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Abstract

Three isomorphic vector spaces Bk
N , Ck

N and Dk
N are defined. The interplay

of these vector spaces leads to easy proofs for multinomial identities. Using au-
tomorphism each multinomial identity is recast into (k + 1)! − 1 more identities.
Distributions arising out of some stopping rules in drawing balls of k colors from
an urn with and without replacement are connected so that one can easily go from
one to the other. Identities involving joint cdf’s of order statistics are generalized
to those coming from arbitrary multivariate distributions. Discrete distribution
similar to multinomial is defined, where all the calculations can be done on usual
multinomial distribution and transferred to the general.
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1. Introduction

This paper is a direct generalization of Balasubramanian and Beg [1]. In
distributions coming from urn model those that arise from sampling with
replacement, like multinomial, negative multinomial etc., are comparatively
easy to deal with; but the corresponding distributions whose sampling has
been done without replacement like multivariate hypergeometric, multivari-
ate negative hypergeometric are harder. We develop here a transformation
which will convert a problem in without replacement to with replacement
and this results in unified treatment of both. This is done essentially by as-
sociating a vector space for with replacement and another isomorphic vector
space for without replacement. The isomorphism of these two vector spaces
solves this problem.

Another isomorphism takes us from iid random variables to arbitrary
random variables, again allowing us a uniform approach.
———-
∗Corresponding author. Currently on sabbatical at Concordia University,
Canada.
E-mail address: m_i_beg@yahoo.com (M.I. Beg).
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2. Main results

We take
( n
r1,r2,...,rk

)
= n!

r1!r2!...rk!(n−r1−r2−···−rk)! , if ri ≥ 0,
∑k

i=1 ri ≤ n
and 0, otherwise.

If N is a positive integer, define ZN = {0, 1, 2, . . . , N}. Let p = (p1, p2, . . . , pk)
be a vector variable taking values in [0, 1]k. If m = (m1,m2, . . . , mk), where
mi’s are non-negative integers, define pm =

∏k
i=1 pmi

i . Let σ(m) =
∑k

i=1 mi.

Let Bk
N be the vector space generated by {pm|σ(p) = 1, σ(m) ≤ N} over

real field.
Let M be treated as a positive integral indeterminate. Define vector non-

negative integral indeterminate R = (R1, R2, . . . , Rk), with σ(R) = M. Let
Ck

N be the vector space over the real field generated by {(M−σ(m)
R−m

)|σ(m) ≤
N, m ≤ R}, where

( M
a1,a2,...,ak

)
= M !

a1!,a2!,...,ak!(M−a1−···−ak)! . We now show
that Bk

N and Ck
N are isomorphic vector spaces with the isomorphism given

by the mapping T (pm) =
(M−σ(m)

R−m

)
on the generators of the vector spaces

and extended linearly over all elements.

Theorem 2.1. The vector spaces Bk
N and Ck

N are isomorphic.

Proof. Clearly, the elements of the form pm are not all linearly independent.
Suppose a linear dependence is

∑

m∈S

K(m)pm = 0,

where S is a finite set, just to show that the sum is a finite sum, then
∑

m∈S

K(m)pm(p1 + p2 + . . . + pk)M−σ(m) = 0, M ≥ max
m∈S

σ(m),

where M is an indeterminate taking values ≥ N,

∑

m∈S

K(m)pm
∑

R≥0

σ(R)=M−σ(m)

(
M − σ(m)

R

)
pR = 0

∑

R

pR
∑

m∈S

K(m)

(
M − σ(m)

R−m

)
= 0.

But {pR|R ≥ 0, σ(R) = M} are linearly independent, a result equivalent to
the completeness of the multinomial family. Hence,

∑

m∈S

K(m)

(
M − σ(m)

R−m

)
= 0, ∀R, R ≥ 0, σ(R) = M.

Also, all the steps are clearly reversible. This proves the assertion that
Bk

N and Ck
N are isomorphic as vector spaces, the isomorphism given by the

mapping T (pm) =
(M−σ(m)

R−m

)
.
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3. Application to multinomial identities

The isomorphism of Bk
N and Ck

N affords a method of getting some multino-
mial identities. We now give some applications.

(i)
k∑

i=1

pi = 1 ⇒
k∑

i=1

T (pi) = T (1) ⇒
k∑

i=1

(
M − 1
R− ei

)
=

(
M

R

)
,

where ei is a k-vector with i-th component 1 and other components 0. For
k = 3, this reduces to
(

M − 1
R1 − 1, R2, R3

)
+

(
M − 1

R1, R2 − 1, R3

)
+

(
M − 1

R1, R2, R3 − 1

)
=

(
M

R1, R2, R3

)
.

(ii)

(p1+p2+. . .+pk)n = 1 ⇒
∑

r, σ(r)=n

(
n

r

)
pr = 1 ⇒

∑

r, σ(r)=n

(
n

r

)
T (pr) = T (1)

⇒
∑

r, σ(r)=n

(
n

r

)(
M − σ(r)

R− r

)
=

(
M

R

)
.

(iii)

(p1+p2+. . .+pk−1−pk)n = (1−2pk)n ⇒
∑

r, σ(r)=n

(
n

r

)
pr(−1)rk =

n∑

t=0

(
n

t

)
(−2)tpt

k.

Applying T, we get

∑

r, σ(r)=n

(−1)rk

(
n

r

)(
M − σ(r)

R− r

)
=

n∑

t=0

(
n

t

)
(−2)t

(
M − t

R1, R2, . . . , Rk−1, Rk − t

)
.

Bk
Nand Ck

N can be extended to B∗kN and C∗kN by allowing m to merely
σ(m) ≤ N, but m ≥ 0 is dispensed with. That is, we allow even negative
powers. But the isomorphism still holds between B∗kN and C∗kN . This follows
from an argument similar to what was used in Balasubramanian and Beg
[1]. Here again the number of terms in summation should be finite.

(iv) For k = 3, that is, p1 + p2 + p3 = 1,

m∑

r=0

(p2 + p3)r =
1− (p2 + p3)m+1

1− (p2 + p3)
= p−1

1 −
m+1∑

i=0

(
m + 1

i

)
(−1)ipi−1

1

⇒
m∑

r=0

r∑

i=0

(
r

i

)
pi
2p

r−i
3 = p−1

1 −
m+1∑

i=0

(
m + 1

i

)
(−1)ipi−1

1 .
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Applying T, we get

m∑

r=0

r∑

i=0

(
r

i

)(
M − r

R1, R2 − i, R3 − r + i

)
=

(
M + 1

R1 + 1, R2, R3

)

−
m+1∑

i=0

(
m + 1

i

)
(−1)i

(
M − i + 1

R1 − i + 1, R2, R3

)
.

4. Regular series

Suppose
∑

m∈S K(m)pm = cpm, where S is no longer finite. Then

∑

m∈S

K(m)T (pm) = c T (pm),

may or may not hold. If the equality holds, call the series regular. In other
words, for an identity involving regular series we can apply T, term by term,
to both sides. Note that a finite series is always regular.

It will be an interesting exercise to find out a necessary and sufficient
condition for an infinite series to be a regular. Consider,

∑

r≥0

pr

(r1!, r2!, . . . rk!)
= ep1+p2+...+pk = ep0

1p
0
2 . . . p0

k.

applying T, we get

∑

r≥0

(
M − σ(r)

R− r

)
1

(r1!, r2!, . . . rk!)
= e

(
M

R

)
.

This can not be correct. The left hand side is actually a finite series for the
summation extends only over those r for which r ≤ R and σ(r) ≤ M and
the actual equality will mean that e is a rational number. Hence the infinite
series in p is not regular.

5. Automorphisms of B∗kN and C∗kN

It is not difficult to see that B∗kN behaves like an algebra so long as we
confine to terms pr with σ(r) ≤ M. Since pr ps = pr+s is the multiplication
in B∗kN ( so long as σ(r), σ(s), σ(r) + σ(s) all ≤ M), we can define a
multiplication in C∗kN :

(
M − σ(r)

R− r

)
∗

(
M − σ(s)

R− s

)
=

(
M − σ(r)− σ(s)

R− r − s

)
.
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This makes C∗kN an algebra with the suggested restrictions on r and s. Con-
sidering B∗kN as an algebra in this spirit, the group of algebra automorphisms
has (k + 1)! elements. These elements are

σ : (p1, p2, . . . , pk) → (pσ(1), pσ(2), . . . , pσ(k)), σ ∈ Sk

where Sk is the symmetric group on {1, 2, . . . , k}.

µi : (p1, p2, . . . , pk) → (−p1

pi
,−p2

pi
, . . . ,−pi−1

pi
,

1
pi

,−pi+1

pi
, . . . ,−pk

pi
), i = 1, 2, . . . , k.

µ0 : (p1, p2, . . . , pk) → (p1, p2, . . . , pk), the identity transformation. It is not
difficult to show that the transformations {σµi|σ ∈ Sk, i = 0, 1, 2, . . . , k},
(k + 1)! in number, actually form a group of order (k + 1)!. This group
is the automorphism group of the algebra B∗kN . We can use these automor-
phisms to get (k+1)! identities starting with one algebraic identity involving
p1, p2, . . . , pk (including negative powers). Usually what we get may not be
very surprising or even interesting. But these automorphisms translated
into C∗kN will be very interesting. Typically when we apply

µ1 : pm → (
1
p1

)m1(−p2

p1
)m2 . . . (−pk

p1
)mk =

(−1)σ(m)−m1

p1
σ(m)

pm

pm1
1

= (−1)σ(m)−m1pm p1
−(σ(m)+m1).

Hence, (
M − σ(m)

R−m

)
→ (−1)σ(m)−m1

(
M −m1

R−m∗

)
,

where m∗ = (−σ(m),m2,m3, . . . , mk). Thus in any identity involving multino-
mial coefficients the above transformation yields another identity. We can
use any one of the (k + 1)! such transformations.

6. With replacement to without replacement

We will motivate this section with an example. Let X = (X1, X2, . . . , Xk)
have a multinomial distribution with parameters n, p1, p2, . . . , pk. Then∑

P (X1 = r1, X2 = r2, . . . , Xk = rk) = 1, where the summation is over all
non-negative integers r1, r2, . . . , rk such that

∑k
i=1 ri = n, i.e.,

∑

σ(r)=n

P (X = r) = 1 ⇒
∑

σ(r)=n

(
n

r

)
pr = 1.

Applying T, we get
∑

σ(r)=n

(n
r

)(M−σ(r)
R−r

)
=

(M
R

)
. This means

∑
σ(r)=n

(n
r

)(M−σ(r)
R−r

)
(M

R

) = 1.
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Hence, if Z = (Z1, Z2, . . . , Zk) and P (Z = r) = [
(n
r

)(M−σ(r)
R−r

)
]/

(M
R

)
, for

σ(r) = n, [=
(R1

r1

)(R2

r2

) · · · (Rk
rk

)
/
(M

n

)
], then we get a probability distribution

which is an analogue of multinomial distribution. In fact, this distribution
is the multivariate hypergeometric distribution, which arises from sampling
without replacement (note that mutinomial distribution arises from sam-
pling with replacement).

Any expectation of a function of Z, say g(Z) can be got from g(X) very
easily and this is explained in what follows.

E[g(Z)] =
∑

σ(r)=n

g(r)P (Z = r) =

∑
σ(r)=n g(r)

(n
r

)(M−n
R−r

)
(M

R

)

=
T{∑σ(r)=n g(r)

(n
r

)
pr}

(M
R

) .

Hence,

E[g(Z)] =
T (Eg(X))(M

R

) .

Note that we identify R with Mp.
We now take an example. The mixed factorial moment of multinomial

distribution is given by

µ(r1, r2, . . . , rk) = E[X(r1)
1 X

(r2)
2 . . . X

(rk)
k ] = n

(
∑k

j=1
rj)pr1

1 pr2
2 . . . prk

k .

Hence, the mixed factorial moment for Z will be

µZ(r) =
T{nσ(r)pr}

(M
R

) =
nσ(r)

(M−σ(r)
R−r

)
(M

R

) .

Thus, all the expectations of functions of a multivariate hypergeometric
variate can be got from the corresponding expectations of a multinomial
variate by a simple transformation. Truly, we may treat the transformation
T as one taking us from sampling with replacement to without replacement.

We may apply a similar method, whenever we have some stopping rule
for extended Bernoulli trials (an event with k outcomes with probabilities
p1, p2, . . . pk), resulting in a random vector X, whose density is a polynomial
in p, say P (X = r) = πr(p), where

∑
r πr(p) = 1, is a polynomial in p. It

may happen that the range of r is infinite. Here, we need a definition. We
call the series

∑
r πr(p) = 1, regular if

∑
r T [πr(p)] = T (1) =

(M
R

)
. Not all

such series are regular. A finite series is always regular.
Though X may have infinite range, Z arising out of it by the application

of T has always a finite range. We give an example.
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Multivariate negative multinomial and multivariate negative hy-
pergeometric

Suppose in an experiment there are k possible outcomes S1, S2, . . . , Sk.
Let probability of getting Si in a single trial be pi, i = 1, 2, . . . , k, so that∑k

i=1 pi = 1. If we perform the trials independently till we get n outcomes
of the type S1, then the distribution of (Y2, Y3, . . . , Yk), where Yi is the
number of outcomes of the type Si, has a multivariate negative multinomial
distribution. This is given by

P (Y2 = r2, Y3 = r3, . . . , Yk = rk) =

(
n +

∑k
i=2 ri − 1

n− 1, r2, . . . , rk

)
pn
1pr2

2 . . . prk
k ,

for r2, r3, . . . , rk ≥ 0. Applying T, we get

∑

r2,r3,...,rk≥0

(
n +

∑k
i=2 ri − 1

n− 1, r2, . . . , rk

)(
M − n− r2 − r3 − . . .− rk

R− (n, r2, r3, . . . , rk)

)
=

(
M

R

)
, R1 ≥ n.

It is not difficult to show that this equality is true showing thereby that
the series

∑

r2,r3,...,rk≥0

(
n +

∑k
i=2 ri − 1

n− 1, r2, . . . , rk

)
pn
1pr2

2 . . . prk
k = 1,

is regular. This gives rise to random variables (Z2, Z3, . . . , Zk) having dis-
tribution

P (Z2 = r2, Z3 = r3, . . . , Zk = rk) =

(n+
∑k

i=2
ri−1

n−1,r2,...,rk

)(M−n−r2−r3−...−rk
R−(n,r2,r3,...,rk)

)
(M

R

) .

This distribution may be called the multivariate negative hypergeometric
distribution. This arises as follows. Suppose an urn contains Ri balls of
colors Ci, i = 1, 2, . . . , k with

∑k
i=1 Ri = M, R1 ≥ n. Balls are drawn

one by one without replacement till n balls of color C1 are obtained. Then
Zi is the number of balls of color Ci, i = 2, 3, . . . , k got in this sequence of
trials. In other words, this is the without replacement version of multivariate
negative multinomial distribution if we assume Ri = Mpi, i = 1, 2, . . . , k
and the balls are drawn with the same stopping rule with replacement.

If g(Z2, Z3, . . . , Zk) is any function of Z2, Z3, . . . , Zk then we have the
identity

E[g(Z2, Z3, . . . , Zk)] =
T{E[g(Y2, Y3, . . . , Yk)]}(M

R

) .

This makes every calculation in the ‘without replacement’ case to be per-
formed in ‘with replacement’ followed by an application of T.
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‘With replacement’ calculations are much easier compared to ‘without
replacement’. So, the use of T is indeed of for reaching significance. The
scope of this method is as follows.

Suppose we have an urn containing Ri balls of color Ci, i = 1, 2, . . . , k
with

∑k
i=1 Ri = M. We define pi = (Ri/M), i = 1, 2, . . . , k. In one case

we draw balls from the urn one by one with replacement and stop using
some stopping rule. When we stop, let Yi be the number of balls of color
Ci obtained, for i = 1, 2, . . . , k. Let (Y1, Y2, . . . , Yk) have a proper distribu-
tion with P (Y1 = r1, Y2 = r2, . . . , Yk = rk) = πr(p),

∑
r πr(p) = 1, where

the summation is over all relevant values of r. We also assume that this
series,

∑
r πr(p) = 1, if infinite, is regular, then we can take balls one by

one without replacement and use the same stopping rule and get random
variables (Z1, Z2, . . . , Zk) where Zi is the number of balls of color Ci ob-
tained at the time of stopping, i = 1, 2, . . . , k. In this case for any function
g(Z1, Z2, . . . , Zk) we can get expectation with the simple formula

E[g(Z1, Z2, . . . , Zk)] =
T{E[g(Y1, Y2, . . . , Yk)]}(M

R

) .

7. The vector space Dk
N

Suppose p
i
= (pi1, pi2, . . . , pik), with

∑k
j=1 pij = 1, i = 1, 2, . . . , N. Let

Sa1 , Sa2 , . . . , Sak
be disjoint subsets of ZN of cardinalities a1, a2, . . . , ak, re-

spectively. Let
pj(Sa) =

∏

i∈Sa

pij

and

[a1, a2, . . . , ak] =

(
N

a1, a2, . . . , ak

)−1 ∑
p1(Sa1)p2(Sa2) . . . pk(Sak

),

where the summation is over all disjoint subsets Sa1 , Sa2 , . . . , Sak
of ZN .

or

[a] =

(
N

a

)−1 ∑ k∏

j=1

pj(Saj ),

where
(N

a

)
= N !

a1!a2!...ak!(N−σ(a))! . Let Dk
N be the vector space generated by

{[a], a = (a1, a2, . . . , ak) with σ(a) ≤ N} over the real field.

Theorem 7.1. The vector spaces Dk
N , Ck

N and Bk
N are isomorphic.

Proof.
N∏

i=1

(1 +
k∑

j=1

ujpij) =
∑

α

σ(α)≤N

uα[α]

(
N

α

)
,
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where u = (u1, u2, . . . , uk) and α = (α1, α2, . . . , αk). But

N∏

i=1

(1 +
k∑

j=1

ujpij) =
N∏

i=1

(
k∑

j=1

(1 + uj)pij) =
∑

r

σ(r)=N

(u + 1)r [r]

(
N

r

)
,

where 1 = (1, 1, . . . , 1), a k-vector. Equating coefficients of uα in both these
expansions, we get

[α]

(
N

α

)
=

∑
r

σ(r)=N

(
r

α

)
[r]

(
N

r

)
,

(
r

α

)
=

k∏

i=1

(
ri

αi

)
.

Simplifying this, we get

[α] =
∑

r

σ(r)=N

(
N − σ(α)

r − α

)
[r].

Suppose
∑

α∈S

K(α)[α] =
∑

α∈S

K(α)
∑
r

(
N − σ(α)

r − α

)
[r] = 0

is a linear dependence of [α]’s. This can be written as

∑
r

σ(r)=N

[r]
∑

α∈S

K(α)

(
N − σ(α)

r − α

)
= 0.

But {[r], σ(r) = N} are linearly independent. In fact, even for the special
case p1 = p2 = . . . = pN = p, [r] = pr, all these are linearly independent
from the completeness of multinomial family. Hence,

∑

α∈S

K(α)

(
N − σ(α)

r − α

)
= 0, ∀ r, σ(r) = N.

Clearly, all these steps are reversible. This shows that the vector spaces Dk
N

and Ck
N are isomorphic. We already know that Ck

N , Bk
N are isomorphic.

8. Applications to identities involving cdf’s of order statistics

Suppose X1, X2, . . . are iid random variables with cdf F (x). Let Fm:n(x),
m = (m1,m2, . . . , mk−1), x = (x1, x2, . . . , xk−1), be the joint cdf of of
Xm1:n, Xm2:n, . . . , Xmk−1:n, where Xr:n is the rth order statistic from a sam-
ple of size n.

9



Suppose an identity of the form
∑

(m,n)∈S

K(m,n)Fm:n(x) = 0

holds for some finite set S. Let us also consider random variables Y1, Y2, · · · , YN

which may have any arbitrary N -variate distribution. Assume

N ≥ max
(m,n)∈S

{n}.

For any n ≤ N and 1 ≤ m1 < m2 < . . . < mk−1 ≤ n, we define Fm:n(x)
as the average of the cdf’s of Xm1:n, Xm2:n, . . . , Xmk−1:n, from all the

(N
n

)

samples of size n from Y1, Y2, · · ·YN . We will prove that if
∑

(m,n)∈S

K(m,n)Fm:n(x) = 0

holds for all iid variables, then
∑

(m,n)∈S

K(m,n)Fm:n(x) = 0

holds for arbitrary Y1, Y2, · · · , YN .

Proof. We know that Fm:n(x) for iid case is a polynomial in F (x1), F (x2)−
F (x1), F (x3)−F (x2), . . . , F (xk−1)−F(xk−2), 1−F (xk−1), say

∑
r Cm:n(r)pr,

where p1 = F (x1), p2 = F (x2)−F (x1), . . . , pk−1 = F (xk−1)−F (xk−2), pk =
1− F (xk−1). We then get,

∑

(m,n)∈S

K(m,n)
∑
r

Cm:n(r)pr = 0.

By isomorphism, we should have
∑

(m,n)∈S

K(m,n)
∑
r

Cm:n(r)[r] = 0.

If we take pij = I(xj−1<Yi≤xj), where x0 = −∞ and xk = ∞, then taking
expectation, we get

∑

(m,n)∈S

K(m,n)
∑
r

Cm:n(r)E[r] = 0

∑

(m,n)∈S

K(m,n)Fm:n(x) = 0.
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9. Application: Generalization of some discrete distributions

We will illustrate the principle by a univariate example first. Consider
the binomial distribution B(n, p). Here, the binomial random variable X
has the property P (X = r) =

(n
r

)
prqn−r. Define another random variable

Y, with the same range as X, P (Y = r) =
(n
r

)
[r, n − r]. By isomorphism,∑n

r=0

(n
r

)
[r, n − r] = 1, showing that Y has indeed a genuine distribution.

Y has parameters (n, π1, π2, . . . , πN ) which may be written as (n, π). Here,
π = (π1, π2, . . . , πN ) is the vector with which we define [r, n − r]. Here
again, if E[g(x)] =

∑n
r=0 Crp

rqn−r, then E[g(Y )] =
∑n

r=0 Cr[r, n − r] and
no separate calculation for Y is needed. Y may be called a multiparameter
binomial variate.

This method can be used only when the random variable X defined by
a stopping rule in Bernoulli trial is bounded. In general, if we have a ran-
dom variable X taking values 0, 1, 2, . . . , n where P (X = r) = πr(p, q),
a polynomial in p and q, say πr(p, q) =

∑
(a,b)∈Sr

Ca,b(r)paqb. Then we
may define a random variable Y taking values 0, 1, 2, . . . , n with P (Y =
r) =

∑
(a,b)∈Sr

Ca,b(r)[a, b]. Y will have parameters (n, π1, π2, . . . , πN ). If
E[g(X)] =

∑n
r=0

∑
(a,b)∈Sr

da,b(r)paqb, then E[g(Y )] =
∑n

r=0

∑
(a,b)∈Sr

da,b(r)[a, b].
Now we can generalize this to multivariate discrete distributions. If we
have X = (X1, X2, . . . , Xm) taking values in M = (0, 1, 2, . . . , n)m, where
P (X = r) = πr(p), a polynomial in p (= (p1, p2, . . . , pk)) (

∑k
i=1 pi = 1).

Writing πr(p) =
∑

i Cr(i)pi, we can define another random variable Y =
(Y1, Y2, . . . , Ym) taking values in M = (0, 1, 2, . . . , n)m, where P (Y = r) =∑

i Cr(i)[i], r ∈ M. If E[g(X)] =
∑

i dr(i)pi, then E[g(Y )] =
∑

i dr(i)[i], by
isomorphism.

10. Restricted multivariate exponential type distributions

Suppose X has a k-variate distribution over a subset Ω of Z+k, where
Z+ = {0, 1, 2, . . .} with

P (X = x) = h(p)g(x)pm(x), x ∈ Ω,

where p = (p1, p2, . . . , pn), pi ≥ 0 such that
∑n

i=1 pi ≤ 1 and m(x) =
(m1(x),m2(x), . . . , mn(x)) and h(p) of the form

∑
r∈S C(r)pr, where r is an

n-vector of integers ( not necessarily non-negative). We call the distribution
a restricted multivariate exponential type distribution.

Examples

1. Multinomial Distribution

P (X = x) =

(
n

x

)
px, Ω = {x ≥ 0, σ(x) = n},
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where

h(p) ≡ 1, g(x) =

(
n

x

)
, m(x) = x.

2. Multivariate Geometric Distribution

P (X = x) =

(
σ(x)

x

)
px(1− σ(p)), Ω = Z+k,

where

h(p) = (1− σ(p)), g(x) =

(
σ(x)

x

)
, m(x) = x.

3. Negative Multinomial Distribution

P (X = x) =

(
n +

∑k
i=1 xi − 1

x, n− 1

)
(1− σ(p))npx, x ≥ 0.

Many more examples can be given. In all these cases we can define the
corresponding ‘without replacement’ versions as follows. Define Y by

P (Y = y) = g(y)

(
N − σ(m(x)
R−m(x)

)
∗

∑

r∈S

C(r)

(
N − σ(r)

R− r

)

= g(y)
∑

r∈S

C(r)

(
N − σ(m(x))− σ(r)

R−m(x)− r

)

where x takes appropriate values in Ω, i.e., a subset of Ω, say Ω∗, in which
σ(m(x)) − σ(r) ≤ N and m(x) + r ≤ R. Essentially this subset Ω∗ is a
finite subset. All the properties of Y that can be got through expectation
of functions of Y , can be easily got from expectation of the same function
of X, which is expected to be easier to calculate. This transition from
‘with replacement’ to ‘without replacement’ is achieved through the versatile
transformation T.
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