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Abstract

Non–homogenous Poisson processes with periodic claim intensity rate
have been proposed as claim counts in risk theory. Here a doubly periodic
Poisson model with short and long–term trends is studied. Beta–type in-
tensity functions are presented as illustrations. The likelihood function and
the maximum likelihood estimates of the model parameters are derived.

Double periodic Poisson models are appropriate when the seasonality
does not repeat the exact same short–term pattern every year, but has
a peak intensity that varies over a longer period. This reflects periodic
environments like those forming hurricanes, in alternating El Niño/La Niña
years. An application of the model to the dataset of Atlantic Hurricanes
Affecting the United States (1899-2000) is discussed in detail.

Keywords: Non–homogeneous Poisson process, Claim intensity func-
tion, Periodicity, Double periodic Poisson model, Maximum likelihood es-
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1 Introduction

Non–homogeneous Poisson (NHP) processes are considered a more realistic alter-
native than the classical Poisson process to model the frequency of claims in risk

∗This research was funded by a 1Post-Graduate Scholarship of the Natural Sciences and
Engineering Council of Canada (NSERC) and 2operating grant OGP0036860.

1



theory. The NHP time–dependent intensity function is appropriate to describe
the fluctuations of risks, subject to seasonality in their claims intensity.

Beard et al. (1984) and Daykin et al. (1994) claim that the risk process is of-
ten subject to continual changes in risk propensity. This is true for both, the
long–term, systematic, slow–changing trends, as well as the short–term random
variations that affect the number of claims. The model to be employed must
then suitably define a time–dependent function or a stochastic process {λ(t)}t≥0,
instead of the constant Poisson parameter λ.

Berg and Haberman (1994) use a non–homogeneous Markov birth process, of
which the NHP is a special case, to predict trends such as the time to the next
claim or the expected total number of claims in a year in life insurance claim
occurences.

In practice, natural phenomena evolving in a periodic environment, or under sea-
sonal conditions, affect insurance claims. For example, weather factors are known
to affect automobile or fire insurance claims, while seasonal snow storms in the
north and hurricanes or floods in the south affect property–casualty insurance.
A periodic time–dependent intensity rate is a reasonable model for the claim fre-
quency in such situations.

Chukova et al. (1993) shows that a random variable X with almost-lack-of-memory

P{X > x + c | X > c} = P{X > x} , for some c,

has a periodic hazard rate (intensity) function of period c, hX(t) = fX(t)
F̄X(t)

, for

t > 0. Obvious applications in risk theory are to model random phenomena with
seasonal effects; car accidents, hurricanes. Some characterization properties of the
NHP process with periodic failure rate are derived in Chukova et al. (1993) and
Dimitrov et al. (1997).

A compound NHP process with periodic claim intensity rate case, called periodic
risk model, is considered and the related ruin problems in these models are dis-
cussed by Dassios and Embrechts (1989) and Asmussen and Rolski (1991, 1994).
These use the theory of piecewise–deterministic Markov processes, together with
some standard martingale techniques and a corresponding average arrival rate risk
model, respectively.

Garrido et al. (1996) exploit the corresponding properties in a risk model, where
the claim intensity rates are modeled by a NHP process with (single) periodic
intensity. Some properties of such processes, illustrated by a beta–shape periodic
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intensity function, are discussed. Morales (2004) further explores the single pe-
riodic NHP model by defining a Gaussian intensity with which he considers the
problem of ruin through a simulation study.

Furthermore, Garrido and Lu (2004) consider a model with a double periodic
intensity rate, where periodicity does not repeat the exact same pattern in each
short–term period, rather its peak intensity varies over a longer period. This model
reflects periodic environments like those forming hurricanes, in alternating El
Niño/La Niña years. Parametric forms of the doubly periodic intensity function,
like the double–beta and the sine–beta, are proposed. These parametric forms are
fitted here to hurricanes data, emphasizing the inferential aspects.

Tropical storms and hurricanes periodically affect every coastal US state along the
Atlantic and the Gulf of Mexico, from Texas to Maine, year after year. According
to Cole and Pfaff (1997), much speculation exists regarding the significance of
the El Niño effect. This is a phenomenon generating abnormally warm surface
water temperatures off the coasts of Ecuador and Peru, affecting global climate
in the short-term, including weather patterns across North America. Particular
attention has been directed toward the potential effects of the El Niño phenomenon
on hurricane frequency and the strength attained by tropical cyclones during El
Niño years, in comparison to non–El Niño years (called La Niña). These can
be seen as long–term climatological and periodical effects on North American
weather.

Parisi and Lund (2000) study the annual arrival cycle and return period properties
of landfalling Atlantic Basin hurricanes. A NHP process with a periodic inten-
sity function is used to model the annual cycle of hurricane arrival times. The
data used in their study contains all Atlantic Basin hurricanes that have made a
landfall in the contiguous United States during the years 1935–98, inclusive. Ker-
nel methods are used to estimate the intensity function and the standard normal
kernel function is selected.

In this paper, apart from considering the seasonal effects on the hurricane ar-
rival times, we also consider global climatological and periodical effects and try to
model the occurrence times of Atlantic hurricanes using a double periodic NHP
process. A double beta–type intensity function is used in this parametric model
and the Atlantic hurricanes affecting the United States 1899–2000 dataset [Neu-
mann et al. (1993) and Landreneau (2001)] is used to estimate the parameters
in the model. By contrast to the method proposed by Parisi and Lund (2000),
a parametric statistical inference approach is used here to estimate the intensity
function. Maximum likelihood estimators of model parameters for this dataset
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are obtained.

A brief description of the hurricane dataset is given in Section 2. NHP models with
single or double periodic intensity are introduced. The statistical inference of the
model parameters is presented in Section 3. Finally, in Section 4 we discuss the fit
of different models to the hurricane data and give some comments. The appendix
contains some tables and remarks used in the goodness–of–fit assessment.

2 The hurricane dataset and proposed models

The data used for our study comes from Neumann et al. (1993), which reports
155 hurricanes that crossed or passed immediately adjacent to the Unites States
coastline (Texas to Maine), 1899 through 1992. Landreneau (2001) contains 12
additional hurricanes for the years 1993 through 2000 and is obtained from the
National Hurricane Center Web site. Henceforth we call this combined dataset
“the hurricanes data”. Thus, over the 102–year period 1899 though 2000, a total
of 167 category 1 though 5 hurricanes crossed the Atlantic United States coastline
at one or more points.

The average annual number is 1.64 over the whole period, which means an average
of one to two hurricane landfalls per year. The years with a maximum number of
6 hurricanes were 1916 and 1985, while 19 out of the 102 years had no hurricanes.
It can be observed that the hurricane season starts in June and ends in November
over those years. Furthermore, the hurricane season peak period lasts from mid-
August through October, with September having had the most major hurricanes
(38.9% of all hurricanes). Figure 1 shows the annual distribution of those 167
Atlantic hurricanes, while Table 1 gives their monthly distribution. (see Appendix
A.1 for a discussion on the fit of the double periodic model to this dataset).

Month Number of occurrences Proportion (%)
June 11 6.6
July 17 10.2
August 44 26.3
September 65 38.9
October 26 15.6
November 4 2.4

167 100.0

Table 1: Monthly distribution of the hurricanes data
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Figure 1: US Atlantic Hurricanes (1899-2000) Annual Counts

Let Nt, the number of events occurring in an interval of the form [0, t), be a NHP
process with intensity function λ(t) for t ≥ 0. By definition, the probability of n
claims occurring in a time interval [0, t) is given by

P{Nt = n} =
e−Λ(t)[Λ(t)]n

n!
, n ∈ N , (1)

where Λ, called the cumulative hazard function or the cumulative intensity func-
tion of the process, is defined by Λ(t) =

∫ t

0
λ(v) dv for t ≥ 0. That is, for a NHP

process with intensity function λ, Nt has a Poisson distribution with mean Λ(t).

When its intensity function does not depend on time, i.e. λ(t) = λ, for all t ≥ 0, the
corresponding NHP process is the classical homogeneous Poisson process, where
Λ(t) = λt is linear. From Table 1 we see that here the maximum likelihood
estimator (MLE) of λ would be λ̂ = 1.64, hurricanes per year, for the homogeneous
Poisson model. See Appendix A.1 for the goodness–of–fit analysis of this model.

Now, consider the case where the risk process evolves in a periodic environment,
as when the claim arrival rate depends on the seasons. Then the intensity func-
tion of a NHP process is a periodic function, say with a period of c > 0 years.
Consequently t − b t

c
cc ∈ [0, c), for t ≥ 0, is the time of the season, where btc is

the integer part of t.

Models with single and double periodicity are introduced in the following section,
where they are illustrated by beta–type functions.
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2.1 A single periodic intensity model

Assume that the short–term period is 1 (year). Let λ1 be a beta–type function,
with parameters p1, q1 ≥ 1, defined on [0, 1], such that λ1(t

∗
1) = 1, where t∗1 ∈ [0, 1]

is the mode of the function. That is

λ1(t) =

{
( t−m1

D )
p1−1

(1− t−m1
D )

q1−1

α∗
1

, 0 ≤ m1 ≤ t ≤ m2 ≤ 1

0, otherwise
, (2)

where D = m2 − m1 and

α∗
1 =

(
t∗1 − m1

D

)p1−1(
1 − t∗1 − m1

D

)q1−1

, (3)

is a scale factor, while

t∗1 = m1 + D
p1 − 1

p1 + q1 − 2
, (4)

is the mode of λ1, so that at the mode λ1(t
∗
1) = 1 is the peak level.

Then the single periodic beta intensity function is given by

λ(t) = λ∗
0 λ1

(
t − btc

)
, for t ≥ 0 , (5)

where λ∗
0 > 0 is the (constant) peak level for this intensity and λ1 is given in (2).

The corresponding cumulative intensity function Λ(t) is

Λ(t) =
λ∗

0D

α∗
1

[
btcB(p1, q1) + B

(
p1, q1;

t− btc − m1

D

)]
, t ≥ 0 , (6)

where

B(p, q) =

∫ 1

0

vp−1 (1 − v)q−1 dv =
Γ(p)Γ(q)

Γ(p + q)

is the beta function at p, q > 0, while

B(p, q; t) =





0 , if t ≤ 0∫ t

0
vp−1 (1 − v)q−1 dv , if t ∈ (0, 1)

B(p, q) , if t ≥ 1

,

is the usual incomplete beta function.
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Following the results of Garrido and Lu (2004), the NHP process {Nt}t≥0 with
intensity function given in (5) can be decomposed as

Nt = M1 + M2 + · · · + Mbtc + Nt−btc , t > 0 ,

where {Mi}i≥1 are i.i.d. Poisson random variables distributed as N1, with mean
Λ(1), representing counts for complete years. These Mi are independent of Nt−btc,
the latter being a Poisson r.v. with mean Λ(t−btc), for t−btc ∈ [0, 1), representing
the count in the final incomplete year. Here Λ(1) and Λ(t − btc) can be derived
from (6), respectively.

An alternative simple form for λ1, which can result in a better fit with real data,
is the generalized 3–parameter beta function [denoted G3B(p1, q1, ε), see Johnson
et al. (1995), Chapter 25], given by

λ1(t) =





( t−m1
D )

p1−1
(1− t−m1

D )
q1−1

α∗
1[1−(1−ε)( t−m1

D )]
p1+q1

, 0 ≤ m1 ≤ t ≤ m2 ≤ 1

0, otherwise
, (7)

where p1, q1 ≥ 1, ε > 0, D = m2 − m1 and

α∗
1 =

(
t∗1−m1

D

)p1−1 (
1 − t∗1−m1

D

)q1−1

[
1 − (1 − ε)

t∗1−m1

D

]p1+q1
, (8)

is again a scale factor, while

t∗1 = m1 + D
3 − p1 − (1 + q1)ε +

√
[1 + p1 + (1 + q1)ε ]2 − 8(p1 + q1)ε

4(1 − ε)
, (9)

is the mode of function λ1, given by (7), such that λ1(t
∗
1) = 1. Note that as ε → 1,

then (9) tends to (4).

Then for the intensity function, given by (5), the corresponding cumulative inten-
sity function Λ is derived as

Λ(t) =
λ∗

0D

α∗
1ε

p1


btcB(p1, q1) + B


p1, q1;

ε
{

t−btc−m1

D

}

1 − (1 − ε)
{

t−btc−m1

D

}



 , t ≥ 0 .

(10)
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2.2 A double periodic intensity model

Assume that the peak values or the levels of the short–term intensity function vary
periodically with period c (an integer number of years). If, as above, the short–
term intensity is the beta–shape function given in (2), then the double periodic
beta intensity function is given by:

λ(t) =





λ∗
0λ1

(
t − btc

)
if 0 ≤ t − b t

c
cc < 1

λ∗
1λ1

(
t − btc

)
if 1 ≤ t − b t

c
cc < 2

...
...

λ∗
c−1λ1

(
t − btc

)
if c − 1 ≤ t − b t

c
cc < c

, (11)

where λ∗
0, . . . , λ

∗
c−1 are all positive levels. The resulting cumulative intensity func-

tion Λ(t) is given by:

Λ(t) = b t

c
cD B(p1, q1)

c−1∑

j=0

λ∗
j

α∗
1

+ D B(p1, q1)

bt−b t
c
ccc−1∑

j=0

λ∗
j

α∗
1

+D B

(
p1, q1;

t − btc − m1

D

) λ∗
bt−b t

c
ccc

α∗
1

, t > m1 , (12)

and Λ(t) = 0 for 0 ≤ t ≤ m1.

The corresponding NHP process {Nt}t≥0 with double periodic intensity can be
decomposed as

Nt = M1 + · · · + Mb t
c
c + N∗

t−btc−m1
D

, t ≥ 0 , (13)

where

N∗
t−btc−m1

D

=

bt−b t
c
ccc−1∑

j=0

N (j)
c + N

(bt−b t
c
ccc)

t−btc−m1
D

, (14)

and the {Mi}i≥1 are i.i.d. Poisson distributed with mean D B(p1, q1)
∑c−1

j=0

λ∗
j

α∗
1
,

while N
(j)
c is Poisson with mean D B(p1, q1)

λ∗
j

α∗
1
, for j = 0, 1, . . . , bt − b t

c
ccc−1, res-

pectively, and N
(bt−b t

c
ccc)

t−btc−m1
D

is also Poisson with mean D B
(
p1, q1;

t−btc−m1

D

)λ∗
bt−b t

c ccc

α∗
1

.

All these random variables are mutually independent.
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2.3 A double–beta periodic intensity model

One way to reduce the number of free parameters, in the previous model in (11),
is to assume a parametric form also for the long–term intensity. Here this is
reasonable if it can be assumed that the short–term peak intensity values are
affected periodically by some smoothly varying conditions, like the surface water
temperatures in El Niño/La Niña phenomenon.

More specifically, here we assume that the peak beta values, λ∗
0, . . . , λ

∗
c−1 in the

short–term intensities, follow another continuous function of period c (an integer
number of years), called the long–term intensity function. For instance, a beta
function λc(t), is also proposed for the long–term intensity:

λc(t) = a +
b − a

α∗
c

(
t − mc

c
− bt− mc

c
c
)pc−1

[
1 −

(
t − mc

c
− bt− mc

c
c
)]qc−1

, t > 0, (15)

where

α∗
c =

(
t∗c − mc

c

)pc−1(
1 − t∗c − mc

c

)qc−1

, (16)

is again a scale factor, so that a and b are, respectively, the minimum and maxi-
mum amplitude of the peak values. Here mc is the starting point of the complete
cycle of the long–term beta function and

t∗c = mc + c

(
pc − 1

pc + qc − 2

)
(17)

denotes the mode of λc.

Then the double–beta intensity function is given by

λ(t) = λc

(
btc − b t

c
cc + t∗1

)
λ1

(
t− btc

)
, for t ≥ 0 , (18)

where λ1 and λc are given in (2) and (15), respectively.

The solid line in Figure 2 illustrates the shape of λ(t) in (18), when p1 = 3, q1 = 2,
m1 = 5

12
, D = 6

12
, c = 5, pc = 2, qc = 12

3
, mc = 3.75, a = 3 and b = 7. The

peak values of the short–term beta λ1 fall on the dotted line, plotting the long–
term beta λc. It serves to explain the fluctuations in the peak values of λ1, the
short–term beta periodicity.
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Figure 2: Double–beta intensity function λ(t)

If the intensity function λ is given by (18), then the corresponding cumulative
intensity function Λ has the form

Λ(t) = b t

c
cD B(p1, q1)

c−1∑

j=0

λc(j + t∗1)

α∗
1

+ D B(p1, q1)

bt−b t
c
ccc−1∑

j=0

λc(j + t∗1)

α∗
1

+D B

(
p1, q1;

t − btc − m1

D

)
λc(bt − b t

c
ccc + t∗1)

α∗
1

, t ≥ m1 , (19)

where λc(t) is given by (15).

For any t ≥ 0, the random variable Nt admits the same decomposition as in (13),

where the {Mi}i≥1 are i.i.d. Poisson, here with mean DB(p1, q1)
∑c−1

j=0
λc(j+t∗1)

α∗
1

, they

are independent of N
(j)
c , for j = 0, 1, . . . , bt − b t

c
ccc − 1, and of N

(bt−b t
c
ccc)

t−btc−m1
D

, which

are also Poisson, here with means DB(p1, q1)
λc(j+t∗1)

α∗
1

, for j = 0, 1, . . . , bt − b t
c
ccc−1

and DB
(
p1, q1;

t−btc−m1

D

)
λc(bt−b t

c
ccc+t∗1)

α∗
1

, respectively.

This decomposition property of periodic NHP models is particularly useful for
statistical inference, as seen in the following section.
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3 Statistical inference

For the double–beta periodic intensity model in (18), the intensity is a parametric
function with parameters p1, q1, pc, qc, a and b. It is possible to estimate these
parameters from data using maximum likelihood estimation. Note that other
model parameters as m1, m2, mc and c can usually be set at values observed from
the dataset.

Let d be the time scale in each short–term cycle; here d = 1
12

, a month in each
year. Then, for the short–term intensity function in (2), denote by m1 and m2

two integer–multiples of d; here m1 and m2 correspond to two specific months in
the year, marking the beginning and end of the hurricane season. Furthermore
define J as

J =
m2 − m1

d
=

D

d
,

that is the total number of months in each year over which the intensity function
is positive. This gives a convenient partition of each year cycle [0,m1), [m1, t1),
[t1, t2), . . ., [tJ ,m2), [m2, 1], where

tj = m1 + j d , for j = 0, . . . , J . (20)

Under the double–beta intensity function given in (18), the contribution to the
likelihood for the first year of the first cycle is:

L1,1 = e−
∫ m1
0 λ(v) dv

J∏

j=1


e

−
∫ tj
tj−1

λ(v)dv

(∫ tj

tj−1

λ(v) dv

)n
(1)
j,1


 e

−
∫ 1

m2
λ(v)dv

(21)

= e−
∫ 1
0 λ(v)dv

J∏

j=1

(∫ tj

tj−1

λ(v) dv

)n
(1)
j,1

,

where n
(1)
j,1 is the number of events which occured within the j-th month [tj−1, tj)

of the first year of the first cycle, for j = 1, . . . , J . The first and the last term
in (21) represent the likelihood of having no hurricanes outside the time interval
[m1,m2].

In general, the contribution to the likelihood by the k-th year of the i-th cycle is
similarly given by

Lk,i = e−
∫ k

k−1
λ(v)dv

J∏

j=1

(∫ (k−1)+tj

(k−1)+tj−1

λ(v) dv

)n
(i)
j,k

, k = 1, . . . , c, i = 1, . . . , b t

c
c ,

11



where n
(i)
j,k is the number of hurricanes within the j-th month of the k-th year of

the i-th cycle.

Hence for the i-th cycle, i = 1, . . . , b t
c
c, the total contribution to the likelihood is

given by

Li =
c∏

k=1

Lk,i = e−
∫ c
0 λ(u)dv

c∏

k=1

J∏

j=1

(∫ (k−1)+tj

(k−1)+tj−1

λ(v) dv

)n
(i)
j,k

,

while the likelihood function for all b t
c
c complete cycles is

Lcomp = e−b t
c
c
∫ c
0 λ(v)dv

c∏

k=1

J∏

j=1

(∫ (k−1)+tj

(k−1)+tj−1

λ(v) dv

)b t
c c∑

i=1
n

(i)
j,k

. (22)

Finally, the contribution to the likelihood from the last incomplete cycle is com-
posed of the contributions by complete years in the last cycle, the complete months
in the last incomplete year and the last incomplete month. For simplicity, set
τc = bt − b t

c
ccc to be the number of years in the last incomplete cycle, we have

Lincomp =
τc∏

k=1


e−

∫ k
k−1 λ(v)dv

J∏

j=1

(∫ (k−1)+tj

(k−1)+tj−1

λ(v) dv

)n
(b t

cc+1)

j,k




e
−

∫ b t
c cc+τc+m1

b t
c cc+τc

λ(v) dv
J∗∏

j=1


e

−
∫ τc+tj
τc+tj−1

λ(v) dv

(∫ τc+tj

τc+tj−1

λ(v) dv

)n
(b t

c c+1)

j,τc+1




e
−

∫ t
b t

c cc+τc+tJ∗
λ(v) dv

(∫ t−b t
c
cc

τc+tJ∗

λ(v) dv

)n
(b t

c c+1)

J∗+1,τc+1

, (23)

where

J∗ = b
t − b t

c
cc − bt − b t

c
ccc − m1

d
c = b

t − b t
c
cc − τc − m1

d
c

is the number of months in the last incomplete year (set to 0 when J∗ is a negative
integer). Note here that the last two lines reduce to

e
−

∫ b t
c cc+τc+t−btc

b t
c cc+τc

λ(v)dv
= e

−
∫ t
b t

ccc+τc
λ(v) dv

, for t − btc ≤ m1 .
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Hence the full likelihood function is given by (22) and (23) to be

L = Lcomp · Lincomp

= e−Λ(t)

τc∏

k=1

J∏

j=1

(∫ (k−1)+tj

(k−1)+tj−1

λ(v) dv

)b t
c c+1∑
i=1

n
(i)
j,k

c∏

k=τc+1

J∏

j=1

(∫ (k−1)+tj

(k−1)+tj−1

λ(v) dv

)b t
c c∑

i=1
n

(i)
j,k

J∗∏

j=1

(∫ τc+tj

τc+tj−1

λ(v) dv

)n
(b t

c c+1)

j,τc+1
(∫ t−b t

c
cc

τc+tJ∗

λ(v) dv

)n
(b t

c c+1)

J∗+1,τc+1

. (24)

Substituting λ for the double–beta periodic intensity function in (18), then the
integrals in (24) can be represented as incomplete beta functions, yielding:

L = e−Λ(t)
τc∏

k=1

J∏
j=1

{
λc(k−1+t∗1)

α∗
1

D
[
B(p1, q1;

jd
D

) −B(p1, q1;
(j−1)d

D
)
]}b t

c c+1∑
i=1

n
(i)
j,k

c∏
k=τc+1

J∏
j=1

{
λc(k−1+t∗1)

α∗
1

D
[
B(p1, q1;

jd
D

) − B(p1, q1;
(j−1)d

D
)
]}b t

cc∑
i=1

n
(i)
j,k

J∗∏
j=1

{
λc(τc+t∗1)

α∗
1

D
[
B(p1, q1;

jd
D

) − B(p1, q1;
(j−1)d

D
)
]}n

(b t
c c+1)

j,τc+1

{
λc(τc+t∗1)

α∗
1

D
[
B(p1, q1;

t−τc−m1

D
) − B(p1, q1;

J∗d
D

)
]}n

(b t
c c+1)

J∗+1,τc+1
, (25)

where the function λc is given in (15).

Denote by N =
∑
i,j,k

n
(i)
j,k be the total number of occurrences, for 1 ≤ i ≤ b t

c
c + 1,

1 ≤ j ≤ J and 1 ≤ k ≤ c. Further denote by

n
(·)
.,k =

J∑

j=1

b t
c
c∑

i=1

n
(i)
j,k , k = 1, 2, . . . , c ,

the total number of occurrences in the k-th year of all complete cycles, while
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n
(b t

c
c+1)

.,k stands for the count in the k-th year of the last incomplete cycle. Similarly

n
(·)
j,. =

c∑

k=1

b t
c
c∑

i=1

n
(i)
j,k , j = 1, 2, . . . , J ,

denotes the total number of occurrences in the j-th month of all complete cy-

cles, while n
(b t

c
c+1)

j,. stands for the count in the j-th complete month of the last
incomplete cycle. Consequently, the log likelihood function is given by

l = −Λ(t) + N log
D

α∗
1

+
c∑

k=1

[n
(·)
.,k + n

(b t
c
c+1)

.,k ] log λc(k − 1 + t∗1)

+

J∑

j=1

[n
(·)
j,. + n

(b t
c
c+1)

j,. ] log

[
B(p1, q1;

jd

D
) −B(p1, q1;

(j − 1)d

D
)

]

+n
(b t

c
c+1)

J∗+1,τc+1 log

[
B(p1, q1;

t− τc − m1

D
) − B(p1, q1;

J∗d

D
)

]
. (26)

The maximum likelihood estimators for p1, q1, pc, qc, a and b in the double–beta
intensity function are obtained by maximizing l numerically.

Similarly, the maximum likelihood estimators for parameters in the model given
in Section 2.2 with a generalized 3–parameter beta short–term intensity function
can be derived as follows.

To simplify expressions, let t be an integer number here. Assume that the short–
term intensity function for the k-th year of a cycle is of the generalized 3–parameter
beta form in (7) with parameters p

(k)
1 , q

(k)
1 and ε(k) and λ∗

k is the peak value, where
k = 1, 2, . . . , c. For 1 ≤ k ≤ τc, the log–likelihood function is given by

lk = −
(
b t

c
c + 1

)
λ∗

kDB(p
(k)
1 , q

(k)
1 )

α
(k)
1 [ε(k)]p

(k)
1

+ [n
(·)
.,k + n

(b t
c
c+1)

.,k ] log

(
λ∗

kD

α
(k)
1 [ε(k)]p

(k)
1

)

+
J∑

j=1

[n
(·)
j,k + n

(b t
c
c+1)

j,k ] log

[
B
(
p

(k)
1 , q

(k)
1 ;

ε(k) jd
D

1 − (1 − ε(k)) jd
D

)

−B
(
p

(k)
1 , q

(k)
1 ;

ε(k) (j−1)d
D

1 − [1 − ε(k)] (j−1)d
D

)]
, (27)

where n
(·)
j,k =

∑b t
c
c

i=1 n
(i)
j,k is the total number of occurrences in the j-th month of

the k-th year of all complete cycles and α
(k)
1 is the scale factor of the k-th year of
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each cycle. For τc < k ≤ c, we have

lk = −b t

c
c λ∗

kDB(p
(k)
1 , q

(k)
1 )

α
(k)
1 [ε(k)]p

(k)
1

+ n
(·)
.,k log

(
λ∗

kD

α
(k)
1 [ε(k)]p

(k)
1

)

+
J∑

j=1

n
(·)
j,k log

[
B
(
p

(k)
1 , q

(k)
1 ;

ε(k) jd
D

1 − (1 − ε(k)) jd
D

)

−B
(
p

(k)
1 , q

(k)
1 ;

ε(k) (j−1)d
D

1 − (1 − ε(k)) (j−1)d
D

)]
. (28)

4 Discussion and remarks

As outlined in Section 2, the illustrative dataset used here comprises 167 hurri-
canes that made a landfall somewhere on the Atlantic United States coastline,
over the 102–year period 1899 through 2000. These exhibit clear seasonal pat-
terns. First, all hurricanes happened between the months of June to November.
September generated more major hurricanes than any other month. On average,
there were 1 to 2 hurricane landfalls per year over the whole period. A short–term
(annual) periodic model thus seems appropriate.

First consider a NHP model with single periodicity. Figure 3 gives the genera-
lized 3–parameter beta intensity described in (7), that was fitted to these annual
hurricane frequencies. The parameter MLE’s here are p̂1 = 1.9198, q̂1 = 11.3050,
ε̂ = 0.1349 and λ̂∗

0 = 6.5145, obtained with the Excel solver using the method
described in Section 3.

The constant intensity λ1(t) = λ̂ = 1.64, the homogeneous Poisson process MLE,
is also graphed on Figure 3 for comparison. Graphically it is clear that the classical
model gives here a crude representation of hurricane frequencies (this hypothesis
is tested more formally in Appendix A.1).

Climatological studies suggest that the hurricane intensity does not repeat the
exact same short–term pattern every year. Rather, it slightly varies from year
to year, as in alternating El Niño–La Niña cycles. For example, research on the
tropical cyclones affecting the coast of Texas, during El Niño/La Niña years of
1900–1996, shows that the highest percentage of all major hurricanes which have
affected the coast of Texas occurred when El Niño was present for at least part
of the given year [see Cole and Pfaff (1997)]. Some actuaries also believe that El
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Figure 3: Histogram and fitted hurricane intensity λ(t) for 1–year cycles

Niño/La Niña cycles in the Pacific affect tropical storm systems in the Atlantic.

Our hurricane data also exhibits some long–term periodicity, under the influence
of the global El Niño/La Niña phenomenon. The 5–year cycle in Figure 4 shows
how the 3rd and 4th years of the cycle have lower occurrences of hurricanes, the
4th year being the lowest. This is followed by a peak lasting for a period nearly
three years long.

This motivates our assumptions of the doubly periodic NHP process presented in
Section 2. Here the seasonality of the Atlantic hurricane repeats a similar short–
term pattern every year meanwhile the peak intensity, affected by the El Niño
phenomenon, varies over a longer periodic cycle.

Climatologists observed that the typical El Niño cycle occurs within a two–to–
seven year cycle. From a graphical analysis of the dataset, we conclude that a
long-term period c = 5 years and a short–term period of one year reasonably
describe the Atlantic hurricanes.

Figure 4 compares the observed and expected monthly average number of hurri-
canes over the 5–year cycle for the 1899–2000 dataset. A double 2–parameter beta
intensity function was used and the following MLE’s were obtained: p̂1 = 3.0145,
q̂1 = 2.4389, p̂c = 1.5463, q̂c = 1.3642, â = 3.2354 and b̂ = 6.9634, where q̂1

and q̂c are obtained from (4) and (17), respectively, while the estimated standard
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deviations for p̂1, p̂c, â and b̂ are 0.3582, 0.7653, 0.7890 and 0.9126, respectively
(see Appendix A.2 for a derivation).

Figure 4: Hurricanes data and 5–year double–beta intensities

Climatology suggests that the levels for the long–term cycle are governed by some
underlying smoothly changing function, represented by the second beta function.
The fit for each short–term cycle seems quite good, supporting our periodic theory.
But the model does not adequately explains the short–term peaks over the long–
term cycle. The El Niño/La Niña is a global phenomenon, perhaps too complex
to capture with such a simple parametric model.

Depending on the intended use of the model, the fit can be improved by the intro-
duction of additional parameters. For instance when a generalized 3–parameter
beta intensity is used for the short–term cycle, while the long–term beta func-
tion is kept at 2–parameters, the following MLE’s are obtained: p̂1 = 1.8946,
q̂1 = 12.3899, ε̂ = 0.1205, p̂c = 1.5639, q̂c = 1.3921, â = 3.5868 and b̂ = 7.7307. It
is clear from Figure 5 that the fit is improved, although not perfect, at the cost
of introducing only one additional parameter.

If fit is more important than simplicity of the model or smoothness, the number
of parameters can be further increased by letting the short–term cycle peak values
be free. Figure 6 gives the histogram and fitted beta intensities, as in (11), for
monthly hurricane frequencies over a 5–year long–term cycle.

Here the generalized 3–parameter beta function in (7) was used as the short–
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Figure 5: Hurricanes data and 5–year generalized double–beta intensities

term intensity and the MLE’s, given in Table 2, were derived from (27). The fit
improvement is substantial for each short–term intensity in the 5–year cycle. Yet,
the model now fails to explain how hurricane intensities vary from El Niño to La
Niña years. A possible remedy may be the use of random effects on certain years
of the cycle. This will be the subject of further research on regime–switching
double–periodic Cox processes.

Year p
(k)
1 q

(k)
1 ε(k) λ∗

k

1 2.0087 150.0076 0.0097 9.3381
2 4.7926 3.0123 1.3227 7.2847
3 1.1459 11.9872 0.0820 5.8373
4 2.0586 121.7060 0.0150 3.9563
5 3.0769 155.4399 0.0165 8.4431

Table 2: MLE’s of 3–parameter beta intensities for the hurricanes data

In conclusion, it appears that NHP risk models are more realistic in practice than
classical Poisson processes, as their intensity rate is a function of time. This is
clearly the case for hurricane landfalls.

In general, NHP processes with a periodic claim intensity can be useful in modeling
risk processes that evolve in a periodic environment. The proposed double–beta
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Figure 6: Hurricanes data 5-year short-term generalized beta fit

periodic claim intensity not only generalizes the classical risk model, but it can
also give a more realistic representation than (single) periodic models with only
short–term periodic intensity functions.

The flexibility in shape of the beta function and the explicit results obtained
for the risk process, as well as the tractability of the statistical estimation of
model parameters, should make these double–beta periodic models easy to use in
practice. We hope that the illustration of the hurricane dataset serves to show
that NHP risk models can also be tractable if properly parameterized.
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A Appendix

A.1 Goodness–of–fit

Figures 1 and 3 provide graphical evidence that annual, respectively monthly,
hurricane counts show a periodic behaviour.

More formally, we can test the alternate hypothesis of a constant hurricane in-
tensity, λ1(t) = λ̂ = 1.637254902, resulting in a Poisson number of hurricanes per
year. Table 3 reports the Poisson expected and observed number of years with
0, 1, 2, 3 and 4 or more hurricanes (the last observations were grouped to be
representative).

A simple Chi-square test (X2 = 1.81 < χ2
3; 0.05 = 7.81) does not reject the homo-

geneous Poisson assumption. Still, it is clear from Table 3 that the fit is poor in
the tail of the distribution.

The Poisson model with constant intensity predicts well the expected number of
years with lower hurricane frequencies (e.g. n = 0, 1 or 2 hurricanes per year), but
gives a poorer prediction of the number of years with higher frequencies (n = 3
and n ≥ 4). The fit in the tail is usually very important in insurance applications.
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Counts Observed Expected Chi-square
0 19 19.84 0.04
1 34 32.48 0.07
2 25 26.59 0.10
3 18 14.51 0.84

4+ 6 8.57 0.77
Total 102 102.00 1.81

Table 3: Chi-square goodness–of–fit test for the homogeneous Poisson model

Furthermore, the homogeneous Poisson model fails to recognize the short–term
seasonal and long–term cyclical patterns that the hurricanes data exhibit in Figure
5. A more appropriate statistical inference here is to test the significance of the
additional parameters in our double–beta periodic models.

Since the classical Poisson model is a special case of the double–beta periodic
model with 4 parameters, in Figure 4, we can use a likelihood ratio test for the
homogeneous Poisson hypothesis, against the alternative of a full 4–parameters
model. The test statistic r = 2(499.645 − 345.407) = 308.476 > χ2

3; 0.05 = 7.81, is
significant, supporting the full model hypothesis.

Similarly, in testing for the extra parameter in the complete model used for Fig-
ure 5, with a generalized 3–parameter beta function for the short–term intensity,
the statistic r = 2(345.407 − 335.936) = 18.942 > χ2

1;0.05 = 3.84 is also signifi-
cant. This complete double–beta periodic model with 5 parameters explains the
observed periodicity more adequately than the above reduced models.

The other assumption that should be tested is that of dependence on time. The
hurricane counts observed here are not assumed to be mutually dependent (au-
tocorrelated), but rather dependent on the time (season) of occurrence. Once a
cycle completes, every 5 years, then this dependence on time gets reset. Subse-
quent 5 year cycles are thus independent, as in the decomposition in (13). Figure
7 shows the absence of autocorrelations, in these 5-year cycle counts.

A.2 Information matrix and estimated standard devia-

tions

The detailed calculation of the estimated standard deviations of the MLE’s is
given here for the parameters in our double–beta intensity model. The variance–
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Figure 7: Hurricanes data autocorrelations, 5-year cycle counts

covariance matrix is obtained by inverting the matrix whose rs–element is

I(θ)rs = −E

[
∂2

∂θs∂θr
l(θ)

]
,

where θ = (p1, pc, a, b)T is the vector of MLE’s in our model and I(θ) is called
the information matrix.

For simplicity, we assume that t is an integer in the following derivation. In this
case, the log–likelihood function is given by

l = −Λ(t) + N log
D

α∗
1

+
c∑

k=1

n
(·)
.,k log λc(k − 1 + t∗1)

+

J∑

j=1

n
(·)
j,. log

[
B(p1, q1;

jd

D
) − B(p1, q1;

(j − 1)d

D
)

]
, (29)

where the cumulative intensity function Λ has the form

Λ(t) = b t

c
cD B(p1, q1)

c−1∑

j=0

λc(j + t∗1)

α∗
1

+ D B(p1, q1)

bt−b t
c
ccc−1∑

j=0

λc(j + t∗1)

α∗
1

, (30)

and λc(t) is given by (15).
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The first partial derivatives of (29) w.r.t. p1, pc, a and b are:

∂l

∂p1
= −∂Λ(t)

∂p1
− N

∂α∗
1

∂p1

α∗
1

+
J∑

j=1

n
(·)
j,.

B′
p1

(p1, q1;
jd
D

) − B′
p1

(p1, q1;
(j−1)d

D
)

B(p1, q1;
jd
D

) − B(p1, q1;
(j−1)d

D
)

,

∂l

∂pc

= −∂Λ(t)

∂pc

+
c∑

k=1

n
(·)
.,k

∂λc(k−1+t∗1)

∂pc

λc(k − 1 + t∗1)
,

∂l

∂a
= −∂Λ(t)

∂a
+

c∑

k=1

n
(·)
.,k

∂λc(k−1+t∗1)

∂a

λc(k − 1 + t∗1)
,

∂l

∂b
= −∂Λ(t)

∂b
+

c∑

k=1

n
(·)
.,k

∂λc(k−1+t∗1)

∂b

λc(k − 1 + t∗1)
,

where
∂α∗

1

∂p1

α∗
1

= ν∗ := ln

(
t∗1 − m1

D

)
+
(5
7

)
ln

(
1 − t∗1 −m1

D

)
,

B′
p1

(p1, q1; t) =

∫ t

0

vp−1 (1 − v)q−1
[
ln(v) +

(5
7

)
ln(1 − v)

]
dv , t ∈ (0, 1) ,

while the first partial derivatives of (30) w.r.t. p1, pc, a and b are given by

∂Λ(t)

∂p1
= Λ(t)

[
B′

p1
(p1, q1)

B(p1, q1)
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here B′
p1

(p1, q1) = B′
p1

(p1, q1; 1) and the first partial derivatives of λc(t) w.r.t. pc,
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a and b are given by

∂λc(j + t∗1)

∂pc
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Now the second partial derivatives of (29) w.r.t. p1 is obtained as follows:
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The second partial derivatives of (29) w.r.t. p1 are:
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,

while the second partial derivatives of (29) w.r.t. other parameters are:
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where
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Now the elements of the information matrix I(θ) can be calculated with the fol-
lowing formulas:
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.

For the 1899 − 2000 hurricanes data with the 4–parameter double–beta intensity,
the MLE’s obtained are p̂1 = 3.0145, p̂c = 1.5463, â = 3.2354 and b̂ = 6.9634.
The corresponding information matrix and its inverse are given by

I(θ) =




12.76374 2.64269 −1.39801 −3.487777
2.64269 3.14166 −0.53981 −1.94906

−1.39801 −0.53981 1.80932 0.32309
−3.48777 −1.94906 0.32309 2.75323


 ,
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I−1(θ) =




0.12831 0.00000 0.07162 0.15414
0.00000 0.58574 0.10286 0.40258
0.07162 0.10286 0.62256 0.09049
0.15414 0.40258 0.09049 0.83285


 .

Hence the estimated standard deviations for MLE’s p̂1, p̂c, â and b̂ are 0.3582,
0.7653, 0.7890 and 0.9126, respectively.
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