
TOWARDS HYBRID INTENSIONAL PROGRAMMING

WITH JLUCID, OBJECTIVE LUCID, AND GENERAL

IMPERATIVE COMPILER FRAMEWORK IN THE GIPSY

Serguei A. Mokhov

A thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Computer Science

Concordia University

Montréal, Québec, Canada

October 2005

c© Serguei A. Mokhov, 2005

ar
X

iv
:0

90
7.

26
40

v3
 [

cs
.P

L
]

 2
1

D
ec

 2
00

9

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Serguei A. Mokhov

Entitled: Towards Hybrid Intensional Programming with JLucid, Objec-

tive Lucid, and General Imperative Compiler Framework in the

GIPSY
and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining committee:

Chair

Dr. H.F. Li

Examiner

Dr. P. Grogono

Examiner

Dr. P. Chalin

Supervisor

Dr. J. Paquet

Approved
Chair of Department or Graduate Program Director

20

Dr. Nabil Esmail, Dean

Faculty of Engineering and Computer Science

Abstract

Towards Hybrid Intensional Programming with JLucid, Objective

Lucid, and General Imperative Compiler Framework in the GIPSY

Serguei A. Mokhov

Pure Lucid programs are concurrent with very fine granularity. Sequential Threads

(STs) are functions introduced to enlarge the grain size; they are passed from server

to workers by Communication Procedures (CPs) in the General Intensional Program-

ming System (GIPSY). A JLucid program combines Java code for the STs with Lucid

code for parallel control. Thus first, in this thesis, we describe the way in which the

new JLucid compiler generates STs and CPs. JLucid also introduces array support.

Further exploration goes through the additional transformations that the Lucid

family of languages has undergone to enable the use of Java objects and their mem-

bers, in the Generic Intensional Programming Language (GIPL), and Indexical Lucid:

first, in the form of JLucid allowing the use of pseudo-objects, and then through the

specifically-designed the Objective Lucid language. The syntax and semantic def-

initions of Objective Lucid and the meaning of Java objects within an intensional

program are provided with discussions and examples.

Finally, there are many useful scientific and utility routines written in many im-

perative programming languages other than Java, for example in C, C++, Fortran,

Perl, etc. Therefore, it is wise to provide a framework to facilitate inclusion of these

languages into the GIPSY and their use by Lucid programs. A General Imperative

Compiler Framework and its concrete implementation is proposed to address this

issue.

iii

Acknowledgments

I would like to thank my supervisor Dr. Joey Paquet and Dr. Peter Grogono for ever

lasting patience and caring guidance throughout the variety of learning experience and

their advices and insightful comments to make these contributions possible. I would

also like to thank my friendly team members with whom we together were lifting the

complex GIPSY system off the ground. Specifically, I would like to mention Chun

Lei Ren, Paula Bo Lu, Ai Hua Wu, Yimin Ding, Lei Tao, Emil Vassev, and Kai

Yu Wan for outstanding team work. Thanks to Dr. Patrice Chalin for an in-depth

introduction to semantics of programming languages. Thanks to Dr. Sabine Bergler

and Dr. Leila Kosseim for the journey through the internals of natural language

processing side related to this work. Thanks to my beloved Irina for helping me to

carry through.

This work has been sponsored by NSERC and the Faculty of Engineering and

Computer Science of Concordia University, Montréal, Québec, Canada. This docu-

ment was produced in LATEX with the guidance of Dr. Grogono’s manual in [Gro01]

and Concordia University LATEX thesis styling maintained by Steve Malowany, Stan

Swiercz, and Patrice Chalin.

iv

Contents

List of Figures xii

List of Tables xv

1 Introduction 1

1.1 Thesis Statement . 1

1.2 Contributions . 2

1.3 Scope of the Thesis . 3

1.4 Structure of the Thesis . 4

2 Background 5

2.1 Intensional Programming . 5

2.2 The Lucid Programming Language 7

2.2.1 Brief History and The Family 7

2.2.2 Indexical Lucid . 9

2.2.2.1 Streams . 9

2.2.2.2 Basic Operators . 10

2.2.2.3 Sequentiality Problem 12

2.2.2.4 Random Access to Streams 12

2.2.2.5 Definition of Lucid Operators By Means of @ and # 13

2.2.2.6 Abstract Syntax of Lucid 14

2.2.2.7 Concrete GIPL Syntax 14

2.2.2.8 Semantic Rules . 15

2.2.2.9 Examples of Lucid Programs 18

2.2.3 Lucid Now . 19

2.3 Hybrid Programming . 19

v

2.3.1 ML≤ . 20

2.3.2 FC++ . 20

2.3.3 GLU . 20

2.3.4 GLU# . 21

2.4 Compiler Frameworks . 21

2.5 General Intensional Programming System 23

2.5.1 Introduction . 23

2.5.2 Goals . 25

2.5.3 General Intensional Programming Compiler 25

2.5.4 General Eduction Engine . 27

2.5.4.1 Demand Propagation Resources for the GEE 30

2.5.4.2 Synchronization . 31

2.5.5 Run-time Interactive Programming Environment 32

2.6 Tools . 35

2.6.1 Java as a Programming Language 35

2.6.1.1 Java Reflection . 35

2.6.1.2 Java Native Interface (JNI) 36

2.6.1.3 JUnit . 37

2.6.2 javacc – Java Compiler Compiler 37

2.6.3 MARF . 38

2.6.4 CVS . 38

2.6.5 Tomcat . 39

2.6.6 Build System . 39

2.6.6.1 Makefiles . 39

2.6.6.2 Eclipse . 41

2.6.6.3 JBuilder . 41

2.6.6.4 Ant . 41

2.6.6.5 NetBeans . 41

2.6.7 readmedir . 41

2.7 Summary . 42

3 Methodology 43

3.1 JLucid: Lucid with Embedded Java Methods 43

3.1.1 Rationale . 43

vi

3.1.1.1 Modeling Non-Determinism 44

3.1.1.2 Loading Existing Java Code with embed() 44

3.1.1.3 The #JAVA and #JLUCID Code Segments 47

3.1.1.4 Is JLucid an Intensional Language? 51

3.1.2 Syntax . 51

3.1.3 Semantics . 52

3.2 Objective Lucid: JLucid with Java Objects 53

3.2.1 Rationale . 53

3.2.1.1 Pseudo-Objectivism in JLucid 53

3.2.1.2 Stream of Objects 54

3.2.1.3 Pure Intensional Object-Oriented Programming . . . 56

3.2.2 Syntax . 56

3.2.3 Semantics . 56

3.3 General Imperative Compiler Framework 60

3.3.1 Rationale . 60

3.3.2 Matching Lucid and Java Data Types 63

3.3.3 Sequential Thread and Communication Procedure Generation 64

3.3.3.1 Java Sequential Threads 64

3.3.3.2 Java Communication Procedures 65

3.3.3.3 C Sequential Threads and Communication Procedures

with the JNI . 66

3.3.3.4 Worker Aggregator Definition in the Generator-Worker

Architecture . 67

3.4 Summary . 68

3.4.1 Benefits . 69

3.4.2 Limitations . 69

4 Design and Implementation 70

4.1 Internal Design . 70

4.1.1 General Intensional Programming Compiler Framework 70

4.1.1.1 General Imperative Compiler Framework 71

4.1.1.2 Generalization of a Concrete Implementation 71

4.1.1.3 Resolving Generalization Issues and Binary Compat-

ibility . 74

vii

4.1.1.4 GIPC Preprocessor 79

4.1.1.5 GIPSY Type System 83

4.1.1.6 GICF Design . 85

4.1.1.7 Intensional Programming Languages Compiler Frame-

work . 85

4.1.1.8 Sequential Thread and Communication Procedure In-

terfaces . 86

4.1.1.9 GIPC Design . 88

4.1.1.10 GIPC Class as a Meta Processor 91

4.1.1.11 Calling Sequence . 91

4.1.1.12 Compiling and Linking 97

4.1.1.13 Semantic Analyzer 98

4.1.1.14 Interfacing GIPC and GEE and Compiled GIPSY Pro-

gram . 99

4.1.2 JLucid . 101

4.1.2.1 Design . 101

4.1.2.2 Grammar Generation 102

4.1.2.3 Free Java Functions and Java Compiler 103

4.1.2.4 Arrays . 104

4.1.2.5 Implementing embed() 105

4.1.2.6 Abstract Syntax Tree and the Dictionary 105

4.1.3 Objective Lucid . 106

4.1.3.1 Design . 107

4.1.3.2 Grammar Generation 107

4.1.3.3 Object Instantiation 107

4.1.3.4 The Dot-Notation 108

4.1.3.5 Abstract Syntax Tree and the Dictionary 108

4.1.3.6 Objects as Arrays and Arrays as Objects 109

4.2 External Design . 112

4.2.1 User Interface . 112

4.2.1.1 WebEditor – A Web Front-End to the GIPSY 112

4.2.1.2 GIPSY Command-Line Interface 114

4.2.1.3 RIPE Command-Line Interface 115

viii

4.2.1.4 GIPC Command-Line Interface 116

4.2.1.5 GEE Command-Line Interface 118

4.2.1.6 Regression Testing Application Command-Line Inter-

face . 119

4.2.2 External Software Interfaces 120

4.2.2.1 JavaCC API . 120

4.2.2.2 MARF Library API 122

4.2.2.3 Servlets API . 126

4.2.3 Architectural Design and Unit Integration 126

4.2.3.1 GIPSY . 126

4.2.3.2 GIPSY Exceptions Framework 128

4.2.3.3 GEE Design . 129

4.2.3.4 RIPE Design . 132

4.2.3.5 Data Flow Graphs Integration 133

4.3 Summary . 135

5 Testing 136

5.1 Regression Testing . 136

5.1.1 Introduction . 136

5.1.2 Regression Testing Suite . 137

5.1.2.1 Unit Testing with JUnit 137

5.1.2.2 Unit Testing with diff 137

5.1.2.3 Tests . 137

5.2 Portability Testing . 138

5.3 Solving Problems . 139

5.3.1 Prefix Sum . 139

5.3.2 Dining Philosophers . 144

5.3.3 Fast Fourier Transform . 147

5.3.3.1 Fast Fourier Transform in JLucid. 147

5.3.3.2 Fast Fourier Transform code fragment in Java from

MARF. 149

5.3.4 Moving Car . 152

5.3.5 Game of Life . 158

5.4 Summary . 160

ix

6 Conclusion 161

6.1 Results . 161

6.1.1 Experiments . 161

6.1.2 Interpretation of Results . 161

6.2 Discussions and Limitations . 162

6.2.1 Lack of Hybrid Intensional-Imperative Semantics Proofs . . . 162

6.2.2 Genuine Imperative Compilers 162

6.2.3 Cross-Language Data Type Mapping 162

6.2.4 Dimension Index Overflow . 162

6.2.5 Hybrid-DFG Integration . 163

6.2.6 Dealing With Side Effects and Abrupt Termination 163

6.2.7 Imperative Function Overloading 163

6.2.8 Cross-Imperative Language Calls 163

6.2.9 Security . 164

7 Future Work 165

7.1 Formal Verification of Semantic Rules and the GIPSY Type System . 166

7.2 Dealing with Data Flow Graphs in Hybrid Programming 166

7.3 Security . 166

7.4 Implementation of the C Compiler in GICF 167

7.5 Fully Explore Array Properties . 167

7.6 Genuine Imperative and Functional Language Compilers 167

7.7 Visualization and Control of Communication Patterns and Load Bal-

ancing . 167

7.8 Target Host Compilation . 168

7.9 The GIPSY Screen Saver . 168

7.10 The GIPSY Server . 168

Bibliography 169

Appendix 178

A Definitions and Abbreviations 178

A.1 Abbreviations . 178

x

B Sequential Thread and Communication Procedure Interfaces 181

B.1 Sequential Thread Interface . 181

B.2 Communication Procedure Interface 181

B.3 Generated Sequential Thread Wrapper Class 181

B.4 Sample Worker’s Implementation . 187

C Architectural Module Layout 189

C.1 GIPSY Java Packages and Directory Structure 189

C.2 GIPSY Modules Packaging . 191

D Grammar Generation Scripts for JLucid and Objective Lucid 193

D.1 jlucid.sh . 193

D.2 JGIPL.sh . 194

D.3 JIndexicalLucid.sh . 194

D.4 ObjectiveGIPL.sh . 195

D.5 ObjectiveIndexicalLucid.sh . 195

Index 196

xi

List of Figures

1 Concrete Indexical Lucid Syntax . 14

2 GIPL Expressions . 14

3 GIPL where Definitions . 15

4 Concrete GIPL Syntax . 15

5 Operational Semantics of GIPL . 17

6 Natural numbers problem in Indexical Lucid. 18

7 Natural numbers problem in GIPL. 18

8 Indexical Lucid program implementing the merge() function. 18

9 The GIPSY Logo representing the distributed nature of GIPSY. . . . 23

10 Structure of the GIPSY . 24

11 Initial Conceptual Design of the GIPC 26

12 Conceptual Design of the GEE . 28

13 Conceptual Design of the RIPE . 33

14 Tomcat Web Applications Manager 40

15 Indexical Lucid program implementing the merge() function. 45

16 Indexical Lucid program implementing the merge() function as inline Java

method. 45

17 Indexical Lucid program implementing the merge() function as embed(). . 45

18 Illustration of the embed() syntax. 45

19 Generated corresponding ST to that of Figure 18. 46

20 Inline Java function declaration. 47

21 Java method declaration split out from the Lucid part. 47

22 Natural numbers problem in plain GIPL. 48

23 Natural numbers problem with two Java methods calling each other. . . . 48

24 Generated Sequential Thread Class. 50

25 JLucid Extension to GIPL Syntax . 52

xii

26 JLucid Extension to Indexical Lucid Syntax 52

27 Additional basic semantic rules to support JLucid 53

28 Pseudo-objectivism in JLucid. 55

29 Using pseudo-free Java functions to access object properties in JLucid. . . 55

30 Objective Lucid example. 57

31 Objective Lucid Syntax . 58

32 Additional basic semantic rules to support Objective Lucid 60

33 Hybrid GIPSY Program Compilation Process 65

34 Generator-Worker Architecture . 68

35 Example of a hybrid GIPSY program. 72

36 Another example of a hybrid GIPSY program. 73

37 Original Framework for the General Intensional Programming Com-

piler in the GIPSY . 76

38 Modified Framework for the General Intensional Programming Com-

piler in the GIPSY . 77

39 The FormatTag API. 78

40 The GIPC Preprocessor. 80

41 Preprocessor Grammar for a GIPSY program. 82

42 GIPSY Type System. 84

43 GICF Design. 86

44 IPLCF Design. 87

45 SIPL to GIPL Translator Integration. 88

46 Sequential Thread and Communication Procedure Class Diagram. . . 89

47 All GIPC Compilers. 90

48 Overall GIPC Design. 92

49 Sequence Diagram of GIPSY Program Compilation Process. 94

50 Sequence Diagram of Intensional Compilation Process. 95

51 Sequence Diagram of Imperative Compilation Process. 96

52 Semantic Analyzer. 98

53 Class diagram describing GIPSYProgram. 100

54 JLucid Design. 101

55 JLucid Compilation Sequence. 102

56 Java Compilation Sequence. 103

xiii

57 Objective Lucid Design. 106

58 Objective Lucid Compilation Sequence. 107

59 GIPSY WebEditor Interface. 113

60 JavaCC- and JJTree-generated Modules Used by Several GIPC Modules.121

61 MARF Utility Classes used by the GIPSY. 123

62 Dictionary and DictionaryItem API 124

63 Dictionary Usage within the GIPSY 125

64 GIPSY Main Modules. 127

65 GIPSY Exceptions Framework. 128

66 GEE Design. 130

67 The Demand Dispatcher Integrated and Implemented based on Jini. . 131

68 Integration of the Intensional Value Warehouse and Garbage Collection.132

69 RIPE Design. 133

70 DFG Integration Design. 134

71 Pseudocode of a thread j for the Prefix Sum Problem. 139

72 The Prefix Sum Problem in JLucid in GIPL Style. 139

73 The Prefix Sum Problem in JLucid in Indexical Lucid Style. 143

74 Objective Lucid example of a Car object that changes in time. 153

75 Eduction Tree for the Natural Numbers Problem. 155

76 The Natural Numbers Problem in Objective Lucid. 156

77 Eduction Tree for the Natural Numbers Problem in Objective Lucid. 157

78 The Life in Haskell. 158

79 The Life in Indexical Lucid. 159

80 Sequential Thread Interface. 182

81 Communication Procedure Interface. 183

82 GIPSY Java Packages Hierarchy. 190

xiv

List of Tables

1 Matching data types between Lucid and Java. 64

2 Correspondence of the GIPSY .jar files and the modules. 192

xv

Chapter 1

Introduction

1.1 Thesis Statement

In the previous prototype of the General Intensional Programming System (GIPSY)

there existed limitations to its potential in distributed computing – lack of sequential

threads and communication procedures. Additionally, the capabilities of Indexical

Lucid and GIPL, the primary GIPSY’s languages, were limited to only computing

aspects without input/output, arrays, and some other essential features (e.g. math,

non-determinism, dynamic loading) that exist in imperative (e.g. Java) languages.

We discuss an extension to Generic Intensional Programming Language (GIPL) and

Indexical Lucid with embedded Java – JLucid. A few problems are solved as an

example using the enhanced language.

JLucid brings embedded Java and most of its powers into Indexical Lucid in the

GIPSY by allowing intensional languages to manipulate Java methods as first class

values1. However, it is very natural to have objects with Java and manipulate their

members in scientific intensional computation, yet JLucid fails to support that Java’s

capability. Hence, we design Objective Lucid to address this deficiency. We define the

operational semantics of Objective Lucid, and give some examples of its application.

Existence of JLucid, Objective Lucid, and GLU as well as many useful libraries

written in other imperative languages, such as C/C++, Perl, Python, Fortran etc.

demanded ability to use code written in those languages by intensional programs,

1The Java methods are not referred to as “functions” as in functional programming – the Java
methods can be passed around as values inside the Lucid part, but not to or from Java part of a
GIPSY program.

1

naturally. Thus, we design a first version of the General Imperative Compiler Frame-

work (GICF) as a part of the GIPSY to allow GIPSY programs to use virtually any

combination of intensional and imperative languages at the meta level. This is a very

ambitious goal; therefore, the proposal is the first iteration of the framework open for

later refinements as it matures along with the corresponding changes to the run-time

system.

1.2 Contributions

Primary contributions of this thesis are outlined below:

• JLucid

– Semantics of pseudo-free Java methods in Lucid programs

– Design and implementation of JLucid and its compiler in the GIPSY

• Objective Lucid

– Semantics of the integration of Java objects in Lucid programs

– Design and implementation of the Objective Lucid compiler

• General Imperative Compiler Framework

– Design and Implementation of the GICF

– Embedding of a Java compiler in the GICF

• WebEditor to edit, compile, and run GIPSY programs online

• System Architecture Issues

– Rework and refactoring of most existing system design, both at the archi-

tectural and detailed design levels

– Major rework of the architecture and detailed design of GIPC

– Java sequential threads generation

– Threaded and RMI communication procedures generation

2

– GIPSY Type System2

– GIPSY Exceptions Framework

– Regression Testing Infrastructure

– Unit Testing Automation with JUnit

The last contributed items touch the rest of the GIPSY, the components and

modules done by other team members. The integration performed (outside of the

main scope of this thesis) demanded extensive testing. Without the integration and

testing work, these other contributions wouldn’t be possible. This also includes de-

veloping and enforcing Coding Conventions and setting up project’s CVS repository

[Mok05b, Mok03a, Mok03b] for the entire project as this work is to become a manual

for the current and future GIPSY developers and researchers.

1.3 Scope of the Thesis

While the Contributions section outlines the major work done, the below explains

what was not done or exhibits some limitations at the time of this writing:

• Integrated imperative compilers aren’t native to the GIPSY, instead we call

external compilers, such as javac, gcc, g++, nmake.exe, bc.exe, perl, etc.

depending on a platform.

• Even though the mechanism was designed and implemented to generate CPs and

STs, only two of the concrete implementations of the actual CPs were done: for

local execution and distributed execution by extending the RMI implementation

done by Bo Lu. The other implementations of CPs for Jini, DCOM+, CORBA

and others are being worked on by other team members at the time of this

writing.

• Semantic rules to have Java objects in Objective Lucid have been developed,

but have not been formally proven to be correct.

2Though the type system may seem not to be related to the architecture, but it impacted the
design most of the main modules in it, so it was classified as architectural.

3

• When presenting GICF and the Preprocessor syntax, no semantic rules are

given for any of parts of the hybrid programs, except for JLucid and Objective

Lucid, i.e. the semantics of integrated Java itself or C constructs, etc.

• JLucid and Objective Lucid are still in their experimental stage of development

and it will take some time before they mature.

1.4 Structure of the Thesis

The next chapter provides the necessary background on the Lucid family of languages,

its history, operational semantics, compiler frameworks, and hybrid programming.

Then, it gives the context of this thesis, the GIPSY system, and the tools and tech-

niques employed to make the contributions possible. The core of this thesis is based

on three publications, namely [MPG05, MP05b, MP05a]. Chapter 3 describes the

approach and methodology used to overcome and provide a solution to the prob-

lems stated in Section 1.1. Then, the design implementation details are presented in

Chapter 4. Chapter 5 introduces the Regression Testing Suite for GIPSY and what

kinds of tests were performed and their limitations. Finally, Chapter 6 and Chapter 7

conclude on the work done, discuss the results and limitations of the implementation,

and lay down some paths towards enhancing the GIPSY in various areas further. At

the end, there is a list of references, Bibliography, and an Appendix with most com-

mon abbreviations found in this work, CP and ST interfaces, JLucid and Objective

Lucid grammar generation scripts, etc., followed by an overall index.

4

Chapter 2

Background

While there is a complete and comprehensive set of references in the Bibliogra-

phy chapter that was a great deal of help to the creation of this work, there are

some keynotes that require special mention. The following are some of the re-

lated readings that were sources of inspiration and invaluable informational food

for thought. These include Joey Paquet’s PhD thesis “Scientific Intensional Pro-

gramming” [Paq99], related hybrid intensional-imperative programming in various

GLU-related work, such as [JD96, JDA97], other recent hybrid programming papers,

such as [PK04, MS01, SM02], the PhD thesis of Paula Bo Lu [Lu04] and other theses

of the GIPSY group, such as [Ren02, Din04, Tao04, Wu02], and semantics of program-

ming languages in [Gro02a, HJ02, Moe04]. Additionally, since this work also deals

with compiler frameworks, a general overview of existing frameworks is presented.

An on-line encyclopedia, Wikipedia [WSoafaotw05], was a valuable resource for the

background and literature review, some of which is summarized in the sections that

follow.

2.1 Intensional Programming

Intensional programming is a generalization of unidimensional contextual (also known

as modal logic [Car47, Kri59, Kri63]) programming such as temporal programming,

but where the context is multidimensional and implicit rather than unidimensional

and explicit. Intensional programming is also called multidimensional programming

5

because the expressions involved are allowed to vary in an arbitrary number of di-

mensions, the context of evaluation is thus a multidimensional context. For example,

in intensional programming, one can very naturally represent complex physical phe-

nomena such as plasma physics (e.g. in Tensor Lucid in [Paq99]), which are in fact

a set of charged particles placed in a space-time continuum that behaves according

to a limited set of laws of intensional nature. This space-time continuum becomes

the different dimensions of the context of evaluation, and the laws are expressed nat-

urally using intensional definitions [Paq99]. Joey Paquet’s PhD thesis discusses the

syntax and semantics of the Lucid language, designs GIPL and Tensor Lucid. While

we omit the Tensor Lucid part, the reader is reminded about the basic properties of

the Indexical Lucid and GIPL languages in the follow up sections in greater detail to

provide the necessary context for the follow up work in Chapter 3 and Chapter 4.

Intensional Logic

Intensional programming (IP) is based on intensional (or multidimensional or modal)

logic (where semantics was applied first by [Car47, Kri59, Kri63]), which, in turn, are

based on Natural Language Understanding (aspects, such as, time, belief, situation,

and direction are considered). IP brings in dimensions and context to programs

(e.g. space and time in physics or chemistry). Intensional logic adds dimensions

to logical expressions; thus, a non-intensional logic can be seen as a constant or a

snapshot in all possible dimensions. Intensions are dimensions at which a certain

statement is true or false (or has some other than a Boolean value). Intensional

operators are operators that allow us to navigate within these dimensions.

Temporal Intensional Logic

Temporal intensional logic is an extension of temporal logic that allows to specify the

time in the future or in the past.

(1) E1 := it is raining here today

Context: {place:here, time:today}
(2) E2 := it was raining here before(today) = yesterday

(3) E3 := it is going to rain at(altitude here + 500 m) after(today) = tomorrow

Let’s take E1 from (1) above. Then let us fix here to Montreal and assume it is

6

a constant. In the month of March, 2004, with granularity of day, for every day, we

can evaluate E1 to either true or false:

Tags: 1 2 3 4 5 6 7 8 9 ...

Values: F F T T T F F F T ...

If you start varying the here dimension (which could even be broken down into

X, Y , Z), you get a two-dimensional evaluation of E1:

City / Day 1 2 3 4 5 6 7 8 9 ...

Montreal F F T T T F F F T ...

Quebec F F F F T T T F F ...

Ottawa F T T T T T F F F ...

The purpose of this example is to remind the reader the basic ideas behind in-

tensions and intensional programming and what dimensionality is by using natural

language. What follows is formalization of the above in terms of the Lucid program-

ming language.

2.2 The Lucid Programming Language

Let us begin by introducing the Lucid language history and which features of it came

at different stages of its evolution to its present form. This is the necessary step to

further illustrate the purpose of this thesis.

2.2.1 Brief History and The Family

From 1974 to Lucid Today:

1. Lucid as a Pipelined Dataflow Language through 1974-1977. Lucid was intro-

duced by Anchroft and Wadge in [AW76, AW77]. Features:

• A purely declarative language for natural expression of iterative algo-

rithms.

• Goals: semantics and verification of correctness of programming languages

(for details see [AW76, AW77]).

7

• Operators as pipelined streams: one for initial element, and then all for

the successor ones.

2. Intensions, Indexical Lucid, GRanular Lucid (GLU, [JD96, JDA97]), circa 1996.

More details on these two dialects are provided further in the chapter as they

directly relate to the theme of this thesis. Features:

• Random access to streams in Indexical Lucid.

• First working hybrid intensional-imperative paradigm (C/Fortran and In-

dexical Lucid) in the form of GLU.

• Eduction or demand-driven execution (in GLU).

3. Partial Lucid, Tensor Lucid, 1999 [Paq99].

• Partial Lucid is an intermediate experimental language used for demon-

strative purposes in presenting the semantics of Lucid in [Paq99].

• Tensor Lucid dialect was developed by Joey Paquet for plasma physics

computations to illustrate advantages and expressiveness of Lucid over an

equivalent solution written in Fortran.

4. GIPL, 1999 [Paq99].

• All Lucid dialects can be translated into this basic form of Lucid, GIPL

through a set of translation rules. (GIPL is in the foundation of the exe-

cution semantics of GIPSY and its GIPC and GEE because its AST is the

only type of AST GEE understands when executing a GIPSY program).

5. RLucid, 1999, [GP99]

• A Lucid dialect for reactive real-time intensional programming.

6. JLucid, Objective Lucid, 2003 - 2005

• These dialects introduce a notion of hybrid and object-oriented program-

ming in the GIPSY with Java and Indexical Lucid and GIPL, and are

discussed great detail in the follow up chapters of this thesis.

8

7. Lucx [WAP05], 2003 - 2005

• Kaiyu Wan introduces a notion of contexts as first-class values in Lucid,

thereby making Lucx the true intensional language.

8. Onyx [Gro04], April 2004.

• Peter Grogono makes an experimental derivative of Lucid – Onyx to in-

vestigate on lazy evaluation of arrays.

9. GLU# [PK04], 2004

• GLU# is an evolution of GLU where Lucid is embedded into C++.

2.2.2 Indexical Lucid

When Indexical Lucid came into existence, it allowed accessing context properties in

multiple dimensions. Prior Indexical Lucid, the only implied dimension was a set of

natural numbers. With Indexical Lucid, we can have more than one dimension, and

we can query for a part of the context (any dimensions of it). Thus, the syntactic

definition has been amended to include an ability to specify which dimensions exactly

we are working on.

2.2.2.1 Streams

Lucid variables and expressions are said to be streams of values, through which one

can navigate using some sort of navigational operators. In the natural language

example given earlier the operators were before(), after(), and at(); here we begin by

introducing first() and next() (very much like in LISP).

If the following equations hold1:

• first X = 0

• next X = X + 1 (like succ in LISP)

1Note, these are initial conditions of a definition to illustrate the ideas behind the streams and
not an actual declaration of constructs in the language one would normally write.

9

where 0 is a stream of 0’s: (0, 0, 0, ..., 0, ...). Likewise, 1 is a stream of 1’s, and the ‘+’

operator performs pair-wise addition of the elements in the streams according to the

implied current dimension index. Thus, X is defined as a stream, such that:

• x0 = 0, xi+1 = xi + 1, or

• X = (x0, x1, ..., xi, ...) = (0, 1, ..., i, ...)

Similarly, if:

• first X = X

• next Y = Y + next X

Y here becomes a running sum of X:

• y0 = x0; yi+1 = yi + xi+1

• Y = (y0, y1, ..., yi, ...) = (0, 1, ..., i(i + 1)/2, ...)

2.2.2.2 Basic Operators

This section defines properties of basic Lucid operators, which were proven by Paquet

in [Paq99].

Operator fby. Operator fby stands for “followed by”. fby allows simply to sup-

press dimension index and switch to another stream. As an example the previously

shown streams X and Y can be defined as follows using fby:

• X = 0 fby X + 1 = (0, 1, 2, ..., i, ...)

• Y = X fby Y + next X = (0, 1, ..., i(i + 1)/2, ...)

To provide an analogy to lists, we can say that that the following operators are

equivalent:

• first and hd

• next and tl

• fby and cons

10

Informal Definition of first, next, fby.

• Definitions:

– first X = (x0, x0, ..., x0, ...)

– next X = (x1, x2, ..., xi+1, ...)

– X fby Y = (x0, y0, y1, ..., yi−1, ...)

• These are the three operators of the original Lucid.

• Indexical Lucid has come into existence with the ability to access an arbitrary

element by some index i in the stream.

Operators wvr, asa, and upon. The other three operators that are slightly more

complex informally defined below:

• X wvr Y =

if first Y 6= 0

then X fby (next X wvr next Y)

else (next X wvr next Y)

• X asa Y = first (X wvr Y)

• X upon Y =

X fby

(if first Y 6= 0 then (next X upon next Y) else (X upon next Y))

where wvr stands for whenever, asa stands for as soon as and upon stands for advances

upon. wvr chooses from its left-hand-side operand only values in the current dimension

where the right-hand-side evaluates to true. asa returns the value of its left-hand-side

as a first point in that stream as soon as the right-hand-side evaluates to true. Unlike

asa, upon switches context of its left-hand-side operand uf the right-hand side is true.

11

2.2.2.3 Sequentiality Problem

With tagged-token dataflows of the original Lucid operators one could only define an

algorithm with pipelined, or sequential, data flow:

• It is wasteful use of computing resources (e.g. to compute an element i we need

i− 1, but i− 1 may never be used/needed otherwise).

• Sequential access to the stream of values.

2.2.2.4 Random Access to Streams

New intensional operators are introduced to remedy the sequentiality problem: @

and #. The operators are used as an index # corresponding to the current position

that allows querying the current context, and @ is intensional navigation to switch

the context. With @ and #:

• the computation is defined according to a context (here a single integer),

• Lucid is no longer a data-flow language and is on the road to intensional pro-

gramming, and

• the previously introduced intensional operators can be redefined in terms of the

operators # and @.

12

In terms of the three original operators of first, next, and fby the operators @ and

are defined as follows:

Definition 1

= 0 fby (# + 1)

X@Y = if Y = 0 then first X else (next X)@(Y − 1)

Both X and Y in the above definition are variable streams, and their current values are

determined by their current context at the time of evaluation. To redefine the meaning

of @ and # Paquet uses the denotational form, with the following proposition:

Proposition 1

(1) [#]i = i

(2) [X@Y]i = [X][Y]i

where (1) means the value of # at the current context i is i itself (i.e. we query the

value of our current dimension), and (2) says that evaluate Y at the current context

i and then use Y as a new context for X.

2.2.2.5 Definition of Lucid Operators By Means of @ and #

First we present the definition of the operators via @ and # denoted in monospaced

font, and then we will provide their equivalence to the original Lucid operators,

denoted as small caps.

Definition 2

(1) first X = X@0

(2) next X = X@(# + 1)

(3) X fby Y = if # = 0 then X else Y @(#− 1)

(4) X wvr Y = X@T where

T = U fby U@(T + 1)

U = if Y then # else next U

end

(5) X asa Y = first (X wvr Y)

(6) X upon Y = X@W

where W = 0 fby (if Y then (W + 1) else W) end

13

op ::= intensional-op
| data-op

intensional-op ::= i-unary-op
| i-binary-op

i-unary-op ::= first | next | prev
i-binary-op ::= fby | wvr | asa | upon

data-op ::= unary-op
| binary-op

unary-op ::= ! | − | iseod
binary-op ::= arith-op

| rel-op
| log-op

arith-op ::= + | − | ∗ | / | %
rel-op ::= < | > | <= | >= | == | ! =
log-op ::= && | ||

Figure 1: Concrete Indexical Lucid Syntax

E ::= id
| E(E1, ..., En)
| if E then E ′ else E ′′

| #E
| E@E ′E ′′

| E where Q

Figure 2: GIPL Expressions

2.2.2.6 Abstract Syntax of Lucid

Abstract and concrete syntaxes of Lucid for expressions, definitions, and operators

are presented in Figure 2, Figure 3, and Figure 1 for both Indexical Lucid and GIPL.

2.2.2.7 Concrete GIPL Syntax

The GIPL is the generic programming language of all intensional languages, defined

by the means of only two intensional operators – @ and #. It has been proven that

other intensional programming languages of the Lucid family can be translated into

the GIPL [Paq99]. The concrete syntax of the GIPL is presented in Figure 4. It

14

Q ::= dimension id
| id = E
| id(id1, id2, ..., idn) = E
| QQ

Figure 3: GIPL where Definitions

E ::= id

| E(E,...,E) #LUCX

| EE,...,E #GIPL

| if E then E else E fi

| # E

| E @ [E:E] #GIPL

| E @ E #LUCX

| E where Q end;

| [E:E,...,E:E] #LUCX

| iseod E; #INDEXICAL

Q ::= dimension id,...,id;

| id = E;

| id(id,....,id) = E; #LUCX

| id[id,...,id](id,....,id) = E; #GIPL

| QQ

Figure 4: Concrete GIPL Syntax

has been amended to support the isoed operator of Indexical Lucid for completeness

and influenced by the productions from Lucx [WAP05] to allow contexts as first-class

values while maintaining backward compatibility to the GIPL language designed by

Paquet in [Paq99].

2.2.2.8 Semantic Rules

Paquet’s PhD thesis [Paq99] presents details of the operational semantics of GIPL

recited here for the unaware reader with a brief description. Figure 5 provides initial

operational semantic rules for Indexical Lucid in Hoare Logic [Moe04, HJ02]. Later

on, these rules are extended to support free Java methods and Java objects in JLucid

and Objective Lucid respectively in Chapter 3.

15

Notation

• D represents the definition environment where all symbols are defined (a dic-

tionary of identifiers).

• D,P ` E : a represents current context of evaluation (a set of dimensions P)

and the dictionary that yields a specified result a under that context given

expression E.

• const, op, dim, func, and var represent what kind of construct types are put

intoD as constants, operators, dimensions, functions, and variables respectively.

• the EXid type of rules place different identifier types listed above into the defi-

nition environment D.

• the remaining Exyz-style rules correspond to the execution (or rather application

of) of the operators, functions, and conditionals to their argument expressions

given the definition of them in D and the current context. Thus, Eop speci-

fies application of a defined operator function f in the current context to its

arguments (usually one for unary operators and two for binary); Efct applies

the named function to its arguments translating the formal arguments to ac-

tual; EcT
and EcF

correspond to conditional evaluation of the then and else

branching clauses; Eat and Etag correspond to the universal intensional oper-

ators @ and # for switching of and querying for the current context; and Ew

corresponds to the scope definition marked by the where clause.

• the Q-style rules allow definitions within the scope of the dimension Qdim and

variable identifier Qid types and their composition.

16

Ecid :
D(id) = (const, c)

D,P ` id : c

Eopid :
D(id) = (op, f)

D,P ` id : id

Edid :
D(id) = (dim)

D,P ` id : id

Efid :
D(id) = (func, idi, E)

D,P ` id : id

Evid :
D(id) = (var, E) D,P ` E : v

D,P ` id : v

Eop :
D,P ` E : id D(id) = (op, f) D,P ` Ei : vi

D,P ` E(E1, . . . , En) : f(v1, . . . , vn)

Efct :
D,P ` E : id D(id) = (func, idi, E

′) D,P ` E′[idi ← Ei] : v

D,P ` E(E1, . . . , En) : v

EcT :
D,P ` E : true D,P ` E′ : v′

D,P ` if E then E′ else E′′ : v′

EcF :
D,P ` E : false D,P ` E′′ : v′′

D,P ` if E then E′ else E′′ : v′′

Etag :
D,P ` E : id D(id) = (dim)

D,P ` #E : P(id)

Eat :
D,P ` E′ : id D(id) = (dim) D,P ` E′′ : v′′ D,P†[id 7→ v′′] ` E : v

D,P ` E @E′ E′′ : v

Ew :
D,P ` Q : D′,P ′ D′,P ′ ` E : v

D,P ` E where Q : v

Qdim :
D,P ` dimension id : D†[id 7→ (dim)],P†[id 7→ 0]

Qid :
D,P ` id = E : D†[id 7→ (var, E)],P

QQ :
D,P ` Q : D′,P ′ D′,P ′ ` Q′ : D′′,P ′′

D,P ` Q Q′ : D′′,P ′′

Figure 5: Operational Semantics of GIPL

17

2.2.2.9 Examples of Lucid Programs

Two simple examples of Lucid programs are presented. The examples demonstrate

absence of iterative/sequential operation as opposed to the traditional imperative

programming languages.

Natural Numbers Problem An example program in Indexical Lucid that yields

44 as the result is in Figure 6. The way the program is expanded using the re-

definitions of the Lucid operators, such as fby, employing @ and # in GIPL is shown

in Figure 7.

N @.d 2

where

dimension d;

N = 42 fby.d (N + 1);

end;

Figure 6: Natural numbers problem in Indexical Lucid.

N @.d 2

where

dimension d;

N = if (#.d <= 0) then 42 else (N + 1) @.d (#.d - 1) fi;

end;

Figure 7: Natural numbers problem in GIPL.

The Hamming Problem This example (see Figure 8) illustrates the simple use

of functions in Lucid.

H

where

H = 1 fby merge(merge(2 * H, 3 * H), 5 * H);

merge(x, y) = if(xx <= yy) then xx else yy

where

xx = x upon(xx <= yy);

yy = y upon(yy <= xx);

end;

end;

Figure 8: Indexical Lucid program implementing the merge() function.

18

2.2.3 Lucid Now

To summarize, Lucid is a functional programming language where a variable (stream),

a function, a dimension, or even entire context can be a first class value (i.e. can

viewed and manipulated as data). Lucid provides operators, such as @ and #, to

navigate within dimensions and switch contexts. The language also exhibits the

eductive execution model (demand-driven distributed computation) that augments

the semantics with a warehouse (intensional value cache) and its consistency2.

2.3 Hybrid Programming

There have been previous approaches to couple intensional or functional and imper-

ative and object-oriented paradigms prior to this work. Some recent related work on

the same issue is presented in [BM96, PK04, MS01, SM02] with the [PK04] being the

most relevant. The two major approaches of addressing the OO issue are – either

(1) to extend Lucid to become object-oriented or objects-aware or (2) make a host

imperative language be extended to embed Lucid. The authors of [PK04] chose the

latter by extending GLU-with-C to GLU#-with-C++, whereas this work approaches

the problem from Lucid to Java. This means a Lucid program is the main one driv-

ing the computation. We will briefly consider the following approaches to the hybrid

programming:

• ML≤

• FC++

• GLU

• GLU#

2Paquet defines the augmented operational semantics in [Paq99] and Tao implements its first
incarnation in GIPSY [Tao04]. This work has an impact on this aspect by introducing the side
effects with the imperative languages, which will be discussed later.

19

2.3.1 ML≤

ML≤ [BM96] is a system introduced in 1996 that proposed to marry OOP and func-

tional paradigms using their own language and providing the details of the predicative

and decidable typing rules and operational semantics of such a system. Their main

goal is to be able to induce implicit polymorphism of functional languages in objects.

They do not extend an existing functional language with the OO capabilities, in-

stead they reinterpret all data types as either abstract or concrete classes and use the

dynamic dispatch, a typical OO feature, on run-time types.

2.3.2 FC++

FC++ [MS01, SM02] tries to promote the functional paradigm in C++. FC++ is a

library add-on to enable higher-order polymorphic functions in a novel use of C++

type inference that is not very complex and is still expressive. FC++ adds support for

both parametric and subtype polymorphism policies for functions in order to be able

to fit FC++ functions within the C++ object model and pass higher-order functions

as parameters. The FC++ functions are kept as objects called functoids and use

a reference counter machinery for allocation and de-allocation. Closures in FC++

(operation on a some state and the state itself) can automatically be created during

functoid object creation, but their “closing” of that state is not automatic and the

state values have to be passed explicitly during the creation process. The library also

adds a set of functional operators from the Haskell Standard Prelude. FC++ comes

more from the OOP-to-functional point of view and conforms with standard software

engineering design patterns and is suitable for the common OO tasks.

2.3.3 GLU

GLU was the most general intensional programming tool recently available [JD96].

However, experience has shown that, while being very efficient, the GLU system

suffers from a lack of flexibility and adaptability [Paq99]. Given that Lucid is evolving

continually, there is an important need for the successor to GLU to be able to stand

the heat of evolution [Paq99]. The two major successors of GLU are the GIPSY and

GLU# systems.

20

Eduction

The earlier mentioned notion of eduction was first introduced by the GLU compiler.

GLU supports so-called tagged-token demand-driven dataflow where data elements

(tokens) are computed on demand following a dataflow network defined in Lucid.

Data elements flow in the normal flow direction (from producer to consumer) and

demands flow in the reverse order, both being tagged with their current context of

evaluation. This form of lazy computation is inherited by GIPSY from GLU.

2.3.4 GLU#

GLU# [PK04] is a successor of GLU, which enables Lucid within C++. The authors

argue for the embedding small functional/intensional-language pieces of Lucid into

C++ programs allowing lazy (demand-driven) evaluation of arrays and functions

thereby making Lucid easily accessible within a popular imperative programming

language, such as C++. Because GLU# appeared quite recently (2004) to when this

work was written, its success compared to GLU is yet to be evaluated; however, it

seems to suffer from the same inflexibility GLU did and targets only C++ as a host

language.

2.4 Compiler Frameworks

A significant number of compiler frameworks emerged for the past decade. All try to

enable compilation of more than one language, either hybrid or not, in an uniform

manner. Some frameworks or libraries became “frozen” (i.e. non-extendable) and

fixed to a specific set of languages, some other ones were build with the extension

in mind, so it is relatively easy to “plug-in” yet another compiler into the system

(a collection of compilers and the necessary tools) with minimum integration work

required. A brief overview of different compiler frameworks is given next:

• GLU tried to accommodate Fortran, C, and Lucid in one system, but was made

so inflexible [Paq99] that it would take a significant effort to extend it and add

other languages to the system.

• GLU# merges Lucid and C++; however, makes no provisions for extension to

other languages on either intensional or imperative side.

21

• Microsoft .NET can also be thought of a commercial heterogeneous compiler

framework (it is more than a compiler framework, but our focus is on compil-

ers) that allows easy cooperation and application development between different

language models, such as C#, C++, Visual Basic, and Assembly in a homo-

geneous environment. However, none of these languages have natively any of

the intensional or functional capabilities, so no native debugging support or

other tools exist, even if one starts using FC++ or GLU# in this environment.

Despite the fact that all programs can be compiled into the common bytecode,

the debugging tools have to be aware of the functional paradigms on a higher

level and they are not (at least at this writing).

• The GNU Compiler Collection (GCC) can also be said as a compiler framework

from the free software [CP05]. It supports C, C++, Objective-C, Objective-

C++, Java, Fortran, and Ada. Again, these languages are more of an imperative

nature, but it is far easier to add new language into GCC than to Microsoft

.NET due to its openness.

• Finally, the GIPSY presents the GIPC framework that is designed for expan-

sion and integration of the intensional and imperative (and later functional)

languages. This is presented through the rest of this thesis.

22

Figure 9: The GIPSY Logo representing the distributed nature of GIPSY.

2.5 General Intensional Programming System

2.5.1 Introduction

GIPSY is broadly presented in [WPG03, Lu04, PW05], and others. Please refer to

the online resources [RG05a, PW05, RG05b] to obtain the most current status of the

project. GIPSY is primarily implemented in Java. General GIPSY architecture is

presented in Figure 10. The essence behind GIPSY is demand-driven computation

support for the intensional programming languages, e.g., Indexical Lucid, Tensor

Lucid [Paq99], etc.

The GIPSY consists in three modular sub-systems: the General Intensional Pro-

gramming Language Compiler (GIPC); the General Eduction Engine (GEE), and

the Intensional Run-time Interactive Programming Environment (RIPE). The sub-

systems have to be modular so that one implementation of parts of them or the whole

can be replaced by another without having major if any impact on the other modules.

Although the theoretical basis of the language has been settled, the implementation

of an efficient, general and adaptable programming system for this language raises

many questions. The following sections outline the theoretical basis and architecture

of the different components of the system. All these components are designed in a

modular manner to permit the eventual replacement of each of its components – at

compile-time or even at run-time – to improve the overall efficiency and productivity

of the system [Paq99].

A GIPSY instance sends out little bits of work to others to compute and then

gathers the results in distributed fashion. Of course, synchronization, latency toler-

ance, and maximum utilization of resources are primary goals for the system to be

productive. Unlike in most programming language models (see [ST98]) considered

for parallel computation, in GIPSY several key concepts are considered:

23

Figure 10: Structure of the GIPSY

• Thread-Level Parallelism (TLP)

• Stream-Level Parallelism (SLP)

• Cluster-Level Parallelism (CLP)

GIPSY’s parallelism granularity takes into account the amount of TLP, SLP, and

CLP available. TLP determines the maximum number of threads that should or can

be created when a Lucid program is being executed. In other words, TLP defines on

how many pieces of terminal computational work we can chop a big job into. The

goal, as far as programming is concerned, is to program for infinite TLP, and later

adjust (load-balance) at run-time to the actual amount of SLP. SLP determines the

maximum number of streams available to execute the threads. Here, by “streams” we

mean processors but, with the invention of multithreaded CPUs for a single processor,

there may be several thread streams available in parallel, and hence a more general

notion of SLP. The amount of SLP is machine-dependent and has to be discovered at

24

run-time on remote machines. If a job is to be run on a single machine, GIPSY tries

to maximize SLP utilization, providing just enough TLP for the machine in question

with the design goal of always assuming infinite TLP. Then load-balancing comes

into play. CLP takes GIPSY to another level — distributed computing, involving

utilization of SLP of the machines across the network nearby or across the globe over

the Internet.

NOTE: the Lucid family of languages has also a notion of streams that refers

to Lucid variables that evaluate in multiple contexts. Every Lucid stream (e.g. a

variable) can potentially be evaluated on any hardware stream available, but it is

important not to confuse the two kinds of streams. The reason for the existence of

the two notions is that both terms were used independently in each field. Now that

parallel architectures and language models such as Lucid came into proximity, the

terms clash.

2.5.2 Goals

The system has to withstand the evolution of the tools, languages, and underlying

platforms, thus be flexible and adaptable to the changes. That is one of the most

important and stringent requirements put on the development of GIPSY [Paq99].

Other subordinate requirements in compiler design, run-time system, communication,

and user interfaces are presented in detail throughout the follow up sections.

2.5.3 General Intensional Programming Compiler

GIPSY programs are compiled in a two-stage process (see Figure 33, page 65). First,

the intensional part of the GIPSY program is translated in Java, then the resulting

Java program is compiled in the standard way.

The source code consists of two parts: the Lucid part that defines the intensional

data dependencies between variables and the sequential part that defines the granular

sequential computation units (usually written in any imperative language, e.g. C or

Java). The Lucid part is compiled into an intensional data dependency structure

(IDS) describing the dependencies between each variable involved in the Lucid part.

This structure is interpreted at run-time by the GEE following the demand propa-

gation mechanism. Data communication procedures used in a distributed evaluation

25

Figure 11: Initial Conceptual Design of the GIPC

26

of the program are also generated by the GIPC according to the data structures

definitions written in the Lucid part, yielding a set of communication procedures

(CP). These are generated following a given communication layer definition such as

provided by RPC (or rather RMI since GIPSY is implemented in Java), CORBA,

Jini, or the WOS [BKU98]. The sequential functions defined in the second part of

the GIPSY program are translated into imperative code using the second stage im-

perative compiler syntax, yielding imperative sequential threads (ST). Intensional

function definitions, including higher order functions, will be flattened using a well-

known efficient technique [Ron94, Paq99]. The closures in the higher order functions

case are still applicable because the function state and the operation on it are cor-

rectly passed to the functions by expanding and using function definitions inline. The

insignificant limitation here is that self-referential closures for such functions cannot

be made. The function elimination in GIPSY pertinent to some of these aspects was

implemented by Wu in [Wu02].

The Figure 11 presents the initial conceptual design of the GIPC. Based on this

design, the GIPSY module integration and the development of the STs and CPs

support has begun. Later on the design was refined in [PGW04, MP05a] and its

latest reincarnation is shown in Figure 38 in Chapter 4, page 77; thus, the evolution

description is delayed until then.

Prior this work, GIPC supported only two Lucid dialects: GIPL and Indexical

Lucid. The initial GIPC compiler was implemented by Chun Lei Ren in [Ren02],

and the translation of the Indexical Lucid into GIPL and the semantic analysis was

implemented by Aihua Wu in [Wu02]. A large integration and re-engineering effort

went into GIPC to approach it to the goals of the GIPSY (see Section 2.5.2) and add

more compilers for investigation of the underlying language models. The results of

this effort are presented in the Design and Implementation chapter (Chapter 4).

2.5.4 General Eduction Engine

The GIPSY uses a demand-driven model of computation, which is based on the prin-

ciple is that certain computation takes effect only if there is an explicit demand for it.

The GIPSY uses eduction, which is demand-driven computation in conjunction with

an intelligent value cache called a warehouse. Every demand can potentially generate

a procedure call, which is either computed locally or remotely, thus eventually in

27

Figure 12: Conceptual Design of the GEE

parallel with other procedure calls. Every computed value is placed in the warehouse,

and every demand for an already-computed value is extracted from the warehouse

rather than computed again and again (demands that may have side effects, e.g. if

we cache results of STs, shall not be cached). Eduction, thus, reduces the overhead

induced by the procedure calls needed for the computation of demands sequentially.

Figure 12 describes the internal conceptual structure and functioning of the GEE.

The GEE itself is composed of three main modules: the executor, the intensional

demand propagator (IDP), and the intensional value warehouse (IVW). First, the

intensional data dependency structure (IDS, which represents GEER) is fed to the

demand generator (DG) by the compiler (GIPC). This data structure represents the

data dependencies between all the variables in the Lucid part of the GIPSY program.

This tells us in what order all demands are to be generated to compute values from

this program. The demand generator receives the initial demand, that in turn raises

the need for other demands to be generated and computed as the execution progresses.

For all non-functional demands (i.e. demands not associated with the execution of

sequential threads (ST)), the DG makes a request to the warehouse to see if this

demand has already been computed. If so, the previously computed value is extracted

from the warehouse. If not, the demand is propagated further, until the original

28

demand resolves to a value and is put in the warehouse for further use. This type

of warehousing was introduced by GLU due to its distributed nature to cut down on

communication costs, but it can certainly be applicable to any functional language,

such as LISP, Scheme, Haskell, ML and others to improve efficiency even on a single

machine provided there are no any side effects whatsoever. The garbage collector can

run on the background to clean up old function-parameters-values tuples periodically,

and given that the large amounts of memory are cheap these days functional languages

may gain much more popularity with the increased performance.

For functional demands (i.e. demands associated with the execution of a sequen-

tial thread), the demands are sent to the demand dispatcher (DD) that takes care

of sending the demand to one of the workers or to resolve it locally (which normally

means that a worker instance is running on the processor running the generator pro-

cess). If the demands are sent to a remote worker, the communication procedures

(CP) generated by the compiler are used to communicate the demand to the worker.

The demand dispatcher (DD) receives some information about the liveness and effi-

ciency of all workers from the demand monitor (DM), to help it make better decisions

in dispatching the demands.

The demand monitor, after some functional demands are sent to workers, starts

to gather various types of information about each worker, including, but not limited

to:

• liveness status (is it still alive, not responding, or dead)

• network link performance

• response time statistics for all demands sent to it

These data points are accessed by the DD to make better decisions about the load

balancing of the workers, and thus achieving better overall run-time efficiency.

Bo Lu was the first one to do the original design of the GEE framework [Lu04]

and investigate its performance under threaded and RMI environments. She also

introduced the notion of the Identifier Context (IC) classes – demands converted

into Java code and using Java Reflection [Gre05] to compile, load, and execute them

them at run-time. She also contributed the first version of the interpreter-based

execution engine. Next, Lei Tao contributed the first incarnation of the intensional

29

value warehouse and garbage collection mechanisms in [Tao04] based on the popular

scientific library called NetCDF. The author of this thesis put an effort to modularize

these all and make them easier to extend and customize. He also provided the initial

GEE application to start available network services. The GEE was also made aware

of the STs and CPs as well as the new type system, described in Section 4.1.1.5.

Further, Emil Vassev [VP05] produced a very general and functional framework for

demand migration and its implementation, Demand Migration System (DMS) that

supports among other things Jini, CORBA, and .NET Remoting for fault-tolerant

demand transportation system, a part of the Demand Dispatcher. The DMS is still

pending integration as of this writing.

2.5.4.1 Demand Propagation Resources for the GEE

The IDP generates and propagates demands according to the data dependence struc-

ture (DPR, now renamed to GEER in [WPG03]) generated by the GIPC. If a demand

requires some computation, the result can be calculated either locally or on a remote

computing unit. In the latter case, the communication procedures (CP) generated by

the GIPC are used by the GEE to send the demand to the worker. When a demand is

made, it is placed in a demand queue, to be removed only when the demand has been

successfully computed. This way of working provides a highly fault-tolerant system.

One of the weaknesses of GLU is its inability to optimize the overhead induced by

demand-propagation. The IDP will remedy to this weakness by implementing various

optimization techniques:

• Data blocking techniques used to aggregate similar demands at run time, which

will also be used at compile-time in the GIPC for automatic granularization of

data and functions for data-parallel applications

• The performance-critical parts (IDP and IVW) are designed as replaceable mod-

ules to enable run-time replacements by more efficient versions adapted to spe-

cific computation-intensive applications

• Certain demand paths identified (at compile-time or run-time) as critical will

be compiled to reduce their demand propagation overhead

• Extensive compile-time and run-time rank analysis (analysis of the dimension-

ality of variables) [Dod96].

30

2.5.4.2 Synchronization

Distributed vs. Parallel

It is important to make a distinction between parallel and distributed computing. In

parallel computing, SLP matters and latency tolerance for memory references with

mostly UMA (uniform memory access) characteristics, whereas in distributed com-

puting communication is much more expensive (and perhaps even prohibitive) and

CLP matters as well. This setup largely exhibits NUMA (non-UMA) characteristics

(see [Pro03b]) and latency tolerance (and so also fault tolerance) has a higher sig-

nificance. This greatly impacts the way we synchronize in parallel and distributed

worlds.

Synchronization in Distributed Environment A distributed environment is a

very popular domain these days, so we’ll start with it first. Typically, the network

is the scarce resource and is the bottleneck for a distributed application because it

implies communication (e.g., MPI), which is often unacceptable. Therefore, many

distributed applications choose not to communicate at all or communicate very little

through message passing. This implies blocking on waiting for the network requests

to propagate, i.e. network latency.

Synchronization in Parallel Environment Synchronization in a parallel envi-

ronment is more fine-grained, often at the hardware level (e.g., a full/empty bit in

memory cells). Java does not give us control over such synchronization, so we have to

rely on the JVM built for an architecture that has such synchronization. The JVM

has to be developed to make use of the full/empty bits that are usually represented

as future variables [Pro03b, JA03] in the languages specifically designed for parallel

computing.

Secure Synchronization

Secure synchronization is especially pertinent in a distributed environment. Like any

act of communication within worker-generator architecture (see Section 3.3.3.4) and

a warehouse (Figure 33; Section 2.5.4.1), synchronization has to be secure to avoid

(a) over-demanding, (b) incorrect results sent back, (c) loss of results and demands,

and (d) poisoning the warehouse with wrong data. Secure synchronization implies

31

fault tolerance. In GIPSY, we will rely on Java’s RMI and Jini over JSSE for secure

communication in a distributed environment, using Java’s synchronization primitives

(see Section 2.5.4.2) to achieve the goal of secure synchronization. Thus, the relia-

bility and accountability of the results of a GIPSY program are dependent on these

properties of underlying Java Runtime Environment (JRE) and the communication

protocols used.

Implicit vs. Explicit Synchronization

One of the productivity metrics of a software completing its task on time, is the effi-

ciency of development of (see [Pro03c]) such a software, i.e., the amount of program-

mer’s effort required to create and debug the software. This is essentially a metric,

called time-to-solution (TTS) [Pro03c]; from creation until the end result (e.g. com-

pletion of some scientific computation). The goal is to minimize TTS. One way to

achieve this is ease of programming. As the proportion of the work done by the com-

piler increases, so does the reliability of the code, but we target scientific researchers,

not just programmers. Scientific researchers from math and physics should not care

about these issues and, thus, just be concerned mastering the basics of Lucid. There-

fore, the programmer has to be freed from taking care of synchronization explicitly,

which a source of bugs and inefficiency of programming (e.g., using Java’s synchro-

nization primitives, such as synchronized, Object.wait(), Object.notify(), and

Object.notifyAll(), [Fla97]). The programmer should rather focus on the problem

being solved and let the compiler/run-time system deal with the synchronization pain.

The GIPSY system, built around the Lucid family, advocates implicit synchronization

either by wrapping around the Java’s synchronization primitives or through the com-

munication synchronization and data dependencies (although a complete discussion

is beyond the scope of this thesis, see [Lu04, VP05]).

2.5.5 Run-time Interactive Programming Environment

The RIPE is a visual programming aid to the run-time environment (GEE) enabling

the visualization of a dataflow diagram corresponding to the Lucid part of the GIPSY

program, source code editing, launching the compilation and execution of GIPSY

programs. The original conceptual design of RIPE [Paq99] is illustrated in Figure 13.

The user’s points of interaction with the RIPE at run-time vary in the following ways:

32

Figure 13: Conceptual Design of the RIPE

• Enable interactive editing of GIPSY programs via a variety of editors (textual,

graphical, web).

• Dynamic inspection of the IVW.

• Modification of the input/output channels of the program.

• Recompilation of the GIPSY programs.

• Modification of the communication protocols.

• Swapping of the parts of the GIPSY itself (e.g. garbage collection, optimization,

warehouse caching etc. strategies).

Because of the interactive nature of the RIPE, the GIPC is modularly designed

to allow the individual on-the-fly compilation of either the IDS (by changing the Lu-

cid code), CP (by changing the communication protocol), or ST (by changing the

33

sequential code). Such a modular design even allows sequential threads to be pro-

grams written in different languages (for now, we are concentrating on Java sequential

threads, but a provision is made for easy inclusion of other languages with the GICF,

Section 4.1.1.1).

The RIPE even enables the graphic development of Lucid programs, translating

the graphic version of the program into a textual version that can then be compiled

into an operational version through a DFG generator of Yimin Ding [Din04]. However,

the development of this facility for graphical programming posed many problems

whose solution is not yet settled, for example representation of the STs and CPs in

the DFG nodes. An extensive and general requirements analysis will be undertaken,

as this interface will have to be suited to many different types of applications. There

is also the possibility to have a kernel run-time interface on top of which we can plug-

in different types of interfaces adapted to different applications, such as stand-alone,

web-, or server-based.

34

2.6 Tools

This section presents a brief description of a variety of tools that helped most with

the implementation aspects of this work.

2.6.1 Java as a Programming Language

The primary implementation language of GIPSY is Java. This includes using Java’s

Reflection, JNI, and JUnit frameworks and packages. We have chosen to implement

our project using the Java programming language mainly because of the binary porta-

bility of the Java applications as well as its facilities, for e.g. memory management

and communication tasks, so we can concentrate more on the algorithms instead.

Java also provides built-in types and data-structures to manage collections (build,

sort, store/retrieve) efficiently [Fla97, Mic05b]. There is also source code written in

other languages in the main GIPSY repository. This includes LEFTY code for DFG

generation and the code of the test intensional programs in various Lucid dialects.

The Java versions supported by GIPSY are 1.4 and 1.5. The GIPSY will no longer

build on 1.3 and earlier JDKs.

2.6.1.1 Java Reflection

Java Reflection Framework java.reflect.* [Gre05] allows us to load/query/discover

a given class for all of its API through enumeration of constructors, fields, methods,

etc. at run-time. This is incredibly useful for dynamic loading and execution of

our compilers, identifier context classes, and sequential threads on local and remote

machines.

The basic API from the reflection framework used in the implementation of

GIPSY is the Class class that allows getting arrays of declared Method objects

through the getDeclaredMethods() call that will become the STs at the end, then

for each Method the reflection API allows getting parameter and return types via

getParameterTypes() and getReturnType() calls, which will become the CPs. The

Class.newInstance() method allows instantiating an object off the newly gener-

ated class. Likewise, an enumeration of Constructor objects is acquired through the

Class.getConstructors() call. Constructors in Java are treated differently from

methods because they are not inherited and don’t have a return type (except that

35

the type of the object they create). We still need to enumerate them to allow Objec-

tive Lucid programs to use the constructors, default or non-default, directly, so we

can get a handle on them similarly to STs.

2.6.1.2 Java Native Interface (JNI)

The Java Native Interface (JNI) [Ste05] is very useful for the thread generation com-

ponent of the GIPC. We rely on JNI to increase the number of popular imperative

languages in which the sequential threads could be written. Developers use the JNI

to handle some specific situations when an application cannot be written entirely in

Java, e.g. when the standard Java classes do not provide some platform-dependent

features an application may require, or use a library written in another language be

accessible to Java applications, or for performance reasons a small portion of a time-

critical code has to be written say in C or assembly, but still be accessible from a

Java application [Ste05]. In GIPSY, the second and third of the listed cases are most

applicable (e.g. to adopt GLU programs). The JNI will allow us to avoid Lucid-to-C

or Lucid-to-C++ type matching as we can do it all through Java and maintain only

Lucid-to-Java type mapping table.

The JNI is made so that the native and Java sides of an application can pass back

and forth objects, strings, arrays and update their state on either end [Ste05]. The

JNI is bi-directional, i.e., allows Java to use the native libraries and applications and

provide access to Java libraries from the native applications.

The general methodology of creating a JNI application say that interacts with a

C implementation is done in six steps [Ste05]:

1. Write a Java code with a native method to be implemented in C, the main(),

and the dynamic loading statement for a library (to be compiled in the next

steps).

2. Compile the Java code with javac and produce a .class file.

3. Create a C header .h file from the compiled .class file by calling javah. This

header file will provide the necessary #include directives along with the C-style

prototype declaration of the native method.

4. Next, write the implementation of the function in regular C in a .c file.

36

5. Then, create a shared library by compiling the .h and .c files with a C compiler.

6. Run the application regularly with the JVM (java).

2.6.1.3 JUnit

JUnit is an open-source Java testing framework used to write and run automated

repeatable unit tests in a hassle-free manner [GB04]. The goal is to sustain application

correctness over time, especially when undergoing a lot of integration efforts. JUnit

is designed with software architecture patterns in mind and follows best software

engineering practices. It encourages developers to write tests for their applications

that withstand time and bit rot.

The main abstract class is TestCase that follows the Command design pattern

that implements the Test interface. This class maintains the name of the tests (if

it fails) and defines the run() method that has to be overridden to do the actual

testing work. The default Template Method run() simply does three things: setUp(),

runTest(), and tearDown(). Their default implementation is to do nothing, so a

developer can override them as necessary. Then, to collect the test results they apply

Collecting Parameter pattern. They use the TestResult class for that.

JUnit makes a distinction between errors and failures in the following way: errors

to JUnit are mostly unexpected run-time or regular exceptions, whereas failures are

anticipated and are tested for using assertion checks. The errors and failures are

collected for further test failure reporting.

To run tests in a general manner from the point of view of the tester, the test

classes have with a generic interface using the Adapter pattern. JUnit also offers

a pluggable selector capability via the Java Reflection API [Gre05]. The TestSuite

class represents a collection of tests to run. In the GIPSY, the Regression application

(see Section 5.1) comprises concrete implementation of such a test suite that tests

most of the feasible functionality of the GIPC and GEE modules. See more details

of application of JUnit to the GIPSY in Chapter 5.

2.6.2 javacc – Java Compiler Compiler

JavaCC [VC05], accompanied by JJTree, is the tool the GIPSY project is relying on

since the first implementation [Ren02] to create Java-language parsers and ASTs off

37

a source grammar files. The Java Compiler Compiler tool implements the same idea

for Java, as do lex/yacc [Lou97] (or flex/bison) for C – reading a source grammar

they produce a parser that complies with this grammar and gives you a handle on

the root of the abstract syntax tree. The GIPL, Indexical Lucid, JLucid, Objec-

tive Lucid, PreprocessorParser, and DFGGenerator parsers are generated with the

JavaCC/JJTree parser generation tools. JavaCC is a LL(K) [Lou97] parser generator,

so the original GIPL and Indexical Lucid grammars and the new grammars had to

be modified to eliminate or avoid the left recursion.

2.6.3 MARF

Modular Audio Recognition Framework (MARF) library [MCSN05] provides a few

useful utility and storage classes GIPSY is using to manipulate threads, arrays, option

processing, and byte operations. Despite MARF’s belonging to a voice/speech/natural

language recognition and processing library, it contains a variety of useful utility mod-

ules for threading and options processing.

2.6.4 CVS

For managing the source code repository the Concurrent Versions System (CVS)

[BddzzP+05] is used. The CVS allows multiple developers work on the up-to-date

source tree in parallel that keeps tracks of the revision history and works in an trans-

actional manner. The author produced a mini-tutorial on the CVS [Mok03a] for the

GIPSY Research and Development team, which contains the necessary summary for

the team to work with the project repository.

While CVS has a comprehensive set of commands, the basic set includes:

• init to initialize the repository

• checkout or co to checkout the source code tree from the repository to a local

directory

• update or up to make the local tree up-to-date with the one on the server

• add to schedule a new file inside the existing local checkout for addition to the

repository

38

• remove to schedule a new file inside the existing local checkout for removal from

the repository

• commit to upload the changes done locally to the server

• diff to show the differences between the local and the server versions of the

tree

2.6.5 Tomcat

Apache Jakarta Tomcat [Fou05] is an open-source Java application servlet and server

pages container project from Apache Foundation to run web Java-based applications

written in accordance with the Java Servlet and JavaServer Pages [Mic05a, Mic05c]

specifications developed by Sun Microsystems. Tomcat powers up the web front end

to GIPSY to test intensional programs online. The web frontend is represented by

the WebEditor servlet as of this writing a part of RIPE which is discussed later in

Chapter 4. Tomcat has an easy interface to deploy Java-based applications and their

libraries, e.g. through a manager presented in Figure 14.

Tomcat itself consists from a variety of modules that includes implementation of

the JSP (Jasper engine) and Servlet APIs, a webserver called Coyote, the application

server called Catalina, and many other things for logging, security, administration,

etc.

2.6.6 Build System

The GIPSY’s sources can be built using a variety of ways, using different compil-

ers and IDEs on different platforms. This includes Linux Makefiles, IBM’s Eclipse,

Borland’s JBuilder, Apache’s Ant, and Sun’s NetBeans.

2.6.6.1 Makefiles

Unix/Linux Makefiles are targeting all Unix systems that support GNU make (a.k.a

gmake) [SMSP00, Mok05a]. Often, to compile all of the GIPSY is just enough to type

in make and the system will be built. All Unix versions support make, and our system

has been tested to build on Red Hat Linux 9, Fedora Core 2, Mac OS X, and

39

Figure 14: Tomcat Web Applications Manager

40

Solaris 9. There is a test script make-test.sh that tests whether we are dealing

with the GNU make on Unix systems, as this is the only make supported.

2.6.6.2 Eclipse

There are project files .project and .classpath that belong to this IDE from IBM

[c+04]. The GIPSY build with this IDE properly and has its library CLASSPATH

set. Eclipse is another open source tool available free of charge and provides extended

tools for Java projects development, refactoring, and deployment.

2.6.6.3 JBuilder

There is a project file GIPSY.jpx that belongs to this IDE from Borland [Bor03]. The

GIPSY build with this IDE properly and has its library CLASSPATH set.

2.6.6.4 Ant

There is a project file build.xml that belongs to this build tool from the Apache

Foundation [Con05]. The GIPSY build with this tool properly and has its library

CLASSPATH set. In this case build.xml is a portable way to write a Makefile in

XML.

2.6.6.5 NetBeans

There is a project file nbproject.xml that belongs to this IDE from Sun [Mic04].

The GIPSY build with this IDE properly and has its library CLASSPATH set.

2.6.7 readmedir

This script generates a human-readable description of a directory structure starting

from some directory with file listing and possibly descriptions (for this there should

be specially formatted file README.dir in every directory traversed. The contents

of this file will be a part of the output and is a responsibility of the directory cre-

ator/maintainer. The output formats of the script are LATEX, HTML, and plain text.

41

2.7 Summary

In this chapter the reader was introduced to the necessary background on the GIPSY

project and how it is being managed starting from the Lucid language origins to

its implementations in the GIPSY and the summary of the tools used to aid the

advancement of the project. In the GIPSY section the three main modules were

introduced, such as GIPC, GEE, and RIPE. While most of the remaining work has

gone into the GIPC in this thesis, the author had to perform the necessary integration

and adjustments to the GEE and RIPE.

42

Chapter 3

Methodology

This chapter focuses on the methods and techniques proposed to the solve the stated

problems (see Section 1.1). The approaches described are based on three publications,

namely [MPG05, MP05b, MP05a]. Section 3.1 introduces the JLucid language and

all related considerations including the syntax and semantics. Next, Objective Lucid

is introduced along with its syntax and semantics. Further, the GICF is introduced

by providing the necessary requirements for it to exist and the way to satisfy them.

Lastly, the summary is presented outlining the benefits and limitations of the proposed

solutions.

3.1 JLucid: Lucid with Embedded Java Methods

3.1.1 Rationale

The name JLucid comes from the GIPC component known as Java Compiler within

the Sequential Thread (ST) Generator of the GIPSY. It subsumes all of Indexical

Lucid and General Intensional Programming Language (GIPL) [Paq99] and syntacti-

cally allows embedded Java code. In fact, a JLucid program looks like a partial fusion

of the intensional and Java code segments. JLucid gives a great deal of flexibility to

Lucid programs by allowing to use existing implementations of certain functions in

Java, providing I/O facilities and math routines (that Lucid entirely lacks), and other

Java features accessible to Lucid, arrays, and permits to increase the granularity of

computations at the operator level by allowing the user to define Java operators, i.e.,

43

functions manipulating objects, thus allowing streams of objects1 in Lucid. JLucid

more or less achieves the same goals and mechanisms as provided by GLU. What we

are proposing is a flexible compiler and run-time system that permits the evolution

of languages through a framework approach [MP05a, PW05].

3.1.1.1 Modeling Non-Determinism

Lucid, by its nature, is deterministic, so introduction of imperative languages, such

as Java, may allow us to model non-determinism in Lucid programs for example by

providing access to random number generators available to the imperative languages.

Non-determinism can also be introduced as a result of side effects from for example

reading a different file each time an ST is invoked, or making a database query against

a table where data regularly changes, or say by reading the current time of day value.

Of course, a special care should be taken not to cache the results of such STs in the

warehouse.

3.1.1.2 Loading Existing Java Code with embed()

In a nutshell, we want to make the following possible for the Indexical Lucid program

in Figure 15 (replicated here from Chapter 2 for convenience) to become something

as in Figure 16 or, alternatively as in Figure 17. The latter form would allow us to

include objects from any types of URLs, local, HTTP, FTP, etc. The idea behind

embed() is to include or to import the code written already by someone and not

to rewrite it in Lucid (which may not be a trivial task). It is not meant to adjust

to URL’s existence at run-time as all embed-referenced resources are resolved at

compile time. We “include” the pointed-to resource and attempt to compile it where

the original program-initiator resides. If the URL is invalid at compile time, then

there will be a compile error and no computation will be started. embed() by itself

does not necessarily provoke a remote function call.

Existing Java code, in either .class or .java form, can be loaded with embed().

Intuitively, we would prefer the approach presented in Figure 18. That added flexi-

bility requires syntactical extension of Lucid and is not portable. For the program in

1A more precise meaning of Java objects within Lucid is explored further in the Objective Lucid
language, including the meaning of an object stream and how object members are manipulated (see
for example Section 3.2 and Section 4.1.3.6). Additionally, since the actual Java objects are flattened
into primitive types, it would be possible to access object members in parallel manner.

44

H

where

H = 1 fby merge(merge(2 * H, 3 * H), 5 * H);

merge(x, y) = if(xx <= yy) then xx else yy

where

xx = x upon(xx <= yy);

yy = y upon(yy <= xx);

end;

end;

Figure 15: Indexical Lucid program implementing the merge() function.

#JAVA

void merge(int x, int y)

{

// java code here

}

#JLUCID

H

where

H = 1 fby merge(merge(2 * H, 3 * H), 5 * H);

end;

Figure 16: Indexical Lucid program implementing the merge() function as inline Java
method.

H

where

H = 1 fby merge(merge(2 * H, 3 * H), 5 * H);

merge(x, y) =

embed("file://path/to/class/Merge.class", "merge", x, y);

end;

Figure 17: Indexical Lucid program implementing the merge() function as embed().

F

where

dimension d;

F = foo(#d);

where

foo(i) = embed("file://my/classes/Foo.class", "foo", i);

end;

end;

Figure 18: Illustration of the embed() syntax.

45

Figure 18 to work, foo() has to return a Java type of int, byte, long, char, String,

or boolean, as per Table 1, page 64. A wrapper class will be created to extend from

the Foo and implement the ISequentialThread interface (see Appendix B.1). Gen-

eral embed() syntax would be defined as follows:

id(id, id, ...) ::= embed(URI, METHOD, id, id, ...);

where id is the Lucid function name being defined that is mapped to a Java’s method

named METHOD (which may or may not be of the same name as the first id). The URI

is pointing to either .class or .java file. Example URI’s would be:

foo(a,b) = embed("file://files/Foo.java","bar",a,b);

bar(a,b) = embed("http://www.java.com/Foo.class","foo",a,b);

baz(a,b) = embed("ftp://ftp.file.com/pub/Foo.java","zee",a,b);

These declarations associate Lucid functions with Java implementations. Name

clashes may be avoided, if necessary, by using different function names. Above, for

example, Lucid baz() is implemented by Java zee().

public class <filename>_<machine_name>_<timestamp>

extends my.classes.Foo

implements ISequentialThread

{

// The definition is provided later in the text

}

Figure 19: Generated corresponding ST to that of Figure 18.

There are several ways of making this work. We could extract either a textual or

a bytecode definition of foo(), wrap it in our own class and, (re)compile it. However,

there is an issue here. What about other functions it may use, like shown in Figure 23

with two methods calling each other? That would mean extracting those dependencies

as well along with the method of interest. This won’t scale very efficiently. Thus,

alternate approaches include: to either inherit from the desired class as in Figure 19,

encapsulate this class instance, or attempt to wrap the entire class as done for the

JAVA segment in Section 3.1.1.3 below. The former approach would imply having

a class variable instance of the type of that class encapsulated into the wrapper.

The latter approach was chosen as more feasible to implement, although it doesn’t

deal with user-defined classes and subclass and packages the .class or .java file

may require at the moment. Thus, the embed() acts in a way similar to #include in

C/C++ or import in Java of a set of Java definitions to be used in a JLucid program.

46

Therefore, embed() has to be resolved at compile time. Similar technique may be

taken towards other languages than Java at a later time. Lucid’s syntax has to be

extended to support embed().

3.1.1.3 The #JAVA and #JLUCID Code Segments

This section explores ways of mixing Java and Lucid source code segments in a single

text file and ways of dealing with such a merge.

F

where

dimension d;

F = foo(#d);

where

foo(i) = int foo(int i) { return i + 1; }

end;

end;

Figure 20: Inline Java function declaration.

An attempt to use Java’s methods inline, such as in Figure 20 would be intuitive,

but does not justify the effort spent on syntax analysis. Therefore, we take the inline

definition out of the Lucid part, and make it a separate outer definition of the same

method. Additionally, we explicitly mark the JLUCID and JAVA code segments to

simplify pre-processing of the JLucid code as presented in Figure 21.

#JAVA

int foo(int i)

{

// Some i + PI

return (int)(java.lang.Math.PI + i);

}

#JLUCID

F

where

dimension d;

F = foo(#d);

end;

Figure 21: Java method declaration split out from the Lucid part.

Given the Natural Numbers Problem (see [Paq99]) in Figure 22 (replicated here

for convenience), one could imagine the function definition for N to be implemented

in Java in two functions. To illustrate the point when two separate functions can call

47

each other in the JAVA segment or several JAVA segments. This modified JLucid code

along with line numbers is shown in Figure 23. Since we allow one Java method to

call another within, we have to wrap them both into the same class.

N @.d 2

where

dimension d;

N = if (#.d <= 0) then 42 else (N + 1) @.d (#.d - 1) fi;

end;

Figure 22: Natural numbers problem in plain GIPL.

The JLucid code segments after “#JAVA” constructs will be grouped together by

the compiler. For all definitions (functions, classes, variables) in these segments, their

original location in the JLucid source recorded and statically put in the wrapper class.

These definitions will end up in that wrapper class as well.

It would be possible to have a class defined within a wrapper class or any other

valid Java declaration; even a data member can be included. To summarize, the Java

segments in the JLucid code are a body of a generated class that implements the

ISequentialThread interface.

1 #JAVA

2

3 int getN(int piDimension)

4 {

5 if(piDimension <= 0)

6 return get42();

7 else

8 return getN(piDimension - 1) + 1;

9 }

10

11 int get42()

12 {

13 return 42;

14 }

15

16 #JLUCID

17

18 N @d 2

19 where

20 dimension d;

21 N = getN(#d);

22 end;

Figure 23: Natural numbers problem with two Java methods calling each other.

For the example in Figure 23 the parser would proceed as follows:

48

• In the preprocessing step the source code is split into two parts: the Java part

and the Lucid part. For both parts original source’s line numbers and length of

the definitions are recorded.

• Then they both are fed to the respective parsers. Java’s part requires extra

handling: the Java methods (one or more) defined in the code, have to be

wrapped into a class and then JavaCompiler class that takes the Java portion

of the source and feeds it to javac for syntactic and semantic analyses and

byte code generation. They will become parts of a Sequential Thread, ST (see

Section 3.3.3.1) definition fed to Workers (see Section 3.3.3.4).

• The Lucid part is processed by the modified Lucid compiler (to include the

syntactical modifications for arrays and embed()) and comes up with the main

AST from that.

• The Java STs are then linked into the main AST in place of nodes where the

identifiers of these appear in the Lucid part of the program prior semantic

analysis.

Any method or other definition in the JAVA segment is wrapped into a class. The

generated wrapper class will contain a Hashtable that maps method signature strings

to their starting line in the original JLucid code plus the length of the definitions in

lines of text they occupy statically generated and initialized. This is needed for the

error reporting subsystem in case of syntax/semantic errors, report back correctly the

line in the original JLucid program and not in the generated class. The class name is

created automatically from the original program name, the machine name it’s being

compiled on, and a timestamp to guarantee enough uniqueness to the generated class’

name to minimize conflict for multiple such generated classes. Thus, the JAVA segment

in Figure 23 will transform into the generated class as in Figure 24. This is a short

version; for more detailed one please refer to the Section B.3. In fact, after generating

this class (and possibly compiling it) this situation can be viewed as a special case

for embed(), Section 3.1.1.2 or vice versa. Note, since we have no guarantee the Java

methods are side-effects free in JLucid, their results are not cached in the warehouse.

In [MPG05] we required foo() in the previous examples to be static. In fact,

any method or other definition in the JAVA segment were to be transformed to become

static while being wrapped into a class. For example, “int foo() {return 1;}”

49

public class <filename>_<machine_name>_<timestamp>

implements gipsy.interfaces.ISequentialThread {

private OriginalSourceCodeInfo oOriginalSourceCodeInfo;

// Inner class with original source code information

public class OriginalSourceCodeInfo {

// For debugging / monitoring; generated statically

private String strOriginalSource = ...

// Mapping to original source code position for error reporting

private Hashtable oLineNumbers = new Hashtable();

// Body is filled in by the preprocessor statically

public OriginalSourceCodeInfo() {

Vector int_getN_int_piDimension = new Vector();

// Start line and Length in lines

int_getN_int_piDimension.add(new Integer(3));

int_getN_int_piDimension.add(new Integer(7));

oLineNumbers.put("int getN(int piDimension)",

int_getN_int_piDimension);

Vector int_get42 = new Vector();

int_get42.add(new Integer(11));

int_get42.add(new Integer(4));

oLineNumbers.put("int get42()", int_get42);

}

}

// Constructor

public <filename>_<machine_name>_<timestamp>() {

oOriginalSourceCodeInfo = new OriginalSourceCodeInfo();

}

/*

* Implementation of the SequentialThread interface

*/

// Body generated by the compiler

public void run() {

Payload oPayload = new Payload();

oPayload.add("d", new Integer(42));

work(oPayload);

}

// Body generated by the compiler statically

public WorkResult work(Payload poPayload) {

WorkResult oWorkresult = new WorkResult();

oWorkresult.add(getN(poPayload.getVaueOf("d")));

return oWorkResult;

}

/*

* The below are generated off the source file nat2java.ipl

*/

public static int getN(int piDimension) {

if(piDimension <= 0) return get42();

else return getN(piDimension - 1) + 1;

}

public static int get42() {

return 42;

}

}

Figure 24: Generated Sequential Thread Class.

50

would become “public static int foo() {...}”. We insisted on static declara-

tions only because the sequential threads were not instantiated by the workers when

executed. This restriction has been lifted during implementation as we instantiate

and serialize the sequential thread class as needed.

3.1.1.4 Is JLucid an Intensional Language?

We treat JLucid as a separate specific intensional programming language (SIPL)

rather than a part of a GIPSY program within existing Indexical Lucid implementa-

tion. Here are some pros and cons of this approach and JLucid as a separate SIPL

approach is the winner. Why extend it as a separate SIPL?

• This would serve as an example on how to add other SIPLs.

• This would allow us to keep the original Indexical Lucid clean and working.

• This would allow functions with Java syntax to be used within a Lucid program

as well as binary Java function calls of pre-compiled classes.

• It can be extended to other languages as it turns out to be a successful approach.

Why not to treat is as a separate SIPL?

• We might want to have embedded Java (or other language) in any intensional

language, not just Indexical Lucid. How to make that possible?

• It is not truly an SIPL, but a hybrid.

3.1.2 Syntax

In JLucid, we extend the syntax of both GIPL and Indexical Lucid to support arrays.

For example, it is useful to be able to evaluate several array elements under the same

context. This is included by the last E rules of E[E, ..., E] and [E, ..., E] in both

syntaxes. Arrays are useful to manipulate a collection Lucid streams under the same

context. JLucid arrays are mapped to Java arrays on the element-by-element basis

with the appropriate element type matching and may only correspond to arrays of

primitive types in Java. The syntax also includes the embed() extension to allow

including external Java code. The JLucid syntax extensions to GIPL and Indexical

Lucid are presented in Figure 25 and Figure 26.

51

E ::= id

| E(E,...,E)

| if E then E else E fi

| # E

| E @ E

| E where Q end;

| [E:E,...,E:E]

| embed(URI, METHOD, E, E, ...)

| E[E,...,E]

| [E,...,E]

Q ::= dimension id,...,id;

| id = E;

| id(id,...,id) = E;

| QQ

Figure 25: JLucid Extension to GIPL Syntax

E ::= id

| E(E,...,E)

| if E then E else E fi

| # E

| E @ E E

| E where Q end;

| E bin-op E

| un-op E

| embed(URI, METHOD, E, E, ...)

| E[E,...,E]

| [E,...,E]

Q ::= dimension id,...,id;

| id = E;

| id.id,...,id(id,...,id) = E;

| QQ

bin-op ::= fby | upon | asa | wvr

un-op ::= first | next | prev

Figure 26: JLucid Extension to Indexical Lucid Syntax

3.1.3 Semantics

The JLucid extension to the operational semantics of Lucid (see Section 2.2.2.8 on

page 15) is defined in Figure 27. As in the original Lucid semantics, each type of

identifier can only be used in the appropriate situations. Notation:

• freefun, ffid, ffdef mean a type of identifier is a hybrid free (i.e. object-

free) function freefun, where ffid is its identifier and ffdef is its definition

(body).

• The Effid rule defines JLucid’s free functions.

• The JLucid #JAVAffid rule add free function definition to the definition envi-

ronment.

52

Effid :

D,P ` E : id D,P ` E1, . . . , En : v1, . . . , vn

D(id) = (freefun, ffid, ffdef)
D,P `<ffid(v1, . . . , vn)>: v

D,P ` E(E1, . . . , En) : v

#JAVAffid :
ffdef = frttype ffid(fargtype1 fargid1 , . . . , fargtypen fargidn)

D,P ` ffdef : D†[ffid 7→ (freefun, ffid, ffdef)],P

Figure 27: Additional basic semantic rules to support JLucid

3.2 Objective Lucid: JLucid with Java Objects

3.2.1 Rationale

Objective Lucid is a direct extension of JLucid. The original syntax of Indexical Lucid

(and also for JLucid and GIPL) is augmented to support a so-called dot-notation. This

allows Lucid to manipulate grouped data by using object’s methods. In fact, the idea

is similar to manipulating arrays in JLucid. The difference with the arrays is that

they are manipulated as a collection of ordered data of elements of the same type, to

be evaluated in the same context. However, an object that varies in some dimension

implies that all its members, possibly of different types, also potentially vary along

this dimension, but across objects, i.e. the objects themselves are not intensional. An

object can be thought of as a heterogeneous collection of different types of members,

which you can access individually using their name, whereas arrays can be thought

of as a homogeneous collection of members that can be accesses individually using

their index.

Just like JLucid [MPG05], Objective Lucid is being developed as a separate specific

intensional programming language (SIPL) within the GIPSY for the same reasons:

keeping the other implementations undisturbed and working while experimenting on

this particular implementation.

3.2.1.1 Pseudo-Objectivism in JLucid

A pseudo-object-oriented approach is already present in JLucid. The program pre-

sented in Figure 28 gives an example of a Java function returning an object of type

Integer. In JLucid we are not able to manipulate this object directly in intensional

programming as Java does, though we can provide methods, such as g() to access

53

properties of a particular Java object from within JLucid. However, that reduces

legacy Java code reusability by forcing the programmer to add such functions in his

code to be able to use it in the GIPSY. Another example in Figure 29 shows how one

can make use of objects in JLucid by providing pseudo-free Java accessors similar to

getComputedBar() in the example. They are pseudo-free because they don’t appear

as a part of any Java class to a JLucid programmer explicitly, but internally they get

wrapped into a class when the code is compiled. In Objective Lucid such explicit

workarounds are not necessary anymore, but this gives us some ideas about how to

actually implement some features of Objective Lucid in practice, i.e., the compiler

can generate a number of pseudo-free accessors to object’s members and use JLucid’s

implementation of Java functions internally.

3.2.1.2 Stream of Objects

An interesting question could be to ask: “What is an object stream?” Is it that the

members of this object vary in the same dimension(s) or they can have “substreams”?

In Objective Lucid we answer this as decomposing public object’s data members into

primitive types and varying them or in simplified manner we employ object’s effectors.

Thus, when there is a demand say for the object’s state (data members) at some time

t, there will have to be generated demands for all of t between [0, t] where at time

0 an instance of the object is created. Therefore, the object state changes in the

[0, t] interval represent the object stream in the context of this thesis. There are two

possible outcomes of this evaluation: either a portion of object’s state is altered by

an intensional program or the entire object. In the former case, Lucid only accesses

some object’s members via the dot-notation in the intensional manner, whereas in

the latter case all the members of an object are altered in the intensional context

implicitly. The examples presented in Figure 30, Figure 74, page 153, and Figure 76,

page 156 work on portions of an object, whereas the examples in Section 4.1.3.6,

page 109 work on all the members of an object at the same time.

54

#JAVA

Integer f()

{

return new Integer("1234");

}

int g()

{

return f().intValue();

}

#JLUCID

A

where

A = g();

end;

Figure 28: Pseudo-objectivism in JLucid.

#JAVA

class Foo

{

private int bar;

public Foo()

{

bar = (int)(Math.random() * Integer.MAX_VALUE);

}

public int getBar()

{

return bar;

}

public void computeMod(int piParam)

{

bar = bar % piParam;

}

}

int getComputedBar(int piParam)

{

Foo oFoo = new Foo();

oFoo.computeMod(piParam);

System.out.println("bar = " + bar);

return oFoo.getBar();

}

#JLUCID

Bar

where

Bar = getComputedBar(5);

end;

Figure 29: Using pseudo-free Java functions to access object properties in JLucid.

55

3.2.1.3 Pure Intensional Object-Oriented Programming

Objective Lucid has presented a way for Lucid programs to use Java objects. This

may seem rather restrictive and may look like a workaround (though practical!).

An interesting concept would be to extend the Lucid language itself to create and

manipulate pure Lucid objects, not Java objects. This will allow addressing issues like

inheritance and polymorphism and other attributes of object-oriented programming

and will solve the problem of matching Lucid and Java data types. This is not

addressed in this work, but attempted to be solved in [WP05].

3.2.2 Syntax

The parser is extended to support the <objectref>.<feature> dot-notation for the

Lucid part of reference data types. The semantic analysis is augmented to accommo-

date objects and user-defined data types. In doing so, Lucid is able to manipulate

Java objects as well as access public variables and methods of these objects. An

example is shown in Figure 30. This example manipulates a simple object E by eval-

uating its state at some time “2”. The program begins with the construction of the

object with f1() (or one could call the object constructor directly), and then the rest

of the expressions access public members x and foo() of the object during expression

evaluation.

The Objective Lucid syntax is in Figure 31. It is a direct extension of the JLucid

syntax in Figure 26 to support the dot-notation. Essentially, the extension is the

E.id productions. Any E on the left-hand-side can evaluate to an object type, but

the right-hand-side is always an identifier (Java class’ data member or method).

3.2.3 Semantics

To support these extensions to JLucid, the Semantic Analyzer of JLucid requires more

non-trivial changes than the syntax analysis and the dot-notation implementation

due to arbitrary object data types. In order to perform type checks and apply the

semantic rules of Lucid, we place the object data types into the definition environment

D, which is in fact a semantic equivalent to the data dictionary part of the GEER.

This is partly solved by using the pseudo-free Java functions, which de-objectify the

object members, but in order to be able to do so, we need to have the object types

56

#JAVA

class ClassXB

{

public int x;

public float b;

public ClassXB()

{

x = 0; b = 1.2;

}

public int foo(int a, float c)

{

return x = (int)(x * a + b * c);

}

ClassXB addx(int b)

{

x += b;

return this;

}

}

ClassXB f1()

{

return new ClassXB();

}

#OBJECTIVELUCID

/*

* The result of this program should be the object E

* to be evaluated at time dimension 2 with its ’x’

* member modified accordingly.

*/

E @time 2

where

dimension time;

E = f1() fby.time A;

A = E.addx(B);

B = E.foo(A @time C, A) + 3;

C = E.x * 2;

end;

Figure 30: Objective Lucid example.

57

E ::= id

| E(E,...,E)

| if E then E else E fi

| # E

| E @ E E

| E where Q end;

| E bin-op E

| un-op E

| embed(URI, METHOD, E, E, ...)

| E[E,...,E]

| [E,...,E]

| E.id

| E.id(E,...,E)

Q ::= dimension id,...,id;

| id = E;

| E.id = E;

| id.id,...,id(id,...,id) = E;

| QQ

bin-op ::= fby | upon | asa | wvr

un-op ::= first | next | prev

Figure 31: Objective Lucid Syntax

in the definition environment. The corresponding operational semantic rules from

[Paq99] can be extended as follows.

The Objective Lucid extension to the operational semantics of Lucid is defined

in Figure 32. As in the original Lucid semantics, each type of identifier can only be

used in the appropriate situations. Notation:

• class, cid, cdef means it is a Class type of identifier with name cid and a

definition cdef.

• classv, cid.cvid, vdef means that the variable is a member variable of a

class classv with identifier cid.cvid given the variable definition vdef within

the class.

• <cid.cvid> means object-member reference within an intensional program.

• classf, cid.cfid, fdef means that the function is a member function of a

class classf with identifier cid.cfid given the variable definition fdef within

the class.

• <cid.cfid(v1, . . . , vn)> represents a object-function call within an intensional

program with actual parameters.

• freefun, ffid, ffdef mean a type of identifier is a hybrid free (i.e. object-

free) function freefun, where ffid is its identifier and ffdef is its definition

(body).

58

• By cdef = Class cid {. . .} we declare a class definition. A class can contain

member variable vdef and member functions definitions fdef.

The rules:

• The Ec−vid rule defines an object member variable for an expression for the dot-

notation. It is independent from the language in which we define and express

our objects. The rule says that under some context given two expressions E

and E ′ that evaluate to a class-type identifier id and a variable type identifier

id′ respectively and if the two together via a dot-notation represent an object-

data-member reference, then the expression E.E ′ evaluates to a value v.

• Member function calls are resolved by the Ec−fct rule. Similarly to the Ec−vid

rule, it defines that given two expressions E and E ′ under some context that

evaluate to a class-type identifier id and a member function type identifier

id′ and a set of intensional expressions E1, . . . , En evaluates to some values

v1, . . . , vn and the two identifiers via a dot-notation represent a member function

call with parameters v1, . . . , vn, then we say the expression E.E ′(E1, . . . , E2) is

a member function call that under the same context evaluates to some value

v, i.e. the function always returns a value. Here we see why it is necessary

for Lucid to map a void data type to implicit Boolean true. This choice may

seem a bit arbitrary (for example, one could pick an integer 1), but aside from

practicality aspect the mere choice of true may signify a successful termination

of a method.

• The Effid rule defines JLucid’s free functions. The rule is a simpler version of

Ec−fct with no class type identifiers present.

• The #JAVAobjid rule places class definition into the definition environment.

• The #JAVAobvjid and #JAVAobjfid rules add public Java object member

variable and function identifiers along with their definitions to the definition

environment.

• The JLucid #JAVAffid rule add free function definition to the definition envi-

ronment.

59

Ec−vid :

D,P ` E : id D,P ` E′ : id′
D(id) = (class, cid, cdef) D(id′) = (classv, cid.cvid, vdef)

D,P `<cid.cvid>: v

D,P ` E.E′ : v

Ec−fct :

D,P ` E : id D,P ` E′ : id′ D,P ` E1, . . . , En : v1, . . . , vn

D(id) = (class, cid, cdef) D(id′) = (classf, cid.cfid, fdef)
D,P `<cid.cfid(v1, . . . , vn)>: v

D,P ` E.E′(E1, . . . , En) : v

Effid :

D,P ` E : id D,P ` E1, . . . , En : v1, . . . , vn

D(id) = (freefun, ffid, ffdef)
D,P `<ffid(v1, . . . , vn)>: v

D,P ` E(E1, . . . , En) : v

#JAVAobjid :
cdef = Class cid {. . .}

D,P ` cdef : D†[cid 7→ (class, cid, cdef)], P

#JAVAobjvid :
cdef = Class cid {. . . vdef . . .} vdef = public type vid;

D,P ` cdef : D†[cid.vid 7→ (classv, cid.vid, vdef)],P

#JAVAobjfid :
cdef = Class cid {. . . fdef . . .} fdef = public frttype fid(fargtype1 fargid1 , . . . , fargtypen fargidn)

D,P ` cdef : D†[cid.fid 7→ (classf, cid.fid, fdef)],P

#JAVAffid :
ffdef = frttype ffid(fargtype1 fargid1 , . . . , fargtypen fargidn)

D,P ` ffdef : D†[ffid 7→ (freefun, ffid, ffdef)],P

Figure 32: Additional basic semantic rules to support Objective Lucid

3.3 General Imperative Compiler Framework

3.3.1 Rationale

Having to deal with JLucid, Objective Lucid, and Java and a future likely possibility

to include other than Java imperative languages into intensional ones prompted inven-

tion of a general mechanism to handle that and simplify addition of new languages

into the GIPSY for research and experiments. This generalization touches several

critical aspects exposed by the JLucid and Objective Lucid languages involving such

a hybrid programming model. Thus, a core redesign of the GIPC was necessary to

enable this feature. The General Imperative Compiler Framework (GICF) addresses

the generalization issues (split among this Methodology and Design and Implemen-

tation chapters) for the imperative compilers and suggests later development of a

similar framework for the intensional languages.

The core areas in the hybrid compilation process affect the way an intensional lan-

guage program (which now syntactically allows having any number of code segments

60

written in one or more imperative languages) is compiled. This kind of program has

to be preprocessed first to extract the code segments to be compiled by the appropri-

ate language compilers and at the same time maintains syntactic and semantic links

between the parts of a hybrid program. This influences the general intensional com-

piler instrumentation, such as generation of sequential threads and communication

procedures, function elimination, GIPL-to-SIPL translation, semantic analysis, and

linking (and later interpreting/executing) of a GIPSY program.

Requirements for any such a framework like GICF imply at least the following

considerations:

• having a number of compiler interfaces known to the system that any concrete

compiler implements,

• ability to pick such compilers at runtime based on a hybrid program being

compiled,

• have a generalized AST that is capable of holding intensional and imperative

nodes,

• have the semantic analyzer understand possible data types that any language

may expose (which is a very challenging goal to do correctly), and deal with

function elimination for the imperative parts of the AST,

• preprocess by breaking down a hybrid GIPSY program’s source code to be fed to

the appropriate compilers gives us flexibility of allowing to include any impera-

tive language we want, but complicates maintenance of semantic links between

the intensional and imperative parts for later linking and semantic analysis.

This necessitates development of the two other special segments that can de-

clare in a uniform manner for GIPSY providing some meta information about

embedded imperative sequential threads, like function and type identifiers, pa-

rameter and return types for communication procedures, and user data types.

Thus, for the former we need a function prototype declaration segment, that

lists all free functions declared within imperative segments to be used by Lucid

and the type declaration segment for the user-defined types possibly declared

in those same imperative segments. The purpose of this meta-information is

two-fold: it will help us maintaining the semantic links via a dictionary and

61

create so-called “imperative stubs”. The former prompts the development of

the GIPSY Type System (see Section 4.1.1.5, page 83) as understood by the

Lucid language and its incarnation within the GIPSY to handle types in a more

general manner. The latter stubs have to be produced in order for the inten-

sional language compilers (that stay intact with the introduced framework) not

to choke on “undefined” symbols that really were defined in the imperative

parts, which an existing intensional compiler running in isolation fails to see.

• After all involved compilers are finished doing compilation of their code seg-

ments, they all produce a partial AST. For intensional compilers that means

the main AST with the intensional and stub nodes. For imperative compilers it

is the appropriate imperative AST for each sequential thread. The imperative

AST, in fact, need not to be a real tree and may contain a single imperative

node that would hold a payload of STs (compiled object or byte code), CPs,

type information, and some meta-information (e.g. what language the STs and

CPs are in and for which operating system and native compiler environment).

• Then, the imperative stubs have to be replaced by the real imperative nodes at

the linking stage before the semantic analysis.

• Once the main tree is formed, the semantic analyzer would use the type system

to verify type information of the intensional-imperative calls within taking into

consideration imperative nodes when doing function elimination and producing

the final “executable” tree, or Demand AST, or DAST, a component of the

GEER.

All this work is motivated by the desire to simplify the addition of new compilers

into the GIPSY environment with minimal integration hassle. The follow up sections

explore some of the issues about primary matching of the Java and GIPSY data

types, followed by the definition of sequential threads and communication procedures

in the GIPSY, and their Worker aggregator. While the below are sections that lay

down a concrete example based on JLucid and Java, the discussion addressing the

generalization of the design and implementation of these issues are presented in the

chapter that follows with the actual sequence diagram showing implementation details

of the above hybrid compilation process.

62

3.3.2 Matching Lucid and Java Data Types

Allowing Lucid to call Java functions brings a new set of issues related to data types.

Additional work is required on the semantic analyzer, especially when it comes to

type checks between Lucid and Java parts of a JLucid program. This is pertinent

when Lucid variables or expressions are used as parameters to Java functions and

when a Java function returns a result to be assigned to a Lucid variable or used in

an IP expression. The sets of types in both cases are not exactly the same. The

basic set of Lucid data types as defined by Grogono [Gro02b] is int, bool, double,

string, and dimension. Lucid’s int is of the same size as Java’s int, and so are

double, boolean, and String. Lucid string and Java String are simply mapped

to each other since internally we implement the former as the latter; thus, one can

think of the Lucid string as a reference when evaluated in the intensional program.

Based on this fact, the lengths of a Lucid string and Java String are the same.

Java String is also an object in Java; however, at this point, a Lucid program has no

direct access to any object properties. We also distinguish the float data type for

single-precision floating point operations. The dimension index type is said to be an

integer for the time being, but might become a float when higher precision of points

in time, for example, will be in demand, or it could even be an enumerated type

of unordered values (though float dimensions will introduce some very interesting

problems). Therefore, we perform data type matching as presented in Table 1. The

return and parameter types matching sets are not the same because of the size of the

types. Additionally, we allow void Java return type which will always be matched

to a Boolean expression true in Lucid as an expression has to always evaluate to

something.

The table does not reflect the fact that JLucid is able to manipulate arrays of

values (streams), but these arrays are not Java arrays (Java’s arrays are objects). In

Objective Lucid (see Section 3.2), we also have Java object data types will also be

manipulated by a Lucid program with the Lucid part being able to access object’s

properties and methods and have them as return types and arguments. As for now

our types mapping and restrictions are as per Table 1.

63

Table 1: Matching data types between Lucid and Java.
Return Types of Java Methods Types of Lucid Expressions

int, byte, long int

float float

double double

boolean bool

char, String string

void bool::true

Parameter Types Used in Lucid Corresponding Java Types

string String

float float

double double

int, dimension int

bool boolean

3.3.3 Sequential Thread and Communication Procedure Gen-

eration

3.3.3.1 Java Sequential Threads

Sequential threads are imperative functions that can be called in the Lucid part of

a GIPSY program. The data elements of a Lucid program are integers and the like.

Using them as such would result in a very inefficient computation due to the overhead

in generation and propagation of demands. STs overcome this problem. The notion of

sequential thread and granularization of data was introduced by the GLU (Granular

LUcid system [JD96, JDA97].

Each GIPSY program potentially defines several Java methods that can be called

by the Lucid part of the program. Each of these functions are coded in the Java part

of the GIPSY program; thus, a sequential thread represents by itself a bit of work to

compute split into one or more Java methods. They are compiled (see Figure 33) to

Java byte code by the compiler (GIPC, Figure 10) and packed into one executable,

along with the Communication Procedures (CP) (see Section 3.3.3.2) needed for the

communication between the generator and worker (Section 3.3.3.4, Figure 34). The

notion of worker is thus very close to the notion of sequential threads, where a worker

is basically the aggregation of the (potentially) several sequential threads that can

be executed by a worker, along with the communications procedures needed for the

64

Figure 33: Hybrid GIPSY Program Compilation Process

generator-worker communication.

Notice that the Generator-Worker Architecture may well be extended so that the

worker and the generator are fused into one; this is under review and is discussed in

[Lu04] and in [VP05]. This gives us distributed generators as outlined in [Gro02b],

but as yet is only a topic for discussion.

3.3.3.2 Java Communication Procedures

The functional demands (i.e., demands that raise the need for a Java function call)

are potentially computed by remote workers, upon demand by the generator. The

demand is sent via the network by the generator to the worker, along with the data

representing the parameters of this Java function call. Sending this data through the

network requires the breaking of the data structure into packets transmissible via a

network. This packing of the demand’s input data is done by the Communication

Procedures, along with some kind of remote procedure call to the worker using, for

example, TCP/IP RPC. Once the function (the sequential thread) resolves, the worker

65

(Section 3.3.3.4) is responsible for sending back the result to the generator that called

for this demand. That is also done by the CPs.

The CPs are generated by the compiler (GIPC) using the first part of the GIPSY

program: the definition of the data structures sent over the network (i.e., the pa-

rameter and return types of the Java functions). The GIPC parses these Java data

structures and translates them into an abstract syntax tree. This tree is then traversed

by the CP generator, which generates byte code for the communication procedures,

following the communication protocol that was selected. Serialization summarizes

much of this and Java helps us do it.

The CP generator has to be extremely flexible, as it has to be able to generate

code that uses various kinds of communication schemes. In a nutshell, CPs determine

the way a ST should be delivered to the computing host’s worker depending on

the communication environment. For the localhost, it is plain TLP (i.e., we create

Java threads on a local machine) so NullCommunicationProcedure (Section B.2) is

used. For distributed environment CPs wrap transport functions over Jini, DCOM+,

CORBA, PVM, and RMI (see [Lu04, VP05]) protocols. Both CP and ST interfaces

are presented in Section 4.1.1.8.

3.3.3.3 C Sequential Threads and Communication Procedures with the

JNI

This is the methodology of how to extend the Java ST/CP generation concepts to

C (and similarly can be done for C++) with the JNI [Ste05] introduced in Sec-

tion 2.6.1.2, page 36. This approach was designed, but not implemented as of this

writing; however, it may serve as a good head start on the implementation of the

CCompiler in GICF.

Much of the ST wrapper class generation code for C will be similar to that of

Java. The main difference is the bodies of the sequential thread functions will not

be present in the generated class as-is, but they will be declared as native with

no Java implementation. The C code chunks will be saved to a .c file and the

corresponding .h fill will be generated declaring all the needed prototypes with the

javah tool provided with the standard distribution of the JDK. After that, we call an

external C compiler to compile the C chunks into a shared library. Thus, the other

modification to the generated wrapper class the CCompiler has to do, is to add a

66

static initializer with the System.loadLibrary() call for the newly compiled library

with the C implementation of our ST(s). The generated ST class and the compiled

mini-library can be stored together (e.g. the binary library file can be loaded into

a byte array of the class and deserialized back when about to be executed) in the

imperative node and later be communicated just like Java STs. A more sophisticated

alternative is to do the compilation and dynamic loading after communication by the

engine, but this can be a next step.

As far as type matching concerned, we still can use the same mapping rules defined

in Section 3.3.2 (and subsequently the TypeMap class of the JavaCompiler presented

later on) because with the JNI with still work with Java and the JVM can do Java-

to-native type translation to C or C++ for us, not only for primitive types, but also

for arrays, objects, and strings.

3.3.3.4 Worker Aggregator Definition in the Generator-Worker Architec-

ture

The GIPSY uses a generator-worker execution architecture as shown in Figure 34.

The GEER generated by the GIPC is interpreted (or executed) by the generator fol-

lowing the eductive model of computation. The low-charge ripe sequential threads

are evaluated locally by the generator. The higher-charge ripe sequential threads are

evaluated on a remote worker. The generator consists of two systems: the Intensional

Demand Propagator (IDP) and the Intensional Value Warehouse (IVW) [Tao04]. The

IDP implements the demand generation and propagation mechanisms, and the IVW

implements the warehouse. A set of semantic rules that outlines the theoretical as-

pects of the distributed demand propagation mechanism has been defined in [Paq99].

The worker simply consists of a “Ripe Function Executor” (RFE), responsible for

the computation of the ripe sequential threads as demanded by the generator. The

sequential threads are compiled and can be either downloaded/uploaded dynamically

by/to the remote workers. Better efficiency can be achieved by using a shared network

file system.

An example: a GIPSY screen saver would be a sample worker running when the

an ordinary PC is going into an idle mode and normally launches ordinary dancing

bears screensavers, it can actually run our downloaded worker instead and contribute

to computation. When such a worker starts, it has to register it within a system

67

Figure 34: Generator-Worker Architecture

somehow (see [VP05]), so that the generators are aware of its presence and can send

demands to it. In the event of merging of semantics of a worker and a generator, such

a screensaver would also be able to generate demands and maintain a local warehouse.

3.4 Summary

This chapter presented methodology behind concrete implementations of the first

two hybrid languages in the GIPSY – JLucid and Objective Lucid. Semantic rules

were presented for free Java functions and Java objects to be included into the Lucid

programs and evaluated by the eduction engine in the hybrid environment. Further-

more, operational semantics of Objective Lucid is clearly defined and is compatible

with the semantics of Lucid. The general requirements for the GICF, a tool simpli-

fying imperative compiler management within GIPC, are introduced. The follow up

chapter details the architectural and detailed designs and concrete implementation of

the languages as well as General Intensional Compiler Framework and overall module

integration and their interfaces. Some immediate benefits and limitations are outlined

below.

68

3.4.1 Benefits

• JLucid opens the door for STs and CPs and first hybrid programming paradigm

in the GIPSY.

• JLucid provides ability to either write Java code alongside the Lucid code or

embed existing one via embed().

• Objective Lucid introduces Java objects and their semantics in the GIPSY.

• GICF generalizes the embed() mechanism to all languages in the GIPSY.

• GICF promotes general type handling in the GIPSY.

• GICF promotes general compiler handling in the GIPSY.

• GICF generalizes the notion of the STs and CPs for all compilers.

3.4.2 Limitations

• JLucid is limited only to GIPL-Java and Indexical Lucid-Java hybrids.

• JLucid does not allow Java objects.

• JLucid restricts the embed() mechanism only to itself and its derivative – Ob-

jective Lucid.

• Objective Lucid is primarily an experimental language to research on Java ob-

jects in the intensional environment.

• GICF addresses mostly the imperative compilers, but a similar approach can

be applied to the intensional and functional ones.

69

Chapter 4

Design and Implementation

This chapter combines the architectural and detailed designs and integration of the

modules contributed not only by the author of this thesis but also by the other GIPSY

team members. Section 4.1 explores the GIPSY architecture and implementation

of the major components and frameworks. Then, Section 4.2 focuses on the user

interface and external library interfaces. User interfaces, class and sequence diagrams

are provided mostly following the top-down approach. For GIPSY Java packages,

directory structure with description of each package, and .jar file packaging please

refer to Appendix C.

4.1 Internal Design

The GIPC framework redesign along with the realization of the two children frame-

works of GICF and IPLCF are presented first followed by the design and implemen-

tation of JLucid and Objective Lucid integrated into the new frameworks.

4.1.1 General Intensional Programming Compiler Framework

The GIPC Framework experienced several iterations of refinements as a result of

this research. Two new frameworks emerged, namely General Imperative Compiler

Framework (GICF) to handle all imperative languages within the GIPSY and, its

counterpart Intensional Programming Languages Compiler Framework (IPLCF).

70

4.1.1.1 General Imperative Compiler Framework

GLU [JDA97, JD96], JLucid [MPG05], and later Objective Lucid [MP05b] prompted

the development of a General Imperative Compiler Framework (GICF). The frame-

work targets integration (embedding of) different imperative languages into GIPSY

(see [RG05a]) programs for portability and extensibility reasons. GLU promoted C

and Fortran functions within; JLucid/Objective Lucid promote embedded Java. Since

GIPSY targets to unite all intensional paradigms in one research system, we try to

be as general as possible and as compatible as possible and pragmatic at the same

time.

For example, if we want to be able to run GLU programs with minimum (if at

all) modifications to the code base, GIPSY has to be extended somehow to support

C- or Fortran-functions just like it does for Java. What if later on we would need to

add C++, Perl, Python, shell scripts, or some other language for example? The need

for a general “pluggable” framework arises to add imperative code segments within

a GIPSY program. We could go even support multi-segment multi-language (with

multiplicity of 3 or more languages) GIPSY programs. Two examples are presented

in Figure 35 and in Figure 36.

4.1.1.2 Generalization of a Concrete Implementation

Thus, the JavaCompiler component (see Figure 33), part of GIPC, has to be gen-

eralized, and the JavaCompiler itself be a concrete implementation of this gen-

eralization. The generalization would express itself by having an abstract class

ImperativeCompiler, the generic Preprocessor (vs. JLucidPreprocessor in Sec-

tion 4.1.2) should be able to cope with all PLs and know what PLs are supported

through enumerating them. Another thing the GICF buys us is an ability to have any

supported imperative programming language embedded in any supported intensional

programming language. Though this may seem impractical at the first glance, but

the framework is designed such that a lot of syntax, semantics, and type mapping

work is performed by the individual concrete compiler implementations and not by

the generic machinery. The goal here is that as long as any given compiler within

the framework conforms to the designed interface specification and produces the re-

quired data structures, there should be least possible effort to enable such a compiler

in GIPSY. Thus, the compilation process, semantic checks, linking, and execution at

71

#funcdecl

Integer f();

void gee();

void z();

#typedecl

Integer;

#JAVA

Integer f()

{

return new Integer("123");

}

#CPP

#include <iostream>

void gee()

{

cout << "gee" << endl;

}

#PERL

sub z()

{

while(<STDIN>)

{

s/\n//;

print;

}

}

#OBJECTIVELUCID

A @.d 5

where

dimension d;

A = B fby.d (A - 1);

B = C fby.d (B + f().intValue());

C = z() && gee();

end;

Figure 35: Example of a hybrid GIPSY program.

72

/**

* Language-mix GIPSY program.

*

* $Id: language-mix.ipl,v 1.5 2005/04/25 00:16:30 mokhov Exp $

* $Revision: 1.5 $

* $Date: 2005/04/25 00:16:30 $

*

* @author Serguei Mokhov

*/

#typedecl

myclass;

#funcdecl

myclass foo(int,double);

float bar(int,int):"ftp://newton.cs.concordia.ca/cool.class":baz;

int f1();

#JAVA

myclass foo(int a, double b)

{

return new myclass(new Integer((int)(b + a)));

}

class myclass

{

public myclass(Integer a)

{

System.out.println(a);

}

}

#CPP

#include <iostream>

int f1(void)

{

cout << "hello";

return 0;

}

#OBJECTIVELUCID

A + bar(B, C)

where

A = foo(B, C).intValue();

B = f1();

C = 2.0;

end;

/*

* in theory we could write more than one intensional chunk,

* then those chunks would evaluate as separate possibly

* totally independent expressions in parallel that happened

* to use the same set of imperative functions.

*/

// EOF

Figure 36: Another example of a hybrid GIPSY program.

73

the meta level of implementation of the GIPC and GEE can be reasonably generalized

without loss of practicality as we shall see. With this great deal of flexibility, we have

several issues:

• Binary portability of compiled languages, such as C/C++ on a different host

(this problem theoretically does not exist for Java).

• Though some languages, such as Perl, Python, shell scripts, are interpreted, a

version mismatch may happen.

• A compiler for interpreted languages other than Java would be rather simple

because should we want to pass the ST code to a remote host, all we need is

to pass the source itself. Of course, in both compiled and interpreted variant

there is a large potential of security vulnerability exploits (e.g. with malicious

code injection), which will have to be dealt with as a part of the future work.

As of this writing, there are no embedded checks in GIPSY for that; instead a

guide of a sandboxed installation of GIPSY will be provided when the system

is released.

• Another important issue is having imperative PL nodes in the AST. The issue

is in what such nodes should contain in order for them to be linked back into

the main AST, how to perform semantic analysis of the hybrid code based on

the contents of such nodes, and GEE should go about executing this code.

• Various languages define their own set of types and typing rules, gluing them

all together is a very difficult task for semantic analysis and type inference.

The follow up sections clarify and address most of these issues.

4.1.1.3 Resolving Generalization Issues and Binary Compatibility

In order to fully support GICF, the original GIPC framework in Figure 37 (discussed

in detail by Wu and Paquet in [PGW04]) has to be altered in the following way: the

Preprocessor has to be added on top of all the front-end modules, and new links drawn

between the Preprocessor and the other modules Figure 38. This also changes the

data structures flow between the components. For the unaware reader, what follows

74

is the brief description of the layers, components, and abbreviations of the conceptual

design present in Figure 38:

The front-end and back-end layers are the two bottom ones represent the main

machinery of the GIPC. The front-end compilers and parsers are responsible for pars-

ing, producing initial syntax trees, STs, and CPs. At this layer, the main abstract

syntax tree AST is always compliant to the one of Generic Intensional Programming

Language (GIPL). If the source code program was written in some specific intensional

programming language (SIPL, e.g. Indexical Lucid or Tensor Lucid), its AST has to

be translated first into GIPL. Both, GIPL and SIPL type components may translate

a Lucid dialect source code into a data flow (DFG) graph language and back; hence,

there is a variety of the DFG translators. Next, the other two types of conceptual

components at the front-end layer are the data type (DT) and the sequential thread

(ST) front-ends. These correspond to the imperative language compilers and their

modules in the implementation. The DT front-end is responsible for analyzing data-

type definitions in the ST code and producing native (i.e. compiled) representation of

communication procedures (NPCs). The ST front-end is responsible for compilation

an ST code and producing some equivalent of the native compiled code (NST) as the

end result.

The GIPC back-end layer performs finalization of a GIPSY program compilation

by doing semantic analysis and eliminating Lucid functions and producing the demand

AST (DAST) along with linking in the generated STs and CPs from the imperative

side. The GEER generator then produces the final linked version of a GIPSY program

as a resource usable by the GEE (GEER).

The first two layers are meta-level layers that prepare information for the front-

end and back-end layers. The second layer is the GIPC Preprocessor layer discussed

in depth through the rest of this chapter. The top level has to do with some language

specification processing and creating corresponding parsers and data structures for

the front-end layer. SIPL and GIPL front-end generators have to do with the fact

that our SIPL and GIPL parsers are generated out of a source grammar specification

by javacc. Thus, a GIPL specification corresponds to the GIPL grammar in the

GIPL.jjt file and the GIPL spec processor is the javacc tool. The DT and ST front-

end generators exist for the same idea as the GIPL and SIPL ones do. However, in

the current implementation they are not present either because they are hand-written

75

Figure 37: Original Framework for the General Intensional Programming Compiler
in the GIPSY

or we rely on the external compiler tools (e.g. javac to compile Java STs) to do the

processing for us. The design however implies that these components may eventually

be converted to the genuine imperative compilers within GIPSY giving greater control

and flexibility over the imperative parts than relying on external tools. Therefore, we

may acquire a Java.jjt one day, for example, and generate a Java parser out of it.

Format Tag To address some binary compatibility issues we invent a notion of

a format tag attached to the STs and CPs. The format tag’s purpose is to include

meta-information about STs and CPs such that it includes the programming language,

the object code format, the operating system, compiler, and their versions. This is

important if we are sending platform-dependent compiled code, such as that of C or

C++ from one host to another with different architectural platforms. The FormatTag

API is in Figure 39.

We implement format specifications as a hashtable. We also predefine some com-

mon format tags, such as JAVA, for conveniences as most frequently used. The class

76

Figure 38: Modified Framework for the General Intensional Programming Compiler
in the GIPSY

77

Figure 39: The FormatTag API.

overrides toString() and equals() of Object to define that the two format tags are

only equal if the string representation of all their specifications are identical.

Sending Source Code Text Not all non-intensional languages require compila-

tion, e.g. Perl, Python, etc. These can be sent over as plain source code text; thus, the

format tag will indicate the fact. We can go even further with this and send any lan-

guage as plain text and compile it on the target host instead prior invocation. For the

task of the source code inclusion we reserved the SequentialThreadSourceGenerator.

Of course, this won’t work for embed-included binary code via a URI parameter be-

cause that code was already compiled by someone else on some specific platform. As

far as current implementation concerned, the generated ST class does always contain

the source code of STs from the GIPSY program code segments, but it is unused by

the GEE except for debugging as of this writing.

Dictionary The Preprocessor’s dictionary will initially be constructed based on

the #funcdecl and #typedecl program segments. The dictionary will serve as an

input to three other components: the NST generator (for error reporting and point-

ers to the nodes in the AST and the compiled code), to the NCP generator (to

analyze the data structures used by STs and generate CPs accordingly), and to the

semantic analyzer, to perform data type matching between the intensional and im-

perative parts. Both NCP and NST generators work under the command of some

78

imperative language compiler and are referred to as SequentialThreadGenerator

and CommunicationProcedureGenerator in their most general forms, which are sub-

classed by a concrete language implementation.

4.1.1.4 GIPC Preprocessor

The Preprocessor is something that is invoked first by the GIPC on incoming GIPSY

program’s source code stream. The Preprocessor’s job is to do preliminary program

analysis, processing, and splitting into chunks. Since a GIPSY program is a hybrid

program consisting of different languages in one source file, there ought to be an

interface between all these chunks. Thus, the Preprocessor after initial parsing and

producing the initial parse tree, constructs a preliminary dictionary of symbols used

throughout the program. This is important for type matching and semantic analysis

later on. The Preprocessor then splits the code segments of the GIPSY program

into chunks preparing them to be fed to the respective concrete compilers for those

chunks. The chunks are represented through the CodeSegment class that the GIPC

collects. The corresponding class diagram of is in Figure 40.

The Preprocessor can also be told to report certain code segments are invalid at

the preprocessing stage rather delaying the error until the compiler discovery stage

through the addInvalidSegmentName() and addValidSegmentName() methods and

maintaining internal vector of the strings with invalid segment names. This fea-

ture is for example used in Preprocessor’s extensions of JLucidPreprocessor and

ObjectiveLucidPreprocessor later on that filter out code segments that do not

belong to the languages. The filtering logic works like this:

• if no valid and invalid segments are specified, all segments are accepted as valid

at the preprocessing stage. This is the default for general GIPC work.

• if some invalid and no valid segments are specified, the Preprocessor will error

out on the invalid segments

• if only valid segments are specified, everything else will be treated as invalid

• if both valid and invalid segments are present; the invalid set segments are

ignored and everything that it is not mentioned in the valid set is said to be

invalid.

79

Figure 40: The GIPC Preprocessor.

GIPSY Program Segments Here we define four basic types of segments to be

used in a GIPSY program. These are:

• #funcdecl program segment declares function prototypes of imperative-language

functions defined later or externally from this program to be used by the inten-

sional language part. These prototypes are syntactically universal for all GIPSY

programs and need not resemble the actual function definitions they describe

in their particular programming language.

• #typedecl segment lists all user-defined data types that can potentially be used

by the intensional part; usually objects. These are the types that do not appear

in the matching table in Table 1.

• #<IMPERATIVELANG> segment declares that this is a code segment written in

whatever IMPERATIVELANG may be, for example #JAVA for Java, #CPP for

C++, #PERL for Perl, #PYTHON for Python, etc.

80

• #<INTENSIONALLANG> segment declares that this is a code segment written in

whatever INTENSIONALLANG may be, for example #GIPL, #INDEXICALLUCID,

#JLUCID, #OBJECTIVELUCID, #TENSORLUCID, #ONYX1, etc. as understood by the

GIPSY.

Preprocessor Grammar The initial grammar for the Preprocessor to be able

to parse a GIPSY program is shown in Figure 41. After having parsed a program,

we have a Preprocessor AST (PAST) that will be used further by the compilation

process in the GIPC and its submodules. The grammar and the framework were

designed in such a way so all the previous neat features of JLucid [MP05b]/Objective

Lucid [MP05b] still be present, such as embed() and are accessible to other dialects.

In the GICF, we generalize our function prototype declaration to be able to include

external code of any imperative language.

The lexical elements, such as LETTER, LANGDATA, DIGIT, CAPLETTER, and

*LITERALs are not listed for brevity as they are merely standard and self-explanatory

lexical tokens except probably LANGDATA – this is character data allowing any

character sequence within except LANGID that serves as a terminator of a code

segment chunk.

Notice, the grammar is not bound to our current set of supported intensional and

imperative languages. Rather, the GIPC attempts to look up appropriate compiler

for each code segment automagically using LANGID for mapping at run-time. The

JavaCC version of the grammar can be found the PreprocessorParser.jjt file.

The grammar has been amended from what was published in [MP05a] to include

LANGID in the EMBED production, the immutable keyword and arrays subscript

operator [] in the PSTART production. LANGID in EMBED is needed to be able to

pick the appropriate compiler for the included code as it may be written in any

imperative language. The immutable keyword is needed to allow a programmer

to assert that certain STs are immutable meaning given the same parameters they

always return the same result, and, therefore, their result can be safely cached in the

warehouse as such functions are declared side-effects free (e.g. as the get42() method

in Figure 23, page 48 can be marked as immutable). This marking of methods will

allow more efficient caching of the ST results of STs known not to have side effects

1See [Gro04] for details on the Onyx language.

81

<GIPSY> ::= <DECLARATIONS> <CODESEGMENTS>

<DECLARATIONS> ::= <FUNCDECLS> <DECLARATIONS>
| <TYPEDECLS> <DECLARATIONS>
| ε

<FUNCDECLS> ::= #funcdecl <PROTOTYPES>

<TYPEDECLS> ::= #typedecl <TYPES>

<PROTOTYPES> ::= <PROTOTYPE> ; <PROTOTYPES>
| ε

<PROTOTYPE> ::= <PSTART> <EMBED>

<PSTART> ::= [immutable] <TYPE> [[]] <ID> (<TYPELIST>)

<EMBED> ::= ε
| : <LANGID> : <URI>
| : <LANGID> : <URI> : <ID>

<TYPES> ::= <TYPE> ; <TYPES>
| ε

<TYPELIST> ::= <TYPE> [[]]
| <TYPE> [[]] , <TYPELIST>
| ε

<CODESEGMENT> ::= <LANGDATA> <LANGID>
| <LANGDATA> <EOF>

<CODESEGMENTS> ::= <CODESEGMENT> <CODESEGMENTS>
| ε

<URI> ::= <CHARACTERLITERAL>
| <STRINGLITERAL>

<ID> ::= <LETTER> (<LETTER> | <DIGIT>)*

<LANGID> ::= #<CAPLETTER> (<CAPLETTER>)*

<TYPE> ::= <ID>
| int

| double

| bool

| float

| char

| string

| void

Figure 41: Preprocessor Grammar for a GIPSY program.

82

and has to be explicitly set by the programmer. If the programmer by mistake marks

a method with side effects as immutable, then a program may exhibit erroneous

execution at run-time by returning a possibly incorrect value from the warehouse.

There is no way to automatically discover immutability of STs in GIPSY at this time

(it may only be possible when genuine imperative compilers are implemented). The

array subscript operator [] has been added to PSTART and TYPELIST productions

to allow GIPSY arrays (as a generalization of JLucid arrays) that are composed of

the elements of GIPSY types. The concrete imperative compilers implementing the

mapping (if possible) will have to do appropriate conversions from the native arrays

to GIPSY arrays.

4.1.1.5 GIPSY Type System

While the main language of GIPSY, Lucid, is polymorphic and does not have explicit

types, co-existing with other languages necessitates definition of GIPSY types and

their mapping to a particular language being embedded. Figure 42 presents the design

aspects of the GIPSY Type System.

Each class is prefixed with GIPSY to avoid possible confusion with similar def-

initions in the java.lang package. The GIPSYVoid type always evaluates to the

Boolean true, as described earlier in Section 3.3.2. The other types wrap around the

corresponding Java object wrapper classes for the primitive types, such as Integer,

Float, etc. Every class keeps a lexeme (a lexical representation) of the correspond-

ing type in a GIPSY program and overrides toString() to show the lexeme and

the contained value. These types are extensively used by the Preprocessor, imper-

ative and intensional (for constants) compilers, the SequentialThreadGenerator,

CommunicationProcedureGenerator, SemanticAnalyzer for the general type of GIPSY

program processing, and by the GEE Executor.

The other special types that have been created are either experimental or do not

correspond to a wrapper of a primitive type. GIPSYIdentifier type case corresponds

to a declaration of some sort of an identifier in a GIPSY program to be put into the

dictionary, be it a variable or a function name with the reference to their definition.

This is an experimental type and may be removed in the future. Constants and

conditionals may be anonymous and thereby not have a corresponding identifier.

GIPSYEmbed is another special transitional type that encapsulates embedded code via

83

Figure 42: GIPSY Type System.

the URL parameter and later is exploded into multiple types corresponding to STs

and their CPs. GIPSYFunction and its descendant GIPSYOperator correspond to the

function types for regular operators and user defined functions. A GIPSYFunction

can either encapsulate an ordinary Lucid function (as in functional programming an

which is immutable) or an ST function (e.g. a Java method), which may easily be

volatile (i.e. with side effects). These four types are not directly exposed to a GIPSY

programmer and at this point are managed internally. The rest of the type system

is exposed to the GIPSY programmer in the preamble of a GIPSY program, i.e., the

#funcdecl and #typedecl segments, which result in the embryo of the dictionary

for linking, semantic analysis, and execution. Once ST compilers return, the type

data structures (return and parameter types) declared in the preamble are matched

against what was discovered by the compilers and if the match is successful, the link

is made.

84

4.1.1.6 GICF Design

The GICF is the first generalization framework of hybrid programming in the GIPSY.

Implementation-wise, only Java is implemented as an imperative language with an

external compiler. However, provision was made for C/C++, Perl, Fortran and

Python with stub compilers. The class diagram describing GICF is shown in Fig-

ure 43. On this diagram the interaction between a given imperative compiler and the

SequentialThreadGenerator and CommunicationProcedureGenerator only shown

for JavaCompiler to keep the clearer picture, but the same kind of association will

have to be maintained for all imperative compilers as the IImperativeCompiler in-

terface mandates. The EImperativeLanguages is a Java interface enumerating all

available imperative language compilers. It is used by the GIPC to discover a given

compiler for a language dynamically. As of this writing, the enumeration is main-

tained by hand; however, it is planned to be generated in the near future with a

command-line-driven script or a RIPE GUI automagically to facilitate addition of

new languages.

4.1.1.7 Intensional Programming Languages Compiler Framework

As a consequence of GICF, a similar approach was applied to the intensional com-

pilers in the form of IPLCF. See the corresponding class diagram in Figure 44. The

IIntensionalCompiler was designed and implemented by all the intensional compil-

ers we have. An enumeration EIntensionalLanguages of all supported intensional

languages was created, so the GIPC can pick needed compiler at run-time as deter-

mined by the Preprocessor.

Translation for all intensional compilers is done through the generic Translator

implemented by Aihua Wu in [Wu02]. The Translator has been integrated into

the GIPC.intensional.GenericTranslator package and split and renamed as in

Figure 45. Thus, every SIPL compiler refers to this translator to acquire a GIPL

AST at the end via generic implementation of IntensionalCompiler.translate().

The Translator was refactored and augmented to understand GIPSY Types (see Sec-

tion 4.1.1.5) and ImperativeNode for imperative languages. The TranslationParser

and TranslationLexer collaborate to compile intensional language translation rules

(e.g. IndexicalLucid.rul) files provided by each SIPL author.

85

Figure 43: GICF Design.

4.1.1.8 Sequential Thread and Communication Procedure Interfaces

This section details Sequential Thread and Communication Procedure interfaces.

The related class diagram is in Figure 46. The ICommunicationProcedure and

ISequentualThread are the core interfaces. Both extend Serializable in order

for us to be able to dump their concrete implementations to disk or distributed stor-

age using Java’s object serialization machinery. This is needed for the GIPSYProgram

container to be saved to disk or for an ST to be able to reside in JavaSpaces [Mam05]

implementation of the demand space [VP05]. The ISequentialThread also extends

Runnable to be true thread when materialized, especially for the case of local execu-

tion. The Runnable interface makes it possible for an implementing class to become a

thread in multithreaded environment in Java. The ICommunicationProceduresEnum

86

Figure 44: IPLCF Design.

is an enumeration of all known to the GIPSY communication procedure types. The

NullCommunicationProcedure and RMICommunicationProcedure represent concrete

implementations for local threaded processing as well as RMI. Therefore, the

SequentialThreadGenerator is an abstract factory for all sequential threads that

has to be overridden by a language-specific sequential thread generator, e.g. such as

JavaSequentialThreadGenerator. Likewise, CommunicationProcedureGenerator

is a factory for CPs. The WorkResult class represents the result of (computation)

work done, which is also has to be Serializable. Upon various communication

needs the CommunicationStats is returned by the ICommunicationProcedure API

or the CommunicationException is thrown indicating an error. The Worker class

represents a collection of STs and CPs being executed.

87

Figure 45: SIPL to GIPL Translator Integration.

4.1.1.9 GIPC Design

In Figure 48 there is a hierarchy that all imperative and intensional compilers should

adhere to. The IImperativeCompiler interface is something every imperative com-

piler implements to ease up the job of GIPC. A similar interface has been invented

for intensional languages – IIntensionalCompiler for consistency.

A set of interfaces has been designed for all the present and future compilers to

implement. There are three interfaces so far:

1. ICompiler is a superinterface for all compiler interfaces. It is implemented by

GIPC itself and by DFGAnalyzer, as shown in Figure 47.

2. IIntensionalCompiler is a subinterface of ICompiler designated to differenti-

ate intensional compilers. It is implemented in part by the IntensionalCompiler

abstract class that most (for now all) intensional compilers implement.

3. IImperativeCompiler is a counterpart of IIntensionalCompiler. Its purpose

is similar to that of IIntensionalCompiler for imperative languages.

88

Figure 46: Sequential Thread and Communication Procedure Class Diagram.

The core difference between IIntensionalCompiler and IImperativeCompiler

versus the general ICompiler is that most (except for GIPL) of the intensional com-

pilers have to perform SIPL-to-GIPL translation; hence, the translate() method,

and all imperative compilers must produce communication procedures and sequen-

tial threads as the result of their work; hence, generateSequentialThreads() and

generateCommunicationProcedures() methods are provided. The abstract classes

IntesionalCompiler and ImperativeCompiler provide the most common possible

implementation for all intensional and imperative compilers respectively, so the un-

derlying concrete compilers only have to override some parts specific to the language

they are to compile. If extension of these classes is not possible for some reason

(e.g. when writing external GIPSY plugins when a compiler class already inherits

from some other class), they must implement their corresponding interface. Out of

89

Figure 47: All GIPC Compilers.

90

the concrete classes on the diagram the author of this thesis fully implemented GIPC,

GIPLCompiler, IndexicalLucidCompiler, JLucidCompiler, ObjectiveLucidCompiler,

and JavaCompiler. The DFGAnalyzer of Yimin Ding was made to implement ICompiler

as it in fact compiles the “DFG code” out of GIPL or Indexical Lucid.

The overall design and integration of the GIPC participants is illustrated in Fig-

ure 48. The GIPC class is the main compiler application that drives the compilation

process, so in the general case in invokes the Preprocessor, intensional and impera-

tive compilers required, the SemanticAnalyzer, IdentifierContextCodeGenerator,

Translator, and the GEERGenerator linker. It also acts like a facade to other GIPSY

modules. The major data structures, such as AbstractSyntaxTree, Dictionary,

CodeSegment, FormatTag, ImperativeNode, and SimpleNode are created, accessed,

or modified throughout the modules during the compilation process. Out of impera-

tive languages only JavaCompiler is mentioned as it is the most advanced in this cat-

egory. The JLucidCompiler’s JLucidParser underneath invokes both JGIPLParser

and JIndexicalLucidParser as JLucid Section 3.1 provides extensions to both of

these languages. A number of association links have been removed from the diagram

to maintain clarity as these links are intuitive or present in detail diagrams.

4.1.1.10 GIPC Class as a Meta Processor

The GIPC (a concrete class) acts here as so-called “meta processor” that drives the

entire compilation process and invokes appropriate submodules in order to come up

with a compiled version of a GIPSY program. This involves calling the Preprocessor,

then feeding its output to whatever concrete compilers for the code segments of the

GIPSY program, collecting the output of them (various ASTs, dictionaries), per-

forming semantic analysis, and linking all the parts back together in a binary form.

This portable binary version of the GIPSY program is to either be serialized as an

executable file for later execution by the GEE or optionally to be fed directly to the

GEE.

4.1.1.11 Calling Sequence

The sequence diagram in Figure 49 illustrates the entire compilation process and the

data structures passed between the modules. This is the roundtrip description of the

91

Figure 48: Overall GIPC Design.

92

implementation efforts. The two followup diagrams detail the differences in the com-

pilation process between the imperative and intensional languages. The general com-

pilation process begins by reading the source GIPSY program and converting it into

a meta token stream of types, declarations, and code segments by the Preprocessor.

The Preprocessor takes that input and with its own parser produces a preprocessor

AST and an embryo of a dictionary with the identifiers and types declared in the

imperative code segments for further semantic linking. The latter is used to pro-

duce imperative stubs for cross-segment type checks. The former contains primarily

code segments written in various languages. The GIPC takes these code segments

and creates appropriate compiler threads, one for each code segment. Then, each

compiler tries to compile its own chunk and produces a portion of a main AST. Since

we treat the IPL part as a main program, its AST is considered to be the main

skeleton tree. The ASTs produced by the imperative compilers (which really contain

a single ImperativeNode) are secondary and should be merged into the main when

appropriate. Once all the compiler threads are successfully done, the GIPC collects

all the ASTs and performs linking via the GEERGenerator. The combined AST is

now a subject to the semantic analysis and the function elimination. Once semantic

analysis is complete, the final post-linking is performed where all the pieces of the

GIPSYProgram are combined together and its instance is serialized to disk. Option-

ally, right after compilation the GEE may be invoked to start the execution of the just

compiled program.

There is no any preference made in GIPC on the number and the order of inten-

sional and imperative compilers executed. This may result in several main intensional

programs (if the source code contained more than one intensional code segment) or

unused imperative nodes (an imperative segment is declared but the code from it is

unused). For the former we maintain an array of ASTs in the GIPSYProgram, so that

when the actual program is executed, the same number of the GEE Executor threads

are started and all main ASTs are evaluated in parallel providing the result set of a

computation instead of a single result. Detailed sequence diagrams of the intensional

and imperative compilation processes are in Figure 50 and Figure 51 to illustrate the

differences in compiling intensional and imperative code segments.

93

Figure 49: Sequence Diagram of GIPSY Program Compilation Process.
94

Figure 50: Sequence Diagram of Intensional Compilation Process.

95

Figure 51: Sequence Diagram of Imperative Compilation Process.

96

4.1.1.12 Compiling and Linking

Multiple Intensional Parts In a GIPSY program we may possibly have multiple

intensional parts. For example, if a GIPSY programmer gave a GIPL expression, an

Indexical Lucid expression and a couple of Java procedures in the same source GIPSY

program, what is the meaning of that setup would be? In this case, we can say that

we evaluate two independent intensional expressions in parallel that happened to

share the same imperative part. Thus, for such a GIPSY program there will be two

instances of GEE running. The GEE is to extended to accept a forest of ASTs to be

processed in parallel.

Imperative Stubs When the Preprocessor completes its job, it has to create

some stubs in the intensional parts of the program for the symbols declared outside

of those parts (e.g. Java functions) so that the appropriate intensional compiler

does not complain about undefined symbols when producing the AST because the

intensional compilers are not aware of anything outside their work scope. Later on,

the corresponding stub nodes in the AST are found and replaced with the real contents

at the linking stage.

NCP Generator as a Type Processor The NCP generator will act very much

like a type processor and will have to look inside the imperative code segments ana-

lyzed/compiled by the ST generator. This kind of type processing is needed to decide

on communication procedures (CPs) to be generated for that ST. It issues warnings if

the compiled version of the data structures to be sent is not portable. The role of the

NCP generators in the GIPSY implementation is played by the imperative compilers,

such as JavaCompiler.

GEER Generator as a Linker The GEER Generator (see GEERGenerator in

Figure 53) in the backend acts like a linker of all parts of a GIPSY program. It

gathers all the resources from the compiler set, such as ASTs, ICs, CPs, STs, and the

dictionary. Then, it replaces the stubs in the intensional part with the nodes from the

imperative ASTs (STs accompanied with their respective CPs) forming a complete

composite AST ready for consumption by the GEE. All this will be serialized as a

GIPSYProgram class instance. The GEERGenerator is invoked two times – first prior

97

Figure 52: Semantic Analyzer.

SemanticAnalyzer to assemble a complete AST, and then after semantic analysis

and function elimination to set up the finalized dictionary and program name.

4.1.1.13 Semantic Analyzer

The semantic analyzer detailed design diagram is shown in Figure 52. Originally

implemented by Aihua Wu, the class was renamed from Semantic [Wu02] to a more

complete name of SemanticAnalyzer and placed under the GIPC package. Relevant

changes include integration of storage.Dictionary (previously was java.util.Vector),

98

storage.DictionaryItem (formerly Item in Dict [Wu02]), storage.FunctionItem

(formerly Fun Item [Wu02], serves for function description). The SemanticAnalyzer

had to be taught to recognize new GIPSY types (see Section 4.1.1.5) with base

GIPSYType class for object, embed, and array processing, ImperativeNode for se-

quential threads and communication procedures, and a general AbstractSyntaxTree.

4.1.1.14 Interfacing GIPC and GEE and Compiled GIPSY Program

Now, let us formally define the notion of a stored compiled GIPSY program, as a

GEER or the interface between the two major modules - GIPC and GEE. Until this

point, the GEE accepted from GIPC as the input AST of an intensional part and a

dictionary of symbols. This suggests having serialized the AST and the dictionary.

With the invent of JLucid, communication procedures (CPs) and sequential threads

(STs) became relevant and should belong to the GIPC-GEE interface. Thus, a com-

piled GIPSY program may have several of CPs and STs serialized along. While STs

and CPs are present within imperative AST nodes, references to them are recorded

here for quicker access and decision making by the GEE. Then, as GEE produces

demands (especially over RMI or Jini, [VP05]) for each intensional identifier in the

dictionary an Identifier Context (IC) class created [LGP03, Lu04]. This is needed

because every such identifier represents a Lucid expression to be evaluated by the

engine, and as such should also be part of the compiled GIPSY program. The cor-

responding class diagram is in Figure 53. It includes the GIPSYProgram and all its

associations with GIPC, GEE, GEERGenerator, and the storage classes.

To summarize, the GIPC-GEE interface is the GIPSYProgram representing encap-

sulation of the five parts:

1. Linked AST(s)

2. Dictionary

3. A set of STs

4. A set of CPs

5. A set of ICs.

On the diagram in Figure 38 GIPSYProgram defines and corresponds to the GEER.

99

Figure 53: Class diagram describing GIPSYProgram.

100

Figure 54: JLucid Design.

4.1.2 JLucid

4.1.2.1 Design

The class diagram describing JLucid is shown in Figure 54. The implementation of

JLucid parser-wise is heavily dependent on that of Indexical Lucid as the largest chunk

of the IPL work is the same. JLucid adds a preprocessor JLucidPreprocessor class

that is responsible for parsing initial source JLucid program and extract Java and

Lucid parts. The JLucidParser class is the one that manipulates javacc-generated

parsers amended to support embed() and arrays. The sequence diagram describing

the details of the compilation sequence of JLucid is presented in Figure 55.

JLucid implements generation of Java sequential threads (STs) and their com-

munication procedures (CPs); thus, necessitating JavaSequentialThreadGenerator

and JavaCommunicationGenerator. For uniformity, portability, and testing reasons,

we also decided to send the source code over, that can possibly be compiled on the

101

Figure 55: JLucid Compilation Sequence.

remote machine. All this is done by the GICF-integrated JavaCompiler, see Sec-

tion 4.1.2.3.

4.1.2.2 Grammar Generation

As it was shown in Chapter 3, the JLucid syntax extension to GIPL and Indexical

Lucid is minimal. The JavaCC grammars we use, are stored in the .jjt files for the

original two dialects. If we decide to have very similar grammar files for JLucid to

support JLucid extensions (arrays and embed()), then if the original grammar has a

bug, the fix will have to be propagated to all the derived grammars, which will not

scale from the maintenance point of view as there will be similar small modifications

from Objective Lucid and other dialects. Thus, it was decided to only maintain the

original grammars of GIPL and Indexical Lucid and generate the ones for the dialects

with the minimal changes, so that each dialect only maintains the part that is relevant

to its syntactic extension.

For JLucid three bash shell scripts were created to process the original JavaCC

grammars of GIPL and Indexical Lucid and generate appropriate extended versions

102

Figure 56: Java Compilation Sequence.

for JLucid. These include jlucid.sh that generates JavaCC productions for ar-

rays and embed(), JGIPL.sh that alters the original GIPL.jjt grammar to suit the

needs of JLucid mostly in terms of class and package names and the new pro-

ductions. Similarly, the JIndexicalLucid.sh script exists for processing of the

IndexicalLucid.jjt file. The scripts are rather small and presented in the Ap-

pendix D.

4.1.2.3 Free Java Functions and Java Compiler

As defined in Chapter 3, by “free Java functions” we mean is that the corresponding

Java STs don’t have an enclosing Java class as far as JLucid source code concerned.

However, the enclosing class must exist when compiling a Java program according

to Java’s syntax and semantics. Thus, implementation-wise we generate such a class

internally that wraps all our sequential threads, as e.g. in Section 4.1.1.8, and we com-

pile that class. This job of wrapping is delegated to the JavaCompiler, a member

of the imperative compilers framework (see Section 4.1.1.1). The JLucidCompiler

as shown in Figure 55 at some point invokes the JavaCompiler, and what the

JavaCompiler does internally is illustrated in Figure 56.

Being an imperative compiler, the JavaCompiler is obliged to produce the Java

103

STs and CPs among other things. The core of this process is the wrap() method where

the actual “wrapping” our pseudo-free Java functions into an internal class occurs.

The generated source code .java file is saved and is fed to the external javac compiler

as of this implementation. If there was no compilation errors, a corresponding .class

or series of .class files (for the case of nested classes) is generated. The generated

classes are reloaded back by the JavaCompiler and their members that are of interest

to us retrieved via the Java Reflection Framework [Gre05], thus we obtain an array of

references to the ST methods and their parameters and assign them to our own data

structures. After this process completes, the corresponding FormatTag describing

the Java language and the compiler is created and all information is embedded into

the ImperativeNode, which represents a single and the only node in the imperative

AbstractSyntaxTree. Later on, this imperative node or its pieces will replace a

corresponding stub in the main intensional AST.

4.1.2.4 Arrays

Implementation of arrays in JLucid coincides closely with the implementation of ob-

jects in Objective Lucid in Section 4.1.3. As a part of the GIPSY Type System (see

Section 4.1.1.5), we employ the GIPSYArray (see Figure 42) type to hold the array

base type and its members and an overall value. As proposed further, we treat ar-

rays internally as objects (and objects as arrays), so GIPSYArray is an extension of

GIPSYObject that has a base type asserting the data type of the all the elements in

the arrays (as our arrays a homogenous collection of elements). Thus, when a syntac-

tic array token is parsed, a corresponding instance of GIPSYArray is created to hold

the type and value information for later processing. The SemanticAnalyzer and the

Executor are made to understand the array type and apply similar type checking or

execution rules to a collection of values instead of a single value.

It might look like this approach will clash with the use of arrays in Java, i.e.,

when a developer wishes to use Java arrays (or if a library already implements some

functionality via Java arrays). This should not be a problem (though will require

a more thorough investigation in the future work), when we perform type matching

by the base element type, as described in Section 4.1.1.4. The JavaCompiler is

responsible for the appropriate conversion of the native-to-GIPSY type conversions,

by supplying a TypeMap such that it can also be used by the GEE at run-time. Similar

104

comments can be said of the native array types that might exist in other imperative

languages that we would be hoping to support.

4.1.2.5 Implementing embed()

To implement embed() we define a type GIPSYEmbed to fetch the file pointed by the

URL and hold it in there. In JLucid, a .java or .class file (later also a .jar file)

is loaded from either local or remote location pointed by the URL as follows: if it

is a .java file, it’s fetched and compiled similarly to the generated class, but the

name is static and known; with the .class file we skip the compilation process, but

extraction of the sequential threads is the same; for the .jar its examined with the

JarInputStream and JarEntry Java classes to extract the class information.

4.1.2.6 Abstract Syntax Tree and the Dictionary

When running the JLucid compiler in stand-alone mode, all the preprocessing and

re-assembling the intensional and imperative pieces into the combined main AST

happens in here, not in the GIPC, so the JLucid compiler returns a complete linked

AST with all imperative nodes linked in place and a proper dictionary of identifiers,

both intensional and imperative. JLucid compiler, however, reused the Preprocessor

and other parts of the new framework internally instead of re-inventing the wheel.

The JLucidPreprocessor uses the general Preprocessor class to do the job of

chunkanizing the code segments and preparing initial imperative stubs. This neces-

sitated adding the #funcdecl segment in the JLucid programs that previously did

not have one in Chapter 3, to simplify preprocessing and generation of the dictio-

nary. The JLucidPreprocessor is set to reject any other code segments than #JAVA,

#JLUCID, or #funcdecl.

If the JLucidCompiler invoked from the GIPC as a part of general compilation

process (see Figure 49), the #JAVA segment will no longer be really processed inter-

nally, and instead, GIPC will call JavaCompiler externally to the JLucidCompiler,

so essentially the JLucidCompiler will be responsible only for the Lucid part (with

arrays and embed()).

105

Figure 57: Objective Lucid Design.

4.1.3 Objective Lucid

This section addresses problems that arise when implementing Objective Lucid. These

include internal implementation to support the dot-notation, extension to semantic

analysis to be able to manipulate object data types (very likely user-defined), and

making it all work in the GICF and General Eduction Engine (GEE) of the GIPSY

by correctly forming the abstract syntax tree (AST) that includes object data types.

106

Figure 58: Objective Lucid Compilation Sequence.

4.1.3.1 Design

The class diagram describing Objective Lucid is in Figure 57. Since the JLucid

compiler already does most of the legwork, Objective Lucid simply extends it to add

the dot-notation and some extra post-processing when unrolling the objects. The

corresponding compilation sequence is shown in Figure 58.

4.1.3.2 Grammar Generation

Like with JLucid, the grammar files are generated for Objective Lucid using bash shell

scripts, ObjectiveGIPL.sh and ObjectiveIndexicalLucid.sh. These scripts work

with the grammars produced by the JLucid scripts (see Section 4.1.2.2) by simply

extending them with the dot-notation production and fixing up names of classes and

packages. These scripts are presented in the Appendix D.

4.1.3.3 Object Instantiation

Normally, when a Lucid program refers to a Java object, it has to instantiate it first

by either calling a pseudo-free Java function that returns an object instance or to call

the constructor directly. This instantiation has to be explicit at the beginning of the

program to avoid Java’s NullPointerException at run-time. Internally, the object

107

instance is created using Java Reflection [Gre05] by first loading and then initializ-

ing the needed class with Class.forName("ClassXB").newInstance(). Referencing

static members do not require a class instance, and can be accessed using the class

name, in this case we just keep the Class.forName("ClassXB"). We also keep the

needed references to the object itself and its members in the GIPSYObject type of

the GIPSY Type System.

4.1.3.4 The Dot-Notation

Implementing the dot-notation extension of JLucid is the easiest task of the three.

In fact, the E.id productions are just a syntactic sugar that can be wrapped around

already existing mechanisms of JLucid to include Java functions as mentioned in

Section 3.2.1.1. The compiler simply generates a set of pseudo-free Java functions for

every object member referenced from the intensional program. These will be easy to

place into the AST just the way JLucid does it. In other words, this is achieved by

automatic generation of implicit accessor Java functions that had to be explicit in

JLucid.

4.1.3.5 Abstract Syntax Tree and the Dictionary

The GIPC (General Intensional Programming Compiler) generates abstract syntax

trees (AST) of all compiled GIPSY program parts, and constructs the GEER (General

Eduction Engine Resources), which is a data dictionary storing all program identi-

fiers, encapsulated with all ASTs generated at compile time. Simply put, the GEER

encapsulates all the meaning of a GIPSY program, and all necessary resources to en-

able the GEE to execute the programs correctly. The AST and the dictionary contain

the generated accessor identifiers that are processed by the JLucid mechanisms, as

described previously. This is possible because Java’s built-in class Class can provide

us with all the meta-information about its members through enumeration that we can

place in the AST and the dictionary. Little changes from the way JLucid processes

that except that the object members are put into the dictionary and acted upon as

an array of homogeneous types as described in the follow up section.

The ObjectiveLucidPreprocessor also makes use of the general Preprocessor,

but unlike JLucidPreprocessor, it also accepts the #typedecl segment as with ob-

jects come user-defined types, so these have to be listed if used by the Lucid part.

108

4.1.3.6 Objects as Arrays and Arrays as Objects

Implementation-wise, we propose to treat arrays of JLucid as a special case of objects

and, the other way around, the objects be a generalization of arrays. An array can

be broken into its elements where every element is evaluated as an expression under

the same context. Thus, evaluating:

A[4] @ [d:4]

where

dimension d;

A[#.d] = 42 * #.d fby.d (#.d - 1);

end;

is equivalent to evaluating four Indexical Lucid expressions (possibly in parallel).

Under this point of view objects can be viewed as arrays where every atomic member

is evaluated as if it were an array element. Basically, we denormalize an object into

primitives and evaluate them. If an object encapsulates other objects, then these are

in turn denormalized and put into the definition environment (dictionary). In other

words, if you have an array of four elements a[4], the elements are evaluated as four

independent expressions. Likewise, an object that has four data members, each of

them is evaluated as an expression under the same context.

Essentially, an array is a collection of atomic elements of the same type. When

evaluating say an array of four elements a[4] at some context [d:4], we are, in fact,

evaluating four ordinary Lucid expressions (possibly in parallel) in the same context.

Likewise, an object is a collection of atomic elements of (possibly) different types. In

case an object encapsulates another object, that other object can in turn be split into

atoms, and so on. All atoms of an object evaluate as independent Lucid expressions,

just like array elements.

109

Thus, from Objective Lucid’s point of view, the following are equivalent:

(a) int a[4];

(b) class foo

{
int a1;

int a2;

int a3;

int a4;

}

So, internally, we represent (a) in the definition environment as:

a 4 // scope identifier

a 4.a1

a 4.a2

a 4.a3

a 4.a4

Under the scope of array a 4 (a generated id) there are four members, and a 4.a*

comprise a denormalized identifier, also generated. And (b) will become:

foo // scope identifier

foo.a1

foo.a2

foo.a3

foo.a4

where foo.a* are generated variable identifiers in the definition environment. En-

capsulation will be handled in the following way:

class bar

{
int b1;

int b2;

foo oFoo = new foo();

}

bar

bar.b1

bar.b2

bar.foo

bar.foo.a1

bar.foo.a2

bar.foo.a3

bar.foo.a4

To paraphrase and explain in another example, if we have three separate Lucid ex-

pressions:

// float

a @ [d:2]

where

dimension d;

a = 2.5

fby.d (a + 1);

end;

// integer

b @ [d:2]

where

dimension d;

b = 1

fby.d (b + 1);

end;

// ASCII Char

c @ [d:2]

where

dimension d;

c = ’a’

fby.d (c + 1);

end;

110

Now if we group a, b, and c as a class:

class foo

{
float a = 2.5;

int b = 1;

char c = ’a’;

public foo() {}
}

So when we write:

f @ [d:2]

where

dimension d;

f = foo() fby.d (f + 1);

end;

we mean there start three subexpression evaluations:

f.a @ [d:2]

where

dimension d;

f.a = foo().a

fby.d (f.a + 1);

end;

f.b @ [d:2]

where

dimension d;

f.b = foo().b

fby.d (f.b + 1);

end;

f.c @ [d:2]

where

dimension d;

f.c = foo().c

fby.d (f.c + 1);

end;

We say these are equivalent where the f in all expressions refers to the same object’s

instance (i.e. there are not three objects constructed, only one). Similarly (nearly

identically) we implement arrays:

a[3] @ [d:2]

where

dimension d;

a = [1, 2, 3] fby.d (a + 1);

end;

The above means:

array a

{
int a1 = 1;

int a2 = 2;

int a3 = 3;

int length = 3;

}

111

a1 @ [d:2]

where

dimension d;

a1 = 1 fby.d (a1 + 1);

end;

a2 @ [d:2]

where

dimension d;

a2 = 1 fby.d (a2 + 1);

end;

a3 @ [d:2]

where

dimension d;

a3 = 1 fby.d (a3 + 1);

end;

The three subexpressions run in parallel, but refer back to the same array. Should

there be a need in one of the three subexpressions to use an array value produced by

another subexpression, they generate a demand for that value.

4.2 External Design

The external design encompasses user interface design as well as external software

interfaces. In this work, a web interface to the GIPSY as well as command-line

interfaces are presented as a part of UI followed by the API of the two external

libraries used, JavaCC and MARF.

4.2.1 User Interface

4.2.1.1 WebEditor – A Web Front-End to the GIPSY

The user interface designed for the GIPSY in the scope of this thesis includes a Servlet-

driven web interface to the GIPSY daemon server running on our development server

for trying out GIPSY programs online. The web interface in a form of a web page

allows a connected user to enter, compile, run, and trace GIPSY programs. Users are

able to submit their own GIPSY programs (in any supported Lucid dialect) or choose

and modify from existing programs from the GIPSY CVS repository (see [RG05a])

and then launch the computation. The GIPSY servlet front-end generates demands

through RIPE and returns back results along with an execution trace to a web form.

A screenshot of this interface is illustrated in Figure 59.

112

Figure 59: GIPSY WebEditor Interface.

113

4.2.1.2 GIPSY Command-Line Interface

Synopsis:

gipsy [OPTIONS]

gipsy --help | -h

This is an all-entry point for all of GIPSY that bundles all the modules. It

generally passes all the options to RIPE for further dispatching. When the server part

(see Section 7.10) is complete, this will be a GIPSY daemon server. The command

line interface includes the following options:

• --help or -h displays application’s usage information.

• --compile-only tells to compile a GIPSY program only and return the result

of the compilation (error or success messages) and the compiled program itself.

This will not invoke the GEE for execution after compilation. The option is

primarily for quick tests in development setups.

• --debug tells to run in the debug/verbose mode.

It is possible to run the GIPSY by either invoking the GIPSY.class directly, by run-

ning a corresponding gipsy.jar (see Appendix C.2) file, or using a provided wrapper

script gipsy. The latter is the simplest one to use as it includes all the necessary op-

tions for the JVM and searches for the executable .jar in several common places. A

good idea is to put gipsy somewhere under one’s PATH. (A similar approach applies

to the other tools mentioned in the follow up sections, such as ripe, gipc, gee, and

regression. The tools exist for both Unix and Windows in the form of shell scripts

and batch files.)

Example uses of the GIPSY application include:

• gipsy or gipsy --help

• gipsy --compile-only

• gipsy --compile-only --debug

Where --debug can be combined with any of these, otherwise the options are

exclusive.

114

4.2.1.3 RIPE Command-Line Interface

Synopsis:

ripe [OPTIONS]

ripe --help | -h

The RIPE command-line interface right now acts mostly to activate various own

submodules (e.g. textual or DFG editors) or dispatch requests from users to the

other main modules, such as GIPC and GEE. The command-line interface includes the

following options:

• --help or -h displays application’s usage information.

• --gipc=‘<GIPC OPTIONS>’ tells RIPE to invoke GIPC with a set of GIPC op-

tions (see Section 4.2.1.4).

• --gee=‘<GEE OPTIONS>’ tells RIPE to invoke GEE with a set of GEE options

(see Section 4.2.1.5).

• --regression=‘<REGRESSION OPTIONS>’ tells RIPE to invoke Regression test-

ing with a set of its options (see Section 4.2.1.6).

• --dfg=‘<DFG EDITOR OPTIONS>’ tells RIPE to start the DFG editor with its

options. Currently, the DFGEditor Java class is a stub, and instead, the DFG

Editor of Yimin Ding [Din04] is started via a separate program, lefty. It is

planned the DFGEditor class would be a wrapper for the program in the future.

Therefore, all DFG editor options are ignored for now, but a provision is made

for the future.

• --txt=‘<TEXTUAL EDITOR OPTIONS>’ tells RIPE to start the textual editor

with its options. Note, at the time of this writing TextualEditor is just a

stub, and as such does not have any options, but a provision is made when it

does.

• --debug tells to run in the debug/verbose mode.

Example uses of the RIPE application include:

115

• ripe or ripe --help

• ripe --compile-only

• ripe --compile-only --debug

4.2.1.4 GIPC Command-Line Interface

Synopsis:

gipc [OPTIONS] [FILENAME1.ipl [FILENAME2.ipl] ...]

gipc --help | -h

The command line interface for GIPC inherited some options from Lucid [Ren02]

and includes the following options:

• --help or -h displays application’s usage information.

• [FILENAME1.ipl [FILENAME2.ipl] ...] tells GIPC to compile a GIPSY pro-

gram as indicated by the FILENAME. It is possible to have more the one input

file for compilation. If this is the case, the same number of instances of GIPC

threads will be initially spawned to compile those programs. Notice, however,

this does not mean all the files (in case of multiple .ipl files) comprise one

program and then linked together afterwards as in typical C or C++ compilers.

Instead, each .ipl file is treated as a stand-alone independent GIPSY program.

• --stdin tells GIPC to interpret the standard input as a source GIPSY program.

This is the default if no FILENAME is supplied.

• --gipl or -G (came from Lucid [Ren02] for backwards compatibility) tells GIPC

to interpret the source program unconditionally as a GIPL program (by default

no assumption is made and GIPC attempts to treat the incoming source code

as a general GIPSY program). It is primarily used to quickly test the GIPL

compiler only, without extra overhead or preprocessing. It is also used by the

Regression application for that same reason.

• --indexical or -S (came from Lucid [Ren02]) tells GIPC to interpret the source

program unconditionally as an Indexical Lucid program.

116

• --jlucid tells GIPC to interpret the source program unconditionally as a JLucid

program.

• --objective tells GIPC to interpret the source program unconditionally as an

Objective Lucid program.

• --translate or -T (came from Lucid [Ren02]) enables SIPL-to-GIPL transla-

tion. This option is implied by default (as opposed to be optional in Lucid).

It tells the GIPC to interpret the input program unconditionally as a non-GIPL

program that requires operator and function translation. The option has no ef-

fect with --gipl as GIPL is the only intensional language that does not require

any further translation.

• --disable-translate turns off automatic translation (in case the user knows

that an incoming non-GIPL program has nothing to translate, which is rarely

the case; otherwise, the GIPC will bail out with an error).

• --warnings-as-errors tells to treat compilation warnings as errors and stop

compilation after displaying them.

• --gee tells GIPC to run the compiled program immediately after compilation (if

successful) by feeding it directly to the GEE. The default is that the compiled

GIPSY program is saved into a file where the original name is suffixed with the

.gipsy extension.

• --dfg tells GIPC to perform DFG code generation as a part of the compilation

process.

• --debug to run in a debug/verbose mode.

Example uses of the GIPC application include:

• gipc or gipc --help or gipc -h

• gipc life.ipl

• gipc --disable-translate --gee --debug life.ipl

• gipc --gipl --debug gipl.ipl

• gipc --jlucid --stdin

117

4.2.1.5 GEE Command-Line Interface

Synopsis:

gee [OPTIONS] [FILENAME1.gipsy [FILENAME2.gipsy] ...]

gee --help | -h

The command line interface includes the following options:

• --help or -h displays application’s usage information.

• [FILENAME1.gipsy [FILENAME2.gipsy] ...] tells GEE to run a stored version

of a compiled GIPSY program as indicated by the FILENAME. It is possible to

have more than one input file for execution. If this is the case, the same number

of instances of GEE threads will be initially spawned to run those programs.

The programs will run concurrently, but there should not be any interference or

communication in their execution except they may share the output resource.

• --stdin tells GEE to interpret the standard input as a compiled GIPSY program.

This is the default if no FILENAME is supplied.

• --all tells GEE to start all implemented services/servers locally (threaded, RMI,

Jini, DCOM+, and CORBA).

• --threaded tells GEE to start the threaded server only.

• --rmi tells GEE to start the RMI service.

• --jini tells GEE to start the Jini service.

• --dcom tells GEE to start the DCOM+ service.

• --corba tells GEE to start the CORBA service.

• --debug tells GEE to run in the debug/verbose mode.

Example uses of the GEE application include:

• gee or gee --help or gee -h

• gee life.gipsy

118

• gee --disable-translate --threaded --debug life.gipsy

• gee --all --debug gipl.gipsy

• gipc --rmi --jini indexical.gipsy

4.2.1.6 Regression Testing Application Command-Line Interface

Synopsis:

regression [OPTIONS]

regression --help | -h

The Regression application and its test suite are presented in detail in Section 5.1.

The application, based on options, invokes either GIPC or GEE or both directly feeding

a pre-selected list of test source programs. The command line interface includes the

following options:

• --help or -h displays application’s usage information.

• --sequential tells to run sequential tests (default).

• --parallel tells to run parallel tests.

• --gipl tells to test pure GIPL programs only.

• --indexical tells to test pure GIPL and Indexical programs with the Indexical

Lucid compiler.

• --gipsy tells to test general-style GIPSY programs with code segments.

• --gee if specified, tells to run the GEE after compilation (default).

• --all tells to do all of the above tests in one run (default).

• --directory tells to pick source test files from a specified directory instead of

pre-set directories from the GIPSY source tree

• --debug tells to run in the debug/verbose mode.

Example uses of the Regression application include:

119

• regression or regression --help or regression -h

• regression --gipl

• regression --parallel --indexical

• regression --all --debug

• regression --directory=/some/gipsy/misc/tests --all --debug

4.2.2 External Software Interfaces

4.2.2.1 JavaCC API

JavaCC-generated code contains a number of common classes and interfaces, regard-

less of the language a parser is generated for. These have to do with AST nodes,

tokens, token types, character streams, and alike. The most often used class out of

this bundle is SimpleNode, which is a concrete node in the AST. These classes have

to be periodically refreshed by compiling the source grammar when a newer version

of javacc comes out.

The below are JavaCC API/modules [VC05] used by the GIPSY and their de-

scription. The corresponding class diagram is in Figure 60.

• Node is the common interface for all occurrences of SimpleNode to implement

(see below).

• The SimpleNode class represents a concrete node in every AST in the GIPC.

Once generated, this class is usually customized according to the needs of the

given parser/compiler. All concrete instances, however, implement the same

Node interface above. At the time of this writing, there are three SimpleNode oc-

currences in the GIPSY source tree: the common one in gipsy.GIPC.intensional

for all the SIPLs and GIPL, as per original implementation presented in [Ren02].

It is a basis for a GIPL AST aside from the related parsers known to the

SemanticAnalyzer and GEE’s Executor. This implementation is wrapped-

around by AbstractSyntaxTree that the rest of the modules know. Then, a

customized subclass of it is in gipsy.GIPC.DFG.DFGAnalyzer of Yimin Ding

[Din04]. It was made a subclass because a large portion of the code is iden-

tical. Finally, the last one is in gipsy.GIPC.Preprocessing used by the

120

Figure 60: JavaCC- and JJTree-generated Modules Used by Several GIPC Modules.

121

Preprocessor. This occurrence of SimpleNode was kept as-is due to the sig-

nificant differences and purpose with the former two.

• The ImperativeNode is another implementation of the Node interface created

manually for all the imperative language compilers. The ImperativeNode rep-

resents an AST of a single node encapsulating STs, CPs, some meta information

that came from a given imperative compiler. The reason for this is to main-

tain a global AST for a GIPSY program where all nodes implement the same

interface.

• SimpleCharStream is a common javacc utility that treats incoming source code

stream as a set of ASCII characters without extra UNICODE processing.

• ParseException is a common generated type of exception to indicate a parse

error. It was made manually to subclass GIPCException from the GIPSY Ex-

ceptions Framework (see Section 4.2.3.2) for uniform exception handling.

• TokenMgrError a subclass of java.lang.Error primarily to signal lexical errors

in the incoming source code or token processing in general by a given parser

(e.g. by invoking a static parser twice).

4.2.2.2 MARF Library API

MARF (see Section 2.6.3) has a variety of useful utility and storage-related modules that

conveniently found their place in GIPSY. Most of these come from the marf.util

package as well as marf.Storage.2 The below are MARF API/modules used by

GIPSY and their description:

• marf.util.FreeVector is an extension of java.util.Vector that allows the-

oretically vectors of infinite length, so it is possible to set or get an element of

the vector beyond its current physical bounds. Getting an element beyond the

boundaries returns null, as if the object at that index was never set. Setting an

element beyond bounds automatically grows the vector to that element. In the

GIPSY, marf.util.FreeVector is used as a base for our Dictionary as shown

in Figure 62. Figure 63 shows all the modules that are now using Dictionary

2Later some natural language processing (NLP) modules in marf.nlp of MARF might also get
used in the GIPSY as a part of another research project.

122

Figure 61: MARF Utility Classes used by the GIPSY.

instead of java.util.Vector. The corresponding class diagram of the MARF’s

util API is shown in Figure 61.

• marf.util.OptionProcessor module is extensively used by the command-line

user interfaces (see Section 4.2.1) of GIPSY, GIPC, GEE, and Regression. A con-

venient way of managing command-line options in a hash table and validating

them.

• marf.util.BaseThread class encapsulates some useful functionality used in

threaded versions of GEE and GIPC, which Java’s java.lang.Thread does not

provide:

– maintaining unique thread ID (TID) among multiple threads and reporting

it (for tracing, debugging, and RIPE). A note is added here that Java 1.5.*

now also provides a notion of a TID, but marf.util.BaseThread was

123

Figure 62: Dictionary and DictionaryItem API

written prior to that and GIPSY remains Java 1.4-compliant still. Plus,

MARF’s way of handling this is more flexible.

– adapted human-readable trace information via toString()

– access to the Runnable target that was specified upon creation.

– integration with marf.util.ExpandedThreadGroup, see below.

• marf.util.ExpandedThreadGroup allows to start, stop, or other group opera-

tions that Java’s java.lang.ThreadGroup doesn’t provide. ExpandedThreadGroup

is, for example, used in GIPC to create a group of compiler threads (in GIPSY

every compiler is a thread), one for each language chunk, that will run concur-

rently. Additionally, a group of GEE, or rather, Executor threads would run in

the case of a forest of ASTs.

• marf.util.Arrays groups more array-related functionality together than the

java.util.Arrays class does, for example copying (homo- and heterogeneous

types) and converting to java.util.Vector, and provides some extras.

124

Figure 63: Dictionary Usage within the GIPSY

• marf.Storage.StorageManager provides basic implementation of the (possibly

compressed) object serialization, and in our case the GIPC and GEE are storage

manager with respect to a compiled GIPSY program.

• marf.util.Logger is primarily used by the Regression application to log stan-

dard output before calling GIPC or GEE to a file, for future comparison with an

expected output.

• marf.util.Debug is used in many places for debugging convenience allowing

to issue debug messages only if the debug mode is globally on, which is also

maintained within the class.

125

4.2.2.3 Servlets API

The Java Servlets technology from Sun [Mic05a] was used to implement the WebEditor

interface outlined earlier. While the actual API specification of servlets is rather vast,

the key used components used here are listed:

• The HttpServlet class is the base for all servlets, including WebEditor.

• The doGet() must be overridden to respond to the GET HTTP requests.

• The doPost() must be overridden to respond to the POST HTTP requests. In

our implementation, doPost() is a simply a wrapper around doGet(), so both

GET and POST requests are handled identically.

4.2.3 Architectural Design and Unit Integration

Unit integration according to the initial design decisions of the GIPSY system and

setting up package hierarchy played an important role in the success of this work.

A proposed directory structure (see Appendix C.1) and a corresponding breakdown

of the Java packages (see Appendix C.1) hierarchy are important to the success of

GIPSY, especially for public use. The author of this work inherited the previous

GIPSY iteration without any structure or packaging and proposed and restructured

the system to what it is now.

4.2.3.1 GIPSY

When integrating several components of a large system and redesigning some of their

API, the overall system design has to be considered. In Figure 64 is a high-level

view of the main GIPSY modules. These modules can be run as stand-alone Java

applications or start each other.

• The GIPSY class on the diagram represents a stand-alone server for a client-

server type of application, which is capable of spawning GIPC and GEE upon

client’s request. The prime goal of it is testing of intensional programs that users

can submit online and get the result in case they don’t have the development

environment set up from where they are working.

126

Figure 64: GIPSY Main Modules.

• The GIPC class when run as a stand-alone application invokes all the intensional

and imperative compilers required and produces a compiled version of a sub-

mitted GIPSY program. Optionally, if requested, GIPC can pass the compiled

program on to GEE for execution. The GIPC along with GEE subsumes what was

previously known as Lucid and Facet defined by Chun Lei Ren in [Ren02].

• The GEE when run as a stand-alone application, begins demand-driven execution

of a GIPSY program that was either compiled and stored or compiled and passed

from GIPC.

• The Regression class is the main driver for the Regression Testing Suite of

127

Figure 65: GIPSY Exceptions Framework.

GIPSY, that also calls these modules for regression and unit testing.

4.2.3.2 GIPSY Exceptions Framework

The class diagram describing the GIPSY Exceptions Framework is in Figure 65. The

main exception type is GIPSYException that provides some machinery encapsulating

other exceptions. Every major module, like GIPC, GEE, or RIPE in GIPSY de-

fines its own sublcass of GIPSYException. By doing this, the applications using the

modules can differentiate the exception types and handle them appropriately. The

NotImplementedException is an easy way to use to indicate some unimplemented

but important stubs, if called. It is a subclass of RuntimeException because it can

happen virtually everywhere and run-time exceptions do not need to be declared to

be thrown or caught. The GIPCException, GEEException, and RIPEException rep-

resent base exception objects for the corresponding modules; the rest are primarily

128

subclasses of these.

4.2.3.3 GEE Design

The general overview of GEE is in Figure 66. The several modules under the

gipsy.GEE package carry out a complex GIPSY program execution task. The GEE

is the facade and the main starting point for all of GEE. GEE may act as either an

application on its own or be invoked by the GIPC. For the stand-alone execution a

user has to supply a filename of a valid compiled GIPSYProgram. This program is

loaded and GEE starts the Executor thread to actually execute it. Before Executor

begins the GEE may optionally start the available demand propagation services, such

as local (just threads), RMI, Jini-based and the like. The Executor while executing

the program generates demands for the identifiers listed in the program and then per-

forms the final calculation based on the results received. The Executor was formerly

known as XLucidInterpreter and the Java version of which was implemented by Bo

Lu in [Lu04] and reworked to handle sequential threads, arrays, objects, and other

than integer and float data types.

Demand Dispatcher In Figure 67 is a high-level overview of the DemandGenerator

and related classes. Most of the demand propagation in Jini and JavaSpaces is im-

plemented by Emil Vassev in [VP05]. The integration part included making sure the

IDemandList interface is consistently used by the DemandGenerator along with the

DemandDispatcherAgent to be compliant to the rest of the GEE. The IDemandList

interface was originally designed by Bo Lu in [Lu04] and redesigned by the author

of this thesis to be implemented by the RMI and threaded versions of GEE and was

formerly known as DemandList. Next, the temporary class WorkTask was made to im-

plement the ISequentialThread interface according to the overall GIPSY design for

sequential threads. This class is marked as deprecated (and later on will be removed)

as every sequential thread class is generated by the SequentialThreadGenerator and

is different from one GIPSY program to another. Finally, the LUSException (service

look up exception) and DemandDispatcherException were made to be a part of the

GIPSY Exceptions Framework Section 4.2.3.2 by inheriting from the GEEException.

For further implementation details of the DemandDispatcher please refer to Emil’s

work [VP05].

129

Figure 66: GEE Design.

130

Figure 67: The Demand Dispatcher Integrated and Implemented based on Jini.

131

Figure 68: Integration of the Intensional Value Warehouse and Garbage Collection.

Intensional Value Warehouse and Garbage Collection Intensional Value Ware-

house and Garbage Collection were implemented by Lei Tao in [Tao04]. After integra-

tion, his contributions became to look like as shown in Figure 68. The IValueHouse

and its extension IVWInterface are the ones used by the Executor to communicate

to a concrete implementation of a warehouse, allowing adding/changing warehouse

implementations easily without affecting the Executor. All the exception handling

is based on the GEEException.

4.2.3.4 RIPE Design

The class diagram describing RIPE is in Figure 69. The RIPE class represents a

facade to the rest of the RIPE modules. It is semi-implemented, as many things are

not clear on this side of the project yet. The only part of RIPE that was advanced

well so far by Yimin Ding in [Din04] is the Data-Flow-Graph (DFG) editor, which

is not implemented in Java. The DFGEditor Java class is meant to be main Java

132

Figure 69: RIPE Design.

program acting like a bridge between Java and the LEFTY language, but did not get

implemented yet. The rest of the modules are planned stubs.

4.2.3.5 Data Flow Graphs Integration

The integration of Yimin Ding’s [Din04] DFG-related work is presented in Figure 70.

The DFGAnalyzer was augmented to implement the ICompiler interface as it fol-

lows the same structure as the rest of our compilers, which compiles a Lucid code

from DFG. The DFGException class, a subclass of GIPCException has been created

to indicate an error situation in the DFG processing. DFGAnalyzer’s SimpleNode

was updated to inherit from GIPC.intesional.SimpleNode due to vast functional-

ity overlap. The two analyzer and generator modules have been placed under the

GIPC.DFG.DFGAnalyzer and GIPC.DFG.DFGGenerator packages.

133

Figure 70: DFG Integration Design.

134

4.3 Summary

This chapter presented most of the development effort went into integration, design,

and implementation of JLucid, Objective Lucid, and GICF. User interfaces (both web

and command line) has been outlined. Regression Test Suite has been introduced.

The follow up chapter presents a variety of testing approaches went into the GIPSY

to prove successful integration of the old and implementation of new modules.

To summarize, Objective Lucid, as opposed to GLU [JD96, JDA97] and JLucid,

provides access to the object members and is real object-oriented hybrid language.

While JLucid may indirectly manipulate objects through pseudo-free functions, the

actual objects are still a “black box” to it.

The GICF and IPLCF gave an ability for an easier integration of intensional and

imperative languages in the GIPSY. The below are the steps one needs to perform to

add a new compiler to the GIPSY:

• create a package where the language compiler will reside (usually under

imperative/LANGUAGE or intensional/SIPL/LANGUAGE.

• add a compiler class that extends either one of IntensionalCompiler,

ImperativeCompiler, or implements one of their superinterfaces

• the code segment and fully qualified class name should be added to either

EImperativeLanguages or EIntensionalLanguages

• optionally implement a custom version of a preprocessor if it is a hybrid language

• implement translation rules to GIPL if it is a SIPL if it is an intensional language

• implement proper ST/CP generation for an imperative language according to

that language’s semantics and typing instructions

• implement type mapping table upon the need if it is an imperative language

The above might still sound complex, but it is much more easier and flexible than

before. Additionally, some of the steps can be abstracted and simplified, but it is

impossible to eliminate manual work altogether.

135

Chapter 5

Testing

This chapter addresses the testing aspect of this thesis for the following two main

reasons: integration and refactoring of a variety of the GIPSY modules including

GICF and the development and operation of the two new Lucid dialects developed

in this work, namely JLucid and Objective Lucid. Notice, this testing is far from

comprehensive and does not include testing of the execution performance of any of

the programs and many compilation aspects are still to be resolved as of this writing

(and be resolved in the final version). This is, however, a starting point of setting up

the GIPSY testing infrastructure for the projects to come to do mandatory systematic

tests, which are now a necessity given the size of the system, a centralized source tree,

and the number of subprojects developed simultaneously.

5.1 Regression Testing

5.1.1 Introduction

The regression testing is a comprehensive set of tests for the implementation and

integration of the GIPSY modules. They test most of the operations and capabilities

of the GIPSY. The test cases primarily are various intensional programs (hybrid

or not) that exercise the main modules, such as GIPC and GEE as well as their

submodules with the major focus on GIPC.

136

5.1.2 Regression Testing Suite

The regression tests can be run against already pre-compiled gipsy.jar, or by using

a temporary installation within the source tree using the Regression application.

Next, there are a “sequential” and “parallel” modes to run the tests. In the sequential

mode tests run in strict sequence, whereas in the parallel mode multiple threads are

started to run groups of tests in parallel.

5.1.2.1 Unit Testing with JUnit

The core of the Regression application is based on the JUnit framework introduced in

Section 2.6.1.3. Regression represents a TestSuite, that contains ParallelTestCase

and SequentialTestCase, a subclasses of TestCase. Both types of tests are cus-

tomizable based on the options supplied to the Regression application (see Sec-

tion 4.2.1.6). JUnit helps to tell us what errors happened and in which modules and

the reason of the failures dynamically at run-time.

5.1.2.2 Unit Testing with diff

It becomes cumbersome to use JUnit for all possible cases, in a large system, where

often we are generally interested in the output behaviour changes only. Here the Unix

tool diff helps us. A collection of hand-checked outputs are said to be “expected”,

one ore more file for each test case. Then, when the next time the test is run, a

current directory is created with the current outputs, and the current and expected

output directories are compared with the diff to show the differences in the output

produced by the modules. This is all achieved by the regression script.

5.1.2.3 Tests

The actual test cases in the form of GIPL, Indexical Lucid, Objective Lucid, JLucid,

and GIPSY programs, are located under the corresponding src/tests/* directories

in the source tree in the form of *.ipl files. These comprise most of the examples

presented earlier in this work as well as developed in [Paq99], [Ren02], [Wu02], and

[Lu04]. The regression tests for the DFG generation ([Din04]), Intensional Value

Warehouse and Garbage Collector [Tao04] and Demand Migration System (DMS)

[VP05] are not present as of this implementation.

137

5.2 Portability Testing

GIPSY has been tested and is known as expected (regression tests pass) to run

on Red Hat Linux 9, Fedora Core 2, Mac OS X, Solaris 9, Windows

98SE/2000/XP systems under JDK 1.4 and 1.5. The corresponding hardware ar-

chitectures were Intel or Intel-compatible processors (Pentium II, III, and IV with 233

MHz to 1.4 GHz) and G3 and G4 processors from Apple and IBM. For the WebEditor

interface, Tomcat 5 on Mac OS X were tested, but it is believed to run on other

platforms the Jakarta Tomcat runs on.

138

5.3 Solving Problems

This section is targeting some common problems of synchronization in parallel and

distributed environment and how they are solved using the GIPSY system relieving

the programmer from the need of explicitly synchronize the objects. They also illus-

trate the use of arrays and embedded Java, and Java objects. These programs are

among many other test cases from the Regression Tests Suite.

5.3.1 Prefix Sum

pseudocode (for thread ’j’)

’shared’ a ’future’ ’int’ ’array’ [1..logP, 1..P] := undefined;

’private’ sum ’int’ := j,

hop ’int’ := 1;

’do’ level = 1, logP --->

’if’ j <= P - hop ---> a[level, j] := sum ’fi’

’if’ j > hop ---> sum +:= a[level, j - hop] ’fi’

hop := 2 * hop

’od’

Figure 71: Pseudocode of a thread j for the Prefix Sum Problem.

/*

* PREFIX SUM in GIPL-style JLucid program.

* Numbers are from 1 to 8.

* S[I] will contain prefix sum for number ’i’

*/

#JLUCID

// Array of prefix sums

S[8] @d 8

where

dimension d;

S[I] = if(#d = 0)

then 1

else (2 * S[I] - 1) @d (#d - 1)

fi;

// Index the array varies within.

I @i 8

where

dimension i;

I = if(#i = 0) 1 else (I - 1) @d (#i - 1);

end;

end;

Figure 72: The Prefix Sum Problem in JLucid in GIPL Style.

139

The pseudocode of for a thread j is in Figure 71 [Pro03a]. The Figure 72 shows

the program translated into Lucid. The Figure 73 shows the program translated into

Indexical Lucid for numbers from 1 to 8. Below is an equivalent implementation of

the problem (targeting only TLP) in Java; compare the program’s line count and

complexity to that of JLucid:

// Modified from Dr. Probst’s Cyclic.java

public class PrefixSum

{

public static final int P = 8; // number of workers

public static final int logP = 3; // number of rows in logP x P matrix

// For permutation of workers

private static int[] col = {3, 6, 5, 7, 4, 2, 1, 0};

// These two mimic a 2D array of future variables

public static int[][] a = new int [logP][P];

public static Semaphore[][] futures = new Semaphore[logP][P];

// The resulting sums are to be placed here.

public static int[] sums = new int[P];

public static void main(String[] argv)

{

Worker w[] = new Worker[P];

for(int j = 0; j < futures.length; j++)

for(int k = 0; k < futures[j].length; k++)

futures[j][k] = new Semaphore(0);

for(int j = 0; j < P; j++)

{

w[col[j]] = new Worker(col[j] + 1);

w[col[j]].start();

}

for(int j = 0; j < P; j++)

{

try

{

w[j].join();

}

catch(InterruptedException e)

{

}

}

for(int j = 0; j < P; j++)

System.out.println ("Prefix Sum of " + (j + 1) + " = " + sums[j]);

140

System.out.println ("System terminates normally.");

}

}

class Semaphore

{

private int value;

Semaphore(int value1)

{

value = value1;

}

public synchronized void Wait()

{

try

{

while(value <= 0)

{

wait();

}

value--;

}

catch (InterruptedException e)

{

}

}

public synchronized void Signal()

{

++value;

notify();

}

}

class Worker extends Thread

{

private int j;

private int sum;

private int hop = 1;

public Worker(int col)

{

sum = j = col;

}

public void run()

{

System.out.println("Worker " + j + " begins execution.");

141

yield();

for(int level = 0; level < PrefixSum.logP; level++)

{

if(j <= PrefixSum.P - hop)

{

System.out.println

(

"Worker " + j +

" defines a[" + level + "," + (j-1) +"]."

);

PrefixSum.a[level][j - 1] = sum;

PrefixSum.futures[level][j - 1].Signal();

}

if(j > hop)

{

PrefixSum.futures[level][j - 1 - hop].Wait();

System.out.println

(

"Worker " + j +

" uses a[" + level + "," + (j - 1 - hop) + "]."

);

sum += PrefixSum.a[level][j - 1 - hop];

}

hop = 2 * hop;

}

PrefixSum.sums[j - 1] = sum;

System.out.println ("Worker " + j + " terminates.");

}

}

142

/*

* PREFIX SUM in Indexical Lucid-style JLucid

*/

#JLUCID

S[8] @d 8

where

dimension d;

S[I] = 1 fby.d (2 * S[I] - 1);

I @i 8

where

dimension i;

I = 1 fby.i (I - 1);

end;

end;

Figure 73: The Prefix Sum Problem in JLucid in Indexical Lucid Style.

143

5.3.2 Dining Philosophers

Below is a JLucid implementation of the Dining Philosophers problem [Dij65, Dij71,

Gin90]. We have arrays of 8 philosophers and 8 forks, each represented as integers.

A philosopher is either thinking (1) or eating (2); likewise for forks, taken or not.

A philosopher may eat when they have exactly two forks, not less, if the forks are

available. If none available, the philosopher waits (implicit, guaranteed by the GEE).

The special variable I serves as an intensional index for our arrays.

/**

* Dining Philosophers Problem

* in JLucid

*

* @author Serguei Mokhov, mokhov@cs.concordia.ca

* @version $Revision: 1.10 $ $Date: 2005/03/02 02:57:31 $

*/

#funcdecl

int getIninitalRandomState();

boolean chew(int);

boolean brainstormIdea(int);

#JLUCID

/*

* Assume 8 philosophers and two states.

* States: 2 - eating, 1 - thinking

* Forks are either available or not; hence, 2 states as well.

*/

PHILOSOPHERS[8] @states 2

where

dimension states;

// Initialize all forks

FORKS[8] @availability 2

where

dimension availability;

FORKS[I] = getIninitalRandomState();

I @d 8

where

dimension d;

I = 1 fby.d (I - 1);

end;

end;

144

/*

* Run the actual algorithm.

* NOTE: in this implementation the computation

* never terminates (normally). It is an infinite loop.

*/

PHILOSOPHERS[I] =

if(#states == 1) then

eat(I) @states 2

eat(I) =

getForks(I) && chew(I);

getForks(I) = g(l, r)

where

l = FORK[I] @availability 1;

r = FORK[I] @availability 1;

end;

else

think(I) @states 1

think(I) =

putForks(I) && brainstormIdea(I);

putForks(I) = p(l, r)

where

l = FORK[I] @availability 2;

r = FORK[I] @availability 2;

end;

fi;

I @d 8

where

dimension d;

I = 1 fby.d (I - 1);

end;

end;

#JAVA

int getIninitalRandomState()

{

// Either 1 or 2

return new Random().nextInt(2) + 1;

}

boolean chew(int i)

{

try

{

System.out.println("Philo " + i + " is chewing smth tasty now.");

145

sleep(new Random().nextInt(i * 1200));

System.out.println("Philo " + i + " finished chewing.");

return true;

}

catch(InterruptedException e)

{

return false;

}

}

boolean brainstormIdea(int i)

{

try

{

System.out.println("Philo " + i + " is heavily thinking now.");

sleep(new Random().nextInt(i * 1200));

System.out.println("Philo " + i + " finished thinking.");

return true;

}

catch(InterruptedException e)

{

return false;

}

}

146

5.3.3 Fast Fourier Transform

This is an example on how one would compute Fast Fourier Transform (FFT) in the

GIPSY for an array of double values. This is straightforward in Lucid because it’s

deterministic with plenty of parallelism. A JLucid program implementing FFT is in

Section 5.3.3.1. The algorithm is based on the Java algorithm implemented in MARF

[MCSN05, Pre93, Ber05], a code fragment of which is in Section 5.3.3.2, originally

written by Stephen Sinclair. The JLucid version omits the imaginary part of the

transform, but it would not be hard to add it.

5.3.3.1 Fast Fourier Transform in JLucid.

/*

* FFT implementation in JLucid.

* Serguei Mokhov

* $Id: fft.ipl,v 1.2 2005/08/13 01:37:23 mokhov Exp $

*/

#funcdecl

double sin(double);

double pi();

#JAVA

double sin(double pdValue)

{

return Math.sin(pdValue);

}

double pi()

{

return Math.PI;

}

#JLUCID

A

where

// A is an array of 9 FFT values with a

// normal FFT applied to the array below.

A = fft([1, 2, 3, 4, 6, 7, 8, 9], 9, 1);

fft(inputValues, length, sign) = fftValues

where

fftValues = apply(length, reverse(length, inputValues), sign);

147

apply(len, coeffs, direction) = coeffs @.s (N - 1)

where

dimension s;

N = 2 * len;

mmax = (2 fby.s istep) upon(mmax < N);

coeffs[J / 2] = coeffs[I / 2] - tempr;

coeffs[I / 2] = coeffs[I / 2] + tempr;

where

istep = mmax fby.s (istep) * 2;

M @.m mmax

where

dimension m;

M = (0 fby.m (M + 2)) upon (M < mmax);

tempr = wr * coeffs[J / 2] - wi * coeffs[J / 2];

J = I + mmax;

wr = 1.0 fby.m ((wtemp = wr) * wpr - wi * wpi + wr);

wi = 0.0 fby.m (wi * wpr + wtemp * wpi + wi);

where

dimension i;

I = (M fby.i (I + istep)) upon (I < N);

theta = (direction * 2 * pi()) / mmax;

wtemp = sin(0.5 * theta);

wpr = -2.0 * wtemp * wtemp;

wpi = sin(theta);

end;

end;

end;

end;

// Binary reversion

reverse(l, vals) = out @.i length

where

dimension i;

out[t] = vals[#.i] @ (#.i + 1) @.bit maxbits(length);

where

dimension bit;

t = 0 fby.bit ((t * 2) | (n & 1));

n = #i fby.bit (n / 2);

end;

end;

148

// Determine max number of bits

maxbits(len) = (mbits - 1) @.m 16

where

dimension m;

mbits = (0 fby.m (mbits + 1)) upon (mbits < 16 && n != 0);

n = len fby.m (n / 2);

end;

end;

end;

// EOF

5.3.3.2 Fast Fourier Transform code fragment in Java from MARF.

...

/**

* <p>FFT algorithm, translated from "Numerical Recipes in C++" that

* implements the Fast Fourier Transform, which performs a discrete Fourier transform

* in O(n*log(n)).</p>

*

* @param InputReal InputReal is real part of input array

* @param InputImag InputImag is imaginary part of input array

* @param OutputReal OutputReal is real part of output array

* @param OutputImag OutputImag is imaginary part of output array

* @param direction Direction is 1 for normal FFT, -1 for inverse FFT

* @throws MathException if the sizes or direction are wrong

*/

public static final void doFFT

(

final double[] InputReal,

double[] InputImag,

double[] OutputReal,

double[] OutputImag,

int direction

)

throws MathException

{

// Ensure input length is a power of two

int length = InputReal.length;

if((length < 1) | ((length & (length - 1)) != 0))

throw new MathException("Length of input (" + length + ") is not a power of 2.");

if((direction != 1) && (direction != -1))

throw new MathException("Bad direction specified. Should be 1 or -1.");

if(OutputReal.length < InputReal.length)

throw new MathException("Output length (" + OutputReal.length + ") < Input length (" + InputReal.length + ")");

149

// Determine max number of bits

int maxbits, n = length;

for(maxbits = 0; maxbits < 16; maxbits++)

{

if(n == 0) break;

n /= 2;

}

maxbits -= 1;

// Binary reversion & interlace result real/imaginary

int i, t, bit;

for(i = 0; i < length; i++)

{

t = 0;

n = i;

for(bit = 0; bit < maxbits; bit++)

{

t = (t * 2) | (n & 1);

n /= 2;

}

OutputReal[t] = InputReal[i];

OutputImag[t] = InputImag[i];

}

// put it all back together (Danielson-Lanczos butterfly)

int mmax = 2, istep, j, m; // counters

double theta, wtemp, wpr, wr, wpi, wi, tempr, tempi; // trigonometric recurrences

n = length * 2;

while(mmax < n)

{

istep = mmax * 2;

theta = (direction * 2 * Math.PI) / mmax;

wtemp = Math.sin(0.5 * theta);

wpr = -2.0 * wtemp * wtemp;

wpi = Math.sin(theta);

wr = 1.0;

wi = 0.0;

for(m = 0; m < mmax; m += 2)

{

for(i = m; i < n; i += istep)

{

j = i + mmax;

tempr = wr * OutputReal[j / 2] - wi * OutputImag[j / 2];

150

tempi = wr * OutputImag[j / 2] + wi * OutputReal[j / 2];

OutputReal[j / 2] = OutputReal[i / 2] - tempr;

OutputImag[j / 2] = OutputImag[i / 2] - tempi;

OutputReal[i / 2] += tempr;

OutputImag[i / 2] += tempi;

}

wr = (wtemp = wr) * wpr - wi * wpi + wr;

wi = wi * wpr + wtemp * wpi + wi;

}

mmax = istep;

}

}

...

151

5.3.4 Moving Car

A less contrived example of an Objective Lucid program is presented in Figure 74.

This is an example where a Car object changes with time. Eliminating S, and ignoring

the print call, we have have:

C @.time 15 where

C = Car() fby.time C.move(#.time)

Using the definition of fby gives:

C @.time 15

= (Car() fby.time C.move(#.time)) @.time 15

= if 15 <= 0 then Car() else (C.move(#.time)) @.time (15 - 1)

= C.move(14)

Our intention is that fby will give the sequence:

Car() Car.move(1) Car.move(2) ... Car.move(15)

This will work as follows. When one generates a demand for C.move(15) it’s not

satisfied until C.move(14) is until C.move(13) is ... until C.move(1) is until Car(),

so it recurses back and finally the Car() object instance gets constructed, and then

the demands flow from 1 to 15 and the instance already exists.

The car also does not accelerate indefinitely. It moves until it has enough fuel,

else it returns the car object with its members unmodified. The drop of speed is also

in place when fuel is depleted.

To further illustrate this idea let’s take the existing example of a simpler problem

of natural numbers presented in Figure 22 and convert it into Objective Lucid as in

Figure 76. First, we will present the eduction tree of the natural numbers problem

(see Figure 75, a corrected version of the one produced by Paquet in [Paq99]) and

then transmute it into the eduction tree of the execution of the equivalent Objective

Lucid propgram, as shown in Figure 77. The program in Figure 76 exhibits the same

properties as the Car example, so the eduction tree will be similar but will take more

space. The important aspect here is to illustrate the difference between demands

for STs and their lazy execution (which is italisized, e.g. N.inc()); thus, the actual

invocation of a ST method happens at a later time after the demand is made so we

avoid not having called constructor prior execution of an instance method. In the

152

#typedecl

Car;

#JAVA

public class Car

{

public int x = 0;

public float speed;

public float speeddrop;

public float fuel;

public float fueldrainrate;

public Car()

{

// Assume initially car was already moving.

speed = 100.0; fuel = 40.5;

fueldrainrate = 0.018; speeddrop = 0.1;

}

// Move by a number of steps assuming constant speed

// and decelerate when ran out of fuel.

public Car move(int steps)

{

if(fuel > 0)

{

fuel -= fueldrainrate * speed * steps;

x += steps;

}

else if(speed > 0)

{

x += steps;

speed -= speeddrop * steps;

}

return this;

}

public void printCarState()

{

System.out.println

(

"Speed: " + speed + ", fuel: " + fuel +

", drain: " + fueldrainrate + ", x: " + x +

", speeddrop: " + speeddrop

);

}

}

#OBJECTIVELUCID

(C @.time 15).printCarState()

where

C = Car() fby.time S;

S = C.move(#time);

end;

Figure 74: Objective Lucid example of a Car object that changes in time.

153

eduction trees the normal arrows correspond to demands made for expressions and

the bullet arrows correspond to the result of evaluation of the demands, which are

also bold and italic. In the Objective Lucid eduction tree object instance is denoted

as ClassName:MemberName:value and the {d:X} presents the context of evaluation.

The result of evaluation of the Objective Lucid variant is said to be true because, as

previously defined, void methods are mapped to return true and the last expression

bit that is evaluated here is the print() method call of the instance of a Nat32 class,

which returns void.

154

Figure 75: Eduction Tree for the Natural Numbers Problem.155

#typedecl

Nat42;

#JAVA

class Nat42

{

private int n;

public Nat42()

{

n = 42;

}

public Nat42 inc()

{

n++;

return this;

}

public void print()

{

System.out.println("n = " + n);

}

}

#OBJECTIVELUCID

(N @.d 2).print[d]()

where

dimension d;

N = Nat42[d]() fby.d N.inc[d]();

end

Figure 76: The Natural Numbers Problem in Objective Lucid.

156

Figure 77: Eduction Tree for the Natural Numbers Problem in Objective Lucid.157

5.3.5 Game of Life

The Game of Life [Gar70] would make a good benchmark for the GIPL. Life takes

place on a 2D grid and evolves in time, so it’s a 3D problem. The value of a cell at

time T +1 depends on the value of the cell and its 8 neighbours at time T . Thus, there

is a high branching factor and the IVW will get plenty of exercise. Peter Grogono

wrote a version in Haskell, which is functional and lazy but is not concurrent and

does not have an IVW. The author of this work made a version in Indexical Lucid.

In Figure 78 is the top-level function. The Game of Life program is included in the

test suite as a good elaborate test case, but this work does not address any of the

performance and efficiency issues related to the execution and wareshousing, so no

measurements have been done two compare the efficiency of the program with and

without the warehouse nor with the Haskell program.

life = evolve T initial (conway life) where

initial = F(\i ->

if val Y i == 0 && 0 <= val X i && val X i < 5 then 1 else 0)

conway v = F(\i ->

let neighbours v =

ev v (n i) + ev v (ne i) + ev v (e i) + ev v (se i) +

ev v (s i) + ev v (sw i) + ev v (w i) + ev v (nw i) in

b2i(neighbours v == 3 || ev v i == 1 && neighbours v == 2))

evolve d s e = F(\i ->

if val d i == 0 then ev s i else ev e (prev d i))

b2i b = if b then 1 else 0

n i = F(...)

Figure 78: The Life in Haskell.

Explanations:

• evolve(d , u, v) allows a value to evolve in the dimension d. The first value of

the stream is given by u and subsequent values by v.

• initial(d) defines the initial configuration (five ones in the row 0, zeroes every-

where else in the matrix 5-by-5).

• conway(d , v) computes the successor of state v. The functions n, ne, e, se, s,

sw, w, and nw are “navigators” that find values of neighbours.

• b2i(d) converts a Boolean to integer to decide the new value of an entity.

158

#INDEXICALLUCID

life = evolve(T, initial(T), conway(life, T))

where

dimension T;

evolve(d, u, v) = u fby.d v;

initial(d) =

if(Y == 0 && 0 <= X && X < 5) then 1 else 0

where

X = 0 fby.d X + 1;

Y = 0 fby.d Y + 1;

end;

conway(d, v) = b2i(neighbours == 3 || (v == 1 && neighbours == 2))

where

neighbours = n(d) + ne(d) + e(d) + se(d) + s(d) + sw(d) + w(d) + nw(d);

where

n(d) = v @.(d - 5);

ne(d) = v @.(d - 4);

e(d) = v @.(d + 1);

se(d) = v @.(d + 6);

s(d) = v @.(d + 5);

sw(d) = v @.(d + 4);

w(d) = v @.(d - 1);

nw(d) = v @.(d - 6);

end;

b2i(b) = if(b) then 1 else 0;

end;

end;

Figure 79: The Life in Indexical Lucid.

159

5.4 Summary

There were many tests developed and exercised for the GIPSY. This section attempted

to show the reader the most representative ones and how the Regression Tests Suite

works in the GIPSY for the most modules of GIPC and GEE and how JUnit is applied

to make it possible and maintainable. Now, every new module added to the GIPSY

system will have to have a corresponding unit and/or regression test (or several tests)

exercising most of the features of this module added.

160

Chapter 6

Conclusion

To conclude, it is believed GIPSY is well off the ground and is steadily getting ready

for its first large public release to the research community. It is becoming a lot

more usable not only by a small circle of GIPSY developers, but also by scientists

and researchers from other research groups. Preliminary testing (see Chapter 5) and

results (Section 6.1) give confidence in the success of an important step for the GIPSY

in the are of flexible hybrid intensional-imperative programming. To summarize, the

newly introduced features for the innovative intensional research platform GIPSY are

a valuable asset allowing us to release GIPSY to the masses and a new release will be

made at the SourceForge.net at http://sf.net/projects/sfgipsy circa the end of

December 2005 - January 2006.

6.1 Results

6.1.1 Experiments

The experiments conducted on the GIPSY research platform were primarily design,

development, and testing of hybrid programming paradigms by fusing together inten-

sional and imperative languages. For test experiments please refer to Chapter 5.

6.1.2 Interpretation of Results

After extensive testing of the design and implementation of ideas presented in Chap-

ter 3 we can see an enhanced, more flexible GIPSY system taking off the ground.

161

http://sf.net/projects/sfgipsy

Most of regression tests pass for the developed sample programs with known errors

and failures.

6.2 Discussions and Limitations

6.2.1 Lack of Hybrid Intensional-Imperative Semantics Proofs

The semantics for the GIPSY Type System was not defined and the one of JLucid

and Objective Lucid was not formally proven to be correct.

6.2.2 Genuine Imperative Compilers

The most serious limitation of the current implementation of the hybrid paradigm is

that there are no genuine imperative GIPSY compilers. The Java wrapper compiler

classes merely resort to the external tools from the library of enumerated tools. This

makes overall error checking and reporting cumbersome. Additionally, this slows

down the compilation process.

6.2.3 Cross-Language Data Type Mapping

When implementing other imperative language compilers than Java, or a genuine

compiler for Java, a special mapping has to be explicitly established in the form of

TypeMap. We can avoid this for C/C++ with the JNI [Ste05], but not for other

popular languages.

6.2.4 Dimension Index Overflow

While this limitation is not directly related to the main topics of this thesis, it has

to be mentioned. In the current implementation of the dimension type in all Lucid

variants is done as a simple Java integer, and as such, is finite. Thus, incorrectly

written Lucid programs or programs that may require high dimension values may

overflow the dimension index rendering execution of the program incorrect. This

limitation is not handled by the GEE nor constrained in the operational semantics of

Lucid.

162

6.2.5 Hybrid-DFG Integration

This thesis does not address placement, rendering, and integration of the hybrid AST

nodes into DFGs.

6.2.6 Dealing With Side Effects and Abrupt Termination

As of this implementation, GEE has very limited control over what’s happening inside

the STs in terms side effects, exceptions, non-termination, etc. in the Java (or other

imperative language) code causing it to exit prematurely or to hang. Likewise, we

cannot do warehousing of non-immutable STs due to the side effects, i.e. when the

same arguments are given to an ST may yield a different result at different invocations.

This is serious aspect, which is related to the development of any future semantics of

the hybrid programming languages and deserves a separate publication.

6.2.7 Imperative Function Overloading

It is an error to write the following:

#funcdecl

int foo(int);

int foo(float);

...

but it shouldn’t be. This is an error in the sense that only the last declaration is

retained due to the way function identifiers are handled, so no function overloading

at this moment is officially supported. The issue of dealing with the semantics of a

type system in which this is possible, especially if we support multiple imperative PLs,

where each may have potentially its own type system or even paradigm is complex.

However, this feature is nice to have and some practical aspects can be implemented,

which will be a research topic on its own.

6.2.8 Cross-Imperative Language Calls

Normally, an ST written say in #JAVA cannot call another ST in say #C. This limitation

is that only the intensional part can make calls to the imperative functions. This

163

eliminates the need to keep the type mappings between all possible combinations of

the imperative languages and semantics associated with this.

However, depending on the language, procedures written in the same language

can possibly communicate by calling each other. E.g. in Java, defining free members

and passing state between free functions is possible as nothing is done to prevent this.

#JAVA

int i;

int foo() {
return i + 1;

}

int bar() {
i++;

return foo();

}

This is based on the knowledge about the internal implementation i.e. the “int

i;” bit will also be wrapped in the class, so it’d be legal to have it from the Java’s

point of view; however, is considered to be a kludge and non-portable feature. To

be on the safer side, the STs like that should be written assuming no knowledge of

internal state for communication is available.

6.2.9 Security

JLucid, Objective Lucid, and GICF opened up doors for very flexible use of external

languages and resources as a part of intensional computation. Unfortunately, there

are security considerations to deal with when embedding a vulnerable unsigned code

from possibly untrusted remote location and then propagate it to all the workers par-

ticipating in computation can result resulting either gaining some unwanted privileges

to the attackers or DDoS.

164

Chapter 7

Future Work

The future work to take on will focus in the following areas to either address the

limitations outlined in Section 6.2 or to introduce new features, not necessarily all

related to the topics of this thesis.

• Integration of the Demand Migration System (DMS) [VP05].

• Formal semantic verification from Indexical Lucid through Objective Lucid.

• Placement of hybrid nodes into DFGs.

• Security.

• Trial C compiler with JNI.

• Fully Explore Array Properties.

• Genuine imperative compilers in GICF.

• Introduction functional language compilers.

• Visualization and control of communication patterns and load balancing.

• Target Host Compilation.

• Java wrapper for the DFG Editor of Yimin Ding.

165

7.1 Formal Verification of Semantic Rules and the

GIPSY Type System

One needs to formally conduct verification proofs of the semantic rules from Indexical

Lucid to Objective Lucid in PVS or Isabelle, so this project can be undertaken in

the near future and the work on it has already began. Specifically, a relation to the

semantic of objects and Java’s operational semantics has to be made. Likewise, the

semantics of the newly introduced GIPSY type system has to be formally defined.

7.2 Dealing with Data Flow Graphs in Hybrid Pro-

gramming

This thesis did not deal with the way on how to augment DFGAnalyzer and DFGGenerator

to support hybrid GIPSY programs. This can be addressed by adding an unexpand-

able imperative DFG node to the graph. To make it more useful, i.e. expandable and

so it’s possible to generate the GIPSY code off it or reverse it, would require having

the genuine compilers as in Section 7.6 for imperative languages, which is far from

trivial.

7.3 Security

Security is a substantial concern in distributed computing. The great flexibility pro-

vided by embedded Java in JLucid (and later in Objective Lucid) can be misused

and be a source of security breaches or DDoS attacks (e.g., due to explicit oversyn-

chronization using Java’s synchronization primitives explicitly). Thus, the follow-up

work in this direction would include malicious code detection in embedding and dis-

tributing as well as explicit synchronization points so that there are no deadlocks and

DDoS potential is reduced. This concern touches the compiler (GIPC), the Generator-

Worker architecture, the GIPSY Server, and the GIPSY Screen Saver components of

the GIPSY system.

166

7.4 Implementation of the C Compiler in GICF

An methodology of implementing a C compiler, and therefore, C CPs and STs has

been devised, but never implemented, so in the future a C compiler will be imple-

mented as a part of GICF with the JNI [Ste05].

7.5 Fully Explore Array Properties

The arrays in JLucid, Objective Lucid, and their generalization in GICF requries

further exploration and formalization and mapping of the GIPSY arrays to their

native equivalents.

7.6 Genuine Imperative and Functional Language

Compilers

Future work in this area is to focus on writing our genuine compilers for the mentioned

imperative languages and extending support for more imperative and functional lan-

guages (e.g. LISP, Scheme, or Haskell) and make it as much automated as possible.

7.7 Visualization and Control of Communication

Patterns and Load Balancing

It is proposed to have a “3D editor” within RIPE’s DemandMonitor that will render

in 3D space the current communication patterns of a GIPSY program in execution

or replay it back and allow the user visually to redistribute demands if they go off

balance between workers. A kind of virtual 3D remote control with a mini expert

system, an input from which can be used to teach the planning, caching, and load-

balancing algorithms to perform efficiently next time a similar GIPSY application is

run.

167

7.8 Target Host Compilation

This has to do with enabling the GEE to deliver the ST source code around and

compile it on the target host instead of sending a pre-compiled version of the STs.

This is an experimental feature can be useful and dangerous and requires a lot of

research.

7.9 The GIPSY Screen Saver

This is a sample implementation of a worker, outlined in Section 3.3.3.4, would rep-

resent an application for a PC as a way to contribute to a GIPSY program execution.

Three sample implementations of screen saver workers exist one for Windows, one for

Linux and one for MacOS X.

7.10 The GIPSY Server

A so-called “GIPSY server” will be implemented to be able to serve intensional or oth-

erwise requests primarily through the HTTP protocol, thus acting like a mini-GIPSY

intensional web server. It would accept request from remote clients via HTTP or local

clients via command line and be the starting point of computation (an intensional

computation resource) available to all those who have no resources to set up GIPSY.

This is not duplicate any of the DMS [VP05] nor it is a part of RIPE, as it is primarily

non-interactive and runs on the background.

168

Bibliography

[AW76] Edward A. Ashcroft and William W. Wadge. Lucid - A Formal Sys-

tem for Writing and Proving Programs. volume 5. SIAM J. Comput.

no. 3, 1976.

[AW77] Edward A. Ashcroft and William W. Wadge. Erratum: Lucid - A

Formal System for Writing and Proving Programs. volume 6(1):200.

SIAM J. Comput., 1977.

[BddzzP+05] Brian Berliner, david d ‘zoo’ zuhn, Jeff Polk, Larry Jones, Derek R.

Price, Mark D. Baushke, and other authors. Concurrent Versions

System (CVS). Free Software Foundation, Inc., 1989-2005. http:

//www.nongnu.org/cvs/.

[Ber05] Stefan M. Bernsee. The DFT “à pied”: Mastering The Fourier

Transform in One Day. DSPdimension.com, 1999-2005. http:

//www.dspdimension.com/data/html/dftapied.html.

[BKU98] Gilbert Babin, Peter Kropf, and Herwig Unger. A Two-Level Com-

munication Protocol for a Web Operating System (WOS). In Proceed-

ings of IEEE Euromicro Workshop on Network Computing, Vasteras,

Sweden, pages 934–944. IEEE, 1998.

[BM96] Fancois Bourdoncle and Stephan Merz. On the integration of the

functional programming, class-based object-oriented programming,

and multi-methods. Technical report, Centre de Mathemathiques

Appliquees, Ecole des Mines de Paris and Institut fur Informatik,

Technische Universitat Munchen, October 1996.

169

http://www.nongnu.org/cvs/
http://www.nongnu.org/cvs/
http://www.dspdimension.com/data/html/dftapied.html
http://www.dspdimension.com/data/html/dftapied.html

[Bor03] Borland. Borland JBuilder X. Borland Software Corporation, 1997-

2003. http://www.borland.com/us/products/jbuilder/.

[c+04] Eclipse contributors et al. Eclipse Platform. IBM, 2000-2004. http:

//www.eclipse.org/platform.

[Car47] Rudolf Carnap. Meaning and Necessity: a Study in Semantics and

Modal Logic. University of Chicago Press, Chicago, USA, 1947.

[Con05] Ant Project Contributors. Apache Ant. The Apache Software Foun-

dation, 2000-2005. http://ant.apache.org/.

[CP05] Various Contributors and GNU Project. GNU Compiler Collection

(GCC). Free Software Foundation, Inc., 1988-2005. http://gcc.

gnu.org/onlinedocs/gcc/.

[Dij65] E.W. Dijkstra. Cooperating Sequential Processes. Technical report,

Technological University, Eidhoven, The Netherlands, 1965.

[Dij71] E.W. Dijkstra. Hierarchical ordering of sequential processes. pages

115–138. Acta Inf., 1971.

[Din04] Yi Min Ding. Bi-directional Translation Between Data-Flow Graphs

and Lucid Programs in the GIPSY Environment. Master’s thesis, De-

partment of Computer Science and Software Engineering, Concordia

University, 2004.

[Dod96] Chris Dodd. Intensional Programming I, chapter Rank analysis in

the GLU compiler, pages 76-82. World Scientific, Singapore, 1996.

[Fla97] D. Flanagan. Java in a Nutshell. O’Reily & Associates, Inc., second

edition, 1997. ISBN 1-56592-262-X.

[Fou05] Apache Foundation. Apache Jakarta Tomcat. apache.org, 1999-2005.

http://jakarta.apache.org/tomcat/index.html.

[Gar70] Martin Gardner. The Fantastic Combinations of John Horton

Conway’s New Solitaire Game ‘Life’. pages 120–123. Scien-

tific American, October 1970. http://ddi.cs.uni-potsdam.

170

http://www.borland.com/us/products/jbuilder/
http://www.eclipse.org/platform
http://www.eclipse.org/platform
http://ant.apache.org/
http://gcc.gnu.org/onlinedocs/gcc/
http://gcc.gnu.org/onlinedocs/gcc/
http://jakarta.apache.org/tomcat/index.html
http://ddi.cs.uni-potsdam.de/HyFISCH/Produzieren/lis_projekt/proj_gamelife/ConwayScientificAmerican.htm

de/HyFISCH/Produzieren/lis_projekt/proj_gamelife/

ConwayScientificAmerican.htm.

[GB04] Erich Gamma and Kent Beck. JUnit. Object Mentor, Inc., 2001-2004.

http://junit.org/.

[Gin90] Armando R. Gingras. Dining Philosophers Revisited. In SIGCSE

Bulletin, volume 22 No. 3, pages 21–28, September 1990.

[GP99] Jean-Raymond Gagné and John Plaice. Demand-Driven Real-Time

Computing. World Scientific, September 1999.

[Gre05] Dale Green. Java Reflection API. Sun Microsystems, Inc., 2001-

2005. http://java.sun.com/docs/books/tutorial/reflect/

index.html.

[Gro01] Peter Grogono. A LATEX2e Gallimaufry. Techniques, Tips, and Traps.

Department of Computer Science and Software Engineering, Con-

cordia University, March 2001. http://www.cse.concordia.ca/

~grogono/documentation.html.

[Gro02a] Peter Grogono. Semantics of Programming Languages, COMP745

Course Notes. Department of Computer Science and Software Engi-

neering, Concordia University, 1996-2002.

[Gro02b] Peter Grogono. GIPC Increments. Technical report, Department of

Computer Science and Software Engineering, Concordia University,

April 2002.

[Gro04] Peter Grogono. Intensional programming in Onyx. Technical report,

Department of Computer Science and Software Engineering, Concor-

dia University, April 2004.

[HJ02] Marieke Huisman and Bart Jacobs. Java Program Verification via a

Hoare Logic with Abrupt Termination. Technical report, Computing

Science Institute, University of Nijmegen, Nijmegen, The Nether-

lands, 2002. www.cs.ru.nl/B.Jacobs/PAPERS/FASE00.ps.Z.

171

http://ddi.cs.uni-potsdam.de/HyFISCH/Produzieren/lis_projekt/proj_gamelife/ConwayScientificAmerican.htm
http://ddi.cs.uni-potsdam.de/HyFISCH/Produzieren/lis_projekt/proj_gamelife/ConwayScientificAmerican.htm
http://junit.org/
http://java.sun.com/docs/books/tutorial/reflect/index.html
http://java.sun.com/docs/books/tutorial/reflect/index.html
http://www.cse.concordia.ca/~grogono/documentation.html
http://www.cse.concordia.ca/~grogono/documentation.html
www.cs.ru.nl/B.Jacobs/PAPERS/FASE00.ps.Z

[JA03] Harry F. Jordan and Gita Alaghband. Fundamentals of Parallel Pro-

cessing. Pearson Education, Inc., 2003. ISBN 0-13-901158-7.

[JD96] Raganswamy Jagannathan and Chris Dodd. GLU programmer’s

guide. Technical report, SRI International, Menlo Park, California,

1996.

[JDA97] Raganswamy Jagannathan, Chris Dodd, and Iskender Agi. GLU: A

high-level system for granular data-parallel programming. In Con-

currency: Practice and Experience, volume 1, pages 63–83, 1997.

[Kri59] Saul A. Kripke. A Completeness Theorem in Modal Logic. 1959.

[Kri63] Saul A. Kripke. Semantical Considerations on Modal Logic. 1963.

[LGP03] Bo Lu, Peter Grogono, and Joey Paquet. Distributed execution

of multidimensional programming languages. In Proceedings 15th

IASTED International Conference on Parallel and Distributed Com-

puting and Systems (PDCS 2003), volume 1, pages 284–289. Inter-

national Association of Science and Technology for Development,

November 2003.

[Lou97] Kenneth C. Louden. Compiler Construction: Principles and Practice.

PWS Publishing Company, 1997. ISBN 0-564-93972-4.

[Lu04] Bo Lu. Developing the Distributed Component of a Framework for

Processing Intentional Programming Languages. PhD thesis, Depart-

ment of Computer Science and Software Engineering, Concordia Uni-

versity, March 2004.

[Mam05] Qusay H. Mamoud. Getting Started With JavaSpaces Technology:

Beyond Conventional Distributed Programming Paradigms. Sun Mi-

crosystems, Inc., July 2005. http://java.sun.com/developer/

technicalArticles/tools/JavaSpaces/.

[MCSN05] Serguei Mokhov, Ian Clement, Stephen Sinclair, and Dimitrios Nico-

lacopoulos. Modular Audio Recognition Framework. Department of

172

http://java.sun.com/developer/technicalArticles/tools/JavaSpaces/
http://java.sun.com/developer/technicalArticles/tools/JavaSpaces/

Computer Science and Software Engineering, Concordia University,

2002-2005. http://marf.sf.net.

[Mic04] Sun Microsystems. NetBeans 4.0. Sun Microsystems, Inc., December

2004. http://www.netbeans.org.

[Mic05a] Sun Microsystems. Java Servlet Technology. Sun Microsystems, Inc.,

1994-2005. http://java.sun.com/products/servlets.

[Mic05b] Sun Microsystems. The Java Website. Sun Microsystems, Inc., 1994-

2005. <http://java.sun.com>.

[Mic05c] Sun Microsystems. JavaServer Pages Technology. Sun Microsystems,

Inc., 2001-2005. http://java.sun.com/products/jsp/.

[Moe04] Anders Moeller. Program Verification with Hoare Logic. Tech-

nical report, University of Aarhus, 2004. http://www.brics.dk/

~amoeller/talks/hoare.pdf.

[Mok03a] Serguei Mokhov. GIPSY: CVS Service on Newton, A Crush Guide.

Department of Computer Science and Software Engineering, Concor-

dia University, June 2003.

[Mok03b] Serguei Mokhov. Newton: Basic Security. Department of Computer

Science and Software Engineering, Concordia University, June 2003.

[Mok05a] Serguei Mokhov. Makefile Tutorial. Department of Computer Science

and Software Engineering, Concordia University, 2003-2005.

[Mok05b] Serguei Mokhov. Naming & Coding Conventions. Department of

Computer Science and Software Engineering, Concordia University,

2003-2005.

[MP05a] Serguei Mokhov and Joey Paquet. General Imperative Compiler

Framework within the GIPSY. In Proceedings of PLC2005, Las Ve-

gas, Nevada, USA, pages 36–42. CSREA Press, June 2005.

173

http://marf.sf.net
http://www.netbeans.org
http://java.sun.com/products/servlets
http://java.sun.com/products/jsp/
http://www.brics.dk/~amoeller/talks/hoare.pdf
http://www.brics.dk/~amoeller/talks/hoare.pdf

[MP05b] Serguei Mokhov and Joey Paquet. Objective Lucid – First Step in

Object-Oriented Intensional Programming in the GIPSY. In Proceed-

ings of PLC2005, Las Vegas, Nevada, USA, pages 22–28. CSREA

Press, June 2005.

[MPG05] Serguei Mokhov, Joey Paquet, and Peter Grogono. Towards JLucid,

Lucid with Embedded Java Functions in the GIPSY. In Proceedings

of PLC2005, Las Vegas, Nevada, USA, pages 15–21. CSREA Press,

June 2005.

[MS01] Brian McNamara and Yannis Smaragdakis. Functional Programming

in C++ using the FC++ Library. In SIGPLAN Notices, volume

36(4), pages 25–30, 2001.

[Paq99] Joey Paquet. Scientific Intensional Programming. PhD thesis, De-

partment of Computer Science, Laval University, Sainte-Foy, Canada,

1999.

[PGW04] Joey Paquet, Peter Grogono, and Ai Hua Wu. Towards a Framework

for the General Intensional Programming Compiler in the GIPSY.

In 19th Annual ACM Conference on Object-Oriented Programming,

Systems, Languages, and Applications (OOPSLA 2004). Vancouver,

Canada. ACM, October 2004.

[PK04] Nikolaos Papaspyrou and Ioannis T. Kassios. GLU# embedded in

C++: a marriage between multidimensional and object-oriented pro-

gramming. In Softw., Pract. Exper., volume 34(7), pages 609–630,

2004.

[Pre93] William H. Press. Numerical Recipes in C. Cambridge University

Press. Cambridge, UK., second edition, 1993.

[Pro03a] David K. Probst. Cyclic Reduction. Concordia University, Montreal,

Quebec, Canada, February 2003.

[Pro03b] David K. Probst. The Principle Of Least Bandwidth. Commentary

from the HEC. Concordia University, Montreal, Quebec, Canada,

February 2003.

174

[Pro03c] David K. Probst. The Programmability Metric. Commentary from

the HEC. Concordia University, Montreal, Quebec, Canada, February

2003.

[PW05] Joey Paquet and Ai Hua Wu. GIPSY – A Platform for the Inves-

tigation on Intensional Programming Languages. In Proceedings of

PLC2005, Las Vegas, Nevada, USA, pages 8–14. CSREA Press, June

2005.

[Ren02] Chun Lei Ren. General Intensional Programming Compiler (GIPC)

in the GIPSY. Master’s thesis, Department of Computer Science and

Software Engineering, Concordia University, 2002.

[RG05a] The GIPSY Research and Development Group. The GIPSY Project.

Department of Computer Science and Software Engineering, Con-

cordia University, 2002-2005. http://newton.cs.concordia.ca/

~gipsy/.

[RG05b] The GIPSY Research and Development Group. The GIPSYwiki:

Online GIPSY collaboration platform. Department of Computer Sci-

ence and Software Engineering, Concordia University, 2005. http:

//newton.cs.concordia.ca/~gipsy/gipsywiki.

[Ron94] Panagiotis Rondogiannis. Higher-Order Functional Languages and

Intensional Logic. PhD thesis, Department of Computer Science,

University of Victoria, Victoria, Canada, 1994.

[SM02] Yannis Smaragdakis and Brian McNamara. FC++: Functional tools

for object-oriented tasks. In Softw., Pract. Exper., volume 32(10),

pages 1015–1033, 2002.

[SMSP00] Richard Stallman, Roland McGrath, Paul Smith, and GNU Project.

GNU Make. Free Software Foundation, Inc., 1997-2000. http://

www.gnu.org/software/make/.

[ST98] David B. Skillicorn and Domenico Talia. Models and Languages for

Parallel Computation, volume 30, No. 2 of ACM Computing Surveys.

175

http://newton.cs.concordia.ca/~gipsy/
http://newton.cs.concordia.ca/~gipsy/
http://newton.cs.concordia.ca/~gipsy/gipsywiki
http://newton.cs.concordia.ca/~gipsy/gipsywiki
http://www.gnu.org/software/make/
http://www.gnu.org/software/make/

ACM, Inc., June 1998. http://www.ece.cmu.edu/~ece767/papers/

skillicorn.pdf.

[Ste05] Beth Sterns. The Java Native Interface (JNI). Sun Microsystems,

Inc., 2001-2005. http://java.sun.com/docs/books/tutorial/

native1.1/index.html.

[Tao04] Lei Tao. Warehouse and Garbage Collection in the GIPSY Environ-

ment. Master’s thesis, Department of Computer Science and Software

Engineering, Concordia University, 2004.

[VC05] Sreenivasa Viswanadha and Contributors. Java Compiler Compiler

(JavaCC) - The Java Parser Generator. java.net, 2001-2005. https:

//javacc.dev.java.net/.

[VP05] Emil Vassev and Joey Paquet. A Generic Framework for Migrating

Demands in the GIPSY’s Demand-Driven Execution Engine. In Pro-

ceedings of PLC2005, Las Vegas, Nevada, USA, pages 29–35. CSREA

Press, June 2005.

[WAP05] Kaiyu Wan, Vasu Alagar, and Joey Paquet. Lucx: Lucid Enriched

with Context. In Proceedings of PLC2005, Las Vegas, Nevada, USA,

pages 48–14. CSREA Press, June 2005.

[WP05] Ai Hua Wu and Joey Paquet. Object-Oriented Intensional Program-

ming in the GIPSY: Preliminary Investigations. In Proceedings of

PLC2005, Las Vegas, Nevada, USA, pages 43–47. CSREA Press,

June 2005.

[WPG03] Ai Hua Wu, Joey Paquet, and Peter Grogono. Design of a Compiler

Framework in the GIPSY System. In Proceedings 15th IASTED In-

ternational Conference on Parallel and Distributed Computing and

Systems (PDCS 2003), volume 1, pages 320–328. International Asso-

ciation of Science and Technology for Development, November 2003.

[WSoafaotw05] Jimmy Wales, Larry Sanger, and other authors from all over the

world. Wikipedia: The Free Encyclopedia. Wikimedia Foundation,

Inc., 2001-2005. http://wikipedia.org.

176

http://www.ece.cmu.edu/~ece767/papers/skillicorn.pdf
http://www.ece.cmu.edu/~ece767/papers/skillicorn.pdf
http://java.sun.com/docs/books/tutorial/native1.1/index.html
http://java.sun.com/docs/books/tutorial/native1.1/index.html
https://javacc.dev.java.net/
https://javacc.dev.java.net/
http://wikipedia.org

[Wu02] Ai Hua Wu. Semantic Checking and Translation in the GIPSY. Mas-

ter’s thesis, Department of Computer Science and Software Engineer-

ing, Concordia University, 2002.

177

Appendix A

Definitions and Abbreviations

A.1 Abbreviations

• AST - Abstract Syntax Tree

• COM - Component Object Model

• CORBA - Common Object Requester Broker Architecture

• CLP - Cluster-Level Parallelism

• CP - Communication Procedure, Section 3.3.3.2

• CVS - Concurrent Versions System

• DCOM - Distributed COM

• DDoS - Distributed Denial of Service (attack).

• FFT - Fast Fourier Transform

• FTP - File Transfer Protocol

• DPR - Demand Propagation Resource, Section 2.5.4.1, [RG05a, PW05]

• GEE - General Eduction Engine

• GEER - GEE Resources, Section 4.1.1.14

• GIPC - General Intensional Program Compiler, Figure 10, [RG05a, PW05]

178

• GIPL - General Intensional Programming Language, [Paq99, RG05a, PW05]

• GIPSY - General Intensional Programming System, [RG05a, PW05]

• GLU - Granular Lucid, [JD96, JDA97, Paq99]

• HTTP - Hyper-Text Transfer Protocol

• IDP - Intensional Demand Propagator, Section 3.3.3.4, [RG05a, PW05]

• IDS - Intensional Data-dependency Structure

• IP - Intensional Programming

• IPL - Intensional Programming Language (e.g. GIPL, GLU, Lucid, Indexical

Lucid, JLucid, Tensor Lucid, Objective Lucid, Onyx [Gro04])

• IVW - Intensional Value Warehouse, Section 3.3.3.4, [RG05a, PW05]

• JDK - Java Developer’s Kit

• JNI - Java Native Interface

• JRE - Java Runtime Environment

• JSSE - Java Secure Socket Extension

• MARF - Modular Audio Recognition Framework [MCSN05]

• MPI - Message Passing Interface

• NCP - Native Communication Procedure

• NST - Native Sequential Thread

• NUMA - Non-Uniform Memory Access

• PVM - Parallel Virtual Memory System

• RFE - Ripe Function Executor, Section 3.3.3.4, [RG05a, PW05]

• RMI - Remote Method Invocation

• RPC - Remote Procedure Call

179

• SIPL - Specific IPL (e.g. Indexical Lucid, JLucid, Tensor Lucid, Objective

Lucid, Onyx)

• SLP - Stream-Level Parallelism

• ST - Sequential Thread, Section 3.3.3.1

• TLP - Thread-Level Parallelism

• TTS - Time To Solution

• UMA - Uniform Memory Access

• URI - Unified Resource Indentifier

• URL - Unified Resource Locatior

180

Appendix B

Sequential Thread and

Communication Procedure

Interfaces

In this section the actual definitions of the CP and ST interfaces, an example of a

generated wrapper class and a Worker are presented.

B.1 Sequential Thread Interface

See Figure 80.

B.2 Communication Procedure Interface

See Figure 81.

B.3 Generated Sequential Thread Wrapper Class

This is a more complete version of the generated wrapper class for the code in Fig-

ure 23.

181

package gipsy.interfaces;

import java.io.Serializable;

import java.lang.reflect.Method;

/**

* <p>Sequential Thread represents a piece work to be done.

* Has to extend Serializable for RMI, CORBA, COM+, Jini to work.

* Runnable needed to run it in a separate thread.</p>

*

* $Id: ISequentialThread.java,v 1.13 2005/09/12 01:24:38 mokhov Exp $

*

* @version $Revision: 1.13 $

* @author Serguei Mokhov, mokhov@cs.concordia.ca

* @since Inception

*/

public interface ISequentialThread

extends Runnable, Serializable

{

/**

* Work-piece to be done.

* @return WorkResult container

*/

public WorkResult work();

public WorkResult getWorkResult();

public void setMethod(Method poSTMethod);

}

// EOF

Figure 80: Sequential Thread Interface.

182

package gipsy.interfaces;

import gipsy.lang.GIPSYType;

import java.io.Serializable;

/**

* <p>CommunicationProcedure represents the means of delivery of sequential threads.</p>

* $Id: ICommunicationProcedure.java,v 1.11 2005/10/11 08:34:11 mokhov Exp $

* @version $Revision: 1.11 $

* @author Serguei Mokhov, mokhov@cs.concordia.ca

* @since Inception

* @see gipsy.interfaces.SequentialThread

*/

public interface ICommunicationProcedure

extends Serializable

{

public GIPSYType getReturnType();

public GIPSYType getParamType(final int piParamNumber);

public GIPSYType[] getParamTypes();

public void setReturnType(GIPSYType poType);

public void setParamType(final int piParamNumber, GIPSYType poType);

public void setParamTypes(GIPSYType[] paoTypes);

public GIPSYType getParamType(String pstrLexeme);

public GIPSYType getParamType(String pstrLexeme, String pstrID);

public int getParamListSize();

/**

* Perform any initialization actions required.

* @return status object of the result of send operation.

* @throws CommunicationException in case of error

*/

public CommunicationStatus init()

throws CommunicationException;

/**

* Open a connection; whatever that means for a given protocol.

* @return status object of the result of send operation.

* @throws CommunicationException in case of error

*/

public CommunicationStatus open()

throws CommunicationException;

/**

* Close a connection; whatever that means for a given protocol.

* @return status object of the result of send operation.

* @throws CommunicationException in case of error

*/

public CommunicationStatus close()

throws CommunicationException;

/**

* Defines the means of sending data. Should be overridden by

* a concrete implementation, such as JINI, COM, CORBA, etc.

* @return status object of the result of send operation.

* @throws CommunicationException in case of error

*/

public CommunicationStatus send()

throws CommunicationException;

/**

* Defines the means of receiving data. Should be overridden by

* a concrete implementation, such as JINI, COM, CORBA, etc.

* @return status object of the result of receive operation.

* @throws CommunicationException in case of error

*/

public CommunicationStatus receive()

throws CommunicationException;

}

Figure 81: Communication Procedure Interface.

183

import java.util.Hashtable;

import java.util.Vector;

public class <filename>_<machine_name>_<timestamp>

implements gipsy.interfaces.ISequentialThread

{

private OriginalSourceCodeInfo oOriginalSourceCodeInfo;

/**

* Inner class with original source code information

*/

public class OriginalSourceCodeInfo

{

/**

* For debugging / monitoring; generated statically

*/

private String strOriginalSource =

"int getN(int piDimension)" +

"{" +

" if(piDimension <= 0)" +

" return get42();" +

" else" +

" return getN(piDimension - 1) + 1;" +

"}" +

"" +

"int get42()" +

"{" +

" return 42;" +

"}";

/**

* Mapping to original source code position for error reporting

*/

private Hashtable oLineNumbers = new Hashtable();

/**

* Body is filled in by the preprocessor statically

*/

public OriginalSourceCodeInfo()

{

Vector int_getN_int_piDimension = new Vector();

// Start line and Length in lines

int_getN_int_piDimension.add(new Integer(3));

int_getN_int_piDimension.add(new Integer(7));

this.oLineNumbers.put

(

"int getN(int piDimension)",

184

int_getN_int_piDimension

);

Vector int_get42 = new Vector();

int_get42.add(new Integer(11));

int_get42.add(new Integer(4));

this.oLineNumbers.put

(

"int get42()",

int_get42

);

}

public Hashtable getLineNumbersHash()

{

return this.oLineNumbers;

}

public int getLineNumberForFunction(String pstrFunctionSignature)

{

}

public int getFunctionSourceLength(String pstrFunctionSignature)

{

}

public String toString()

{

}

}

/**

* Constructor

*/

public <filename>_<machine_name>_<timestamp>()

{

this.oOriginalSourceCodeInfo = new OriginalSourceCodeInfo();

}

public String toString()

{

return this.oOriginalSourceCodeInfo.toString();

}

/*

* Implementation of the SequentialThread interface

*/

// Body generated by the compiler

public void run()

185

{

Payload oPayload = new Payload();

oPayload.add("d", new Integer(42));

work(oPayload);

}

// Body generated by the compiler statically

public WorkResult work(Payload poPayload)

{

WorkResult oWorkresult = new WorkResult();

oWorkresult.add(getN(poPayload.getVaueOf("d")));

return oWorkResult;

}

/*

* ------------

* The below are generated off the source file nat2java.ipl

* ------------

*/

public static int getN(int piDimension)

{

if(piDimension <= 0)

return get42();

else

return getN(piDimension - 1) + 1;

}

public static int get42()

{

return 42;

}

}

186

B.4 Sample Worker’s Implementation

package gipsy.wrappers;

//import gipsy.interfaces.SequentialThread;

import gipsy.interfaces.ICommunicationProcedure;

import gipsy.util.*;

import marf.util.BaseThread;

/**

* Worker Class Definition

*

* $Revision: 1.11 $ by $Author: mokhov $ on $Date: 2004/11/06 00:50:09 $

*

* @version $Revision: 1.11 $

* @author Serguei Mokhov

*/

public class Worker extends BaseThread

{

/**

* Aggregation of sequential threads.

*/

private Thread[] aoSequentialThreads = null;

/**

* Set of available communication procedures for different protocols.

*/

private ICommunicationProcedure[] aoCommuncationProcedures = null;

/**

* Default settings.

*/

public Worker()

{

super();

}

/**

* Generate a demand.

*/

public void demand()

{

}

/**

* Receive a result on a demand.

*/

public void receive()

{

187

}

/**

* Perform computation.

*/

public void work() throws GIPSYException

{

try

{

for(int i = 0; i < this.aoSequentialThreads.length; i++)

this.aoSequentialThreads[i].start();

}

catch(NullPointerException e)

{

throw new GIPSYException

(

"Worker TID=" + getTID() +

" did not have any sequential threads to work on."

);

}

}

/**

* Stops worker thread.

*/

public void stopWorker()

{

}

/**

* From Runnable interface, for TLP

*/

public void run()

{

try

{

work();

}

catch(GIPSYException e)

{

System.err.println(e);

}

}

}

// EOF

188

Appendix C

Architectural Module Layout

C.1 GIPSY Java Packages and Directory Struc-

ture

Normally, a directory structure of a Java project corresponds to the package naming;

thus, the packages are named and declared after the directories. By the means of

Java packages, all the classes within the project and external applications “know”

how to identify and import the classes they intend to use. A fully-qualified class

name includes all the packages starting from the “root” (the top-level directory of

the hierarchy) all the way up to the class itself, separated by a dot. The GIPSY Java

packages breakdown as of this writing corresponds to the Figure 82.

The logical breakdown was performed in accordance with the original conceptual

design primarily produced by Joey Paquet and further by Aihua Wu and Bo Lu, has

been the primary source of the hierarchy plus any exceptions and extensions that

various team members come up with or have been forced to during implementation

were taken into account.

The basic structure is as follows. The top root hierarchy is logically the gipsy

package. The major non-utility packages under it, which come from the conceptual

design, are GIPC, GEE, and RIPE. The major utility packages under gipsy that are

not present in the conceptual design are: interfaces for most intermodule commu-

nication; wrappers for object wrapping; storage for the serializable interface classes;

util for most common exceptions and utility modules (e.g. fast linked list [Din04]);

and tests for the Unit and Regression Testing Suites.

189

Figure 82: GIPSY Java Packages Hierarchy.

190

Under the GIPC package the major modules (to be discussed later in this chapter)

include Preprocessing for general GIPSY program preprocessing, intensional and

imperative language compilers and their necessary followers (GenericTranslator

for the former and CommunicationProcedureGenerator and SequentialThreadGenerator

for the latter). Then the DFG package for Lucid-to-data-flow-graph and back genera-

tion.

The GEE’s main packages includes IDP for demand propagation and IVW for caching

and garbage collection.

Under RIPE we have interactive run-time editing and monitoring modules that

include textual editor, DFG editor, and the web-based editor.

C.2 GIPSY Modules Packaging

GIPSY’s major and minor modules are packaged into a set of runnable .jar files and

distributed with wrapper scripts to be either used as ordinary command line tools

as a part of GIPSY Development Kit or the WebEditor web application. Different

.jar files include a subset of all GIPSY modules depending on the need, e.g. GIPC

includes GIPC-related classes plus GEE as we allow to optionally invoke GEE after

successful compilation. RIPE, except itself, needs both GIPC and GEE, whereas

GEE does not at all require presence of any other module. Thus, the GIPSY binary

distribution is broken down into five major .jar files (notice, that these files do not

include any external libraries GIPSY references):

• gipsy.jar simply includes almost all of GIPSY.

• gipc.jar should be used/distributed as a part of so-called “GIPSY Develop-

ment Kit” if someone wants to be able to compile intensional programs and

optionally run them.

• gee.jar represents GIPSY’s non-interactive run-time environment, the GEE.

This can be distributed alone to the hosts that only wish to run pre-compiled

GIPSY programs and have no development environment set up.

• ripe.jar includes most of the interactive programming environment of the

GIPSY along with GIPC and GEE.

191

Table 2: Correspondence of the GIPSY .jar files and the modules.
Module / Jar gipsy.jar ripe.jar gipc.jar gee.jar Regression.jar

GIPSY ?
GIPC ? ? ? ?
RIPE ? ?
GEE ? ? ? ? ?

DFG/GIPC ? ? ? ?
DFGEditor ? ?
Regression ?
Interfaces ? ? ? ? ?
WebEditor
gipsy.lang ? ? ? ? ?

gipsy.wrappers ? ? ? ? ?
gipsy.util ? ? ? ? ?

gipsy.storage ? ? ? ? ?

• Regression.jar includes the Regression Testing application plus all of GIPC

and GEE as the most exercised modules for testing as of this writing.

The Table 2 shows correspondence between the variety of modules and their con-

tainment within a .jar file.

192

Appendix D

Grammar Generation Scripts for

JLucid and Objective Lucid

D.1 jlucid.sh

#!/bin/bash

strDate=‘date‘

cat <<GRAMMAR_TAIL

/*

* Generated by jlucid.sh on $strDate

*/

/**

* @since $strDate

*/

void embed() #EMBED : {}

{

//<EMBED> <LPAREN> url() E() (<COMMA> E())* <RPAREN> <SEMICOLON>

<EMBED> <LPAREN> url() <COMMA> <STRING_LITERAL> (<COMMA> E())* <RPAREN> <SEMICOLON>

}

/**

* @since $strDate

*/

void array() #ARRAY : {}

{

<LBRACKET> E() (<COMMA> E())* <RBRACKET>

}

/**

* URL -> CHARACTER_LITERAL | STRING_LITERAL.

193

* @since $strDate

*/

void url() #URL :

{

Token oToken;

}

{

(

oToken = <CHARACTER_LITERAL>

| oToken = <STRING_LITERAL>

)

{

jjtThis.setImage(oToken.image);

}

}

// EOF

GRAMMAR_TAIL

EOF

D.2 JGIPL.sh

#!/bin/bash

cat ../../GIPL/GIPL.jjt | \

Filter out unneeded stuff

grep -v ’// EOF’ | \

#grep -v ’import gipsy.GIPC.intensional.SimpleNode’ | \

Fix package

sed ’s/intensional\.GIPL/intensional\.SIPL\.JLucid/g’ | \

JLucid GIPL

sed ’s/GIPL/JGIPL/’ | \

sed ’s/\/\/{EXTEND-E}/\/\/{EXTEND-E}\n\t\t| embed()/’ | \

sed ’s/\/\/{EXTEND-FACTOR}/\/\/{EXTEND-FACTOR}\n\t| array()/’ | \

sed ’s/<WHERE: "where">/<WHERE: "where">\n\t| <EMBED: "embed">/g’ \

> JGIPL.jjt

./jlucid.sh >> JGIPL.jjt

EOF

D.3 JIndexicalLucid.sh

#!/bin/bash

cat ../../SIPL/IndexicalLucid/IndexicalLucid.jjt | \

Filter out unneeded stuff

194

grep -v ’// EOF’ | \

#grep -v ’import gipsy.GIPC.intensional.SimpleNode’ | \

Fix package

sed ’s/intensional\.SIPL\.IndexicalLucid/intensional\.SIPL\.JLucid/g’ | \

JLucid Indexical

sed ’s/IndexicalLucid/JIndexicalLucid/’ | \

sed ’s/\/\/{EXTEND-E}/\/\/{EXTEND-E}\n\t\t| embed()/’ | \

sed ’s/\/\/{EXTEND-FACTOR}/\/\/{EXTEND-FACTOR}\n\t| array()/’ | \

sed ’s/<WHERE: "where">/<WHERE: "where">\n\t| <EMBED: "embed">/g’ \

> JIndexicalLucid.jjt

./jlucid.sh >> JIndexicalLucid.jjt

EOF

D.4 ObjectiveGIPL.sh

#!/bin/bash

cat JGIPL.jjt | \

Filter out unneeded stuff

grep -v ’// EOF’ | \

Fix package

sed ’s/intensional\.SIPL\.JLucid/intensional\.SIPL\.ObjectiveLucid/g’ | \

ObjectiveLucid GIPL

sed ’s/JGIPL/ObjectiveGIPL/’ | \

sed ’s/\/\/{EXTEND-E1}/\/\/{EXTEND-E1}\n\t\t\t| (<DOT> ID()) #OBJREF E1()/’ \

> ObjectiveGIPL.jjt

EOF

D.5 ObjectiveIndexicalLucid.sh

#!/bin/bash

cat JIndexicalLucid.jjt | \

Filter out unneeded stuff

grep -v ’// EOF’ | \

Fix package

sed ’s/intensional\.SIPL\.JLucid/intensional\.SIPL\.ObjectiveLucid/g’ | \

ObjectiveLucid Indexical

sed ’s/JIndexicalLucid/ObjectiveIndexicalLucid/’ | \

sed ’s/\/\/{EXTEND-E1}/\/\/{EXTEND-E1}\n\t\t\t| (<DOT> ID()) #OBJREF E1()/’ \

> ObjectiveIndexicalLucid.jjt

EOF

195

Index

.NET Remoting, 30

API

AbstractSyntaxTree, 91, 99, 104, 120

addInvalidSegmentName(), 80

addValidSegmentName(), 80

bool, 63

boolean, 63

Car, 152

CCompiler, 66

Class, 35, 108

Class.getConstructors(), 35

Class.newInstance(), 35

CodeSegment, 79, 91

CommunicationException, 87

CommunicationProcedureGenerator, 78,

83, 85, 87, 182

CommunicationStats, 87

Constructor, 35

DemandDispatcher, 129

DemandDispatcherAgent, 129

DemandDispatcherException, 129

DemandGenerator, 129

DemandList, 129

DemandMonitor, 167

DFG, 182

DFGAnalyzer, 88, 91, 133, 166

DFGEditor, 115, 132

DFGException, 133

DFGGenerator, 38, 166

Dictionary, 91, 122–125

DictionaryItem, 124

dimension, 63

doGet(), 126

doPost(), 126

double, 63

EImperativeLanguages, 85, 135

EIntensionalLanguages, 85, 135

embed(), 44–47, 49, 51, 69, 81, 101–

103, 105

equals(), 76

Executor, 83, 93, 104, 120, 124, 129,

132

ExpandedThreadGroup, 124

Facet, 127

Float, 83

float, 63

FormatTag, 76, 78, 91, 104

Fun Item, 99

GEE, 30, 93, 99, 115, 118, 119, 123–

127, 129, 180, 182

GEEException, 128, 129, 132

GEERGenerator, 91, 93, 97, 99

generateCommunicationProcedures(),

89

generateSequentialThreads(), 89

196

GenericTranslator, 182

get42(), 81

getDeclaredMethods(), 35

getParameterTypes(), 35

getReturnType(), 35

GIPC, 79, 80, 85, 88, 91, 93, 98, 99,

105, 115–117, 119, 123–127, 129,

180, 182

GIPC.DFG.DFGAnalyzer, 133

GIPC.DFG.DFGGenerator, 133

GIPC.intensional.GenericTranslator, 85

GIPC.intesional.SimpleNode, 133

GIPCException, 122, 128, 133

GIPLCompiler, 91

GIPSY, 114, 123, 126

gipsy, 180

gipsy.GEE, 129

GIPSYArray, 104

GIPSYEmbed, 83, 105

GIPSYException, 128

GIPSYFunction, 84

GIPSYIdentifier, 83

GIPSYObject, 104, 108

GIPSYOperator, 84

GIPSYProgram, 86, 93, 99, 100, 129

GIPSYType, 99

GIPSYVoid, 83

Hashtable, 49

HttpServlet, 126

ICommunicationProcedure, 86, 87

ICommunicationProceduresEnum, 86

ICompiler, 88, 89, 91, 133

IDemandList, 129

IdentifierContextCodeGenerator, 91

IDP, 182

IImperativeCompiler, 85, 88, 89

IIntensionalCompiler, 85, 88, 89

imperative, 182

ImperativeCompiler, 71, 89, 135

ImperativeNode, 85, 91, 93, 99, 104,

122

IndexicalLucidCompiler, 91

int, 63

Integer, 53, 83

intensional, 182

IntensionalCompiler, 88, 135

IntensionalCompiler.translate(), 85

interfaces, 180

IntesionalCompiler, 89

ISequentialThread, 86, 129

ISequentualThread, 86

Item in Dict, 99

IValueHouse, 132

IVW, 182

IVWInterface, 132

JarEntry, 105

JarInputStream, 105

JAVA, 76

java.lang, 83

java.lang.Error, 122

java.lang.Thread, 123

java.lang.ThreadGroup, 124

java.reflect.*, 35

java.util.Arrays, 124

java.util.Vector, 98, 122, 123, 125

JavaCommunicationGenerator, 101

197

JavaCompiler, 49, 67, 71, 85, 91, 97,

102–105

JavaSequentialThreadGenerator, 87, 101

JGIPLParser, 91

JIndexicalLucidParser, 91

JLucidCompiler, 91, 103, 105

JLucidParser, 91, 101

JLucidPreprocessor, 71, 80, 101, 105,

108

Lucid, 116, 117, 127

LUSException, 129

main(), 36

marf.nlp, 122

marf.Storage, 122

marf.Storage.StorageManager, 125

marf.util, 122

marf.util.Arrays, 124

marf.util.BaseThread, 123, 124

marf.util.Debug, 125

marf.util.ExpandedThreadGroup, 124

marf.util.FreeVector, 122

marf.util.Logger, 125

marf.util.OptionProcessor, 123

Method, 35

Nat32, 154

native, 36, 66

Node, 120, 122

NotImplementedException, 128

NullCommunicationProcedure, 87

Object, 76

Object.notify(), 32

Object.notifyAll(), 32

Object.wait(), 32

ObjectiveLucidCompiler, 91

ObjectiveLucidPreprocessor, 80, 108

ParallelTestCase, 137

ParseException, 122

Preprocessing, 182

Preprocessor, 71, 79–81, 83, 85, 91,

93, 97, 105, 108, 122

PreprocessorParser, 38

Regression, 37, 115, 116, 119, 123, 125,

127, 137

RIPE, 112, 114, 115, 132, 180, 182

RIPEException, 128

RMICommunicationProcedure, 87

run(), 37

Runnable, 86, 124

runTest(), 37

RuntimeException, 128

Semantic, 98

SemanticAnalyzer, 83, 91, 98, 99, 104,

120

SequentialTestCase, 137

SequentialThreadGenerator, 78, 83, 85,

87, 129, 182

SequentialThreadSourceGenerator, 78

Serializable, 86, 87

setUp(), 37

SimpleCharStream, 122

SimpleNode, 91, 120, 122, 133

storage, 180

storage.Dictionary, 98

storage.DictionaryItem, 99

storage.FunctionItem, 99

String, 63

198

string, 63

synchronized, 32

System.loadLibrary(), 67

tearDown(), 37

Test, 37

TestCase, 37, 137

TestResult, 37

tests, 180

TestSuite, 37, 137

TextualEditor, 115

TokenMgrError, 122

toString(), 76, 83, 124

translate(), 89

TranslationLexer, 85

TranslationParser, 85

Translator, 85, 91

true, 59, 63

TypeMap, 67, 104, 162

util, 123, 180

void, 59, 63, 154

WebEditor, 39, 126, 182

Worker, 62, 87, 172

WorkResult, 87

WorkTask, 129

wrap(), 104

wrappers, 180

XLucidInterpreter, 129

Architecture

Directory Structure, 180

GIPSY Java Packages, 180

GIPSY Modules Packaging, 182

Arrays

JLucid, 104

AST, 8, 37, 49, 61, 62, 74, 75, 78, 93, 97–

99, 104–106, 108, 120, 122, 163,

169

Background, 5

Build System, 39

Ant, 41

Eclipse, 41

JBuilder, 41

Makefiles, 39

NetBeans, 41

C, 1, 4, 8, 19, 21, 22, 25, 36, 38, 66, 67,

71, 74, 76, 85, 162

C++, 1, 9, 19–22, 66, 67, 71, 74, 76, 80,

85, 162

CLP, 24, 25

Command-Line Interfaces

GEE, 118

GIPC, 116

GIPSY, 114

Regression, 119

RIPE, 115

Communication Procedure, 64, 65

Interface, 172

Compilation Sequence

Java, 103

JLucid, 102

Objective Lucid, 107

Compiler Frameworks, 21

context, 6

CORBA, 3, 27, 30, 66, 118, 169

CVS, 3, 38, 169

data types

199

matching Lucid and Java, 63

DCOM+, 3, 66, 118

Demand Dispatcher

Integration, 129

Design

Architectural, 70

Detailed, 70

External, 112

External Software Interfaces, 120

GEE, 129

GICF, 85

GIPC, 88

Internal, 70

JLucid, 101

Objective Lucid, 107

Semantic Analyzer, 98

User Interface, 112

DFG, 35, 75, 137, 163

Integration, 133

dimensions, 6

Dining Philosophers, 144

DMS, 30, 137, 168

DPR, 30, 169

GIPSY Program, 99

eduction, 21

GLU, 21

embed(), 44

implementation of, 105

Examples

Dining Philosophers, 144

FFT, 147

Game of Life, 158

Lucid, 18

Moving Car, 152

Natural Numbers Problem, 18

Prefix Sum, 139

The Hamming Problem, 18

Exceptions, 128

External Software Interfaces, 120

JavaCC API, 120

MARF Library API, 122

Servlets API, 126

Fast Fourier Transform, 147

FC++, 19, 20, 22

Fedora Core 2, 39, 138

FFT, 147, 149, 169

Files

*.ipl, 137

.c, 36, 37, 66

.class, 36, 44, 46, 104, 105

.h, 36, 37, 66

.ipl, 116

.jar, 70, 105, 114, 182, 183

.java, 44, 46, 104, 105

.jjt, 102

build.xml, 41

gee.jar, 182, 183

gipc.jar, 182, 183

GIPL.jjt, 75, 103

GIPSY.class, 114

gipsy.jar, 114, 137, 182, 183

GIPSY.jpx, 41

imperative/LANGUAGE, 135

IndexicalLucid.jjt, 103

IndexicalLucid.rul, 85

intensional/SIPL/LANGUAGE, 135

200

Java.jjt, 76

nbproject.xml, 41

PreprocessorParser.jjt, 81

README.dir, 41

Regression.jar, 183

ripe.jar, 182, 183

src/tests/*, 137

Format Tag, 76

Fortran, 1, 8, 21, 22, 71, 85

Frameworks

Compiler, 21

GICF, 71, 74, 85, 103

GIPC, 70, 74, 88

GIPSY Exceptions, 128

GIPSY Type System, 83

IPLCF, 85

JUnit, 137

MARF, 38

RIPE, 132

Free Java Functions, 103

JLucid, 103

FTP, 44, 169

GEE, 8, 23, 25, 27–30, 32, 37, 42, 71, 74,

75, 78, 91, 97, 99, 104, 106, 108,

114, 117–120, 123, 128–130, 136,

144, 160, 162, 163, 168, 169, 182,

183

Command-Line Interface, 118

Conceptual Design, 27

Design, 129

Integration, 129

Introduction, 27

GEER, 28, 30, 56, 62, 67, 75, 99, 108, 169

GIPSY Program, 99

General Intensional Programming System,

23

GICF, 2, 4, 34, 43, 60, 61, 66, 68–71, 74,

81, 85, 86, 103, 106, 135, 136, 164,

165, 167

Binary Compatibility, 74

Design, 85

Dictionary, 78

Format Tag, 76

GEER Generator as a Linker, 97

Generalization Issues, 74

Imperative Stubs, 97

Introduction, 71

Multiple Intensional Parts, 97

NCP Generator, 97

Sending Source Code Text, 78

Type Processor, 97

GIPC, 2, 8, 22, 23, 25–28, 30, 33, 36, 37,

42, 43, 60, 64, 66–68, 71, 75, 81,

88, 90, 92, 99, 108, 116, 120, 121,

123, 128, 136, 160, 166, 169, 182,

183

as a Meta Processor, 91

Command-Line Interface, 116

Initial Conceptual Design, 25

Introduction, 25

Linker, 97

Preprocessor, 79

Sequence Diagram, 91

GIPL, 1, 6, 8, 14, 15, 18, 27, 38, 43, 48,

51, 53, 61, 69, 75, 88, 89, 91, 102,

117, 120, 137, 158, 170

201

Syntax, 14

GIPSY, 1–4, 8, 19–25, 27, 32, 33, 35–39,

41–43, 53, 54, 60, 62, 67–71, 74,

76, 77, 81, 83, 85, 87, 97, 106,

112–114, 120, 122–129, 135–139,

147, 160, 161, 166, 170, 181, 182

Command-Line Interface, 114

Compilation process, 65

GIPC Framework with Preprocessor,

77

Goals, 25

Introduction, 23

Original GIPC Framework, 76

Screen Saver, 168

Security, 166

Server, 168

Structure, 24

Type System, 62

Types, 83

Web Front-End, 112

Web Portal, 112

WebEditor, 112

GIPSY Exceptions, 128

GIPSY Program, 99

Compiled, 99

GEER, 99

Intefacing GIPC and GEE, 99

Segments, 80

GIPSY Type System, 83

GLU, 1, 8, 9, 19–21, 29, 30, 36, 44, 64, 71,

135, 170

eduction, 21

GLU#, 9, 19–22

GNU, 39, 41

Grammar

Generation, JLucid, 102

Generation, Objective Lucid, 107

Preprocessor, 81, 82

Haskell, 20, 29, 158, 167

HTTP, 44, 170

hybrid

JLucid, 51

Hybrid Programming, 19

immutable, 81

Implementation, 70

Architectural Design, 126

Directory Structure, 180

GIPSY Java Packages, 180

GIPSY Modules Packaging, 182

JLucid, 101

Objective Lucid, 106

Unit Integration, 126

Indexical Lucid, 1, 6, 8, 9, 11, 14, 15, 18,

23, 27, 38, 43, 45, 51, 53, 69, 75,

91, 101, 102, 137, 158, 159, 165,

166, 170, 171

asa, 11

fby, 10, 11

first, 11

next, 11

upon, 11

wvr, 11

Integration

Demand Dispatcher, 129

DFG, 133

Garbage Collection, 132

202

GEE, 129

Intensional Value Warehouse, 132

Jini, 129

Semantic Analyzer, 98

Intensional

Programming, 5

intensional

logic, 6

operators, 6

Intensional Programming, 5

Interfaces

Communication Procedure, 172

Sequential Thread, 172

Internal Design

GICF, 71

GIPC, 70

IPLCF, 85

Introduction, 1

Contributions, 2

GICF, 71

GIPSY, 23

JLucid, 43

Scope of the Thesis, 3

Structure of the Thesis, 4

Thesis Statement, 1

IPLCF, 70, 85, 87, 135

Isabelle, 166

Java, 1, 2, 4, 8, 19, 22, 25, 27, 29, 31, 32,

35, 36, 38, 43, 44, 47, 51, 53, 60,

62, 63, 66, 67, 69, 71, 74, 80, 85,

86, 103, 104, 132, 133, 139, 149,

162, 164

Reflection, 29, 35

Java Compiler

JLucid, 103

Jini, 3, 27, 30, 31, 66, 118, 129, 131

Integration, 129

JLucid, 1, 2, 4, 8, 15, 38, 43, 44, 49, 51–54,

56, 59, 60, 62, 68–71, 81, 91, 99,

101–105, 107–109, 135–137, 139,

140, 143, 147, 162, 164, 166, 167,

170, 171, 184

Arrays, 104

AST, 105

Design, 101

Dictionary, 105

embed(), 105

Examples – FFT, 147

Free Java Functions, 103

Grammar Generation, 102

Implementation, 101

Introduction, 43

Java Compiler, 103

Non-Determinism, 44

Pseudo-Objectivism in, 53

Purpose, 43

Rationale, 43

Semantics, 52

SIPL, 51

Syntax, 51

JNI, 36, 66, 167, 170

JRE, 32, 170

JSSE, 31, 170

JUnit, 37

Layout

Directory Structure, 180

203

GIPSY Java Packages, 180

GIPSY Modules Packaging, 182

Libraries

MARF, 38, 112, 124, 147, 149, 170

Linux, 39

LISP, 9, 29, 167

logic

Hoare, 15

intensional, 6

non-intensional, 6

temporal, 6

Lucid, 2, 6–9, 11, 12, 14, 18–21, 25, 32,

42–44, 47, 52–54, 56, 58, 59, 61–

64, 68, 83, 108, 140, 147, 162, 170

Abstract Syntax, 14

Arrays as Objects, 109

Basic Operators, 10

Examples, 18

Family, 7

GLU, 64

History, 7

Indexical, 9, 23

Introduction, 7

JLucid, 43

Non-Determinism, 44

Objective, 53

Objects as Arrays, 109

and #, 12, 13

Pipelined Dataflows, 7

Semantics, 15

State of the Art, 19

Streams, 9

Tensor, 23

Lucx, 9, 15

Mac OS X, 39, 138

MARF

FFT, 147, 149

Methodology, 43

ML, 29

ML≤, 19, 20

MPI, 31, 170

NetCDF, 30

Non-Determinism, 44

NUMA, 170

Objective Lucid, 53

AST, 108

Design, 107

Dictionary, 108

Examples – Moving Car, 152

Grammar Generation, 107

Implementation, 106

Introduction, 53

Object Instantiation, 107

Semantic Rules, 60

Semantics of, 56

Syntax, 56

The Dot-Notation, 56, 108

Onyx, 9, 81, 170, 171

Options

–all, 118, 119

–compile-only, 114

–corba, 118

–dcom, 118

–debug, 114, 115, 117–119

–dfg, 117

204

–dfg=‘<DFG EDITOR OPTIONS>’,

115

–directory, 119

–disable-translate, 117

–gee, 117, 119

–gee=‘<GEE OPTIONS>’, 115

–gipc=‘<GIPC OPTIONS>’, 115

–gipl, 116, 119

–gipsy, 119

–help, 114–116, 118, 119

–indexical, 116, 119

–jini, 118

–jlucid, 117

–objective, 117

–parallel, 119

–regression=‘<REGRESSION OPTIONS>’,

115

–rmi, 118

–sequential, 119

–stdin, 116, 118

–threaded, 118

–translate, 117

–txt=‘<TEXTUAL EDITOR OPTIONS>’,

115

–warnings-as-errors, 117

-G, 116

-S, 116

-h, 114–116, 118, 119

[FILENAME1.gipsy [FILENAME2.gipsy]

...], 118

[FILENAME1.ipl [FILENAME2.ipl] ...],

116

Partial Lucid, 8

Perl, 1, 71, 74, 78, 80, 85

Prefix Sum, 139

Preprocessor, 79

GIPC, 79

Grammar, 81

Problems

Dining Philosophers, 144

FFT, 147

Game of Life, 158

Moving Car, 152

Solving, 139

PVS, 166

Python, 1, 71, 74, 78, 80, 85

Red Hat Linux 9, 39, 138

Regression

Introduction, 136

Testing, 136

Regression Testing Application

Command-Line Interface, 119

Regression Testing Suite, 137

Results, 161

RIPE, 23, 32–34, 39, 42, 123, 128, 132,

133, 167, 168, 182

Command-Line Interface, 115

Conceptual Design, 32

Introduction, 32

RMI, 2, 3, 27, 29, 31, 66, 87, 99, 118, 129,

170

RPC, 27, 65, 170

Scheme, 29, 167

Segments

#<IMPERATIVELANG>, 80

#<INTENSIONALLANG>, 80

205

#C, 163

#CPP, 80

#GIPL, 80

#INDEXICALLUCID, 80

#JAVA, 80, 105, 163

#JLUCID, 81, 105

#OBJECTIVELUCID, 81

#ONYX, 81

#PERL, 80

#PYTHON, 80

#TENSORLUCID, 81

#funcdecl, 78, 80, 105

#typedecl, 78, 80, 108

Semantic Analyzer

Design, 98

Integration, 98

Sequential Thread, 64

Interface, 172

Wrapper, 172

Sequentiality Problem, 12

side effect

immutable, 81

SIPL, 51, 53, 61, 75, 88, 120, 135, 171

JLucid, 51

SLP, 24, 25, 171

Solaris 9, 39, 138

Stream, 24

hardware, 24

Lucid variable, 25

of Objects, 54

Random access to, 12

Synchronization, 31

Distributed vs. Parallel, 31

Implicit vs. Explicit, 32

in Distributed Environment, 31

in Parallel Environment, 31

Secure, 31

Syntax

GIPL, 14

JLucid, 51

Objective Lucid, 56

TCP/IP, 65

Tensor Lucid, 1–4, 6, 8, 15, 23, 38, 43, 44,

53, 54, 58, 60, 63, 68–71, 75, 81,

102, 104, 106, 107, 110, 135–137,

152, 156, 157, 162, 164–167, 170,

171, 184

Testing, 136

Diff, 137

Fedora Core 2, 138

MacOS X, 138

Portability, 138

Red Had Linux 9, 138

Regression, 136

Solaris 9, 138

Unit, 137

Windows 98SE/2000/XP, 138

Thesis

Contributions, 2

Scope, 3

Statement, 1

Structure, 4

TLP, 23–25, 171

Tools, 35

Ant, 41

bash, 102, 107

206

bc.exe, 3

bison, 38

CVS, 38

diff, 137

Eclipse, 41

flex, 38

g++, 3

gcc, 3

gee, 114

gipc, 114

gipsy, 114

gmake, 39

Java, 35

java, 37

Java Reflection, 35

javac, 3, 36, 49, 75, 104

JavaCC, 37, 38, 81, 102, 103, 112

javacc, 75, 101, 120, 122

javah, 36, 66

JBuilder, 41

JGIPL.sh, 103, 185

JIndexicalLucid.sh, 103, 185

jlucid.sh, 103, 184

JNI, 36

JUnit, 3, 37, 137, 160

lefty, 115

lex, 38

make, 39, 41

make-test.sh, 41

Makefiles, 39

MARF, 38, 112, 122, 124, 147, 149,

170

NetBeans, 41

nmake.exe, 3

ObjectiveGIPL.sh, 107, 186

ObjectiveIndexicalLucid.sh, 107, 186

perl, 3

readmedir, 41

regression, 114, 137

ripe, 114

Tomcat, 39

yacc, 38

TTS, 32, 171

Types, 83

UMA, 171

Unix, 39, 41, 137

URI, 171

URL, 171

WebEditor, 112

Windows 98SE/2000/XP, 138

Worker, 67

Definition, 67

Implementation, 178

207

	List of Figures
	List of Tables
	Introduction
	Thesis Statement
	Contributions
	Scope of the Thesis
	Structure of the Thesis

	Background
	Intensional Programming
	The Lucid Programming Language
	Brief History and The Family
	Indexical Lucid
	Streams
	Basic Operators
	Sequentiality Problem
	Random Access to Streams
	Definition of Lucid Operators By Means of @ and #
	Abstract Syntax of Lucid
	Concrete GIPL Syntax
	Semantic Rules
	Examples of Lucid Programs

	Lucid Now

	Hybrid Programming
	ML
	FC++
	GLU
	GLU#

	Compiler Frameworks
	General Intensional Programming System
	Introduction
	Goals
	General Intensional Programming Compiler
	General Eduction Engine
	Demand Propagation Resources for the GEE
	Synchronization

	Run-time Interactive Programming Environment

	Tools
	Java as a Programming Language
	Java Reflection
	Java Native Interface (JNI)
	JUnit

	javacc – Java Compiler Compiler
	MARF
	CVS
	Tomcat
	Build System
	Makefiles
	Eclipse
	JBuilder
	Ant
	NetBeans

	readmedir

	Summary

	Methodology
	JLucid: Lucid with Embedded Java Methods
	Rationale
	Modeling Non-Determinism
	Loading Existing Java Code with embed()
	The #JAVA and #JLUCID Code Segments
	Is JLucid an Intensional Language?

	Syntax
	Semantics

	Objective Lucid: JLucid with Java Objects
	Rationale
	Pseudo-Objectivism in JLucid
	Stream of Objects
	Pure Intensional Object-Oriented Programming

	Syntax
	Semantics

	General Imperative Compiler Framework
	Rationale
	Matching Lucid and Java Data Types
	Sequential Thread and Communication Procedure Generation
	Java Sequential Threads
	Java Communication Procedures
	C Sequential Threads and Communication Procedures with the JNI
	Worker Aggregator Definition in the Generator-Worker Architecture

	Summary
	Benefits
	Limitations

	Design and Implementation
	Internal Design
	General Intensional Programming Compiler Framework
	General Imperative Compiler Framework
	Generalization of a Concrete Implementation
	Resolving Generalization Issues and Binary Compatibility
	GIPC Preprocessor
	GIPSY Type System
	GICF Design
	Intensional Programming Languages Compiler Framework
	Sequential Thread and Communication Procedure Interfaces
	GIPC Design
	GIPC Class as a Meta Processor
	Calling Sequence
	Compiling and Linking
	Semantic Analyzer
	Interfacing GIPC and GEE and Compiled GIPSY Program

	JLucid
	Design
	Grammar Generation
	Free Java Functions and Java Compiler
	Arrays
	Implementing embed()
	Abstract Syntax Tree and the Dictionary

	Objective Lucid
	Design
	Grammar Generation
	Object Instantiation
	The Dot-Notation
	Abstract Syntax Tree and the Dictionary
	Objects as Arrays and Arrays as Objects

	External Design
	User Interface
	WebEditor – A Web Front-End to the GIPSY
	GIPSY Command-Line Interface
	RIPE Command-Line Interface
	GIPC Command-Line Interface
	GEE Command-Line Interface
	Regression Testing Application Command-Line Interface

	External Software Interfaces
	JavaCC API
	MARF Library API
	Servlets API

	Architectural Design and Unit Integration
	GIPSY
	GIPSY Exceptions Framework
	GEE Design
	RIPE Design
	Data Flow Graphs Integration

	Summary

	Testing
	Regression Testing
	Introduction
	Regression Testing Suite
	Unit Testing with JUnit
	Unit Testing with diff
	Tests

	Portability Testing
	Solving Problems
	Prefix Sum
	Dining Philosophers
	Fast Fourier Transform
	Fast Fourier Transform in JLucid.
	Fast Fourier Transform code fragment in Java from MARF.

	Moving Car
	Game of Life

	Summary

	Conclusion
	Results
	Experiments
	Interpretation of Results

	Discussions and Limitations
	Lack of Hybrid Intensional-Imperative Semantics Proofs
	Genuine Imperative Compilers
	Cross-Language Data Type Mapping
	Dimension Index Overflow
	Hybrid-DFG Integration
	Dealing With Side Effects and Abrupt Termination
	Imperative Function Overloading
	Cross-Imperative Language Calls
	Security

	Future Work
	Formal Verification of Semantic Rules and the GIPSY Type System
	Dealing with Data Flow Graphs in Hybrid Programming
	Security
	Implementation of the C Compiler in GICF
	Fully Explore Array Properties
	Genuine Imperative and Functional Language Compilers
	Visualization and Control of Communication Patterns and Load Balancing
	Target Host Compilation
	The GIPSY Screen Saver
	The GIPSY Server

	Bibliography
	Appendix
	Definitions and Abbreviations
	Abbreviations

	Sequential Thread and Communication Procedure Interfaces
	Sequential Thread Interface
	Communication Procedure Interface
	Generated Sequential Thread Wrapper Class
	Sample Worker's Implementation

	Architectural Module Layout
	GIPSY Java Packages and Directory Structure
	GIPSY Modules Packaging

	Grammar Generation Scripts for JLucid and Objective Lucid
	jlucid.sh
	JGIPL.sh
	JIndexicalLucid.sh
	ObjectiveGIPL.sh
	ObjectiveIndexicalLucid.sh

	Index

