arXiv:0907.2640v3 [cs.PL] 21 Dec 2009

TOWARDS HYBRID INTENSIONAL PROGRAMMING
WITH JLUCID, OBJECTIVE LUCID, AND GENERAL
IMPERATIVE COMPILER FRAMEWORK IN THE GIPSY

SERGUEI A. MOKHOV

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
For THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

OCTOBER 2005
(© SERGUEI A. MoKHOV, 2005

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Serguei A. Mokhov
Entitled: Towards Hybrid Intensional Programming with JLucid, Objec-
tive Lucid, and General Imperative Compiler Framework in the

GIPSY
and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining committee:

Chair
Dr. H.F. Li

Examiner
Dr. P. Grogono

Examiner
Dr. P. Chalin

Supervisor
Dr. J. Paquet

Approved

Chair of Department or Graduate Program Director

20

Dr. Nabil Esmail, Dean

Faculty of Engineering and Computer Science

Abstract

Towards Hybrid Intensional Programming with JLucid, Objective
Lucid, and General Imperative Compiler Framework in the GIPSY

Serguei A. Mokhov

Pure Lucid programs are concurrent with very fine granularity. Sequential Threads
(STs) are functions introduced to enlarge the grain size; they are passed from server
to workers by Communication Procedures (CPs) in the General Intensional Program-
ming System (GIPSY). A JLucid program combines Java code for the STs with Lucid
code for parallel control. Thus first, in this thesis, we describe the way in which the
new JLucid compiler generates STs and CPs. JLucid also introduces array support.

Further exploration goes through the additional transformations that the Lucid
family of languages has undergone to enable the use of Java objects and their mem-
bers, in the Generic Intensional Programming Language (GIPL), and Indexical Lucid:
first, in the form of JLucid allowing the use of pseudo-objects, and then through the
specifically-designed the Objective Lucid language. The syntax and semantic def-
initions of Objective Lucid and the meaning of Java objects within an intensional
program are provided with discussions and examples.

Finally, there are many useful scientific and utility routines written in many im-
perative programming languages other than Java, for example in C, C++, Fortran,
Perl, etc. Therefore, it is wise to provide a framework to facilitate inclusion of these
languages into the GIPSY and their use by Lucid programs. A General Imperative
Compiler Framework and its concrete implementation is proposed to address this

issue.

il

Acknowledgments

I would like to thank my supervisor Dr. Joey Paquet and Dr. Peter Grogono for ever
lasting patience and caring guidance throughout the variety of learning experience and
their advices and insightful comments to make these contributions possible. 1 would
also like to thank my friendly team members with whom we together were lifting the
complex GIPSY system off the ground. Specifically, I would like to mention Chun
Lei Ren, Paula Bo Lu, Ai Hua Wu, Yimin Ding, Lei Tao, Emil Vassev, and Kai
Yu Wan for outstanding team work. Thanks to Dr. Patrice Chalin for an in-depth
introduction to semantics of programming languages. Thanks to Dr. Sabine Bergler
and Dr. Leila Kosseim for the journey through the internals of natural language
processing side related to this work. Thanks to my beloved Irina for helping me to
carry through.

This work has been sponsored by NSERC and the Faculty of Engineering and
Computer Science of Concordia University, Montréal, Québec, Canada. This docu-
ment was produced in KTEX with the guidance of Dr. Grogono’s manual in [Gro01]
and Concordia University KTEX thesis styling maintained by Steve Malowany, Stan

Swiercz, and Patrice Chalin.

v

Contents

List of Figures
List of Tables

1 Introduction
1.1 Thesis Statement
1.2 Contributions
1.3 Scope of the Thesis oL
1.4 Structure of the Thesis

H W8 BEH- E E

2 Background

2.1 Intensional Programming
2.2 The Lucid Programming Language
2.2.1 Brief History and The Family
2.2.2 Indexical Lucid
2221 Streams

2.2.2.2 Basic Operators.

2.2.2.3 Sequentiality Problem

2.2.2.4 Random Access to Streams L.

2.2.2.5 Definition of Lucid Operators By Means of @ and #

2.2.2.6 Abstract Syntax of Lucid

2.2.2.7 Concrete GIPL Syntax

2.2.2.8 Semantic Rules

2.2.2.9 Examples of Lucid Programs

223 LucidNow

2.3 Hybrid Programmingo

EEEHEEEEEE BEcoaaocs

231 MLco
232 FCH+ . .o
233 GLUo
234 GLU# . .. oo
2.4 Compiler Frameworks
2.5 General Intensional Programming System
2.5.1 Introduction oo
252 Goals.
2.5.3 General Intensional Programming Compiler
2.5.4 General Eduction Engineo

2.6.2
2.6.3
2.6.4
2.6.5
2.6.6

2.6.7

2.5.4.1 Demand Propagation Resources for the GEE

2.5.4.2 Synchronization L.
Run-time Interactive Programming Environment
Java as a Programming Language
2.6.1.1 Java Reflection
2.6.1.2 Java Native Interface (JNI)
26.1.3 JUnito
javacc — Java Compiler Compiler
MARF . . .
CVS .
Tomecat
Build Systemo
2.6.6.1 Makefiles oL
2.6.6.2 Eclipse.
2.6.6.3 JBuilder
2.6.6.4 Ant
2.6.6.5 NetBeans,
readmediro

2.7 Summary

3 Methodology
3.1 JLucid: Lucid with Embedded Java Methods

3.1.1

Rationale

vi

D3|

29
29
09

3.1.1.1 Modeling Non-Determinism 44

3.1.1.2 Loading Existing Java Code with embed() 44

3.1.1.3 The #JAVA and #JLUCID Code Segments 47l

3.1.1.4 Is JLucid an Intensional Language? 531

3.1.2 Syntax 531}
3.1.3 Semantics H2]

3.2 Objective Lucid: JLucid with Java Objects H3l
3.2.1 Rationale B3
3.2.1.1 Pseudo-Objectivism in JLucid 53l

3.2.1.2 Stream of Objects 64

3.2.1.3 Pure Intensional Object-Oriented Programming . . . [56]

3.2.2 Syntax Hol
3.2.3 Semantics Hol

3.3 General Imperative Compiler Framework 60}
3.3.1 Rationaleo (0]
3.3.2 Matching Lucid and Java Data Types. 63}
3.3.3 Sequential Thread and Communication Procedure Generation 64l
3.3.3.1 Java Sequential Threads 64}

3.3.3.2 Java Communication Procedures 65}

3.3.3.3 C Sequential Threads and Communication Procedures

with the JNI 00|

3.3.3.4 Worker Aggregator Definition in the Generator-Worker
Architecture 67
3.4 Summary ... 6]
34.1 Benefits 6O
3.4.2 Limitations Lo 69l
4 Design and Implementation rd0)
4.1 Internal Design [7Q
4.1.1 General Intensional Programming Compiler Framework [0
4.1.1.1 General Imperative Compiler Framework [Tl
4.1.1.2 Generalization of a Concrete Implementation [T

4.1.1.3 Resolving Generalization Issues and Binary Compat-
ibility [74]

vil

4.1.1.4 GIPC Preprocessor [79

4.1.1.5 GIPSY Type System 3]
4.1.1.6 GICF Design 5]
4.1.1.7 Intensional Programming Languages Compiler Frame-
work ...
4.1.1.8 Sequential Thread and Communication Procedure In-
terfaceso 01
4.1.1.9 GIPC Design 88|
4.1.1.10 GIPC Class as a Meta Processor OT]
4.1.1.11 Calling Sequence 911
4.1.1.12 Compiling and Linking 97l
4.1.1.13 Semantic Analyzer O8]
4.1.1.14 Interfacing GIPC and GEE and Compiled GIPSY Pro-
<02 0 0 99
4.1.2 JLucid 10T
4.1.21 Designo o1l
4.1.2.2 Grammar Generation 102
4.1.2.3 Free Java Functions and Java Compiler. 103l
4.1.24 Arrays [104]
4.1.2.5 Implementing embed()
4.1.2.6 Abstract Syntax Tree and the Dictionary
4.1.3 Objective Lucido 106]
4.1.31 Design 107
4.1.3.2 Grammar Generation 107
4.1.3.3 Object Instantiation 107
4.1.3.4 The Dot-Notation 108
4.1.3.5 Abstract Syntax Tree and the Dictionary 108
4.1.3.6 Objects as Arrays and Arrays as Objects 109
4.2 External Design
4.2.1 User Interface
4.2.1.1 WebEditor — A Web Front-End to the GIPSY [1IZ
4.2.1.2 GIPSY Command-Line Interface 114
4.2.1.3 RIPE Command-Line Interface

viil

4.2.1.4 GIPC Command-Line Interface 116l

4.2.1.5 GEE Command-Line Interface 118

4.2.1.6 Regression Testing Application Command-Line Inter-
face 119
4.2.2 External Software Interfaces 120
4221 JavaCCAPL 120
4.2.2.2 MARF Library APT 122]
4.2.2.3 Servlets APL 126
4.2.3 Architectural Design and Unit Integration 120
4.2.3.1 GIPSY 126
4.2.3.2 GIPSY Exceptions Framework 128
4233 GEEDesign. 129
4.2.34 RIPE Design
4.2.3.5 Data Flow Graphs Integration 133
4.3 Summaryo 135
Testing 136
5.1 Regression Testing Lo 1306l
5.1.1 Imtroduction 136]
5.1.2 Regression Testing Suite 137
5.1.2.1 Unit Testing with JUnit 137
5.1.2.2 Unit Testing with diff 137
51.23 Tests. 137
5.2 Portability Testing 138
5.3 Solving Problems 139
53.1 Prefix Sum 139
5.3.2 Dining Philosophers L. 44
5.3.3 Fast Fourier Transform 47
5.3.3.1 Fast Fourier Transform in JLucid. 47

5.3.3.2 Fast Fourier Transform code fragment in Java from
MARF. 149
534 Moving Car
53,5 Gameof Life 158
5.4 Summary 160l

X

6 Conclusion 161

6.1 Results. 16Tl
6.1.1 Experiments 161

6.1.2 Interpretation of Results 16T

6.2 Discussions and Limitations,
6.2.1 Lack of Hybrid Intensional-Imperative Semantics Proofs . . .
6.2.2 Genuine Imperative Compilers 1621
6.2.3 Cross-Language Data Type Mapping
6.2.4 Dimension Index Overflow
6.2.5 Hybrid-DFG Integration 163
6.2.6 Dealing With Side Effects and Abrupt Termination 163
6.2.7 Imperative Function Overloading 163
6.2.8 Cross-Imperative Language Calls 163
6.2.9 Security 164

7 Future Work 165
7.1 Formal Verification of Semantic Rules and the GIPSY Type System . [166l
7.2 Dealing with Data Flow Graphs in Hybrid Programming 1606l
7.3 Security 166]
7.4 Implementation of the C Compiler in GICF 167
7.5 Fully Explore Array Properties 1671
7.6 Genuine Imperative and Functional Language Compilers 167]

7.7 Visualization and Control of Communication Patterns and Load Bal-

ANCING 167

7.8 Target Host Compilation 168
7.9 The GIPSY Screen Saver 163
7.10 The GIPSY Server 163
Bibliography 169l
Appendix 078
A Definitions and Abbreviations 78
A.1 Abbreviations 078

B Sequential Thread and Communication Procedure Interfaces

B.1

Sequential Thread Interface . .

B.2 Communication Procedure Interface

B.3 Generated Sequential Thread Wrapper Class

B.4 Sample Worker’s Implementation

C Architectural Module Layout
C.1 GIPSY Java Packages and Directory Structure

C.2

GIPSY Modules Packaging . . .

D Grammar Generation Scripts for JLucid and Objective Lucid

D.1
D.2
D.3
D4
D.5

Index

jlucid.sh
JGIPL.sh
JIndexicallucid.sh
ObjectiveGIPL.sh

ObjectiveIndexicallucid.sh

xi

[I8T1]
I3T]
1811
[I8T]
187

[189]
189
1911

193]
193]
194
194
195)
195]

196

List of Figures

© 00 I O Ot = W N =

e e e e e e
S O = W NN = O

17
18
19
20
21
22
23
24
25

Concrete Indexical Lucid Syntax
GIPL Expressions
GIPL where Definitions
Concrete GIPL Syntax
Operational Semantics of GIPL
Natural numbers problem in Indexical Lucid.
Natural numbers problem in GIPL.
Indexical Lucid program implementing the merge () function.
The GIPSY Logo representing the distributed nature of GIPSY. . . .
Structure of the GIPSY
Initial Conceptual Design of the GIPC
Conceptual Design of the GEE
Conceptual Design of the RIPE
Tomcat Web Applications Manager
Indexical Lucid program implementing the merge () function.
Indexical Lucid program implementing the merge () function as inline Java
method.
Indexical Lucid program implementing the merge () function as embed(). .
[llustration of the embed () syntax.
Generated corresponding ST to that of Figure |18,
Inline Java function declaration.
Java method declaration split out from the Lucid part.
Natural numbers problem in plain GIPL.
Natural numbers problem with two Java methods calling each other.

Generated Sequential Thread Class.
JLucid Extension to GIPL Syntax

xii

24
20

o0

26
27
28
29
30
31
32
33
34
35
36
37

38

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5}
56

JLucid Extension to Indexical Lucid Syntax
Additional basic semantic rules to support JLucid
Pseudo-objectivism in JLucid.o
Using pseudo-free Java functions to access object properties in JLucid.

Objective Lucid example. oo
Objective Lucid Syntaxo
Additional basic semantic rules to support Objective Lucid
Hybrid GIPSY Program Compilation Process
Generator-Worker Architecture
Example of a hybrid GIPSY program.
Another example of a hybrid GIPSY program.
Original Framework for the General Intensional Programming Com-
piler in the GIPSY
Modified Framework for the General Intensional Programming Com-
piler in the GIPSY
The FormatTag APL.
The GIPC Preprocessor.
Preprocessor Grammar for a GIPSY program.
GIPSY Type System.o
GICF Design.
IPLCF Design.
SIPL to GIPL Translator Integration.
Sequential Thread and Communication Procedure Class Diagram. . .
All GIPC Compilers.
Overall GIPC Design.
Sequence Diagram of GIPSY Program Compilation Process.
Sequence Diagram of Intensional Compilation Process.
Sequence Diagram of Imperative Compilation Process.
Semantic Analyzer.o
Class diagram describing GIPSYProgram.
JLucid Design.o
JLucid Compilation Sequence.

Java Compilation Sequence.

xiii

57
o8
29
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
5
76
7
78
79
80
81
82

Objective Lucid Design. 106!

Objective Lucid Compilation Sequence. 107
GIPSY WebEditor Interface. 113}
JavaCC- and JJTree-generated Modules Used by Several GIPC Modules.[T121]
MARF Utility Classes used by the GIPSY. 123
Dictionary and DictionaryItem API 124
Dictionary Usage within the GIPSY 125]
GIPSY Main Modules. [127]
GIPSY Exceptions Framework. 128
GEE Design. 130

The Demand Dispatcher Integrated and Implemented based on Jini. . [137]
Integration of the Intensional Value Warehouse and Garbage Collection[I32]

RIPE Design. 133
DFG Integration Design. 134
Pseudocode of a thread j for the Prefix Sum Problem.. 139
The Prefix Sum Problem in JLucid in GIPL Style. o9
The Prefix Sum Problem in JLucid in Indexical Lucid Style. 143
Objective Lucid example of a Car object that changes in time. 153
Eduction Tree for the Natural Numbers Problem. 155
The Natural Numbers Problem in Objective Lucid. 1L o0
Eduction Tree for the Natural Numbers Problem in Objective Lucid. [I57]
The Life in Haskell. 0 o 16K
The Life in Indexical Lucid. 1109
Sequential Thread Interface.
Communication Procedure Interface. 183l
GIPSY Java Packages Hierarchy. 190

Xiv

List of Tables

1 Matching data types between Lucid and Java
2 Correspondence of the GIPSY . jar files and

XV

the modules.

Chapter 1

Introduction

1.1 Thesis Statement

In the previous prototype of the General Intensional Programming System (GIPSY)
there existed limitations to its potential in distributed computing — lack of sequential
threads and communication procedures. Additionally, the capabilities of Indexical
Lucid and GIPL, the primary GIPSY’s languages, were limited to only computing
aspects without input/output, arrays, and some other essential features (e.g. math,
non-determinism, dynamic loading) that exist in imperative (e.g. Java) languages.
We discuss an extension to Generic Intensional Programming Language (GIPL) and
Indexical Lucid with embedded Java — JLucid. A few problems are solved as an
example using the enhanced language.

JLucid brings embedded Java and most of its powers into Indexical Lucid in the
GIPSY by allowing intensional languages to manipulate Java methods as first class
valued'] However, it is very natural to have objects with Java and manipulate their
members in scientific intensional computation, yet JLucid fails to support that Java’s
capability. Hence, we design Objective Lucid to address this deficiency. We define the
operational semantics of Objective Lucid, and give some examples of its application.

Existence of JLucid, Objective Lucid, and GLU as well as many useful libraries
written in other imperative languages, such as C/C++, Perl, Python, Fortran etc.

demanded ability to use code written in those languages by intensional programs,

IThe Java methods are not referred to as “functions” as in functional programming — the Java
methods can be passed around as values inside the Lucid part, but not to or from Java part of a
GIPSY program.

naturally. Thus, we design a first version of the General Imperative Compiler Frame-
work (GICF) as a part of the GIPSY to allow GIPSY programs to use virtually any
combination of intensional and imperative languages at the meta level. This is a very
ambitious goal; therefore, the proposal is the first iteration of the framework open for
later refinements as it matures along with the corresponding changes to the run-time

system.

1.2 Contributions

Primary contributions of this thesis are outlined below:

JLucid

— Semantics of pseudo-free Java methods in Lucid programs

— Design and implementation of JLucid and its compiler in the GIPSY

Objective Lucid

— Semantics of the integration of Java objects in Lucid programs

— Design and implementation of the Objective Lucid compiler

General Imperative Compiler Framework

— Design and Implementation of the GICF

— Embedding of a Java compiler in the GICF

WebEditor to edit, compile, and run GIPSY programs online

System Architecture Issues
— Rework and refactoring of most existing system design, both at the archi-
tectural and detailed design levels
— Major rework of the architecture and detailed design of GIPC
— Java sequential threads generation

— Threaded and RMI communication procedures generation

— GIPSY Type System{
— GIPSY Exceptions Framework
— Regression Testing Infrastructure

— Unit Testing Automation with JUnit

The last contributed items touch the rest of the GIPSY, the components and
modules done by other team members. The integration performed (outside of the
main scope of this thesis) demanded extensive testing. Without the integration and
testing work, these other contributions wouldn’t be possible. This also includes de-
veloping and enforcing Coding Conventions and setting up project’s CVS repository
[Mok05bl, Mok03al [Mok03b| for the entire project as this work is to become a manual

for the current and future GIPSY developers and researchers.

1.3 Scope of the Thesis

While the Contributions section outlines the major work done, the below explains

what was not done or exhibits some limitations at the time of this writing:

e Integrated imperative compilers aren’t native to the GIPSY, instead we call
external compilers, such as javac, gcc, g++, nmake.exe, bc.exe, perl, etc.

depending on a platform.

e Even though the mechanism was designed and implemented to generate CPs and
STs, only two of the concrete implementations of the actual CPs were done: for
local execution and distributed execution by extending the RMI implementation
done by Bo Lu. The other implementations of CPs for Jini, DCOM+, CORBA
and others are being worked on by other team members at the time of this

writing.

e Semantic rules to have Java objects in Objective Lucid have been developed,

but have not been formally proven to be correct.

2Though the type system may seem not to be related to the architecture, but it impacted the
design most of the main modules in it, so it was classified as architectural.

e When presenting GICF and the Preprocessor syntax, no semantic rules are
given for any of parts of the hybrid programs, except for JLucid and Objective

Lucid, i.e. the semantics of integrated Java itself or C constructs, etc.

e JLucid and Objective Lucid are still in their experimental stage of development

and it will take some time before they mature.

1.4 Structure of the Thesis

The next chapter provides the necessary background on the Lucid family of languages,
its history, operational semantics, compiler frameworks, and hybrid programming.
Then, it gives the context of this thesis, the GIPSY system, and the tools and tech-
niques employed to make the contributions possible. The core of this thesis is based
on three publications, namely [MPGO05, IMP05b, IMP05a]. Chapter [3| describes the
approach and methodology used to overcome and provide a solution to the prob-
lems stated in Section [I.1] Then, the design implementation details are presented in
Chapter [Chapter [5] introduces the Regression Testing Suite for GIPSY and what
kinds of tests were performed and their limitations. Finally, Chapter [6]and Chapter
conclude on the work done, discuss the results and limitations of the implementation,
and lay down some paths towards enhancing the GIPSY in various areas further. At
the end, there is a list of references, Bibliography, and an Appendix with most com-
mon abbreviations found in this work, CP and ST interfaces, JLucid and Objective

Lucid grammar generation scripts, etc., followed by an overall index.

Chapter 2
Background

While there is a complete and comprehensive set of references in the Bibliogra-
phy chapter that was a great deal of help to the creation of this work, there are
some keynotes that require special mention. The following are some of the re-
lated readings that were sources of inspiration and invaluable informational food
for thought. These include Joey Paquet’s PhD thesis “Scientific Intensional Pro-
gramming” [Paq99], related hybrid intensional-imperative programming in various
GLU-related work, such as [JD96, .JDA9T]|, other recent hybrid programming papers,
such as [PK04, MS01], [SM02], the PhD thesis of Paula Bo Lu [Lu04] and other theses
of the GIPSY group, such as [Ren02], [Din04, [Tao04, Wu02|, and semantics of program-
ming languages in [Gro02al, [HJ02, [Moe04]. Additionally, since this work also deals
with compiler frameworks, a general overview of existing frameworks is presented.
An on-line encyclopedia, Wikipedia [WSoafaotw05], was a valuable resource for the
background and literature review, some of which is summarized in the sections that

follow.

2.1 Intensional Programming

Intensional programming is a generalization of unidimensional contextual (also known
as modal logic [Card7, Kri59l [Kri63]) programming such as temporal programming,
but where the context is multidimensional and implicit rather than unidimensional

and explicit. Intensional programming is also called multidimensional programming

because the expressions involved are allowed to vary in an arbitrary number of di-
mensions, the context of evaluation is thus a multidimensional context. For example,
in intensional programming, one can very naturally represent complex physical phe-
nomena such as plasma physics (e.g. in Tensor Lucid in [Paq99]), which are in fact
a set of charged particles placed in a space-time continuum that behaves according
to a limited set of laws of intensional nature. This space-time continuum becomes
the different dimensions of the context of evaluation, and the laws are expressed nat-
urally using intensional definitions [Paq99]. Joey Paquet’s PhD thesis discusses the
syntax and semantics of the Lucid language, designs GIPL and Tensor Lucid. While
we omit the Tensor Lucid part, the reader is reminded about the basic properties of
the Indexical Lucid and GIPL languages in the follow up sections in greater detail to

provide the necessary context for the follow up work in Chapter [3| and Chapter

Intensional Logic

Intensional programming (IP) is based on intensional (or multidimensional or modal)
logic (where semantics was applied first by [Car47, [Kri59, [Kri63]), which, in turn, are
based on Natural Language Understanding (aspects, such as, time, belief, situation,
and direction are considered). IP brings in dimensions and context to programs
(e.g. space and time in physics or chemistry). Intensional logic adds dimensions
to logical expressions; thus, a non-intensional logic can be seen as a constant or a
snapshot in all possible dimensions. Intensions are dimensions at which a certain
statement is true or false (or has some other than a Boolean value). Intensional

operators are operators that allow us to navigate within these dimensions.

Temporal Intensional Logic

Temporal intensional logic is an extension of temporal logic that allows to specify the
time in the future or in the past.
(1) E;y := it is raining here today
Context: {place:here, time:today}
(2) Es := it was raining here before(today) = yesterday
(3) Ej5:=it is going to rain at(altitude here + 500 m) after(today) = tomorrow

Let’s take E) from (1) above. Then let us fix here to Montreal and assume it is

a constant. In the month of March, 2004, with granularity of day, for every day, we

can evaluate F; to either true or false:

Tags: 123456789 ...
Values: FFTTTFFFT ...

If you start varying the here dimension (which could even be broken down into

X, Y, Z), you get a two-dimensional evaluation of Ej:

City / Day 123456789 ...
Montreal FFTTTFFFT ...
Quebec FFFFTTTTFF ...
Ottawa FTTTTTFFF ...

The purpose of this example is to remind the reader the basic ideas behind in-
tensions and intensional programming and what dimensionality is by using natural
language. What follows is formalization of the above in terms of the Lucid program-

ming language.

2.2 The Lucid Programming Language

Let us begin by introducing the Lucid language history and which features of it came
at different stages of its evolution to its present form. This is the necessary step to

further illustrate the purpose of this thesis.

2.2.1 Brief History and The Family

From 1974 to Lucid Today:

1. Lucid as a Pipelined Dataflow Language through 1974-1977. Lucid was intro-
duced by Anchroft and Wadge in [AWT6l, AWT7]. Features:

e A purely declarative language for natural expression of iterative algo-
rithms.
e Goals: semantics and verification of correctness of programming languages

(for details see [AWT6l, [AWTT]).

7

e Operators as pipelined streams: one for initial element, and then all for

the successor ones.

2. Intensions, Indexical Lucid, GRanular Lucid (GLU, [JD96, [JDA9T]), circa 1996.
More details on these two dialects are provided further in the chapter as they
directly relate to the theme of this thesis. Features:

e Random access to streams in Indexical Lucid.

e First working hybrid intensional-imperative paradigm (C/Fortran and In-
dexical Lucid) in the form of GLU.

e Eduction or demand-driven execution (in GLU).
3. Partial Lucid, Tensor Lucid, 1999 [Paq99].

e Partial Lucid is an intermediate experimental language used for demon-

strative purposes in presenting the semantics of Lucid in [Pag99].

e Tensor Lucid dialect was developed by Joey Paquet for plasma physics
computations to illustrate advantages and expressiveness of Lucid over an

equivalent solution written in Fortran.
4. GIPL, 1999 [Paq99].

e All Lucid dialects can be translated into this basic form of Lucid, GIPL
through a set of translation rules. (GIPL is in the foundation of the exe-
cution semantics of GIPSY and its GIPC and GEE because its AST is the
only type of AST GEE understands when executing a GIPSY program).

5. RLucid, 1999, [GP99]
e A Lucid dialect for reactive real-time intensional programming.
6. JLucid, Objective Lucid, 2003 - 2005

e These dialects introduce a notion of hybrid and object-oriented program-
ming in the GIPSY with Java and Indexical Lucid and GIPL, and are

discussed great detail in the follow up chapters of this thesis.

7. Lucx [WAPOH], 2003 - 2005

e Kaiyu Wan introduces a notion of contexts as first-class values in Lucid,

thereby making Lucx the true intensional language.
8. Onyx [Gro04], April 2004.

e Peter Grogono makes an experimental derivative of Lucid — Onyx to in-

vestigate on lazy evaluation of arrays.
9. GLU# [PK04], 2004

e GLU# is an evolution of GLU where Lucid is embedded into C++.

2.2.2 Indexical Lucid

When Indexical Lucid came into existence, it allowed accessing context properties in
multiple dimensions. Prior Indexical Lucid, the only implied dimension was a set of
natural numbers. With Indexical Lucid, we can have more than one dimension, and
we can query for a part of the context (any dimensions of it). Thus, the syntactic
definition has been amended to include an ability to specify which dimensions exactly

we are working on.

2.2.2.1 Streams

Lucid variables and expressions are said to be streams of values, through which one
can navigate using some sort of navigational operators. In the natural language
example given earlier the operators were before(), after(), and at(); here we begin by
introducing first() and next() (very much like in LISP).

If the following equations hold}

e FIRST X =0

e NEXT X = X + 1 (like succ in LISP)

'Note, these are initial conditions of a definition to illustrate the ideas behind the streams and
not an actual declaration of constructs in the language one would normally write.

where 0 is a stream of 0’s: (0,0,0,...,0,...). Likewise, 1 is a stream of 1’s, and the ‘+’
operator performs pair-wise addition of the elements in the streams according to the

implied current dimension index. Thus, X is defined as a stream, such that:
o 1o=0,2,01 =x;+1, or
o X = (zg,x1,..., 2, ...) = (0,1, ...,7,...)
Similarly, if:
e FIRST X = X
e NEXT Y =Y+ NEXT X
Y here becomes a running sum of X:
® Yo = To;Yit1 = Yi T Tiy1

o Y = (Yo,Y1, -, Yir...) = (0,1, ..;i(i + 1)/2,...)

2.2.2.2 Basic Operators

This section defines properties of basic Lucid operators, which were proven by Paquet
in [Paq99].

Operator FBY. Operator FBY stands for “followed by”. FBY allows simply to sup-
press dimension index and switch to another stream. As an example the previously

shown streams X and Y can be defined as follows using FByY:
e X=0FBY X+1=1(0,1,2,...,4,...)
o V=X FBY Y+ NEXT X = (0,1,...,i(: +1)/2,...)

To provide an analogy to lists, we can say that that the following operators are

equivalent:
e FIRST and hd
e NEXT and tl
e FBY and cons

10

Informal Definition of FIRST, NEXT, FBY.
e Definitions:
— FIRST X = (x¢, o, ..., T, ---)
— NEXT X = (21, %2, e, Tit1, .-
— X FBY Y = (20, Yo, Y1y s Yi1, ---)

e These are the three operators of the original Lucid.

e Indexical Lucid has come into existence with the ability to access an arbitrary

element by some index ¢ in the stream.

Operators wvr, Asa, and upon. The other three operators that are slightly more
complex informally defined below:
e X wrY =
if FIRsSTY #0
then X FBY (NEXT X WVR NEXT Y)
else (NEXT X wVR NEXT Y)
e X asaY =FiIRrsT (X wvrY)
e X urPON Y =
X FBY
(if FIrsT Y # 0 then (NExT X upoNn NEXT Y') else (X uPON NEXT Y))
where wvr stands for whenever, Asa stands for as soon as and upon stands for advances
upon. WVR chooses from its left-hand-side operand only values in the current dimension
where the right-hand-side evaluates to true. Asa returns the value of its left-hand-side

as a first point in that stream as soon as the right-hand-side evaluates to true. Unlike

ASA, UPON switches context of its left-hand-side operand uf the right-hand side is true.

11

2.2.2.3 Sequentiality Problem

With tagged-token dataflows of the original Lucid operators one could only define an

algorithm with pipelined, or sequential, data flow:

e It is wasteful use of computing resources (e.g. to compute an element i we need

i — 1, but i — 1 may never be used/needed otherwise).

e Sequential access to the stream of values.

2.2.2.4 Random Access to Streams

New intensional operators are introduced to remedy the sequentiality problem: @
and #. The operators are used as an index # corresponding to the current position
that allows querying the current context, and @ is intensional navigation to switch
the context. With @ and +#:

e the computation is defined according to a context (here a single integer),

e Lucid is no longer a data-flow language and is on the road to intensional pro-

gramming, and

e the previously introduced intensional operators can be redefined in terms of the

operators # and Q.

12

In terms of the three original operators of FIRST, NEXT, and FBY the operators @ and

are defined as follows:

Definition 1

#=0FBY (#+1)
XQY = if Y =0 then FirsT X else (NExT X)Q(Y — 1)

Both X and Y in the above definition are variable streams, and their current values are
determined by their current context at the time of evaluation. To redefine the meaning

of @ and # Paquet uses the denotational form, with the following proposition:

Proposition 1

(1) [#i =1
(2) [XQY]; = [X]w),

(3

where (1) means the value of # at the current context i is ¢ itself (i.e. we query the
value of our current dimension), and (2) says that evaluate Y at the current context

7 and then use Y as a new context for X.

2.2.2.5 Definition of Lucid Operators By Means of @ and #

First we present the definition of the operators via @ and # denoted in monospaced
font, and then we will provide their equivalence to the original Lucid operators,

denoted as SMALL cCAPS.

Definition 2
(1) first X = X@0
(2) next X = XQ(# +1)
(3) X fby Y = if # = 0 then X else YQ(# — 1)
(4) X wvr Y = XQT where
T =U fby UQ(T + 1)
U =if Y then # else next U
end
(5) X asa Y = first (X wvr Y)
(6) X upon Y = XaQW
where W = 0 fby (if Y then (W + 1) else W) end

13

op =

mtensional-op =

-UNary-op =

i-binary-op =

data-op

unary-op =
binary-op

arith-op
rel-op
log-op

intensional-op
data-op

1-UNaTY-0p
1-binary-op

first | next | prev
fby | wvr | asa | upon

unary-op
binary-op

'| — | iseod

arith-op

rel-op

log-op

=1/ 1%
<|>|<=|>=|==]!=
&& | ||

Figure 1: Concrete Indexical Lucid Syntax

E ud

E(Ey, ... E,)

#E
EQFE'E"
E where @)

|
| if F then £’ else E”
|
|
|

Figure 2: GIPL Expressions

2.2.2.6 Abstract Syntax of Lucid

Abstract and concrete syntaxes of Lucid for expressions, definitions, and operators
are presented in Figure [2] Figure [3] and Figure [I] for both Indexical Lucid and GIPL.

2.2.2.7 Concrete GIPL Syntax

The GIPL is the generic programming language of all intensional languages, defined
by the means of only two intensional operators — @ and #. It has been proven that
other intensional programming languages of the Lucid family can be translated into
the GIPL [Paq99]. The concrete syntax of the GIPL is presented in Figure [l It

14

= dimension id

| Wd=F

| dd(idy,idy, ...,id,) = E
| QQ

Figure 3: GIPL where Definitions

E ::= id
| E(E,...,E) #LUCX
| E[E,...,E]J(E,...,E) #GIPL
| if E then E else E fi
| # E
I E @ [E:E] #GIPL
I EQE #LUCX
| E where Q end;
| [E:E,...,E:E] #LUCX
| iseod E; #INDEXICAL
Q ::= dimension id,...,id;
| id = E;
| id(id,....,id) = E; #LUCX
| id[id,...,id]J(id,....,id) = E; #GIPL
| QQ

Figure 4: Concrete GIPL Syntax

has been amended to support the isoed operator of Indexical Lucid for completeness
and influenced by the productions from Lucx [WAP05] to allow contexts as first-class
values while maintaining backward compatibility to the GIPL language designed by
Paquet in [Paq99.

2.2.2.8 Semantic Rules

Paquet’s PhD thesis [Paq99] presents details of the operational semantics of GIPL
recited here for the unaware reader with a brief description. Figure |5 provides initial
operational semantic rules for Indexical Lucid in Hoare Logic [Moe04, [HJ02]. Later
on, these rules are extended to support free Java methods and Java objects in JLucid

and Objective Lucid respectively in Chapter 3]

15

Notation

e D represents the definition environment where all symbols are defined (a dic-

tionary of identifiers).

e D, P I E : a represents current context of evaluation (a set of dimensions P)
and the dictionary that yields a specified result a under that context given

expression F.

e const, op, dim, func, and var represent what kind of construct types are put

into D as constants, operators, dimensions, functions, and variables respectively.

e the Ex;iq type of rules place different identifier types listed above into the defi-

nition environment D.

o the remaining Ey,,-style rules correspond to the execution (or rather application
of) of the operators, functions, and conditionals to their argument expressions
given the definition of them in D and the current context. Thus, Eqp speci-
fies application of a defined operator function f in the current context to its
arguments (usually one for unary operators and two for binary); Eg applies
the named function to its arguments translating the formal arguments to ac-
tual; E.,. and E., correspond to conditional evaluation of the then and else
branching clauses; Eat and Eg,g correspond to the universal intensional oper-
ators @ and # for switching of and querying for the current context; and Ey,

corresponds to the scope definition marked by the where clause.

e the Q-style rules allow definitions within the scope of the dimension Qgj, and

variable identifier Q;q types and their composition.

16

Ecia

Eopid

Egia

Efq

Eyiq

Eop

Efet

Ect

Ecp

Etag

Eat

Ew

Qdim

QQ

D(id) = (const,c)
D,PFid:c

D(id) = (op, f)

D,Ptid:id

D(id) = (dim)

D,PFid:id

D(id) = (func, id;, E)

D,Ptid:id

D(id) = (var, E) D,PFE:v
D.Prid:v

D,PFE:id D(id) = (op, f) D,PrFE;:v;
D,Pt+ E(E1,...,En): f(vi,...,vn)

D,P+E:id D(id) = (func,id;, E') D,Pt E'idi — E;] : v
D.PF E(Er,... . En):v

D,Pt E: true D,PFE :v
D, Pt if E then E’ else E" : v/

D,Pt+ E: false D,PFE" 2"
D,PF if E then E’ else E' : v"

D,PFE:id D(id) = (dim)
D,PF #E : P(id)

D,P+ E':id D(id) = (dim) D,P+E" :v" D,Pilid—v"|F E:v
D,PFEQE E":v

D,P+FQ : D, P D,P'FE:v
D,PF E where Q : v

D, P I dimension id : Dt[id — (dim)], Pt[id — 0]

D,Ptrid=FE : Dilid— (var, E)],P

D,PFQ . D/7P/ 'D/,P/FQ/:,DU,P”
D,PFQQ : D', P

Figure 5: Operational Semantics of GIPL

17

2.2.2.9 Examples of Lucid Programs

Two simple examples of Lucid programs are presented. The examples demonstrate
absence of iterative/sequential operation as opposed to the traditional imperative

programming languages.

Natural Numbers Problem An example program in Indexical Lucid that yields
44 as the result is in Figure [f] The way the program is expanded using the re-
definitions of the Lucid operators, such as fby, employing @ and # in GIPL is shown
in Figure [7]

N @.d 2
where

dimension d;

N = 42 fby.d (N + 1);
end;

Figure 6: Natural numbers problem in Indexical Lucid.

N @.d 2
where

dimension d;

N = if (#.d <= 0) then 42 else (N + 1) @.4 (#.d - 1) fi;
end;

Figure 7: Natural numbers problem in GIPL.

The Hamming Problem This example (see Figure |§)) illustrates the simple use

of functions in Lucid.

H
where
H = 1 fby merge(merge(2 * H, 3 * H), 5 x H);
merge(x, y) = if(xx <= yy) then xx else yy
where
xx = x upon(xx <= yy);
yy = y upon(yy <= xx);
end;
end;

Figure 8: Indexical Lucid program implementing the merge () function.

18

2.2.3 Lucid Now

To summarize, Lucid is a functional programming language where a variable (stream),
a function, a dimension, or even entire context can be a first class value (i.e. can
viewed and manipulated as data). Lucid provides operators, such as @ and #, to
navigate within dimensions and switch contexts. The language also exhibits the
eductive execution model (demand-driven distributed computation) that augments

the semantics with a warehouse (intensional value cache) and its consistencyﬂ.

2.3 Hybrid Programming

There have been previous approaches to couple intensional or functional and imper-
ative and object-oriented paradigms prior to this work. Some recent related work on
the same issue is presented in [BM96, PK04, MS01), SM02] with the [PK04] being the
most relevant. The two major approaches of addressing the OO issue are — either
(1) to extend Lucid to become object-oriented or objects-aware or (2) make a host
imperative language be extended to embed Lucid. The authors of [PK04|] chose the
latter by extending GLU-with-C to GLU#-with-C++, whereas this work approaches
the problem from Lucid to Java. This means a Lucid program is the main one driv-
ing the computation. We will briefly consider the following approaches to the hybrid

programming;:
o ML<
o FC++
e GLU

o CLU#

2Paquet defines the augmented operational semantics in [Paq99] and Tao implements its first
incarnation in GIPSY [Tao04]. This work has an impact on this aspect by introducing the side
effects with the imperative languages, which will be discussed later.

19

2.3.1 ML

ML< [BM96] is a system introduced in 1996 that proposed to marry OOP and func-
tional paradigms using their own language and providing the details of the predicative
and decidable typing rules and operational semantics of such a system. Their main
goal is to be able to induce implicit polymorphism of functional languages in objects.
They do not extend an existing functional language with the OO capabilities, in-
stead they reinterpret all data types as either abstract or concrete classes and use the

dynamic dispatch, a typical OO feature, on run-time types.

2.3.2 FC++

FC++ [MSO1, [SM02] tries to promote the functional paradigm in C4++. FC++ is a
library add-on to enable higher-order polymorphic functions in a novel use of C++
type inference that is not very complex and is still expressive. FC++ adds support for
both parametric and subtype polymorphism policies for functions in order to be able
to fit FC++ functions within the C++ object model and pass higher-order functions
as parameters. The FC++ functions are kept as objects called functoids and use
a reference counter machinery for allocation and de-allocation. Closures in FC++
(operation on a some state and the state itself) can automatically be created during
functoid object creation, but their “closing” of that state is not automatic and the
state values have to be passed explicitly during the creation process. The library also
adds a set of functional operators from the Haskell Standard Prelude. FC++ comes
more from the OOP-to-functional point of view and conforms with standard software

engineering design patterns and is suitable for the common OO tasks.

2.3.3 GLU

GLU was the most general intensional programming tool recently available [JD96].
However, experience has shown that, while being very efficient, the GLU system
suffers from a lack of flexibility and adaptability [Paq99]. Given that Lucid is evolving
continually, there is an important need for the successor to GLU to be able to stand
the heat of evolution [Paq99]. The two major successors of GLU are the GIPSY and
GLU# systems.

20

Eduction

The earlier mentioned notion of eduction was first introduced by the GLU compiler.
GLU supports so-called tagged-token demand-driven dataflow where data elements
(tokens) are computed on demand following a dataflow network defined in Lucid.
Data elements flow in the normal flow direction (from producer to consumer) and
demands flow in the reverse order, both being tagged with their current context of

evaluation. This form of lazy computation is inherited by GIPSY from GLU.

2.3.4 GLU#

GLU# [PKO04] is a successor of GLU, which enables Lucid within C++. The authors
argue for the embedding small functional/intensional-language pieces of Lucid into
C++ programs allowing lazy (demand-driven) evaluation of arrays and functions
thereby making Lucid easily accessible within a popular imperative programming
language, such as C++. Because GLU# appeared quite recently (2004) to when this
work was written, its success compared to GLU is yet to be evaluated; however, it
seems to suffer from the same inflexibility GLU did and targets only C++ as a host

language.

2.4 Compiler Frameworks

A significant number of compiler frameworks emerged for the past decade. All try to
enable compilation of more than one language, either hybrid or not, in an uniform
manner. Some frameworks or libraries became “frozen” (i.e. non-extendable) and
fixed to a specific set of languages, some other ones were build with the extension
in mind, so it is relatively easy to “plug-in” yet another compiler into the system
(a collection of compilers and the necessary tools) with minimum integration work

required. A brief overview of different compiler frameworks is given next:

e GLU tried to accommodate Fortran, C, and Lucid in one system, but was made
so inflexible [Paq99] that it would take a significant effort to extend it and add

other languages to the system.

e GLU# merges Lucid and C++4; however, makes no provisions for extension to

other languages on either intensional or imperative side.

21

e Microsoft .NET can also be thought of a commercial heterogeneous compiler
framework (it is more than a compiler framework, but our focus is on compil-
ers) that allows easy cooperation and application development between different
language models, such as C#, C++, Visual Basic, and Assembly in a homo-
geneous environment. However, none of these languages have natively any of
the intensional or functional capabilities, so no native debugging support or
other tools exist, even if one starts using FC++ or GLU# in this environment.
Despite the fact that all programs can be compiled into the common bytecode,
the debugging tools have to be aware of the functional paradigms on a higher

level and they are not (at least at this writing).

e The GNU Compiler Collection (GCC) can also be said as a compiler framework
from the free software [CP05]. It supports C, C++, Objective-C, Objective-
C++, Java, Fortran, and Ada. Again, these languages are more of an imperative
nature, but it is far easier to add new language into GCC than to Microsoft

.NET due to its openness.

e Finally, the GIPSY presents the GIPC framework that is designed for expan-
sion and integration of the intensional and imperative (and later functional)

languages. This is presented through the rest of this thesis.

22

O

2%

Figure 9: The GIPSY Logo representing the distributed nature of GIPSY.
2.5 General Intensional Programming System

2.5.1 Introduction

GIPSY is broadly presented in [WPGO03| [Lu04, PW05], and others. Please refer to
the online resources [RG05al, [PW05, [RG05b] to obtain the most current status of the
project. GIPSY is primarily implemented in Java. General GIPSY architecture is
presented in Figure [I0] The essence behind GIPSY is demand-driven computation
support for the intensional programming languages, e.g., Indexical Lucid, Tensor
Lucid [Paq99], etc.

The GIPSY consists in three modular sub-systems: the General Intensional Pro-
gramming Language Compiler (GIPC); the General Eduction Engine (GEE), and
the Intensional Run-time Interactive Programming Environment (RIPE). The sub-
systems have to be modular so that one implementation of parts of them or the whole
can be replaced by another without having major if any impact on the other modules.
Although the theoretical basis of the language has been settled, the implementation
of an efficient, general and adaptable programming system for this language raises
many questions. The following sections outline the theoretical basis and architecture
of the different components of the system. All these components are designed in a
modular manner to permit the eventual replacement of each of its components — at
compile-time or even at run-time — to improve the overall efficiency and productivity
of the system [Paq99].

A GIPSY instance sends out little bits of work to others to compute and then
gathers the results in distributed fashion. Of course, synchronization, latency toler-
ance, and maximum utilization of resources are primary goals for the system to be
productive. Unlike in most programming language models (see [ST98]) considered

for parallel computation, in GIPSY several key concepts are considered:

23

GIPSY

editor

2.5

Figure 10: Structure of the GIPSY

e Thread-Level Parallelism (TLP)
e Stream-Level Parallelism (SLP)
e Cluster-Level Parallelism (CLP)

GIPSY’s parallelism granularity takes into account the amount of TLP, SLP, and
CLP available. TLP determines the maximum number of threads that should or can
be created when a Lucid program is being executed. In other words, TLP defines on
how many pieces of terminal computational work we can chop a big job into. The
goal, as far as programming is concerned, is to program for infinite TLP, and later
adjust (load-balance) at run-time to the actual amount of SLP. SLP determines the
maximum number of streams available to execute the threads. Here, by “streams” we
mean processors but, with the invention of multithreaded CPUs for a single processor,
there may be several thread streams available in parallel, and hence a more general

notion of SLP. The amount of SLP is machine-dependent and has to be discovered at

24

run-time on remote machines. If a job is to be run on a single machine, GIPSY tries
to maximize SLP utilization, providing just enough TLP for the machine in question
with the design goal of always assuming infinite TLP. Then load-balancing comes
into play. CLP takes GIPSY to another level — distributed computing, involving
utilization of SLP of the machines across the network nearby or across the globe over
the Internet.

NOTE: the Lucid family of languages has also a notion of streams that refers
to Lucid variables that evaluate in multiple contexts. Every Lucid stream (e.g. a
variable) can potentially be evaluated on any hardware stream available, but it is
important not to confuse the two kinds of streams. The reason for the existence of
the two notions is that both terms were used independently in each field. Now that
parallel architectures and language models such as Lucid came into proximity, the

terms clash.

2.5.2 Goals

The system has to withstand the evolution of the tools, languages, and underlying
platforms, thus be flexible and adaptable to the changes. That is one of the most
important and stringent requirements put on the development of GIPSY [Paq99).
Other subordinate requirements in compiler design, run-time system, communication,

and user interfaces are presented in detail throughout the follow up sections.

2.5.3 General Intensional Programming Compiler

GIPSY programs are compiled in a two-stage process (see Figure , page . First,
the intensional part of the GIPSY program is translated in Java, then the resulting
Java program is compiled in the standard way.

The source code consists of two parts: the Lucid part that defines the intensional
data dependencies between variables and the sequential part that defines the granular
sequential computation units (usually written in any imperative language, e.g. C or
Java). The Lucid part is compiled into an intensional data dependency structure
(IDS) describing the dependencies between each variable involved in the Lucid part.
This structure is interpreted at run-time by the GEE following the demand propa-

gation mechanism. Data communication procedures used in a distributed evaluation

25

® | =
(o)

Figure 11: Initial Conceptual Design of the GIPC

26

of the program are also generated by the GIPC according to the data structures
definitions written in the Lucid part, yielding a set of communication procedures
(CP). These are generated following a given communication layer definition such as
provided by RPC (or rather RMI since GIPSY is implemented in Java), CORBA,
Jini, or the WOS [BKU98]. The sequential functions defined in the second part of
the GIPSY program are translated into imperative code using the second stage im-
perative compiler syntax, yielding imperative sequential threads (ST). Intensional
function definitions, including higher order functions, will be flattened using a well-
known efficient technique [Ron94, [Paq99]. The closures in the higher order functions
case are still applicable because the function state and the operation on it are cor-
rectly passed to the functions by expanding and using function definitions inline. The
insignificant limitation here is that self-referential closures for such functions cannot
be made. The function elimination in GIPSY pertinent to some of these aspects was
implemented by Wu in [Wu02].

The Figure [11] presents the initial conceptual design of the GIPC. Based on this
design, the GIPSY module integration and the development of the STs and CPs
support has begun. Later on the design was refined in [PGW04, [MP05a] and its
latest reincarnation is shown in Figure 3§ in Chapter 4] page [77} thus, the evolution
description is delayed until then.

Prior this work, GIPC supported only two Lucid dialects: GIPL and Indexical
Lucid. The initial GIPC compiler was implemented by Chun Lei Ren in [Ren02],
and the translation of the Indexical Lucid into GIPL and the semantic analysis was
implemented by Aihua Wu in [Wu02]. A large integration and re-engineering effort
went into GIPC to approach it to the goals of the GIPSY (see Section and add
more compilers for investigation of the underlying language models. The results of

this effort are presented in the Design and Implementation chapter (Chapter [4]).

2.5.4 General Eduction Engine

The GIPSY uses a demand-driven model of computation, which is based on the prin-
ciple is that certain computation takes effect only if there is an explicit demand for it.
The GIPSY uses eduction, which is demand-driven computation in conjunction with
an intelligent value cache called a warehouse. Every demand can potentially generate

a procedure call, which is either computed locally or remotely, thus eventually in

27

Figure 12: Conceptual Design of the GEE

parallel with other procedure calls. Every computed value is placed in the warehouse,
and every demand for an already-computed value is extracted from the warehouse
rather than computed again and again (demands that may have side effects, e.g. if
we cache results of ST, shall not be cached). Eduction, thus, reduces the overhead
induced by the procedure calls needed for the computation of demands sequentially.
Figure [12] describes the internal conceptual structure and functioning of the GEE.
The GEE itself is composed of three main modules: the executor, the intensional
demand propagator (IDP), and the intensional value warehouse (IVW). First, the
intensional data dependency structure (IDS, which represents GEER) is fed to the
demand generator (DG) by the compiler (GIPC). This data structure represents the
data dependencies between all the variables in the Lucid part of the GIPSY program.
This tells us in what order all demands are to be generated to compute values from
this program. The demand generator receives the initial demand, that in turn raises
the need for other demands to be generated and computed as the execution progresses.
For all non-functional demands (i.e. demands not associated with the execution of
sequential threads (ST)), the DG makes a request to the warehouse to see if this
demand has already been computed. If so, the previously computed value is extracted

from the warehouse. If not, the demand is propagated further, until the original

28

demand resolves to a value and is put in the warehouse for further use. This type
of warehousing was introduced by GLU due to its distributed nature to cut down on
communication costs, but it can certainly be applicable to any functional language,
such as LISP, Scheme, Haskell, ML, and others to improve efficiency even on a single
machine provided there are no any side effects whatsoever. The garbage collector can
run on the background to clean up old function-parameters-values tuples periodically,
and given that the large amounts of memory are cheap these days functional languages
may gain much more popularity with the increased performance.

For functional demands (i.e. demands associated with the execution of a sequen-
tial thread), the demands are sent to the demand dispatcher (DD) that takes care
of sending the demand to one of the workers or to resolve it locally (which normally
means that a worker instance is running on the processor running the generator pro-
cess). If the demands are sent to a remote worker, the communication procedures
(CP) generated by the compiler are used to communicate the demand to the worker.
The demand dispatcher (DD) receives some information about the liveness and effi-
ciency of all workers from the demand monitor (DM), to help it make better decisions
in dispatching the demands.

The demand monitor, after some functional demands are sent to workers, starts
to gather various types of information about each worker, including, but not limited

to:

e liveness status (is it still alive, not responding, or dead)
e network link performance

e response time statistics for all demands sent to it

These data points are accessed by the DD to make better decisions about the load
balancing of the workers, and thus achieving better overall run-time efficiency.

Bo Lu was the first one to do the original design of the GEE framework [Lu04]
and investigate its performance under threaded and RMI environments. She also
introduced the notion of the Identifier Context (IC) classes — demands converted
into Java code and using Java Reflection [Gre05] to compile, load, and execute them
them at run-time. She also contributed the first version of the interpreter-based

execution engine. Next, Lei Tao contributed the first incarnation of the intensional

29

value warehouse and garbage collection mechanisms in [Tao04] based on the popular
scientific library called NetCDF'. The author of this thesis put an effort to modularize
these all and make them easier to extend and customize. He also provided the initial
GEE application to start available network services. The GEE was also made aware
of the STs and CPs as well as the new type system, described in Section {.1.1.5
Further, Emil Vassev [VP05] produced a very general and functional framework for
demand migration and its implementation, Demand Migration System (DMS) that
supports among other things Jini, CORBA, and .NET Remoting for fault-tolerant
demand transportation system, a part of the Demand Dispatcher. The DMS is still

pending integration as of this writing.

2.5.4.1 Demand Propagation Resources for the GEE

The IDP generates and propagates demands according to the data dependence struc-
ture (DPR, now renamed to GEER in [WPGO03]) generated by the GIPC. If a demand
requires some computation, the result can be calculated either locally or on a remote
computing unit. In the latter case, the communication procedures (CP) generated by
the GIPC are used by the GEE to send the demand to the worker. When a demand is
made, it is placed in a demand queue, to be removed only when the demand has been
successfully computed. This way of working provides a highly fault-tolerant system.
One of the weaknesses of GLU is its inability to optimize the overhead induced by
demand-propagation. The IDP will remedy to this weakness by implementing various

optimization techniques:

e Data blocking techniques used to aggregate similar demands at run time, which
will also be used at compile-time in the GIPC for automatic granularization of

data and functions for data-parallel applications

e The performance-critical parts (IDP and IVW) are designed as replaceable mod-
ules to enable run-time replacements by more efficient versions adapted to spe-

cific computation-intensive applications

e Certain demand paths identified (at compile-time or run-time) as critical will

be compiled to reduce their demand propagation overhead

e Extensive compile-time and run-time rank analysis (analysis of the dimension-
ality of variables) [Dod96].

30

2.5.4.2 Synchronization
Distributed vs. Parallel

It is important to make a distinction between parallel and distributed computing. In
parallel computing, SLP matters and latency tolerance for memory references with
mostly UMA (uniform memory access) characteristics, whereas in distributed com-
puting communication is much more expensive (and perhaps even prohibitive) and
CLP matters as well. This setup largely exhibits NUMA (non-UMA) characteristics
(see [Pro03b]) and latency tolerance (and so also fault tolerance) has a higher sig-
nificance. This greatly impacts the way we synchronize in parallel and distributed

worlds.

Synchronization in Distributed Environment A distributed environment is a
very popular domain these days, so we’ll start with it first. Typically, the network
is the scarce resource and is the bottleneck for a distributed application because it
implies communication (e.g., MPI), which is often unacceptable. Therefore, many
distributed applications choose not to communicate at all or communicate very little
through message passing. This implies blocking on waiting for the network requests

to propagate, i.e. network latency.

Synchronization in Parallel Environment Synchronization in a parallel envi-
ronment is more fine-grained, often at the hardware level (e.g., a full/empty bit in
memory cells). Java does not give us control over such synchronization, so we have to
rely on the JVM built for an architecture that has such synchronization. The JVM
has to be developed to make use of the full/empty bits that are usually represented
as future variables [Pro03bl [TAO3] in the languages specifically designed for parallel

computing.

Secure Synchronization

Secure synchronization is especially pertinent in a distributed environment. Like any
act of communication within worker-generator architecture (see Section and
a warehouse (Figure ; Section , synchronization has to be secure to avoid
(a) over-demanding, (b) incorrect results sent back, (c) loss of results and demands,

and (d) poisoning the warehouse with wrong data. Secure synchronization implies

31

fault tolerance. In GIPSY, we will rely on Java’s RMI and Jini over JSSE for secure
communication in a distributed environment, using Java’s synchronization primitives
(see Section to achieve the goal of secure synchronization. Thus, the relia-
bility and accountability of the results of a GIPSY program are dependent on these
properties of underlying Java Runtime Environment (JRE) and the communication

protocols used.

Implicit vs. Explicit Synchronization

One of the productivity metrics of a software completing its task on time, is the effi-
ciency of development of (see [Pro03c]) such a software, i.e., the amount of program-
mer’s effort required to create and debug the software. This is essentially a metric,
called time-to-solution (TTS) [Pro03c]; from creation until the end result (e.g. com-
pletion of some scientific computation). The goal is to minimize TTS. One way to
achieve this is ease of programming. As the proportion of the work done by the com-
piler increases, so does the reliability of the code, but we target scientific researchers,
not just programmers. Scientific researchers from math and physics should not care
about these issues and, thus, just be concerned mastering the basics of Lucid. There-
fore, the programmer has to be freed from taking care of synchronization explicitly,
which a source of bugs and inefficiency of programming (e.g., using Java’s synchro-
nization primitives, such as synchronized, Object.wait(), Object.notify(), and
Object.notifyAll(), [Fla97]). The programmer should rather focus on the problem
being solved and let the compiler/run-time system deal with the synchronization pain.
The GIPSY system, built around the Lucid family, advocates implicit synchronization
either by wrapping around the Java’s synchronization primitives or through the com-
munication synchronization and data dependencies (although a complete discussion
is beyond the scope of this thesis, see [Lu04, VP05]).

2.5.5 Run-time Interactive Programming Environment

The RIPE is a visual programming aid to the run-time environment (GEE) enabling
the visualization of a dataflow diagram corresponding to the Lucid part of the GIPSY
program, source code editing, launching the compilation and execution of GIPSY
programs. The original conceptual design of RIPE [Paq99] is illustrated in Figure[13]

The user’s points of interaction with the RIPE at run-time vary in the following ways:

32

RIPE

editor

'

(2]
m
m
..

Figure 13: Conceptual Design of the RIPE

e Enable interactive editing of GIPSY programs via a variety of editors (textual,

graphical, web).
e Dynamic inspection of the IVW.
e Modification of the input/output channels of the program.
e Recompilation of the GIPSY programs.
e Modification of the communication protocols.

e Swapping of the parts of the GIPSY itself (e.g. garbage collection, optimization,

warehouse caching etc. strategies).

Because of the interactive nature of the RIPE, the GIPC is modularly designed
to allow the individual on-the-fly compilation of either the IDS (by changing the Lu-
cid code), CP (by changing the communication protocol), or ST (by changing the

33

sequential code). Such a modular design even allows sequential threads to be pro-
grams written in different languages (for now, we are concentrating on Java sequential
threads, but a provision is made for easy inclusion of other languages with the GICF,
Section [4.1.1.1]).

The RIPE even enables the graphic development of Lucid programs, translating
the graphic version of the program into a textual version that can then be compiled
into an operational version through a DFG generator of Yimin Ding [Din04]. However,
the development of this facility for graphical programming posed many problems
whose solution is not yet settled, for example representation of the STs and CPs in
the DFG nodes. An extensive and general requirements analysis will be undertaken,
as this interface will have to be suited to many different types of applications. There
is also the possibility to have a kernel run-time interface on top of which we can plug-
in different types of interfaces adapted to different applications, such as stand-alone,

web-, or server-based.

34

2.6 Tools

This section presents a brief description of a variety of tools that helped most with

the implementation aspects of this work.

2.6.1 Java as a Programming Language

The primary implementation language of GIPSY is Java. This includes using Java’s
Reflection, JNI, and JUnit frameworks and packages. We have chosen to implement
our project using the Java programming language mainly because of the binary porta-
bility of the Java applications as well as its facilities, for e.g. memory management
and communication tasks, so we can concentrate more on the algorithms instead.
Java also provides built-in types and data-structures to manage collections (build,
sort, store/retrieve) efficiently [F1a97, MicO5b]. There is also source code written in
other languages in the main GIPSY repository. This includes LEFTY code for DFG
generation and the code of the test intensional programs in various Lucid dialects.
The Java versions supported by GIPSY are 1.4 and 1.5. The GIPSY will no longer
build on 1.3 and earlier JDKs.

2.6.1.1 Java Reflection

Java Reflection Framework java.reflect.* [Gre05] allows us to load/query/discover
a given class for all of its API through enumeration of constructors, fields, methods,
etc. at run-time. This is incredibly useful for dynamic loading and execution of
our compilers, identifier context classes, and sequential threads on local and remote
machines.

The basic API from the reflection framework used in the implementation of
GIPSY is the Class class that allows getting arrays of declared Method objects
through the getDeclaredMethods () call that will become the STs at the end, then
for each Method the reflection API allows getting parameter and return types via
getParameterTypes () and getReturnType () calls, which will become the CPs. The
Class.newInstance() method allows instantiating an object off the newly gener-
ated class. Likewise, an enumeration of Constructor objects is acquired through the
Class.getConstructors() call. Constructors in Java are treated differently from

methods because they are not inherited and don’t have a return type (except that

35

the type of the object they create). We still need to enumerate them to allow Objec-
tive Lucid programs to use the constructors, default or non-default, directly, so we

can get a handle on them similarly to STs.

2.6.1.2 Java Native Interface (JINI)

The Java Native Interface (JNI) [Ste05] is very useful for the thread generation com-
ponent of the GIPC. We rely on JNI to increase the number of popular imperative
languages in which the sequential threads could be written. Developers use the JNI
to handle some specific situations when an application cannot be written entirely in
Java, e.g. when the standard Java classes do not provide some platform-dependent
features an application may require, or use a library written in another language be
accessible to Java applications, or for performance reasons a small portion of a time-
critical code has to be written say in C or assembly, but still be accessible from a
Java application [Ste05]. In GIPSY, the second and third of the listed cases are most
applicable (e.g. to adopt GLU programs). The JNT will allow us to avoid Lucid-to-C
or Lucid-to-C++ type matching as we can do it all through Java and maintain only
Lucid-to-Java type mapping table.

The JNI is made so that the native and Java sides of an application can pass back
and forth objects, strings, arrays and update their state on either end [Ste05]. The
JNI is bi-directional, i.e., allows Java to use the native libraries and applications and
provide access to Java libraries from the native applications.

The general methodology of creating a JNI application say that interacts with a

C implementation is done in six steps [Ste05]:

1. Write a Java code with a native method to be implemented in C, the main(),
and the dynamic loading statement for a library (to be compiled in the next

steps).
2. Compile the Java code with javac and produce a .class file.

3. Create a C header .h file from the compiled .class file by calling javah. This
header file will provide the necessary #include directives along with the C-style

prototype declaration of the native method.

4. Next, write the implementation of the function in regular C in a .c file.

36

5. Then, create a shared library by compiling the .h and . c files with a C compiler.

6. Run the application regularly with the JVM (java).

2.6.1.3 JUnit

JUnit is an open-source Java testing framework used to write and run automated
repeatable unit tests in a hassle-free manner [GB04]. The goal is to sustain application
correctness over time, especially when undergoing a lot of integration efforts. JUnit
is designed with software architecture patterns in mind and follows best software
engineering practices. It encourages developers to write tests for their applications
that withstand time and bit rot.

The main abstract class is TestCase that follows the Command design pattern
that implements the Test interface. This class maintains the name of the tests (if
it fails) and defines the run() method that has to be overridden to do the actual
testing work. The default Template Method run () simply does three things: setUp(),
runTest (), and tearDown(). Their default implementation is to do nothing, so a
developer can override them as necessary. Then, to collect the test results they apply
Collecting Parameter pattern. They use the TestResult class for that.

JUnit makes a distinction between errors and failures in the following way: errors
to JUnit are mostly unexpected run-time or regular exceptions, whereas failures are
anticipated and are tested for using assertion checks. The errors and failures are
collected for further test failure reporting.

To run tests in a general manner from the point of view of the tester, the test
classes have with a generic interface using the Adapter pattern. JUnit also offers
a pluggable selector capability via the Java Reflection API [Gre(05]. The TestSuite
class represents a collection of tests to run. In the GIPSY, the Regression application
(see Section comprises concrete implementation of such a test suite that tests
most of the feasible functionality of the GIPC and GEE modules. See more details
of application of JUnit to the GIPSY in Chapter [5]

2.6.2 javacc — Java Compiler Compiler

JavaCC [VC05], accompanied by JJTree, is the tool the GIPSY project is relying on

since the first implementation [Ren02] to create Java-language parsers and ASTs off

37

a source grammar files. The Java Compiler Compiler tool implements the same idea
for Java, as do lex/yacc [Lou97] (or flex/bison) for C — reading a source grammar
they produce a parser that complies with this grammar and gives you a handle on
the root of the abstract syntax tree. The GIPL, Indexical Lucid, JLucid, Objec-
tive Lucid, PreprocessorParser, and DFGGenerator parsers are generated with the
JavaCC/JJTree parser generation tools. JavaCC is a LL(K) [Lou97] parser generator,
so the original GIPL and Indexical Lucid grammars and the new grammars had to

be modified to eliminate or avoid the left recursion.

2.6.3 MARF

Modular Audio Recognition Framework (MARF) library [MCSNO5| provides a few
useful utility and storage classes GIPSY is using to manipulate threads, arrays, option
processing, and byte operations. Despite MARF’s belonging to a voice/speech /natural
language recognition and processing library, it contains a variety of useful utility mod-

ules for threading and options processing.

264 CVS

For managing the source code repository the Concurrent Versions System (CVS)
[BddzzP™05] is used. The CVS allows multiple developers work on the up-to-date
source tree in parallel that keeps tracks of the revision history and works in an trans-
actional manner. The author produced a mini-tutorial on the CVS [Mok03a] for the
GIPSY Research and Development team, which contains the necessary summary for
the team to work with the project repository.

While CVS has a comprehensive set of commands, the basic set includes:

e init to initialize the repository

e checkout or co to checkout the source code tree from the repository to a local

directory
e update or up to make the local tree up-to-date with the one on the server
e add to schedule a new file inside the existing local checkout for addition to the

repository

38

e remove to schedule a new file inside the existing local checkout for removal from

the repository
e commit to upload the changes done locally to the server

e diff to show the differences between the local and the server versions of the

tree

2.6.5 Tomecat

Apache Jakarta Tomcat [Fou05| is an open-source Java application servlet and server
pages container project from Apache Foundation to run web Java-based applications
written in accordance with the Java Servlet and JavaServer Pages [Mic05a, Mic05¢]
specifications developed by Sun Microsystems. Tomcat powers up the web front end
to GIPSY to test intensional programs online. The web frontend is represented by
the WebEditor servlet as of this writing a part of RIPE which is discussed later in
Chapter 4l Tomcat has an easy interface to deploy Java-based applications and their
libraries, e.g. through a manager presented in Figure [14]

Tomcat itself consists from a variety of modules that includes implementation of
the JSP (Jasper engine) and Servlet APIs, a webserver called Coyote, the application
server called Catalina, and many other things for logging, security, administration,

etc.

2.6.6 Build System

The GIPSY’s sources can be built using a variety of ways, using different compil-
ers and IDEs on different platforms. This includes Linux Makefiles, IBM’s Eclipse,
Borland’s JBuilder, Apache’s Ant, and Sun’s NetBeans.

2.6.6.1 Makefiles

UNIx/LINUX Makefiles are targeting all UNIX systems that support GNU make (a.k.a
gmake) [SMSP00L, Mok05a]. Often, to compile all of the GIPSY is just enough to type
in make and the system will be built. All UNIX versions support make, and our system

has been tested to build on RED HAT LINUX 9, FEDORA CORE 2, MAC OS X, and

39

nanager - Mozilla Firefox

File Edit Vew Go

EBookmarks

Toals Help

b
lx

he Apache Jakarta Project

http:// jakarta.apache.org/

Tomcat Web Application Manager

Message:

CK - Reloaded application at context pat.h| Jwebeditor |

List Applications

HThL Manager Help Manager Help Server Status

Path Display Hame Running Sessions Commands
/ Welcome to Tomeat true o Stat Stop Reload Undeploy
/balancer Tomcat Simple Load Balancer Example App true o Stat Stop Reload Undeploy
fisp-exarmples JSP 2.0 Examples true o Stat Stop Reload Undeploy
fmanager Tomcat Manager Application true o Stat Stop Reload Undeploy
fsendets-examples Serlet 2.4 Examples true o Stat Stop Reload Undeploy
fomcat-docs Torcat Documentation true o Stat Stop Reload Undeploy
fwrebday Webdav Content Managerment true o Stat Stop Reload Undeploy
| Ywrebeditar GIFSY Web Poral true o Stat Stop Reload Undeploy

Deploy directory or WAR file located on server

Context Path (optional):
ML Configuration file URL:

WAR or Directory URL: |

Deploy |

WAR file to deploy

Select WAR file to upload |

Deploy |

Browse... |

Tomcat Wersion

JVM Version

JVM Vendor

0S5 Version

08 Architecture

Apache Tomcats.5.9

1.5.0_01-b08

Sun Microsystems Inc.

Wyindows 2000

50

#06

||{}

Figure 14: Tomcat Web Applications Manager

40

SOLARIS 9. There is a test script make-test.sh that tests whether we are dealing
with the GNU make on UNIX systems, as this is the only make supported.

2.6.6.2 Eclipse

There are project files .project and .classpath that belong to this IDE from IBM
lcT04]. The GIPSY build with this IDE properly and has its library CLASSPATH
set. Eclipse is another open source tool available free of charge and provides extended

tools for Java projects development, refactoring, and deployment.

2.6.6.3 JBuilder

There is a project file GIPSY. jpx that belongs to this IDE from Borland [Bor03]. The
GIPSY build with this IDE properly and has its library CLASSPATH set.

2.6.6.4 Ant

There is a project file build.xml that belongs to this build tool from the Apache
Foundation [Con05]. The GIPSY build with this tool properly and has its library
CLASSPATH set. In this case build.xml is a portable way to write a Makefile in
XML.

2.6.6.5 NetBeans

There is a project file nbproject.xml that belongs to this IDE from Sun [Mic04].
The GIPSY build with this IDE properly and has its library CLASSPATH set.

2.6.7 readmedir

This script generates a human-readable description of a directory structure starting
from some directory with file listing and possibly descriptions (for this there should
be specially formatted file README.dir in every directory traversed. The contents
of this file will be a part of the output and is a responsibility of the directory cre-
ator /maintainer. The output formats of the script are WTEX, HTML, and plain text.

41

2.7 Summary

In this chapter the reader was introduced to the necessary background on the GIPSY
project and how it is being managed starting from the Lucid language origins to
its implementations in the GIPSY and the summary of the tools used to aid the
advancement of the project. In the GIPSY section the three main modules were
introduced, such as GIPC, GEE, and RIPE. While most of the remaining work has
gone into the GIPC in this thesis, the author had to perform the necessary integration
and adjustments to the GEE and RIPE.

42

Chapter 3

Methodology

This chapter focuses on the methods and techniques proposed to the solve the stated
problems (see Section . The approaches described are based on three publications,
namely [MPGO5, MPO5b], [MP05a]. Section introduces the JLucid language and
all related considerations including the syntax and semantics. Next, Objective Lucid
is introduced along with its syntax and semantics. Further, the GICF is introduced
by providing the necessary requirements for it to exist and the way to satisfy them.
Lastly, the summary is presented outlining the benefits and limitations of the proposed

solutions.

3.1 JLucid: Lucid with Embedded Java Methods

3.1.1 Rationale

The name JLucid comes from the GIPC component known as Java Compiler within
the Sequential Thread (ST) Generator of the GIPSY. It subsumes all of Indexical
Lucid and General Intensional Programming Language (GIPL) [Paq99] and syntacti-
cally allows embedded Java code. In fact, a JLucid program looks like a partial fusion
of the intensional and Java code segments. JLucid gives a great deal of flexibility to
Lucid programs by allowing to use existing implementations of certain functions in
Java, providing 1/0 facilities and math routines (that Lucid entirely lacks), and other
Java features accessible to Lucid, arrays, and permits to increase the granularity of

computations at the operator level by allowing the user to define Java operators, i.e.,

43

functions manipulating objects, thus allowing streams of objectd] in Lucid. JLucid
more or less achieves the same goals and mechanisms as provided by GLU. What we
are proposing is a flexible compiler and run-time system that permits the evolution

of languages through a framework approach [MP05a, [PWO05].

3.1.1.1 Modeling Non-Determinism

Lucid, by its nature, is deterministic, so introduction of imperative languages, such
as Java, may allow us to model non-determinism in Lucid programs for example by
providing access to random number generators available to the imperative languages.
Non-determinism can also be introduced as a result of side effects from for example
reading a different file each time an ST is invoked, or making a database query against
a table where data regularly changes, or say by reading the current time of day value.
Of course, a special care should be taken not to cache the results of such STs in the

warehouse.

3.1.1.2 Loading Existing Java Code with embed ()

In a nutshell, we want to make the following possible for the Indexical Lucid program
in Figure (replicated here from Chapter [2| for convenience) to become something
as in Figure |10 or, alternatively as in Figure The latter form would allow us to
include objects from any types of URLSs, local, HT'TP, FTP, etc. The idea behind
embed () is to include or to import the code written already by someone and not
to rewrite it in Lucid (which may not be a trivial task). It is not meant to adjust
to URL’s existence at run-time as all embed-referenced resources are resolved at
compile time. We “include” the pointed-to resource and attempt to compile it where
the original program-initiator resides. If the URL is invalid at compile time, then
there will be a compile error and no computation will be started. embed() by itself
does not necessarily provoke a remote function call.

Existing Java code, in either .class or . java form, can be loaded with embed ().
Intuitively, we would prefer the approach presented in Figure [I8 That added flexi-

bility requires syntactical extension of Lucid and is not portable. For the program in

LA more precise meaning of Java objects within Lucid is explored further in the Objective Lucid
language, including the meaning of an object stream and how object members are manipulated (see
for example Section [3.2]and Section[4.1.3.6). Additionally, since the actual Java objects are flattened
into primitive types, it would be possible to access object members in parallel manner.

44

H
where
H = 1 fby merge(merge(2 * H, 3 * H), 5 * H);

merge(x, y) = if(xx <= yy) then xx else yy
where
xx = x upon(xx <= yy);
yy = y upon(yy <= xx);
end;
end;

Figure 15: Indexical Lucid program implementing the merge () function.

#JAVA

void merge(int x, int y)
{
// java code here

}
#JLUCID

H
where

H = 1 fby merge(merge(2 * H, 3 x H), 5 * H);
end;

Figure 16: Indexical Lucid program implementing the merge() function as inline Java
method.

H
where
H = 1 fby merge(merge(2 * H, 3 * H), 5 x H);
merge(x, y) =
embed("file://path/to/class/Merge.class", "merge", x, y);
end;

Figure 17: Indexical Lucid program implementing the merge () function as embed ().

F
where
dimension d;
F = foo(#d);
where
foo(i) = embed("file://my/classes/Foo.class", "foo", i);
end;
end;

Figure 18: Illustration of the embed () syntax.

45

Figure[I8|to work, foo () has to return a Java type of int, byte, long, char, String,
or boolean, as per Table[I] page[64l A wrapper class will be created to extend from
the Foo and implement the ISequentialThread interface (see Appendix . Gen-
eral embed () syntax would be defined as follows:

’ id(id, id, ...) ::= embed(URI, METHOD, id, id, ...); ‘

where id is the Lucid function name being defined that is mapped to a Java’s method

named METHOD (which may or may not be of the same name as the first id). The URI

is pointing to either .class or .java file. Example URI’s would be:

foo(a,b) = embed("file://files/Foo.java","bar",a,b);
bar(a,b) = embed("http://www.java.com/Foo.class","foo",a,b);
baz(a,b) = embed("ftp://ftp.file.com/pub/Foo.java","zee",a,b);

These declarations associate Lucid functions with Java implementations. Name
clashes may be avoided, if necessary, by using different function names. Above, for

example, Lucid baz() is implemented by Java zee().

public class <filename>_<machine_name>_<timestamp>
extends my.classes.Foo
implements ISequentialThread
{

// The definition is provided later in the text
}

Figure 19: Generated corresponding ST to that of Figure

There are several ways of making this work. We could extract either a textual or
a bytecode definition of foo (), wrap it in our own class and, (re)compile it. However,
there is an issue here. What about other functions it may use, like shown in Figure
with two methods calling each other? That would mean extracting those dependencies
as well along with the method of interest. This won’t scale very efficiently. Thus,
alternate approaches include: to either inherit from the desired class as in Figure [19]
encapsulate this class instance, or attempt to wrap the entire class as done for the
JAVA segment in Section below. The former approach would imply having
a class variable instance of the type of that class encapsulated into the wrapper.
The latter approach was chosen as more feasible to implement, although it doesn’t
deal with user-defined classes and subclass and packages the .class or .java file
may require at the moment. Thus, the embed () acts in a way similar to #include in

C/C++ or import in Java of a set of Java definitions to be used in a JLucid program.

46

Therefore, embed () has to be resolved at compile time. Similar technique may be
taken towards other languages than Java at a later time. Lucid’s syntax has to be

extended to support embed ().

3.1.1.3 The #JAVA and #JLUCID Code Segments

This section explores ways of mixing Java and Lucid source code segments in a single

text file and ways of dealing with such a merge.

F

where
dimension d;
F = foo(#d);

where
foo(i) = int foo(int i) { return i + 1; }
end;
end;

Figure 20: Inline Java function declaration.

An attempt to use Java’s methods inline, such as in Figure [20| would be intuitive,
but does not justify the effort spent on syntax analysis. Therefore, we take the inline
definition out of the Lucid part, and make it a separate outer definition of the same
method. Additionally, we explicitly mark the JLUCID and JAVA code segments to
simplify pre-processing of the JLucid code as presented in Figure [21].

#JAVA

int foo(int i)

{

// Some i + PI

return (int) (java.lang.Math.PI + i);
}
#JLUCID

F
where
dimension d;
F = foo(#d);
end;

Figure 21: Java method declaration split out from the Lucid part.

Given the Natural Numbers Problem (see [Paq99]) in Figure [22| (replicated here
for convenience), one could imagine the function definition for N to be implemented

in Java in two functions. To illustrate the point when two separate functions can call

47

each other in the JAVA segment or several JAVA segments. This modified JLucid code
along with line numbers is shown in Figure Since we allow one Java method to

call another within, we have to wrap them both into the same class.

N @.d 2
where

dimension d;

N = if (#.d <= 0) then 42 else (N + 1) @.d (#.d - 1) fi;
end;

Figure 22: Natural numbers problem in plain GIPL.

The JLucid code segments after “#JAVA” constructs will be grouped together by
the compiler. For all definitions (functions, classes, variables) in these segments, their
original location in the JLucid source recorded and statically put in the wrapper class.
These definitions will end up in that wrapper class as well.

It would be possible to have a class defined within a wrapper class or any other
valid Java declaration; even a data member can be included. To summarize, the Java
segments in the JLucid code are a body of a generated class that implements the

ISequentialThread interface.

1 #JAVA

2

3 int getN(int piDimension)
4 {

5 if (piDimension <= 0)
6 return get42(Q);
7 else

8 return getN(piDimension - 1) + 1;
9 }

10

11 int get42()

12 {

13 return 42;

14 }

15

16 #JLUCID

17

18 N ed 2

19 where
20 dimension d;
21 N = getN(#d);
22 end;

Figure 23: Natural numbers problem with two Java methods calling each other.

For the example in Figure 23| the parser would proceed as follows:

48

e In the preprocessing step the source code is split into two parts: the Java part
and the Lucid part. For both parts original source’s line numbers and length of

the definitions are recorded.

e Then they both are fed to the respective parsers. Java’s part requires extra
handling: the Java methods (one or more) defined in the code, have to be
wrapped into a class and then JavaCompiler class that takes the Java portion
of the source and feeds it to javac for syntactic and semantic analyses and

byte code generation. They will become parts of a Sequential Thread, ST (see

Section |3.3.3.1]) definition fed to Workers (see Section [3.3.3.4)).

e The Lucid part is processed by the modified Lucid compiler (to include the
syntactical modifications for arrays and embed()) and comes up with the main
AST from that.

e The Java STs are then linked into the main AST in place of nodes where the
identifiers of these appear in the Lucid part of the program prior semantic

analysis.

Any method or other definition in the JAVA segment is wrapped into a class. The
generated wrapper class will contain a Hashtable that maps method signature strings
to their starting line in the original JLucid code plus the length of the definitions in
lines of text they occupy statically generated and initialized. This is needed for the
error reporting subsystem in case of syntax/semantic errors, report back correctly the
line in the original JLucid program and not in the generated class. The class name is
created automatically from the original program name, the machine name it’s being
compiled on, and a timestamp to guarantee enough uniqueness to the generated class’
name to minimize conflict for multiple such generated classes. Thus, the JAVA segment
in Figure 23] will transform into the generated class as in Figure 24} This is a short
version; for more detailed one please refer to the Section[B.3] In fact, after generating
this class (and possibly compiling it) this situation can be viewed as a special case
for embed (), Section |3.1.1.2] or vice versa. Note, since we have no guarantee the Java
methods are side-effects free in JLucid, their results are not cached in the warehouse.

In [MPGO5] we required foo() in the previous examples to be static. In fact,
any method or other definition in the JAVA segment were to be transformed to become

static while being wrapped into a class. For example, “int foo() {return 1;}”

49

public class <filename>_<machine_name>_<timestamp>
implements gipsy.interfaces.ISequentialThread {
private OriginalSourceCodeInfo oOriginalSourceCodelnfo;

// Inner class with original source code information
public class OriginalSourceCodeInfo {
// For debugging / monitoring; generated statically
private String strOriginalSource = ...

// Mapping to original source code position for error reporting
private Hashtable oLineNumbers = new Hashtable();

// Body is filled in by the preprocessor statically

public OriginalSourceCodeInfo() {
Vector int_getN_int_piDimension = new Vector();
// Start line and Length in lines
int_getN_int_piDimension.add(new Integer(3));
int_getN_int_piDimension.add(new Integer(7));
oLineNumbers.put("int getN(int piDimension)",

int_getN_int_piDimension) ;

Vector int_get42 = new Vector();
int_get42.add(new Integer(11));
int_get42.add(new Integer(4));
oLineNumbers.put("int get42()", int_get42);

}

// Comnstructor
public <filename>_<machine_name>_<timestamp>() {
oOriginalSourceCodeInfo = new OriginalSourceCodeInfo();
}
/*
* Implementation of the SequentialThread interface
*/
// Body generated by the compiler
public void run() {
Payload oPayload = new Payload();
oPayload.add("d", new Integer(42));

work (oPayload) ;
}

// Body generated by the compiler statically

public WorkResult work(Payload poPayload) {
WorkResult oWorkresult = new WorkResult();
oWorkresult.add(getN(poPayload.getVaueOf ("d")));
return oWorkResult;

}

/%
* The below are generated off the source file nat2java.ipl
*/
public static int getN(int piDimension) {
if (piDimension <= 0) return get42();
else return getN(piDimension - 1) + 1;

}

public static int get42() {
return 42;

}

Figure 24: Generated Sequential Thread Class.

20

would become “public static int foo() {...}”. We insisted on static declara-
tions only because the sequential threads were not instantiated by the workers when
executed. This restriction has been lifted during implementation as we instantiate

and serialize the sequential thread class as needed.

3.1.1.4 Is JLucid an Intensional Language?

We treat JLucid as a separate specific intensional programming language (SIPL)
rather than a part of a GIPSY program within existing Indexical Lucid implementa-
tion. Here are some pros and cons of this approach and JLucid as a separate SIPL

approach is the winner. Why extend it as a separate SIPL?
e This would serve as an example on how to add other SIPLs.
e This would allow us to keep the original Indexical Lucid clean and working.

e This would allow functions with Java syntax to be used within a Lucid program

as well as binary Java function calls of pre-compiled classes.
e [t can be extended to other languages as it turns out to be a successful approach.
Why not to treat is as a separate SIPL?

e We might want to have embedded Java (or other language) in any intensional

language, not just Indexical Lucid. How to make that possible?

e [t is not truly an SIPL, but a hybrid.

3.1.2 Syntax

In JLucid, we extend the syntax of both GIPL and Indexical Lucid to support arrays.
For example, it is useful to be able to evaluate several array elements under the same
context. This is included by the last E rules of E[E,...,E] and [E, ..., E] in both
syntaxes. Arrays are useful to manipulate a collection Lucid streams under the same
context. JLucid arrays are mapped to Java arrays on the element-by-element basis
with the appropriate element type matching and may only correspond to arrays of
primitive types in Java. The syntax also includes the embed() extension to allow
including external Java code. The JLucid syntax extensions to GIPL and Indexical
Lucid are presented in Figure 25| and Figure

o1

E ::= id

| E(E,...,E)
| if E then E else E fi
| #E
| EQE
| E where Q end;
| [E:E,...,E:E]
| embed (URI, METHOD, E, E, ...)
| E[E,...,E]
| [E,...,E]
Q ::= dimension id,...,id;
| id = E;
| id(id,...,id) = E;
| QQ

Figure 25: JLucid Extension to GIPL Syntax

E si= id

E(E,...,E)

if E then E else E fi

E

EQEE

E where Q end;

E bin-op E

un-op E

embed (URI, METHOD, E, E, ...)

E[E,...,E]

[E,...,E]

Q = dimension id,...,id;

| id = E;

id.id,...,id(id,...,id) = E;
QQ

fby | upon | asa | wvr

first | next | prev

bin-op ::
un-op

Figure 26: JLucid Extension to Indexical Lucid Syntax

3.1.3 Semantics

The JLucid extension to the operational semantics of Lucid (see Section [2.2.2.8| on
page is defined in Figure As in the original Lucid semantics, each type of

identifier can only be used in the appropriate situations. Notation:

e freefun, ffid, ffdef mean a type of identifier is a hybrid free (i.e. object-
free) function freefun, where £fid is its identifier and ffdef is its definition

(body).
e The Egq rule defines JLucid’s free functions.

e The JLucid #JAVAgq rule add free function definition to the definition envi-

ronment.

52

D,PHE:id D,PFE1,...,En:v1,...,0n
D(id) = (freefun, ffid, ffdef)
D, P E<ffid(vi,...,vn)>: v

D,PrE(E1,...,En):v

Ema

ffdef = fritype £fid(fargtype: fargia,,-.-,fargtype, fargia,)

JAVA
fid D, P I- £fdef : Dt|ffid — (freefun, £fid, ffdef)],P

Figure 27: Additional basic semantic rules to support JLucid

3.2 Objective Lucid: JLucid with Java Objects

3.2.1 Rationale

Objective Lucid is a direct extension of JLucid. The original syntax of Indexical Lucid
(and also for JLucid and GIPL) is augmented to support a so-called dot-notation. This
allows Lucid to manipulate grouped data by using object’s methods. In fact, the idea
is similar to manipulating arrays in JLucid. The difference with the arrays is that
they are manipulated as a collection of ordered data of elements of the same type, to
be evaluated in the same context. However, an object that varies in some dimension
implies that all its members, possibly of different types, also potentially vary along
this dimension, but across objects, i.e. the objects themselves are not intensional. An
object can be thought of as a heterogeneous collection of different types of members,
which you can access individually using their name, whereas arrays can be thought
of as a homogeneous collection of members that can be accesses individually using
their index.

Just like JLucid [MPGO5], Objective Lucid is being developed as a separate specific
intensional programming language (SIPL) within the GIPSY for the same reasons:
keeping the other implementations undisturbed and working while experimenting on

this particular implementation.

3.2.1.1 Pseudo-Objectivism in JLucid

A pseudo-object-oriented approach is already present in JLucid. The program pre-
sented in Figure [2§] gives an example of a Java function returning an object of type
Integer. In JLucid we are not able to manipulate this object directly in intensional

programming as Java does, though we can provide methods, such as g() to access

23

properties of a particular Java object from within JLucid. However, that reduces
legacy Java code reusability by forcing the programmer to add such functions in his
code to be able to use it in the GIPSY. Another example in Figure 29| shows how one
can make use of objects in JLucid by providing pseudo-free Java accessors similar to
getComputedBar () in the example. They are pseudo-free because they don’t appear
as a part of any Java class to a JLucid programmer explicitly, but internally they get
wrapped into a class when the code is compiled. In Objective Lucid such explicit
workarounds are not necessary anymore, but this gives us some ideas about how to
actually implement some features of Objective Lucid in practice, i.e., the compiler
can generate a number of pseudo-free accessors to object’s members and use JLucid’s

implementation of Java functions internally.

3.2.1.2 Stream of Objects

An interesting question could be to ask: “What is an object stream?” Is it that the
members of this object vary in the same dimension(s) or they can have “substreams”?
In Objective Lucid we answer this as decomposing public object’s data members into
primitive types and varying them or in simplified manner we employ object’s effectors.
Thus, when there is a demand say for the object’s state (data members) at some time
t, there will have to be generated demands for all of ¢ between [0,¢] where at time
0 an instance of the object is created. Therefore, the object state changes in the
[0,¢] interval represent the object stream in the context of this thesis. There are two
possible outcomes of this evaluation: either a portion of object’s state is altered by
an intensional program or the entire object. In the former case, Lucid only accesses
some object’s members via the dot-notation in the intensional manner, whereas in
the latter case all the members of an object are altered in the intensional context
implicitly. The examples presented in Figure [30] Figure [74] page [153] and Figure [76]
page [156] work on portions of an object, whereas the examples in Section [£.1.3.6]

page [109| work on all the members of an object at the same time.

o4

#JAVA

Integer £()

{
return new Integer("1234");
}
int g(O)
{
return f£().intValue();
}
#JLUCID
A
where
A=gO;
end;

Figure 28: Pseudo-objectivism in JLucid.

#JAVA
class Foo
{

private int bar;

public Foo()

{
bar = (int) (Math.random() * Integer.MAX_VALUE);
}
public int getBar()
{
return bar;
}
public void computeMod(int piParam)
{
bar = bar % piParam;
}
}
int getComputedBar(int piParam)
{
Foo oFoo = new Foo();
oFoo.computeMod(piParam) ;
System.out.println("bar = " + bar);
return oFoo.getBar();
}
#JLUCID
Bar
where
Bar = getComputedBar(5);
end;

Figure 29: Using pseudo-free Java functions to access object properties in JLucid.

95

3.2.1.3 Pure Intensional Object-Oriented Programming

Objective Lucid has presented a way for Lucid programs to use Java objects. This
may seem rather restrictive and may look like a workaround (though practicall).
An interesting concept would be to extend the Lucid language itself to create and
manipulate pure Lucid objects, not Java objects. This will allow addressing issues like
inheritance and polymorphism and other attributes of object-oriented programming
and will solve the problem of matching Lucid and Java data types. This is not
addressed in this work, but attempted to be solved in [WP05].

3.2.2 Syntax

The parser is extended to support the <objectref>.<feature> dot-notation for the
Lucid part of reference data types. The semantic analysis is augmented to accommo-
date objects and user-defined data types. In doing so, Lucid is able to manipulate
Java objects as well as access public variables and methods of these objects. An
example is shown in Figure [30] This example manipulates a simple object E by eval-
uating its state at some time “2”7. The program begins with the construction of the
object with £1() (or one could call the object constructor directly), and then the rest
of the expressions access public members x and foo () of the object during expression
evaluation.

The Objective Lucid syntax is in Figure [31] It is a direct extension of the JLucid
syntax in Figure to support the dot-notation. Essentially, the extension is the
E.id productions. Any E on the left-hand-side can evaluate to an object type, but

the right-hand-side is always an identifier (Java class’ data member or method).

3.2.3 Semantics

To support these extensions to JLucid, the Semantic Analyzer of JLucid requires more
non-trivial changes than the syntax analysis and the dot-notation implementation
due to arbitrary object data types. In order to perform type checks and apply the
semantic rules of Lucid, we place the object data types into the definition environment
D, which is in fact a semantic equivalent to the data dictionary part of the GEER.
This is partly solved by using the pseudo-free Java functions, which de-objectify the

object members, but in order to be able to do so, we need to have the object types

26

#JAVA
class ClassXB

{
public int x;
public float b;
public ClassXB()
{
x=0; b=1.2;
}
public int foo(int a, float c)
{
return x = (int)(x * a + b * ¢);
}
ClassXB addx(int b)
{
x += b;
return this;
}
}
ClassXB f1()
{
return new ClassXB(Q);
}
#0BJECTIVELUCID
/*

* The result of this program should be the object E
to be evaluated at time dimension 2 with its ’x’
* member modified accordingly.

*/

*

E Qtime 2
where
dimension time;

E = £1() fby.time A;

A = E.addx(B);

B = E.foo(A @time C, A) + 3;
C=E.x * 2;

end;

Figure 30: Objective Lucid example.

o7

|

| if E then E else E fi

| # E

| EQEE

| E where Q end;

| E bin-op E

| un-op E

| embed (URI, METHOD, E, E, ...)
|
|
|
|

id = E;
E.id = E;

QQ
fby | upon | asa | wvr
first | next | prev

bin-op ::
un-op

Figure 31: Objective Lucid Syntax

in the definition environment. The corresponding operational semantic rules from
[Paq99] can be extended as follows.

The Objective Lucid extension to the operational semantics of Lucid is defined
in Figure [32] As in the original Lucid semantics, each type of identifier can only be

used in the appropriate situations. Notation:

e class, cid, cdef means it is a Class type of identifier with name cid and a

definition cdef.

e classv, cid.cvid, vdef means that the variable is a member variable of a
class classv with identifier cid.cvid given the variable definition vdef within

the class.
e <cid.cvid> means object-member reference within an intensional program.

e classf, cid.cfid, fdef means that the function is a member function of a
class classf with identifier cid.cfid given the variable definition fdef within

the class.

e <cid.cfid(vy,...,v,)> represents a object-function call within an intensional

program with actual parameters.

e freefun, ffid, ffdef mean a type of identifier is a hybrid free (i.e. object-
free) function freefun, where £fid is its identifier and ffdef is its definition
(body).

o8

e By cdef = Class cid {...} we declare a class definition. A class can contain

member variable vdef and member functions definitions fdef.
The rules:

e The E._,;q rule defines an object member variable for an expression for the dot-
notation. It is independent from the language in which we define and express
our objects. The rule says that under some context given two expressions F
and E’ that evaluate to a class-type identifier id and a variable type identifier
1d' respectively and if the two together via a dot-notation represent an object-

data-member reference, then the expression E.E’ evaluates to a value v.

e Member function calls are resolved by the E._g rule. Similarly to the E¢_yiq
rule, it defines that given two expressions £ and £’ under some context that
evaluate to a class-type identifier id and a member function type identifier
id’ and a set of intensional expressions Ei,..., E, evaluates to some values
v1, ..., v, and the two identifiers via a dot-notation represent a member function
call with parameters vy, ...,v,, then we say the expression E.E'(E, ..., Es) is
a member function call that under the same context evaluates to some value
v, i.e. the function always returns a value. Here we see why it is necessary
for Lucid to map a void data type to implicit Boolean true. This choice may
seem a bit arbitrary (for example, one could pick an integer 1), but aside from
practicality aspect the mere choice of true may signify a successful termination

of a method.

e The Egq rule defines JLucid’s free functions. The rule is a simpler version of

E._t¢ with no class type identifiers present.
o The #JAVA,p;iq rule places class definition into the definition environment.

o The #JAVA yjia and #JAVA a4 rules add public Java object member
variable and function identifiers along with their definitions to the definition

environment.

e The JLucid #JAVAgq rule add free function definition to the definition envi-

ronment.

29

D,P+E:id D,P+E :id
D(id) = (class, cid, cdef) D(id’') = (classv, cid.cvid, vdef)
D, P F<cid.cvid>: v

E. o
c—vid D,PFE.E :v
D, P+E:id D,PrE :id D,PFEL...,En:vi,...,0n
D(id) = (class, cid, cdef) D(id') = (classf, cid.cfid, fdef)
E D, P F<cid.cfid(vi,...,vn)>: v
e—fet D,Pr E.E'(Ey,...,En):v
D,PHE:id D,PFE1,....,Ep:v1,...,0n
D(id) = (freefun, ffid, ffdef)
D, P rE<ffid(vi,...,vn)>: v
Efma
D,PF E(EL,... En) v
cdef = Class cid {...
#JAVA,bjid - d }
D, Pt cdef : Df[cid — (class, cid, cdef)], P
cdef = Class cid {...vdef... vdef = public type vid;
#JIAVA bjvid { . i -
D, Pt cdef : Dt[cid.vid — (classv, cid.vid, vdef)], P
cdef = Class cid {...fdef ...} fdef = public fritype fid(fargtype; fargiq,,...,fargtypen fargiq,,)
#JAVAobjﬁd - X X -
D,P I cdef : Dt[cid.fid — (classf, cid.fid, fdef)],P
ffdef = fritype £fid(fargt idis- .. fargt ;
HIAVAmg fidef = fritype f£fid(fargtype; fargia, fargtypen fargia,,)

D, Pt ffdef : Df[ffid — (freefun, ffid, ffdef)],P

Figure 32: Additional basic semantic rules to support Objective Lucid
3.3 General Imperative Compiler Framework

3.3.1 Rationale

Having to deal with JLucid, Objective Lucid, and Java and a future likely possibility
to include other than Java imperative languages into intensional ones prompted inven-
tion of a general mechanism to handle that and simplify addition of new languages
into the GIPSY for research and experiments. This generalization touches several
critical aspects exposed by the JLucid and Objective Lucid languages involving such
a hybrid programming model. Thus, a core redesign of the GIPC was necessary to
enable this feature. The General Imperative Compiler Framework (GICF) addresses
the generalization issues (split among this Methodology and Design and Implemen-
tation chapters) for the imperative compilers and suggests later development of a
similar framework for the intensional languages.

The core areas in the hybrid compilation process affect the way an intensional lan-

guage program (which now syntactically allows having any number of code segments

60

written in one or more imperative languages) is compiled. This kind of program has
to be preprocessed first to extract the code segments to be compiled by the appropri-
ate language compilers and at the same time maintains syntactic and semantic links
between the parts of a hybrid program. This influences the general intensional com-
piler instrumentation, such as generation of sequential threads and communication
procedures, function elimination, GIPL-to-SIPL translation, semantic analysis, and
linking (and later interpreting/executing) of a GIPSY program.

Requirements for any such a framework like GICF imply at least the following

considerations:

e having a number of compiler interfaces known to the system that any concrete

compiler implements,

e ability to pick such compilers at runtime based on a hybrid program being

compiled,

e have a generalized AST that is capable of holding intensional and imperative

nodes,

e have the semantic analyzer understand possible data types that any language
may expose (which is a very challenging goal to do correctly), and deal with

function elimination for the imperative parts of the AST,

e preprocess by breaking down a hybrid GIPSY program’s source code to be fed to
the appropriate compilers gives us flexibility of allowing to include any impera-
tive language we want, but complicates maintenance of semantic links between
the intensional and imperative parts for later linking and semantic analysis.
This necessitates development of the two other special segments that can de-
clare in a uniform manner for GIPSY providing some meta information about
embedded imperative sequential threads, like function and type identifiers, pa-
rameter and return types for communication procedures, and user data types.
Thus, for the former we need a function prototype declaration segment, that
lists all free functions declared within imperative segments to be used by Lucid
and the type declaration segment for the user-defined types possibly declared
in those same imperative segments. The purpose of this meta-information is

two-fold: it will help us maintaining the semantic links via a dictionary and

61

create so-called “imperative stubs”. The former prompts the development of
the GIPSY Type System (see Section , page as understood by the
Lucid language and its incarnation within the GIPSY to handle types in a more
general manner. The latter stubs have to be produced in order for the inten-
sional language compilers (that stay intact with the introduced framework) not
to choke on “undefined” symbols that really were defined in the imperative

parts, which an existing intensional compiler running in isolation fails to see.

After all involved compilers are finished doing compilation of their code seg-
ments, they all produce a partial AST. For intensional compilers that means
the main AST with the intensional and stub nodes. For imperative compilers it
is the appropriate imperative AST for each sequential thread. The imperative
AST, in fact, need not to be a real tree and may contain a single imperative
node that would hold a payload of STs (compiled object or byte code), CPs,
type information, and some meta-information (e.g. what language the STs and

CPs are in and for which operating system and native compiler environment).

Then, the imperative stubs have to be replaced by the real imperative nodes at

the linking stage before the semantic analysis.

Once the main tree is formed, the semantic analyzer would use the type system
to verify type information of the intensional-imperative calls within taking into
consideration imperative nodes when doing function elimination and producing
the final “executable” tree, or Demand AST, or DAST, a component of the
GEER.

All this work is motivated by the desire to simplify the addition of new compilers

into the GIPSY environment with minimal integration hassle. The follow up sections

explore some of the issues about primary matching of the Java and GIPSY data

types, followed by the definition of sequential threads and communication procedures

in the GIPSY, and their Worker aggregator. While the below are sections that lay

down a concrete example based on JLucid and Java, the discussion addressing the

generalization of the design and implementation of these issues are presented in the

chapter that follows with the actual sequence diagram showing implementation details

of the above hybrid compilation process.

62

3.3.2 Matching Lucid and Java Data Types

Allowing Lucid to call Java functions brings a new set of issues related to data types.
Additional work is required on the semantic analyzer, especially when it comes to
type checks between Lucid and Java parts of a JLucid program. This is pertinent
when Lucid variables or expressions are used as parameters to Java functions and
when a Java function returns a result to be assigned to a Lucid variable or used in
an IP expression. The sets of types in both cases are not exactly the same. The
basic set of Lucid data types as defined by Grogono |[Gro02b] is int, bool, double,
string, and dimension. Lucid’s int is of the same size as Java’s int, and so are
double, boolean, and String. Lucid string and Java String are simply mapped
to each other since internally we implement the former as the latter; thus, one can
think of the Lucid string as a reference when evaluated in the intensional program.
Based on this fact, the lengths of a Lucid string and Java String are the same.
Java String is also an object in Java; however, at this point, a Lucid program has no
direct access to any object properties. We also distinguish the float data type for
single-precision floating point operations. The dimension index type is said to be an
integer for the time being, but might become a float when higher precision of points
in time, for example, will be in demand, or it could even be an enumerated type
of unordered values (though float dimensions will introduce some very interesting
problems). Therefore, we perform data type matching as presented in Table . The
return and parameter types matching sets are not the same because of the size of the
types. Additionally, we allow void Java return type which will always be matched
to a Boolean expression true in Lucid as an expression has to always evaluate to
something.

The table does not reflect the fact that JLucid is able to manipulate arrays of
values (streams), but these arrays are not Java arrays (Java’s arrays are objects). In
Objective Lucid (see Section , we also have Java object data types will also be
manipulated by a Lucid program with the Lucid part being able to access object’s
properties and methods and have them as return types and arguments. As for now

our types mapping and restrictions are as per Table [I}

63

Table 1: Matching data types between Lucid and Java.

’ Return Types of Java Methods | Types of Lucid Expressions

int, byte, long int
float float
double double
boolean bool
char, String string
void bool: :true

Parameter Types Used in Lucid

Corresponding Java Types

string String
float float
double double
int, dimension int
bool boolean

3.3.3 Sequential Thread and Communication Procedure Gen-

eration
3.3.3.1 Java Sequential Threads

Sequential threads are imperative functions that can be called in the Lucid part of
a GIPSY program. The data elements of a Lucid program are integers and the like.
Using them as such would result in a very inefficient computation due to the overhead
in generation and propagation of demands. STs overcome this problem. The notion of
sequential thread and granularization of data was introduced by the GLU (Granular
LUcid system [JD96, [JDA97].

Each GIPSY program potentially defines several Java methods that can be called
by the Lucid part of the program. Each of these functions are coded in the Java part
of the GIPSY program; thus, a sequential thread represents by itself a bit of work to
compute split into one or more Java methods. They are compiled (see Figure [33)) to
Java byte code by the compiler (GIPC, Figure and packed into one executable,
along with the Communication Procedures (CP) (see Section needed for the
communication between the generator and worker (Section [3.3.3.4] Figure [34). The
notion of worker is thus very close to the notion of sequential threads, where a worker
is basically the aggregation of the (potentially) several sequential threads that can

be executed by a worker, along with the communications procedures needed for the

64

GIPSY program

Lucid code Java code

L

Generator Woarker

Executable

Figure 33: Hybrid GIPSY Program Compilation Process

generator-worker communication.
Notice that the Generator-Worker Architecture may well be extended so that the
worker and the generator are fused into one; this is under review and is discussed in

[Lu04] and in [VPO5]. This gives us distributed generators as outlined in [Gro02bl,

but as yet is only a topic for discussion.

3.3.3.2 Java Communication Procedures

The functional demands (i.e., demands that raise the need for a Java function call)
are potentially computed by remote workers, upon demand by the generator. The
demand is sent via the network by the generator to the worker, along with the data
representing the parameters of this Java function call. Sending this data through the
network requires the breaking of the data structure into packets transmissible via a
network. This packing of the demand’s input data is done by the Communication
Procedures, along with some kind of remote procedure call to the worker using, for
example, TCP/IP RPC. Once the function (the sequential thread) resolves, the worker

65

(Section is responsible for sending back the result to the generator that called
for this demand. That is also done by the CPs.

The CPs are generated by the compiler (GIPC) using the first part of the GIPSY
program: the definition of the data structures sent over the network (i.e., the pa-
rameter and return types of the Java functions). The GIPC parses these Java data
structures and translates them into an abstract syntax tree. This tree is then traversed
by the CP generator, which generates byte code for the communication procedures,
following the communication protocol that was selected. Serialization summarizes
much of this and Java helps us do it.

The CP generator has to be extremely flexible, as it has to be able to generate
code that uses various kinds of communication schemes. In a nutshell, CPs determine
the way a ST should be delivered to the computing host’s worker depending on
the communication environment. For the localhost, it is plain TLP (i.e., we create
Java threads on a local machine) so NullCommunicationProcedure (Section is
used. For distributed environment CPs wrap transport functions over Jini, DCOM+,
CORBA, PVM, and RMI (see [Lu04, [VP05]) protocols. Both CP and ST interfaces

are presented in Section [4.1.1.8|

3.3.3.3 C Sequential Threads and Communication Procedures with the
JNI

This is the methodology of how to extend the Java ST/CP generation concepts to
C (and similarly can be done for C++) with the JNI [Ste05] introduced in Sec-
tion [2.6.1.2] page This approach was designed, but not implemented as of this
writing; however, it may serve as a good head start on the implementation of the
CCompiler in GICF.

Much of the ST wrapper class generation code for C will be similar to that of
Java. The main difference is the bodies of the sequential thread functions will not
be present in the generated class as-is, but they will be declared as native with
no Java implementation. The C code chunks will be saved to a .c file and the
corresponding .h fill will be generated declaring all the needed prototypes with the
javah tool provided with the standard distribution of the JDK. After that, we call an
external C compiler to compile the C chunks into a shared library. Thus, the other

modification to the generated wrapper class the CCompiler has to do, is to add a

66

static initializer with the System.loadLibrary() call for the newly compiled library
with the C implementation of our ST(s). The generated ST class and the compiled
mini-library can be stored together (e.g. the binary library file can be loaded into
a byte array of the class and deserialized back when about to be executed) in the
imperative node and later be communicated just like Java STs. A more sophisticated
alternative is to do the compilation and dynamic loading after communication by the
engine, but this can be a next step.

As far as type matching concerned, we still can use the same mapping rules defined
in Section [3.3.2) (and subsequently the TypeMap class of the JavaCompiler presented
later on) because with the JNI with still work with Java and the JVM can do Java-
to-native type translation to C or C++ for us, not only for primitive types, but also

for arrays, objects, and strings.

3.3.3.4 Worker Aggregator Definition in the Generator-Worker Architec-

ture

The GIPSY uses a generator-worker execution architecture as shown in Figure [34]
The GEER generated by the GIPC is interpreted (or executed) by the generator fol-
lowing the eductive model of computation. The low-charge ripe sequential threads
are evaluated locally by the generator. The higher-charge ripe sequential threads are
evaluated on a remote worker. The generator consists of two systems: the Intensional
Demand Propagator (IDP) and the Intensional Value Warehouse (IVW) [Tao04]. The
IDP implements the demand generation and propagation mechanisms, and the IVW
implements the warehouse. A set of semantic rules that outlines the theoretical as-
pects of the distributed demand propagation mechanism has been defined in [Paq99].
The worker simply consists of a “Ripe Function Executor” (RFE), responsible for
the computation of the ripe sequential threads as demanded by the generator. The
sequential threads are compiled and can be either downloaded /uploaded dynamically
by /to the remote workers. Better efficiency can be achieved by using a shared network
file system.

An example: a GIPSY screen saver would be a sample worker running when the
an ordinary PC is going into an idle mode and normally launches ordinary dancing
bears screensavers, it can actually run our downloaded worker instead and contribute

to computation. When such a worker starts, it has to register it within a system

67

Worker Generator

intensional

ripe function ‘ demand demand
executor . . » dispatcher L. o propagator - value
| z

(DD} warehouse
(RFE} (DP) (IVW)

h F

Figure 34: Generator-Worker Architecture

somehow (see [VP05]), so that the generators are aware of its presence and can send
demands to it. In the event of merging of semantics of a worker and a generator, such

a screensaver would also be able to generate demands and maintain a local warehouse.

3.4 Summary

This chapter presented methodology behind concrete implementations of the first
two hybrid languages in the GIPSY — JLucid and Objective Lucid. Semantic rules
were presented for free Java functions and Java objects to be included into the Lucid
programs and evaluated by the eduction engine in the hybrid environment. Further-
more, operational semantics of Objective Lucid is clearly defined and is compatible
with the semantics of Lucid. The general requirements for the GICF, a tool simpli-
fying imperative compiler management within GIPC, are introduced. The follow up
chapter details the architectural and detailed designs and concrete implementation of
the languages as well as General Intensional Compiler Framework and overall module
integration and their interfaces. Some immediate benefits and limitations are outlined

below.

68

3.4.1 Benefits

e JLucid opens the door for STs and CPs and first hybrid programming paradigm
in the GIPSY.

e JLucid provides ability to either write Java code alongside the Lucid code or

embed existing one via embed ().
e Objective Lucid introduces Java objects and their semantics in the GIPSY.
o GICF generalizes the embed () mechanism to all languages in the GIPSY.
e GICF promotes general type handling in the GIPSY.
e GICF promotes general compiler handling in the GIPSY.

o GICF generalizes the notion of the STs and CPs for all compilers.

3.4.2 Limitations

e JLucid is limited only to GIPL-Java and Indexical Lucid-Java hybrids.

JLucid does not allow Java objects.

JLucid restricts the embed () mechanism only to itself and its derivative — Ob-

jective Lucid.

Objective Lucid is primarily an experimental language to research on Java ob-

jects in the intensional environment.

GICF addresses mostly the imperative compilers, but a similar approach can

be applied to the intensional and functional ones.

69

Chapter 4
Design and Implementation

This chapter combines the architectural and detailed designs and integration of the
modules contributed not only by the author of this thesis but also by the other GIPSY
team members. Section explores the GIPSY architecture and implementation
of the major components and frameworks. Then, Section focuses on the user
interface and external library interfaces. User interfaces, class and sequence diagrams
are provided mostly following the top-down approach. For GIPSY Java packages,
directory structure with description of each package, and . jar file packaging please

refer to Appendix [C]

4.1 Internal Design

The GIPC framework redesign along with the realization of the two children frame-
works of GICF and IPLCF are presented first followed by the design and implemen-

tation of JLucid and Objective Lucid integrated into the new frameworks.

4.1.1 General Intensional Programming Compiler Framework

The GIPC Framework experienced several iterations of refinements as a result of
this research. Two new frameworks emerged, namely General Imperative Compiler
Framework (GICF) to handle all imperative languages within the GIPSY and, its

counterpart Intensional Programming Languages Compiler Framework (IPLCF).

70

4.1.1.1 General Imperative Compiler Framework

GLU [JDA97, [JD96], JLucid [MPGO5|, and later Objective Lucid [MP0O5b] prompted
the development of a General Imperative Compiler Framework (GICF). The frame-
work targets integration (embedding of) different imperative languages into GIPSY
(see [RGO5a]) programs for portability and extensibility reasons. GLU promoted C
and Fortran functions within; JLucid/Objective Lucid promote embedded Java. Since
GIPSY targets to unite all intensional paradigms in one research system, we try to
be as general as possible and as compatible as possible and pragmatic at the same
time.

For example, if we want to be able to run GLU programs with minimum (if at
all) modifications to the code base, GIPSY has to be extended somehow to support
C- or Fortran-functions just like it does for Java. What if later on we would need to
add C++, Perl, Python, shell scripts, or some other language for example? The need
for a general “pluggable” framework arises to add imperative code segments within
a GIPSY program. We could go even support multi-segment multi-language (with

multiplicity of 3 or more languages) GIPSY programs. Two examples are presented
in Figure 35 and in Figure

4.1.1.2 Generalization of a Concrete Implementation

Thus, the JavaCompiler component (see Figure , part of GIPC, has to be gen-
eralized, and the JavaCompiler itself be a concrete implementation of this gen-
eralization. The generalization would express itself by having an abstract class
ImperativeCompiler, the generic Preprocessor (vs. JLucidPreprocessor in Sec-
tion [4.1.2]) should be able to cope with all PLs and know what PLs are supported
through enumerating them. Another thing the GICF buys us is an ability to have any
supported imperative programming language embedded in any supported intensional
programming language. Though this may seem impractical at the first glance, but
the framework is designed such that a lot of syntax, semantics, and type mapping
work is performed by the individual concrete compiler implementations and not by
the generic machinery. The goal here is that as long as any given compiler within
the framework conforms to the designed interface specification and produces the re-
quired data structures, there should be least possible effort to enable such a compiler

in GIPSY. Thus, the compilation process, semantic checks, linking, and execution at

71

#funcdecl

Integer £();
void gee();
void z();

#typedecl
Integer;
#JAVA

Integer £()
{
return new Integer("123");

}
#CPP
#include <iostream>

void gee()
{
cout << "gee" << endl;

}
#PERL

sub z()
{
while (<STDIN>)
{
s/\n//;

print;
}
#0BJECTIVELUCID

A @.d5
where
dimension d;
A =B fby.d (A - 1);
B = C fby.d (B + £().intValue());
C z() && gee();
end;

Figure 35: Example of a hybrid GIPSY program.

72

* Language-mix GIPSY program.
*
* $Id: language-mix.ipl,v 1.5 2005/04/25 00:16:30 mokhov Exp $
* $Revision: 1.5 $
* $Date: 2005/04/25 00:16:30 $
*
* Qauthor Serguei Mokhov
*/
#typedecl
myclass;

#funcdecl

myclass foo(int,double);
float bar(int,int):"ftp://newton.cs.concordia.ca/cool.class":baz;

int £1Q);
#JAVA
myclass foo(int a, double b)
{
return new myclass(new Integer((int)(b + a)));
}
class myclass
{
public myclass(Integer a)
{
System.out.println(a);
}
}
#CPP

#include <iostream>

int f1(void)

{
cout << "hello";
return O;

}

#0BJECTIVELUCID

A + bar(B, C)

where
A = foo(B, C).intValue();
B = f1();
C = 2.0;

end;

/*

* in theory we could write more than one intensional chunk,
* then those chunks would evaluate as separate possibly

* totally independent expressions in parallel that happened
* to use the same set of imperative functions.

*/

// EOF

Figure 36: Another example of a hybrid GIPSY program.

73

the meta level of implementation of the GIPC and GEE can be reasonably generalized
without loss of practicality as we shall see. With this great deal of flexibility, we have

several issues:

e Binary portability of compiled languages, such as C/C++ on a different host

(this problem theoretically does not exist for Java).

e Though some languages, such as Perl, Python, shell scripts, are interpreted, a

version mismatch may happen.

e A compiler for interpreted languages other than Java would be rather simple
because should we want to pass the ST code to a remote host, all we need is
to pass the source itself. Of course, in both compiled and interpreted variant
there is a large potential of security vulnerability exploits (e.g. with malicious
code injection), which will have to be dealt with as a part of the future work.
As of this writing, there are no embedded checks in GIPSY for that; instead a
guide of a sandboxed installation of GIPSY will be provided when the system

is released.

e Another important issue is having imperative PL nodes in the AST. The issue
is in what such nodes should contain in order for them to be linked back into
the main AST, how to perform semantic analysis of the hybrid code based on

the contents of such nodes, and GEE should go about executing this code.

e Various languages define their own set of types and typing rules, gluing them

all together is a very difficult task for semantic analysis and type inference.

The follow up sections clarify and address most of these issues.

4.1.1.3 Resolving Generalization Issues and Binary Compatibility

In order to fully support GICF, the original GIPC framework in Figure [37] (discussed
in detail by Wu and Paquet in [PGW04]) has to be altered in the following way: the
Preprocessor has to be added on top of all the front-end modules, and new links drawn
between the Preprocessor and the other modules Figure 38 This also changes the

data structures flow between the components. For the unaware reader, what follows

74

is the brief description of the layers, components, and abbreviations of the conceptual
design present in Figure [38}

The front-end and back-end layers are the two bottom ones represent the main
machinery of the GIPC. The front-end compilers and parsers are responsible for pars-
ing, producing initial syntax trees, STs, and CPs. At this layer, the main abstract
syntax tree AST is always compliant to the one of Generic Intensional Programming
Language (GIPL). If the source code program was written in some specific intensional
programming language (SIPL, e.g. Indexical Lucid or Tensor Lucid), its AST has to
be translated first into GIPL. Both, GIPL and SIPL type components may translate
a Lucid dialect source code into a data flow (DFG) graph language and back; hence,
there is a variety of the DFG translators. Next, the other two types of conceptual
components at the front-end layer are the data type (DT) and the sequential thread
(ST) front-ends. These correspond to the imperative language compilers and their
modules in the implementation. The DT front-end is responsible for analyzing data-
type definitions in the ST code and producing native (i.e. compiled) representation of
communication procedures (NPCs). The ST front-end is responsible for compilation
an ST code and producing some equivalent of the native compiled code (NST) as the
end result.

The GIPC back-end layer performs finalization of a GIPSY program compilation
by doing semantic analysis and eliminating Lucid functions and producing the demand
AST (DAST) along with linking in the generated STs and CPs from the imperative
side. The GEER generator then produces the final linked version of a GIPSY program
as a resource usable by the GEE (GEER).

The first two layers are meta-level layers that prepare information for the front-
end and back-end layers. The second layer is the GIPC Preprocessor layer discussed
in depth through the rest of this chapter. The top level has to do with some language
specification processing and creating corresponding parsers and data structures for
the front-end layer. SIPL and GIPL front-end generators have to do with the fact
that our SIPL and GIPL parsers are generated out of a source grammar specification
by javacc. Thus, a GIPL specification corresponds to the GIPL grammar in the
GIPL. jjt file and the GIPL spec processor is the javacc tool. The DT and ST front-
end generators exist for the same idea as the GIPL and SIPL ones do. However, in

the current implementation they are not present either because they are hand-written

75

DFS-GIDPL AIPL-DFS
transiator transiator

MET
ganarator

STPL~GIPL
AST tramslator

Figure 37: Original Framework for the General Intensional Programming Compiler
in the GIPSY

or we rely on the external compiler tools (e.g. javac to compile Java STs) to do the
processing for us. The design however implies that these components may eventually
be converted to the genuine imperative compilers within GIPSY giving greater control
and flexibility over the imperative parts than relying on external tools. Therefore, we

may acquire a Java.jjt one day, for example, and generate a Java parser out of it.

Format Tag To address some binary compatibility issues we invent a notion of
a format tag attached to the STs and CPs. The format tag’s purpose is to include
meta-information about STs and CPs such that it includes the programming language,
the object code format, the operating system, compiler, and their versions. This is
important if we are sending platform-dependent compiled code, such as that of C or
C++ from one host to another with different architectural platforms. The FormatTag
API is in Figure

We implement format specifications as a hashtable. We also predefine some com-

mon format tags, such as JAVA, for conveniences as most frequently used. The class

76

SIPL-DFG DFG-SIPL DFG-GIPL GIPL-DFG
tramslator translator translator translator STL
parser

NCP SIPL GIPL NST
generator parser parser generator

SIPL-GIPL
AST translator

Figure 38: Modified Framework for the General Intensional Programming Compiler
in the GIPSY

7

frperativeCompiler FormatTag GEERGenerator SernanticAnalyzer

rfrom imperative) (from imperative) rfrom &IPC) ffrom GIPC)
CODE_UNKMOWYM : int=-1
s Tag @CODE_BINARY int =0
CODE_TEXT @ int=1
LCODE_BINARY _AMND TEXT : int=2 \ /
ggg?lifmF:OfMAT' nt =2 doFormat Tag) ImperativeMNode

(from imperative)

GCOMPILER : int=5
GCOMPILER_FLAGS @ int=6
WoF ormatSpecifications © Hashtable = null

*FDrmatTagO
*FarmatTagO E
StoString)
®equals()
|
Executor
+h AN A, (from GEE)

HRUMKM O

Figure 39: The FormatTag APL

overrides toString() and equals() of Object to define that the two format tags are

only equal if the string representation of all their specifications are identical.

Sending Source Code Text Not all non-intensional languages require compila-
tion, e.g. Perl, Python, etc. These can be sent over as plain source code text; thus, the
format tag will indicate the fact. We can go even further with this and send any lan-
guage as plain text and compile it on the target host instead prior invocation. For the
task of the source code inclusion we reserved the SequentialThreadSourceGenerator.
Of course, this won’t work for embed-included binary code via a URI parameter be-
cause that code was already compiled by someone else on some specific platform. As
far as current implementation concerned, the generated ST class does always contain
the source code of STs from the GIPSY program code segments, but it is unused by
the GEE except for debugging as of this writing.

Dictionary The Preprocessor’s dictionary will initially be constructed based on
the #funcdecl and #typedecl program segments. The dictionary will serve as an
input to three other components: the NST generator (for error reporting and point-
ers to the nodes in the AST and the compiled code), to the NCP generator (to
analyze the data structures used by STs and generate CPs accordingly), and to the
semantic analyzer, to perform data type matching between the intensional and im-

perative parts. Both NCP and NST generators work under the command of some

78

imperative language compiler and are referred to as SequentialThreadGenerator
and CommunicationProcedureGenerator in their most general forms, which are sub-

classed by a concrete language implementation.

4.1.1.4 GIPC Preprocessor

The Preprocessor is something that is invoked first by the GIPC on incoming GIPSY
program’s source code stream. The Preprocessor’s job is to do preliminary program
analysis, processing, and splitting into chunks. Since a GIPSY program is a hybrid
program consisting of different languages in one source file, there ought to be an
interface between all these chunks. Thus, the Preprocessor after initial parsing and
producing the initial parse tree, constructs a preliminary dictionary of symbols used
throughout the program. This is important for type matching and semantic analysis
later on. The Preprocessor then splits the code segments of the GIPSY program
into chunks preparing them to be fed to the respective concrete compilers for those
chunks. The chunks are represented through the CodeSegment class that the GIPC
collects. The corresponding class diagram of is in Figure [40]

The Preprocessor can also be told to report certain code segments are invalid at
the preprocessing stage rather delaying the error until the compiler discovery stage
through the addInvalidSegmentName () and addValidSegmentName () methods and
maintaining internal vector of the strings with invalid segment names. This fea-
ture is for example used in Preprocessor’s extensions of JLucidPreprocessor and
ObjectiveLucidPreprocessor later on that filter out code segments that do not

belong to the languages. The filtering logic works like this:

e if no valid and invalid segments are specified, all segments are accepted as valid

at the preprocessing stage. This is the default for general GIPC work.

e if some invalid and no valid segments are specified, the Preprocessor will error

out on the invalid segments
e if only valid segments are specified, everything else will be treated as invalid

e if both valid and invalid segments are present; the invalid set segments are
ignored and everything that it is not mentioned in the valid set is said to be

invalid.

79

Preprocessar
(from Preprocesing)
ToCode Segments : Vector = new Vector)
BeovalidSegmenttames : Yector = new Vector ()
BeolnvalidSegmentMames : Yector = new Vector ()
FolmperativeStub s : Hashtable = new Hashtable ()

SPreprocessor()
Ppreprocess()

O

FreprocessorParserTreeConstants

ifram Preprocessing)

PsotSour: eStreami)
*getDictiunary(}
‘getF’reprncess orASTRoot()

ﬁsplitCndeSegmentsO

@ producelm perativeStubs()
Sgatimperative Stubs()
PgetCodeSegment s()
PaddvalidSegm entMamer)
PaddivalidSegrmentMarme()

#oPreproces sorASTRoot

CodeSegment

from Preprocesin g)

@strLanguage . String = null

Dictionary
(fram storage)

&strCode String = null *Dictio nary(}
‘CodeSegmentO

‘getLanguageNameO

SgetSourceCodel) GPSY Type
SoString() from lang)
®getSourceCodeStream()

All but Preprocessor,
Dictionary, and
CodeSegment are
generated by javacc.

PreprocessorParser
from Preprocesing)

#panser

#oPreprocegsorASTRoot

SimpleNode

ffrom Preprocessing

Tgid © int
, TstrLexeme : Sting

$SimpleModel)
jitOpen()
jtClose)
jtSetPare nt()
YjtGatParent()
FjtAdd Child()
SjtGat Child()
jtGat MumC hildren()
FtoString()
‘toStringO
*dumpo
‘setLexemeO
‘getLexemeO
SSimplaModel)

JITPreprocessorParserState
ifrom Preprocessing)

Enodes : Stack
&marks: Stack
Epsp - int
&k« int

&node_created : boolean

“PUITP reprocesso Pars erState()
‘l’nodeCreatedO
1’reset(}|
*ruotNode(}
*pushNo de()
Fpophadel)
Ppeekiodef)
Prodedity()
PclearhodeS cope()
Popenhlodes cope()
PcloseMNodeScope])
“PcloseMNodeScope])

#Hjtree

(from Preproceszing)

PreprocessorParserTokentdanager

PreprocessorParserConstants
(fram Preprocessing)

Figure 40: The GIPC Preprocessor.

GIPSY Program Segments Here we define four basic types of segments to be

used in a GIPSY program. These are:

e #funcdecl program segment declares function prototypes of imperative-language
functions defined later or externally from this program to be used by the inten-
sional language part. These prototypes are syntactically universal for all GIPSY

programs and need not resemble the actual function definitions they describe

in their particular programming language.

e #typedecl segment lists all user-defined data types that can potentially be used
by the intensional part; usually objects. These are the types that do not appear

in the matching table in Table [I]

e #<IMPERATIVELANG> segment declares that this is a code segment written in
whatever IMPERATIVELANG may be, for example #JAVA for Java, #CPP for

C-++, #PERL for Perl, #PYTHON for Python, etc.

80

e #<INTENSIONALLANG> segment declares that this is a code segment written in
whatever INTENSIONALLANG may be, for example #GIPL, #INDEXICALLUCID,
#JLUCID, #0BJECTIVELUCID, #TENSORLUCID, #ONYXE], etc. as understood by the
GIPSY.

Preprocessor Grammar The initial grammar for the Preprocessor to be able
to parse a GIPSY program is shown in Figure [41] After having parsed a program,
we have a Preprocessor AST (PAST) that will be used further by the compilation
process in the GIPC and its submodules. The grammar and the framework were
designed in such a way so all the previous neat features of JLucid [MP05b]/Objective
Lucid [MPO05b] still be present, such as embed() and are accessible to other dialects.
In the GICF, we generalize our function prototype declaration to be able to include
external code of any imperative language.

The lexical elements, such as LETTER, LANGDATA, DIGIT, CAPLETTER, and
*LITERALS are not listed for brevity as they are merely standard and self-explanatory
lexical tokens except probably LANGDATA — this is character data allowing any
character sequence within except LANGID that serves as a terminator of a code
segment chunk.

Notice, the grammar is not bound to our current set of supported intensional and
imperative languages. Rather, the GIPC attempts to look up appropriate compiler
for each code segment automagically using LANGID for mapping at run-time. The
JavaCC version of the grammar can be found the PreprocessorParser.jjt file.

The grammar has been amended from what was published in [MP05a] to include
LANGID in the EMBED production, the immutable keyword and arrays subscript
operator [] in the PSTART production. LANGID in EMBED is needed to be able to
pick the appropriate compiler for the included code as it may be written in any
imperative language. The immutable keyword is needed to allow a programmer
to assert that certain STs are immutable meaning given the same parameters they
always return the same result, and, therefore, their result can be safely cached in the
warehouse as such functions are declared side-effects free (e.g. as the get42() method
in Figure 23] page [4§ can be marked as immutable). This marking of methods will

allow more efficient caching of the ST results of STs known not to have side effects

1See [Gro04] for details on the Onyx language.

81

<GIPSY>

<DECLARATIONS>

<FUNCDECLS>

<TYPEDECLS>

<PROTOTYPES>

<PROTOTYPE>

<PSTART>

<EMBED>

<TYPES>

<TYPELIST>

<CODESEGMENT>

<CODESEGMENTS>

<URI>

<ID>

<LANGID>

<TYPE>

<DECLARATIONS> <CODESEGMENTS>

<FUNCDECLS> <DECLARATIONS>
<TYPEDECLS> <DECLARATIONS>
€

#funcdecl <PROTOTYPES>
#typedecl <TYPES>

<PROTOTYPE> ; <PROTOTYPES>
€

<PSTART> <EMBED>

[immutable] <TYPE> [[]] <ID> (<TYPELIST>)

<LANGID> : <URI>
: <LANGID> : <URI> : <ID>

<TYPE> ; <TYPES>
€

<TYPE> [[]]
<TYPE> [[1], <TYPELIST>
€

<LANGDATA> <LANGID>
<LANGDATA> <EOF>

<CODESEGMENT> <CODESEGMENTS>
€

<CHARACTERLITERAL>
<STRINGLITERAL>

<LETTER> (<LETTER> | <DIGIT>)*
#<CAPLETTER> (<CAPLETTER>)*

<ID>
int
double
bool
float
char
string
void

Figure 41: Preprocessor Grammar for a GIPSY program.

82

and has to be explicitly set by the programmer. If the programmer by mistake marks
a method with side effects as immutable, then a program may exhibit erroneous
execution at run-time by returning a possibly incorrect value from the warehouse.
There is no way to automatically discover immutability of STs in GIPSY at this time
(it may only be possible when genuine imperative compilers are implemented). The
array subscript operator [] has been added to PSTART and TYPELIST productions
to allow GIPSY arrays (as a generalization of JLucid arrays) that are composed of
the elements of GIPSY types. The concrete imperative compilers implementing the
mapping (if possible) will have to do appropriate conversions from the native arrays
to GIPSY arrays.

4.1.1.5 GIPSY Type System

While the main language of GIPSY, Lucid, is polymorphic and does not have explicit
types, co-existing with other languages necessitates definition of GIPSY types and
their mapping to a particular language being embedded. Figure 42| presents the design
aspects of the GIPSY Type System.

Each class is prefixed with GIPSY to avoid possible confusion with similar def-
initions in the java.lang package. The GIPSYVoid type always evaluates to the
Boolean true, as described earlier in Section [3.3.2] The other types wrap around the
corresponding Java object wrapper classes for the primitive types, such as Integer,
Float, etc. Every class keeps a lexeme (a lexical representation) of the correspond-
ing type in a GIPSY program and overrides toString() to show the lexeme and
the contained value. These types are extensively used by the Preprocessor, imper-
ative and intensional (for constants) compilers, the SequentialThreadGenerator,
CommunicationProcedureGenerator, SemanticAnalyzer for the general type of GIPSY
program processing, and by the GEE Executor.

The other special types that have been created are either experimental or do not
correspond to a wrapper of a primitive type. GIPSYIdentifier type case corresponds
to a declaration of some sort of an identifier in a GIPSY program to be put into the
dictionary, be it a variable or a function name with the reference to their definition.
This is an experimental type and may be removed in the future. Constants and
conditionals may be anonymous and thereby not have a corresponding identifier.

GIPSYEmbed is another special transitional type that encapsulates embedded code via

83

GIPEYInteger
(fram lang)

GIPSYDouble
dmmlang)

Beintegervalue © Integer

TeoDoubleValue : Double

GIPEYldentifer
(fram lang)

SGIPSYIntagern)

Bostridentifiervalue : String

GIPSYOperator

¢from lang)

GIPSYFunction

(from lang)

SGIPSY Operaton)
®GIPSY Operator)

GIPSYCharacter
¢irom lang)

TeoCharactervalue : Character

SEUNCTION_TYPE_FUNCTIONAL - int =1

SEUNCTION_TYPE_ST: int =2
SEUNCTION_STATE_IMMUTABLE : int =3

SEUNCTION_STATE WOLATILE : int= 4

piFunctionState - int =

WpiFunctionType : int = FUNCT\ON:TYPE_FUNCTIONAL

FUNCTION_STATE_IMMUTABLE

SGIPSYFunction])
$GIPSYFunction))

SyetEnclosedTypeOject])

TeoFloatvalue : Float

ReoStringvalue : String

BpoBooleanalue : Boolean

$TYPE_DOUBLE : int =1
¢TYPE_STRING : int=2

SyetEnclosedTypeCject()
Syetvalue]

SGIPSYFloat) SGIPSY String)
SGIPSYFlnat]) SGIPS Y String()
$toString)) Spetvaluel
GIPSYFloat) $oString()

*yetEnclosedTypeOject])

SGIPSYBoolean()
$GIPSYBoolean(
SGIPS Y Boolean)
Syetvalue))

S0 String()
*yetEnclosedTypeOject])

IMPE_BOOLEAN - int=3
@IfPE_CHARACTER : int=4
GTYPE_ARRAY :int=5
@IYPE_OBJECT : int=6
SIYPE_WOID : int=7
&TYPE_EMBED : int=18

’GIF’SYDnuhIeO ’GIF’SYCharamerO ‘get\/alueo
SGIPSYInteger) SCIPSYDoublel) SGIPSYIdentifier]) SCIPSYCharactar]) $oString)
SGIPSYIntager) $1oStringl) SGIPSYIdentifier]) SGIPSY Character(] SgetFunctionState)
Sgatvaluel) SEIPSYDoublel) Syeti/alue() Syetialuel) ®sstFunctionStatel)
$aString) SyetEnclosedTypeQject)| | ®toString(StoString() SgetFunctionTypel)
SyetEnclosedTypeOject() Syetialual) SgetEnclosedTypeOject]) SyatEnclnsedType0jact() FsatFunctionTyper)

GIPSYType
o lang)
TstrLexeme : String = "<abstract=" i GIPSYEmbed
GIPSYFloat GIPSY String ClSlEngean TYPE_INT - int :% G‘Ef:e?g?m from lang)
(from lang) (from lang) (from lang) =

FeoObject'/alue : Object

TFpoEmbedvalue : Object

SGIPSYOhject
$oString()
SGIPSYOhject])
$ygetEnclosed TypeQject()
Pyetvaluef)

SGIPSYEmbed)
SGIPSYEmMbed{pstrUR] : String)
SGIPSYEmbedipaURI - URD
S40Stringl) © String
SyetEnclosedTypeOject() | Object

Figure 42: GIPSY Type System.

STYPE_IDENTIFIER - int = 3 #anhembers(]
STYPE_FLOAT : int =10
TiType :int=-1
TpstrlD © String = "<anonynougs" #iBaseType ij\’fnr;)ay
GIPSTvoid STYPE_FUMCTION : int = 11
tom 1ang) STYPE_OPERATOR - int=12 :GIF‘SYArray'O
@ GIPSYArray()
*GIPEVaid) ‘tgfé't‘ﬁ:;é"ec' SGIPSYAray)
Ssotlexeme() :mStrmg()
SyetTypeEnumeration() ‘PIPIS:A"”O
SyetEnclosedTypeOjact]) ‘eng 0
@ge1iD) getBaseType()
setlDg
SyatTyps()

Sygetvalue() | Object

the URL parameter and later is exploded into multiple types corresponding to ST's

and their CPs. GIPSYFunction and its descendant GIPSYOperator correspond to the

function types for regular operators and user defined functions. A GIPSYFunction

can either encapsulate an ordinary Lucid function (as in functional programming an
which is immutable) or an ST function (e.g. a Java method), which may easily be

volatile (i.e. with side effects). These four types are not directly exposed to a GIPSY

programmer and at this point are managed internally. The rest of the type system

is exposed to the GIPSY programmer in the preamble of a GIPSY program, i.e., the

#funcdecl and #typedecl segments, which result in the embryo of the dictionary

for linking, semantic analysis, and execution. Once ST compilers return, the type

data structures (return and parameter types) declared in the preamble are matched

against what was discovered by the compilers and if the match is successful, the link

is made.

84

4.1.1.6 GICF Design

The GICF is the first generalization framework of hybrid programming in the GIPSY.
Implementation-wise, only Java is implemented as an imperative language with an
external compiler. However, provision was made for C/C++, Perl, Fortran and
Python with stub compilers. The class diagram describing GICF is shown in Fig-
ure On this diagram the interaction between a given imperative compiler and the
SequentialThreadGenerator and CommunicationProcedureGenerator only shown
for JavaCompiler to keep the clearer picture, but the same kind of association will
have to be maintained for all imperative compilers as the IImperativeCompiler in-
terface mandates. The EImperativeLanguages is a Java interface enumerating all
available imperative language compilers. It is used by the GIPC to discover a given
compiler for a language dynamically. As of this writing, the enumeration is main-
tained by hand; however, it is planned to be generated in the near future with a
command-line-driven script or a RIPE GUI automagically to facilitate addition of

new languages.

4.1.1.7 Intensional Programming Languages Compiler Framework

As a consequence of GICF, a similar approach was applied to the intensional com-
pilers in the form of IPLCF. See the corresponding class diagram in Figure [44] The
IIntensionalCompiler was designed and implemented by all the intensional compil-
ers we have. An enumeration EIntensionalLanguages of all supported intensional
languages was created, so the GIPC can pick needed compiler at run-time as deter-
mined by the Preprocessor.

Translation for all intensional compilers is done through the generic Translator
implemented by Aihua Wu in [Wu02]. The Translator has been integrated into
the GIPC.intensional.GenericTranslator package and split and renamed as in
Figure [45] Thus, every SIPL compiler refers to this translator to acquire a GIPL
AST at the end via generic implementation of IntensionalCompiler.translate().
The Translator was refactored and augmented to understand GIPSY Types (see Sec-
tion and ImperativeNode for imperative languages. The TranslationParser
and TranslationLexer collaborate to compile intensional language translation rules

(e.g. Indexicallucid.rul) files provided by each SIPL author.

85

O O Im perativeC ompilerExc eption

(from imperative)

limperativeCompiler Elmperativelanguages
tfrom imperative) (from imperative)

ImperativeCormpiier

o inpeabive) _ R X . .
CPPCampiler | | CCompiler FartranCarnpiler PefCarnpiler PythanCompiler
(fram Cpp) (fram CJ (from Fortran) (fram Perl) (from Python)
#oFormatTag
UMMV FormatTag [foFormatTag| ImperativeMode JavaCompiler
(from imperative) (from imperative) s (fram Jawal
#15TGenerator S AV A
CammunicationProcedureGenerator JavaCommunicationProcedureGeneratar

(from CommunicationProcedure Generator) {:}— (from CommunicationProcedureden erator)

SequentiaiThreadGenerator JavaSequentialThreadGenerator
froar Seguertial Thesd Gerezhon) <:] (from Jawva)

SequentialThreadSourceGeneratar
ffrom Sequential Threade naraton

Figure 43: GICF Design.

4.1.1.8 Sequential Thread and Communication Procedure Interfaces

This section details Sequential Thread and Communication Procedure interfaces.
The related class diagram is in Figure |46, The ICommunicationProcedure and
ISequentualThread are the core interfaces. Both extend Serializable in order
for us to be able to dump their concrete implementations to disk or distributed stor-
age using Java’s object serialization machinery. This is needed for the GIPSYProgram
container to be saved to disk or for an ST to be able to reside in JavaSpaces [Mam05]
implementation of the demand space [VP05]. The ISequentialThread also extends
Runnable to be true thread when materialized, especially for the case of local execu-
tion. The Runnable interface makes it possible for an implementing class to become a

thread in multithreaded environment in Java. The ICommunicationProceduresEnum

86

O O IntensionalCompilerException
lintensional ElrtensionalLanguages e
Comp\lgr (from intensionaly -)]
(from intensi.) intengionalCompilerException()
_ ®intensional CompilerException()
®translate() #intengionalCompilerException()
IntensionaiCompllar
(fram intensianal)
®intensionalCormpiler()
$IntensionalCompiler() GIPLCampiler IndexicalLucidCa rpiler dLucidCampiler Objective LucidCampiler
‘ImensmnaICumpllerO (from GIPL) (from IndexicalLusid) ttram JLucid) fram ObjectiveLucid)
Scompile) . .
SyetibstractSyntaxTraa() SGIPLCompiler)| | ®ndexicallLucidCompiler)) ®LucidCormpiler]) -odLucidCompiler $0bjectiveLucidCompilar()
’translateo §G|p|_cgmpngr0 $|ndgxica||_umdcgmpi|gr0 ‘JLucwdCumpiIerO ‘ObjectiveLucidCumpilerO
run() SGIPLCampiler)| | ®IndexicalLucidCompiler) ®LucidCormpiler]) ®0bjectiveLucidCompilar])
’setSourceCodeStreamO ‘init() ‘inno ‘initO ’initO
®toString() Sparse() Sparsel) $parsa() ®parsa)
SgetlastException))
Scampila)
GLUCompiler LucxCompiler OnyxCompiler TensorLucidCompiler
from GLUY (fram Lucsd) (from Onys) (from TansarLucid)
SGLUCampiler) SLuckCompiler) ®0nyxCormpiler()| | ®TensorLucidCompiler))
SGLUCompiler) $LucxCompiler]) ®0nyxCompiler()| | %TensorLucidCompiler))
Translator SGLUCompiler) SLuckCompiler) ®0nyxCormpiler()| | ®TensorLucidCompiler))
trom GenericTranslator) ®init() Sinit() Finitf) Sinit()
¥parse() Sparse() parse() ®parsel)
™~ Y A
SN S
NS

Unimplemented
stubs.

Figure 44: TPLCF Design.

is an enumeration of all known to the GIPSY communication procedure types. The
NullCommunicationProcedure and RMICommunicationProcedure represent concrete
implementations for local threaded processing as well as RMI. Therefore, the

SequentialThreadGenerator is an abstract factory for all sequential threads that
has to be overridden by a language-specific sequential thread generator, e.g. such as
JavaSequentialThreadGenerator. Likewise, CommunicationProcedureGenerator
is a factory for CPs. The WorkResult class represents the result of (computation)
work done, which is also has to be Serializable. Upon various communication
needs the CommunicationStats is returned by the ICommunicationProcedure API
or the CommunicationException is thrown indicating an error. The Worker class

represents a collection of STs and CPs being executed.

87

Translatar Translationkem
(fram FenericTranslatan) (from GenaricTranslaton

TranslationFParser
Q (from GenericTranslatan

G

(fram GenericTranslatan

TranslationLexer
(fram FenericTranslatan

T

(from GenericTranslaton

Figure 45: SIPL to GIPL Translator Integration.

4.1.1.9 GIPC Design

In Figure 48| there is a hierarchy that all imperative and intensional compilers should
adhere to. The IImperativeCompiler interface is something every imperative com-
piler implements to ease up the job of GIPC. A similar interface has been invented
for intensional languages — IIntensionalCompiler for consistency.

A set of interfaces has been designed for all the present and future compilers to

implement. There are three interfaces so far:

1. ICompiler is a superinterface for all compiler interfaces. It is implemented by

GIPC itself and by DFGAnalyzer, as shown in Figure 47|

2. IIntensionalCompiler is a subinterface of ICompiler designated to differenti-
ate intensional compilers. It is implemented in part by the IntensionalCompiler

abstract class that most (for now all) intensional compilers implement.

3. IImperativeCompiler is a counterpart of IIntensionalCompiler. Its purpose

is similar to that of IIntensionalCompiler for imperative languages.

88

NulIC icationP 4 Work SequentialThreadSourceGenerator Sequential TheadGenerator
UGG T (=N ffrom Sequential Thre adGe neratof) fom Seguent & Thread Ge merston)
(from C icationP d tor) (from PP
] e ———
Syark $SequentialThreadSourceGenerator]) $Sequential ThreadGeneratar ()
’de?’r:airdoo ®generatal) ®generate()
— @ : ®getSeguentialThre ads()
RiICarmmunicationP racedure receive()
(fram CommunicationProceduraGenarator) :WDI’kO
stopWWorker() .
Sruny) |ZequentiaThread
ifromfi nterfa; es)
-aoCommuncationProcedures Swrk()

SpétvorkResult()

CommunicationF racedure
(from CommunicationProced ure Generator) O

O JavaSequentialThreadGeneratar

From J ava)

ICommunicationProcedure Serializable Runnable
®generata)

% lavaSequentialThreadGenerator])
%lavaSequentialThreadGenerator])

ifrom interfa ces) ifrom ia) from lang)

CommunicationStatus ‘inito ®run()
ffrom interfaces) ‘openO

Sclosel) B
¥send)) WorkResult
‘receiveo (fram interfaces)

SgetReturnType)
SgetParamType])
SgetParamTypes()
s etReturnTypel)
ScetParamType])
ScotParamTypes()
SqetParamType()

O ¥yetParamTypel)
SgetParamListSize(

ComrrunicationException
(from interfa ces)

IC arm runic ationProcedures Enum

(from interfaces)

GMNULL_CP:int=0 CommunicationProcedureGanarator
ORN'”_CP sint=1 (from C icationProced tor)
@CORBA_CP tint=2 %aCPImplementations - Hashtable = new Hashtable () JavaCommunicationProcedureGenerator
SCOM_CP :int=3 (from C icationPraced tor)
GIINL_RMI_CP - int = 4 SCammunicationProcedureGenearator()
NI JERI CP int=5 Sgensratef]
®getCommunicationProcedures()

Figure 46: Sequential Thread and Communication Procedure Class Diagram.

The core difference between IIntensionalCompiler and IImperativeCompiler
versus the general ICompiler is that most (except for GIPL) of the intensional com-
pilers have to perform SIPL-to-GIPL translation; hence, the translate() method,
and all imperative compilers must produce communication procedures and sequen-
tial threads as the result of their work; hence, generateSequentialThreads() and
generateCommunicationProcedures() methods are provided. The abstract classes
IntesionalCompiler and ImperativeCompiler provide the most common possible
implementation for all intensional and imperative compilers respectively, so the un-
derlying concrete compilers only have to override some parts specific to the language
they are to compile. If extension of these classes is not possible for some reason
(e.g. when writing external GIPSY plugins when a compiler class already inherits

from some other class), they must implement their corresponding interface. Out of

89

Runnable

ICompiler
(from |ang) (fom ¢IPCY
N lintensional - lImperativeCo
r%m[) Cornpiler Finit() mipiler
(fram intensi...) Sparse) (from imperative)
b F @yetibstractSyntaxTree()
Java.lang ranslateq) ‘SETSDi’CECD#QS\“’QQmO *yenerateSequentiallheads
‘me':eg @yenerateCommuncationProcedure s
cormpile
yetlastException(
-anlntensiohglCompilers[] -aolmperativeCampilers]
IntensionalCompiler GIPC
(from infersional) o CEE ——— —
:ImensmnalCnmpl\erO SGIPCYH thom imp=rative)
IntensionalCompiler() .
intangionalCompilar) ‘F;ESESSO :cnmp!\eg
Scompile)) Y ’Cump”EO
Scormpila) q_iiki___ QFEVSEO getAbstractSyntaxTreel
SygetAbstractSyntaxTree() ﬂursaigfaqg(j ”””
Stranszlatal) o getlastException()
rung) ‘GIPCQ PsetSourceCodeSiream()
SgetLastException) ‘SEV‘B“ZEG‘F’BYPWQVBmO ®generateSequentialThreads])
$setSourceCodeStream() ‘E:LiEOCnm ierd ®ygenerateCommuncationProcedures ()
‘wSlrmgO Cumpﬂeo i
PinitC ornfig()
SGIPC)
Fmaing)
GIPLCompiler GLUCompiler ChjectivelLucidCormpiler OnyxCampiler Jawatompiler CCompiler PythanCampiler
(fram GIPLY fram GLLY (from ObjectivelLusid) (irom Ompeg (from Java) (from €) (from Pythan)
SGIPLCompiler) ‘GLUCump!IerO *0bjectivel ucidCompiler] | | | *0nyxComailer) ®JavaCompiler) CCampiler) ®pythanCarnpiler)
SGIPLCampiler) G LUCompiler]) $0bjectiveL ucidCompiler] S0nyxCompilar]) Sinit() init)) Winit()
‘_G!PLCUmp\IerD SGLUCompiler) %0bjectival ucidCormpilan) SQnyxCompiler() Sparse)) parsei) Sparse)
Sinit() Finit() Sinit() Sinit()
Sparse() Sparse() Sparse() Sparse)
-odLugidCarnpiler
IndexicalLucidCompiler JLucidCompiler TensorLucidCompiler
(from IndexicalLucid) (fram JLucid) (from TensorLucid) FartranCompiler FedCarnpiler CPPCarmpiler
(from Fortran) (from Perly (fram Cpp)

SindexicalLucidCampiler])
¥indexicallLucidCompilerf)
SindexicalLucidCampiler])
Sinit()

Sparsel)

Sinit()
Sparse()

% JLucidCormpiler)
®LucidCompilerg
% JLucidCormpiler])

STansorLucidCormpiler()
®TensorLucidCompiler()
STansorLucidCormpiler()
Sinit()

Pnarse()

SFprtranCompiler])

@init()
®parsel)

$PerCompiler()
Hiniit()
Sparse()

SCPPCampiler(
Finit()
Sparse()

Figure 47: All GIPC Compilers.

90

the concrete classes on the diagram the author of this thesis fully implemented GIPC,
GIPLCompiler, IndexicalLucidCompiler, JLucidCompiler, ObjectiveLucidCompiler,
and JavaCompiler. The DFGAnalyzer of Yimin Ding was made to implement ICompiler
as it in fact compiles the “DFG code” out of GIPL or Indexical Lucid.

The overall design and integration of the GIPC participants is illustrated in Fig-
ure [48] The GIPC class is the main compiler application that drives the compilation
process, so in the general case in invokes the Preprocessor, intensional and impera-
tive compilers required, the SemanticAnalyzer, IdentifierContextCodeGenerator,
Translator, and the GEERGenerator linker. It also acts like a facade to other GIPSY
modules. The major data structures, such as AbstractSyntaxTree, Dictionary,
CodeSegment, FormatTag, ImperativeNode, and SimpleNode are created, accessed,
or modified throughout the modules during the compilation process. Out of impera-
tive languages only JavaCompiler is mentioned as it is the most advanced in this cat-
egory. The JLucidCompiler’s JLucidParser underneath invokes both JGIPLParser
and JIndexicalLucidParser as JLucid Section provides extensions to both of
these languages. A number of association links have been removed from the diagram

to maintain clarity as these links are intuitive or present in detail diagrams.

4.1.1.10 GIPC Class as a Meta Processor

The GIPC (a concrete class) acts here as so-called “meta processor” that drives the
entire compilation process and invokes appropriate submodules in order to come up
with a compiled version of a GIPSY program. This involves calling the Preprocessor,
then feeding its output to whatever concrete compilers for the code segments of the
GIPSY program, collecting the output of them (various ASTs, dictionaries), per-
forming semantic analysis, and linking all the parts back together in a binary form.
This portable binary version of the GIPSY program is to either be serialized as an
executable file for later execution by the GEE or optionally to be fed directly to the
GEE.

4.1.1.11 Calling Sequence

The sequence diagram in Figure 49| illustrates the entire compilation process and the

data structures passed between the modules. This is the roundtrip description of the

91

GIPC

(frem 3IPC)

O O ImperativeCompilerException

Generated (from imperative) GIPCException
ElntensionalLanguages Elmperativelanguages by javace tirom GIFCY

(fram intensianal) (from imperative) f' | ZX

SirmpleMode |
(from Preprocessing) |'I

! IntensionalCompilerException #olastExeption
Preprocessor
(from Preprocessing)

drom intersio nal)
FreprocessorParser
(from Preprocessing)

Code Segment
(from P ing)

ionalCompilers[]

O

.) lImperative Campiler
lIntensionalCompiler . "
- (from imperative)
(from intensional)

arativeCompilers(]

ticAnalyzer
ICampiler
trom GIFC)
SemanticAnalyzer
(from GIFC) Sequential ThreadGenarator #oSTGeneratar IrperativeCompiler
from Sequential Thmad Genemion drmar tive)

IntensionalCoraplier / Zg
(o imtenionat) FomatTag

IrmperativeMode
A {from imperative (from imp)
Ident fie iCantextCodeGe nerator =
Trarsikt (from &IPC)
-oTranslgto
JavaSequential ThreadGenerator davaCarmpiler
GIPSY Program tfrom Java (fram Java)
(from interfaces)
o — .
. %,
SEERG : Translator SirnpleMnde ®)avaSequentialThreadGenerator() ‘._Je!;faCOmpnero
o SMSIBLAN | o GenerlcTranslaton tfrom intensional—{) Syenermtel) ‘Ipnellrge(]
/Nude #ach\ nary \L
(from vl Dictionary CommunicationProcedureGenerator
GEERGenerator Ahgtract SyntaxTres ffromstnag el (fram CommunicatonF wcedu eGe nerator)
(from GIF C) (from
‘cht\onaryo

GLUCompiler || OnyxCormpiler || TensorLucidCompiler || GIPLCompiler || IndexicalLucidCompiler ObjectiveLucidCompiler

(from GLU)

threm Dy trem TensarLucid) ffrom &IPLY {fram In dexicalLucid) (from Objectivelusid) (from JLud d)

JLucidCompiler

-oJLucidCompiler

-gParser _
yarser JGIPLParser #oParger

GIPLPars er IndexicallucidParser (from JLucid)

from GIPL (from IndexicalLucid arser

(from] (from IndexicalLucid) T
~ (from JLudi d)

" |I =
. -

exicalParser

JindexicalLucidParser
Generated o (from JLusid)
by javacec

Figure 48: Overall GIPC Design.

92

implementation efforts. The two followup diagrams detail the differences in the com-
pilation process between the imperative and intensional languages. The general com-
pilation process begins by reading the source GIPSY program and converting it into
a meta token stream of types, declarations, and code segments by the Preprocessor.
The Preprocessor takes that input and with its own parser produces a preprocessor
AST and an embryo of a dictionary with the identifiers and types declared in the
imperative code segments for further semantic linking. The latter is used to pro-
duce imperative stubs for cross-segment type checks. The former contains primarily
code segments written in various languages. The GIPC takes these code segments
and creates appropriate compiler threads, one for each code segment. Then, each
compiler tries to compile its own chunk and produces a portion of a main AST. Since
we treat the IPL part as a main program, its AST is considered to be the main
skeleton tree. The ASTs produced by the imperative compilers (which really contain
a single ImperativeNode) are secondary and should be merged into the main when
appropriate. Once all the compiler threads are successfully done, the GIPC collects
all the ASTs and performs linking via the GEERGenerator. The combined AST is
now a subject to the semantic analysis and the function elimination. Once semantic
analysis is complete, the final post-linking is performed where all the pieces of the
GIPSYProgram are combined together and its instance is serialized to disk. Option-
ally, right after compilation the GEE may be invoked to start the execution of the just
compiled program.

There is no any preference made in GIPC on the number and the order of inten-
sional and imperative compilers executed. This may result in several main intensional
programs (if the source code contained more than one intensional code segment) or
unused imperative nodes (an imperative segment is declared but the code from it is
unused). For the former we maintain an array of ASTs in the GIPSYProgram, so that
when the actual program is executed, the same number of the GEE Executor threads
are started and all main ASTs are evaluated in parallel providing the result set of a
computation instead of a single result. Detailed sequence diagrams of the intensional
and imperative compilation processes are in Figure [50] and Figure [51] to illustrate the

differences in compiling intensional and imperative code segments.

93

leuondo

,
|
Owers

()Lsvausodwonsonp

()samgeneledwiese|dor

Eu&Zo_o_E_wvoﬁ._.om._o 1)

|
|
L

|
|
W
(WeibojdASdID)aaD |
|
|

—l]

(JweiboidASdIDazIBLeS

|

=]

(vamcov«o_o«om
|

|
(epoNsidwig)freuonaqdnies

|
(ga11xeluASIoRNSAY)RS .rxﬂiw«ombmnbmm

—|

o

—=

OuesbofAsdio
|

(roN>_ch_EmEow

J
1
|
|
il
|
|
|
|
I
|
| |
|
|
|
|
|
|
|

| (M I

Aooﬁxmviwswﬁgvéﬂoc4omm_mo
I |

|
|
|
|
|
W
|
|
]
|
|
|
|
|
|
|
|
|
|
ﬁ
I

‘Aleuonolp Jossaooidald sy
Buisn auo ojul pebiaw pue

aIsy ps}os||0d Sl

SISV IV

[OED) .rxm«c\»wi,w:mnﬁom

()eauxeyuhsioelisayiebl

" (eeailxquigioensqyieb

(oslqo)siduwiod

-ttt 4

(e dwdsd

co,wsovo_a wod

]
|
|
I
T
|
|
T
|
|
;
Il
|
,

{(weansindujwesnSepoHa0INpSIes

(1o__QEoOm>mﬂ I

AE,mwawS du _vEmo:MJovooooS 03198

‘peaIY} UMO S) Ul sunl 8|idwod A1eng
‘()eouejsuimau()aweN.o) sse|n

Buisn pajenue)sul UsY} pue salleu Jlayy,
Ag papeo| pue dn payoo| ale s1aidwon

|
|
|
|
f
|
|
T
|
(weangindujjwesngepoDedinogies
[
Il
|
|
f
|
I
t
|
|
|

| (1endwodpnesxapul |
I

|
|
|
t
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

(Jewenebenbueneh

(Bus)iedwondnyoo

()syuswhagaponieh

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
| | |

(opoN)eal ._.xmvc\»wtm:wﬂ(
()sdnigeaieladwiaonpaid
|

)sjuswBagapoDy|d

SV10859201d21dy

+

—

—

[

Ty

ESL
gm&ﬁ«:gﬁ?owﬁﬂ:i Id
|

()ssao0idaid
(weangindu|)10ss8001;

| —
L 99In0s ASdID

—=
()sse001d -

T

|
|
|
"
|
|
|
|
|
|
|
|
|
|
m
|
L
"
|
|
|
|

()Areuonoiq

—=
(30slqo)eldwod

,
,
,ﬁ
” Oma
|
|
,
[

0

_o__,fm_mo._%w&m

lojelsusoy33o

_o;_mc(occwsowi Tm_mo_n;wn__o

Jaidwond

Jsdwoneaer

JedwoopidnTedixepul| [Juswhegepod

ED)) ._.xm«c\»w«owbmgi 7 Kreuonaiq 7

18s1e410880001d31d 7

1osseooidalg 7 7

odIo 7 7

ndu|
piepuelg

gram Compilation Process.

GIPSY Pro
94

Sequence Diagram of

Figure 49

CGIPC nte nsional om piler

| IntensionalCarmpiler])

setSourceC odeStreamnput Strear)

cormpilel)

getdbstractSyntaxTreel()

translatel)

1

- Translator CAbstractSyntaxTres
| | |
| | |

| |
| |
| |
init(| |
= | |
parsel | |
|
AhstractS}nta}{Tree[) |
[
| |
| |
' |
|
|
1

-— - — — — —

Figure 50: Sequence Diagram of Intensional Compilation Process.

95

GIPC ‘ ‘ ImperativeCompiler ‘ | SequentialThreadGenerator | ‘ i Proced: 1 | ‘ Trea

‘ meatTal}‘ ‘

| compilet) \

SequentialThreadGeneratar()

|
|
|
|
pe—| |
)
|
|

generate()

getSequentialThreads()

generateC: P | bj r)
p=—] |

CommunicatioProcedureGenerator)

generate()

getCommurycationProcedures(

| FormatTag()
I iveMode(FormatTag, | IMhread(], 1C ionProcedure(])
AbstractSyntaxTree()

|
|
| generateSequentiaThreads(Object
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
;
|
: I
| i
: :
\ |
I |

|
]
t
|
getAbstractSyntaxTreel) :
|
|

Figure 51: Sequence Diagram of Imperative Compilation Process.

96

e s A

4.1.1.12 Compiling and Linking

Multiple Intensional Parts In a GIPSY program we may possibly have multiple
intensional parts. For example, if a GIPSY programmer gave a GIPL expression, an
Indexical Lucid expression and a couple of Java procedures in the same source GIPSY
program, what is the meaning of that setup would be? In this case, we can say that
we evaluate two independent intensional expressions in parallel that happened to
share the same imperative part. Thus, for such a GIPSY program there will be two
instances of GEE running. The GEE is to extended to accept a forest of ASTs to be

processed in parallel.

Imperative Stubs When the Preprocessor completes its job, it has to create
some stubs in the intensional parts of the program for the symbols declared outside
of those parts (e.g. Java functions) so that the appropriate intensional compiler
does not complain about undefined symbols when producing the AST because the
intensional compilers are not aware of anything outside their work scope. Later on,
the corresponding stub nodes in the AST are found and replaced with the real contents

at the linking stage.

NCP Generator as a Type Processor The NCP generator will act very much
like a type processor and will have to look inside the imperative code segments ana-
lyzed /compiled by the ST generator. This kind of type processing is needed to decide
on communication procedures (CPs) to be generated for that ST. It issues warnings if
the compiled version of the data structures to be sent is not portable. The role of the
NCP generators in the GIPSY implementation is played by the imperative compilers,

such as JavaCompiler.

GEER Generator as a Linker The GEER Generator (see GEERGenerator in
Figure in the backend acts like a linker of all parts of a GIPSY program. It
gathers all the resources from the compiler set, such as ASTs, ICs, CPs, STs, and the
dictionary. Then, it replaces the stubs in the intensional part with the nodes from the
imperative ASTs (STs accompanied with their respective CPs) forming a complete
composite AST ready for consumption by the GEE. All this will be serialized as a

GIPSYProgram class instance. The GEERGenerator is invoked two times — first prior

97

SemanticAnalyzer
T (from GIFC)
Dictionary Q)p_kind : String = “identifier”
fumebege Dictionaryltern %E_P;pﬂ;? -in?tiinug ="
i tfrom storags) type © int =
®Dictionary() AR inTm e &again : boolean = false
?ogtrNamg . String %Emnjl'gbtle_:DHashtable = new Hashtable ()
estridind : String : n -
FestrRank : String GIPEY e ‘%PN sint=0
FpaHashtable - Hashtable o lang) %E:gh:_Ssttrerngg::nr:a::VSSttn:r?g[[11DD]]
- %, R
LY getlexemel) &PL - Wector = new Wectar)
-oCurrentDicti ‘;Jéilté)ogary\temo :?etEnclnsedTyperect() %HasFur? - boolean = false
P revi : SsetiD)) oString() iCount it
oPreviousDictionary ® Ssatlexemea) &iEroiCount : int =0
052;;{2\39%0 7| SoetTypep & ivarningCount - int =0
’getpreviuuso ‘getTypeEnumeration() goSemanticStack : Stack = new Stack ()
@ = oTempStack : Stack = new Stack ()
:;zmzfnhetsbleo é*"m\ & 0SecondStack : Stack = new Stack)
[
‘Szmﬁmso & $SemanticAnalyzer)
‘getKindO . yetDictionary()
#oEntr SgetRank() :getErrnr(_jDuntO
SimpleNode ®setRank() ‘Pet:;famlng(?oumo
(from i ntersio nal) $yetHashtablel) ‘UU ﬂ_UflO
:Dictionary\temo ‘E)Upn éctrg
etEntr =S
ogetEmrig :f;;:EDICtIDnaWO
yetTypel D .
netTypeEnumeration) ‘:"rr}!nateFunctlono
setTypel) . uplicate)
teplacef)
L |
pray=y— StraverseTree()
fevinus SzubTreel(
SSubTree2))
$5ubTrees)
TS
S5 ubTreed()
®setFunction()
StypeCheck)
Funip . Scheck)
Functionltern e AbstractSyntaxTree Imperativellode SrankAnalyze()
(from storage) (from interfaces) (fram imp erafive)
&strFunctionMame : String & .
&iDirmensions : int $ihstractSyntaxTree() ‘Imperai!veNUde()
&iParamCount : int ®shawTree() IdmperatlveNode()
SabstractSyntaxTree() cump
SFunctionitami) ShhstractSyntaxTreel) :J.-!T‘AddCh‘ldo
QgetDimensinnsO ’getRootO ’J__!tCIDseQ
$getParamCount() P2etRoot() ‘J__!tGetChlld()
SFunctionltem() SgumpQ ‘UtGetNumCh\Idren()
@getFunctionEntry() %clone) ‘J__!tGetParent()
ijt0pen()
$jjiSetParent()
$toString()
$ImpemtiveMode)
®ImpemtiveModel)

Figure 52: Semantic Analyzer.

SemanticAnalyzer to assemble a complete AST, and then after semantic analysis

and function elimination to set up the finalized dictionary and program name.

4.1.1.13 Semantic Analyzer

The semantic analyzer detailed design diagram is shown in Figure |52 Originally
implemented by Aihua Wu, the class was renamed from Semantic [Wu(2] to a more
complete name of SemanticAnalyzer and placed under the GIPC package. Relevant

changes include integration of storage.Dictionary (previously was java.util.Vector),

98

storage.DictionaryItenm (formerly Item in Dict [Wu02]), storage.FunctionItem
(formerly Fun Item [Wu02], serves for function description). The SemanticAnalyzer
had to be taught to recognize new GIPSY types (see Section with base
GIPSYType class for object, embed, and array processing, ImperativeNode for se-

quential threads and communication procedures, and a general AbstractSyntaxTree.

4.1.1.14 Interfacing GIPC and GEE and Compiled GIPSY Program

Now, let us formally define the notion of a stored compiled GIPSY program, as a
GEER or the interface between the two major modules - GIPC and GEE. Until this
point, the GEE accepted from GIPC as the input AST of an intensional part and a
dictionary of symbols. This suggests having serialized the AST and the dictionary.
With the invent of JLucid, communication procedures (CPs) and sequential threads
(STs) became relevant and should belong to the GIPC-GEE interface. Thus, a com-
piled GIPSY program may have several of CPs and STs serialized along. While ST's
and CPs are present within imperative AST nodes, references to them are recorded
here for quicker access and decision making by the GEE. Then, as GEE produces
demands (especially over RMI or Jini, [VP05]) for each intensional identifier in the
dictionary an Identifier Context (IC) class created [LGP03, [Lu04]. This is needed
because every such identifier represents a Lucid expression to be evaluated by the
engine, and as such should also be part of the compiled GIPSY program. The cor-
responding class diagram is in Figure 53] It includes the GIPSYProgram and all its
associations with GIPC, GEE, GEERGenerator, and the storage classes.

To summarize, the GIPC-GEE interface is the GIPSYProgram representing encap-

sulation of the five parts:

—_

. Linked AST(s)

[\

. Dictionary
3. A set of STs
4. A set of CPs

5. A set of ICs.
On the diagram in Figure|38|GIPSYProgram defines and corresponds to the GEER.

99

/

Dictianary
(from storage)

-oDictionary

GEERGeneratar GIPC
tfrom GIPC) (from GIPC)
oGEERGeneratar
-0GIPEY Program
GIPSYProgram
_aGIPSYP Farn rfrom i nterfa ces)
Bestriame - String = null
-oAsT BpstrContext - Sting = null
&
AbstractSyntaxTree GIPSYProgram()

rfrom interfaces)

®abstract Sy ntaxTres])
FshowTreel)
YhbstractSy ntanTree])
SAhstractSy ntaxTree])
SgetRoot()

cetRoot(])

Sdurnp()

Sclone(

#0AST

45T

@

[SequentialTh
read
rfrom interfaces)

Bpnrk()

SaetDictionary()
FyetDictionary))
BoothhstractS ynt axTree()
BpethbstractS ynt axTree(
Saotharmel)

Sgethamel)
SeotContext
SpetContext]

S5 tring()
SCIPSYProgram)

¥ootCormmunic ationPmcedures))
SyetCormmunic ationPocedures))

ScotSequentialThre ads])
®etSequentialThee ads()
ot dent fierCont ext s()
Pyt dent fierCont ext s()

SDictionary()

#olictionar

-0GIPSYProgram
GEE

%#aDCF'[]

ICormmunicati
onProcedure
rfrom interfaces)

Binit()
Bopen()
Bclozer)
Bsendf)

Breceive()

(from GEE)

alC[]

O

lIdentifierCon
text
rfrom interfaces)

¥isReady()
Byetvaluel)
BaotReady)
Boetvaluel)
Sgethamer)
SgetHooder)
PgetCont()
Feal)

Figure 53: Class diagram describing GIPSYProgram.

100

-0l5ER

JLucidCompiler JLucidPreprocessor

JavaCompiler (irom JLucid) (from JLucid)
—— #odavaCompiler | 4 i i #oPreprocessar | ®)LucidP Pre proces sor
. JLuc!anmp!IerO ucidPreprocesson) [~ ttram Freprosessing)
*JavaCormpiler() *JLucidCompiler) Sureprocess()
Binit() % JLucidCompiler]) *JLucidPreprocessor)
Pparse() Finit() FgetlucidChunk)
®parsel) FgetavaChunk)
#oParser #oLucidSlche #aJav>s§urce
JLucidParser Lucid3ource JavaSource
(from JLucid) (from JLucid) (from JLucid)
‘parse[} ‘LucidSDurceO ‘JavaSnurceO
*lLucidParser()
#DGII?'A #anu:&iwlparser \<7
JGIPLFParser JindexicallucidParser CodeSegment
rfram JLucid) (from JLuzid) (from Freprocessing)

&pstrlanguage © String = null
&pstrCode : String = null

\ / $CodeSegment()
Pyetlanguageamel)
JavaCC-generated ‘QE'ES_DUFCECDCIEO
BtoString()
¥getSourceCodeStrearni)

Figure 54: JLucid Design.

4.1.2 JLucid
4.1.2.1 Design

The class diagram describing JLucid is shown in Figure [54 The implementation of
JLucid parser-wise is heavily dependent on that of Indexical Lucid as the largest chunk
of the IPL work is the same. JLucid adds a preprocessor JLucidPreprocessor class
that is responsible for parsing initial source JLucid program and extract Java and
Lucid parts. The JLucidParser class is the one that manipulates javacc-generated
parsers amended to support embed() and arrays. The sequence diagram describing
the details of the compilation sequence of JLucid is presented in Figure [55|

JLucid implements generation of Java sequential threads (STs) and their com-
munication procedures (CPs); thus, necessitating JavaSequentialThreadGenerator
and JavaCommunicationGenerator. For uniformity, portability, and testing reasons,

we also decided to send the source code over, that can possibly be compiled on the

101

JLucid Code JLucidParser JindexicallucidParser

‘ -~ JLucidCompil | ‘ JLucidPrepracessor |

‘ JGIPLParser

‘ JavaSource

‘mm m“‘ Compler| (Tree

| JLucidCompiler(input Stream) | |

JLuei dPreprocessor)

preprocess()

LikidSource(String)

|
|
|
|
|
i
| JavaSourceiString)
|
|
|
I
I
.

| |
| |
| |
| |
| |
f |
| |
getlavaChunk() | | |
getLucidChunk() I } I
B L getSourceCodeStfeam() | |
JEcEPavser(\%pu«smam) : } :
)
rarg) | | |
U JOPLParsernputStream) | | |
}) } |
| if GIPL failed | |
Java Chunk D | | | |
JindexicalLucidParsginputStream) |
S |
-
e |
| |
AL _ |
P | __getSourceCodeStream() | |
~ I - |
|

— Jav:aCnmpHer()

Findexical

setSourceC ofeStrear(inputSiream)

ompile()

getAbstactSyntaxTree)

Lucidand Dy——
Java ASTs —

| AbstractSyntaiTree(ode)

9

\
\
i
I
\
|
\
\
\
\
\
\
\
\
\
\
i
I
|
|
\
\
\
\
1

|
I
I
|
I
|
\ J— |
T]
translate()
= M~ T |
|
|
|
|
[
|
f
|
|
I
|
|
I

|
I
I
I
T
|
L tink(y | |
|
|
|
|

Figure 55: JLucid Compilation Sequence.

remote machine. All this is done by the GICF-integrated JavaCompiler, see Sec-
tion 4. 1.2.3]

4.1.2.2 Grammar Generation

As it was shown in Chapter |3, the JLucid syntax extension to GIPL and Indexical
Lucid is minimal. The JavaCC grammars we use, are stored in the . jjt files for the
original two dialects. If we decide to have very similar grammar files for JLucid to
support JLucid extensions (arrays and embed()), then if the original grammar has a
bug, the fix will have to be propagated to all the derived grammars, which will not
scale from the maintenance point of view as there will be similar small modifications
from Objective Lucid and other dialects. Thus, it was decided to only maintain the
original grammars of GIPL and Indexical Lucid and generate the ones for the dialects
with the minimal changes, so that each dialect only maintains the part that is relevant
to its syntactic extension.

For JLucid three bash shell scripts were created to process the original JavaCC

grammars of GIPL and Indexical Lucid and generate appropriate extended versions

102

Java Source

JavaCompiler| [] JavaC ‘ ‘ ‘ ‘ FormatTag

| JavaCompiler() |

setSourceCodestream(inputSiream)

|
|
|
compile() |
|
init()

|

|

JavaSequentialThreadGenerator()

SequentialThreadSaurceGenerator()

CommunicationPracedureGenerator()

Call extemal avac on
the generated java file genbrate()

ermor messages and wrap()
reload compiled .class

|
|
|
\

|
|
|
|
|
|
|
}
|
I
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lookupDefinitions() |
|
getCommunicationProcedures() | |
f

|
|
|
|
|
|

|
and collect its output for T u
|
|
process(|
= |
generate() |
TookupDefinitions() |
|
getSequentialThreads() |
generate(1
f f
| |
| |
}
| | FomnatTag()
| imperativeNode (FormaTag, ISequerkiaiThresd]], ICommunicationProcsdurel) |
} } AbstractSyntaxTree(Node) }
getAbstractSyntaxTres() | | |
| | |
T T | | |
i i i

Figure 56: Java Compilation Sequence.

for JLucid. These include jlucid.sh that generates JavaCC productions for ar-
rays and embed(), JGIPL.sh that alters the original GIPL. jjt grammar to suit the
needs of JLucid mostly in terms of class and package names and the new pro-
ductions. Similarly, the JIndexicalLucid.sh script exists for processing of the

IndexicalLucid. jjt file. The scripts are rather small and presented in the Ap-
pendix [D]

4.1.2.3 Free Java Functions and Java Compiler

As defined in Chapter (3, by “free Java functions” we mean is that the corresponding
Java STs don’t have an enclosing Java class as far as JLucid source code concerned.
However, the enclosing class must exist when compiling a Java program according
to Java’s syntax and semantics. Thus, implementation-wise we generate such a class
internally that wraps all our sequential threads, as e.g. in Section[4.1.1.8] and we com-
pile that class. This job of wrapping is delegated to the JavaCompiler, a member
of the imperative compilers framework (see Section £.1.1.1)). The JLucidCompiler
as shown in Figure at some point invokes the JavaCompiler, and what the
JavaCompiler does internally is illustrated in Figure [56]

Being an imperative compiler, the JavaCompiler is obliged to produce the Java

103

STs and CPs among other things. The core of this process is the wrap () method where
the actual “wrapping” our pseudo-free Java functions into an internal class occurs.
The generated source code . java file is saved and is fed to the external javac compiler
as of this implementation. If there was no compilation errors, a corresponding . class
or series of .class files (for the case of nested classes) is generated. The generated
classes are reloaded back by the JavaCompiler and their members that are of interest
to us retrieved via the Java Reflection Framework [Gre05], thus we obtain an array of
references to the ST methods and their parameters and assign them to our own data
structures. After this process completes, the corresponding FormatTag describing
the Java language and the compiler is created and all information is embedded into
the ImperativeNode, which represents a single and the only node in the imperative
AbstractSyntaxTree. Later on, this imperative node or its pieces will replace a

corresponding stub in the main intensional AST.

4.1.2.4 Arrays

Implementation of arrays in JLucid coincides closely with the implementation of ob-
jects in Objective Lucid in Section . As a part of the GIPSY Type System (see
Section [4.1.1.5]), we employ the GIPSYArray (see Figure type to hold the array
base type and its members and an overall value. As proposed further, we treat ar-
rays internally as objects (and objects as arrays), so GIPSYArray is an extension of
GIPSYObject that has a base type asserting the data type of the all the elements in
the arrays (as our arrays a homogenous collection of elements). Thus, when a syntac-
tic array token is parsed, a corresponding instance of GIPSYArray is created to hold
the type and value information for later processing. The SemanticAnalyzer and the
Executor are made to understand the array type and apply similar type checking or
execution rules to a collection of values instead of a single value.

It might look like this approach will clash with the use of arrays in Java, i.e.,
when a developer wishes to use Java arrays (or if a library already implements some
functionality via Java arrays). This should not be a problem (though will require
a more thorough investigation in the future work), when we perform type matching
by the base element type, as described in Section [{.1.1.4, The JavaCompiler is
responsible for the appropriate conversion of the native-to-GIPSY type conversions,

by supplying a TypeMap such that it can also be used by the GEE at run-time. Similar

104

comments can be said of the native array types that might exist in other imperative

languages that we would be hoping to support.

4.1.2.5 Implementing embed ()

To implement embed () we define a type GIPSYEmbed to fetch the file pointed by the
URL and hold it in there. In JLucid, a .java or .class file (later also a .jar file)
is loaded from either local or remote location pointed by the URL as follows: if it
is a .java file, it’s fetched and compiled similarly to the generated class, but the
name is static and known; with the .class file we skip the compilation process, but
extraction of the sequential threads is the same; for the . jar its examined with the

JarInputStream and JarEntry Java classes to extract the class information.

4.1.2.6 Abstract Syntax Tree and the Dictionary

When running the JLucid compiler in stand-alone mode, all the preprocessing and
re-assembling the intensional and imperative pieces into the combined main AST
happens in here, not in the GIPC, so the JLucid compiler returns a complete linked
AST with all imperative nodes linked in place and a proper dictionary of identifiers,
both intensional and imperative. JLucid compiler, however, reused the Preprocessor
and other parts of the new framework internally instead of re-inventing the wheel.

The JLucidPreprocessor uses the general Preprocessor class to do the job of
chunkanizing the code segments and preparing initial imperative stubs. This neces-
sitated adding the #funcdecl segment in the JLucid programs that previously did
not have one in Chapter [3| to simplify preprocessing and generation of the dictio-
nary. The JLucidPreprocessor is set to reject any other code segments than #JAVA,
#JLUCID, or #funcdecl.

If the JLucidCompiler invoked from the GIPC as a part of general compilation
process (see Figure , the #JAVA segment will no longer be really processed inter-
nally, and instead, GIPC will call JavaCompiler externally to the JLucidCompiler,
so essentially the JLucidCompiler will be responsible only for the Lucid part (with

arrays and embed()).

105

ObjectwvelucidCampiler
(from CObjectivel ucid)

®0hjectivelucidCormpiler])

-oJLucidCompiler

JLucidCompiler
(from JLucid)

% LucidCompiler])

®0bjectiveLucidCompiler))
¥0bjectivelucidCompiler()
init()

®parsel)

-oPsg

OhjectivelucidP arser
(from Objectivelucid)

‘Objectr-reb.lmdl:'arser(
¥parsel)

% LucidCompiler)
JLucidCompiler()
Finit()

Yparsel)

DG”:LE/}/ -nlndeMTdParser

OhjectiveGIPLParser
ffrom ObjectivelLucid)

\\

Ohje ctivelndexicalLucidParser
ffrom Objectivelucid)

-
/ #oPreproc

BssOr

-oPreproces sor

CbjectivelLucidPreprocessor
rfrom CbjectivelLucid)

Generated
by javacc

JlucidPreprocessar
ffrom J Lucid)

%0bjectivelucidP reprocessar])
*0bjectivelucidP reprocessor])

®JLucidPreprocessor)
Spreprocess()

% LucidPrepoces sor)
®getlucidChunki
®getavaChunk ()

Figure 57: Objective Lucid Design.

4.1.3 Objective Lucid

This section addresses problems that arise when implementing Objective Lucid. These

include internal implementation to support the dot-notation, extension to semantic

analysis to be able to manipulate object data types (very likely user-defined), and
making it all work in the GICF and General Eduction Engine (GEE) of the GIPSY
by correctly forming the abstract syntax tree (AST) that includes object data types.

106

‘ Source Code ‘ ‘ Objectivel ucidCormpiler ‘ ‘ jectivel ucidPreprocessor

‘ Objectivel ucidParser ‘ ‘ Ohe:ﬂvaG\PLParsev‘ [ot ucidParser | [k i; ‘ LumdSnuvce‘ [JavaSource

IntensionalCompiler(inputStrearn) | | |

preprocess()

o=
v

| getlucidChunk()

|
|
|
|
I
| I
|
|
|
1

omecmeumaPaT[sev(lnpumeam)

|
|
|
|
|
|
|
|
|
| 3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1

ObjectiveGIPLParser(inputStrearm)
[et arseripatSteamy,

parse()
s
ifnot GIPL

——— —————— 1 &

.

parsel)
f
Y |

ssscraany

1
JaaCompiler() |

inputStream) |

Tike()

skactSyntacTres(Node)

—,———— e ——_———— e e

_—.———————————

e e N

arde()

I

|

|

|

| z
‘ Ohje:twe\ndex\:a\Lumdrfavsev(\npmSueam)
|

|

|

|

\

t

|

|

f

|

|

[

|

|

T

|

I

Figure 58: Objective Lucid Compilation Sequence.

4.1.3.1 Design

The class diagram describing Objective Lucid is in Figure 571 Since the JLucid
compiler already does most of the legwork, Objective Lucid simply extends it to add
the dot-notation and some extra post-processing when unrolling the objects. The

corresponding compilation sequence is shown in Figure 58|

4.1.3.2 Grammar Generation

Like with JLucid, the grammar files are generated for Objective Lucid using bash shell
scripts, ObjectiveGIPL.sh and ObjectiveIndexicalLucid.sh. These scripts work
with the grammars produced by the JLucid scripts (see Section by simply
extending them with the dot-notation production and fixing up names of classes and

packages. These scripts are presented in the Appendix [D]

4.1.3.3 Object Instantiation

Normally, when a Lucid program refers to a Java object, it has to instantiate it first
by either calling a pseudo-free Java function that returns an object instance or to call
the constructor directly. This instantiation has to be explicit at the beginning of the

program to avoid Java’s NullPointerException at run-time. Internally, the object

107

instance is created using Java Reflection |Gre05|] by first loading and then initializ-
ing the needed class with Class.forName("ClassXB") .newInstance(). Referencing
static members do not require a class instance, and can be accessed using the class
name, in this case we just keep the Class.forName("ClassXB"). We also keep the
needed references to the object itself and its members in the GIPSYObject type of
the GIPSY Type System.

4.1.3.4 The Dot-Notation

Implementing the dot-notation extension of JLucid is the easiest task of the three.
In fact, the E.id productions are just a syntactic sugar that can be wrapped around
already existing mechanisms of JLucid to include Java functions as mentioned in
Section The compiler simply generates a set of pseudo-free Java functions for
every object member referenced from the intensional program. These will be easy to
place into the AST just the way JLucid does it. In other words, this is achieved by
automatic generation of implicit accessor Java functions that had to be explicit in
JLucid.

4.1.3.5 Abstract Syntax Tree and the Dictionary

The GIPC (General Intensional Programming Compiler) generates abstract syntax
trees (AST) of all compiled GIPSY program parts, and constructs the GEER, (General
Eduction Engine Resources), which is a data dictionary storing all program identi-
fiers, encapsulated with all ASTs generated at compile time. Simply put, the GEER
encapsulates all the meaning of a GIPSY program, and all necessary resources to en-
able the GEE to execute the programs correctly. The AST and the dictionary contain
the generated accessor identifiers that are processed by the JLucid mechanisms, as
described previously. This is possible because Java’s built-in class Class can provide
us with all the meta-information about its members through enumeration that we can
place in the AST and the dictionary. Little changes from the way JLucid processes
that except that the object members are put into the dictionary and acted upon as
an array of homogeneous types as described in the follow up section.

The ObjectiveLucidPreprocessor also makes use of the general Preprocessor,
but unlike JLucidPreprocessor, it also accepts the #typedecl segment as with ob-

jects come user-defined types, so these have to be listed if used by the Lucid part.

108

4.1.3.6 Objects as Arrays and Arrays as Objects

Implementation-wise, we propose to treat arrays of JLucid as a special case of objects
and, the other way around, the objects be a generalization of arrays. An array can
be broken into its elements where every element is evaluated as an expression under

the same context. Thus, evaluating:

Al4] @ [d:4]
where
dimension d;
Af#.d] = 42 * #.4 fby.d (#.d - 1);

end;

is equivalent to evaluating four Indexical Lucid expressions (possibly in parallel).
Under this point of view objects can be viewed as arrays where every atomic member
is evaluated as if it were an array element. Basically, we denormalize an object into
primitives and evaluate them. If an object encapsulates other objects, then these are
in turn denormalized and put into the definition environment (dictionary). In other
words, if you have an array of four elements a[4], the elements are evaluated as four
independent expressions. Likewise, an object that has four data members, each of
them is evaluated as an expression under the same context.

Essentially, an array is a collection of atomic elements of the same type. When
evaluating say an array of four elements a[4] at some context [d:4], we are, in fact,
evaluating four ordinary Lucid expressions (possibly in parallel) in the same context.
Likewise, an object is a collection of atomic elements of (possibly) different types. In
case an object encapsulates another object, that other object can in turn be split into
atoms, and so on. All atoms of an object evaluate as independent Lucid expressions,

just like array elements.

109

Thus, from Objective Lucid’s point of view,

the following are equivalent:

] (a) int al4l;

(b) class foo
{
int ail;
int a2;
int a3;
int a4;
¥

So, internally, we represent (a) in the definition environment as:

a4 // scope identifier
a4.al
a4.a2
a4.a3
a4.ad

Under the scope of array a4 (a generated id) there are four members, and a_4.ax*

comprise a denormalized identifier, also generated. And (b) will become:

foo // scope identifier
foo.al
foo.a2
foo.a3

foo.ad

where foo.ax* are generated variable identifiers in the definition environment.

capsulation will be handled in the following way:

class bar

{

int bil;

int b2;

foo oFoo = new foo();
}

To paraphrase and explain in

pressions:

// float
a @ [d:2]
where
dimension d;
a=2.5
fby.d (a + 1);

end;

bar
bar

bar

bar.
bar.
bar.

bar.

.b1l
.b2

bar.

foo

foo.al
foo.a2
foo.a3

foo.ad

another example, if we have three separate Lucid ex-

// integer
b @ [d:2]
where
dimension d;
b=1
fby.d (b + 1);

end;

110

// ASCII Char
c @ [d:2]
where
dimension d;
c="a’
fby.d (c + 1);

end;

Now if we group a, b, and c as a class:

class foo

{
float a = 2.5;
int b = 1;
char c¢c = ’a’;
public foo() {}
}

So when we write:

f e [d:2]
where
dimension d;
f = foo() fby.d (f + 1);

end;

we mean there start three subexpression evaluations:

f.a @ [d:2] £f.b @ [d:2] f.c @ [d:2]
where where where
dimension d; dimension d; dimension d;
f.a = foo().a f.b = foo().b f.c = foo().c
fby.d (f.a + 1); fby.d (£.b + 1); fby.d (f.c + 1);
end; end; end;

We say these are equivalent where the f in all expressions refers to the same object’s
instance (i.e. there are not three objects constructed, only one). Similarly (nearly

identically) we implement arrays:

al3] @ [4:2]
where
dimension d;
a=[1, 2, 3] fby.d (a + 1);

end;

The above means:

array a
{

int al = 1;

int a2 = 2;

int a3 = 3;

int length = 3;
}

111

al @ [d:2] a2 @ [d:2] a3 @ [d:2]
where where where

dimension d; dimension d; dimension d;

al = 1 fby.d (al + 1); a2 = 1 fby.d (a2 + 1); a3 = 1 fby.d (a3 + 1);
end; end; end;

The three subexpressions run in parallel, but refer back to the same array. Should
there be a need in one of the three subexpressions to use an array value produced by

another subexpression, they generate a demand for that value.

4.2 External Design

The external design encompasses user interface design as well as external software
interfaces. In this work, a web interface to the GIPSY as well as command-line
interfaces are presented as a part of UI followed by the API of the two external
libraries used, JavaCC and MARF.

4.2.1 User Interface
4.2.1.1 WebEditor — A Web Front-End to the GIPSY

The user interface designed for the GIPSY in the scope of this thesis includes a Servlet-
driven web interface to the GIPSY daemon server running on our development server
for trying out GIPSY programs online. The web interface in a form of a web page
allows a connected user to enter, compile, run, and trace GIPSY programs. Users are
able to submit their own GIPSY programs (in any supported Lucid dialect) or choose
and modify from existing programs from the GIPSY CVS repository (see [RG05al)
and then launch the computation. The GIPSY servlet front-end generates demands
through RIPE and returns back results along with an execution trace to a web form.

A screenshot of this interface is illustrated in Figure [59,

112

¥DGIPSY WebEditor Portal $Revi 25

Fle Edt YWew Go Eookmarks Iools

lla Firefox

=18l1=l

<)EI = E> = @ @ | [itp: fnenton.cs concortia, ca:B080}webEditor seret/WebEditor

GIPSY WebEditor Portal

Prototype $Revision: 1.25 &

Computer Science and
Software Engineering

$Id: WebEditor.java,v 1.25 2005/09/14 03:41:07 mokhoy Exp $

UNIVERS

ITY

Intensional Dialect:
GIPSY -

Test Programs:
| tests/gipsy/car-oop.ipl j
Load

Controls:
Parse
Run

Regrassion Tests

JUnit Tests

M debug mode

Start GEE Senvices

= all

F Threaded (local)
© RMI

= Jini

I DCOM+

I CORBA

T GIPSY Sockets

Download Wirker

Fegister Waorker
Method: POST
Request URI:
SwebEditor/servlet/WebEditor
Protocol: HTTP/1.1
PathInfo: null
Remote Address:
132.205.44.132
Remote Host:
alfredo.cs.concordia.ca
4]

Program Text:

#INDEXICALLUCID
fib B.t 5
where
dimension t;
fib = 0 fhy.t o
g = 1 fhy.t (fib + 1);
=nd

Cutput:

Interpreted dialect: GIPSY
Source:

HINDEXICALLUCID
fib .t 5
where

dimension t;

fib = 0 fhy.t g:

g = 1 fhy.t [fib + 1]:
end

[--parse-only]
8}

Figure 59: GIPSY WebEditor Interface.

113

4.2.1.2 GIPSY Command-Line Interface
Synopsis:

gipsy [OPTIONS]
gipsy --help | -h

This is an all-entry point for all of GIPSY that bundles all the modules. It
generally passes all the options to RIPE for further dispatching. When the server part
(see Section [7.10) is complete, this will be a GIPSY daemon server. The command

line interface includes the following options:
e —-help or -h displays application’s usage information.

e ——compile-only tells to compile a GIPSY program only and return the result
of the compilation (error or success messages) and the compiled program itself.
This will not invoke the GEE for execution after compilation. The option is

primarily for quick tests in development setups.

e --debug tells to run in the debug/verbose mode.

It is possible to run the GIPSY by either invoking the GIPSY. class directly, by run-
ning a corresponding gipsy. jar (see Appendix file, or using a provided wrapper
script gipsy. The latter is the simplest one to use as it includes all the necessary op-
tions for the JVM and searches for the executable . jar in several common places. A
good idea is to put gipsy somewhere under one’s PATH. (A similar approach applies
to the other tools mentioned in the follow up sections, such as ripe, gipc, gee, and
regression. The tools exist for both Unix and Windows in the form of shell scripts
and batch files.)

Example uses of the GIPSY application include:

e gipsy or gipsy —-help
e gipsy --compile-only
e gipsy —--compile-only --debug

Where --debug can be combined with any of these, otherwise the options are

exclusive.

114

4.2.1.3 RIPE Command-Line Interface

Synopsis:

ripe [OPTIONS]
ripe --help | -h

The RIPE command-line interface right now acts mostly to activate various own
submodules (e.g. textual or DFG editors) or dispatch requests from users to the
other main modules, such as GIPC and GEE. The command-line interface includes the

following options:

e —-help or -h displays application’s usage information.

e ——gipc=‘<GIPC OPTIONS>’ tells RIPE to invoke GIPC with a set of GIPC op-

tions (see Section [4.2.1.4)).

e ——gee=‘<GEE OPTIONS>’ tells RIPE to invoke GEE with a set of GEE options

(see Section {4.2.1.5)).

e —-regression=‘<REGRESSION OPTIONS>’ tells RIPE to invoke Regression test-
ing with a set of its options (see Section [4.2.1.6)).

e ——dfg=‘<DFG EDITOR OPTIONS>’ tells RIPE to start the DFG editor with its
options. Currently, the DFGEditor Java class is a stub, and instead, the DFG
Editor of Yimin Ding [Din04] is started via a separate program, lefty. It is
planned the DFGEditor class would be a wrapper for the program in the future.
Therefore, all DFG editor options are ignored for now, but a provision is made

for the future.

e ——txt=‘<TEXTUAL EDITOR OPTIONS>’ tells RIPE to start the textual editor
with its options. Note, at the time of this writing TextualEditor is just a
stub, and as such does not have any options, but a provision is made when it

does.

e ——debug tells to run in the debug/verbose mode.

Example uses of the RIPE application include:

115

e ripe or ripe —-help
e ripe --compile-only

e ripe —--compile-only --debug

4.2.1.4 GIPC Command-Line Interface

Synopsis:

gipc [OPTIONS] [FILENAME1.ipl [FILENAME2.ipl 1 ...]
gipc --help | -h

The command line interface for GIPC inherited some options from Lucid [Ren02]

and includes the following options:

e —-help or -h displays application’s usage information.

e [FILENAME1l.ipl [FILENAME2.ipl] ...] tells GIPC to compile a GIPSY pro-
gram as indicated by the FILENAME. It is possible to have more the one input
file for compilation. If this is the case, the same number of instances of GIPC
threads will be initially spawned to compile those programs. Notice, however,
this does not mean all the files (in case of multiple .ipl files) comprise one
program and then linked together afterwards as in typical C or C++ compilers.
Instead, each .1ipl file is treated as a stand-alone independent GIPSY program.

e —-stdin tells GIPC to interpret the standard input as a source GIPSY program.
This is the default if no FILENAME is supplied.

e ——gipl or -G (came from Lucid [Ren02] for backwards compatibility) tells GIPC
to interpret the source program unconditionally as a GIPL program (by default
no assumption is made and GIPC attempts to treat the incoming source code
as a general GIPSY program). It is primarily used to quickly test the GIPL
compiler only, without extra overhead or preprocessing. It is also used by the

Regression application for that same reason.

e —-indexical or -S (came from Lucid [Ren02]) tells GIPC to interpret the source

program unconditionally as an Indexical Lucid program.

116

--jlucid tells GIPC to interpret the source program unconditionally as a JLucid

program.

--objective tells GIPC to interpret the source program unconditionally as an

Objective Lucid program.

--translate or -T (came from Lucid [Ren02]) enables SIPL-to-GIPL transla-
tion. This option is implied by default (as opposed to be optional in Lucid).
It tells the GIPC to interpret the input program unconditionally as a non-GIPL
program that requires operator and function translation. The option has no ef-
fect with —-gipl as GIPL is the only intensional language that does not require

any further translation.

--disable-translate turns off automatic translation (in case the user knows
that an incoming non-GIPL program has nothing to translate, which is rarely

the case; otherwise, the GIPC will bail out with an error).

--warnings-as-errors tells to treat compilation warnings as errors and stop

compilation after displaying them.

--gee tells GIPC to run the compiled program immediately after compilation (if
successful) by feeding it directly to the GEE. The default is that the compiled
GIPSY program is saved into a file where the original name is suffixed with the

.gipsy extension.

--dfg tells GIPC to perform DFG code generation as a part of the compilation

process.

--debug to run in a debug/verbose mode.

Example uses of the GIPC application include:

gipc or gipc —--help or gipc -h

gipc life.ipl

gipc ——disable-translate --gee --debug life.ipl
gipc --gipl --debug gipl.ipl

gipc --jlucid --stdin

117

4.2.1.5 GEE Command-Line Interface

Synopsis:

gee [OPTIONS] [FILENAME1.gipsy [FILENAME2.gipsy 1 ...]
gee —-help | -h

The command line interface includes the following options:

e —-help or -h displays application’s usage information.

e [FILENAMEl.gipsy [FILENAME2.gipsy] ...] tells GEE to run a stored version
of a compiled GIPSY program as indicated by the FILENAME. It is possible to
have more than one input file for execution. If this is the case, the same number
of instances of GEE threads will be initially spawned to run those programs.
The programs will run concurrently, but there should not be any interference or

communication in their execution except they may share the output resource.

e —-stdin tells GEE to interpret the standard input as a compiled GIPSY program.
This is the default if no FILENAME is supplied.

e —-all tells GEE to start all implemented services/servers locally (threaded, RMI,
Jini, DCOM+, and CORBA).

e ——threaded tells GEE to start the threaded server only.
e —-rmi tells GEE to start the RMI service.

e ——jini tells GEE to start the Jini service.

e ——dcom tells GEE to start the DCOM+ service.

e ——corba tells GEE to start the CORBA service.

e ——debug tells GEE to run in the debug/verbose mode.
Example uses of the GEE application include:

e gee or gee ——help or gee -h

e gee life.gipsy

118

e gee ——disable-translate —-threaded --debug life.gipsy
e gee ——all --debug gipl.gipsy

e gipc —-rmi --jini indexical.gipsy

4.2.1.6 Regression Testing Application Command-Line Interface

Synopsis:

regression [OPTIONS]

regression --help | -h

The Regression application and its test suite are presented in detail in Section[5.1]
The application, based on options, invokes either GIPC or GEE or both directly feeding
a pre-selected list of test source programs. The command line interface includes the

following options:

e —-help or -h displays application’s usage information.
e ——sequential tells to run sequential tests (default).

e —-parallel tells to run parallel tests.

e ——gipl tells to test pure GIPL programs only.

e —-indexical tells to test pure GIPL and Indexical programs with the Indexical

Lucid compiler.
e ——gipsy tells to test general-style GIPSY programs with code segments.
e ——gee if specified, tells to run the GEE after compilation (default).
e —-all tells to do all of the above tests in one run (default).

e ——directory tells to pick source test files from a specified directory instead of

pre-set directories from the GIPSY source tree

e ——debug tells to run in the debug/verbose mode.

Example uses of the Regression application include:

119

e regression or regression —-—help or regression -h
e regression --gipl

e regression —-parallel --indexical

e regression --all --debug

e regression --directory=/some/gipsy/misc/tests --all --debug

4.2.2 External Software Interfaces

4.2.2.1 JavaCC API

JavaCC-generated code contains a number of common classes and interfaces, regard-
less of the language a parser is generated for. These have to do with AST nodes,
tokens, token types, character streams, and alike. The most often used class out of
this bundle is SimpleNode, which is a concrete node in the AST. These classes have
to be periodically refreshed by compiling the source grammar when a newer version
of javacc comes out.

The below are JavaCC API/modules [VCO5] used by the GIPSY and their de-

scription. The corresponding class diagram is in Figure [60]

e Node is the common interface for all occurrences of SimpleNode to implement

(see below).

e The SimpleNode class represents a concrete node in every AST in the GIPC.
Once generated, this class is usually customized according to the needs of the
given parser/compiler. All concrete instances, however, implement the same
Node interface above. At the time of this writing, there are three SimpleNode oc-
currences in the GIPSY source tree: the common one in gipsy.GIPC. intensional
for all the SIPLs and GIPL, as per original implementation presented in [Ren02].
It is a basis for a GIPL AST aside from the related parsers known to the
SemanticAnalyzer and GEE’s Executor. This implementation is wrapped-
around by AbstractSyntaxTree that the rest of the modules know. Then, a
customized subclass of it is in gipsy.GIPC.DFG.DFGAnalyzer of Yimin Ding
[Din04]. It was made a subclass because a large portion of the code is iden-

tical. Finally, the last one is in gipsy.GIPC.Preprocessing used by the

120

SirnpleNode AbstractSyntaxTres GIPCEx ception TakenMgrError
(from Preprocessing) from interaces {tom GIPC) (from utily
Teid : int GLEXICAL_ERROR : int=10
R $apstractSyntaxTrea($GIPCExcaption() GSTATIC_LEXER_ERROR : int =1
:gumpleNndeo SchowTras) SGIPCException) SIMVALID_ L EXICAL_STATE . int =2
‘J_J_tOpenO SapstractSyntaxTree() SGIPCException() $LOOF_DETECTED : int =3
jitClose() SabstractSyntaxTree(SGIPCException() BerorCode - int
jtSetParent]) SyetRont)
:mGetParentO S2eiRont]) ll_g:TnkenMgrErer
iitAddChild() ®dum addEscapes()
Wit GetChild]) #ohlodeGatt ‘clnnsg PLexicalErrar)
jtGetNumChildren() . Syethiessage()
SaString() STokenMgrEror)
SaString() Mode STokenMgrEror)
Sdump() +chitdre . »
om uti ;
*SirnpleMader) ‘) ParseException SimpleCharStream
o (from util) (from util)
SmpleNode ‘”:8’;992% gspacialConstuctar : boolean ?‘E_xpandﬁuﬁo
fl gexpededTokenSaquences(][] : int FFillBuf)
(tiemliniensionat) SijtGetNurnChildren) ; ®Bagi
Vo] nare J-l‘ tokenimage[] : Stiing BaginToken()
! P it SetParent() Boeal : Siring = System getProperty(“line.separatar’, ") | |E¥UpdateLineCaluran()
Fgimage - String G et Parent () SraadChar()
type int #oRrepfocessorASTRoot SjtAddChild() $ParseException) SgetColurmn()
$ID 'kmts] ‘ut‘GetCthO SParseException] ®getline()
Teoran tring durnp() Syethessage() :getEndCqumHO
i add_escapes() getEndLine()
$simpleNodel) $ParseException $yetBieginColumn
SSimpleModel) plian(HEEE
e P #oPatenthode SyetBeginLined
SimpleMode) backup()
®SimpleMode) +eurrentTgken $GetSuffing
it Open($Done
itClose(- Token SadjustBeginlineColurmn
SijtSetParent() SimpleMode Imperativel ode (fiomiutiy) SCetimane
St GatParent() {from DF GAnalyzz (from imperative) okind - int ® gel)
i 3 7 T SimpleCharStream{)
itAddChild) N eheginiine : int &5impleCharStream()
it GetChild] “SimpleMade()| | ¥mperativeode] @haginCalumn : int $3impleCharStream()
jtGethiumChildren() StoString() Simperativeode() endLine : int SRelit)
¥oStringl) Sdurnp() Sdum, gehdeolimnplint SRalnit])
®0String[) *Simplaladal) :”IAddChlldO @image | Sting ®Relnit()
Fdump() jitClose() &
St seht Srevn St
Fyatimags() FijtGethumChildran() ®1oString() g i
4. & impleCharStream()
setlmage() it GetParent() SRelnil))
SyetTypel) ‘J:!IOpen() ®Relnil))
SsetType) iitSetParert() SR
SyetRank]) StoString()
$setRank() $mperativelode(
@copyNode() $mperativelode(
arser
-plentry
GRarser I arser #aipl
SemanticAnalyzer Executor | | PreprocessorParser DF GParser GIPLParser IndexicallucidParser JGIPLParser JindexicalLucidParser
(from GIFC) (from GEE) (fom Preprocesing) (from DFGAnalyzen (from GIPL) (from IndexicalLucid) throm JLucid) (from JLucidy

Figure 60: JavaCC- and JJTree-generated Modules Used by Several GIPC Modules.

121

Preprocessor. This occurrence of SimpleNode was kept as-is due to the sig-

nificant differences and purpose with the former two.

e The ImperativeNode is another implementation of the Node interface created
manually for all the imperative language compilers. The ImperativeNode rep-
resents an AST of a single node encapsulating STs, CPs, some meta information
that came from a given imperative compiler. The reason for this is to main-
tain a global AST for a GIPSY program where all nodes implement the same

interface.

e SimpleCharStream is a common javacc utility that treats incoming source code

stream as a set of ASCII characters without extra UNICODE processing.

e ParseException is a common generated type of exception to indicate a parse
error. It was made manually to subclass GIPCException from the GIPSY Ex-
ceptions Framework (see Section 4.2.3.2)) for uniform exception handling.

e TokenMgrError asubclass of java.lang.Error primarily to signal lexical errors
in the incoming source code or token processing in general by a given parser

(e.g. by invoking a static parser twice).

4.2.2.2 MARF Library API

MARF (see Section has a variety of useful utility and storage-related modules that
conveniently found their place in GIPSY. Most of these come from the marf.util
package as well as marf.StorageE] The below are MARF API/modules used by
GIPSY and their description:

e marf.util.FreeVector is an extension of java.util.Vector that allows the-
oretically vectors of infinite length, so it is possible to set or get an element of
the vector beyond its current physical bounds. Getting an element beyond the
boundaries returns null, as if the object at that index was never set. Setting an
element beyond bounds automatically grows the vector to that element. In the
GIPSY, marf.util.FreeVector is used as a base for our Dictionary as shown

in Figure [62] Figure [63] shows all the modules that are now using Dictionary

2Later some natural language processing (NLP) modules in marf.nlp of MARF might also get
used in the GIPSY as a part of another research project.

122

Wector
(frm uti)

Hashtable
(fram utiy

Storagelanager
(frem Storage)
TeiCunrentDumphode : int = DUMP_GZIP_BINARY
TstiFilename @ String
FouObjectT cSerialize : Olject
FreeVector OptionProcessor . o
fom uti rom uti
BaseThread ‘ ! SUNDEF mt=71(; Sstomgebanager)
oo iy Expa”d(fﬂ“u'jgde’“”“ SFreeVectar) &ovalldOptions - Hashtable = new Hashiable | | $0ump0
TosiNextTID - int = 1 = SFy tor @aActiveOntions : Hashtable = new Hashtahle () ‘dumPG_ﬂPEW’yO
BTID ; int EmE: VOIS REr T § SFreevecton) SolnvalidOptions : Vector = new Vector (‘Sumpgg\ﬁl’go
FreeVector) ump
BasaThread]) :E””a”“ﬂh’eadgmwo SensurelndexCapacty() SOptianProcessar) SdumpWILD
ExpandedThreadGroup) Al SOntionP restore)
$BaseThread)) OEpandedThreadGroup) SaddrI ptionProcessar) Sroctore
$BzzeThread() oo Rang VgetActiveOptions() SestoreBirary)
SBaseThreadl) et Selementat() @ishctiveOption() "ES‘“’ESE‘\EE‘”EWO
pé joing) @selFlementAt]) YisActiveDption) restoreCSY()
BaseThread() SaddThread() ps o, PrestoraXML()
SBaseThread() . insertElementt]) oString[) 2
Soao enumerate() Set) @getOption) backSynchronizeObject()
QgE(T\DO ®yetMARF SourceCodaRevision() Scet) SaddvalidOption() :getFMenameO
yeiexTIO) Saddp) @addActiveOption() ‘EE‘F“E”:A'”EO
BaseThread() E Sremove() @parse() & torageManager(]
BaseThread() ooreeute SsubList() SgetOption() SpetDefaulExtension(
SHageThread]) ®getMARF SourceCodeRevision])| | ®getOption() JtergeManager(
¢ et Cption(] dumpHTMLE
BaseThread) oo Squmpsain
getMARFSourceCodeRevision() ‘gsﬂnvahdontmnao ‘reampraHTMLo
GIPSY Dictionary get¥/alidOptions{) restoreS0L
apeieh| | @igValidOption() restoreSOLO
|Grom gipspf | rom orage) @isvaligOption) SyetDefault Extension()
| — [epictonyg| A SeimalidGetion) SaetDurmphade()
L PgethARF SourceCodeRevision() setDump Made()
Logger yethARFSourceCodeRevision()
trom utip
L0G TO FILE_STDOUT_STDERR. int=0 / /f,&
L0G_STDOUT_TO_FILE int=1
L0G_STDERR_TO_FILE - int=2
#LOG_STDOUT_STDERR_TQ_FILE : int = 3| Warker Executor ‘_Ugmm, GEE GIPC ‘ IntensionaiCompiter
GobNoTimestamp - boolean = false trom wrappers| | dom SEE) (trom intensiona
FostrFilename : Stiing -0GEE | = I |
TobAvailable : boolean = tu dgoa
FostrLoghessage : String =" (from teck)
FoiLogDirection : int N
usage
$Logger) Detug Smain
*Logger() dirom util :‘t“tgg‘éo
Sagger) 3bDehugOn __boolean = false estGEEQ
FisTimestarmpEnabled()
YenableTimestarmp() P0ebugl
$getl ogDirection) ®enableDebug()
et ogDirection() @enableDebug() m—
Byetl ogPrintStream () “debug()
¥setlogPrintStream) Sdebug()
Sgetl ogFilenamer) “debug()
et agFleramel) Sgebug()
¥geit ARFSourceCodeRevision(*getMARF SourceCodeRevision()

Figure 61: MARF Utility Classes used by the GIPSY.

instead of java.util.Vector. The corresponding class diagram of the MARF’s
util API is shown in Figure [61]

marf.util.OptionProcessor module is extensively used by the command-line
) of GIPSY, GIPC, GEE, and Regression. A con-

venient way of managing command-line options in a hash table and validating
them.

user interfaces (see Section

marf.util.BaseThread class encapsulates some useful functionality used in

threaded versions of GEE and GIPC, which Java’s java.lang.Thread does not

provide:

— maintaining unique thread ID (TID) among multiple threads and reporting
it (for tracing, debugging, and RIPE). A note is added here that Java 1.5.*

now also provides a notion of a TID, but marf.util.BaseThread was

123

GIPSYType Dictionaryltem

ffrom lang) [from storage)
TeilD - int
FreeVeptur Eestrblame : String
(iomputin &estridind © String
. &estrRank : String
Freevector] WroHashtable : Hashtable
SFreavector]
$Freeector() SDictionaryltern()
SFreevector) SqetiD])
:ensurelndexCapacityo Dictionary ‘setIDO
addAllf) - ®setTypel)
FremaveRangel)

r—\“_\ﬂ SgetPrevious()
-oCurrentDictionaryltem aotPrevious()

SolementAt])

®Dictionary()

setElementAt]) ®cotHashtahla()
QinsenElementat() Sgethlame)
:geto ‘setNameO
‘setO Sgetiind()
‘addo Szetiind()
I’EFﬂD_VEO -oDictionaryterm ‘getRankO
Saublist() ®cotRank)
SgethMARFSourceC odeRevision)) qetHashtahle])
| ’Dictianaryltemo
| SqetEntry()
SaetEntry()
PgetTypel)
From MARF. ®yetTypeEnumeration()
SsetTypel)

#oFrevious

Figure 62: Dictionary and DictionaryItem API

written prior to that and GIPSY remains Java 1.4-compliant still. Plus,
MARF’s way of handling this is more flexible.

— adapted human-readable trace information via toString()
— access to the Runnable target that was specified upon creation.

— integration with marf.util.ExpandedThreadGroup, see below.

e marf.util.ExpandedThreadGroup allows to start, stop, or other group opera-
tions that Java’s java.lang.ThreadGroup doesn’t provide. ExpandedThreadGroup
is, for example, used in GIPC to create a group of compiler threads (in GIPSY
every compiler is a thread), one for each language chunk, that will run concur-
rently. Additionally, a group of GEE, or rather, Executor threads would run in
the case of a forest of ASTs.

e marf.util.Arrays groups more array-related functionality together than the
java.util.Arrays class does, for example copying (homo- and heterogeneous

types) and converting to java.util.Vector, and provides some extras.

124

Preprocessor
tfram Preprocessing)

&oCodeSegments : Vector = new Vector {)

SPreprocessor]
Spreprocess()
®setSourceStream)

@ pmducelnperativeStubs(
@getCodeSegment s(
SyetPrepoce ssorASTRoot)
SpetDictionary()

@ =plitCodeSe gments()

Dictionary
(from storage)

*Dictionary()

-ohdiniDictionary

-oDiction

SemanticAnalyzer
from GIPC)

-oPreprocessor

GIPC
ifrom GIPC)

SGIPCQ
$process()
Firiit()
Sparse)
usagel)

SSemanticAn alyz et
SyatDictionary()
SyatErmorCourt()
et amingC ount ()
ok
Sconfict()
S0p_str)
SsetupDictionary()
Stake()
$climinateFunction()
duplicate()
Sreplace()
StraverseTreel)
SSubTreel ()
SSubTree2()
$SubTrees])
A=)
$SubTreed])
setFunction])
$typeCheck(
Scheck()
Srankanalyzel)

Executor
(from GEE)

SExecutor]
SyetBack()

W i
OPT THEEADED - int= 2
| Soxecutel) | BExecutor | SOpT ML mo g
Seual() @OPT MM int=4

Functionltem
(from steraga)

-FunlP

& strFunctionName : String
iDimensions : int
EpiParamCount ; int

GEE
ifrom GEE)
OPT_STDIM: int=0
@OPT DEBUG : int=7
QOPT_ALL - int=1

QOPT DCOM . int=15
OPT_CORBA :int=6
@OPT FILENAME : int =18
¢OPT GEE: int=89

SGEE(

SGEE(

Srunf)
ShackSynchronizeObject)
SatartServic es()

Suzage)

SGEE(

@rnain()

ldentifierContext CodeGenerator
ifrom &IPC)

SFunctionttem()
¥yetDimensions()
SgetParamCount()
SFunctionttem()
SgetFunctionEntry()

&idstack : Stack = new Stack ()
&code : StringBuffer = new StringBuffer)

ranslate()

SGIPCH
$serializeGIPS Y Program()
SGIPCH
SlookupCompiler)
Scampile()

PinitConfigl)
SGIPC)
¥rnaing)

-0lCCodeGenerator

generateHead()
SgenerateTail()
SizArith()
PisRel]
PisLog)
is0p)
“Paddindent()
Prewline)
clearcodef)
Stransid])
DtranshackOp()
rans()
¥generatel)

Figure 63: Dictionary Usage within the GIPSY

e marf.Storage.StorageManager provides basic implementation of the (possibly

compressed) object serialization, and in our case the GIPC and GEE are storage

manager with respect to a compiled GIPSY program.

e marf.util.Logger is primarily used by the Regression application to log stan-

dard output before calling GIPC or GEE to a file, for future comparison with an

expected output.

e marf.util.Debug is used in many places for debugging convenience allowing

to issue debug messages only if the debug mode is globally on, which is also

maintained within the class.

125

4.2.2.3 Servlets API

The Java Servlets technology from Sun [Mic05a] was used to implement the WebEditor
interface outlined earlier. While the actual API specification of servlets is rather vast,

the key used components used here are listed:

e The HttpServlet class is the base for all servlets, including WebEditor.
e The doGet () must be overridden to respond to the GET HTTP requests.

e The doPost () must be overridden to respond to the POST HTTP requests. In
our implementation, doPost () is a simply a wrapper around doGet (), so both
GET and POST requests are handled identically.

4.2.3 Architectural Design and Unit Integration

Unit integration according to the initial design decisions of the GIPSY system and
setting up package hierarchy played an important role in the success of this work.
A proposed directory structure (see Appendix and a corresponding breakdown
of the Java packages (see Appendix hierarchy are important to the success of
GIPSY, especially for public use. The author of this work inherited the previous
GIPSY iteration without any structure or packaging and proposed and restructured

the system to what it is now.

4.2.3.1 GIPSY

When integrating several components of a large system and redesigning some of their
API, the overall system design has to be considered. In Figure is a high-level
view of the main GIPSY modules. These modules can be run as stand-alone Java

applications or start each other.

e The GIPSY class on the diagram represents a stand-alone server for a client-
server type of application, which is capable of spawning GIPC and GEE upon
client’s request. The prime goal of it is testing of intensional programs that users
can submit online and get the result in case they don’t have the development

environment set up from where they are working.

126

These classes [
represent the main SIPEY
applications as (from gipsy)
well as facades to
the submodules of ®runi)
each subsytemn. Gruzage()
SGIPSY(
GIPC rraing
(fram IPC)
SGIPCH GEE
"FII'I:IEESSI:I (fram GEE)
init() RIPE
$parse]) SGEE(] iram RIPE)
Pusagel) SGEE(
Stranslatef) $run(] Frun()
“'GIF'C[] ‘hackSynchrnnizeDhjectCl ‘RIF‘E[‘J
®cerialize GIPSYPrograrmi) $startSenices() ®mainf)
SGIPCH ®usage()
*lookupCompiler() ‘GE.EG
campilel] ®main()
PinitConfig()
SGIPCH
®rmaing X
Fegression
rfrom tests)
Pusagel)
Srmaing
StestGIPC])
StestGEEQ

Figure 64: GIPSY Main Modules.

e The GIPC class when run as a stand-alone application invokes all the intensional
and imperative compilers required and produces a compiled version of a sub-
mitted GIPSY program. Optionally, if requested, GIPC can pass the compiled
program on to GEE for execution. The GIPC along with GEE subsumes what was

previously known as Lucid and Facet defined by Chun Lei Ren in [Ren02].

e The GEE when run as a stand-alone application, begins demand-driven execution
of a GIPSY program that was either compiled and stored or compiled and passed
from GIPC.

e The Regression class is the main driver for the Regression Testing Suite of

127

RuntimeException
(from lang)

i

Exception
(from lang)

i

MotimplementedException
(trom utily

GIPSYException
(trom utily

Tgstriessage | String

ShotimplementedException()
M otimplementedException()

$GIPSYException()
SGIPSYException))
$GIPSYException()

%
gethessagel)
BtoString()

i

CaormunicationException
{from intedaces)

GIPCException
(frem BIFC)

RIPEException
(from RIFE)

GEEException
from GEE)

DermandDispatcherException
tfrom IDP)

LUSE:xception
(from IDF)

SGIPCExCeption|

SRIPEException()

SGEEException))

®DemandDispatcherException()

S| USException()

)
$GIPCException])| | $RIPEException() SGEEException()
$GIPCException()| | #RIPEException()
@G| PCException() Z}

P
| |

ImperativeC ompilerException ParseException

IntensionalCompilerException

(from intensional) (fram imperative) (from util)
) - - TpspecialConstructor : boolean
‘\mensmnalCompi\erExceptionO ’ImperatlveCnmpl\erExceptmnO gexpectedTokenSequences(][] : int

¥rtensionalCormpilerException() ®mperativeCompilerSxception])

®ntensionalCompilerException)

gtokenlmage[] : String
Tgeol : String = System getProperty(“line. separator”, "n")

$ParseException()
SParseException))
SgetMessage()
Padd_sscapes()
SParseException])

DFGE xception
(from DF G

Generated by javacc and
made to inherit fram
GIPCException manually.

SDFGException))
SDFGException()

Figure 65: GIPSY Exceptions Framework.
GIPSY, that also calls these modules for regression and unit testing.

4.2.3.2 GIPSY Exceptions Framework

The class diagram describing the GIPSY Exceptions Framework is in Figure [65] The
main exception type is GIPSYException that provides some machinery encapsulating
other exceptions. Every major module, like GIPC, GEE, or RIPE in GIPSY de-
fines its own sublcass of GIPSYException. By doing this, the applications using the
modules can differentiate the exception types and handle them appropriately. The
NotImplementedException is an easy way to use to indicate some unimplemented
but important stubs, if called. It is a subclass of RuntimeException because it can
happen virtually everywhere and run-time exceptions do not need to be declared to
be thrown or caught. The GIPCException, GEEException, and RIPEException rep-

resent base exception objects for the corresponding modules; the rest are primarily

128

subclasses of these.

4.2.3.3 GEE Design

The general overview of GEE is in Figure [66] The several modules under the
gipsy.GEE package carry out a complex GIPSY program execution task. The GEE
is the facade and the main starting point for all of GEE. GEE may act as either an
application on its own or be invoked by the GIPC. For the stand-alone execution a
user has to supply a filename of a valid compiled GIPSYProgram. This program is
loaded and GEE starts the Executor thread to actually execute it. Before Executor
begins the GEE may optionally start the available demand propagation services, such
as local (just threads), RMI, Jini-based and the like. The Executor while executing
the program generates demands for the identifiers listed in the program and then per-
forms the final calculation based on the results received. The Executor was formerly
known as XLucidInterpreter and the Java version of which was implemented by Bo
Lu in [Lu04] and reworked to handle sequential threads, arrays, objects, and other

than integer and float data types.

Demand Dispatcher In Figure[67is a high-level overview of the DemandGenerator
and related classes. Most of the demand propagation in Jini and JavaSpaces is im-
plemented by Emil Vassev in [VP05]. The integration part included making sure the
IDemandList interface is consistently used by the DemandGenerator along with the
DemandDispatcherAgent to be compliant to the rest of the GEE. The IDemandList
interface was originally designed by Bo Lu in [Lu04] and redesigned by the author
of this thesis to be implemented by the RMI and threaded versions of GEE and was
formerly known as DemandList. Next, the temporary class WorkTask was made to im-
plement the ISequentialThread interface according to the overall GIPSY design for
sequential threads. This class is marked as deprecated (and later on will be removed)
as every sequential thread class is generated by the SequentialThreadGenerator and
is different from one GIPSY program to another. Finally, the LUSException (service
look up exception) and DemandDispatcherException were made to be a part of the
GIPSY Exceptions Framework Section by inheriting from the GEEException.
For further implementation details of the DemandDispatcher please refer to Emil’s
work [VP05)].

129

GEEException GEE DemandList
fram GEE] rfrom GEE) tfram rmi)
S l%demands “Wector = new Vectar [
SGEEException() GEE(] &rcounter : int=0
SGEEException]) SGEE]
:runO :DemandListo
backSynchronizeObjecti) isEmpty()
-0GIPSYProgra ‘startServicesO ’amuuntDemandsO
GIPSYProgram usagel) ‘addDemandO
(from interfaces) SGEE() SrermoveDemand()
Srnain() FgetDemand()
DemandHashtable
rom thread ed)
’DemandHashlab\eO O
EcrealeICO D dList
BIMan 5
-cExpeutar ThreadedClient :ggmz:ﬂgg
From I DF)
- t ttrom threaded) +Eht Sgemand(
wecutaor [Y]
DemandGenerator tram SEE) SThreadedClient]) .?S?fnra:eg”deo @isEmpty])
(fram Demand tor) main() @ Pty amountDermands ()
o 0 ‘amountDemandSU ‘addDemandU
Hecutar
Soararacerrsog| | Suicaenp T SgrosDoma)
QgeneratEDemandO nggcutgo ‘getDemandO getDemand)
Feval]) Sgetvalua)
setvalue)
#anS T[]
O O DemandDispatcher IdemiﬁerCume_xtClient
tfrom IDF) (fram rmi) faList
ISequentialThread [DemandDispatcher &wvalue : Object
(from interfacas) from I DF) &rgethewlniquelD() Spicx - int =0 i
rite() e ot [1:int = newint [DIMENSIOMN_MAX]
SuriteTazsk()
Swork() :"C":;Esl?rsaillio SwriteResult() @ dentifierContext Client)
‘writeTaskOO ScancelTask() ‘?‘WM’(O
SreadResd]) PorunAfterCreation)) YisReady()
‘r?:a d'IZSsLII(@printOut)) O etialuel)
0 & printOutError() 95 otReady |
@etlocallPAddress) 95 etvalus()
WorkTask @ryetlavaSpacal) :g ethlame()
firom IBF) ®DemandDispatcher() getHcode()
sMame : String *readResult() SyeiCant)
) @read) SparseDemand()
SorkTask() roadTask() 2 ddDemand])
‘mamU
Stk &
‘runo .g etxa:ueg
s etvalugl
W\/orkTaskO WorkResult P al))
(iom interfaces) ®getc)
#aoCP(] _}.C = @sMame : String = null
ldentifierContext3erver
. ok Rasult((from rmi)
\Commumcgtmnpmcedure W ork Result
throm interiaces) dentifisrContext Saver)
®main()
Sstart()

Figure 66: GEE Design.

130

GEEException
tfrom ZEE)

SGEEEx ception()
SGEEEx ception()

LUSException
tfrom 1DP)

S USException()

ifrom IC'P)

DemandDispat cherException

$DemandDispatcherException)

O

IDermandDispatcher

(from IDP)Y

‘writeResuItD
“cancelTaskﬂl
“writeTaskO
‘readResultﬂ
¥readTask()

DemandDispatcherdgent

N

YWorkTask
rfrom IDF)

gsMame : String

R (fram IDFY
DemandDispatcher
o 1) L EPprintOut()
IDemandList &prmt%utErmrﬂ
main
/ \L (fram IDF)
DispatcherEntry *isEmptyO T
hom 1DF) ®amountDemands() - -
) DemandDispatcherClient
¢hResult : Boolean *addDermandi) (fmrfmp)
. ‘r&mwe[ﬁlemandﬂ
Ispatchercniry etDernand .
SDispatcherEntry () . 0 gpr!niguig
SDispatcherEntry() ‘prln. utError()
“DispatcherEntr}rD main{)

WnrkTaskﬂ
Siork()
Srun()
®yvorkTask)

O

IS equentialThread

(from interfaces)

*w::urktj

Figure 67: The Demand Dispatcher Integrated and Implemented based on Jini.

131

MarkSueepGC GarbageCollector CopyingGC O ovalueHouse
(from GarbageCollecten) E
- - (fram GarbageCollectar) (fram arbageCallectar) wecutor
TdesiredRate : int = 50 L] I\»’\-’\ﬂrrterface\ (fram GEE)
$GarbageCollectar]) S CopyingGC
¥ 4 opying 0 (from Warehouse)
‘EdarkSweepGCO SdoGarhageCollect) ®doGathageCollect() — SExecutar]
oGathageCollect() - N ®yetBack()
T e stophit) Sexecute])
SnadFila() Yoyl
GCFactory Finith]) eval)
(from GarbageCollectan) ‘SEtUpNWO
®yetDataFile])
SGCFactory() ®setGoAlgorithmi) CacheElement
O Pcreatar)) SiiewSet() ffram Warehause)
Syetvialue])
IvalueHouse MNetCDFFileManager Ssetvaluel)
(fram Warehe..) (fram Warehouse)
S GOIMLENGTH - int = 10
Syetvaluel) Dncilename : String Cache
®cetvalue() Todimensians : Vector= new Vectar () 1o m W are ho uze)
Dwatiables : Vector = new Vactor ()
%d\mLength s int = DIMLENGTH e
%f:getDimLengthO (fl\f'\l\“-;CoTrol :
setDirmLength() il T SRR Ee - CacheSizes
PviewhcFile) T<%gc,{\lgomhm : Sénng = "MarkSweep P
S0t COFFilehd getimes @ int =
Valuetouse iritNeiCDF(w0
(fomiiiarchouse) addDataToF ile(SiWControl()
&walues - Hashtable = new Hashtable () :stop\\/'WO
loadFile()
¥yalueHouse() Finitha)
‘get\a’alueo MNetCDFDataManager ‘setupl\fWO
®cetialue]) ferniiashouse) :getDataFiIeo
R setGCAlgorithmi)
SNetCOFDatadanager() cdfdata SyicwSat()
GEEException Psetvalue]) getvalue()
fimm GEE) PuriteToFile) Qsatialus)
PinitDat aSet()
$GEEException) Posotvalual)
$GEEException) Pgetvaluel

Figure 68: Integration of the Intensional Value Warehouse and Garbage Collection.

Intensional Value Warehouse and Garbage Collection Intensional Value Ware-
house and Garbage Collection were implemented by Lei Tao in [Tao04]. After integra-
tion, his contributions became to look like as shown in Figure[68] The IValueHouse
and its extension IVWInterface are the ones used by the Executor to communicate
to a concrete implementation of a warehouse, allowing adding/changing warehouse
implementations easily without affecting the Executor. All the exception handling

is based on the GEEException.

4.2.3.4 RIPE Design

The class diagram describing RIPE is in Figure [69 The RIPE class represents a
facade to the rest of the RIPE modules. It is semi-implemented, as many things are
not clear on this side of the project yet. The only part of RIPE that was advanced
well so far by Yimin Ding in [Din04] is the Data-Flow-Graph (DFG) editor, which

is not implemented in Java. The DFGEditor Java class is meant to be main Java

132

RIPEException RIFE
ifram RIPE) fram RIFE)
#oRIFE
"runl[j
SRIPE(Q
*‘main[j
-oMWInsfiector -o%trnller _% ditar -0
[Ainspectar Contraller DFGEditor TextualEditor YehEditar
(from RuntimeSystam) ffrom Runti meSystem) (from DFGEditon tfrom editors) (from WebEditon
¥\ AWnspect or)) SCortroller(SyyehEditor])

Figure 69: RIPE Design.

program acting like a bridge between Java and the LEFTY language, but did not get

implemented yet. The rest of the modules are planned stubs.

4.2.3.5 Data Flow Graphs Integration

The integration of Yimin Ding’s [Din04] DFG-related work is presented in Figure [70]
The DFGAnalyzer was augmented to implement the ICompiler interface as it fol-
lows the same structure as the rest of our compilers, which compiles a Lucid code
from DFG. The DFGException class, a subclass of GIPCException has been created
to indicate an error situation in the DFG processing. DFGAnalyzer’s SimpleNode
was updated to inherit from GIPC.intesional.SimpleNode due to vast functional-
ity overlap. The two analyzer and generator modules have been placed under the
GIPC.DFG.DFGAnalyzer and GIPC.DFG.DFGGenerator packages.

133

DFGException
tirom DF &)

SDFGException()
$DFGException])

-nbak

snode

SimpleMode
(fom DF & Analyze

SSimpleMode]
oString()

Squrp)

*SimpleMode)

i
M agaimpleningde

LucidCode Generator
(from DFGAnRahwzen

L ucidCodeGenerator])
hitos()
LgenAST()
SgenPoint()
Sgendimi)
®gencadel)
Sgennarme()
SaAST]
SgenTable(
SgenTablecloze()
BlinkMode)
Sindwhera()
findroot()
ByenAST)
SgenPoint()
®gendim()
Sgencode()
Sgennarme()
SUHAST]
SgenTable(
SgenlC(

(fi mﬂ:{iﬁin SdrawhssignLable))
‘draw\/ar()

DFGTranCodeG enerator
tirom DF &G eneraton

SOFGTranCodeGenerator()
$yetSnamel)

SyetPhame()
Sdrawvhera))
Sdrawdssign()

SdranDIM])
BrawTerm2()
SdrawTerm()
@itos()
SqrawRankgroup()

SirawDFG])
SrawDFGelosel

DFGCodeGenerator

(fram DFGGenerator)

SgenTable()
®genTableclose()
SirawStan()
SdrawOperator)
SrawDF G
SgenTable(
SyenarataDF G{)

ParserFacet
(from DF GAnalyzern)
Bilename : String
Tomessage | String

Pparsing))
display()
Pshowtree()
Preepass()
Pgethode])

$DFGCodeGenerator]
PyetSnamel)
SgetPrame()
Sdravivheral)
Bdrawhssign()
SdrawhssignLabla)
Sdraw/ar])
BdrawDIMQ
SdrawTenm2()
SdrawTerm()

itos()
‘drawRankgroupO
SrawDF G
BdrawDFGelosel
®generateDimensionindexTabla))
PyenTableclose])
SdrawStart()
SdrawOperator])
BrawDF G
SgenerateDimensionindexTabla))
SyenerateDF G

-DPar@ﬁrFacet

DFGAnalyzer
(from DF & Analyzen)

&strFilename © String

SDFGAnalyzer()
Finit()

Sparse()
Scompile()

arser
#oDF GParser

Srun()
$yetlastException])

DF GParser
(from DFGAnalyzen Scompile()

Srnain()

$yetabstractSyntaxTree()

$setSourceCodeStraam()

DFGSubtres
(from CF 3@ enerato)

B3ET : Hashtable
Q}nterm sint

Q}used sint

SDFGSubtrea)
Sacovar]

shbt Sindvar])
$istieys()
®sUsed)
Sraghp

sbtA ®getPname)
®getSnamel)

-current

DFGSubtreeCaontents
(from DF & Generator)

Tontarm © int
Toused | int

SDFGEubtreeContent s()
$DFGS ubtreeContent s

Figure 70: DFG Integration Design.

134

O

ICompiler
from GIPCY

4.3 Summary

This chapter presented most of the development effort went into integration, design,
and implementation of JLucid, Objective Lucid, and GICF. User interfaces (both web
and command line) has been outlined. Regression Test Suite has been introduced.
The follow up chapter presents a variety of testing approaches went into the GIPSY
to prove successful integration of the old and implementation of new modules.

To summarize, Objective Lucid, as opposed to GLU [JD96, . JDA9T] and JLucid,
provides access to the object members and is real object-oriented hybrid language.
While JLucid may indirectly manipulate objects through pseudo-free functions, the
actual objects are still a “black box” to it.

The GICF and IPLCF gave an ability for an easier integration of intensional and
imperative languages in the GIPSY. The below are the steps one needs to perform to
add a new compiler to the GIPSY:

e create a package where the language compiler will reside (usually under
imperative/LANGUAGE or intensional/SIPL/LANGUAGE.

e add a compiler class that extends either one of IntensionalCompiler,

ImperativeCompiler, or implements one of their superinterfaces

e the code segment and fully qualified class name should be added to either

EImperativelLanguages or EIntensionallLanguages
e optionally implement a custom version of a preprocessor if it is a hybrid language
e implement translation rules to GIPL if it is a SIPL if it is an intensional language

e implement proper ST/CP generation for an imperative language according to

that language’s semantics and typing instructions

e implement type mapping table upon the need if it is an imperative language

The above might still sound complex, but it is much more easier and flexible than
before. Additionally, some of the steps can be abstracted and simplified, but it is

impossible to eliminate manual work altogether.

135

Chapter 5
Testing

This chapter addresses the testing aspect of this thesis for the following two main
reasons: integration and refactoring of a variety of the GIPSY modules including
GICF and the development and operation of the two new Lucid dialects developed
in this work, namely JLucid and Objective Lucid. Notice, this testing is far from
comprehensive and does not include testing of the execution performance of any of
the programs and many compilation aspects are still to be resolved as of this writing
(and be resolved in the final version). This is, however, a starting point of setting up
the GIPSY testing infrastructure for the projects to come to do mandatory systematic
tests, which are now a necessity given the size of the system, a centralized source tree,

and the number of subprojects developed simultaneously.

5.1 Regression Testing

5.1.1 Introduction

The regression testing is a comprehensive set of tests for the implementation and
integration of the GIPSY modules. They test most of the operations and capabilities
of the GIPSY. The test cases primarily are various intensional programs (hybrid
or not) that exercise the main modules, such as GIPC and GEE as well as their

submodules with the major focus on GIPC.

136

5.1.2 Regression Testing Suite

The regression tests can be run against already pre-compiled gipsy. jar, or by using
a temporary installation within the source tree using the Regression application.
Next, there are a “sequential” and “parallel” modes to run the tests. In the sequential
mode tests run in strict sequence, whereas in the parallel mode multiple threads are

started to run groups of tests in parallel.

5.1.2.1 Unit Testing with JUnit

The core of the Regression application is based on the JUnit framework introduced in
Section . Regression represents a TestSuite, that contains ParallelTestCase
and SequentialTestCase, a subclasses of TestCase. Both types of tests are cus-
tomizable based on the options supplied to the Regression application (see Sec-
tion . JUnit helps to tell us what errors happened and in which modules and

the reason of the failures dynamically at run-time.

5.1.2.2 Unit Testing with diff

It becomes cumbersome to use JUnit for all possible cases, in a large system, where
often we are generally interested in the output behaviour changes only. Here the UNIX
tool diff helps us. A collection of hand-checked outputs are said to be “expected”,
one ore more file for each test case. Then, when the next time the test is run, a
current directory is created with the current outputs, and the current and expected
output directories are compared with the diff to show the differences in the output

produced by the modules. This is all achieved by the regression script.

5.1.2.3 Tests

The actual test cases in the form of GIPL, Indexical Lucid, Objective Lucid, JLucid,
and GIPSY programs, are located under the corresponding src/tests/* directories
in the source tree in the form of *.ipl files. These comprise most of the examples
presented earlier in this work as well as developed in [Paq99], [Ren02], [Wu02], and
[Lu04]. The regression tests for the DFG generation ([Din04]), Intensional Value
Warehouse and Garbage Collector [Tao04] and Demand Migration System (DMS)

[VP05] are not present as of this implementation.

137

5.2 Portability Testing

GIPSY has been tested and is known as expected (regression tests pass) to run
on RED HAT LiNuxX 9, FEDORA CORE 2, MAC OS X, SOLARIS 9, WINDOWS
98SE/2000/XP systems under JDK 1.4 and 1.5. The corresponding hardware ar-
chitectures were Intel or Intel-compatible processors (Pentium II, III, and IV with 233
MHz to 1.4 GHz) and G3 and G4 processors from Apple and IBM. For the WebEditor
interface, Tomcat 5 on MAC OS X were tested, but it is believed to run on other

platforms the Jakarta Tomcat runs on.

138

5.3 Solving Problems

This section is targeting some common problems of synchronization in parallel and
distributed environment and how they are solved using the GIPSY system relieving
the programmer from the need of explicitly synchronize the objects. They also illus-
trate the use of arrays and embedded Java, and Java objects. These programs are

among many other test cases from the Regression Tests Suite.

5.3.1 Prefix Sum

pseudocode (for thread ’j’)

’shared’ a ’future’ ’int’ ’array’ [1..logP, 1..P] := undefined;
’private’ sum ’int’ := j,
hop ’int’ := 1;

’do’ level = 1, logP --->

’if’ j <= P - hop --—> allevel, j] := sum Pfi°

2if’ § > hop ---> sum +:= a[level, j - hop] ’fi’

hop := 2 * hop
}Od,

Figure 71: Pseudocode of a thread j for the Prefix Sum Problem.

/%

* PREFIX SUM in GIPL-style JLucid program.

* Numbers are from 1 to 8.

* S[I] will contain prefix sum for number ’i’

*/
#JLUCID

// Array of prefix sums
S[8] @d 8
where

dimension d;

S[I] = if(#d = 0)
then 1
else (2 * S[I] - 1) @d (#d - 1)
fi;

// Index the array varies within.
I Qi 8
where
dimension ij;
I =if(#i = 0) 1 else (I - 1) @ (#i - 1);
end;
end;

Figure 72: The Prefix Sum Problem in JLucid in GIPL Style.

139

The pseudocode of for a thread j is in Figure [71] [Pro03a]. The Figure [72| shows
the program translated into Lucid. The Figure [73| shows the program translated into
Indexical Lucid for numbers from 1 to 8. Below is an equivalent implementation of
the problem (targeting only TLP) in Java; compare the program’s line count and

complexity to that of JLucid:

// Modified from Dr. Probst’s Cyclic.java
public class PrefixSum

{

public static final int P 8; // number of workers

public static final int logP 3; // number of rows in logP x P matrix
// For permutation of workers

private static int[] col = {3, 6, 5, 7, 4, 2, 1, 0};

// These two mimic a 2D array of future variables
public static int[]1[] a = new int [1ogP] [P];
public static Semaphore[][] futures = new Semaphore[logP] [P];

// The resulting sums are to be placed here.

public static int[] sums = new int[P];

public static void main(String[] argv)
{

Worker w[] = new Worker[P];

for(int j = 0; j < futures.length; j++)
for(int k = 0; k < futures[j].length; k++)
futures[j] [k] = new Semaphore(0);

for(int j = 0; j < P; j++)

{
wlcol[jl] = new Worker(col[j] + 1);
wlcol[jl].start();

for(int j = 0; j < P; j++)
{
try
{
wljl.join(Q);
}
catch(InterruptedException e)
{
}

for(int j = 0; j < P; j++)

System.out.println ("Prefix Sum of " + (j + 1) + " =" + sums[j]);

140

System.out.println ("System terminates normally.");

class Semaphore

{
private int value;
Semaphore(int valuel)
{
value = valuel;
}
public synchronized void Wait ()
{
try
{
while(value <= 0)
{
wait();
}
value--;
}
catch (InterruptedException e)
{
}
}
public synchronized void Signal()
{
++value;
notify();
}
}

class Worker extends Thread
{

private int j;

private int sum;

private int hop = 1;

public Worker(int col)
{

sum = j = col;

public void run()
{

System.out.println("Worker " + j + " begins execution.");

141

yield(Q);

for(int level = 0; level < PrefixSum.logP; level++)
{
if(j <= PrefixSum.P - hop)

{
System.out.println
(
"Worker " + j +
" defines a[" + level + "," + (j-1) +"]."
);
PrefixSum.a[level]l[j - 1] = sum;
PrefixSum.futures[level] [j - 1].Signal();
}
if(j > hop)
{
PrefixSum.futures[levell [j - 1 - hopl.Wait();
System.out.println
(
"Worker " + j +
" uses a[" + level + "," + (j - 1 - hop) + "]."
);
sum += PrefixSum.a[levell[j - 1 - hopl;
}

hop = 2 * hop;

PrefixSum.sums[j - 1] = sum;

System.out.println ("Worker " + j + " terminates.");

142

/%
* PREFIX SUM in Indexical Lucid-style JLucid
*/

#JLUCID

S[8] @d 8
where
dimension d;

S[I] = 1 fby.d (2 * S[I] - 1);

I eis8
where
dimension i;
I =1fby.i (I -1);
end;
end;

Figure 73: The Prefix Sum Problem in JLucid in Indexical Lucid Style.

143

5.3.2 Dining Philosophers

Below is a JLucid implementation of the Dining Philosophers problem [Dij65| [Dij71]
Gin90]. We have arrays of 8 philosophers and 8 forks, each represented as integers.
A philosopher is either thinking (1) or eating (2); likewise for forks, taken or not.
A philosopher may eat when they have exactly two forks, not less, if the forks are
available. If none available, the philosopher waits (implicit, guaranteed by the GEE).

The special variable I serves as an intensional index for our arrays.

/**
* Dining Philosophers Problem

* in JLucid

* Qauthor Serguei Mokhov, mokhov@cs.concordia.ca
* @version $Revision: 1.10 $ $Date: 2005/03/02 02:57:31 $
*/

#funcdecl

int getIninitalRandomState();
boolean chew(int);

boolean brainstormIdea(int);

#JLUCID

/%

* Assume 8 philosophers and two states.

* States: 2 - eating, 1 - thinking

* Forks are either available or not; hence, 2 states as well.
*/
PHILOSOPHERS[8] @states 2
where

dimension states;

// Initialize all forks
FORKS[8] Qavailability 2
where

dimension availability;

FORKS[I] = getIninitalRandomState();

I eds8
where

dimension d;

I =1 fby.d (I - 1);
end;

end;

144

* Run the actual algorithm.
* NOTE: in this implementation the computation
* never terminates (normally). It is an infinite loop.
*/
PHILOSOPHERS[I] =
if (#states == 1) then
eat(I) @states 2

eat(I) =
getForks(I) && chew(I);

getForks(I) = g(1, r)

where
1 = FORK[I] @availability 1;
r = FORK[I] @availability 1;
end;
else

think(I) @states 1

think(I) =
putForks(I) && brainstormIdea(I);

putForks(I) = p(1, 1)

where
1 = FORK[I] @availability 2;
r = FORK[I] @availability 2;
end;
fi;
I ed 8
where

dimension d;
I =1 fby.d (I -1);
end;

end;
#JAVA

int getIninitalRandomState()
{
// Either 1 or 2

return new Random() .nextInt(2) + 1;

boolean chew(int i)
{

try

{

System.out.println("Philo " + i + " is chewing smth tasty now.");

145

sleep(new Random() .nextInt(i * 1200));
System.out.println("Philo " + i + " finished chewing.");

return true;

}
catch(InterruptedException e)
{
return false;
}

boolean brainstormIdea(int i)

{
try
{
System.out.println("Philo " + i + " is heavily thinking now.");
sleep(new Random() .nextInt(i * 1200));
System.out.println("Philo " + i + " finished thinking.");
return true;
}
catch(InterruptedException e)
{
return false;
}
}

146

5.3.3 Fast Fourier Transform

This is an example on how one would compute Fast Fourier Transform (FFT) in the
GIPSY for an array of double values. This is straightforward in Lucid because it’s
deterministic with plenty of parallelism. A JLucid program implementing FFT is in
Section The algorithm is based on the Java algorithm implemented in MARF
[IMCSNO3, [Pre93, Ber03], a code fragment of which is in Section [5.3.3.2] originally
written by Stephen Sinclair. The JLucid version omits the imaginary part of the

transform, but it would not be hard to add it.

5.3.3.1 Fast Fourier Transform in JLucid.

/*

* FFT implementation in JLucid.

* Serguei Mokhov

* $Id: fft.ipl,v 1.2 2005/08/13 01:37:23 mokhov Exp $
*/

#funcdecl
double sin(double);
double pi(Q);

#JAVA

double sin(double pdValue)
{
return Math.sin(pdValue);

double pi()
{
return Math.PI;

#JLUCID

A

where
// A is an array of 9 FFT values with a
// normal FFT applied to the array below.
A= fft([1, 2, 3, 4, 6, 7, 8, 9], 9, 1);
fft(inputValues, length, sign) = fftValues

where

fftValues = apply(length, reverse(length, inputValues), sign);

147

apply(len, coeffs, direction) = coeffs @.s (N - 1)
where

dimension s;

N = 2 * len;

mmax = (2 fby.s istep) upon(mmax < N);

coeffs[J / 2] = coeffs[I / 2] - tempr;
coeffs[I / 2] = coeffs[I / 2] + tempr;

where

istep = mmax fby.s (istep) * 2;

M @.m mmax
where

dimension m;

M= (0 fby.m (M + 2)) upon (M < mmax);

tempr = wr * coeffs[J / 2] - wi * coeffs[J / 2];

J =1 + mmax;

wr = 1.0 fby.m ((wtemp = wr) * wpr - wi * wpi + wr);

wi = 0.0 fby.m (wi * wpr + wtemp * wpi + wi);

where
dimension i;
I = (M fby.i (I + istep)) upon (I < N);
theta = (direction * 2 * pi()) / mmax;
wtemp = sin(0.5 * theta);
wpr = -2.0 * wtemp * wtemp;
wpi = sin(theta);

end;

end;
end;

end;

// Binary reversion
reverse(l, vals) = out @.i length
where
dimension ij;
out[t] = vals[#.i] @ (#.i + 1) @.bit maxbits(length);
where

dimension bit;

0 fby.bit ((t * 2) | (n & 1));
#i fby.bit (n / 2);

B
]

end;

end;

148

// Determine max number of bits
maxbits(len) = (mbits - 1) @.m 16
where

dimension m;

mbits = (O fby.m (mbits + 1)) upon (mbits < 16 && n !'= 0);
n = len fby.m (n / 2);
end;
end;

end;

// EQF

5.3.3.2 Fast Fourier Transform code fragment in Java from MARF.

/**
* <p>FFT algorithm, translated from "Numerical Recipes in C++" that
* implements the Fast Fourier Transform, which performs a discrete Fourier transform

* in 0(n*log(n)).</p>

* @param InputReal InputReal is real part of input array
* @param InputImag InputImag is imaginary part of input array
* @param OutputReal OutputReal is real part of output array
* @param OutputImag OutputImag is imaginary part of output array
* @param direction Direction is 1 for normal FFT, -1 for inverse FFT
* Q@throws MathException if the sizes or direction are wrong
*/
public static final void doFFT
(
final double[] InputReal,
double[] InputlImag,
double[] OutputReal,
double[] OutputImag,
int direction
)
throws MathException
{
// Ensure input length is a power of two

int length = InputReal.length;

if ((length < 1) | ((length & (length - 1)) != 0))
throw new MathException("Length of input (" + length + ") is not a power of 2.");

if ((direction != 1) && (direction != -1))
throw new MathException("Bad direction specified. Should be 1 or -1.");

if (OutputReal.length < InputReal.length)
throw new MathException("Output length (" + OutputReal.length + ") < Input length (" + InputReal.length + "

149

// Determine max number of bits

int maxbits, n = length;

for(maxbits = 0; maxbits < 16; maxbits++)

{
if(n == 0) break;
n /= 2;

}

maxbits -= 1;

// Binary reversion & interlace result real/imaginary
int i, t, bit;

for(i = 0; i < length; i++)

{
t = 0;
n=ij
for(bit = 0; bit < maxbits; bit++)
{
t=(t=*x2) | (n&1);
n /= 2;
}
OutputReal[t] = InputReallil;
OutputImagl[t] = InputImaglil;
}

// put it all back together (Danielson-Lanczos butterfly)
int mmax = 2, istep, j, m; // counters

double theta, wtemp, wpr, wr, wpi, wi, tempr, tempij; // trigonometric recurrences

n = length * 2;

while(mmax < n)

{
istep = mmax * 2;
theta = (direction * 2 * Math.PI) / mmax;
wtemp = Math.sin(0.5 * theta);

wpr = -2.0 * wtemp * wtemp;
wpi = Math.sin(theta);

wr =1.0;

wi = 0.0;

for(m = 0; m < mmax; m += 2)
{
for(i = m; i < n; i += istep)
{
j = i + mmax;

tempr = wr * OutputReallj / 2] - wi * OutputImaglj / 2];

150

}
wr
w1l
}
mmax =

tempi = wr * OutputImag(j / 2] + wi * OutputReallj / 2];

OutputReal[j / 2] = OutputReal[i / 2] - tempr;
OutputImagl[j / 2] = OutputImagli / 2] - tempi;

OutputReal[i / 2] += tempr;
OutputImagl[i / 2] += tempi;

(wtemp = wr) * wpr - wi * wpi + wr;

i = wi * wpr + wtemp * wpi + wi;

istep;

151

5.3.4 Moving Car

A less contrived example of an Objective Lucid program is presented in Figure [74]
This is an example where a Car object changes with time. Eliminating S, and ignoring

the print call, we have have:

C @.time 15 where
C = Car() fby.time C.move(#.time)

Using the definition of fby gives:

C @.time 15

(Car() fby.time C.move(#.time)) Q@.time 15

if 15 <= 0 then Car() else (C.move(#.time)) @.time (15 - 1)
C.move (14)

Our intention is that fby will give the sequence:

’ Car() Car.move(l) Car.move(2) ... Car.move(15b)

This will work as follows. When one generates a demand for C.move (15) it’s not
satisfied until C.move(14) is until C.move (13) is ... until C.move (1) is until Car(),
so it recurses back and finally the Car () object instance gets constructed, and then
the demands flow from 1 to 15 and the instance already exists.

The car also does not accelerate indefinitely. It moves until it has enough fuel,
else it returns the car object with its members unmodified. The drop of speed is also
in place when fuel is depleted.

To further illustrate this idea let’s take the existing example of a simpler problem
of natural numbers presented in Figure 22| and convert it into Objective Lucid as in
Figure First, we will present the eduction tree of the natural numbers problem
(see Figure [T a corrected version of the one produced by Paquet in [Paq99]) and
then transmute it into the eduction tree of the execution of the equivalent Objective
Lucid propgram, as shown in Figure The program in Figure [76| exhibits the same
properties as the Car example, so the eduction tree will be similar but will take more
space. The important aspect here is to illustrate the difference between demands
for STs and their lazy execution (which is italisized, e.g. N.inc()); thus, the actual
invocation of a ST method happens at a later time after the demand is made so we

avoid not having called constructor prior execution of an instance method. In the

152

#typedecl

Car;
#JAVA
public class Car
{
public int x = 0O;
public float speed;
public float speeddrop;
public float fuel;
public float fueldrainrate;
public Car()
{
// Assume initially car was already moving.
speed = 100.0; fuel = 40.5;
fueldrainrate = 0.018; speeddrop = 0.1;
}
// Move by a number of steps assuming constant speed
// and decelerate when ran out of fuel.
public Car move(int steps)
{
if (fuel > 0)
{
fuel -= fueldrainrate * speed * steps;
X += steps;
}
else if(speed > 0)
{
X += steps;
speed -= speeddrop * steps;
}
return this;
}
public void printCarState()
{
System.out.println
(
"Speed: " + speed + ", fuel: " + fuel +
", drain: " + fueldrainrate + ", x: " + x +
", speeddrop: " + speeddrop
)5
}
}
#0BJECTIVELUCID

(C @.time 15).printCarState()

where
C = Car() fby.time S;
S = C.move(#time);
end;

Figure 74: Objective Lucid example of a Car object that changes in time.

153

eduction trees the normal arrows correspond to demands made for expressions and
the bullet arrows correspond to the result of evaluation of the demands, which are
also bold and italic. In the Objective Lucid eduction tree object instance is denoted
as ClassName:MemberName:value and the {d:X} presents the context of evaluation.
The result of evaluation of the Objective Lucid variant is said to be true because, as
previously defined, void methods are mapped to return true and the last expression
bit that is evaluated here is the print () method call of the instance of a Nat32 class,

which returns void.

154

— {d:0}

—{d:2}

—{d:1}

—{d:0}

Figure 75: Eduction Tree forlg%e Natural Numbers Problem.

#typedecl
Nat42;

#JAVA
class Nat42
{

private int n;

public Nat42()

{
n = 42;
}
public Nat42 inc()
{
n++;
return this;
}
public void print()
{
System.out.println("n = " + n);
¥
}
#0BJECTIVELUCID

(N @.d 2).print[d] O
where

dimension d;

N = Nat42[d] () fby.d N.inc[d]Q;
end

Figure 76: The Natural Numbers Problem in Objective Lucid.

156

@.d 2). print[d]] e}
> 4
e

-2

| Matd2[d]) by d Mlinc[d]]) [+
F#d <=0
& d

b Ninc[d]) @.d (#d - 1)
> d

1

—>#.d

“i*i;f

= M. inc[d]] -+ {d:1}
= MatdZ[d]() fby.d M.inc[d]]
#d=<=0
> #d

I::d
>0
[
> N inc[d]) @.d #d- 1)

> d

= #d-1
> #d

Y

e[inc[d] ()
> Mata2[d]() fhy.d M.inc[d])
—»#d <=0

—P.f\l'atziz‘idil i Constructor call n = 42

= N.incld] STcalln=n+1
Lo
> N.a’ncidil i STcalln=n+1

Ly Matd2:n:d4. print[d]()
o Natd2 n: 44 printldif) ST call

-

Figure 77: Eduction Tree for the Natu{%%Numbers Problem in Objective Lucid.

5.3.5 Game of Life

The Game of Life [Gar70] would make a good benchmark for the GIPL. Life takes
place on a 2D grid and evolves in time, so it’s a 3D problem. The value of a cell at
time T'+1 depends on the value of the cell and its 8 neighbours at time 7. Thus, there
is a high branching factor and the IVW will get plenty of exercise. Peter Grogono
wrote a version in Haskell, which is functional and lazy but is not concurrent and
does not have an IVW. The author of this work made a version in Indexical Lucid.
In Figure [78]is the top-level function. The Game of Life program is included in the
test suite as a good elaborate test case, but this work does not address any of the
performance and efficiency issues related to the execution and wareshousing, so no
measurements have been done two compare the efficiency of the program with and

without the warehouse nor with the Haskell program.

life = evolve T initial (conway life) where
initial = F(\i ->
if val Y i == 0 && O <= val X i && val X i < 5 then 1 else 0)

conway v = F(\i ->
let neighbours v =
evv (ni) +evv (nei) + evv (ei) +evv (se i)+
evv (si)+evv (swi) +evv (wi) + ev v (aw i) in
b2i(neighbours v == 3 || ev v i == 1 && neighbours v == 2))

evolve d s e = F(\i ->
if val d i == O then ev s i else ev e (prev 4 i))

b2i b = if b then 1 else 0O

ni=F(..)

Figure 78: The Life in Haskell.

Explanations:

o cvolve(d, u,v) allows a value to evolve in the dimension d. The first value of

the stream is given by w and subsequent values by v.

e initial(d) defines the initial configuration (five ones in the row 0, zeroes every-

where else in the matrix 5-by-5).

e conway(d,v) computes the successor of state v. The functions n, ne, e, se, s,

sw, w, and nw are “navigators” that find values of neighbours.

e 12i(d) converts a Boolean to integer to decide the new value of an entity.

158

#INDEXICALLUCID

life = evolve(T, initial(T), conway(life, T))
where
dimension T;

evolve(d, u, v) = u fby.d v;

initial(d) =
if(Y == 0 && 0 <= X && X < 5) then 1 else 0O
where
X =0 fby.d X + 1;
Y 0 fby.d Y + 1;
end;

conway(d, v) = b2i(neighbours == 3 || (v == 1 && neighbours == 2))

where

neighbours = n(d) + ne(d) + e(d) + se(d) + s(d) + sw(d) + w(d) + nw(d);

where
n(d) v @e.(d - 5);
ne(d) = v @.(d - 4);
e(d) =v e.(d+ 1);
se(d) = v @.(4d + 6);
s(d) =v e.(d + 5);
sw(d) = v @.(d + 4);
w(d) =ve.d-1);
nw(d) = v @.(d - 6);

end;

b2i(b) = if(b) then 1 else 0;
end;
end;

Figure 79: The Life in Indexical Lucid.

159

5.4 Summary

There were many tests developed and exercised for the GIPSY. This section attempted
to show the reader the most representative ones and how the Regression Tests Suite
works in the GIPSY for the most modules of GIPC and GEE and how JUnit is applied
to make it possible and maintainable. Now, every new module added to the GIPSY
system will have to have a corresponding unit and/or regression test (or several tests)

exercising most of the features of this module added.

160

Chapter 6
Conclusion

To conclude, it is believed GIPSY is well off the ground and is steadily getting ready
for its first large public release to the research community. It is becoming a lot
more usable not only by a small circle of GIPSY developers, but also by scientists
and researchers from other research groups. Preliminary testing (see Chapter |5)) and
results (Section [6.1]) give confidence in the success of an important step for the GIPSY
in the are of flexible hybrid intensional-imperative programming. To summarize, the
newly introduced features for the innovative intensional research platform GIPSY are
a valuable asset allowing us to release GIPSY to the masses and a new release will be
made at the SourceForge.net at http://sf.net/projects/sfgipsy circa the end of
December 2005 - January 2006.

6.1 Results

6.1.1 Experiments

The experiments conducted on the GIPSY research platform were primarily design,
development, and testing of hybrid programming paradigms by fusing together inten-

sional and imperative languages. For test experiments please refer to Chapter o]

6.1.2 Interpretation of Results

After extensive testing of the design and implementation of ideas presented in Chap-

ter |3 we can see an enhanced, more flexible GIPSY system taking off the ground.

161

http://sf.net/projects/sfgipsy

Most of regression tests pass for the developed sample programs with known errors

and failures.

6.2 Discussions and Limitations

6.2.1 Lack of Hybrid Intensional-Imperative Semantics Proofs

The semantics for the GIPSY Type System was not defined and the one of JLucid

and Objective Lucid was not formally proven to be correct.

6.2.2 Genuine Imperative Compilers

The most serious limitation of the current implementation of the hybrid paradigm is
that there are no genuine imperative GIPSY compilers. The Java wrapper compiler
classes merely resort to the external tools from the library of enumerated tools. This
makes overall error checking and reporting cumbersome. Additionally, this slows

down the compilation process.

6.2.3 Cross-Language Data Type Mapping

When implementing other imperative language compilers than Java, or a genuine
compiler for Java, a special mapping has to be explicitly established in the form of
TypeMap. We can avoid this for C/C++ with the JNI [Ste05], but not for other

popular languages.

6.2.4 Dimension Index Overflow

While this limitation is not directly related to the main topics of this thesis, it has
to be mentioned. In the current implementation of the dimension type in all Lucid
variants is done as a simple Java integer, and as such, is finite. Thus, incorrectly
written Lucid programs or programs that may require high dimension values may
overflow the dimension index rendering execution of the program incorrect. This
limitation is not handled by the GEE nor constrained in the operational semantics of
Lucid.

162

6.2.5 Hybrid-DFG Integration

This thesis does not address placement, rendering, and integration of the hybrid AST
nodes into DFGs.

6.2.6 Dealing With Side Effects and Abrupt Termination

As of this implementation, GEE has very limited control over what’s happening inside
the STs in terms side effects, exceptions, non-termination, etc. in the Java (or other
imperative language) code causing it to exit prematurely or to hang. Likewise, we
cannot do warehousing of non-immutable STs due to the side effects, i.e. when the
same arguments are given to an ST may yield a different result at different invocations.
This is serious aspect, which is related to the development of any future semantics of

the hybrid programming languages and deserves a separate publication.

6.2.7 Imperative Function Overloading

It is an error to write the following:

#funcdecl
int foo(int);

int foo(float);

but it shouldn’t be. This is an error in the sense that only the last declaration is
retained due to the way function identifiers are handled, so no function overloading
at this moment is officially supported. The issue of dealing with the semantics of a
type system in which this is possible, especially if we support multiple imperative PLs,
where each may have potentially its own type system or even paradigm is complex.
However, this feature is nice to have and some practical aspects can be implemented,

which will be a research topic on its own.

6.2.8 Cross-Imperative Language Calls

Normally, an ST written say in #JAVA cannot call another ST in say #C. This limitation

is that only the intensional part can make calls to the imperative functions. This

163

eliminates the need to keep the type mappings between all possible combinations of
the imperative languages and semantics associated with this.

However, depending on the language, procedures written in the same language
can possibly communicate by calling each other. E.g. in Java, defining free members

and passing state between free functions is possible as nothing is done to prevent this.

#JAVA

int 1i;

int foo() {

return i + 1;

int bar() {
it++;

)

return foo();

This is based on the knowledge about the internal implementation i.e. the “int
i;” bit will also be wrapped in the class, so it’d be legal to have it from the Java’s
point of view; however, is considered to be a kludge and non-portable feature. To
be on the safer side, the STs like that should be written assuming no knowledge of

internal state for communication is available.

6.2.9 Security

JLucid, Objective Lucid, and GICF opened up doors for very flexible use of external
languages and resources as a part of intensional computation. Unfortunately, there
are security considerations to deal with when embedding a vulnerable unsigned code
from possibly untrusted remote location and then propagate it to all the workers par-
ticipating in computation can result resulting either gaining some unwanted privileges

to the attackers or DDoS.

164

Chapter 7

Future Work

The future work to take on will focus in the following areas to either address the
limitations outlined in Section or to introduce new features, not necessarily all
related to the topics of this thesis.

e Integration of the Demand Migration System (DMS) [VPO05].

e Formal semantic verification from Indexical Lucid through Objective Lucid.
e Placement of hybrid nodes into DFGs.

e Security.

e Trial C compiler with JNI.

e Fully Explore Array Properties.

e Genuine imperative compilers in GICF.

e Introduction functional language compilers.

e Visualization and control of communication patterns and load balancing.

e Target Host Compilation.

e Java wrapper for the DFG Editor of Yimin Ding.

165

7.1 Formal Verification of Semantic Rules and the

GIPSY Type System

One needs to formally conduct verification proofs of the semantic rules from Indexical
Lucid to Objective Lucid in PVS or Isabelle, so this project can be undertaken in
the near future and the work on it has already began. Specifically, a relation to the
semantic of objects and Java’s operational semantics has to be made. Likewise, the

semantics of the newly introduced GIPSY type system has to be formally defined.

7.2 Dealing with Data Flow Graphs in Hybrid Pro-
gramming

This thesis did not deal with the way on how to augment DFGAnalyzer and DFGGenerator
to support hybrid GIPSY programs. This can be addressed by adding an unexpand-
able imperative DFG node to the graph. To make it more useful, i.e. expandable and
so it’s possible to generate the GIPSY code off it or reverse it, would require having
the genuine compilers as in Section for imperative languages, which is far from

trivial.

7.3 Security

Security is a substantial concern in distributed computing. The great flexibility pro-
vided by embedded Java in JLucid (and later in Objective Lucid) can be misused
and be a source of security breaches or DDoS attacks (e.g., due to explicit oversyn-
chronization using Java’s synchronization primitives explicitly). Thus, the follow-up
work in this direction would include malicious code detection in embedding and dis-
tributing as well as explicit synchronization points so that there are no deadlocks and
DDoS potential is reduced. This concern touches the compiler (GIPC), the Generator-
Worker architecture, the GIPSY Server, and the GIPSY Screen Saver components of
the GIPSY system.

166

7.4 Implementation of the C Compiler in GICF

An methodology of implementing a C compiler, and therefore, C CPs and STs has
been devised, but never implemented, so in the future a C compiler will be imple-
mented as a part of GICF with the JNI [Ste05].

7.5 Fully Explore Array Properties

The arrays in JLucid, Objective Lucid, and their generalization in GICF requries
further exploration and formalization and mapping of the GIPSY arrays to their

native equivalents.

7.6 Genuine Imperative and Functional Language

Compilers

Future work in this area is to focus on writing our genuine compilers for the mentioned
imperative languages and extending support for more imperative and functional lan-

guages (e.g. LISP, Scheme, or Haskell) and make it as much automated as possible.

7.7 Visualization and Control of Communication

Patterns and Load Balancing

It is proposed to have a “3D editor” within RIPE’s DemandMonitor that will render
in 3D space the current communication patterns of a GIPSY program in execution
or replay it back and allow the user visually to redistribute demands if they go off
balance between workers. A kind of virtual 3D remote control with a mini expert
system, an input from which can be used to teach the planning, caching, and load-
balancing algorithms to perform efficiently next time a similar GIPSY application is

rumn.

167

7.8 Target Host Compilation

This has to do with enabling the GEE to deliver the ST source code around and
compile it on the target host instead of sending a pre-compiled version of the STs.
This is an experimental feature can be useful and dangerous and requires a lot of

research.

7.9 The GIPSY Screen Saver

This is a sample implementation of a worker, outlined in Section |3.3.3.4, would rep-
resent an application for a PC as a way to contribute to a GIPSY program execution.

Three sample implementations of screen saver workers exist one for Windows, one for
Linux and one for MacOS X.

7.10 The GIPSY Server

A so-called “GIPSY server” will be implemented to be able to serve intensional or oth-
erwise requests primarily through the HT'TP protocol, thus acting like a mini-GIPSY
intensional web server. It would accept request from remote clients via HT'TP or local
clients via command line and be the starting point of computation (an intensional
computation resource) available to all those who have no resources to set up GIPSY.
This is not duplicate any of the DMS [VP05] nor it is a part of RIPE, as it is primarily

non-interactive and runs on the background.

168

Bibliography

[AW76]

[AWT7]

[BddzzP*05]

[Ber05]

[BKU9S]

[BMO6]

Edward A. Ashcroft and William W. Wadge. Lucid - A Formal Sys-
tem for Writing and Proving Programs. volume 5. SIAM J. Comput.
no. 3, 1976.

Edward A. Ashcroft and William W. Wadge. Erratum: Lucid - A
Formal System for Writing and Proving Programs. volume 6(1):200.
SIAM J. Comput., 1977.

Brian Berliner, david d ‘zoo’” zuhn, Jeff Polk, Larry Jones, Derek R.
Price, Mark D. Baushke, and other authors. Concurrent Versions
System (CVS). Free Software Foundation, Inc., 1989-2005. http:

//www.nongnu.org/cvs/.

Stefan M. Bernsee. The DFT “a pied”: Mastering The Fourier
Transform in One Day. DSPdimension.com, 1999-2005. http:
//www.dspdimension.com/data/html/dftapied.html.

Gilbert Babin, Peter Kropf, and Herwig Unger. A Two-Level Com-
munication Protocol for a Web Operating System (WOS). In Proceed-

ings of IEEE Euromicro Workshop on Network Computing, Vasteras,
Sweden, pages 934-944. IEEE, 1998.

Fancois Bourdoncle and Stephan Merz. On the integration of the
functional programming, class-based object-oriented programming,
and multi-methods. Technical report, Centre de Mathemathiques
Appliquees, Ecole des Mines de Paris and Institut fur Informatik,
Technische Universitat Munchen, October 1996.

169

http://www.nongnu.org/cvs/
http://www.nongnu.org/cvs/
http://www.dspdimension.com/data/html/dftapied.html
http://www.dspdimension.com/data/html/dftapied.html

[Bor03]

[+ 04]

[Car47]

[Con05]

[CPO5]

[Dij65]

[Dij71]

[Din04]

[Dod96]

[Fla97]

[Fou05]

[Gar70]

Borland. Borland JBuilder X. Borland Software Corporation, 1997-
2003. http://www.borland.com/us/products/jbuilder/.

Eclipse contributors et al. Eclipse Platform. IBM, 2000-2004. http:
//www.eclipse.org/platform.

Rudolf Carnap. Meaning and Necessity: a Study in Semantics and
Modal Logic. University of Chicago Press, Chicago, USA, 1947.

Ant Project Contributors. Apache Ant. The Apache Software Foun-
dation, 2000-2005. http://ant.apache.org/.

Various Contributors and GNU Project. GNU Compiler Collection
(GCC). Free Software Foundation, Inc., 1988-2005. http://gcc.

gnu.org/onlinedocs/gcc/.

E.W. Dijkstra. Cooperating Sequential Processes. Technical report,
Technological University, Eidhoven, The Netherlands, 1965.

E.W. Dijkstra. Hierarchical ordering of sequential processes. pages
115-138. Acta Inf., 1971.

Yi Min Ding. Bi-directional Translation Between Data-Flow Graphs
and Lucid Programs in the GIPSY Environment. Master’s thesis, De-
partment of Computer Science and Software Engineering, Concordia
University, 2004.

Chris Dodd. Intensional Programmaing I, chapter Rank analysis in
the GLU compiler, pages 76-82. World Scientific, Singapore, 1996.

D. Flanagan. Java in a Nutshell. O’Reily & Associates, Inc., second
edition, 1997. ISBN 1-56592-262-X.

Apache Foundation. Apache Jakarta Tomcat. apache.org, 1999-2005.
http://jakarta.apache.org/tomcat/index.html.

Martin Gardner. The Fantastic Combinations of John Horton
Conway’s New Solitaire Game ‘Life’. pages 120-123. Scien-
tific American, October 1970. http://ddi.cs.uni-potsdam.

170

http://www.borland.com/us/products/jbuilder/
http://www.eclipse.org/platform
http://www.eclipse.org/platform
http://ant.apache.org/
http://gcc.gnu.org/onlinedocs/gcc/
http://gcc.gnu.org/onlinedocs/gcc/
http://jakarta.apache.org/tomcat/index.html
http://ddi.cs.uni-potsdam.de/HyFISCH/Produzieren/lis_projekt/proj_gamelife/ConwayScientificAmerican.htm

[GB04]

[Gin90)]

[GP99]

[Gre05]

[Gro01]

[Gro02a]

[Gro02b]

[Gro04]

[HJ02]

de/HyFISCH/Produzieren/lis_projekt/proj_gamelife/

ConwayScientificAmerican.htm|

Erich Gamma and Kent Beck. JUnit. Object Mentor, Inc., 2001-2004.
http://junit.org/.

Armando R. Gingras. Dining Philosophers Revisited. In SIGCSE
Bulletin, volume 22 No. 3, pages 21-28, September 1990.

Jean-Raymond Gagné and John Plaice. Demand-Driven Real-Time
Computing. World Scientific, September 1999.

Dale Green. Java Reflection API. Sun Microsystems, Inc., 2001-
2005. http://java.sun.com/docs/books/tutorial/reflect/
index.htmll

Peter Grogono. A BTEX2e Gallimaufry. Techniques, Tips, and Traps.
Department of Computer Science and Software Engineering, Con-
cordia University, March 2001. http://www.cse.concordia.ca/

~grogono/documentation.html.

Peter Grogono. Semantics of Programming Languages, COMP745
Course Notes. Department of Computer Science and Software Engi-

neering, Concordia University, 1996-2002.

Peter Grogono. GIPC Increments. Technical report, Department of

Computer Science and Software Engineering, Concordia University,
April 2002.

Peter Grogono. Intensional programming in Onyx. Technical report,
Department of Computer Science and Software Engineering, Concor-
dia University, April 2004.

Marieke Huisman and Bart Jacobs. Java Program Verification via a
Hoare Logic with Abrupt Termination. Technical report, Computing
Science Institute, University of Nijmegen, Nijmegen, The Nether-
lands, 2002. www.cs.ru.nl/B.Jacobs/PAPERS/FASEQO.ps.Z.

171

http://ddi.cs.uni-potsdam.de/HyFISCH/Produzieren/lis_projekt/proj_gamelife/ConwayScientificAmerican.htm
http://ddi.cs.uni-potsdam.de/HyFISCH/Produzieren/lis_projekt/proj_gamelife/ConwayScientificAmerican.htm
http://junit.org/
http://java.sun.com/docs/books/tutorial/reflect/index.html
http://java.sun.com/docs/books/tutorial/reflect/index.html
http://www.cse.concordia.ca/~grogono/documentation.html
http://www.cse.concordia.ca/~grogono/documentation.html
www.cs.ru.nl/B.Jacobs/PAPERS/FASE00.ps.Z

[JA03)]

[JD96]

[JDA97]

[Kri59]
[Kri63]

[LGP03]

[Lou97]

[Lu04]

[Mam05]

[MCSNO5]

Harry F. Jordan and Gita Alaghband. Fundamentals of Parallel Pro-
cessing. Pearson Education, Inc., 2003. ISBN 0-13-901158-7.

Raganswamy Jagannathan and Chris Dodd. GLU programmer’s
guide. Technical report, SRI International, Menlo Park, California,
1996.

Raganswamy Jagannathan, Chris Dodd, and Iskender Agi. GLU: A
high-level system for granular data-parallel programming. In Con-

currency: Practice and Fxperience, volume 1, pages 63-83, 1997.
Saul A. Kripke. A Completeness Theorem in Modal Logic. 1959.
Saul A. Kripke. Semantical Considerations on Modal Logic. 1963.

Bo Lu, Peter Grogono, and Joey Paquet. Distributed execution
of multidimensional programming languages. In Proceedings 15th
IASTED International Conference on Parallel and Distributed Com-
puting and Systems (PDCS 2003), volume 1, pages 284-289. Inter-
national Association of Science and Technology for Development,
November 2003.

Kenneth C. Louden. Compiler Construction: Principles and Practice.
PWS Publishing Company, 1997. ISBN 0-564-93972-4.

Bo Lu. Dewveloping the Distributed Component of a Framework for
Processing Intentional Programming Languages. PhD thesis, Depart-
ment of Computer Science and Software Engineering, Concordia Uni-
versity, March 2004.

Qusay H. Mamoud. Getting Started With JavaSpaces Technology:
Beyond Conventional Distributed Programming Paradigms. Sun Mi-
crosystems, Inc., July 2005. http://java.sun.com/developer/

technicalArticles/tools/JavaSpaces/.

Serguei Mokhov, Ian Clement, Stephen Sinclair, and Dimitrios Nico-

lacopoulos. Modular Audio Recognition Framework. Department of

172

http://java.sun.com/developer/technicalArticles/tools/JavaSpaces/
http://java.sun.com/developer/technicalArticles/tools/JavaSpaces/

[Mic04]

[MicObal

[Mic0O5b]

[Mic05¢]

[Moe04]

[Mok03a]

[Mok03b]

[Mok05a

[MokO05b]

IMPO05a]

Computer Science and Software Engineering, Concordia University,
2002-2005. http://marf.sf.net.

Sun Microsystems. NetBeans 4.0. Sun Microsystems, Inc., December

2004. http://www.netbeans.org.

Sun Microsystems. Java Serviet Technology. Sun Microsystems, Inc.,

1994-2005. http://java.sun.com/products/servlets.

Sun Microsystems. The Java Website. Sun Microsystems, Inc., 1994-
2005. <http://java.sun.com>.

Sun Microsystems. JavaServer Pages Technology. Sun Microsystems,

Inc., 2001-2005. http://java.sun.com/products/jsp/.

Anders Moeller. Program Verification with Hoare Logic. Tech-
nical report, University of Aarhus, 2004. http://www.brics.dk/
~amoeller/talks/hoare.pdf.

Serguei Mokhov. GIPSY: CVS Service on Newton, A Crush Guide.
Department of Computer Science and Software Engineering, Concor-
dia University, June 2003.

Serguei Mokhov. Newton: Basic Security. Department of Computer

Science and Software Engineering, Concordia University, June 2003.

Serguei Mokhov. Makefile Tutorial. Department of Computer Science
and Software Engineering, Concordia University, 2003-2005.

Serguei Mokhov. Naming € Coding Conventions. Department of
Computer Science and Software Engineering, Concordia University,
2003-2005.

Serguei Mokhov and Joey Paquet. General Imperative Compiler
Framework within the GIPSY. In Proceedings of PLC2005, Las Ve-
gas, Nevada, USA, pages 36-42. CSREA Press, June 2005.

173

http://marf.sf.net
http://www.netbeans.org
http://java.sun.com/products/servlets
http://java.sun.com/products/jsp/
http://www.brics.dk/~amoeller/talks/hoare.pdf
http://www.brics.dk/~amoeller/talks/hoare.pdf

[MPO5b)

[MPGO5]

[MS01]

[Paq99]

[PGWO04]

[PK04]

[Pre93]

[Pro03a]

[Pro03b)

Serguei Mokhov and Joey Paquet. Objective Lucid — First Step in
Object-Oriented Intensional Programming in the GIPSY. In Proceed-
ings of PLC2005, Las Vegas, Nevada, USA, pages 22-28. CSREA
Press, June 2005.

Serguei Mokhov, Joey Paquet, and Peter Grogono. Towards JLucid,
Lucid with Embedded Java Functions in the GIPSY. In Proceedings
of PLC2005, Las Vegas, Nevada, USA, pages 15-21. CSREA Press,
June 2005.

Brian McNamara and Yannis Smaragdakis. Functional Programming
in C++ using the FC++ Library. In SIGPLAN Notices, volume
36(4), pages 25-30, 2001.

Joey Paquet. Scientific Intensional Programming. PhD thesis, De-
partment of Computer Science, Laval University, Sainte-Foy, Canada,
1999.

Joey Paquet, Peter Grogono, and Ai Hua Wu. Towards a Framework
for the General Intensional Programming Compiler in the GIPSY.
In 19th Annual ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA 2004). Vancouver,
Canada. ACM, October 2004.

Nikolaos Papaspyrou and loannis T. Kassios. GLU# embedded in
C-++: a marriage between multidimensional and object-oriented pro-
gramming. In Softw., Pract. Ezper., volume 34(7), pages 609-630,
2004.

William H. Press. Numerical Recipes in C. Cambridge University
Press. Cambridge, UK., second edition, 1993.

David K. Probst. Cyclic Reduction. Concordia University, Montreal,
Quebec, Canada, February 2003.

David K. Probst. The Principle Of Least Bandwidth. Commentary
from the HEC. Concordia University, Montreal, Quebec, Canada,
February 2003.

174

[Pro03c]

[PWO5]

[Ren02]

[RGO5a)]

[RGO5D)]

[Ron94|

[SMO02]

[SMSPO0]

STOg]

David K. Probst. The Programmability Metric. Commentary from
the HEC. Concordia University, Montreal, Quebec, Canada, February
2003.

Joey Paquet and Ai Hua Wu. GIPSY — A Platform for the Inves-
tigation on Intensional Programming Languages. In Proceedings of
PLC2005, Las Vegas, Nevada, USA, pages 8-14. CSREA Press, June
2005.

Chun Lei Ren. General Intensional Programming Compiler (GIPC)
in the GIPSY. Master’s thesis, Department of Computer Science and

Software Engineering, Concordia University, 2002.

The GIPSY Research and Development Group. The GIPSY Project.
Department of Computer Science and Software Engineering, Con-

cordia University, 2002-2005. http://newton.cs.concordia.ca/
~gipsy/.

The GIPSY Research and Development Group. The GIPSYwiki:
Online GIPSY collaboration platform. Department of Computer Sci-
ence and Software Engineering, Concordia University, 2005. http:

//newton.cs.concordia.ca/~gipsy/gipsywikil

Panagiotis Rondogiannis. Higher-Order Functional Languages and
Intensional Logic. PhD thesis, Department of Computer Science,

University of Victoria, Victoria, Canada, 1994.

Yannis Smaragdakis and Brian McNamara. FC++: Functional tools
for object-oriented tasks. In Softw., Pract. Exper., volume 32(10),
pages 1015-1033, 2002.

Richard Stallman, Roland McGrath, Paul Smith, and GNU Project.
GNU Make. Free Software Foundation, Inc., 1997-2000. http://

www . gnu.org/software/make/.

David B. Skillicorn and Domenico Talia. Models and Languages for
Parallel Computation, volume 30, No. 2 of ACM Computing Surveys.

175

http://newton.cs.concordia.ca/~gipsy/
http://newton.cs.concordia.ca/~gipsy/
http://newton.cs.concordia.ca/~gipsy/gipsywiki
http://newton.cs.concordia.ca/~gipsy/gipsywiki
http://www.gnu.org/software/make/
http://www.gnu.org/software/make/

[Ste05]

[Tao04]

[VC05]

[VPO5]

[WAPO5]

[WPO5]

[WPG03]

[WSoafaotw05]

ACM, Inc., June 1998. http://www.ece.cmu.edu/~ece767/papers/
skillicorn.pdf.

Beth Sterns. The Java Native Interface (JNI). Sun Microsystems,
Inc., 2001-2005. http://java.sun.com/docs/books/tutorial/

nativel.1l/index.htmll

Lei Tao. Warehouse and Garbage Collection in the GIPSY Environ-
ment. Master’s thesis, Department of Computer Science and Software

Engineering, Concordia University, 2004.

Sreenivasa Viswanadha and Contributors. Java Compiler Compiler
(JavaCC) - The Java Parser Generator. java.net, 2001-2005. https:

//javacc.dev.java.net/.

Emil Vassev and Joey Paquet. A Generic Framework for Migrating
Demands in the GIPSY’s Demand-Driven Execution Engine. In Pro-
ceedings of PLC2005, Las Vegas, Nevada, USA, pages 29-35. CSREA
Press, June 2005.

Kaiyu Wan, Vasu Alagar, and Joey Paquet. Lucx: Lucid Enriched
with Context. In Proceedings of PLC2005, Las Vegas, Nevada, USA,
pages 48-14. CSREA Press, June 2005.

Ai Hua Wu and Joey Paquet. Object-Oriented Intensional Program-
ming in the GIPSY: Preliminary Investigations. In Proceedings of
PLC2005, Las Vegas, Nevada, USA, pages 43-47. CSREA Press,
June 2005.

Ai Hua Wu, Joey Paquet, and Peter Grogono. Design of a Compiler
Framework in the GIPSY System. In Proceedings 15th IASTED In-
ternational Conference on Parallel and Distributed Computing and
Systems (PDCS 2003), volume 1, pages 320-328. International Asso-

ciation of Science and Technology for Development, November 2003.

Jimmy Wales, Larry Sanger, and other authors from all over the
world. Wikipedia: The Free Encyclopedia. Wikimedia Foundation,
Inc., 2001-2005. http://wikipedia.org.

176

http://www.ece.cmu.edu/~ece767/papers/skillicorn.pdf
http://www.ece.cmu.edu/~ece767/papers/skillicorn.pdf
http://java.sun.com/docs/books/tutorial/native1.1/index.html
http://java.sun.com/docs/books/tutorial/native1.1/index.html
https://javacc.dev.java.net/
https://javacc.dev.java.net/
http://wikipedia.org

[Wu02] Ai Hua Wu. Semantic Checking and Translation in the GIPSY. Mas-
ter’s thesis, Department of Computer Science and Software Engineer-

ing, Concordia University, 2002.

177

Appendix A

Definitions and Abbreviations

A.1 Abbreviations

e AST - Abstract Syntax Tree

e COM - Component Object Model

e CORBA - Common Object Requester Broker Architecture

e CLP - Cluster-Level Parallelism

e CP - Communication Procedure, Section

e CVS - Concurrent Versions System

e DCOM - Distributed COM

e DDoS - Distributed Denial of Service (attack).

e FFT - Fast Fourier Transform

e FTP - File Transfer Protocol

e DPR - Demand Propagation Resource, Section [2.5.4.1] [RG05a, PW05]
e GEE - General Eduction Engine

e GEER - GEE Resources, Section

e GIPC - General Intensional Program Compiler, Figure [RGO5al, PWO05]

178

GIPL - General Intensional Programming Language, [Paq99, RG05al, PWO05]
GIPSY - General Intensional Programming System, [RG05al, PWO05]

GLU - Granular Lucid, [JD96, [JDA9T, [Paq99]

HTTP - Hyper-Text Transfer Protocol

IDP - Intensional Demand Propagator, Section [3.3.3.4] [RG05al, PWO05)

IDS - Intensional Data-dependency Structure

IP - Intensional Programming

IPL - Intensional Programming Language (e.g. GIPL, GLU, Lucid, Indexical
Lucid, JLucid, Tensor Lucid, Objective Lucid, Onyx |Gro04])

IVW - Intensional Value Warehouse, Section [3.3.3.4] [RG05a, PWO7)
JDK - Java Developer’s Kit

JNI - Java Native Interface

JRE - Java Runtime Environment

JSSE - Java Secure Socket Extension

MARF - Modular Audio Recognition Framework [MCSNO5]
MPT - Message Passing Interface

NCP - Native Communication Procedure

NST - Native Sequential Thread

NUMA - Non-Uniform Memory Access

PVM - Parallel Virtual Memory System

RFE - Ripe Function Executor, Section [3.3.3.4] [RG05al [PW05]
RMI - Remote Method Invocation

RPC - Remote Procedure Call

179

SIPL - Specific IPL (e.g. Indexical Lucid, JLucid, Tensor Lucid, Objective
Lucid, Onyx)

SLP - Stream-Level Parallelism

ST - Sequential Thread, Section [3.3.3.1
TLP - Thread-Level Parallelism

TTS - Time To Solution

UMA - Uniform Memory Access

URI - Unified Resource Indentifier

URL - Unified Resource Locatior

180

Appendix B

Sequential Thread and
Communication Procedure

Interfaces

In this section the actual definitions of the CP and ST interfaces, an example of a

generated wrapper class and a Worker are presented.

B.1 Sequential Thread Interface

See Figure [80]

B.2 Communication Procedure Interface

See Figure [81]

B.3 Generated Sequential Thread Wrapper Class

This is a more complete version of the generated wrapper class for the code in Fig-

ure 231

181

package gipsy.interfaces;

import java.io.Serializable;
import java.lang.reflect.Method;

/%%

* <p>Sequential Thread represents a piece work to be done.

* Has to extend Serializable for RMI, CORBA, COM+, Jini to work.

* Runnable needed to run it in a separate thread.</p>

*

* $Id: ISequentialThread.java,v 1.13 2005/09/12 01:24:38 mokhov Exp $
*

* @version $Revision: 1.13 §

* Qauthor Serguei Mokhov, mokhov@cs.concordia.ca

* @since Inception

*/
public interface ISequentialThread
extends Runnable, Serializable

{
/%%
* Work-piece to be done.
* Q@return WorkResult container
*/
public WorkResult work();

public WorkResult getWorkResult();
public void setMethod(Method poSTMethod) ;
}

// EQF

Figure 80: Sequential Thread Interface.

182

package gipsy.interfaces;
import gipsy.lang.GIPSYType;
import java.io.Serializable;

/%%
* <p>CommunicationProcedure represents the means of delivery of sequential threads.</p>
* $Id: ICommunicationProcedure.java,v 1.11 2005/10/11 08:34:11 mokhov Exp $
* @version $Revision: 1.11 §
* Qauthor Serguei Mokhov, mokhov@cs.concordia.ca
* @since Inception
* Q@see gipsy.interfaces.SequentialThread
*/
public interface ICommunicationProcedure
extends Serializable

{
public GIPSYType getReturnType();
public GIPSYType getParamType(final int piParamNumber) ;
public GIPSYTypel[] getParamTypes();
public void setReturnType(GIPSYType poType);
public void setParamType(final int piParamNumber, GIPSYType poType);
public void setParamTypes(GIPSYTypel[] paoTypes);
public GIPSYType getParamType(String pstrLexeme) ;
public GIPSYType getParamType(String pstrLexeme, String pstrID);
public int getParamListSize();
/*%
* Perform any initialization actions required.
* Q@return status object of the result of send operation.
* Qthrows CommunicationException in case of error
*/
public CommunicationStatus init()
throws CommunicationException;
/**
* Open a connection; whatever that means for a given protocol.
* Q@return status object of the result of send operation.
* Q@throws CommunicationException in case of error
*/
public CommunicationStatus open()
throws CommunicationException;
/*%
* Close a connection; whatever that means for a given protocol.
* Qreturn status object of the result of send operation.
* @throws CommunicationException in case of error
*/
public CommunicationStatus close()
throws CommunicationException;
/**
* Defines the means of sending data. Should be overridden by
* a concrete implementation, such as JINI, COM, CORBA, etc.
* Q@return status object of the result of send operation.
* Q@throws CommunicationException in case of error
*/
public CommunicationStatus send()
throws CommunicationException;
/**
* Defines the means of receiving data. Should be overridden by
* a concrete implementation, such as JINI, COM, CORBA, etc.
* Q@return status object of the result of receive operation.
* Q@throws CommunicationException in case of error
*/
public CommunicationStatus receive()
throws CommunicationException;
}

Figure 81: Communication Procedure Interface.

183

import java.util.Hashtable;

import java.util.Vector;

public class <filename>_<machine_name>_<timestamp>
implements gipsy.interfaces.ISequentialThread
{

private OriginalSourceCodeInfo oOriginalSourceCodelnfo;

/**
* Inner class with original source code information

*/

public class OriginalSourceCodelInfo

{

/%%
* For debugging / monitoring; generated statically
*/
private String strOriginalSource =

"int getN(int piDimension)" +
Il{u +
" if (piDimension <= 0)" +
" return get42();" +
" else" +
" return getN(piDimension - 1) + 1;" +
ll}ll +
"ot
"int get42()" +
II{!I +
" return 42;" +

II}H;

/**
* Mapping to original source code position for error reporting
*/

private Hashtable oLineNumbers = new Hashtable();

/%%

* Body is filled in by the preprocessor statically
*/

public OriginalSourceCodeInfo()

{

Vector int_getN_int_piDimension = new Vector();

// Start line and Length in lines
int_getN_int_piDimension.add(new Integer(3));

int_getN_int_piDimension.add(new Integer(7));
this.oLineNumbers.put

(

"int getN(int piDimension)",

184

int_getN_int_piDimension

)

Vector int_get42 = new Vector();
int_get42.add(new Integer(11));
int_get42.add(new Integer(4));

this.oLineNumbers.put
(
"int get42()",
int_get42
)5

public Hashtable getLineNumbersHash()
{

return this.oLineNumbers;

public int getLineNumberForFunction(String pstrFunctionSignature)
{
}

public int getFunctionSourcelLength(String pstrFunctionSignature)
{
}

public String toString()
{
}

* Constructor

public <filename>_<machine_name>_<timestamp>()

this.oOriginalSourceCodeInfo = new OriginalSourceCodelInfo();

public String toString()

return this.oOriginalSourceCodeInfo.toString();

* Implementation of the SequentialThread interface

// Body generated by the compiler

public void run()

185

Payload oPayload = new Payload();
oPayload.add("d", new Integer(42));

work (oPayload) ;

// Body generated by the compiler statically
public WorkResult work(Payload poPayload)

{
WorkResult oWorkresult = new WorkResult();
oWorkresult.add(getN(poPayload.getVaueOf ("d")));
return oWorkResult;

}

/%

public static int getN(int piDimension)

{
if (piDimension <= 0)
return get42(Q);
else
return getN(piDimension - 1) + 1;
¥

public static int get42()
{

return 42;

186

B.4 Sample Worker’s Implementation

package gipsy.wrappers;

//import gipsy.interfaces.SequentialThread;
import gipsy.interfaces.ICommunicationProcedure;

import gipsy.util.*;

import marf.util.BaseThread;

/%%
* Worker Class Definition
*
* $Revision: 1.11 $ by $Author: mokhov $ on $Date: 2004/11/06 00:50:09 $
*
* Q@version $Revision: 1.11 §
* Qauthor Serguei Mokhov
*/
public class Worker extends BaseThread

{

/**
* Aggregation of sequential threads.
*/

private Thread[] aoSequentialThreads = null;

/%%
* Set of available communication procedures for different protocols.
*/

private ICommunicationProcedure[] aoCommuncationProcedures = null;

/**
* Default settings.
*/

public Worker ()

{

super () ;

/**
* Generate a demand.
*/
public void demand()
{
}

/**
* Receive a result on a demand.
*/

public void receive()

{

187

/**

* Perform computation.

*/
public void work() throws GIPSYException
{
try
{
for(int i = 0; i < this.aoSequentialThreads.length; i++)
this.aoSequentialThreads[i].start();
}
catch(NullPointerException e)
{
throw new GIPSYException
(
"Worker TID=" + getTID() +
" did not have any sequential threads to work on."
)5
}
}
/*%

* Stops worker thread.
*/
public void stopWorker ()
{
}

/**

* From Runnable interface, for TLP

*/
public void run()
{
try
{
work();
}
catch(GIPSYException e)
{
System.err.println(e);
}
}
}
// EOF

188

Appendix C

Architectural Module Layout

C.1 GIPSY Java Packages and Directory Struc-

ture

Normally, a directory structure of a Java project corresponds to the package naming;
thus, the packages are named and declared after the directories. By the means of
Java packages, all the classes within the project and external applications “know”
how to identify and import the classes they intend to use. A fully-qualified class
name includes all the packages starting from the “root” (the top-level directory of
the hierarchy) all the way up to the class itself, separated by a dot. The GIPSY Java
packages breakdown as of this writing corresponds to the Figure [82]

The logical breakdown was performed in accordance with the original conceptual
design primarily produced by Joey Paquet and further by Aihua Wu and Bo Lu, has
been the primary source of the hierarchy plus any exceptions and extensions that
various team members come up with or have been forced to during implementation
were taken into account.

The basic structure is as follows. The top root hierarchy is logically the gipsy
package. The major non-utility packages under it, which come from the conceptual
design, are GIPC, GEE, and RIPE. The major utility packages under gipsy that are
not present in the conceptual design are: interfaces for most intermodule commu-
nication; wrappers for object wrapping; storage for the serializable interface classes;
util for most common exceptions and utility modules (e.g. fast linked list [Din04]);

and tests for the Unit and Regression Testing Suites.

189

gipsy

GIPC

Preprocessing

intensional
SIPL

SenericTranslator

SIPL

Indexicallucid

JLucid

ObjectivelLucid

TensorLucid
SLu
Onysx

CommunicationPro
cedureGenearator

imperative

SequentialThre=a
dGenerator

Jdava

Perl

Fython

Fortran

LEEREE

Figure 82: GIPSY Java Packages Hierarchy.

SEE

190

IDF
DemandGenerator
rri
threaded
[ty

Garbage Collector

Warehouse

DF G

DF GAnalyzear

DF GGeneratar

RIFE lang

editors

DF GEditor

“WebEditor

RuntimeSystem

General GIPSY
packages

interfaces wrappers
storage util
tests

Under the GIPC package the major modules (to be discussed later in this chapter)
include Preprocessing for general GIPSY program preprocessing, intensional and
imperative language compilers and their necessary followers (GenericTranslator
for the former and CommunicationProcedureGenerator and SequentialThreadGenerator
for the latter). Then the DFG package for Lucid-to-data-flow-graph and back genera-
tion.

The GEE’s main packages includes IDP for demand propagation and IVW for caching
and garbage collection.

Under RIPE we have interactive run-time editing and monitoring modules that
include textual editor, DFG editor, and the web-based editor.

C.2 GIPSY Modules Packaging

GIPSY’s major and minor modules are packaged into a set of runnable . jar files and
distributed with wrapper scripts to be either used as ordinary command line tools
as a part of GIPSY Development Kit or the WebEditor web application. Different
.jar files include a subset of all GIPSY modules depending on the need, e.g. GIPC
includes GIPC-related classes plus GEE as we allow to optionally invoke GEE after
successful compilation. RIPE, except itself, needs both GIPC and GEE, whereas
GEE does not at all require presence of any other module. Thus, the GIPSY binary
distribution is broken down into five major . jar files (notice, that these files do not

include any external libraries GIPSY references):

e gipsy. jar simply includes almost all of GIPSY.

e gipc.jar should be used/distributed as a part of so-called “GIPSY Develop-
ment Kit” if someone wants to be able to compile intensional programs and

optionally run them.

e gee.jar represents GIPSY’s non-interactive run-time environment, the GEE.
This can be distributed alone to the hosts that only wish to run pre-compiled

GIPSY programs and have no development environment set up.

e ripe.jar includes most of the interactive programming environment of the

GIPSY along with GIPC and GEE.

191

Table 2: Correspondence of the GIPSY . jar files and the modules.
’ Module / Jar ‘ gipsy.jar | ripe.jar | gipc.jar | gee. jar | Regression. jar

GIPSY *
GIPC * * * *

RIPE * *

GEE * * * * *
DFG/GIPC * * * *
DFGEditor * *

Regression *
Interfaces * * * * *
WebEditor
gipsy.lang * * * * *
gipsy.wrappers * * * * *
gipsy.util * * * * *
gipsy.storage * * * * *

e Regression. jar includes the Regression Testing application plus all of GIPC

and GEE as the most exercised modules for testing as of this writing.

The Table [2| shows correspondence between the variety of modules and their con-

tainment within a . jar file.

192

Appendix D

Grammar Generation Scripts for
JLucid and Objective Lucid

D.1 jlucid.sh

#!/bin/bash

strDate=‘date‘

cat <<GRAMMAR_TAIL

/%
* Generated by jlucid.sh on $strDate
*/
/%%
* @since $strDate
*/
void embed() #EMBED : {}
{
//<EMBED> <LPAREN> url() E() (<COMMA> E())* <RPAREN> <SEMICOLON>
<EMBED> <LPAREN> url() <COMMA> <STRING_LITERAL> (<COMMA> E())* <RPAREN> <SEMICOLON>
}
/%%

* @since $strDate

*/
void array() #ARRAY : {}
{
<LBRACKET> E() (<COMMA> E())* <RBRACKET>
}
/%%

* URL -> CHARACTER_LITERAL | STRING_LITERAL.

193

* @since $strDate

*/
void url() #URL :
{
Token oToken;
}
{
(
oToken = <CHARACTER_LITERAL>
| oToken = <STRING_LITERAL>
)
{
jjtThis.setImage (oToken.image) ;
}
}
// EOF

GRAMMAR_TAIL

EOF

D.2 JGIPL.sh

#!/bin/bash

cat ../../GIPL/GIPL.jjt | \
Filter out unneeded stuff
grep -v ’// EOF’ | \
#grep -v ’import gipsy.GIPC.intensional.SimpleNode’ | \
Fix package
sed ’s/intensional\.GIPL/intensional\.SIPL\.JLucid/g’ | \
JLucid GIPL
sed ’s/GIPL/JGIPL/’ | \
sed ’s/\/\/{EXTEND-E}/\/\/{EXTEND-E}\n\t\t| embed()/’ | \
sed ’s/\/\/{EXTEND-FACTOR}/\/\/{EXTEND-FACTORM\n\t| array()/’ | \
sed ’s/<WHERE: "where">/<WHERE: "where">\n\t| <EMBED: "embed">/g’ \
> JGIPL.jjt

./jlucid.sh >> JGIPL.jjt

EOF

D.3 JIndexicallLucid.sh

#!/bin/bash

cat ../../SIPL/Indexicallucid/Indexicallucid.jjt | \
Filter out unneeded stuff

194

grep -v ’// EOF’ | \

#grep -v ’import gipsy.GIPC.intensional.SimpleNode’ | \

Fix package

sed ’s/intensional\.SIPL\.IndexicalLucid/intensional\.SIPL\.JLucid/g’> | \
JLucid Indexical

sed ’s/Indexicallucid/JIndexicallucid/’ | \

sed ’s/\/\/{EXTEND-E}/\/\/{EXTEND-E}\n\t\t| embed()/’> | \

sed ’s/\/\/{EXTEND-FACTOR}/\/\/{EXTEND-FACTORMN\n\t| array()/’ | \

sed ’s/<WHERE: "where">/<WHERE: "where">\n\t| <EMBED: "embed">/g’ \

> JIndexicalLucid. jjt

./jlucid.sh >> JIndexicallucid.jjt

EOF

D.4 0ObjectiveGIPL.sh

#!/bin/bash

cat JGIPL.jjt | \
Filter out unneeded stuff
grep -v ’// EOF’ | \
Fix package
sed ’s/intensional\.SIPL\.JLucid/intensional\.SIPL\.ObjectiveLucid/g’ | \
ObjectiveLucid GIPL
sed ’s/JGIPL/ObjectiveGIPL/’ | \
sed ’s/\/\/{EXTEND-E1}/\/\/{EXTEND-E1}\n\t\t\t| (<DOT> ID()) #OBJREF E1()/’ \
> ObjectiveGIPL.jjt

EOF

D.5 O0ObjectivelndexicalLucid.sh

#!/bin/bash

cat JIndexicallLucid.jjt | \
Filter out unneeded stuff
grep -v ’// EOF’ | \
Fix package
sed ’s/intensional\.SIPL\.JLucid/intensional\.SIPL\.ObjectiveLucid/g’> | \
ObjectiveLucid Indexical
sed ’s/JIndexicallucid/ObjectiveIndexicallucid/’ | \
sed ’s/\/\/{EXTEND-E1}/\/\/{EXTEND-E1F\n\t\t\t| (<DOT> ID()) #OBJREF E1()/’ \
> ObjectiveIndexicalLucid.jjt

EOF

195

Index

.NET Remoting, 30

API

AbstractSyntaxTree, 91, 99, 104, 120
addInvalidSegmentName(), 80
addValidSegmentName(), 80
bool, 63
boolean, 63
Car, 152
CCompiler, 66
Class, 35, 108
Class.getConstructors(), 35
Class.newlnstance(), 35
CodeSegment, 79, 91
CommunicationException, 87
CommunicationProcedureGenerator, 78,
83, 85, 87, 182
CommunicationStats, 87
Constructor, 35
DemandDispatcher, 129
DemandDispatcherAgent, 129
DemandDispatcherException, 129
DemandGenerator, 129
DemandList, 129
DemandMonitor, 167
DFG, 182
DFGAnalyzer, 88, 91, 133, 166
DFGEditor, 115, 132

196

DFGException, 133

DFGGenerator, 38, 166

Dictionary, 91, 122-125

Dictionaryltem, 124

dimension, 63

doGet(), 126

doPost(), 126

double, 63

ElmperativeLanguages, 85, 135

ElntensionalLanguages, 85, 135

embed(), 44-47, 49, 51, 69, 81, 101-
103, 105

equals(), 76

Executor, 83, 93, 104, 120, 124, 129,
132

ExpandedThread Group, 124

Facet, 127

Float, 83

float, 63

FormatTag, 76, 78, 91, 104

Fun_Item, 99

GEE, 30, 93, 99, 115, 118, 119, 123—
127, 129, 180, 182

GEEException, 128, 129, 132

GEERGenerator, 91, 93, 97, 99

generateCommunicationProcedures(),
89

generateSequential Threads(), 89

GenericTranslator, 182

get42(), 81

getDeclaredMethods(), 35

getParameterTypes(), 35

getReturnType(), 35

GIPC, 79, 80, 85, 88, 91, 93, 98, 99,
105, 115-117, 119, 123-127, 129,
180, 182

GIPC.DFG.DFGAnalyzer, 133

GIPC.DFG.DFGGenerator, 133

GIPC.intensional. GenericTranslator, 85

GIPC.intesional.SimpleNode, 133

GIPCException, 122, 128, 133

GIPLCompiler, 91

GIPSY, 114, 123, 126

gipsy, 180

gipsy.GEE, 129

GIPSYArray, 104

GIPSYEmbed, 83, 105

GIPSYException, 128

GIPSYFunction, 84

GIPSYlIdentifier, 83

GIPSYObject, 104, 108

GIPSYOperator, 84

GIPSYProgram, 86, 93, 99, 100, 129

GIPSYType, 99

GIPSY Void, 83

Hashtable, 49

HttpServlet, 126

[CommunicationProcedure, 86, 87

[CommunicationProceduresEnum, 86

[Compiler, 88, 89, 91, 133

[DemandList, 129

197

IdentifierContext CodeGenerator, 91

IDP, 182

[ImperativeCompiler, 85, 88, 89

IIntensionalCompiler, 85, 88, 89

imperative, 182

ImperativeCompiler, 71, 89, 135

ImperativeNode, 85, 91, 93, 99, 104,
122

IndexicalLucidCompiler, 91

int, 63

Integer, 53, 83

intensional, 182

IntensionalCompiler, 88, 135

IntensionalCompiler.translate(), 85

interfaces, 180

IntesionalCompiler, 89

[SequentialThread, 86, 129

[SequentualThread, 86

[tem_in_Dict, 99

[ValueHouse, 132

IVW, 182

I[VWlnterface, 132

JarEntry, 105

JarInputStream, 105

JAVA, 76

java.lang, 83

java.lang.Error, 122

java.lang.Thread, 123

java.lang. ThreadGroup, 124

java.reflect.®; 35

java.util. Arrays, 124

java.util.Vector, 98, 122, 123, 125

JavaCommunicationGenerator, 101

JavaCompiler, 49, 67, 71, 85, 91, 97,
102-105

JavaSequential Thread Generator, 87, 101

JGIPLParser, 91

JIndexicalLucidParser, 91

JLucidCompiler, 91, 103, 105

JLucidParser, 91, 101

JLucidPreprocessor, 71, 80, 101, 105,
108

Lucid, 116, 117, 127

LUSException, 129

main(), 36

marf.nlp, 122

marf.Storage, 122

marf.Storage.StorageManager, 125

marf.util, 122

marf.util. Arrays, 124

marf.util. BaseThread, 123, 124

marf.util. Debug, 125

marf.util. Expanded Thread Group, 124

marf.util. FreeVector, 122

marf.util. Logger, 125

marf.util.OptionProcessor, 123

Method, 35

Nat32, 154

native, 36, 66

Node, 120, 122

NotImplementedException, 128

NullCommunicationProcedure, 87

Object, 76

Object.notify(), 32

Object.notifyAll(), 32

Object.wait(), 32

198

ObjectiveLucidCompiler, 91

ObjectiveLucidPreprocessor, 80, 108

Parallel TestCase, 137

ParseException, 122

Preprocessing, 182

Preprocessor, 71, 79-81, 83, 85, 91,
93, 97, 105, 108, 122

PreprocessorParser, 38

Regression, 37, 115, 116, 119, 123, 125,
127, 137

RIPE, 112, 114, 115, 132, 180, 182

RIPEException, 128

RMICommunicationProcedure, 87

run(), 37

Runnable, 86, 124

runTest(), 37

RuntimeException, 128

Semantic, 98

SemanticAnalyzer, 83, 91, 98, 99, 104,
120

Sequential TestCase, 137

Sequential ThreadGenerator, 78, 83, 85,
87, 129, 182

Sequential ThreadSourceGenerator, 78

Serializable, 86, 87

setUp(), 37

SimpleCharStream, 122

SimpleNode, 91, 120, 122, 133

storage, 180

storage.Dictionary, 98

storage.Dictionaryltem, 99

storage.Functionltem, 99

String, 63

string, 63 AST, 8, 37, 49, 61, 62, 74, 75, 78, 93, 97—

synchronized, 32 99, 104-106, 108, 120, 122, 163,
System.loadLibrary(), 67 169
tearDown(), 37

Background, 5

Build System, 39
Ant, 41
Eclipse, 41
JBuilder, 41
Makefiles, 39
NetBeans, 41

Test, 37

TestCase, 37, 137
TestResult, 37
tests, 180
TestSuite, 37, 137
TextualEditor, 115
TokenMgrError, 122

toString(), 76, 83, 124 C, 1, 4, 8,19, 21, 22, 25, 36, 38, 66, 67,
translate(), 89 71, 74, 76, 85, 162
TranslationLexer, 85 C++, 1,9, 19-22, 66, 67, 71, 74, 76, 80,
TranslationParser, 85 85, 162
Translator, 85, 91 CLP, 24, 25
true, 59, 63 Command-Line Interfaces
TypeMap, 67, 104, 162 GEE, 118
util, 123, 180 GIPC, 116
void, 59, 63, 154 GIPSY, 114
WebEditor, 39, 126, 182 Regression, 119
Worker, 62, 87, 172 RIPE, 115
WorkResult, 87 Communication Procedure, 64, 65
WorkTask, 129 Interface, 172
wrap(), 104 Compilation Sequence
wrappers, 180 Java, 103
XLucidInterpreter, 129 JLucid, 102
Architecture Objective Lucid, 107
Directory Structure, 180 Compiler Frameworks, 21
GIPSY Java Packages, 180 context, 6
GIPSY Modules Packaging, 182 CORBA, 3, 27, 30, 66, 118, 169
Arrays CVS, 3, 38, 169
JLucid, 104
data types

199

matching Lucid and Java, 63
DCOM+, 3, 66, 118
Demand Dispatcher

Integration, 129
Design

Architectural, 70

Detailed, 70

External, 112

External Software Interfaces, 120

GEE, 129

GICF, 85

GIPC, 88

Internal, 70

JLucid, 101

Objective Lucid, 107

Semantic Analyzer, 98

User Interface, 112
DFG, 35, 75, 137, 163

Integration, 133
dimensions, 6
Dining Philosophers, 144
DMS, 30, 137, 168
DPR, 30, 169

GIPSY Program, 99

eduction, 21
GLU, 21
embed(), 44
implementation of, 105
Examples
Dining Philosophers, 144
FFT, 147
Game of Life, 158
Lucid, 18

Moving Car, 152
Natural Numbers Problem, 18
Prefix Sum, 139
The Hamming Problem, 18
Exceptions, 128
External Software Interfaces, 120
JavaCC API, 120
MARF Library API, 122
Servlets API, 126

Fast Fourier Transform, 147
FC++, 19, 20, 22
FEDORA CORE 2, 39, 138
FFT, 147, 149, 169
Files
*ipl, 137
.c, 36, 37, 66
.class, 36, 44, 46, 104, 105
.h, 36, 37, 66
.ipl, 116
Jjar, 70, 105, 114, 182, 183
Java, 44, 46, 104, 105
Jjt, 102
build.xml, 41
gee.jar, 182, 183
gipc.jar, 182, 183
GIPL.jjt, 75, 103
GIPSY .class, 114
gipsy.jar, 114, 137, 182, 183
GIPSY .jpx, 41
imperative/LANGUAGE, 135
IndexicalLucid.jjt, 103
IndexicalLucid.rul, 85

intensional /SIPL/LANGUAGE, 135

200

Java.jjt, 76 GIPSY Program, 99

nbproject.xml, 41 General Intensional Programming System,
PreprocessorParser.jjt, 81 23

README.dir, 41 GICF, 2, 4, 34, 43, 60, 61, 66, 6871, 74,

Regression.jar, 183
ripe.jar, 182, 183
src/tests/*, 137

81, 85, 86, 103, 106, 135, 136, 164,
165, 167
Binary Compatibility, 74

Format Tag, 76
Fortran, 1, 8, 21, 22, 71, 85

Frameworks

Design, 85
Dictionary, 78
Format Tag, 76

Compiler, 21

GICF, 71, 74, 85, 103
GIPC, 70, 74, 88
GIPSY Exceptions, 128
GIPSY Type System, 83

GEER Generator as a Linker, 97
Generalization Issues, 74
Imperative Stubs, 97
Introduction, 71

Multiple Intensional Parts, 97

IPLCF, 85 NCP Generator, 97

JUnit, 137 Sending Source Code Text, 78

MARF, 38 Type Processor, 97

RIPE, 132 GIPC, 2, 8, 22, 23, 25-28, 30, 33, 36, 37,
Free Java Functions, 103 42, 43, 60, 64, 66-68, 71, 75, 81,

JLucid, 103 88, 90, 92, 99, 108, 116, 120, 121,
FTP, 44, 169 123, 128, 136, 160, 166, 169, 182,

183

GEE, 8, 23, 25, 27-30, 32, 37, 42, 71, 74,
as a Meta Processor, 91

75, 78, 91, 97, 99, 104, 106, 108
114, 117-120, 123, 128-130, 136,
144, 160, 162, 163, 168, 169, 182,
183

Command-Line Interface, 118

Command-Line Interface, 116
Initial Conceptual Design, 25
Introduction, 25

Linker, 97

] Preprocessor, 79
Conceptual Design, 27

Design, 129
Integration, 129
Introduction, 27
GEER, 28, 30, 56, 62, 67, 75, 99, 108, 169

Sequence Diagram, 91
GIPL, 1, 6, 8, 14, 15, 18, 27, 38, 43, 48,
51, 53, 61, 69, 75, 88, 89, 91, 102,
117, 120, 137, 158, 170

201

Syntax, 14
GIPSY, 1-4, 8, 19-25, 27, 32, 33, 35-39,
41-43, 53, 54, 60, 62, 67-71, 74,
76, 77, 81, 83, 85, 87, 97, 106,
112-114, 120, 122-129, 135-139,
147, 160, 161, 166, 170, 181, 182
Command-Line Interface, 114
Compilation process, 65
GIPC Framework with Preprocessor,
7
Goals, 25
Introduction, 23
Original GIPC Framework, 76
Screen Saver, 168
Security, 166
Server, 168
Structure, 24
Type System, 62
Types, 83
Web Front-End, 112
Web Portal, 112
WebEditor, 112
GIPSY Exceptions, 128
GIPSY Program, 99
Compiled, 99
GEER, 99
Intefacing GIPC and GEE, 99
Segments, 80
GIPSY Type System, 83
GLU, 1, 8,9, 19-21, 29, 30, 36, 44, 64, 71,
135, 170
eduction, 21
GLU#, 9, 19-22

GNU, 39, 41

Grammar
Generation, JLucid, 102
Generation, Objective Lucid, 107
Preprocessor, 81, 82

Haskell, 20, 29, 158, 167
HTTP, 44, 170
hybrid
JLucid, 51
Hybrid Programming, 19

immutable, 81
Implementation, 70
Architectural Design, 126
Directory Structure, 180
GIPSY Java Packages, 180
GIPSY Modules Packaging, 182
JLucid, 101
Objective Lucid, 106
Unit Integration, 126
Indexical Lucid, 1, 6, 8, 9, 11, 14, 15, 18,
23, 27, 38, 43, 45, 51, 53, 69, 75,
91, 101, 102, 137, 158, 159, 165,
166, 170, 171
asa, 11
fby, 10, 11
first, 11
next, 11
upon, 11
wvr, 11
Integration
Demand Dispatcher, 129
DFG, 133
Garbage Collection, 132

202

GEE, 129 Java Compiler

Intensional Value Warehouse, 132 JLucid, 103
Jini, 129 Jini, 3, 27, 30, 31, 66, 118, 129, 131
Semantic Analyzer, 98 Integration, 129
Intensional JLucid, 1, 2, 4, 8, 15, 38, 43, 44, 49, 51-54,
Programming, 5 56, 59, 60, 62, 68-71, 81, 91, 99,
intensional 101-105, 107-109, 135-137, 139,
logic, 6 140, 143, 147, 162, 164, 166, 167,
operators, 6 170, 171, 184
Intensional Programming, 5 Arrays, 104
Interfaces AST, 105
Communication Procedure, 172 Design, 101
Sequential Thread, 172 Dictionary, 105
Internal Design embed(), 105
GICF, 71 Examples — FFT, 147
GIPC, 70 Free Java Functions, 103
IPLCF, 85 Grammar Generation, 102
Introduction, 1 Implementation, 101
Contributions, 2 Introduction, 43
GICF, 71 Java Compiler, 103
GIPSY, 23 Non-Determinism, 44
JLucid, 43 Pseudo-Objectivism in, 53
Scope of the Thesis, 3 Purpose, 43
Structure of the Thesis, 4 Rationale, 43
Thesis Statement, 1 Semantics, 52
IPLCF, 70, 85, 87, 135 SIPL, 51
Isabelle, 166 Syntax, 51
Java, 1, 2, 4, 8, 19, 22, 25, 27, 29, 31, 32, INI, 36, 66, 167, 170
35, 36, 38, 43, 44, 47, 51, 53, 60, JRE, 32, 170
62, 63, 66, 67, 69, 71, 74, 80, 85, JSS.E’ 3L AT
JUnit, 37
86, 103, 104, 132, 133, 139, 149,
162, 164 Layout
Reflection, 29, 35 Directory Structure, 180

203

GIPSY Java Packages, 180

GIPSY Modules Packaging, 182
Libraries

MARF, 38, 112, 124, 147, 149, 170
LiNux, 39
LISP, 9, 29, 167
logic

Hoare, 15

intensional, 6

non-intensional, 6

temporal, 6

Lucx, 9, 15

Mac OS X, 39, 138
MARF

FFT, 147, 149
Methodology, 43
ML, 29
ML<, 19, 20
MPI, 31, 170

NetCDF, 30

Non-Determinism, 44

Lucid, 2, 6-9, 11, 12, 14, 18-21, 25, 32, NUMA, 170
42-44, 47, 52-54, 56, 58, 59, 61—

64, 68, 83, 108, 140, 147, 162, 170

Abstract Syntax, 14
Arrays as Objects, 109
Basic Operators, 10
Examples, 18

Family, 7

GLU, 64

History, 7

Indexical, 9, 23
Introduction, 7
JLucid, 43
Non-Determinism, 44
Objective, 53

Objects as Arrays, 109
and #, 12, 13
Pipelined Dataflows, 7
Semantics, 15

State of the Art, 19
Streams, 9

Tensor, 23

Objective Lucid, 53
AST, 108
Design, 107
Dictionary, 108
Examples — Moving Car, 152
Grammar Generation, 107
Implementation, 106
Introduction, 53
Object Instantiation, 107
Semantic Rules, 60
Semantics of, 56
Syntax, 56
The Dot-Notation, 56, 108
Onyx, 9, 81, 170, 171
Options
—all, 118, 119
—compile-only, 114
—corba, 118
—dcom, 118
—debug, 114, 115, 117-119
—dfg, 117

204

—dfg="<DFG EDITOR OPTIONS>", Perl, 1, 71, 74, 78, 80, 85

115 Prefix Sum, 139
—directory, 119 Preprocessor, 79
—disable-translate, 117 GIPC, 79
—gee, 117, 119 Grammar, 81
—gee="<GEE OPTIONS>’, 115 Problems
—gipc='<GIPC OPTIONS>’", 115 Dining Philosophers, 144
—gipl, 116, 119 FET, 147
—gipsy, 119 Game of Life, 158
—help, 114-116, 118, 119 Moving Car, 152
—indexical, 116, 119 Solving, 139
—jini, 118 PVS, 166
—jlucid, 117 Python, 1, 71, 74, 78, 80, 85

—objective, 117

RED HAT LiNUX 9, 39, 138
—parallel, 119 _

Regression

—regression='<REGRESSION OPTIONS>’)
15 Introduction, 136

Testing, 136
—rmi, 118 . . o
Regression Testing Application
—sequential, 119

—stdin, 116, 118
—threaded, 118
Results, 161

—translate, 117
RIPE, 23, 32-34, 39, 42, 123, 128, 132,
~txt="<TEXTUAL EDITOR OPTIONS>’,
133, 167, 168, 182

Command-Line Interface, 119

Regression Testing Suite, 137

115
Command-Line Interface, 115
—warnings-as-errors, 117)
Conceptual Design, 32
-G, 116 .
Introduction, 32
-3, 116

RML, 2, 3, 27, 29, 31, 66, 87, 99, 118, 129,
170
iQPC, 27, 65, 170

“h, 114-116, 118, 119
[FILENAMEI.gipsy [FILENAME2.gips
], 118
[FILENAME1.ipl [FILENAME?2.ip]] ...] Scheme, 29, 167
116 Segments
#<IMPERATIVELANG>, 80

Partial Lucid, 8 4 <INTENSIONALLANG>, 80

205

#C, 163 Implicit vs. Explicit, 32

#CPP, 80 in Distributed Environment, 31
#GIPL, 80 in Parallel Environment, 31
#INDEXICALLUCID, 80 Secure, 31
#JAVA, 80, 105, 163 Syntax
#JLUCID, 81, 105 GIPL, 14
#OBJECTIVELUCID, 81 JLucid, 51
#ONYX, 81 Objective Lucid, 56
#PERL, 80

TCP/IP, 65
#PYTHON, 80

Tensor Lucid, 1-4, 6, 8, 15, 23, 38, 43, 44,
53, 54, 58, 60, 63, 68-71, 75, 81,
102, 104, 106, 107, 110, 135-137,
152, 156, 157, 162, 164-167, 170,

#TENSORLUCID, 81
#funcdecl, 78, 80, 105
#typedecl, 78, 80, 108

Semantic Analyzer

. 171, 184
Design, 98 _
_ Testing, 136
Integration, 98
. Diff, 137
Sequential Thread, 64
Fedora Core 2, 138
Interface, 172
MacOS X, 138

Wrapper, 172
Sequentiality Problem, 12

side effect

Portability, 138
Red Had Linux 9, 138
Regression, 136

immutable, 81
Solaris 9, 138

SIPL, 51, 53, 61, 75, 88, 120, 135, 171

. Unit, 137
JLucid, 51
Windows 98SE/2000/XP, 138
SLP, 24, 25, 171
Thesis

SOLARIS 9, 39, 138
Stream, 24
hardware, 24
Lucid variable, 25
of Objects, 54

Random access to, 12

Contributions, 2

Scope, 3

Statement, 1

Structure, 4
TLP, 23-25, 171
Tools, 35

Ant, 41

bash, 102, 107

Synchronization, 31
Distributed vs. Parallel, 31

206

bc.exe, 3 nmake.exe, 3

bison, 38 ObjectiveGIPL.sh, 107, 186
CVS, 38 ObjectivelndexicalLucid.sh, 107, 186
diff, 137 perl, 3
Eclipse, 41 readmedir, 41
flex, 38 regression, 114, 137
g4+, 3 ripe, 114
gee, 3 Tomcat, 39
gee, 114 yace, 38
gipc, 114 TTS, 32, 171
gipsy, 114 Types, 83
gmake, 39
UMA, 171
Java, 35
. UNIx, 39, 41, 137
java, 37
: URI, 171
Java Reflection, 35
URL, 171

javac, 3, 36, 49, 75, 104
JavaCC, 37, 38, 81, 102, 103, 112 WebEditor, 112

javace, 75, 101, 120, 122 Winbows 98SE /2000/XP, 138
javah, 36, 66 Worker, 67

JBuilder, 41 Definition, 67

JGIPL.sh, 103, 185 Implementation, 178

JIndexicalLucid.sh, 103, 185

jlucid.sh, 103, 184

JNI, 36

JUnit, 3, 37, 137, 160

lefty, 115

lex, 38

make, 39, 41

make-test.sh, 41

Makefiles, 39

MARF, 38, 112, 122, 124, 147, 149,
170

NetBeans, 41

207

	List of Figures
	List of Tables
	Introduction
	Thesis Statement
	Contributions
	Scope of the Thesis
	Structure of the Thesis

	Background
	Intensional Programming
	The Lucid Programming Language
	Brief History and The Family
	Indexical Lucid
	Streams
	Basic Operators
	Sequentiality Problem
	Random Access to Streams
	Definition of Lucid Operators By Means of @ and #
	Abstract Syntax of Lucid
	Concrete GIPL Syntax
	Semantic Rules
	Examples of Lucid Programs

	Lucid Now

	Hybrid Programming
	ML
	FC++
	GLU
	GLU#

	Compiler Frameworks
	General Intensional Programming System
	Introduction
	Goals
	General Intensional Programming Compiler
	General Eduction Engine
	Demand Propagation Resources for the GEE
	Synchronization

	Run-time Interactive Programming Environment

	Tools
	Java as a Programming Language
	Java Reflection
	Java Native Interface (JNI)
	JUnit

	javacc – Java Compiler Compiler
	MARF
	CVS
	Tomcat
	Build System
	Makefiles
	Eclipse
	JBuilder
	Ant
	NetBeans

	readmedir

	Summary

	Methodology
	JLucid: Lucid with Embedded Java Methods
	Rationale
	Modeling Non-Determinism
	Loading Existing Java Code with embed()
	The #JAVA and #JLUCID Code Segments
	Is JLucid an Intensional Language?

	Syntax
	Semantics

	Objective Lucid: JLucid with Java Objects
	Rationale
	Pseudo-Objectivism in JLucid
	Stream of Objects
	Pure Intensional Object-Oriented Programming

	Syntax
	Semantics

	General Imperative Compiler Framework
	Rationale
	Matching Lucid and Java Data Types
	Sequential Thread and Communication Procedure Generation
	Java Sequential Threads
	Java Communication Procedures
	C Sequential Threads and Communication Procedures with the JNI
	Worker Aggregator Definition in the Generator-Worker Architecture

	Summary
	Benefits
	Limitations

	Design and Implementation
	Internal Design
	General Intensional Programming Compiler Framework
	General Imperative Compiler Framework
	Generalization of a Concrete Implementation
	Resolving Generalization Issues and Binary Compatibility
	GIPC Preprocessor
	GIPSY Type System
	GICF Design
	Intensional Programming Languages Compiler Framework
	Sequential Thread and Communication Procedure Interfaces
	GIPC Design
	GIPC Class as a Meta Processor
	Calling Sequence
	Compiling and Linking
	Semantic Analyzer
	Interfacing GIPC and GEE and Compiled GIPSY Program

	JLucid
	Design
	Grammar Generation
	Free Java Functions and Java Compiler
	Arrays
	Implementing embed()
	Abstract Syntax Tree and the Dictionary

	Objective Lucid
	Design
	Grammar Generation
	Object Instantiation
	The Dot-Notation
	Abstract Syntax Tree and the Dictionary
	Objects as Arrays and Arrays as Objects

	External Design
	User Interface
	WebEditor – A Web Front-End to the GIPSY
	GIPSY Command-Line Interface
	RIPE Command-Line Interface
	GIPC Command-Line Interface
	GEE Command-Line Interface
	Regression Testing Application Command-Line Interface

	External Software Interfaces
	JavaCC API
	MARF Library API
	Servlets API

	Architectural Design and Unit Integration
	GIPSY
	GIPSY Exceptions Framework
	GEE Design
	RIPE Design
	Data Flow Graphs Integration

	Summary

	Testing
	Regression Testing
	Introduction
	Regression Testing Suite
	Unit Testing with JUnit
	Unit Testing with diff
	Tests

	Portability Testing
	Solving Problems
	Prefix Sum
	Dining Philosophers
	Fast Fourier Transform
	Fast Fourier Transform in JLucid.
	Fast Fourier Transform code fragment in Java from MARF.

	Moving Car
	Game of Life

	Summary

	Conclusion
	Results
	Experiments
	Interpretation of Results

	Discussions and Limitations
	Lack of Hybrid Intensional-Imperative Semantics Proofs
	Genuine Imperative Compilers
	Cross-Language Data Type Mapping
	Dimension Index Overflow
	Hybrid-DFG Integration
	Dealing With Side Effects and Abrupt Termination
	Imperative Function Overloading
	Cross-Imperative Language Calls
	Security

	Future Work
	Formal Verification of Semantic Rules and the GIPSY Type System
	Dealing with Data Flow Graphs in Hybrid Programming
	Security
	Implementation of the C Compiler in GICF
	Fully Explore Array Properties
	Genuine Imperative and Functional Language Compilers
	Visualization and Control of Communication Patterns and Load Balancing
	Target Host Compilation
	The GIPSY Screen Saver
	The GIPSY Server

	Bibliography
	Appendix
	Definitions and Abbreviations
	Abbreviations

	Sequential Thread and Communication Procedure Interfaces
	Sequential Thread Interface
	Communication Procedure Interface
	Generated Sequential Thread Wrapper Class
	Sample Worker's Implementation

	Architectural Module Layout
	GIPSY Java Packages and Directory Structure
	GIPSY Modules Packaging

	Grammar Generation Scripts for JLucid and Objective Lucid
	jlucid.sh
	JGIPL.sh
	JIndexicalLucid.sh
	ObjectiveGIPL.sh
	ObjectiveIndexicalLucid.sh

	Index

