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Abstract

By the classical Beurling-Deny formula, any regular symmetric Dirichlet form is decomposed
into the diffusion, jumping and killing parts. Further, the diffusion part is characterized
by LeJan’s formula. In this paper, both the Beurling-Deny formula and LeJan’s formula
are extended to regular non-symmetric Dirichlet forms. In addition, a counterexample is
presented to show the gap in the Beurling-Deny formula for non-symmetric Dirichlet forms
in the existing literatures.
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1 Introduction and Preliminary

The classical Beurling-Deny formula given in Beurling and Deny [2] tells us that any regular
symmetric Dirichlet form is decomposed into the diffusion, jumping and killing parts. Further,
LeJan’s formula given in LeJan [13] characterizes the diffusion part. These structure results are
particularly important because they give us an analytic description of the sample path properties
of the associated Markov processes. We refer the readers to Fukushima et al. [8] for a nice
representation of the formulae and to Bliedtner [3], Kim [11], Chen and Zhao [5] and Mataloni
[15] for some attempts of extending the formulae to the non-symmetric case (cf. Remarks 1.7 and
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2.5 below). For some applications of the formulae, we refer the interested readers to Fukushima
et al. [8, Ch.5], Chen et al. [4] and Mosco [16], etc.

In this paper, we extend both the Beurling-Deny formula and LeJan’s formula to regular
non-symmetric Dirichlet forms. In addition, we use a counterexample to show that there is a
gap in the Beurling-Deny formula for non-symmetric Dirichlet forms in some existing literatures.
For the notions and notations used in this paper, we refer to Fukushima et al. [8] and Ma and
Röckner [14].

Let E be a locally compact separable metric space and m a positive Radon measure on E
with supp[m] = E. Hereafter, we use supp[·] to denote the support of a measure or a function
on E and use C0(E) to denote the set of all continuous functions on E with compact supports.
Throughout this paper, we assume that (E , D(E)) is a regular (non-symmetric) Dirichlet form on
L2(E; m). Denote by (·, ·) the inner product of L2(E; m) and denote by (Gα)α>0 and (Ĝα)α>0 the
resolvents associated with (E , D(E)) and its dual form (Ê , D(E)), respectively. Define

E (β)(u, v) = β(u− βGβu, v). (1.1)

It is known that (cf., e.g. Ma and Röckner [14, Theorem I.2.13 (iii)])

lim
β→∞

E (β)(u, v) = E(u, v) for all u, v ∈ D(E). (1.2)

Lemma 1.1. If S is a positive linear bounded operator on L2(E; m), then there is a unique
positive Radon measure σ on the product space E × E satisfying that for u, v ∈ L2(E; m),
(Su, v) =

∫
E×E

u(x)v(y)σ(dx, dy). If in addition S is sub-Markovian, then σ(E × A) ≤ m(A) for
all A ∈ B(E).

Proof. The proof is similar to Fukushima et al. [8, Lemma 1.4.1] and the only difference is that
the measure σ given here is non-symmetric in general.

Corollary 1.2. There exists a unique positive Radon measure σβ on E × E satisfying

(βGβu, v) =

∫

E×E

u(x)v(y)σβ(dx, dy) for u, v ∈ L2(E; m). (1.3)

Moreover,

σβ(E × A) ≤ m(A) for all A ∈ B(E). (1.4)

Lemma 1.3. Let U be a relatively compact open subset of E. Then, for u, v ∈ C0(E) ∩ D(E)
with supports contained in U ,

E (β)(u, v) = β

∫

U×U

(u(y)− u(x))v(y)σβ(dx, dy) + β

∫

U

u(x)v(x)(1− βGβIU(x))m(dx). (1.5)

Proof. Direct consequence of (1.1), (1.3) and (1.4).

Lemma 1.4. The following assertions hold:
(i) For u ∈ C0(E), there exists a sequence {un}n∈N ⊂ C0(E) ∩D(E) such that supp[un] ⊂ {x ∈
E|u(x) 6= 0}, n ∈ N, and un converges to u uniformly as n →∞.
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(ii) For any compact set F and relatively compact open set G with F ⊂ G, there exists u ∈
C0(E) ∩D(E) such that 0 ≤ u ≤ 1, u|F = 1 and u|E\G = 0.

Proof. By the regularity of (E , D(E)) and Kuwae [12, Lemma 2.1 (ii)], this lemma can be proved
similarly to the case of symmetric Dirichlet forms.

Definition 1.5. Denote by d the diagonal of E × E.
(i) A subset A ⊂ E × E\d is said to be symmetric if its indicator function IA is symmetric, i.e.
IA(x, y) = IA(y, x) for all (x, y) ∈ E × E\d.
(ii) Let J be a Radon measure on E × E\d. A measurable function f on E × E\d is said to be
integrable w.r.t. (with respect to) J in the sense of symmetrical principle value (abbreviated by
S.P.V. integrable), if f is integrable on each relatively compact symmetric subset A ⊂ E×E\d and
for any increasing sequence of relatively compact symmetric sets {An}n≥1 with ∪∞n=1An = E×E\d,
the limit

S.P.V.

∫

E×E\d
f(x, y)J(dx, dy) := lim

n→∞

∫

An

f(x, y)J(dx, dy)

exists and is independent of the specific choice of the sequence {An}n≥1.

Theorem 1.6. (i) There exist a unique positive Radon measure J on E × E\d and a unique
positive Radon measure K on E such that for v ∈ C0(E) ∩D(E) and u ∈ I(v),

E(u, v) =

∫

E×E\d
2(u(y)− u(x))v(y)J(dx, dy) +

∫

E

u(x)v(x)K(dx), (1.6)

where I(v) := {u ∈ C0(E) ∩D(E) : u is constant on a neighbourhood of supp[v]}.
(ii) Define A(v) := {u ∈ C0(E)∩D(E)|(u(y)− u(x))v(y) is S.P.V. integrable w.r.t. J}. Then for
v ∈ C0(E) ∩D(E) and u ∈ A(v), we have the following unique decomposition:

E(u, v) = Ec(u, v) + S.P.V.

∫

E×E\d
2(u(y)− u(x))v(y)J(dx, dy)

+

∫

E

u(x)v(x)K(dx), (1.7)

where Ec(u, v) satisfies the left strong local property in the sense that I(v) ⊂ A(v) and Ec(u, v) = 0
whenever v ∈ C0(E) ∩D(E), u ∈ I(v).

Proof. (i) The uniqueness of J and K satisfying (1.6) can be proved in the same way as in
Fukushima et al. [8, Theorem 3.2.1] by virtue of Lemma 1.4 (i). The existence of J can be proved
similarly to Fukushima et al. [8, Theorem 3.2.1]. Moreover,

β

2
σβ → J vaguely on E × E\d as β →∞. (1.8)

To show the existence of K, we fix a relatively compact open set U . For any compact subset
F of U , by Lemma 1.4 (ii), there exist u, v ∈ C0(E)∩D(E) satisfying supp[u]∪ supp[v] ⊂ U , such
that v|F ≡ 1, v ≥ 0, u|supp[v] ≡ 1 and 0 ≤ u ≤ 1. Then, we get by (1.5) that

∫

F

β(1− βGβIU(x))m(dx) ≤ β

∫

U

u(x)v(x)(1− βGβIU(x))m(dx)
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≤ β

∫

U

u(x)v(x)(1− βGβIU(x))m(dx)

+β

∫

U×U

(u(y)− u(x))v(y)σβ(dx, dy)

= E (β)(u, v). (1.9)

Now it follows from (1.9) that the family of measures {β(1 − βGβIU(x) )m(dx)} are uniformly
bounded on any compact subset of U . Let ρ̄ be a metric compatible with the topology of E,
{Ul}l≥1 an increasing sequence of relatively compact open sets satisfying ∪∞l=1Ul = E, and {δl}l≥1

(δl ↓ 0) a decreasing sequence of positive numbers such that Ul × Ul\{(x, y)|ρ̄(x, y) < δl} is a
continuous set of J for each l. Note that such {Ul} and {δl} always exist. Then, there exist an
increasing sequence {βn}n∈N satisfying βn →∞ as n →∞, and a positive Radon measure Kl on
Ul such that for each l ≥ 1,

βn(1− βnGβnIUl
) ·m → Kl vaguely on Ul as n →∞. (1.10)

Extend Kl to E by setting Kl(A) := Kl(A ∩ Ul) for any Borel subset A of E. By (1.10), for each
compact subset F of E, there exists l0 such that {Kl(F )}l≥l0 is non-increasing. Consequently,
there exists a Radon measure K on E such that

Kl → K vaguely on E as l →∞. (1.11)

Denote Γl := Ul ×Ul\{(x, y)|ρ̄(x, y) < δl}. Let v ∈ C0(E)∩D(E) and u ∈ I(v). Suppose that
u(x) = α on a neighborhood of supp[v] for some constant α. Then, we get by (1.2) and (1.5) that

E(u, v) = lim
n→∞

βn

2

∫

Ul×Ul,ρ̄(x,y)<δl

2(u(y)− u(x))v(y)σβn(dx, dy)

+

∫

Γl

2(u(y)− u(x))v(y)J(dx, dy) +

∫

Ul

u(x)v(x)Kl(dx)

provided l ≥ l1 for some large enough l1. Letting l →∞, we obtain

E(u, v) =

∫

E×E\d
2(u(y)− u(x))v(y)J(dx, dy) +

∫

E

u(x)v(x)K(dx),

where the integrability of (u(y)− u(x))v(y) follows from the fact that for any y ∈ supp[v],

(u(y)− u(x))v(y) = (α− u(x))v(y) = (α− u(x))+v(y)− (α− u(x))−v(y),

and either supp[(α−u(x))+v(y)] or supp[(α−u(x))−v(y)] must be contained in Γl1 for some large
l1, since u has a compact support. Thus, the measure K constructed in (1.11) satisfies (1.6),
which in turn implies that K is independent of the specific choice of {Ul}l≥1 and {δl}l≥1 by the
uniqueness of K.

(ii) For v ∈ C0(E) ∩D(E) and u ∈ A(v), define

Ec(u, v) := lim
n→∞

βn

2

∫

Ul×Ul,ρ̄(x,y)<δl

2(u(y)− u(x))v(y)σβn(dx, dy). (1.12)
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Then, we obtain decomposition (1.7) by the proof of (i) above. The uniqueness is obvious by (i)
and the left strong local property of Ec(u, v) follows from (1.12). The proof is complete.

Remark 1.7. (i) Note that if v ∈ C0(E)∩D(E) and u ∈ I(v), then Ec(u, v) = 0 since I(v) ⊂ A(v).
In this case, decomposition (1.7) has been obtained in Kim [11, Lemma 2.14] . Further, Chen
and Zhao [5, (A.15)] extended the result to non-symmetric Dirichlet forms in the extended sense
that only the sub-Markovian property of the dual semigroup of the α-subprocess is assumed for
some α > 0, rather than that for the original process (that is α = 0).
(ii) Mataloni [15, Theorems 2.7 and 2.8] has obtained decompositions like (1.7) but without
introducing the notion of S.P.V. integral and the constraint that u ∈ A(v). This condition is
essential and cannot be dropped. See Example 4.5. We thank Kazuhiro Kuwae for drawing our
attention to the paper [15].
(iii) As in the symmetric case, J and K respectively represent the jumping and killing measures
of the Markov process associated with (E , D(E)). For any E-exceptional set N , J(E × N\d) =
J(N × E\d) = 0 and K(N) = 0 (cf. e.g. Hu [9]).

The rest of this paper is organized as follows. In Section 2, we extend the Beurling-Deny for-
mula to a regular non-symmetric Dirichlet form (cf. Theorem 2.3 and Remark 2.4 below). In Sec-
tion 3, we give some representations of the diffusion part Ec (cf. (1.7)) of a regular non-symmetric
Dirichlet form, which are extensions of LeJan’s formula for a regular symmetric Dirichlet form.
In Section 4, we give an example and a counterexample.

2 Decomposition of Regular Non-Symmetric Dirichlet

Form

We denote the diffusion part, jumping and killing measures of Ê (cf. Theorem 1.6) by Êc, Ĵ and
K̂, respectively. One can see that Ĵ(dx, dy) = J(dy, dx). By Theorem 1.6,

Ê(u, v) = Êc(u, v) + S.P.V.

∫

E×E\d
2(u(y)− u(x))v(y)Ĵ(dx, dy)

+

∫

E

u(x)v(x)K̂(dx) for all v ∈ C0(E) ∩D(E) and u ∈ Â(v), (2.1)

where Â(v) := {u ∈ C0(E) ∩D(E)|(u(y)− u(x))v(y) is S.P.V. integrable w.r.t. Ĵ}.
Theorem 2.1. (i) There always exists a metric ρ on E compatible with the topology of E
satisfying the following properties:
(ρ.1)

∫
E×F\d ρ2(x, y)/(1 + ρ2(x, y))J(dx, dy) < ∞ for any compact subset F ⊂ E.

(ρ.2) There is a special standard core (cf. Fukushima et al. [8, p.6]) Dρ ⊂ C0(E) ∩ D(E) such
that any u ∈ Dρ is ρ-Lipschitz in the sense that for some constant C > 0,

|u(y)− u(x)| ≤ Cρ(x, y) for all x, y ∈ E.

(ii) Let ρ be a metric satisfying (ρ.1). Then for any a > 0, E can be expressed for u, v ∈
C0(E) ∩D(E) as follows

E(u, v) = Ea,ρ(u, v) +

∫

E×E\d
2

(
1− 1

1 + aρ2(x, y)

)
(u(y)− u(x))v(y)J(dx, dy)
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+

∫

E

u(x)v(x)K(dx). (2.2)

Here Ea,ρ is a bilinear form with domain C0(E) ∩D(E) and satisfies

Ea,ρ(u, v) =

∫

E×E\d

2(u(y)− u(x))v(y)

1 + aρ2(x, y)
J(dx, dy) for v ∈ C0(E) ∩D(E) and u ∈ I(v). (2.3)

J is a positive Radon measure on E×E\d and K is a positive Radon measure on E. Furthermore,
such Ea,ρ, J and K are uniquely determined by E .

Proof. (i) A metric ρ satisfying Theorem 2.1 (i) is not unique. Below we will construct such a
ρ. By the regularity of (E , D(E)), we can always find a countable family D0 ⊂ C0(E) ∩ D(E),
say D0 = {fi}i≥1, which constitutes a core of E (cf. Fukushima et al. [8, p.6]) and separates the
points of E.

For any relatively compact open set U and u, v ∈ C0(E) ∩ D(E) with supports contained in
U , similar to (1.5), we get

E (β)(u, v) =
β

2

∫

U×U

(u(y)− u(x))(v(y)− v(x))σβ(dx, dy)

+
β

2

∫

U×U

(u(y)v(x)− u(x)v(y))σβ(dx, dy)

+
β

2

∫

U

u(x)v(x)[(1− βGβIU(x)) + (1− βĜβIU(x))]m(dx). (2.4)

In particular,

E (β)(u, u) =
β

2

∫

U×U

(u(y)− u(x))2σβ(dx, dy)

+
β

2

∫

U

u2(x)[(1− βGβIU(x)) + (1− βĜβIU(x))]m(dx). (2.5)

By (1.2), (1.8) and (2.5), we find that

∫

E×E\d
(u(y)− u(x))2J(dx, dy) ≤ E(u, u) < ∞ for all u ∈ C0(E) ∩D(E). (2.6)

For x, y ∈ E, we define

ρ(x, y) =

( ∞∑
i=1

2−i

( |fi(x)− fi(y)|
1 + ‖fi‖∞ + ‖fi‖Ẽ1

)2
)1/2

. (2.7)

Since {fi}i≥1 separates the points of E, one can check that ρ is a metric on E. Moreover, the
topology induced by ρ coincides with the trace topology on each compact subset F of E, since
{fi}i≥1 are all continuous functions. Thus, ρ is compatible with the trace topology of E since
E is locally compact. By (2.6), ρ satisfies (ρ.1). By (2.7), each fi ∈ D0 is ρ-Lipschitz. Denote
Dρ := {u ∈ C0(E)∩D(E)|u is ρ-Lipschitz}. Since D0 ⊂ Dρ, Dρ is a core of (E , D(E)). Moreover,
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if f is ρ-Lipschitz, then f+ ∧ 1 is also ρ-Lipschitz. Therefore, Dρ is a special standard core and
(ρ.2) is satisfied.

(ii) Let ρ be a metric satisfying (ρ.1). Then (1−1/(1 + aρ2)) is integrable w.r.t. J on E×F\d for
any a > 0 and any compact subset F ⊂ E. Since for u, v ∈ C0(E), (u(y)−u(x))v(y) is a bounded
function such that {|(u(y) − u(x))v(y)| > 0} ⊂ E × F\d for some compact subset F ⊂ E, the
second term of (2.2) is well defined. Therefore, decomposition (2.2) can be obtained by simply
setting

Ea,ρ(u, v) := E(u, v)−
∫

E×E\d
2

(
1− 1

1 + aρ2(x, y)

)
(u(y)− u(x))v(y)J(dx, dy)

−
∫

E

u(x)v(x)K(dx). (2.8)

By (1.6) and (2.8), (2.3) is obvious. The uniqueness of decomposition (2.2) under conditions (ρ.1)
and (2.3) is a direct consequence of the uniqueness of decomposition (1.6).

Note that when a tends to ∞, (1− 1/(1 + aρ2(x, y))) tends to 1, and thus (2.2) approximates
(1.7). Indeed, (u(y) − u(x))v(y) is S.P.V. integrable w.r.t. J if and only if (u(y)− u(x))v(y)
/(1 + aρ2(x, y)) is S.P.V. integrable w.r.t. J . In this case,

Ea,ρ(u, v) = Ec(u, v) + S.P.V.

∫

E×E\d

2(u(y)− u(x))v(y)

1 + aρ2(x, y)
J(dx, dy),

and (2.2) coincides with (1.7).
In general, J is not symmetric and J − Ĵ is a signed Radon measure, which is well defined

on each compact subset of E × E\d. Denote by J1 := (J − Ĵ)+ the positive part of the Jordan
decomposition of (J − Ĵ). Set J0 := J − J1. One can check that J0 is the largest symmetric
positive Radon measure dominated by J . In particular, if J is symmetric then J = J0. In the
next theorem, we will give some sufficient conditions with which decomposition (1.7) holds for all
u, v ∈ C0(E) ∩D(E), or for all u, v in a special standard core.

Theorem 2.2. Let J be as in Theorem 2.1 and write J = J0 + J1 as above.
(i) If J1(E × F\d) < ∞ for any compact subset F ⊂ E, then A(v) = C0(E) ∩ D(E) for any
v ∈ C0(E)∩D(E) and hence decomposition (1.7) holds for all u, v ∈ C0(E)∩D(E). In particular,
if J is symmetric then decomposition (1.7) holds for all u, v ∈ C0(E) ∩D(E).
(ii) If we can find a metric ρ satisfying (ρ.1), (ρ.2) (cf. Theorem 2.1 (i)), and

(ρ.3)

∫

E×F\d

ρ(x, y)

1 + ρ2(x, y)
J1(dx, dy) < ∞ for any compact subset F ⊂ E,

then there is a special standard core D1 ⊃ Dρ such that decomposition (1.7) holds for all u, v ∈ D1.

Proof. First, we will show that for any u, v ∈ C0(E)∩D(E), (u(y)−u(x))v(y) is S.P.V. integrable
w.r.t. J0 on E × E\d, moreover,

S.P.V.

∫

E×E\d
2(u(y)− u(x))v(y)J0(dx, dy)

=

∫

E×E\d
(u(y)− u(x))(v(y)− v(x))J0(dx, dy), (2.9)
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where the right hand side of (2.9) is a usual integral. Note that J0 is the largest symmetric positive
Radon measure dominated by J . For any relatively compact symmetric subset A ⊂ E ×E\d, we
get by the symmetry of J0 that

∫

A

2(u(y)− u(x))v(y)J0(dx, dy)

=

∫

A

(u(y)− u(x))v(y)J0(dx, dy) +

∫

A

(u(x)− u(y))v(x)J0(dx, dy)

=

∫

A

(u(y)− u(x))(v(y)− v(x))J0(dx, dy). (2.10)

By Hölder inequality, (2.6) and the fact that J0 ≤ J , we find that
∫

E×E\d
|(u(y)− u(x))(v(y)− v(x))|J0(dx, dy)

≤
(∫

E×E\d
(u(y)− u(x))2J(dx, dy)

) 1
2

·
(∫

E×E\d
(v(y)− v(x))2J(dx, dy)

) 1
2

< ∞.

Thus, for any increasing sequence {An}n≥1 of relatively compact symmetric subsets of E × E\d
satisfying ∪∞n=1An = E × E\d,

lim
n→∞

∫

An

(u(y)− u(x))(v(y)− v(x))J0(dx, dy) =

∫

E×E\d
(u(y)− u(x))(v(y)− v(x))J0(dx, dy).

Therefore, (2.9) holds by (2.10).
Now we have shown that u ∈ A(v) if and only if u ∈ C0(E) ∩ D(E) and (u(y) − u(x))v(y)

is S.P.V. integrable w.r.t. J1. Assertion (i) follows immediately. Note that for u, v ∈ Dρ (Dρ is
specified in condition (ρ.2)), we get by (ρ.1) and (ρ.3) that

∫

E×E\d
|(u(y)− u(x))v(y)|J1(dx, dy) ≤

∫

E×F\d

Cρ(x, y)

1 + ρ2(x, y)
|v(y)|J1(dx, dy)

+

∫

E×F\d

ρ2(x, y)

1 + ρ2(x, y)
|(u(y)− u(x))v(y)|J1(dx, dy)

< ∞,

where F = supp[v] and C is the ρ-Lipschitz constant of u. Therefore, at least Dρ satisfies assertion
(ii).

Theorem 2.3. (i) Let ρ be a metric satisfying (ρ.1) or, more generally, satisfying (ρ.1)′ below:

(ρ.1)′
∫

F×F\d

ρ2(x, y)

1 + ρ2(x, y)
J(dx, dy) < ∞ for any compact subset F ⊂ E.

Then for any a > 0, E can be expressed for u, v ∈ C0(E) ∩D(E) as follows

E(u, v) = Ẽc(u, v) +

∫

E×E\d
(u(y)− u(x))(v(y)− v(x))J(dx, dy) +

∫

E

u(x)v(x)K̃(dx)

+Ěa,ρ(u, v) +

∫

E×E\d

(
1− 1

1 + aρ2(x, y)

)
(u(y)v(x)− u(x)v(y))J(dx, dy). (2.11)
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Here Ẽc(u, v) is a symmetric, nonnegative definite form satisfying the strong local property (i.e.,
u ∈ I(v) implies Ẽc(u, v) = 0), J is a positive Radon measure on E×E\d, K̃ is a positive Radon
measure on E, and Ěa,ρ is an anti-symmetric form satisfying

Ěa,ρ(u, v) =

∫

E×E\d

1

1 + aρ2(x, y)
(u(y)v(x)− u(x)v(y))J(dx, dy) if supp[u] ∩ supp[v] = ∅. (2.12)

Furthermore, such Ẽc, J , K̃ and Ěa,ρ are uniquely determined by E .
(ii) Let u, v ∈ C0(E) ∩D(E) be such that

(u(y)v(x)− u(x)v(y)) is S.P.V. integrable w.r.t. J. (2.13)

Then

E(u, v) = Ẽc(u, v) +

∫

E×E\d
(u(y)− u(x))(v(y)− v(x))J(dx, dy) +

∫

E

u(x)v(x)K̃(dx)

+Ěc(u, v) + S.P.V.

∫

E×E\d
(u(y)v(x)− u(x)v(y))J(dx, dy), (2.14)

where Ẽc, J and K̃ are the same as in (2.11), Ěc is an anti-symmetric form satisfying the local
property, i.e. supp[u] ∩ supp[v] = ∅ implies Ěc(u, v) = 0. Moreover, such Ẽc, J , K̃ and Ěc are
uniquely determined by E if decomposition (2.14) holds for all u, v in some special standard core
(cf. Theorem 2.6 below).

Proof. (i) Let {Ul}l≥1 be as in (1.10), taking a subsequence of {βn} if necessary, we may assume
that for each l,

βn(1− βnĜβnIUl
) ·m → K̂l vaguely on Ul as n →∞, (2.15)

where K̂l is the corresponding object of Kl w.r.t. (Ê , D(E)) and

K̂l → K̂ vaguely on E as l →∞. (2.16)

Let {δl} and {Γl} be the same as in the proof of Theorem 1.6, by (1.8), (ρ.1)
′
, (1.10), (1.11),

(2.15) and (2.16), the following limits exist.

I1(u, v) := lim
l

lim
n

βn

2

∫

Γl

(u(y)− u(x))(v(y)− v(x))σβn(dx, dy)

=

∫

E×E\d
(u(y)− u(x))(v(y)− v(x))J(dx, dy),

I2(u, v) := lim
l

lim
n

βn

2

∫

Γl

aρ2(x, y)

1 + aρ2(x, y)
(u(y)v(x)− u(x)v(y))σβn(dx, dy)

=

∫

E×E\d

(
1− 1

aρ2(x, y)

)
(u(y)v(x)− u(x)v(y))J(dx, dy),

I3(u, v) := lim
l

lim
n

βn

∫

Ul

u(x)v(x)

(
1− βGβnIUl

(x)

2
+

1− βnĜβnIUl
(x)

2

)
m(dx)

=

∫

E

u(x)v(x)
1

2
(K(dx) + K̂(dx)).
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By (1.2) and (2.4), we get

Ẽ(u, v) :=
1

2
(E(u, v) + E(v, u))

= lim
l

lim
n

βn

2

∫

Ul×Ul

(u(y)− u(x))(v(y)− v(x))σβn(dx, dy)

+ lim
l

lim
n

βn

∫

Ul

u(x)v(x) · 1

2
{(1− βnGβnIUl

(x)) + (1− βnĜβnIUl
(x))}m(dx).

Define Ẽc(u, v) := Ẽ(u, v)− I1(u, v)− I3(u, v), then Ẽc(u, v) admits the following expression

Ẽc(u, v) = lim
l

lim
n

βn

2

∫

Ul×Ul,ρ(x,y)<δl

(u(y)− u(x))(v(y)− v(x))σβn(dx, dy).

From this expression, it is clear that Ẽc(u, v) is a symmetric, nonnegative definite form satisfying
the strong local property. Then, we obtain (2.11) by setting

Ěa,ρ(u, v) := E(u, v)− Ẽc(u, v)− I1(u, v)− I2(u, v)− I3(u, v).

It follows that

Ěa,ρ(u, v) = lim
l

lim
n

{
βn

2

∫

Ul×Ul,ρ(x,y)<δl

(u(y)v(x)− u(x)v(y))σβn(dx, dy)

+

∫

Γl

1

1 + aρ2(x, y)
(u(y)v(x)− u(x)v(y))J(dx, dy)

}
. (2.17)

Since u(y)v(x)− u(x)v(y) = (u(y)− u(x))v(y)− (v(y)− v(x))u(y), if supp[u]∩ supp[v] = ∅, then

lim
l

lim
n

βn

2

∫

Ul×Ul,ρ(x,y)<δl

(u(y)v(x)− u(x)v(y))σβn(dx, dy) = 0. (2.18)

Therefore, (2.12) follows from (2.17) and (2.18).
Now let us show the uniqueness of the decomposition. For u, v ∈ C0(E) ∩ D(E) satisfying

supp[u] ∩ supp[v] = ∅, we get by the strong local property of Ẽc(u, v) and (2.12) that

E(u, v) =

∫

E×E\d
(−u(y)v(x)− u(x)v(y))J(dx, dy)

+

∫

E×E\d
(u(y)v(x)− u(x)v(y))J(dx, dy)

= −2

∫

E×E\d
u(x)v(y)J(dx, dy).

Hence the measure J is unique (cf. Fukushima et al. [8, Theorem 3.2.1]).
Since Ẽc(u, v) is symmetric and Ěa,ρ(u, v) is anti-symmetric, for u, v ∈ C0(E) ∩D(E),

E(v, u) = Ẽ(u, v) +

∫

E×E\d
(v(y)− v(x))(u(y)− u(x))J(dx, dy)

+

∫

E

v(x)u(x)K̃(dx)− Ěa,ρ(u, v)

−
∫

E×E\d

(
1− 1

1 + aρ2(x, y)

)
(u(y)v(x)− u(x)v(y))J(dx, dy). (2.19)

10



Set Ĵ(dx, dy) = J(dy, dx). By (2.11) and (2.19), for u, v ∈ C0(E) ∩D(E),

Ẽ(u, v) = Ẽc(u, v) +

∫

E×E\d
(u(y)− u(x))(v(y)− v(x))J(dx, dy)

+

∫

E

u(x)v(x)K̃(dx, dy)

= Ẽc(u, v) +

∫

E×E\d
(u(y)− u(x))(v(y)− v(x))

J + Ĵ

2
(dx, dy)

+

∫

E

u(x)v(x)K̃(dx, dy).

Thus the uniqueness of Ẽc and K̃ follows from the uniqueness of the classical Beurling-Deny
formula for symmetric Dirichlet forms. Finally, the uniqueness of Ěa,ρ follows from (2.11) and the
uniqueness of J , Ẽc and K̃.

(ii) Note that for any u, v ∈ C0(E), condition (ρ.1)′ implies that (1−1/(1 + aρ2(x, y)))(u(y)v(x)−
u(x)v(y)) is always integrable on E × E\d w.r.t. J . Thus, in this case, (u(y)v(x) − u(x)v(y))
is S.P.V. integrable w.r.t. J if and only if (1/(1 + aρ2(x, y)))(u(y)v(x) − u(x)v(y)) is S.P.V.
integrable w.r.t. J . From the above proof of part (i), we know that Ěa,ρ(u, v) can be expressed as

Ěa,ρ(u, v) = lim
l

lim
n

{
βn

2

∫

Ul×Ul,ρ(x,y)<δl

(u(y)v(x)− u(x)v(y))σβn(dx, dy)

+

∫

Γl

1

1 + aρ2(x, y)
(u(y)v(x)− u(x)v(y))J(dx, dy)

}

:= lim
l

lim
n
{Al,n(u, v) + Bl,n(u, v)}.

Suppose now that (u(y)v(x)− u(x)v(y)) is S.P.V. integrable w.r.t. J . Then Ěc(u, v) := liml limn

Al,n(u, v) exists and we get decomposition (2.14). By the expression of Al,n(u, v), we see that
Ěc(u, v) is an anti-symmetric form satisfying the local property. Under the additional assumption
that decomposition (2.14) holds for all u, v in some special standard core, the uniqueness of Ẽc,
J , K̃ and Ěc follows similarly to part (i).

Remark 2.4. If u ∈ A(v) and v ∈ A(u), then condition (2.13) is fulfilled. In this case,

Ẽc(u, v) =
1

2
( Ec(u, v) + Êc(u, v) ) (2.20)

and

Ěc(u, v) =
1

2
( Ec(u, v)− Ec(v, u) ) =

1

2
( Êc(v, u)− Êc(u, v)). (2.21)

In general, it is not necessary that Ěc(u, v) = 1
2
(Ec(u, v)− Êc(u, v)).

If (E , D(E)) is symmetric, then for any u, v ∈ C0(E) ∩D(E), u ∈ A(v) and v ∈ A(u) (cf. the
proof of Theorem 2.2). In this case, the dual form (Ê , D(E)) coincides with (E , D(E)), and thus
Ec(u, v) = Êc(u, v) for any u, v ∈ C0(E) ∩ D(E). By (2.20) and (2.21), we find that Ẽc(u, v) =
Ec(u, v), Ěc(u, v) = 0. By the uniqueness of (2.14), we know that the measure J in (2.14) is
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symmetric. Then, it is easy to check that S.P.V.
∫

E×E\d(u(y)v(x) − u(x)v(y))J(dx, dy) = 0.

Hence (2.14) is just the classical Beurling-Deny formula for symmetric forms.

Remark 2.5. In Bliedtner [3, (9.2)], the author gave a representation which is essentially the
same as (2.14) but without introducing the notion of S.P.V. integral and the crucial condition
(2.13). We point out that condition (2.13) cannot be dropped. See Example 4.5.

Theorem 2.6. Let J = J0 + J1 be as in Theorem 2.2.
(i) If J1(F × F\d) < ∞ for any compact subset F ⊂ E, then condition (2.13) is always fulfilled
and hence decomposition (2.14) holds for all u, v ∈ C0(E)∩D(E). In particular, if J is symmetric,
then (2.14) holds for all u, v ∈ C0(E) ∩D(E).
(ii) If we can find a metric ρ satisfying (ρ.1)-(ρ.3). Then, there is a special standard core D1 ⊃ Dρ

such that decomposition (2.14) holds for all u, v ∈ D1.

Proof. (i) is clear. Note that

u(y)v(x)− u(x)v(y) = (u(y)− u(x))v(y)− (v(y)− v(x))u(y).

Then, condition (2.13) is fulfilled if u ∈ A(v) and v ∈ A(u). Therefore, assertion (ii) follows
directly from Theorem 2.2 and Theorem 2.3 (ii).

3 Extension of LeJan’s Formula to Non-Symmetric Diri-

chlet Form

Let J be the jumping measure of (E , D(E)). Decompose J = J0 +J1 as in Section 2. Throughout
this section, we make the following assumption.

Assumption 3.1. For any compact subset F ⊂ E, J1(E × F\d) < ∞ and J1(F × E\d) < ∞.

Note that if J is symmetric, then J1 = 0 and Assumption 3.1 is automatically satisfied. Proposi-
tion 4.4 (i) below provides another example for which Assumption 3.1 is satisfied.

By Assumption 3.1 and Theorem 2.2, (1.7) and (2.1) hold for any u, v ∈ C0(E)∩D(E). Then,
it follows that

Ě(u, v) :=
1

2
(E(u, v)− E(v, u))

=
1

2
(Ec(u, v)− Êc(u, v)) + S.P.V.

∫

E×E\d
2(u(y)− u(x))v(y)

J − Ĵ

2
(dx, dy)

+

∫

E

u(x)v(x)
K − K̂

2
(dx)

:= Ěc(u, v) + S.P.V.

∫

E×E\d
2(u(y)− u(x))v(y)J̌(dx, dy) +

∫

E

u(x)v(x)Ǩ(dx). (3.1)

Here we point out that the definition of Ěc(u, v) is different from that given in Section 2 (cf.
Remark 2.4). Throughout this section, we define Ěc(u, v) by (3.1).

In the following, we will give some structure results for the diffusion part Ec of (E , D(E)).
Note that Ec(u, v) = Ẽc(u, v)+ Ěc(u, v), where Ẽc(u, v) = 1

2
(Ec(u, v)+ Êc(u, v)). Consequently, we

only need to concentrate on the structure of Ěc below.
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3.1 Linear Functional L(u, v)

For u, v ∈ C0(E) ∩D(E), we define a linear functional L(u, v) on C0(E) ∩D(E) by

< L(u, v), f >:=
1

2
(Ec(u, vf)− Êc(u, vf)) for all f ∈ C0(E) ∩D(E). (3.2)

Then, Ěc(u, v) =< L(u, v), f > for arbitrary f ∈ C0(E) ∩D(E) satisfying f |supp[v] = 1. It follows
from (3.1) that

< L(u, v), f > =
1

2
(E(u, vf)− Ê(u, vf))− S.P.V.

∫

E×E\d
2(u(y)− u(x))v(y)f(y)J̌(dx, dy)

−
∫

E

u(x)v(x)f(x)Ǩ(dx). (3.3)

Theorem 3.2. Let u, v, w, f ∈ C0(E) ∩D(E). Then
(i) < L(u, v), f > is bilinear w.r.t. u and v.
(ii) < L(u, vw), f >=< L(u,w), vf >.
(iii)< L(u2, v), f >=< L(u, v), 2uf >.
(iv) < L(uv, w), f >=< L(u,w), vf > + < L(v, w), uf >.

Proof. (i) and (ii) are obvious by (3.2). (iv) follows by applying (iii) to (u + v)2, u2 and v2. In
the following, we prove (iii). Suppose supp[u]∪ supp[v]∪ supp[f ] ⊂ G1 ⊂ Ḡ1 ⊂ G2, where G1, G2

are two relatively compact open sets. Then,

E (β)(u, vf) = β(u− βGβu, vf)

= β

∫

G2×G2

(u(y)− u(x))v(y)f(y)σβ(dx, dy)

+β

∫

G2

(1− βGβIG2(x))u(x)v(x)f(x)m(dx)

→ E(u, vf) as β →∞. (3.4)

Similarly,

Ê (β)(u, vf) = β

∫

G2×G2

(u(y)− u(x))v(y)f(y)σ̂β(dx, dy)

+β

∫

G2

(1− βĜβIG2(x))u(x)v(x)f(x)m(dx)

→ Ê(u, vf) as β →∞, (3.5)

where σ̂β is the measure associated with βĜβ (cf. Corollary 1.2). Note that σ̂β(dx, dy) =
σβ(dy, dx).

By (3.3), (3.4) and (3.5) (cf. the proof of Theorem 1.6), we get

< L(u, v), f > =

[
1

2
lim

β→∞
β

∫

G2×G2

(u(y)− u(x))v(y)f(y)(σβ − σ̂β)(dx, dy)

+
1

2

∫

E

u(x)v(x)f(x)K(dx)− 1

2

∫

E

u(x)v(x)f(x)K̂(dx)

]
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−S.P.V.

∫

E×E\d
2(u(y)− u(x))v(y)f(y)J̌(dx, dy)−

∫

E

u(x)v(x)f(x)Ǩ(dx)

=
1

2
lim

β→∞
β

∫

G2×G2

(u(y)− u(x))v(y)f(y)(σβ − σ̂β)(dx, dy)

−S.P.V.

∫

E×E\d
2(u(y)− u(x))v(y)f(y)J̌(dx, dy). (3.6)

It follows from (3.6) that

< L(u2, v), f > − < L(u, v), 2uf >

= −1

2
lim

β→∞
β

∫

G2×G2

(u(y)− u(x))2v(y)f(y)(σβ − σ̂β)(dx, dy)

+S.P.V.

∫

E×E\d
(u(y)− u(x))2v(y)f(y)(J − Ĵ)(dx, dy). (3.7)

We now analyze the limit term in (3.7). Note that

1

2
lim

β→∞
β

∫

G2×G2

(u(y)− u(x))2v(y)f(y)(σβ − σ̂β)(dx, dy)

=
1

2
lim

β→∞
β

∫

G2×G2

(u(y)− u(x))2(v(y)f(y)− v(x)f(x))σβ(dx, dy)

=
1

2
lim

β→∞
β

[∫

G2×G2

(u(y)− u(x))2(v(y)f(y)− v(x)f(x))φ(x)φ(y)σβ(dx, dy)

+

∫

G2×G2

u2(y)v(y)f(y)(1− φ(x))σβ(dx, dy)

−
∫

G2×G2

u2(x)v(x)f(x)(1− φ(y))σβ(dx, dy)

]

:=
1

2
lim

β→∞
[I1(β) + I2(β)− I3(β)], (3.8)

where φ ∈ C0(E) ∩ D(E) satisfying φ ≥ 0, φ|G1 = 1 and supp[φ] ⊂ G2. Note that (v(y)f(y) −
v(x)f(x))φ(x)φ(y) ∈ C∞(E×E\d), where C∞(E×E\d) denotes the set of all continuous functions
on E × E\d vanishing at the infinity, and the measures β(u(y)− u(x))2σβ(dx, dy) are uniformly
bounded by 2E(u, u) and converge vaguely to 2(u(y) − u(x))2J(dx, dy) on E × E\d as β → ∞
(cf. (2.5)). Then, we get

lim
β→∞

I1(β) = 2

∫

E×E\d
(u(y)− u(x))2(v(y)f(y)− v(x)f(x))φ(x)φ(y)J(dx, dy). (3.9)

For I2(β), noting that φ|G1 = 1, by Corollary 1.2, (1.2), (1.10), (1.11) and Theorem 1.6, we
get

I2(β) = β

∫

G2×G2

u2(y)v(y)f(y)σβ(dx, dy)− β

∫

G2×G2

u2(y)v(y)f(y)φ(x)σβ(dx, dy)

= −β(βGβφ, u2vf) + β(βGβIG2 , u
2vf)
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= β(φ− βGβφ, u2vf)− β(1− βGβIG2 , u
2vf)

→ E(φ, u2vf)−
∫

E

u2(x)v(x)f(x)K(dx)

= Ec(φ, u2vf) + S.P.V.

∫

E×E\d
2(φ(y)− φ(x))u2(y)v(y)f(y)J(dx, dy)

+

∫

E

u2(x)v(x)f(x)φ(x)K(dx)−
∫

E

u2(x)v(x)f(x)K(dx)

= S.P.V.

∫

E×E\d
2u2(y)v(y)f(y)(1− φ(x))J(dx, dy). (3.10)

Similarly, we get

lim
β→∞

I3(β) = S.P.V.

∫

E×E\d
2u2(x)v(x)f(x)(1− φ(y))J(dx, dy). (3.11)

Therefore, < L(u2, v), f >=< L(u, v), 2uf > by (3.7)-(3.11).

Lemma 3.3. Let u, v, w ∈ C0(E) ∩D(E). Then
(i) If u is constant on a relatively compact open set G, then for any f ∈ C0(G) ∩ D(E), <
L(u, v), f >= 0.
(ii) If v = w m-a.e. on a relatively compact open set G, then for any f ∈ C0(G) ∩ D(E),
< L(u, v), f >=< L(u,w), f >.

Proof. (i) Direct consequence of (3.2) and the left strong local property of Ec and Êc.
(ii) It is obvious by (3.2).

Proposition 3.4. Let u1, . . . , um, v ∈ C0(E) ∩ D(E). If φ ∈ C2(Rm) with φ(0) = 0, then
φ(u) := φ(u1, . . . , um) ∈ C0(E) ∩D(E), and for any f ∈ C0(E) ∩D(E),

< L(φ(u), v), f >=
m∑

i=1

< L(ui, v), φxi
(u)f > . (3.12)

Proof. The proof follows from that of Fukushima et al. [8, Theorem 3.2.2]. Let φ ∈ C2(Rm)
with φ(0) = 0. By the inequality (cf. Fukushima et al. [8, (3.2.27)])

√
Eα(φ(u), φ(u)) ≤

m∑
i=1

‖φxi
‖L∞(S)

√
Eα(ui, ui), α ≥ 0, (3.13)

noting that φ(0) = 0, one can check that φ(u) ∈ C0(E) ∩ D(E), φxi
(u) ∈ D(E), 1 ≤ i ≤ m. Let

A := {φ ∈ C2(Rm)|φ(0) = 0 and (3.12) holds}. By Theorem 3.2 (iv) and (i), one finds that
φψ ∈ A if φ, ψ ∈ A. Since A contains the coordinate functions, it contains all the polynomials
vanishing at the origin.

Let S be a finite cube containing the range of u(x) = (u1(x), . . . , um(x)). Then there exists
a sequence {φk(x)} of polynomials vanishing at the origin such that φk → φ, φk

xi
→ φxi

, φk
xixj

→
φxixj

, 1 ≤ i, j ≤ m, uniformly on S (cf. Courant and Hilbert [6, II §4]). Due to (3.13), φk(u)
is E1-convergent to φ(u) and φk

xi
(u) is E1-convergent to φxi

(u), 1 ≤ i ≤ m, as k → ∞. And

15



φk(u(x)), φk
xi

(u(x)), 1 ≤ i ≤ m are uniformly bounded and respectively converge to φ(u(x)) and
φxi

(u(x)), 1 ≤ i ≤ m,x ∈ E, as k →∞. Thus

< L(φ(u), v), f > =
1

2
(E(φ(u), vf)− E(vf, φ(u))

−S.P.V.

∫

E×E\d
2(φ(u)(y)− φ(u)(x))v(y)f(y)

J1 − Ĵ1

2
(dx, dy)

−
∫

E

φ(u)(x)v(x)f(x)Ǩ(dx)

= lim
k→∞

[
1

2
(E(φk(u), vf)− E(vf, φk(u))

−S.P.V.

∫

E×E\d
2(φk(u)(y)− φk(u)(x))v(y)f(y)

J1 − Ĵ1

2
(dx, dy)

−
∫

E

φk(u)(x)v(x)f(x)Ǩ(dx)

]

= lim
k→∞

< L(φk(u), v), f >

=
m∑

k=1

lim
k→∞

< L(ui, v), φk
xi

(u)f >

=
m∑

i=1

lim
k→∞

[
1

2
(E(ui, φ

k
xi

(u)f)− E(φk
xi

(u)f, ui)

−S.P.V.

∫

E×E\d
2(ui(y)− ui(x))φk

xi
(u)(y)f(y)

J1 − Ĵ1

2
(dx, dy)

−
∫

E

ui(x)φk
xi

(u)(x)f(x)Ǩ(dx)

]

=
m∑

i=1

[
1

2
(E(ui, φxi

(u)f)− E(φxi
(u)f, ui)

−S.P.V.

∫

E×E\d
2(ui(y)− ui(x))φxi

(u)(y)f(y)
J1 − Ĵ1

2
(dx, dy)

−
∫

E

ui(x)φxi
(u)(x)f(x)Ǩ(dx)

]

=
m∑

i=1

< L(ui, v), φxi
(u)f > .

The proof is complete.

Define

F c
loc := {u| for any relatively compact open set G, there exists a function

v ∈ C0(E) ∩D(E) such that u = v m-a.e. on G}. (3.14)

Remark 3.5. (i) Since (E , D(E)) is regular, it is easy to show that 1 ∈ F c
loc (cf. Lemma 1.4 (ii)).
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(ii) If v ∈ F c
loc and f ∈ C0(E) ∩ D(E), then by the definition of F c

loc there exists a function
v̄ ∈ C0(E) ∩ D(E) such that v = v̄ m-a.e. on supp[f ] and thus vf = v̄f m-a.e. Consequently,
vf ∈ C0(E) ∩D(E).

Take a sequence {Gn}n∈N of relatively compact open sets such that Ḡn ⊂ Gn+1, ∀n ≥ 1, and
∪∞n=1Gn = E. For u, v ∈ F c

loc, there exist two sequences {un}n∈N, {vn}n∈N with un, vn ∈ C0(E) ∩
D(E),∀n ≥ 1, such that un = u, vn = v m-a.e. on Gn. By Lemma 3.3, we can define the linear
functional < L(u, v), f >:=< L(un, vn), f >, ∀f ∈ C0(Gn)∩D(E). This definition is independent
of the specific choice of {un}n∈N and {vn}n∈N. We call such {un}n∈N an approximating sequence
of u.

By Theorem 3.2, one can easily prove the following corollary.

Corollary 3.6. Let u, v, w ∈ F c
loc and f ∈ C0(E) ∩D(E). Then

(i) < L(u, v), f > is bilinear w.r.t. u and v .
(ii) < L(u, vw), f >=< L(u,w), vf > .
(iii) < L(uv, w), f >=< L(u,w), vf > + < L(v, w), uf >.

Proposition 3.7. Let u1, . . . , um, v ∈ F c
loc, φ ∈ C2(Rm), and u(x) := (u1(x), . . . , um(x)). Then

φ(u), φxi
(u) ∈ F c

loc, 1 ≤ i ≤ m, and for any f ∈ C0(E) ∩D(E),

< L(φ(u), v), f >=
m∑

i=1

< L(ui, v), φxi
(u)f > . (3.15)

Proof. Define ψ(x) := φ(x) − φ(0). Then ψ ∈ C2(Rm) with ψ(0) = 0. If w1, . . . , wm ∈
C0(E)∩D(E), one can show that ψ(w1, . . . , wm) ∈ C0(E)∩D(E) following the proof of Proposition
3.4. Then ψ(u) ∈ F c

loc. Since the constant function φ(0) ∈ F c
loc by Remark 3.5 (i), one finds that

φ(u) ∈ F c
loc. Similarly, one can show that φxi

(u) ∈ F c
loc, 1 ≤ i ≤ m.

By Corollary 3.6 (i) and Lemma 3.3 (i),

< L(φ(u), v), f >=< L(ψ(u), v), f > + < L(φ(0), v)), f >=< L(ψ(u), v), f > . (3.16)

Take the sequence {Gn}n∈N of relatively compact open sets as above. Let {u(k)
1 }k∈N, . . . , {u(k)

m }k∈N

and {v(k)}k∈N be approximating sequences of u1, . . . , um and v, respectively. One can show

that {ψ(u
(k)
1 , . . . , u

(k)
m )}k∈N is an approximating sequence of ψ(u1, . . . , um). Then, for any f ∈

C0(Gk) ∩D(E), we get by Proposition 3.4 that

< L(ψ(u), v), f > = < L(ψ(u
(k)
1 , . . . , u(k)

m ), v(k)), f >

=
m∑

i=1

< L(u
(k)
i , v(k)), ψxi

(u
(k)
1 , . . . , u(k)

m )f >

=
m∑

i=1

< L(ui, v), ψxi
(u1, . . . , um)f >

=
m∑

i=1

< L(ui, v), ψxi
(u)f > . (3.17)

Since φxi
= ψxi

, 1 ≤ i ≤ m, (3.15) follows form (3.16) and (3.17). The proof is complete.
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3.2 Functional Representation of Ěc(u, v)

In this subsection, we assume that U is a domain of Rd and (E , D(E)) is a regular (non-symmetric)
Dirichlet form on L2(U,m) satisfying C∞

0 (U) ⊂ D(E). Further, we make the following assumption.

Assumption 3.1’. For any compact set K ⊂ U , J(U ×K\d) < ∞ and J(K × U\d) < ∞.

Note that if Assumption 3.1’ is satisfied, then Assumption 3.1 is automatically satisfied since
J = J0 + J1. As an example, Assumption 3.1’ is satisfied with U = Rd in the situation of
Proposition 4.4 (i) below.

For u, v ∈ C∞
0 (U) and f ∈ C0(U) ∩ D(E), we get by Corollary 3.6 (ii) and Proposition 3.7

that

Ěc(u, vf) =< L(u, v), f >=< L(u, 1), vf >=
d∑

i=1

< L(xi, 1),
∂u

∂xi

vf > .

Taking an f satisfying f |supp[v] = 1, we get

Ěc(u, v) =
d∑

i=1

< L(xi, 1),
∂u

∂xi

v > . (3.18)

In order to give an explicit representation of < L(xi, 1), ∂u
∂xi

v >, we need the following two

lemmas. In the sequel, we let (Ẽ , D(Ẽ)) be the symmetric part of (E , D(E)) and respectively
denote by Ẽc, J̃ and K̃, the diffusion part, jumping and killing measures of (Ẽ , D(Ẽ)).

Lemma 3.8. For u ∈ C0(U) ∩D(E), there exists a unique F (u) ∈ D(E) such that

Ěc(u, v) = Ẽ1(F (u), v)−
∫

U×U\d
2(u(y)− u(x))v(y)J̌(dx, dy) for all v ∈ C0(U) ∩D(E).

Proof. By Assumption 3.1’, Cauchy-Schwartz inequality and (2.6), we find that 2(u(y)−u(x))v(y)
is integrable w.r.t. J̌ on U × U\d. Then, for any v ∈ C0(U) ∩D(E), we get by (3.1) that

Ěc(u, v) +

∫

U×U\d
2(u(y)− u(x))v(y)J̌(dx, dy)

=
1

2
(E(u, v)− E(v, u))−

∫

U

u(x)v(x)Ǩ(dx) (3.19)

and
∣∣∣∣
∫

U

u(x)v(x)Ǩ(dx)

∣∣∣∣ ≤
∫

U

|u(x)v(x)|1
2
(K + K̂)(dx)

=

∫

U

|u(x)v(x)|K̃(dx)

≤
(∫

U

u2(x)K̃(dx)

) 1
2

·
(∫

U

v2(x)K̃(dx)

) 1
2

≤ Ẽ 1
2 (u, u)Ẽ 1

2 (v, v). (3.20)
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By (3.19), (3.20) and the weak sector condition of Dirichlet forms, there exists a constant C(u) > 0

such that |Ěc(u, v) +
∫

U×U\d 2(u(y) − u(x))v(y)J̌(dx, dy)| ≤ C(u)Ẽ1/2
1 (v, v). Then, the proof is

complete by noting that C0(U) ∩D(E) is dense in D(E).

Lemma 3.9. Let v ∈ D(E), u1, . . . , um ∈ D(E)b, and φ ∈ C1(Rm). Denote φ(u) := φ(u1, . . . , um).
Then

dµ̃c
<φ(u),v> =

m∑
i=1

φxi
(ũ)dµ̃c

<ui,v>, (3.21)

where for any w ∈ D(E), µ̃c
<w,v> is the local part of the energy measure µ̃<w,v> associated with

the regular symmetric Dirichlet form (Ẽ , D(E)) (cf. Fukushima et al. [8, §3.2]).

Proof. Let {vn}n∈N ⊂ D(E)b be an approximating sequence of v, i.e. vn is E1-convergent to
v as n → ∞. Then by the remark right before Fukushima et al. [8, Theorem 3.2.3] and the
classical LeJan’s formula (cf. Fukushima et al. [8, Theorem 3.2.2 and p.117]), we find that for
any f ∈ C0(U) ∩D(E),

∫

U

f(x)dµ̃c
<φ(u),v> = lim

n→∞

∫

U

f(x)dµ̃c
<φ(u),vn>

= lim
n→∞

m∑
i=1

∫

U

f(x)φxi
(ũ)dµ̃c

<ui,vn>

=
m∑

i=1

lim
n→∞

∫

U

f(x)φxi
(ũ)dµ̃c

<ui,vn>

=
m∑

i=1

∫

U

f(x)φxi
(ũ)dµ̃c

<ui,v>

and therefore (3.21) follows.

By the regularity of (E , D(E)), it is easy to show that 1, xi ∈ F c
loc, 1 ≤ i ≤ d (F c

loc is defined in
(3.14)). Take a sequence {Gk}k∈N of relatively compact open sets such that Ḡn ⊂ Gn+1,∀n ≥ 1,

and ∪∞n=1Gn = U . Let {w(xi)
k }k∈N, 1 ≤ i ≤ d, {w(1)

k }k∈N be approximating sequences of xi, 1 ≤
i ≤ d, and 1, respectively. There exists a k0 ∈ N such that ∪d

i=1supp[ ∂u
∂xi

] ∪ supp[v] ⊂ Gk0 . Then
for any k ≥ k0,

< L(xi, 1),
∂u

∂xi

v > = < L(w
(xi)
k , w

(1)
k ),

∂u

∂xi

v >

= Ěc(w
(xi)
k , w

(1)
k

∂u

∂xi

v)

= Ěc(w
(xi)
k ,

∂u

∂xi

v). (3.22)

By Lemma 3.8, for each k ∈ N and 1 ≤ i ≤ d, there exists a function F (w
(xi)
k ) ∈ D(E) such that

Ěc(w
(xi)
k ,

∂u

∂xi

v) = Ẽ1(F (w
(xi)
k ),

∂u

∂xi

v)

−
∫

U×U\d
2(w

(xi)
k (y)− w

(xi)
k (x))

∂u

∂xi

(y)v(y)J̌(dx, dy). (3.23)
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By the classical Beurling-Deny formula (cf. Fukushima et al. [8, Lemma 4.5.4]), we find that

Ẽ1(F (w
(xi)
k ) ,

∂u

∂xi

v)

=

∫

U

∂u

∂xi

vF (w
(xi)
k )dm + Ẽc(

∂u

∂xi

v, F (w
(xi)
k ))

+

∫

U×U\d

(
˜

F (w
(xi)
k )(y)− ˜

F (w
(xi)
k )(x)

)(
∂u

∂xi

(y)v(y)− ∂u

∂xi

(x)v(x)

)
J̃(dx, dy)

+

∫

U

˜
F (w

(xi)
k )(x)

∂u

∂xi

(x)v(x)K̃(dx). (3.24)

Since J̃ = 1/2(J(dx, dy) + J(dy, dx)), J̃(U × K\d) < ∞ for any compact subset K of U by
Assumption 3.1’. Then we get by the symmetry of J̃ that∫

U×U\d

(
˜

F (w
(xi)
k )(y)− ˜

F (w
(xi)
k )(x)

)(
∂u

∂xi

(y)v(y)− ∂u

∂xi

(x)v(x)

)
J̃(dx, dy)

=

∫

U×U\d
2

(
˜

F (w
(xi)
k )(y)− ˜

F (w
(xi)
k )(x)

)
∂u

∂xi

(y)v(y)J̃(dx, dy). (3.25)

Extend J̃ to a measure on U ×U , which we still denote by J̃ , by setting J̃{(x, y) ∈ U ×U |x =
y} = 0. Set µ(dy) := J̃(U, dy). Note that J̃(U × K) < ∞ for any compact subset K of U .
Following the proof of Ethier and Kurtz [7, Appendixes, Theorem 8.1], there exists a kernel
η(k)(y, dx) (k ≥ k0) such that∫

U×U

2

(
˜

F (w
(xi)
k )(y)− ˜

F (w
(xi)
k )(x)

)
∂u

∂xi

(y)v(y)J̃(dx, dy)

= 2

∫

U

∂u

∂xi

(y)v(y)

∫

U

(
˜

F (w
(xi)
k )(y)− ˜

F (w
(xi)
k )(x)

)
η(k)(y, dx)µ(dy). (3.26)

Extend J̌ to a measure on U × U , which we still denote by J̌ , by setting J̌{(x, y) ∈ U × U |x =
y} = 0. Set µ̌(dy) := J̌(U, dy). Similar to η(k)(y, dx), there exists a kernel η̌(k)(y, dx) (k ≥ k0)
such that ∫

U×U

2(w
(xi)
k (y)− w

(xi)
k (x))

∂u

∂xi

(y)v(y)J̌(dx, dy)

= 2

∫

U

∂u

∂xi

(y)v(y)

∫

U

(w
(xi)
k (y)− w

(xi)
k (x))η̌(k)(y, dx)µ̌(dy). (3.27)

By Lemma 3.9, we get

Ẽc(
∂u

∂xi

v, F (w
(xi)
k )) =

1

2

d∑
j=1

∫

U

∂

∂xj

(
∂u

∂xi

v

)
dµ̃

<xj ,F (w
(xi)

k )>
. (3.28)

For each k ∈ N, and 1 ≤ i, j ≤ d, define

µ
(k)
i (dx) := F (w

(xi)
k )(x)m(dx) +

˜
F (w

(xi)
k )(x)K̃(dx)

+2

∫

U

(
˜

F (w
(xi)
k )(x)− ˜

F (w
(xi)
k )(y)

)
η(k)(x, dy)µ(dx)

−2

∫

U

(w
(xi)
k (x)− w

(xi)
k (y))η̌(k)(x, dy)µ̌(dx) (3.29)
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and

µ
(k)
ij (dx) :=

1

2
µ̃c

<xj ,F (w
(xi)

k )>
(dx). (3.30)

Therefore, it follows from (3.23)-(3.30) that

Ěc(w
(xi)
k ,

∂u

∂xi

v) =

∫

U

∂u

∂xi

vdµ
(k)
i +

d∑
j=1

∫

U

∂

∂xj

(
∂u

∂xi

v

)
dµ

(k)
ij . (3.31)

We now give the main result of this subsection.

Theorem 3.10. There exist unique generalized functions {Fi}1≤i≤d on U such that for any
u, v ∈ C∞

0 (U),

Ěc(u, v) =
d∑

i=1

<
∂u

∂xi

v, Fi > . (3.32)

Moreover, for any relatively compact open set G ⊂ U , there exist signed Radon measures
{µG

i }1≤i≤d and {µG
ij}1≤i,j≤d on G such that

< v, Fi >=

∫

G

vdµG
i +

d∑
j=1

∫

G

∂v

∂xj

dµG
ij for all v ∈ C∞

0 (G). (3.33)

Proof. For 1 ≤ i ≤ d, we define the generalized function Fi by

< v, Fi >:= lim
k→∞

[∫

U

v dµ
(k)
i +

d∑
j=1

∫

U

∂v

∂xj

dµ
(k)
ij

]
, v ∈ C∞

0 (U), (3.34)

where µ
(k)
i , µ

(k)
ij are given by (3.29), (3.30), respectively. First, we show that Fi is well defined.

Suppose that supp[v] ⊂ Gk0 for some k0 ∈ N. Let w ∈ C∞
0 (U) be a function satisfying w|supp[v] =

xi. Then for any k ≥ k0, we get by (3.31) and (3.22) that

∫

U

v dµ
(k)
i +

d∑
j=1

∫

U

∂v

∂xj

dµ
(k)
ij =

∫

U

∂w

∂xi

v dµ
(k)
i +

d∑
j=1

∫

U

∂

∂xj

(
∂w

∂xi

v

)
dµ

(k)
ij

= < L(xi, 1), v > . (3.35)

Thus, Fi is well defined and (3.32) follows from (3.18), (3.35) and (3.34). The uniqueness of Fi

is obvious by noting that < v, Fi >=< L(xi, 1), v > for any v ∈ C∞
0 (U). Furthermore, we fix

a k ∈ N such that G ⊂ Gk and respectively define {µG
i }1≤i≤d, {µG

ij}1≤i,j≤d to be {µ(k)
i }1≤i≤d,

{µ(k)
ij }1≤i,j≤d. Then (3.33) holds.

3.3 Measure Representation of Ěc(u, v)

Let (E , D(E)) and L(·, ·) be as in Subsection 3.1. For v ∈ C0(E) ∩D(E), we define

L(v) := {u ∈ C0(E) ∩D(E)|f ∈ C0(E) ∩D(E) →< L(u, v), f >

is continuous w.r.t. the uniform norm ‖ · ‖∞}.
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Proposition 3.11. (i) If u ∈ I(v), then u ∈ L(v), where I(v) is defined in Theorem 1.6.
(ii) If u ∈ D(A)∩D(Â)∩C0(E), then u ∈ L(v), where (A, D(A)) and (Â,D(Â)) are the generator
and co-generator of the Dirichlet form (E , D(E)), respectively.
(iii) L(v) is an algebra.

Proof. (i) In this case, < L(u, v), f >= 1
2
(Ec(u, vf)− Êc(u, vf)) = 0 for any f ∈ C0(E) ∩D(E).

(ii) If u ∈ D(A) ∩D(Â) ∩ C0(E),

E(u, vf)− Ê(u, vf) = (−Au, vf)− (−Âu, vf) =

∫

U

(Âu(x)− Au(x))v(x)f(x)m(dx), (3.36)

and

S.P.V.

∫

E×E\d
2(u(y)− u(x))v(y)f(y)

J − Ĵ

2
(dx, dy)

= S.P.V.

∫

E×E\d
2(u(y)− u(x))v(y)f(y)

J1 − Ĵ1

2
(dx, dy), (3.37)

where Ĵ1(dx, dy) = J1(dy, dx).
By (3.3), (3.36), (3.37) and Assumption 3.1, we find that < L(u, v), f > is a continuous linear

functional of f on C0(E) ∩D(E) w.r.t. the uniform norm ‖ · ‖∞.
(iii) Direct consequence of Theorem 3.2 (i) and (iv).

For v ∈ C0(E) ∩D(E) and u ∈ L(v), < L(u, v), · > can be extended to become a continuous
linear functional on C0(E) since C0(E) ∩D(E) is dense in C0(E). Then, by Riesz representation
theorem, there exists a finite signed measure, denoted by µ̌c

<u,v>, such that

< L(u, v), f >=

∫

E

f(x)dµ̌c
<u,v> for any f ∈ C0(E) ∩D(E).

Remark 3.12. (i) If v ∈ C0(E) ∩D(E) and u ∈ I(v), then µ̌c
<u,v> = 0.

(ii) If v ∈ C0(E) ∩ D(E) and u ∈ L(v), we get by taking a function f ∈ C0(E) ∩ D(E) with
f |supp[v] = 1 that Ěc(u, v) =

∫
E

dµ̌c
<u,v>.

(iii) Let v ∈ C0(E) ∩D(E) and u ∈ L(v). Then for any w ∈ C0(E) ∩D(E), one can easily get by
Theorem 3.2 (ii) that u ∈ L(vw) and dµ̌c

<u,vw> = w dµ̌c
<u,v>.

(iv) For w ∈ C0(E) ∩ D(E), if u, v ∈ L(v), then uv ∈ L(v) by Proposition 3.11 (iii) and we get
by Theorem 3.2 (iv) that dµ̌c

<uv,w> = udµ̌c
<v,w> + vdµ̌c

<u,w>.
(v) Let v ∈ C0(E) ∩ D(E) and u ∈ L(v). If u is constant on a relatively compact open set G,
then dµ̌c

<u,v> = 0 on G by Lemma 3.3 (i).
(vi) For v1, v2 ∈ C0(E) ∩D(E), if u ∈ L(v1) ∩ L(v2) and v1 = v2 m-a.e. on a relatively compact
open set G, then dµ̌c

<u,v1> = dµ̌c
<u,v2> on G by Lemma 3.3 (ii).

Proposition 3.13. Let v ∈ C0(E)∩D(E). If u1, . . . , um ∈ L(v), φ ∈ C1(Rm) with φ(0) = 0, and
φ(u) ∈ L(v), then

dµ̌c
<φ(u),v> =

m∑
i=1

φxi
(u)dµ̌c

<ui,v>. (3.38)
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Proof. The proof is similar to that of Proposition 3.4. Define

B := {φ ∈ C1(Rm)|φ(0) = 0, φ(u) ∈ L(v) and (3.38) holds}.
Similar to Proposition 3.4, one can show that B contains all the polynomials vanishing at the
origin.

Suppose φ ∈ C1(Rm) with φ(0) = 0 and φ(u) ∈ L(v). Let S be a finite cube containing the
range of u(x) := (u1(x), . . . , um(x)). Similar to Proposition 3.4, there exists a sequence {φk(x)}k∈N

of polynomials vanishing at the origin such that φk → φ, φk
xi
→ φxi

, 1 ≤ i,≤ m, uniformly on S
and φk(u) is E1-convergent to φ(u) as k →∞. And φk(u(x)), φk

xi
(u(x)), 1 ≤ i ≤ m, are uniformly

bounded and respectively converge to φ(u(x)) and φxi
(u(x)), x ∈ E, as k → ∞. Now for any

f ∈ C0(E) ∩D(E), we get similarly to Proposition 3.4 that

∫

E

f(x)dµ̌c
<φ(u),v> =

m∑
i=1

∫

E

f(x)φxi
(u)dµ̌c

<ui,v>.

Therefore, (3.38) holds and the proof is complete.

Define

F̃ c
loc := {u| for any relatively compact open set G, there exists a function

w ∈ C0(E) ∩D(A) ∩D(Â) such that u = w m-a.e. on G}.
Take a sequence {Gn}n∈N of relatively compact open sets such that Ḡn ⊂ Gn+1, ∀n ≥ 1,

and ∪∞n=1Gn = E. For v ∈ F c
loc and u ∈ F̃ c

loc, there exist two sequences {vn}n∈N, {un}n∈N with
vn ∈ C0(E)∩D(E) and un ∈ C0(E)∩D(A)∩D(Â) such that v = vn, u = un m-a.e. on Gn for any
n ≥ 1. (Note that by Proposition 3.11 (ii), un ∈ L(w) for any w ∈ C0(E) ∩D(E).) By Remark
3.12 (v) and (vi), we can define the measure µ̌c

<u,v> by µ̌c
<u,v> := µ̌c

<un,vn> on G. Further, by
Remark 3.12 (iii) and (iv), we get
(i) For any v1, v2 ∈ F c

loc, u ∈ F̃ c
loc,

µ̌c
<u,v1v2> = v1µ̌

c
<u,v2>. (3.39)

(ii) For any v ∈ F c
loc, u1, u2 ∈ F̃ c

loc, dµ̌c
<u1u2,v> = u1dµ̌c

<u2,v> + u2dµ̌c
<u1,v>.

Proposition 3.14. Let v ∈ F c
loc. If u1, . . . , um ∈ F̃ c

loc, φ ∈ C2(Rm) with φ(u) := φ(u1, . . . , um) ∈
F̃ c

loc, then

dµ̌c
<φ(u),v> =

m∑
i=1

φxi
(u)dµ̌c

<ui,v>. (3.40)

Proof. Since F̃ c
loc ⊂ F c

loc, by Proposition 3.7, for any f ∈ C0(E) ∩D(E),
∫

E

f(x)dµ̌c
<φ(u),v> = < L(φ(u), v), f >

=
m∑

i=1

< L(ui, v), φxi
(u)f >

=
m∑

i=1

∫

E

f(x)φxi
(u)(x)dµ̌c

<ui,v>.
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Therefore, (3.40) holds and the proof is complete.

Theorem 3.15. Let U be a domain of Rd and (E , D(E)) a regular (non-symmetric) Dirichlet
form on L2(U ; m) with the generator (A,D(A)) and the co-generator (Â,D(Â)). Suppose that
J1(U × F\d) < ∞, J1(F × U\d) < ∞ for any compact set F of U , and C∞

0 (U) ⊂ D(A) ∩D(Â).
Then for u, v ∈ C∞

0 (U), E(u, v) can be expressed as follows

E(u, v) =
d∑

i,j=1

∫

U

∂u

∂xi

∂v

∂xj

dνij +
d∑

i=1

∫

U

∂u

∂xi

vdνi

+S.P.V.

∫

U×U\d
2(u(y)− u(x))v(y)J(dx, dy) +

∫

U

u(x)v(x)K(dx), (3.41)

where {νij}1≤i,j≤d and {νi}1≤i≤d are Radon measures on U , J and K are the jumping and killing
measures of (E , D(E)), respectively.

Proof. By Theorem 2.2, for u, v ∈ C0(U) ∩D(E), we get

E(u, v) = Ec(u, v) + S.P.V.

∫

U×U\d
2(u(y)− u(x))v(y)J(dx, dy) +

∫

U

u(x)v(x)K(dx), (3.42)

where

Ec(u, v) = Ẽc(u, v) + Ěc(u, v), Ẽc(u, v) =
1

2
(Ec(u, v) + Êc(u, v)) (3.43)

(cf. (2.20) and (3.1)). Moreover, by LeJan’s formula for regular symmetric Dirichlet forms (cf.
Fukushima et al. [8, Theorem 3.2.3]),

Ẽc(u, v) =
1

2

d∑
i,j=1

∫

U

∂u

∂xi

∂v

∂xj

dµ̃c
<xi,xj>, (3.44)

where µ̃c
<xi,xj> is the local part of the energy measure of xi, xj, associated with the symmetric

Dirichlet form (Ẽ , D(Ẽ)).
Since C∞

0 (U) ⊂ D(A)∩D(Â), one can show that the constant function 1 ∈ F̃ c
loc. If u ∈ C∞

0 (U),
then ui := xi · u ∈ C∞

0 (U). Hence xi ∈ F̃ c
loc, 1 ≤ i ≤ d. By (3.39) and Proposition 3.14, we get

Ěc(u, v) =
d∑

i=1

∫

U

∂u

∂xi

vdµ̌c
<xi,1>. (3.45)

Set νi := µ̌c
<xi,1>, νij := 1

2
µ̃c

<xi,xj>, 1 ≤ i, j ≤ d. Then (3.41) follows from (3.42)-(3.45). The proof
is complete.

4 Example and Counterexample

Example 4.1. Lévy Process

Let X = (Xt)t≥0 be a Lévy process on Rd with the characteristic exponent η, i.e. E{exp(i〈λ,Xt〉)}
= exp(−tη(λ)) for λ ∈ Rd and t ≥ 0. Hereafter, Rd is equipped with the standard product 〈·, ·〉
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and Euclidean norm | · |. The celebrated Lévy-Khintchine formula (cf. e.g. Bertoin [1, p.3] or
Sato [17, p.37]) tells us that

η(λ) = i〈b, λ〉+
1

2
Q(λ) +

∫

Rd

(
1− ei〈λ,x〉 + i〈λ, x〉1{|x|≤1}

)
µ(dx),

where b = (b1, . . . , bd) ∈ Rd, Q is a symmetric, nonnegative definite quadratic form on Rd, and µ
is a Lévy measure satisfying µ({0}) = 0 and

∫

Rd

|x|2
1 + |x|2µ(dx) < ∞. (4.1)

Or equivalently, the infinitesimal generator A of (Xt)t≥0 is characterized by (cf. Sato [17, Theorem
31.5])

Au(y) =
d∑

i=1

(−bi)∂iu(y) +
1

2

d∑
i,j=1

Qij∂i∂ju(y)

+

∫

Rd

(
u(y + x)− u(y)−

d∑
i=1

xi∂iu(y)1{|x|≤1}(x)

)
µ(dx) (4.2)

for u ∈ C∞
0 (Rd). Hereafter, C∞

0 (Rd) denotes the set of all infinitely differentiable functions on Rd

with compact supports. If in addition µ satisfies
∫
|x|≤1

|x|µ(dx) < ∞, then (4.2) can be written
as

Au(y) =
d∑

i=1

(−b̄i)∂iu(y) +
1

2

d∑
i,j=1

Qij∂i∂ju(y) +

∫

Rd

(u(y + x)− u(y)) µ(dx) (4.3)

with b̄i = bi +
∫
|x|≤1

xiµ(dx), 1 ≤ i ≤ d.

Let (A, D(A)) be the L2(Rd; dx)-generator of (Xt)t≥0. It is known that (cf. Jacob [10, Example
4.7.32])

D(A) = Hη(R
d) =

{
f ∈ L2(Rd; dx)

∣∣∣∣
∫

Rd

|η(λ)|2|f̂(λ)|2dλ < ∞
}

, (4.4)

where f̂(λ) stands for the Fourier transform of f , i.e. f̂(λ) = (2π)−d/2
∫
Rd exp{−i〈λ, x〉}f(x)dx.

Since |η(λ)| ≤ C(1 + |λ|2), ∀λ ∈ Rd, for some constant C > 0. One can check that S(Rd), the
space of rapidly decreasing functions, is contained in DA, and (4.2) holds for all u ∈ C∞

0 (Rd). By
Jacob [10, Example 4.7.32], (Xt)t≥0 is associated with a Dirichlet form on L2(Rd; dx) if and only
if there exists a constant C > 0 such that

|Im(η(λ))| ≤ C(1 + Re(η(λ))), ∀λ ∈ Rd, (4.5)

where Im(η(λ)) and Re(η(λ)) stand for the imaginary and real parts of η(λ), respectively.
In what follows, we assume that the characteristic exponent η satisfies condition (4.5) and

(E , D(E)) is the Dirichlet form associated with (Xt)t≥0. More precisely, (E , D(E)) is the unique
coercive closed form on L2(Rd; dx) such that (cf. e.g. Ma and Röckner [14]):

E(u, v) = (−Au, v) for all u ∈ D(A), v ∈ D(E). (4.6)
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By [J 01, Example 4.7.32],

D(E) = {f ∈ L2(Rd; dx)|
∫

Rd

Re(η(λ)) |f̂(λ)|2dλ < ∞},

E(f, g) =

∫

Rd

η(λ)f̂(λ)ĝ(λ)dλ, ∀f, g ∈ D(E). (4.7)

Moreover, by (4.7), one can check that (E , D(E)) is a regular Dirichlet form with the special
standard core C∞

0 (Rd).

Proposition 4.2. Set J(dx, dy) = 1
2
µ(dx− y)dy, K(dx) = 0, and ρ(x, y) = |x− y|. Then J and

K are the unique measures specified by Theorem 1.6, and ρ satisfies conditions (ρ.1) and (ρ.2)
of Theorem 2.1 (i) with Dρ = C∞

0 (Rd). Therefore, all the decompositions given in Theorems 1.6,
2.1 and 2.3 (i) hold for (E , D(E)) with these specified J , K, and ρ.

Proof. Set J(dx, dy) = 1
2
µ(dx − y)dy and K(dx) = 0. By (4.2) and (4.6), one can check that

(1.6) holds for u, v ∈ C∞
0 (Rd) with u ∈ I(v). Since C∞

0 (Rd) is a special standard core of E , the
conclusions of Theorem 1.6 follow. Set ρ(x, y) = |x− y|. Then (ρ.1) is satisfied by virtue of (4.1).
(ρ.2) is trivially satisfied with Dρ = C∞

0 (Rd). Hence the conclusions of Theorems 2.1 and 2.3 (i)
follow.

Remark 4.3. By (4.2) and (4.6), one can check that for u, v ∈ C∞
0 (Rd),

Ea,ρ(u, v) =

∫

Rd

[
d∑

i=1

bi∂iu(y)− 1

2

d∑
i,j=1

Qij∂i∂ju(y)

]
v(y)dy +

∫

Rd×Rd\d

[
2(u(y)− u(x))v(y)

1 + a|x− y|2

+2

(
d∑

i=1

(x− y)i∂iu(y)1{|x−y|≤1}(x)

)
v(y)

]
J(dx, dy).

Proposition 4.4. Set J(dx, dy) = 1
2
µ(dx− y)dy and K(dx) = 0.

(i) If µ({|x| ≤ 1}) < ∞, then decomposition (1.7) holds for all u, v ∈ C0(R
d) ∩D(E).

(ii) If
∫
|x|≤1

|x|µ(dx) < ∞, then decomposition (1.7) holds for all u, v ∈ C∞
0 (Rd).

(iii) In the situation of either (i) or (ii), for u, v ∈ C∞
0 (Rd),

Ec(u, v) =

∫

Rd

[
d∑

i=1

b̄i∂iu(y)− 1

2

d∑
i,j=1

Qij∂i∂ju(y)

]
v(y)dy,

where b̄i = bi +
∫
|x|≤1

xiµ(dx), 1 ≤ i ≤ d.

Proof. Taking account of (4.1), one can easily check that the conditions of (i) and (ii) in this
proposition imply conditions (i) and (ii) of Theorem 2.2, respectively. Therefore, Assertions (i)
and (ii) follow from Theorem 2.2. Assertion (iii) follows from (4.3), (4.6) and the uniqueness of
decomposition (1.7).

Example 4.5. Counterexample

Let (Xt)t≥0 be a Lévy process on R1 with the characteristic exponent

η(λ) = C|λ|α(1− i sgn(λ) tan(
απ

2
)), λ ∈ (−∞,∞),
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where C > 0, 1 < α < 2. Then (Xt)t≥0 is an α-stable process with Lévy measure

µ(dx) =
c

|x|α+1
1{x>0}dx,

where c > 0 is a constant.
Since

|Im(η(λ))| = | tan(
απ

2
)| · C|λ|α ≤ | tan(

απ

2
)|(1 + Re(η(λ))),

η satisfies (4.5). Then (Xt)t≥0 is associated with a regular Dirichlet form (E , D(E)) on L2(R1, dx)
and

D(E) =

{
f ∈ L2(R1; dx)

∣∣∣∣
∫

R1

|λ|α |f̂(λ)|2dλ < ∞
}

.

It follows from Proposition 4.2 that the jumping measures J and Ĵ have the forms

J(dx, dy) =
1

2
µ(dx− y)dy, Ĵ(dx, dy) =

1

2
µ(dy − x)dx.

For B ⊂ R1 ×R1\d,

J(B) =

∫

R1

∫

R1

IB(x, y)
1

2
µ(dx− y)dy =

∫

R1

∫

R1

IB(x + y, y)
1

2
µ(dx)dy.

Define u(x) = (|x| − 1)1{|x|<1} and v(x) = (|x| − 2)1{|x|<2}. We will show that u, v ∈ C0(R
1)∩

D(E). Obviously, u, v ∈ C0(R
1). Since

û(ξ) =
1√
2π

∫

R1

e−iξxu(x)dx = − 2√
2π

× 1− cos(ξ)

ξ2
, if ξ 6= 0

and ∣∣∣∣−
2√
2π

× 1− cos(ξ)

ξ2

∣∣∣∣ ≤
4√
2π

× 1

ξ2
,

∣∣∣∣−
2√
2π

× 1− cos(ξ)

ξ2

∣∣∣∣ ≤
1√
2π

,

we get

|û(ξ)|2 ≤
(

4√
2π

)2

·
(

1 ∧ 1

ξ4

)
.

Since û(ξ) is continuous, it follows that
∫
R1 |ξ|α|û(ξ)|2dξ < ∞, noting that 1 < α < 2. Thus,

u ∈ D(E). Similarly, we can show that v ∈ D(E). In fact, one can further check that u, v ∈ D(A)
if 1 < α < 3/2 (cf. (4.4)), where (A,D(A)) is the L2(R1; dx)-generator of (Xt)t≥0.

Through direct computation we get
∫

|x−y|>δ

(u(y)v(x)− u(x)v(y))J(dx, dy) = f(α, δ) + c · 4(α− 1)2 + 3(2− 3α)δ

3α(α− 1)2δα
,

where limδ↓0 f(α, δ) exists and the limit is finite. Since 1 < α < 2,

lim
δ↓0

4(α− 1)2 + 3(2− 3α)δ

3α(α− 1)2δα
= ∞

27



and therefore

lim
δ↓0

∫

|x−y|>δ

(u(y)v(x)− u(x)v(y))J(dx, dy) = ∞.

Remark 4.6. (i) Example 4.5 shows that condition (2.13) in Theorem 2.3 (ii) can not be dropped.
(ii) Example 4.5 also implies that there exist u, v ∈ C0(R

1) ∩D(E) such that the limit

lim
δ↓0

∫

|x−y|>δ

2(u(y)− u(x))v(y)J(dx, dy)

doesn’t exist, since u(y)v(x)− u(x)v(y) = (u(y)− u(x))v(y)− (v(y)− v(x))u(y). Therefore, the
constraint that u ∈ A(v) in (1.7) cannot be dropped. Similarly, the constraint that u ∈ Â(v) in
(2.1) cannot be dropped either.
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