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Abstract

PER2, a key molecular component of the mammalian circadian clock, is 

expressed rhythmically in many brain areas and peripheral tissues in mammals. 

Here we review findings from our work on the nature and regulation of rhythms of 

expression of PER2 in two anatomically and neurochemically defined subregions 

of the central extended amygdala, the oval nucleus of the bed nucleus of the stria 

terminalis (BNSTov) and the central nucleus of the amygdala (CEA).  Daily 

rhythms in the expression of PER2 in these regions are coupled to those of the 

master circadian pacemaker, the suprachiasmatic nucleus (SCN) but, importantly, 

they are sensitive to homeostatic perturbations and to hormonal states that 

directly influence motivated behavior. 

Key Words: Period2, oval nucleus of the stria terminalis, central nucleus of the 

amygdala, suprachiasmatic nucleus, glucocorticoid, gonadal hormones, restricted 

feeding, dopamine, corticotropin-releasing hormone.
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1. Introduction

Circadian rhythms in mammals are known to be modulated by motivational 

and emotional state.  However, the interface between motivational and emotional 

state and circadian rhythms is not well understood.  In earlier studies from our 

laboratory, we showed that photic induction of the cellular activity marker, Fos, in 

the suprachiasmatic nucleus (SCN, the master circadian clock) and light-induced 

phase shifts in free-running activity rhythms are attenuated in rats exposed to light 

in a context that induces conditioned fear (Amir and Stewart, 1998).  Conditioned 

fear also attenuates light-induced suppression of melatonin release (Funk and 

Amir, 1999), supporting the view that limbic forebrain mechanisms involved in 

emotional regulation can influence mechanisms that mediate the transmission of 

light to the SCN.  

In more recent work we have found that many limbic forebrain nuclei 

implicated in the regulation of motivational and emotional state exhibit daily 

rhythms in expression of the circadian clock protein, Period2 (PER2) (Amir et al., 

2004; Lamont et al., 2005).  This finding, together with evidence that the rhythms 

in PER2 expression in two regions, the oval nucleus of bed nucleus of the stria 

terminalis (BNSTov) and central nucleus of the amygdala (CEA) are regulated by 

corticosterone, led us to propose that motivational events modulate circadian 

rhythms, not only indirectly via light input mechanisms upstream from the SCN, 

but also by directly modulating tissue specific circadian mechanisms located 

downstream from the SCN.  In this paper we describe the nature of PER2 

rhythms in the BNSTov and CEA and findings concerning the neural, hormonal, 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

5

environmental and behavioral mechanisms that regulate and modulate these 

rhythms. 

2. Clock genes and their rhythmic expression

In mammals a light-entrainable master clock located in the SCN regulates 

circadian rhythms in behavior and physiology by synchronizing networks of 

subordinate circadian oscillators throughout the brain and periphery.  These 

subordinate oscillators are presumed to control, in a tissue-specific manner, the 

daily fluctuations in cellular and metabolic activity and their functional output 

(Green et al., 2008; Hastings et al., 2003; Schibler and Sassone-Corsi, 2002).  At 

the cellular level, circadian rhythmicity is driven by interlocked negative and 

positive transcription and translation/post-translation feedback loops that involve 

the products of several clock genes, most of which are rhythmically expressed.  

These include two genes encoding helix-loop-helix PAS transcription factors 

(Clock and Bmal1), three Period genes (Per1, Per2 and Per3), two Cryptochrome 

genes (Cry1 and Cry2), two orphan nuclear receptor genes (Rev-erb�, Rora), 

and a gene encoding casein kinase (Tau) (Dardente and Cermakian, 2007; 

Reppert and Weaver, 2001).  Circadian rhythms in expression of clock genes 

and proteins occur in the SCN as well as in many brain regions outside the SCN 

and in most peripheral tissues (Abe et al., 2002; Balsalobre, 2002; Bittman et al., 

2003; Portman, 2001; Sakamoto et al., 1998; Shieh, 2003; Yamamoto et al., 

2001; Zvonic et al., 2006).  In the SCN these rhythms are intrinsically 

synchronous and self-sustaining, whereas in most other tissues they dampen in 
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the absence of synchronizing input (Abe et al., 2002; Balsalobre, 2002; 

Sakamoto et al., 1998).  The primary input for synchronization of subordinate 

oscillators comes from the SCN.  Both neural projections and diffusible peptides 

from the SCN, as well as neural (such as the sympathetic nervous systems), 

endocrine (such as corticosterone, melatonin, epinephrine) and behavioral (such 

as locomotor activity, feeding) processes under SCN control have all been 

proposed as possible mediators (Cheng et al., 2002; Hastings and Maywood, 

2000; Holzberg and Albrecht, 2003; Kalsbeek and Buijs, 2002; Mrosovsky, 1996; 

Oishi et al., 1998; Okamura, 2003; von Gall, 2003 ).  Of particular importance for 

this review, however, are recent findings demonstrating that both the levels and 

patterns of expression of clock genes in brain and periphery can be modulated 

directly, downstream from the SCN.  Thus, stress and drugs of abuse (Ammon et 

al., 2003; Iijima et al., 2002; Takahashi et al., 2001; Yuferov et al., 2003), 

scheduled restricted feeding (Damiola et al., 2000; Hara et al., 2001; Stokkan et 

al., 2001; Verwey et al., 2007; Waddington Lamont et al., 2007; Wakamatsu et 

al., 2001), exercise (Zambon et al., 2003), and periodic absence of nursing 

mothers (Ohta et al., 2003) have all been shown to either induce or shift the 

phase of clock gene expression in a number of brain structures and peripheral 

tissues in rodents.

3. PER2 rhythms in the central extended amygdala

In our recent studies of the expression of clock genes in rat brain, we found 

daily rhythms in the expression of the quintessential circadian clock protein, 
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PER2 (Bae et al., 2001; Zheng et al., 1999), in two regions of the extended 

amygdala known to participate in the regulation of motivational and emotional 

state, the oval nucleus of the bed nucleus of the stria terminalis (BNSTov), and 

the central nucleus of the amygdala (CEA) (Amir et al., 2004; Lamont et al., 

2005).  Significantly, we found that the expression of PER2 in these regions is 

maximal around the time of transition from day to night, and is uniquely in phase

with the PER2 rhythm of the SCN (see Fig. 1).  In other brain regions, such as 

the basolateral amygdala, dorsal striatum, and hippocampus, the rhythms of 

PER2 expression are typically opposite in phase with that in the SCN, peaking 

during the transition from night to day (Amir et al., 2006; Amir et al., 2004; 

Lamont et al., 2005).  Furthermore, we found that bilateral SCN lesions, or 

prolonged housing in constant light (LL), which eliminate PER2 rhythms in the 

SCN and disrupt circadian behavioral rhythms, abolish the rhythm of PER2 in the 

BNSTov and CEA (Amir et al., 2004; Lamont et al., 2005), confirming the 

subordinate nature of these rhythms.  Finally, in another experiment in this 

series, we found that unilateral SCN lesions, which do not affect circadian 

behavioral rhythms, blunt the rhythm of PER2 in BNSTov ipsilateral, but not 

contralateral to the lesioned side, emphasizing the importance of neural 

connections between the SCN and PER2 oscillations in these limbic forebrain 

areas (Amir et al., 2004).  

4. BNSTov and CEA PER2 rhythms are uniquely sensitive to circulating 

hormones 
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4.1 Glucocorticoids

Basal rhythmic secretion of glucocorticoids from the adrenals is under the 

control of the SCN (Szafarczyk et al., 1983).  In turn, there is evidence that 

glucocorticoids (GC) induce clock gene expression in peripheral tissues and in 

cultured cells (Balsalobre et al., 2000a; Balsalobre et al., 2000b).  The BNSTov

and CEA are rich in both types of glucocorticoid receptors (MR and GR) 

(Honkaniemi et al., 1992; Lechner and Valentino, 1999; Roozendaal et al., 2001) 

and glucocorticoids have been shown to modulate the expression of various 

neuropeptides and neuropeptide receptors and to affect other cellular parameters 

within these regions (Makino et al., 1994; Makino et al., 1995; Pompei et al., 

1995; Sanchez et al., 1995; Schulkin et al., 1998; Stamp and Herbert, 2001; 

Watts and Sanchez-Watts, 1995).

Based on these observations, we carried a series of experiments to 

examine the role of glucocorticoids in the regulation of PER2 in the BNSTov and 

CEA. We first found that adrenalectomy blunts the rhythmic expression of PER2 

in the BNSTov and CEA without affecting PER2 rhythmicity in the SCN.  

Adrenalectomy had no effect on PER2 rhythms in other limbic forebrain regions 

such as the basolateral amygdala and hippocampus, indicating that 

glucocorticoids play a selective role in the regulation of PER2 expression in the 

BNSTov and CEA (Amir et al., 2004; Lamont et al., 2005).  In a second study we 

sought to determine the nature of the interaction between glucocorticoids and 

PER2 rhythms, asking whether it was the mere presence or the daily circadian 

rhythm of circulating glucocorticoids that was critical.  We found that in the 
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absence of the adrenals, corticosterone replacement via the drinking water, 

which restores daily fluctuations in corticosterone levels, restores the rhythm of 

PER2 in the BNSTov and CEA, whereas corticosterone replacement via 

subcutaneous constant-release pellets has no effect (Segall et al., 2006b).  

Finally, we found that in a conditional mutant mouse devoid of glucocorticoid 

receptors in the brain (Tronche et al., 1999), PER2 rhythms in the BNSTov and 

CEA are absent (Segall et al., 2006a).  These data demonstrate the importance 

of circadian glucocorticoid signaling in PER2 rhythms in the BNSTov and CEA 

and are consistent with the idea that the effect of circulating corticosterone on 

PER2 rhythms in these regions is mediated by central glucocorticoid receptors.  

4.2 Thyroid hormones

The finding that the rhythms of PER2 in the BNSTov and CEA, and not 

those in other limbic forebrain regions, are sensitive to circulating adrenal 

hormones led us to ask whether these particular limbic regions might be uniquely 

sensitive to other types circulating hormones.  One class of hormones previously 

implicated in the regulation of behavioral and physiological circadian rhythms are 

the thyroid hormones.  For example, it has been shown that surgical removal of 

the thyroid and parathyroid glands or chemical induction of hypothyroidism blunt 

the daily fluctuations in circulating corticosterone and prolactin levels and alter 

circadian locomotor activity rhythms (Beasley and Nelson, 1982; McEachron et 

al., 1993; Murakami et al., 1984). 
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In our experiments, surgical removal of the thyroid and parathyroid glands 

disrupted PER2 rhythms in the BNSTov and CEA, again without having effects in 

other limbic regions (Amir and Robinson, 2006).  When considering the 

mechanisms whereby hormones such as thyroxine (T4) and triiodothyronine (T3) 

might affect PER2 expression, we speculated that they might act on the 

transcription of the Per2 gene, indirectly, by modulating the transcriptional activity 

of REV-ERBalpha and RORa clock components which have been shown to be 

sensitive to thyroid hormones.  Indeed, both have been implicated in the 

transcriptional regulation of BMAL1, an essential and direct positive regulator of 

Per2 transcription in mammalian cells (Preitner et al., 2002; Sato et al., 2004).  

However, because this mechanism is likely to affect clock gene expression in all 

tissues throughout body, it would not appear able to account for the selective 

effect of thyroidectomy on PER2 expression in the BNSTov and CEA.  Other 

more likely possibilities would be via their effects on the daily rhythm of plasma 

corticosterone levels (Murakami et al., 1984), or their effect on neurotransmitters 

and peptides such as dopamine (DA) and corticotropin-releasing hormone (CRF) 

(Peterson et al., 2006; Yilmazer-Hanke et al., 2004), that appear be involved in 

the regulation of PER2 expression in the BNSTov and CEA (see below).

4.3 Ovarian hormones

It is well established that the release of ovarian hormones is influenced by 

the circadian system (Wiegand and Terasawa, 1982; Wiegand et al., 1978) and, 

in turn, circadian rhythms of locomotor activity are influenced by circulating levels 
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of gonadal hormones (Albers, 1981).  Given these reciprocal relationships and

the importance of the limbic forebrain in reproductive physiology and behavior, it 

was of interest to examine the role of ovarian hormones in the regulation of 

PER2 rhythms in BNSTov and CEA of female rats.  PER2 rhythms in BNSTov 

and CEA were found to be strongly affected by the estrous cycle and by 

estrogen. Specifically, the patterns of PER2 expression observed in BNSTov and 

CEA varied as a function of day of the estrous cycle, such that on proestrus and 

estrus it was similar to rhythm seen in the SCN and previously reported in male 

rats, whereas on the metestrus and diestrus days of the cycle there was a 

marked blunting of the rhythm of PER2 expression in BNSTov and CEA.  

Rhythms in the SCN, basolateral amygdala and hippocampus were unaffected.  

It was also found that in ovariectomized females the patterns of expression of 

PER2 in limbic forebrain were similar to those in intact males.  Treatment of 

ovariectomized females with injections of estradiol, aimed at mimicking levels 

seen across the estrous cycle, restored the normal pattern of PER2 expression 

found previously in BNSTov and CEA (Perrin et al., 2006).

These findings on the role gonadal hormones, taken together with those on 

glucocorticoids and thyroid hormones, indicate that the oscillations of PER2 

expression in BNSTov and CEA are unique in their sensitivity to circulating 

hormones.  Furthermore, they underscore the complexity and diversity of 

mechanisms involved in regulation of PER2 expression in the brain.  Such 

findings provide an important clue to understanding how normal fluctuations in 

circulating hormones that affect motivational and emotional states can modulate 
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normal circadian rhythms within specific regions of the limbic forebrain and affect 

the synchrony between rhythms in different regions.  Similarly, such findings 

point to ways in which alterations in emotional and motivational states that 

disrupt hormonal outputs, such as stress, feeding disorders and exposure to 

drugs of abuse could disrupt synchrony between circadian oscillations in different 

brain regions and, importantly, uncouple them from the rhythm in the SCN.   

5.0 Dopamine, CRF and PER2 expression in BNSTov and CEA 

5.1 Dopamine

Dopamine has been implicated in the regulation of circadian rhythms in the 

fetal SCN (Weaver and Reppert, 1995; Weaver et al., 1992; Weaver et al., 1995) 

and in the regulation of the expression of retinal clock genes in rodents 

(Dorenbos et al., 2007; Yujnovsky et al., 2006).  Furthermore it has been shown 

that drugs of abuse that stimulate the release of dopamine or block dopamine 

reuptake, such as amphetamine and cocaine, respectively, induce the 

expression of clock genes such as Per1 and Per2 in the dorsal striatum in rats 

(Lynch et al., 2008; Nikaido et al., 2001).  

The BNSTov and CEA receive dense dopaminergic innervations (Hasue 

and Shammah-Lagnado, 2002) from cells in ventral tegmentum.  We asked, 

therefore, whether dopamine might be involved in the regulation of PER2 

expression in these regions.  Consistent with this possibility, we found that 

unilateral denervation of the dopaminergic input to BNSTov and CEA reduced 

the levels of expression of PER2 in these limbic forebrain regions, whereas 
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injections of amphetamine increased PER2 expression in these regions (Verwey 

et al., 2006).  Importantly, the dopaminergic input to BNSTov and CEA is 

activated in response to stressors (Inglis and Moghaddam, 1999; Kozicz, 2002) 

and drugs of abuse (Carboni et al., 2000; Tran-Nguyen et al., 1998) suggesting a 

mechanism through which stressors and drugs of abuse could affect patterns of 

PER2 expression in these regions.

5.2 Corticotropin-releasing factor

Many cells in the BNSTov and CEA of rodents express the neuropeptide, 

corticotropin-releasing hormone (CRF) and we have found that, in addition to the 

effect on PER2 expression, lesions of the dopaminergic input substantially 

decrease CRF immunoreactivity in both BNSTov and CEA (Stewart et al., 2008) 

(see Fig. 2) confirming a major role for dopamine in the regulation of the CRF 

expression in these regions (Day et al., 2002).  

Importantly, like the dopaminergic inputs to these regions, the CRF-

containing neurons in BNSTov and CEA are activated in response to stressors 

(Merali et al., 2004; Merali et al., 1998) and mediate a wide variety of 

physiological and behavioral responses to stress including fear and anxiety 

(Davis, 2006; Schulkin et al., 2005), as well as responses that support appetitive 

behavior, such as increased locomotion (Cador et al., 1993; Cador et al., 1992; 

Kalivas et al., 1987) and facilitation of responses to incentive stimuli ( Merali et 

al., 1998; Pecina et al., 2006).  Furthermore, CRF within the limbic forebrain 

plays an important role in stress-induced relapse to drug seeking (Erb et al., 

1998; Shaham et al., 1997; Heilig and Koob, 2007; Liu and Weiss, 2002; 
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Spealman et al., 2004; Stewart, 2003).  Together these findings suggest CRF as 

another mediator of the effects  of stressors and drugs on PER2 expression in 

the BNSTov and CEA.

To explore this idea, we studied the effect of targeted silencing of the CRF 

gene in BNSTov on PER2 expression using long double-stranded RNA-mediated 

RNA interference (Bhargava et al., 2004).  Microinfusions of dsRNA against CRF 

given into the BNSTov suppressed CRF expression and reduced the level of 

PER2 (Fig. 3), suggesting that CRF containing cells participate in the regulation 

of PER2 expression and may mediate the effects of dopamine as well as of 

stress (and possibly of corticosterone (Makino et al., 1994; Makino et al., 1995) 

on rhythms of PER2 expression in this structure (Bhargava et al., 2006).  The 

nature and mechanism of this regulation is not at all clear.  It is likely, however, to 

be indirect, inasmuch as we also found that CRF and PER2 are not co-localized 

in cells in these regions (Fig 4).

In summary, we have shown that circadian oscillations in PER2 expression 

that we have identified in the BNSTov and CEA, although subordinate to and 

normally in phase with the SCN, are sensitive to circulating hormones and 

modified by the activity of transmitter and peptide systems of the brain that do not 

affect the rhythms of the SCN, itself.  Because these systems are themselves 

subject to circadian modulation by the SCN, it is possible that they provide a 

means whereby the SCN communicates with downstream circadian oscillators 

that in turn transmit signals to different effector systems in brain and body.  It is 

well known, however, that many of these hormonal and neurotransmitter systems 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

15

are themselves responsive to environmental events and to changes in behavioral 

states, and, as such, provide a means whereby experience and behavioral states 

could directly affect these subordinate oscillators downstream from the SCN.  

6. Modulation of PER2 expression by environmental perturbations

Successful adaptive functioning of all organisms depends on stable 

synchronization of endogenous circadian rhythms with the rhythmic events in the 

environment.  For most organisms the most powerful synchronizers are the 

environmental light cycle and feeding time.  Below we describe how

perturbations in the environmental light cycle and schedules of feeding affect the 

synchrony between the rhythms of PER2 expression in the BNSTov and CEA 

and that in the master clock of the SCN.

6.1 Perturbations of the light cycle

Disorders of sleep, mood, cognition, attention and appetite have been linked 

to disruptions of circadian rhythms associated with shift-work, and travel across 

time zones (jet lag) (Hastings et al., 2003; Moore-Ede et al., 1983a; b).  In 

rodents, large abrupt shifts in the entraining light cycle, that mimic travel across 

time zones, have been shown to transiently disrupt the normal patterns of 

behavioral and physiological rhythms and to uncouple the rhythms of expression 

of SCN clock genes from those in subordinate oscillators in some brain regions 

(e.g., arcuate nucleus, paraventricular nucleus and pineal gland) and in 

peripheral tissues (e.g., liver, lung and skeletal muscle) (Abe et al., 2002; Reddy 

et al., 2002; Yamazaki et al., 2000).  This temporary uncoupling of clock gene 
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rhythms results from the fact that re-entrainment to the novel light cycle occurs 

more quickly in the SCN than in subordinate oscillators.  We have shown that in 

rats subjected to a single large (8-h) delay or advance shift in the entraining 12-

h:12-h light-dark (LD) cycle, the rate of re-entrainment of the expression of PER2 

is faster in the SCN than it is in the BNSTov, suggesting weak coupling between 

the BNSTov and the master SCN clock (Amir et al., 2004).  Given the importance 

of the central extended amygdala to emotional and motivational processes, it is 

likely that the disruption of the synchrony between rhythms of clock gene 

expression in these regions and the SCN underlies some of the physiological, 

emotional and behavioral consequences of shift-work and jet lag.

6.2 Restricted feeding schedules 

In mammals, the SCN clock regulates the time of feeding and, in turn, 

feeding time can be a powerful synchronizer of behavioral and physiological 

circadian rhythms and rhythms in expression of clock genes (Mendoza, 2007; 

Schibler, 2007).  In nocturnal rodents, feeding that is restricted to the daytime 

has been shown to synchronize rhythms of clock gene expression in multiple 

tissues and organs, including the brain, and to uncouple them from the rhythms 

of the SCN (Challet et al., 2003; Damiola et al., 2000; Hara et al., 2001; Oishi et 

al., 2002; Stokkan et al., 2001; Wakamatsu et al., 2001).  Furthermore, it is 

known that such feeding schedules induce characteristic food anticipatory 

behavioral and physiological rhythms (e.g., rhythms in behavioral arousal and 

locomotor activity, body temperature, circulating corticosterone) that can be 
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shown to be independent of the SCN (Mistlberger, 1994).  We use restricted 

feeding schedules to study how perturbation of motivational state and energy 

balance affect the expression of PER2 in the limbic forebrain.   We found that 

daytime restricted feeding (2 h per day, for 10 days) synchronizes the rhythms of 

PER2 in BNSTov and CEA and uncouples them from the rhythm of the SCN

(Verwey et al., 2007; Waddington Lamont et al., 2007).  Specifically, the peak of 

PER2 rhythms in these regions shifted away from that in the SCN to a time 12 h 

after daily food presentation.  Importantly, such daytime restricted feeding affect 

PER2 rhythms in other regions of the limbic forebrain in a similar manner.  This 

fact that the effect of restricted feeding was not restricted to BNSTov and CEA 

stands in contrast to the selective effects of hormonal manipulations, which affect 

only BNSTov and CEA, and points to a critical role for signals arising disruptions 

of energy balance in the maintenance and integration of circadian rhythms in the 

brain. 

Significantly, unlike the effect of restricted feeding schedules, which involve 

daily disruptions of energy balance, scheduled restricted access to treats such as 

sucrose, saccharine, or a highly palatable liquid diet, in the absence of food 

deprivation, had no effect on PER2 expression in the limbic forebrain (Verwey et 

al., 2007; Waddington Lamont et al., 2007).  Thus, it appears that the critical 

factor mediating the effect of restricted feeding is the daily alleviation of a 

negative metabolic state.  Furthermore, we have to conclude that rhythms of 

PER2 in these areas are relatively insensitive signals arising from the incentive 

properties of the food substances (Verwey et al., 2007; Waddington Lamont et 
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al., 2007). 

6.3 Stress

Stressful events have been shown to affect circadian behavioral and 

physiological rhythms (Gorka et al., 1996; Meerlo et al., 2002), however, there is 

only limited evidence concerning the effects of stressors on clock gene 

expression in the brain.  In mice, the acute stressors, restraint and systemic 

immune challenge (lipopolysaccharide, LPS), induced the expression of the Per1 

gene in the hypothalamic paraventricular nucleus; there was no affect acute 

exposure to these stressors on Per1 expression in the SCN nor was Per2 

expression in either the PVN or SCN affected (Takahashi et al., 2001).  In 

neonatal rats, it was shown that periodic absence of nursing mothers, a stressful 

event, can shift and entrain the rhythm of expression of Per1 and Per2 in the 

SCN (Ohta et al., 2003).  Finally, we have found in a preliminary study carried out 

in adult rats housed under a normal light/dark cycle that exposure to chronic daily 

intermittent restraint stress, given in the daytime, can disrupt the rhythms of 

PER2 expression in BNSTov and CEA without affecting that in the SCN 

(Robinson et al., 2005). 

Summary and conclusions

As discussed by many of the papers in this special issue, the bed nucleus of 

the stria terminalis (BNST), and its associated structures in the amygdala, 

represent a complex and neurochemically heterogeneous set of structures that 

modulate a wide range of physiological and motivational processes.  These 
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include neuroendocrine, autonomic and behavioral responses to stressors and to 

drugs of abuse, ingestive behaviors, and reproductive and maternal behaviors 

(Casada and Dafny, 1991; Choi et al., 2007; Davis et al., 1997; Dumont et al., 

2005; Dumont et al., 2008; Dumont and Williams, 2004; Epping-Jordan et al., 

1998; Erb et al., 2004; Erb et al., 2001; Erb and Stewart, 1999; Figueiredo et al., 

2003; Fink and Smith, 1980; Funk et al., 2006; Gray, 1993; Heilig and Koob, 

2007; Herman et al., 2005; Loewy, 1991; Nijsen et al., 2001; Stefanova and 

Ovtscharoff, 2000; Van de Kar and Blair, 1999; Walker et al., 2001; Walker et al., 

2003; Walker et al., 2000).  

Most if not all aspects of behavior and physiology, including those 

modulated by the BNST and amygdala, exhibit some degree of circadian 

rhythmicity under the control of the master circadian clock located in the SCN.  

Furthermore, it is known that the circadian rhythms driven by the SCN depend on 

the rhythmic of expression of a number of well characterized clock genes.  The 

work that we have discussed in this paper shows that nuclei within the BNST and 

amygdala, like the SCN, exhibit circadian oscillations in expression of the clock 

gene, PER2, an essential component of the mechanism driving circadian 

rhythmicity.  Furthermore, we summarized evidence showing that some of these 

rhythms, though subordinate to the SCN, are directly sensitive to hormonal and 

environmental perturbations that normally do not affect the rhythms of gene 

expression in the SCN.  

More specifically, we found robust rhythms of PER2 expression in two 

related structures, the BNSTov and CEA, that are normally in perfect synchrony 
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with the rhythms of the SCN.  Rhythms in these two regions, though dependent 

on the functional integrity of the SCN, are selectively sensitive to changes in 

adrenal, thyroid and gonadal hormones, to changes in dopamine and CRF, as 

well as to perturbations of motivational state, energy balance and to stressors, 

none of which affect the rhythm of the SCN. Thus, all of these ‘motivational’ 

manipulations can uncouple these tissue-specific subordinate oscillators from the 

master circadian clock.  The specific nature of the consequences of such 

uncoupling for health and adaptive functioning of the organism is not known, but 

one might speculate, based on the ideas in the literature on jet lag and shift work, 

that such uncoupling could give rise to physiological, emotional and behavioral 

disturbances similar to those seen under these circumstances.

A major task that remains, is to identify the consequences for physiology 

and behavior of disruptions in the expression of PER2 and its rhythms in the 

BNSTov and CEA.  For example, changes in the rhythmic expression of PER2 

could affect the functional integrity of cells in these limbic regions by disrupting 

local metabolic processes and thereby changing their sensitivity to incoming 

signals (Green et al., 2008).  Consistent with this possibility is the evidence that 

genetic disruptions of the Per2 gene alters behavioral processes such as 

sensitization to the behavioral activating effects of cocaine (Abarca et al., 2002) 

and alcohol preference (Spanagel et al., 2005). We have begun to address these 

issues more specifically using RNAi-mediated knockdown of Per2 within specific 

regions of the brain (Gavrila et al., 2008). 
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Figure captions

Fig. 1.

Photomicrographs showing examples of PER2 immunoreactivity in the SCN, 

BNSTov, and CEA of rats perfused at ZT1 or ZT13.  

Fig. 2.

Photomicrographs showing examples of immunoreactivity for the dopamine 

transporter (DAT) and CRF in BNSTov and CEA following unilateral infusions of 

6-OHDA into the medial forebrain bundle.  Note the absence of DAT staining and 

the reduction of CRF staining in both BNSTov and CEA on the side of the 

infusion.

Fig. 3

Photomicrographs showing the effect of unilateral infusions of dsRNA to CRF 

(left) or control infusions (right) into the BNSTov on local CRF and PER2 

expression.  Note that infusion of dsRNA led to a decrease in CRF staining and 

to severe suppression of PER2 expression.

Fig. 4.

Photomicrographs showing examples of CRF expression (left) and of CRF 

(brown) and PER2 (blue) staining (right) in BNSTov and CEA.  Note the lack of 

coexpression of CRF and PER2 in either region.
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