dx iftun P/ - dx
+ R
p=e [C+ hoC .dhl....3.2-3

T.L. Smith of the Carnegie Institute of Technology, (3)
attempted a simplification of the Von Karman equations on
the following basis: In equations 3.1-4 and 3,1-5,

1 dh represents the slope of the arc of contact at any

2 dx

point distant x from the roll centre line. Smith's approach
was to try and replace the circular arc of contact by a curve
of another form which very nearly coincides with the circular

arc, so that dh is a simple function of x, thus greatly
dx

simplifying equations 3,1-4 and 3.1-5. He assumed a-
parabolic arc of contact whose equations, referred to the
rolling direction and the vertical roll centres, can be

expressed as:

i
L]
¥

n

1 h2 +Ah(-—x—)2] as in Figure 34,
2 ld

where Ah = hy - h2, The draught

[e]
3
o
=
o
i

The projected contact length.
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Differentiating, we get ~-90 -Ah.2;

Substituting this expression in Equation 3:1-4,

h
d(_zq')' Ah - " Ahx =
= =5 px ¥ p tan =p [———2—+ ‘tunF

dx ld ld

Substituting ¢ =P - S and h = h2 + Ah(—z—)z ’

dx
h 2
or 2 + 'Alhx .dp + é—h-s (p - S) (Ahx + tanf)
4
2Ah (x = p _ )
d (§) i (‘d ¢ Yo x 3e2-4
or X = 2 R A
d('IE) 1+ 53155—2
h2 ld

Equation 3°2-4 cannot be directly integrated and thus the
pressure curves représented by it can only be traced by a
point to point summation method or by computer. The
application of this equation to a specific rolling operation
is thus a complex proposition. However, using this equation,
Trinks had worked out several thousand poiﬁt by point (41)
integration calculations and published a family of curves

as shown in Figure 35.

3.3 NADAI'S THEORY (20)

Nadai, in solving basic differential equation for
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FIGURE 35 : Trinks' graphical solution of

Von Karman's equation (41)
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specific pressures, introduced the additional factor of
external tension on strip, applicable to cold strip rolling.

He gave the following form to the Von Karman equation:

d(ha@) + 2 fp_ + 2p
dx I I

= O eveeceesscsv e 3-3-1

2 Ix

The assumption of small angle is made, i.e., tan © =© = X,
‘ R

Nadai also uses the following terms in developing the

equation:
Pr 32 h2 7 = - X
y = — ‘ | Y
S ‘ R U]R
and T-= ol fpr = tangential shear stress.

Also, with respect to Figure 33, h = h2 + 2R (1 - Cos ©)
which, with the assumption of small angles of contact, gives

[p ]
the approximation h h2 + RO~

= h +—§-?-—h(1+22)
—2 R —2 -
Now, the condition for plastic flow, when considered with

strip tension, bacomes
(=) = S
p_ ~(-c)

Combining all the above conditions and substitutions, Nadai

converted Equation 3°3-1 to this form:

(]+22)'d_x - (2 )T = 22 oot....-c-o.3.3-2.
dZ 3}5
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He arrived at this form of Von Karman's equation, in order
to evaluate the influence, on specific roll pressure, of
different assumptions regarding the frictional force, viz.,

a) the assumption that T = fp, b) 1 = a constant and

c) frictional resistance proportional to the relative

velocity of slip between the strip and the roll.

a) Here, T = f p, for forward slip and T = - f Pr

for backward slip.

p
Also, since ¥ = —g, T=fSy for forward slip,

and: T= -f Sy for backward slip.

Now: 2T _ 2.f3y = Keey, since f and ¥ are
Xas X.s '
constant.
2f
Where Keg = =
f X]

Then equation 3°3-2 becomes

(]+22)EZ - Kfy 22 ........-......3'3-3
dZ

Substituting Z = tcmv'1 where v_is another variable, we-

1

dZ
get dvy = ——2—
] l+1Z
or dy . Key = 2 tanv,

dV]

The solution of this differential equation is:
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p Kev - Kev,
y = ‘S—r' = e f ] (C + 2fe f ! tﬂl‘l V] dV-I) .0.0303-4

The integral can be computed by replacing tan Y, by a series

in w'ond integrating. Thus, for the region of forward slip,

we obtain

© Kev
y==X = cpell o 2(1+ Kfv])//Kfz

tnl;o

and for backward slip,

p -Kev
y = §£ = Cye 1 20 - Kfv]z//Kfz

The constants C] and C2 are determined from the boundary
constants at the end of the contact zones, where front
tension 0y and back tension gy are applied, as shown in

Figure 36.

After finding C] and C2, the roll pressure corresponding
to any point in the arc of contact distant x from the line

of roll centres is given by the following two equations:

1. In the area of backward slip, i.e., the entry side

of the mill,
2 (1 - Kfvz) Kf (v2 - v]) 2 (1 - Kfv]ﬂ

p_. =S Y, + e -
SNk f ]

2 2
Ke Kg
2. 0n the exit side, . eee3.3-5
Kev 1 + Kov
; 2 fY1 2 ( f 1)}
p.=S| Y2 + e - «...3.3-6
] [ K2 K, °
T f
where tan v; = X
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tan v, = L where ¢ is the reduction
1] -
Y, = S5 -6
] —
S
Y2 == % , whered?l and g, are the back
S

and front tensions respectively.

On the basis of equations 3°3-5 and 3°3-6, Nadai has
calculated pressure curves for a number of rolling conditions.
Figure 37a shows some typical curves for a particular set

of rolling conditions. The top pressure curve refers to

the case in which front and back tensions are zero, while

the other curves indicate conditions with progressively
increasing tensions. These curves clearly lead to the
conclusions that the application of front or back tension

or a combination of both, leads to a reduction in roll
pressure and also shifts the position of the neutral point

or plane.

2. The mognitudé of the surface friction force is

assumed to be constant, i.e.,t T = constant.

Then, with the substitution X = Kg’ equation
S

3°3-2 becomes:

After integration, this equation gives:

p -1
y = rthgtan

’r Z+log, (1+2%)+cC ..3.3-7
s |
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Here, the plus sign in front of % tan-]Z applies in the
region of forward slip between the neutral and exit plones
while the minus sign applies in the region of backward
slip. Applying boundary conditions at the entry and exit

planes and gssuming no front or back tension, we get,
-1
C; =1 and Cp=Ktan Z; = log, (1 + z2)

Figure 37b shows a typical pressure curve based on the above

equations.

3. The surface friction is assumed to be proportional
to the relative velocity of slip between the rolls
and the material being rolled. This was the first
attempt by any researcher, to corsider the variable
natvre of surface frictiqn within the arc of
contact. The case considered was one of cold strip
rolling with oil where, according to Nadai, the
frictional force is a function of the dynamic
viscosity of the lubricating oil, the oil film
thickness and the relative speed between rolls

and strip.
Thus, T = —gL (v - v ) ,vhere
t

v = the peripheral velocity of roll

V = the variable horizontal velocity
of strip, corresponding to any
angle .

m = mean value of dynamic viscosity of

the rolling oil
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81: = the mean thickness of the oil layer.

Nadai postulated the frictional law:

\4
where Z, = the value of Z corresponding to the
neutral point.
V2 = velocity of strip at plane of exit.

Now, the variable strip velocity, V at any strip height h,

can be said to be:

v o2t T2
h 1+1Z
V2
Also, at the neutral point Vg = V = ———3—
1+1Z
()
1 1
Hence weget’F:l(V-.v)=:?—.v( - )
' b ot 2\q 4+ 7% .

1 + Zo

Substituting To= 81 . V2, equation 3°3-8 assumes the
t

form:
ToTo( — - ——
o('] + Z 1 + Zo )

Substituting this in equation 3°:3-2, we get

2y d 2 T 1 1
1+ 1 &£- - --———2='22
(1+29 b’,s( ‘ )

dZ 1+ 1Z 1+ Zo
Putting Kh= 52,-%9- , we get
(1+22) 9y -k ( LI ) + 27 ...3+3-9
daz P\ 4 z? z

1+ Z
(o]



©Zy dat1s o

A} TOO0TSA SATIDTAI 03 TPuoT3I0doIrd UOT3}OTI}

Y3TA UOTINQTIFSTP oINssaIld : 9/¢ JUNOIA

Q 10 -0 y X 8-0 ol

$©

\\ ol

4
K\

od

(07) °930) [PUOT3OTI} FuUPSUOD
Butwnssb UOT3NQTI}STP dINSsSald T q/Z¢ 3¥N9I4

m\N...l"l
o 30 v-0 2:0 g0 Q-
o
0
r
T
sof
'y
\ s
<
n
m
-
4
ot a
Vs m.H ﬁ
\
/7 \
Lo 07



-100-

The solution of this was found to be:

p 2y . Kn z 1 -2, 1
2L _ 14 1og (V+Z°)+ — - O . tan ' Z
y 9
e 2 2
S 2 1+ 2 1 + Zo

'....-3.3-10

Figure 37c shows the pressure distribution for rolling
without tension, as given by equation 3.3-10. It may be
observed that there is no break point or discontinuity in
this curve, as in the other pressure distribution curves so
far shown. Furthermore, the neutral plane is not coincident
with the plane of maximum pressure. This can be explained

in the following way:

In the neutral plane, V = V, hence T= 0.

From this, we obtain I = Z and substituting this

ol

in equation 3.3-9,

(1 + Zo?) dy . 2z
dz
27
or El-x= °
z 1+12

Since dy is not equal to zero at the neutral plane, it
dZ

follows that the roll pressure p. (= y x S) is not a maximum

at this plane.

Siebel and Lueg's experimental pressure curve shown in
Figure 30,also exhibits a rounded profile at the peak. In

the light of Nadai's theory, this may have been caused by
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variaotions of the friction coefficient.

3.4 TSELIKOV'S THEORY (39)

Tselikov, in addition to making the assumption stated
for the basic differential equation of roll pressure as
deduced by Von Karman, made some additional assumptions
by which he reduced the Von Karman equation to a form which
could be integrated. Tselikov re-wrote equation 3°1-2 in

the form:

2p (tan 6 - tanf) dx = h.do + ¢ .dh ceees 3°4-1

He also deduced p(1 + f tan e) -ad = S
or G =P (1 + f tan 8) - S ceeces 3°4-2

Differentiating this equation,
do = (1 + f tan 8) dp
Substituting the values of @ and d¢ in 3.4-1, putting

dh__ . d4x and dividing through by(1 + f tan @,
2tan®
we get:
] +{E‘i—P—-—e)-} p - S dh + h.dp = 0 00-03'4-3
tan © 1 + ftan®

At this point, Tselikov made the additional assumption that
for small contact angles, ® may be assumed to be nearly
constant and equal to half the contact angle. This would
be true for a typical section near the neutral plane.

Additional substitutions are made:
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tan!P-— 8) _ C

tan ©

constant

and: S

——— constant since O is
1 + f tanb

1]

w
—

]

constant.

Then, 3.4-3 is written as

dp -
(]"'C)P"Sl

This equation may be integrated and results in

>

1 1

lOg {(] +g) p - S}.= lOg - .+ C ...1'0..!3.4-4
1+C e 1 e o
The constant Co can be found by applying the boundary
condition at the point of entry where h = h], and p = Py, say.
Thus equation 3.4-4, after solving for p, gives: |

S p i hy 1+¢€
p = —1—" [{—1 (1 +g) - 1? (_l) + ] R EEEEREEEN) 304-5

1 #s Lgol- S H) L 1

This is the general expression for Tselikov's formula for
specific roll pressure. When tensions are not applied to

the strip, we have o= 0, and from equation 3.4-2,
s .
p = =S
! 1 + f tand 1

Thus the expression for roll force, wh:u applied to a point

between the entry plane aﬁd the neui: plane, becomes:
= (_ +1i 0 s0cevco0c e 3-4-6
(1 +f tand) q] 1 h J

where CH = Eﬂﬂifl:_gl + and the roll force,

- tan ©

considering o point between the neutral point and the exit

S [:C' h Cé -1
) (1 = ftan 8)s, 2 (;;) - 1] cees 3.4-7

plane,
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where C 9 = fun (P+8)

tan O
Tselikov deduced a series of curves, showing the effect of
varying coefficient of friction, varying reductions and
varying roll diameters, on tﬁe specific roll pressure, over

the length of the contact arc, as shown in Figure 38.

Tselikov went further, to determine a "mean" specific roll

pressure for the case of rolling without tensions, which he

expressed as Pe = Total Rolling Load P . He deduced this

Contact Area

by integrating the expression for vertical force on the

elemental section in Figure 33, over the length of the contact

arc. % = ld ) 4

ThUS P = b‘]‘ p( ] ’; f tan e) dX oooooooaooocooc3.4-8
x=0 '

whera h = mean width af material., For rolling without

tensions, the expression for Pgr Was deduced from equations

3.4-7 and 3.4-8, after assuming §'] -1 f-‘Cz - 1= f/tan‘-’é

and f tan /2 20,

2h,. S he -1
p, =l (-2) Ceereee 3.429
where ¢ N A
tan ol /2
& = total contact angle

on
"

neutral angle

= height of bar at neutral plane, determined by

.o.?-
I
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FIGURE 38 : Variation of pressure distribution

by Tselikov's equations (39)
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calculating the value of h at the point of intersection of
the forward and backward slip pressure curves. It was shown
that :

/e

he | 1eV1 s @22 1)(hi/hg)
hy ¢+ 1

es eesv oo 3.4-10

To facilitate computation of mean specific roll pressure
using these formulae, Tselikov prepared a series of curves

for hg against ¢ for different values of reduction.

hy

3.5 DISCUSSION ON THE THEORIES OF VON KARMAN,
NADAI AND TSELIKOV

The chief drawbacks of the preceding theories, complex
as they are, lies in the initial assumptions made in the
development of Von Kormon's.equation and then further
assumptions and simplifications made by Nadai and Tselikov
in order to transform Karman's equation to a more manageable
form. It has been proven that plane vertical sections before
rolling do not remain plane after rolling, that during cold-
rolling, the material undergoes strain-hardening in the roll-
gap, that in hot rolling, there is a variation of yield
stress in the roll-gap due to the variable strain-rate, and
also that the coefficient of friction f 1is not necessarily
constant. The assumption of small angles of contact may be
valid for rolling of thin strip in fairly large conventional

4-HI or 2-HI mills, however, they do not apply in the case
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of cold rolling in cluster mills with small-diameter work
rolls, in which case the angles of contoét are much higher
than 4°-5% as assumed in these theories. The same comments
would apply when one considers slabbing of ingots with heavy

draught.

3.6 OROWAN'S THEORY (10)

The theory proposed by Orowan, in 1943, enables the
pressure distribution between the rolls and the material to
be obtained by a graphical method of integration of the roll-
pressureAarc-length curve for the case of variable coefficient
of friction and variable constrained yield stress. This
theory avoids most of the mathematical approximations and
assumptions used in the classical theories, and can be used
for both cold and hot rolling, provided that aside from
geometry, the basic physical properties of yield stress and
coefficient of friction and their variations within the
contact arc can be known. The usual assumption is not
made here, of homogeneous compression of the material.
Instead, the non-homogeneity of stress distribution and hence
deformation is approximated by using the results derived by
Prandtl and Nadai, from the Hencky treatment of two- (18)(42)
dimensional plastic deformation. The assumption, of the
rolls slipping on thé material at all points along the arc
of contact except at the neutral point, is not made. Instead,
Orowan provides criteria for determining the areas of the con-

tact arc that are subject to slipping and sticking. The



~-108-

~H]

LY
3
ww

FIGURE 39 : Pressures in compressed
plastic strip (10)

FIGURE 40 : Stresses between non-parallel
plates (10)
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Figure 39 shows the corresponding stress distribution.

This analogy is difficult to apply to the rolling case.
However, Orowan considered an extension of the above, by
Nadai, in which the mass is compressed between plane rough
plates inclined at a small angle 28, as shown in Figure 40.
For flow of material toward the apex of the angle, Nadai

obtained the following relations:

p2

¢ = p -5 [1- 1 veess 3763
I 62

T = 2 .p ceees 3764
26

These relations for parallel and inclined plates all apply
to a case of "sticking" between the material and the
compression plates. To consider the case of slipping,
Orowan assumed a condition that the stress distribution
given by the equations applies if a new value of the
thickness h is so chosen, that the shear stress at the
surface equals fp, instead of S/2 as with sticking. For

parallel plates, this is expressed by:

he S « h

For inclined plates, the same considerations applied between
a wedge-shaped mass and the inclined plates, give:

e* .S .6
2 fp

I



. fp,
and from this, T = - =5 . P
2 2
2fp B
nd = - —( r) '(——-—) ceeo e 3.6-5
a T =prP-S [1 S )

Thus, we obtain the equations for slipping which would

S

revert to the equations for sticking if fp. = < - These

2

relationships were next applied by Orowan to the generalized

_equation for the equilibrium of a segment of the rolled

material.

In Figure 41, consider a thin vertical section of arbitrary

shape bounded by surfaces A and A’ . The following relations

are obtained:

F(e) - dF_.de
de

Pr

2p, Sin®© - Rd6

lrl

¥ 2T Cose.Rd®

resuliant horizontal force per unii’
width on surface A.

horizontal force across surface A!

per unit width

normal pressure acting on eﬁds of the
segment.

horizontal component of normal pressure
Py

frictional drag (without assuming
sticking or slipping).

horizontal component of frictional drag

T.

For horizontal equilibrium:

dF
dé

= (br sing £ 'TCosQ)D eees 3°6-6



(O1) sT10Z UsoM3}oq 399YSs

Sy3 ur ed910j [PIUOZTIOY

J0 UOT3D{NODO S,UDMOI

(Ol) 3o03s vmaaou J0 juowbes UTY} 40
: Zv NOIL

wnTIqITTNba jo juawj}paxl S cozouo :

Ly JdNOIA4

-111-




-112-

Differential Equation for slipping:

As is shown in Figure -42, the surface of the elemental
section is represented by a cylindrical surface AB, with an
included angle of 20, at O. Other geometrical data are as
shown in the figure. It is then assumed that the stresses
acting across AB will be distributed in similar manner to
those acting on a plastic wedge-shaped body contained by

the tangents at A and B; and the previously derived equations

are applied.

On the surface AB, we now consider an element which subtends
an angle df at O and which has unit width in a plane

perpendicular to the paper.

Ps
1

0}

e

c.

-

.

.

.
W
L]
o

4
~¢

The area of Lhis elemeni dA = r.dﬁ
Now the horizontal force F(€), acting across AB, may be
assumed to have an element dF of F acting across the area

dA, and would be consisting of:

1) The contribution of the radial pressure @ is

h .
= e ———— - d L) eO=
O‘CostA a"CosF > <in © ? 3.6-8

Substituting o from 3°6-5, and integrating from P =

- 8 to F = +0, we obtain the contribution of O to (9) as

hS T 2 f Py 2 B 2
Fq-(e) = hPr - Sino . [ 1 -( 5 ) (§> . Cosf d?...3.6-9
(o]




2)
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Put-’ a = X

0
( 2
and w(®, a) Sile j;[l - 02-}—2] Cos?. d?

As mentioned earlier, slipping occurs when a <l

and sticking occurs when i}1

Orowan plotted a curve of w against "a" and found
that for values of © = 0° - 30°, which covers the
most common range of rolling, w is not affected

by ©. Thus, we may write 3°6-9 as:

ﬁr(e)= h.p.-h. S . w, where © as an
independent variable of w is omitted in view of

its negligible influence on w.

The contribution of the shear stress T, is expressed

by TSinp.dA = -;e?-‘r . F.SinP. . dp, with

2 Sin6

a positive sign being applicable when considering
on the entry side and a negative sign on the exit
side. Integrating again between the limits of ? =

-9 to +6 , we get:

Fq’(e):thfpr('l'- 1 ) lO.iOc...o.gs'é-]o
%) tanb

Hence the total horizontal force on the section AB is:

-
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F(6) = F (6) + Fr(8) = h |p_ {1 + f(é- . )}-54 3.6-11

tan

For most cases of slipping, particularly in cold rolling

where 0.2 to 0.25, @ is less than 10°-12°, the term

hprf(l-- L ) is very small compared to hpr.
6 tanb

For cold rolling, F(9©) h (pr- Sw)

'FF- +SN ee0 00000000000 3'6-]2

or P,

Making substitution of T = fp, and the expression for p.,

we obtain the following from equation 3, 6-6 :

@ _F . D (5in6 + f Cos®) + DSw(Sin® + f Cos®) 3.6-13
N + t

de

which gives the differential equation for slipping.

Differential Equation for Sticking : For sticking, fp_ is

: S 2 fp,
replaced by =, so we get a = = 1.
S

For sticking, equation 3,6-11 takes the form:

- ] 1
F(e);-h p _S{w"'l -_—- } R EEEEEEE N 3.6-]4
[ r 2 (6 tane)
and P, = E +S|lw¥ 1 (’l 1 ) tessascesees 3.6-15
h 2 S tan®

and the differential equation for sticking is:
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mln.
D Im

- F. 2. sine + DS {} 71 (l -] ) Siné} t 1 coso | 3.6-16
h 2 ' 2

Substituting m™(0)

i
£
~~
(2]
-
—t
-
1
|.—n
| =
!
b
Nr?
w
-
b=
D
14
N -
O
[+]
(7]
D
| W |

and m~(6) w(e,1) + =(—- - ) Sin® - 1 coso
5

Equation 3°6-16 is written as:

b = F .-D-. Sine-l-D.S.m R R EE R RN N 3.6-]7
dé h

where m has values of m' (6) or m~ (8) on the exit side
or entry side respectively. This gives the differential

equation for sticking and may be expressed as:

3% + A(B) F(8) + B(B) = 0 sevvvvreeennnnass 3°6-18

]
whose solution is F(8) = Z(e)[f g%g% dé + Fo ceeeed6-19
. 0,

where F_ is strip tension

o
and Z(G): exp[x A(e) do J
' ]

D

A(8)= . Sinb

> |

B(e)= D.S.m (m+ on exit side and m~ on entry side).

If h2 is the material thickness leaving the rolls, D is the

h
roll diameter ondb’2 is the thickness ratio 2/D, we get
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6 o

log_ 2(8) = A(8) do = 3ind . do,
0 0 XZ + 1 - Cos®
X x
+ 1 - Cos6
from which we get 17(0) = 82 = h(0) ees3.6-20
¥y + 1 - Cosé h(e,)
On the exit side, we have to put Ox = 92 = 0 and so
z*(e) = L
2
On the entry side, o, =9, and so
7-(e) =
hy

Orowan carried out the computation of F(6), by graphical
integrotion of equation 3°6-19. He prepared two sets of
calculations in order to compare his method with measured
data by Siebel and Lueg. The curves are as shown in Figure
43, The normal rﬁll pressure is found for each point in
the contact arc, by P, = E + %}-. S.

This permits the solution of the differential equation, in

the case of sticking between material and rolls.

When "slipping” occurs, as mentioned in equation 3-6-13 ,
the solution is arrived at as follows:
We have, from equation 3°6-13,
by similar substitutions as in equation 3°6~17, and
since w is considered to be independent of 6, we may

write :
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FIGURE 43 : Roll pressure distribution curves

calculated by Orowan, for comparison

with Siebel and Lueg's experimental

curves (10)
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9 L A(®) F(8) +B(8) = 0
de
where A(e) = % (sin6 ts Cos6)
and B(6) = D Sw (Sin® % f Cos8)

Here again, the solution is of the form

0
F(e) = z(e)U B(O) 4o+ F ]
o z(0) ° '

e X
where z(8) = epr E . Sin® dé ’:I th . Cos® do

Gx Ox

The first integral is solved as in equation 3°6-20. For

ha
the second integral, since h = h, + D(1 - Cos®) and Xé = ==,
S D
K
¥,+ 1 - Cos®
0. 2

Orowan plotted the function H against ¥,, for values of e
varying from 1° to 30%°, as shown in Figure 44. For the

function Z(6), he obtains:

For exit side, log_ Z'(8) = log, 5 + fH
2

X2+1 - Cos®
eX2+1 - Cos«

For entry side, log, 27(8) = log + f(H; - H)

where ( is angle of contact and H; is the function H at

entry.
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From this, he obtains:

7+ h fH

= _ e 00000 ceccnctrtscona 3.6-23
h
Z- - 'Lo e f(H] -H) e e ceeveecececccce 3.6"‘24
h .
1

Here again, the function F (0) is calculated by the graphical
integration method, progressing from the ends of the arc

of contact, inwards.. At each point, one has to apply Orowan's
criterion for deciding whether material sticks or slips,

as shown in Figure 45. If the point M in this figure slips
off the curve PQ, the end of the region of slipping has been
reached and the computation must be carried on by means of

the differential equation for sticking.

The normal roll pressure is then found for each point in

the contact arc from the relation

P, = i + wS ............f.........3-6-25
Here, also in the &ase of sticking, the value of the constrained
yield stress S at every point of the arc, is variable and

must be computed separately from strain-rate or strain-
hardening curves. Orowan further states that since the
compression between the material and the rolls is not
homogeneous, the amount of work imparted to it for a given

reduction is greater than for homogeneous compression.
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To obtain the yield stress in inhomogeneous compression,
Orowan states that the only practical method for doing this
would be to experimentally determine the correction factor
that must be applied to the yield stress calculated for
homogeneous compression. Interrupted rolling tests are
suggested with subsequent ball indentations made on the
deformed part of the.material that was in the contact arc.
However, as ball indentation tests cannot be done for hot
rolling, Orowan suggests that the simplest way is to
determine these correction factors by actual rolling tests
and comparing the experimental yield stress to the yield
stress calculated as a function of strain rate in homogeneous

compression,

3.7 DISCUSSION OF OROWAN'S THEORY

Orowan's theory provides the means for calculating
roll pressures, loads, torques, power requirements and rolling
efficiency, without most of the limitations inherent in the
other theories of rolling discussed before. The theory
visvalises rolling conditions ranging from complete slipping
to complete sticking. He also introduces corrections in
his general differential equation, to allow for flattening
of rolls. However, to return to the basis of Orowan's
theory, i.e., that of compression of a wedge-shaped plastic
mass between two inclined plates, it may be said that,
although this is a closer approximation to the pressure

distribution in the arc of contact, it is still not fully
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representative of the conditions existing in the roll gap.
Although regarded as a yardstick against which other theories
of rolling are often compared, his equations of the roll
pressure have not been generally applied to mill design and
operation because of the time needed to complete the laborious
numerical calculations required for a set of passes. Orowan
himself made only two sets of calculations to compare with
the experimental results of Siebel and Lueg. Should there be
further development of his mathematical models ond efforts
made by iterative computer solution to prove the correctness
of his theory, he may well have propounded the most basic and

accurate of the general theories of rolling.

3.8 SIMS' THEORY (11)

Sims' analysis, while partially based on Orowan's
theory, makes certain assumptions and deviations in order to
reduce the computation time, without much loss in accuracy,
of results. Sims' theory also serves as the basis for the
Cook and McCrum data published by the B.I.S.R.A. which,
to this day, serve as the most widely used basis for

basic flat rolling mill calculations of load and torque.

One of the additional assumptions made by Sims, as compared
to Orowan, is the one of small angles of contact, for which
Sin ©= tan © = 8. Sims starts with the Von Karman equation,
assumes complete sticking friction, applies Orowan's condition
for deformation between rough inclined plates, makes a further

assumption of constant mean yield stress in the roll gap
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and comes up with expressions for normal roll pressure on

the entry side and exit side, as follows:

+ 1 . 1
L = T—r" loge ('h—) + E + 5" L] ton-] "R—' . e LI ] 3 .8-1
S 4 h2 4 h2 h2
and

- 1 ] ] 1
L P (h)+X +]E- tan-1|R & - [ tan” /-R— 9..3°8-2
s 4 hy 4 |h,y th th h

Normal roll pressure

£
>
o
H
o
o
i

S = Constrained yield stress

h = Thickness of material at any point in contact
arc

h2= exit thickness

hy = entry thickness

R] = Roadius of curvative of elastically deformed
roll

0 = Angular co-ordinate at material thickness hj

o« = Total angle of contact.

Sims stated that when the angular co-ordinate © is small,
the differences between the normal roll pressure and the
vertical pressure are negligible, and with plane deformation,

the specific roll load may be written as:

-4
P: R]J\ p.de PP I I R 3‘8-3
(o]



~124-

Substitutingdfrom 3.8-1 and 3:8-2 into 3:8-3, we get

P=R].SJ{Elog h +M(o<)-n(e)+1l}.de
54 € hy 4

)
AL € h 4

1
R! -1 R
where M(8) = [— -— . 0"
ha
and & = neutral angle.

After integration and simplification, Sims obtained the

equation for specific roll force as:
h h
P = Rls |T h-l-'l:an'1 £ - Eﬁ-loge—é—-blloge-—]
2 yR 1-r 4 hy 2 hy

Reduction in pass = —h——
1

€
I
o
)
(1]
L2 ]
n

hg = Thickness at neutral plane

P can be expressed in the form

1 R!
s JR' Ah . Qp(— , I) teese3°8-4

hy

"o
(]

where Ah

and Q (R ’] L tan T _ -—-£ loge
] - I h2
-]- 1-z / log, "
2’

Draught = - h2
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Figure 46 shows variation of Qp with r. Sims argues that

in equation 3:8-4, the term SJR]A.h provides the component

of the specific roll force due to plane homogeneous deformation.
The function Qp provides the contribution due to the friction

and the inhomogeneity of deformation.

Specific Roll Torque: The specific torque in rolling is
defined as the torque, per inch width of the strip, required
to deform the material. Sims' equation for the specific roll

torque was

o
Mw = 2 R.R1J\p 6. do which, after substitution
0 A

from equations 3:8-1 and 3:8-2, and integration, becomes:

Mw=2R. R] S (!—é) R R RN 3-8—5
2

which Sims represents as
© ol
] S -QG ('RF-, r) e 0 s s 00000000 3-8""6

2

Mw = 2R . R

R]
where Q. (=, r)
hy

x_8
2

Figure 47 shows variation of QG with r.

For elastic deformation of rolls, particularly in cold rolling,
Sims used Hitchcock's formula, which replaces the actual
pressure distribution over the whole surface with an elliptical
distribution giving the same total load. The roll, in its

arc of contact with the material, is then of constant radius
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of curvature, which may be calculated from the equation:

Rl = R (1 + fg) , where C is a constant and
h

equal to 3.45 x 10~* for steel rolls.

Mean yield strength: Sims makes the allowance, in cold
rolling, for the effect of strain-hardening, by assuming
the mean yield stress given by:

of
K = 1 j~S de, and in the calculation
p o

of roll torque, the material is assumed to have a constant

yield strength given by

1 [F hy=-h
Kg == ]| S d€, where € = ——
TJo hl

52)
Bland and Foré EGVe experimentally proven the accuracy of
these formulae to within 2% and Sims also conducted a large

number of experiments to prove the validity of these formulae.

In the case of hot rolling, it is known that yield stress

depends on the material, temperature and strain rate qg,
dh

vhich is defined by q:l.—— « The form of the relation

h dt

between the yield strength and the variable is quite complex
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and for steel, the relation is expressed as:
S = f(r) + B (r) loge q

The values of Kp and Kg are calculated for the various
strains and the mean between the two is taken to be the

yield strength in hot rolling.

3.9 COOK AND McCRUM'S DEVELOPMENT OF SIMS' THEORY (15)

Cook and McCrum based their work on the Sims theory
and carried out extensive tests on the Cam Plastometer to
establish data for curves that would permit a graphical

method of calculation of roll force and torque.

They deduced the following formulae for their calculations:

1

Specific Roll force P! R

. Cp . Ip ceeed°9-1

2R . R!

Specific Roll Torque Mw . Cg . Ig .. 3°9-2

’h
Where: C = Q —2"0 -—E— sesesse 3.9—3
P PY R 1l+r
l-r
C = Q —_— ¢coco-o3n9-’4
g 9 14r

Qp and Qg are as defined in Sims' theory.

Ip=K 1-__1.- 0000010000103‘9-5
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Cook and McCrum published a large number of families of

_curves for graphical computation of Cp’ c, 1 Ig, for a

gl pl

wide range of steels and non-ferrous metals.

Figures 48, 49, 50 and 51 show some typical families of

curves for the above functions.

3.10 DISCUSSION

The diagrams and formulae provided by Cook and McCrum
for determination of roll force and torque in flat rolling,
provide the simplest and quickest method for making the basic
calculations necessary for the design of flat-products mills.
In practical design office practice, there is seldom enough
time and capability to carry out design calculations,
necessary for the establishment of basic design parameters
for mechanical and electrical equipment, by the more classical
theories of roliing or by the Orowan theory which, though
more sound and closer to the truth than the other theories,
is too cumbersome and laborious for application in daily
design calculations. Perhaps further studies can be made
to adapt the basic Orowan procedure and mathematical

formulae for solution by today's high speed computers.
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CHAPTER 4

PRACTICAL APPLICATION OF ROLLING THEORY

4.1 SELECTION OF A TECHNIQUE FOR

CALCULATING ROLL FORCE & TORQUE

It is evident from the preceding pages that there is

a wide diversity of methods and approaches available for the
treatment of specific rolling operations. For instance, to
consider only the caiculotion of roll force in hot rolling,
we have numerous formulae at our disposol, most of which have
been derived from theoretiqol"considerutions, tempered by
the need for -ease of pfacticul calculations and, in some
cases, modified by empirically-established correction
factors. To name a few of the authors of such formulae,
we have: ’

1. Ekelund ( 4).

2. Tselikov (39 ).

3. Golovin and Tiagunov ( 2,

4, Greleji (51 ).

5. Siebel (16 ).
6. Samarin ( 2).
7. Orowan and Pascoe ( 2 ).
8. Cook and McCrum (15).
9. Trinks ( 5).
10 Stone (46).
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It is beyond the physical limitations of this paper to
consider and evaluate the merits and demerits of each of
these approaches to the evaluation of roll force. Wusatowski
and Bala (24 ) made, in 1954, a comparison of the various
formulae available at the time, against data obtained from
actual rolling tests. The methods compared were those of
Ekelund, Siebel, Trinks, Orowan-Pascoe, Geleji and Tselikov.
They concluded that the methods of Ekelund and Siebel gave
the closest results for rolling of plates; Ekelund, Siebel
and Tselikov for rolling of strip; and Ekelund, Siebel and

Orowan-Pascoe for the rolling of shapes.

Since the publication of the Cook and McCrum data, in 1958,
for the rolling of flat products, this method has been widely
used tor the calculation of roll force and torque for hot
strip and other flat products mills. This method provides

the simplest and quickest way of making what, by the other
established formulae, are essentially laborious calculations.
The Céok and McCrum method of roll force and torque
calculations are based on Sims' theory of hot rolling. As

has been mentioned earlier, Sims based his theory on the

Von Karman and Orowan theories of rolling, with the additional
assumptions of small angles of contact, and sticking friction
over the entire arc of contact, and his theory is eminently
applicable to hot rolling of wide thin sheets or strip. Sims*
carried out, among other verifications, a comparison of

loads calculated by his theory with those obtained in tests
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by the S.K.F. Bearing Co. of Sweden. Figure 52 shows the
above comparison in the case of rolling 0-1% carbon steel
5.5, 4.4, 3.3, and 2.2 mm - thick and 85.5 mm. wide, rolled
in a four-high mill with work rolls of diameter 205 mm,
rotating at a speed of 150 r.p.m. It is seen that the
calcvlated values are grouped quite closely about the SKF
curve, with the loads increasing sliéhtly with entry
thickness. No correction was made for the elastic distor*ion
of the roll surface although, for 2.2 mm. thick strip,

the applied correction would increase the load by 4% at the

higher reductions.

To verify his formulae for the angular distribution of roll
pressure as given by Equations 3:8-1 and 3-8-2, Sims
calculated values of specific roll pressure for the cold
rolling of annealed copper, to compare against similar
calculations and pressure distribution curve prepared by
Cook and Larke based on Orowan's equations. The copper was
assumed to be 0.100 inch. initial thickness and was given

a 30% cold reduction between 18 inch diameter rolls. Cook
and Larke, in their calculations, applied Orowan's criteria
for sticking and slipping, while Sims assumed sticking friction
throughout the contact arc. Furthermore, Cook and Larke had
allowed for separately calculated values of yield stress for
each considered point on the contact arc, whereas Sims

employed a constant mean yield stress which he deduced from
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the yield stress variation curve. It was found that the diff-
erences between the two values are not great, and the mill

. loads calculated from them differ by less than 2%, although
there is a bigger variation in the calculated specific roll
pressure at different points on the arc. Figure 53 shows,
comparatively, the roll pressure distributions by the

Orowan and Sims methods.

Orowan's theory is generally accepted as the most comprehensive
qf all the theories of rolling proposed to this day, as it

does not make most of the simplifying assumptions present in
the other theories. However, the theoretical formulae for

roll force and torque proposed by him dre-very complicated

und not suitable, at present, for use in practical design

calculations.

It is thus proposed to select the Cook and McCrum method,
based on Sims' theory, for the calculation of roll forces

in hot flat rolling. In spite of the drawbacks of the yield
stress data obtained by Cam plastometer tests with uniaxial,
constant strain-rate compression, the calculated values of
roll force and torque are generally sufficiently accurate

for practical purposes. Furthermore, as discussed earlier,
the simplifying assumptions made in Sims' theory do not result
injappreciuble variations of calculated values from rolling

test data, or from calculations based on Orowan's theory.
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4.2 CASE STUDY: COMPARISON OF CALCULATED AND

MEASURED VALUES OF ROLL FORCE

Measurements were taken, during rolling operakions on
a 4-high Hot Strip Mill, of the various parameters involved
in roll force calculations, viz., strip width, thicknesses
" before and after reduction in each pass, strip temperature,
roll r.p.m., work roll diameter and material specifications.

The roll separating force at each pass was also recorded.

4.2 1 DESCRIPTION OF ROLLING SETUP

The measurements and other data were taken during
the hot rolling of low-carbon steel strip on a 27" and
49" x 66“ 4-High Reversing Hot Strip Mill equipped with a
Hydraulic Automatic Gauge Control System which works in
conjunction with an X-Ray Thickness Gauge located on the
exit side of the mill. Strip temperature, during the
reversing rolling operations, is maintained reasonably
constant by means of reheat furnaces which enclose the coiling
mandrels located on either side of the millstand. The 4-High
Mill receives its stock from a combination of a vertical
edging mill and a 2-High slabbing mill, which reduce the
heated slabs and ingots to a thickness suitable for the final
strip rolling operation. The work rolls of the 4-High mill
are driven by a 5000 h.p. D.C. motor, through a 1:1 ratio

pinion stand.
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Pass settings for the work rolls, i.e., the gap between them,
are done by remote control from the operator's pulpit and are
achieved to within very close tolerances by means of a position
transducer which forms part of the Automatic Gauge Control
System. Deviations of strip thickness, from the pass settings
are monitored by the X-Ray Thickness Gauge, and are generally

found to be negligibly small.

The roll separating force during rolling was obtained from
"the output signals of the two pressure transducers which
sense the pressure in the two hydraulic capsules located
between the top backup roll chocks and the housing screws.
The speed of the motor was obtained from the output signal

of a tacho-generator driven from the rotor shaft. The traces
of these variables were recorded by means of a Honeywell

906 Visicorder, and are shown in Figures 54 and 55. The
temperature of the strip at each pass was also noted from
readings of an optiéol pyrometer mounted on the mill.
Figure 56 gives a schematic representation of the rolling tests

as described in the preceding lines.

4.2.2 EXPERIMENTAL AND CALCULATED RESULTS

Table 2 shows the measured data as obtained during
the tests. The figures for motor speed are scaled off from
the visicorder charts and the average values are taken when
the motor attains a steady speed after reversal and accele-

ration. The total roll force is deduced by scaling off and
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adding the ordinates of the traces obtained from the output
signals of the two pressure transducers, one for each

hydravlic capsule.

Table 3 shows the values of the roll forces as calculated
from the input data, using the Cook and McCrum method. The
mean strain rate is calculated from the figures for roll
diameter, roll speed, ingoing and outgoing strip thicknesses
using curves based on Wusatowski's (50) formula, for mean

" strain rate under "Sticking" conditions, as given in equation
2.5.3-4. The variation of roll force with each pass, in both
measured and calculated values, is shown in Figure 57. Some
typical calculations and procedure to arrive at roll force

is given below.

4.2.3 TYPICAL CALCULATION OF ROLL FORCE

Detailed calculations are given below for roll force
determination in Pass 1, using the Cook and McCrum formulae
and graphs for P, Cp and Ip and using Wusatowski's graphs

(2 ) for strain-rate:

We have: hy = 0.670"
hp, = 0.455"
R = 26.25/2 = 13.13"
Temperature T = 1720° F = 940°C
Hence R . 28.8, r = .322
)
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Using Wusatowski's curves,
Strain rate qg = 0.325 x 152.3 = 49.5 sect

From Cook and McCrum's curves,

Ip at 900°C = 20.6 long tons
Ip at 1000°C = 17.4 long tons

By extrapolation between these values, we get
I, at 940°C = 20.6 - (20.6 - 17.4) x 0.4
= 19.32 long tons
.Hence Roll force P = R.Cp.Ip;b
= 13.13 x .123 x 19.32 .1.12x46.875
or P = 1640 short tons.
Here, the effect of roll flattening is neglected, due to
conditions of hot rolling,.however, marginally higher

accuracy can be obtained by considering this effect.

4.2.4 DISCUSSION OF RESULTS

As is seen from Figure 57, there is reasonably
good agreement between experimental and calculated values
of roll force in the first, third and fifth passes, while
appreciable differences exist in the values for the second
and fourth passes. This is partially attributed to inaccurate
temperature readings uf these two passes, caused by the fact
that the measuring optical pyromefer is located on the entry
side for passes 1, 3 and 5 whereas for passes 2 and 4 it

measures the temperature of the strip on the exit side.

The accuracy of the pyrometer reading for Passes 2 and 4 is
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affected by the creation of a cloud of powdered scale and

steam at the entry of the strip into the roll gap.

We find also that, while the calculated roll forces for
passes 1 and 3 are higher than the corresponding measured
values, pass 5 shows a calculated value which is lower than
that measured. Furthermore, pass 4 shows a larger percentage
difference between the calculated and measured values than
does pass 2. It is possible to conclude that there is a
.groduul deterioration in accuracy of calculated values of
roll force at higher strain rates, as existing in passes 3,

4 and 5, by the Cook and McCrum method. This has also“been
observed by Dahl (45) and Weinstein (8), in their experiments
by rolling tests and the plane-strain drop test, by which it
was found that there was an increasing difference between
measured values of Ip as compared to the corresponding Cook
and McCrum data, for strain-rates greater than 70 sec-l.

This variation between calculated and actual values, with
higher strain rates, would create increasingly serious
discrepancies in the case of modern, continuous hot strip
mills where finishing speeds and strain rates are much higher

than those for the reversing mill featured in this case study.
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CHAPTER 5
CONCLUSION AND RECOMMENDATION FOR FURTHER WORK

5.1 CONCLUSION

The mechanical forming of metals by rolling is
perhaps the most widespread and productive method
used in the metals industries for production of
finished and semi-finished strip, sheet, plate, merchant
bar and structural shapes. Basically comprising of a
process by which metal is reduced in cross-section and
shaped by passage through a pair of powered cylindrical
rolls, rolling mills of today have reached a high degree
of sophistication in general design, drive systems,

gauge and shape control, roll metallurgy, etc.

In the preceding pages, the author has attempted to
present, in a broad spectrum, the diverse and complex nature
and influence of the many variables that radically affect the
deformation of metals by rolling. As is evident, most of the
theoretical work so far has been concentrated on the flat
rolling of metals at elevated and ambient temperatures, i.e.,
under the conditions where the assumption of plane-strain
compression can be made with consequent partial simplification
of the analysis. When this assumption cannot be made, i.e.,
in the rolling of structural sections and merchant bars and
shapes, the analysis becomes increasingly complex. Much of

the formulae and roll pass designs used in this latter case



-149-

are based on empirically derived conclusions based on

operating experience, and little or no theoretical work

is available on the subject. It is easy to appreciate

the need and importance of intensive and continuous research
into the mechanics of the rolling process, in order to arrive
at a sound and practical basis for the economic design and
manufacture of machinery which, in spite of the several
handicaps in analysis, have reached an advance stage of

sophistication in performance and control.

5.2 RECOMMENDATION FOR FURTHER WORK

As stated earlier, theories and formulae on roll force
and torque determinufion, in order to be of any practical
use, have to make several simplifications and assumptions
which may often lead to major discrepancies. It is generally
acceptgd that Orowan's theory has, to date, provided the
soundest theorétical approach towards explaining the rolling
process. However, because of the complex and laborious
calculations, it has served only as a basis for the
development of more simplified theories proposed by later
researchers. With the availability, today, of high-speed
iterative computation techniques through the use of present-
day computers, it is §uggested that further work should be
vndertaken, to arrive at different forms of the Orowan
equations suitable for computer solution. Standard computer

programs should be developed whereby, by suitable substitution
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of initial or intermediate parameters, solutions can be

obtained for the widest possible range of rolling conditions.

One of thé principal drawbacks of the present status of roll
force calculations, is the unavailability of reliable and
meaningful data for the yield stress of metal at elevated
temperatures, under the rolling conditions. The plane-
strain drop test (8) has shown that the possibility exists,
of acquiring this information through test apparatus and
indenters designed to simulate, as closely as possible, the

process of deformation by rolling.

Further work is thus proposed, for investigation and

future research, to perform the analysis of rolling

problems vsing Orowan's equations applied to computer
solution and yield stress data established by the plane-
strain drop test, to supply the same wide extent of .
information as is presently available through the B.I.S.R.A.

publication of Cook and McCrum's data.
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