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1 Introduction

Frequent operations in probability such as convolution or random summation

of random variables, produce probability distributions which are difficult to

evaluate in an explicit way. In these cases one needs to use numerical evaluation

methods, such as Fast Fourier Transform or recursive methods (see for instance,

[6],[8] or [15] in a context of random sums). These methods usually require

a previous discretization step of the initial random variables, when these ones

are continuous. The usual way to do so, is by means of rounding methods.

However, it is not always possible to evaluate the rounded random variable

in an explicit way, and it is not always clear by using these methods how the

rounding error propagates when one takes successive convolutions. In these cases

it seems interesting to consider alternative discretization methods. For instance,

when dealing with nonnegative random variables, it has been proposed in the

literature the following discretization method based on the Laplace-Stieltjes

transform of a random variable ([7, p.233]). Let X be a random variable taking

values on [0,∞) with distribution function F . Denote by φX(· ) the Laplace-

Stieltjes transform of X, that is

φX(t) := Ee−tX =
∫

[0,∞)

e−tudF (u), t > 0.

For each t > 0 we define a random variable X•t taking values on k/t, k ∈ N,

and such that

P (X•t = k/t) =
(−t)k

k!
φ

(k)
X (t), k ∈ N, (1)

where φ
(k)
X denotes the k-th derivative (φ(0)

X ≡ φX).

Thus, if we denote by L∗t F the distribution function of X•t we have that,

L∗t F (x) := P (X•t ≤ x) =
[tx]∑

k=0

(−t)k

k!
φ

(k)
X (t), x ≥ 0, (2)

where [x] indicates the largest integer less than or equal to x. It is interesting to

point out that L∗t F is the distribution function of a normalized Poisson mixture
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with mixing distribution tX (cf. [1, p.228]). The use of this method allows to

obtain the probability mass function in an explicit way in situations in which

rounding methods maybe couldn’t (see for instance [1] for gamma distributions).

Moreover, this method allows an easy representation of L∗t F in terms of F

which makes it possible the study of rates of convergence in the approximation

([1, 2]). In [1] the problem was studied in a general setting, whereas in [2] a

detailed analysis was carried out for the case of gamma distributions that is,

whose density function is given by

fa,p(x) :=
apxp−1e−ax

Γ(p)
, x > 0. (3)

In particular it can be seen in [2] that the error bounds for gamma distrib-

utions can be uniformly controlled for shape parameters p ≥ 1. This property

was the starting point in [14] to obtain error bounds for random sums of mix-

tures of gamma distributions, uniformly controlled on the parameters of the

random summation index. In all these papers, the measure of distance consid-

ered was the Kolmogorov (or sup-norm) distance. More specifically, for a given

real function f , defined on [0,∞) we denote by ‖f‖ the sup-norm, that is

‖f‖ := sup
x≥0

|f(x)|.

It was shown in [2] that for gamma distributions with shape parameter p ≥ 1,

we have that ‖L∗t F − F‖ is of order 1/t, length of the discretization interval.

Note that ‖L∗t F − F‖ is the Kolmogorov distance between X and X•t, as both

are nonnegative random variables.

The aim of this paper is twofold. First of all, we will consider a continuous

modification of (2) as when the initial distribution function is continuous, a

suitable approximation by means of a continuous function can be more accurate

than the approximation by a discrete distribution (see Section 2). Secondly we

will give conditions under which this continuous modification has rate of con-

vergence of 1/t2 instead of 1/t (see Section 3). In Section 4 we will consider
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the case of gamma distributions to see that the error bounds are also uniform

on the shape parameter. Finally, in Section 5 we will consider the application

of the results in Section 4 to the class of mixtures of Erlang distributions, re-

cently studied in [16]. This class contains many of the distributions used in

applied probability (in particular phase-type distributions) and is closed under

important operations such as mixtures, convolution or compounding.

2 The approximation procedure

The representation of L∗t F in (2) in terms of a Gamma process (cf. [1]) will play

an important role in our proofs. We recall this representation. Let (S(u) , u ≥ 0)

be a gamma process, in which S(0) = 0 and for u > 0, each S(u) has a gamma

density with parameters a = 1 and p = u, as given in (3) . Let g be a function

defined on [0,∞). We consider the gamma-type operator Lt given by

Ltg(x) := Eg

(
S(tx)

t

)
, x ≥ 0, t > 0, (4)

provided that this operator is well defined, that is, Lt|g|(x) < ∞, x ≥ 0, t > 0.

Then, whenever F is continuous on (0,∞), L∗t F as defined in (2), can be written

as (cf. [1, p.228])

L∗t F (x) = LtF

(
[tx] + 1

t

)
= EF

(
S([tx] + 1)

t

)
x ≥ 0, t > 0. (5)

It can be seen that the rates of convergence of Ltg to g are, at most, of order

1/t (observe (34) below). Our aim now is to get faster rates of convergence. To

this end, we will consider the following operator

L
[2]
t g(x) := 2L2tg(x)− Ltg(x) = 2Eg

(
S(2tx)

2t

)
− Eg

(
S(tx)

t

)
, x ≥ 0. (6)

This operator will give a rate of uniform convergence from L
[2]
t g to g of order

1/t2, on the following class of functions functions

D := {g ∈ C4([0,∞)) : ‖x2giv(x)‖ < ∞}. (7)
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The problem with L
[2]
t g is that when tx is not a natural number, Ltg(x) is given

in terms of Weyl fractional derivatives of the Laplace transform (cf. [3, p. 92])

and, in general, we are not able to compute them in an explicit way. However,

if we modify L
[2]
t g using linear interpolation, that is

M
[2]
t g(x) := (tx− [tx])

(
L

[2]
t g

(
[tx] + 1

t

))
+([tx]+1−tx)

(
L

[2]
t g

(
[tx]
t

))
(8)

we observe that the order of convergence of M
[2]
t g to g is also 1/t2, on the

following class of functions

D1 := {g ∈ C4([0,∞)) : ‖g′′(x)‖ ≤ ∞ and ‖x2giv(x)‖ < ∞}. (9)

Moreover, the advantage of using M
[2]
t g instead of L

[2]
t g to approximate g is

the computability. In the following result we note that the last approximation

applied to a distribution function F , is related to L∗t F , as defined in (1).

Proposition 2.1 let X be a nonnegative random variable with Laplace trans-

form φX . Let L∗t F, t > 0 be as defined in (1), and let M
[2]
t F be as defined in

(8). We have

M
[2]
t F

(
k

t

)
=





F (0), if k = 0;

2L∗2tF

(
2k − 1

2t

)
− L∗t F

(
k − 1

t

)
, if k ∈ N∗ (10)

and

M
[2]
t F (x) = (tx− [tx])M [2]

t F

(
[tx] + 1

t

)
+ ([tx] + 1− tx)M [2]

t F

(
[tx]
t

)
. (11)

Proof. Let t > 0 be fixed. First, observe that by (8), we can write

M
[2]
t F

(
k

t

)
= L

[2]
t F

(
k

t

)
, k ∈ N. (12)

Now, using (6) and (4), we have

M
[2]
t F (0) = L

[2]
t F (0) = F (0), (13)
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which shows (10) for k = 0. Finally, using (6), (4) and (5), we have for k ∈ N∗

L
[2]
t F

(
k

t

)
= 2EF

(
S(2k)

2t

)
−EF

(
S(k)

t

)
= 2L∗2tF

(
2k − 1

2t

)
−L∗t F

(
k − 1

t

)
. (14)

Thus, (12) and (14) show (10) for k ∈ N∗. Note that (11) is obvious by (8) and

(12). This completes the proof of Proposition 2.1. ¤

3 Error bounds for the approximation

Let g ∈ D, as defined in (7). Our first aim is to give bounds of ‖L[2]
t g − g‖ in

terms of ‖x2giv(x)‖. To this end we will use as ’test function’ the following one

φ(x) =





0, if x = 0;
x2

2

(
3
2
− log(x)

)
, otherwise.

(15)

Observe that φ ∈ D. In fact, by elementary calculus

φ
′
(x) = x(1− log x); φ

′′
(x) = − log x; φ

′′′
(x) = − 1

x
and φiv(x) =

1
x2

. (16)

In the next Lemma, we make an explicit computation of Lt(φ(x)), in terms of

the Ψ (or digamma) function. Recall that this function is defined as (cf. [4])

Ψ(x) :=
d

dx
log(Γ(x)) =

1
Γ(x)

∫ ∞

0

log u e−uux−1du, x > 0 (17)

and therefore, using the last equality we have the following probabilistic expres-

sion of the psi function in terms of the gamma process:

Ψ(x) = ElogS(x), x > 0. (18)

We will also make use of the following well known property of this function,

Ψ(x + 1) =
1
x

+ Ψ(x). (19)

Lemma 3.1 Let φ be as defined in (15), and let Lt, t > 0 be as defined in (4).

We have that

Ltφ(x) =
1

2t2

(
3(tx)2

2
− tx

2
− 1 + tx(tx + 1)(−ψ(tx) + log(t))

)
, x > 0. (20)
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Proof. Let t > 0 and x > 0 be fixed. First of all, using elementary calculus, (4)

and (19), we can write

Ltφ(x) = E
S(tx)2

2t2

(
3
2
− log

(
S(tx)

t

))

=
1

2t2
1

Γ(tx)

∫ ∞

0

u2

(
3
2
− log

(u

t

))
e−uutx−1du

=
(tx)(tx + 1)

2t2
1

Γ(tx + 2)

∫ ∞

0

(
3
2
− log

(u

t

))
e−uutx+1du

=
(tx)(tx + 1)

2t2

(
3
2
− E log

(
S(tx + 2)

t

))
. (21)

Therefore, using (18), we can write

Ltφ(x) =
(tx)(tx + 1)

2t2

(
3
2
− ψ(tx + 2) + log(t)

)
. (22)

Now, using twice (19), we have

ψ(tx + 2) =
2(tx) + 1
tx(tx + 1)

+ ψ(tx). (23)

By (22), (23) we obtain

Ltφ(x) =
(tx)(tx + 1)

2t2

(
3
2
− 2(tx) + 1

tx(tx + 1)
− ψ(tx) + log(t)

)
.

The result follows using elementary calculus in the expression above. ¤

In the next Lemma we will study the approximation properties of Ltφ to φ.

We will make use of the following inequalities for the psi function.

1
2x

≤ log(x)− ψ(x) ≤ 1
x

, x > 0, (24)

and

log(x)− ψ(x)− 1
2x

≤ 1
12x2

, x > 0. (25)

The first inequality can be found in [4, p. 374] and the second one is an imme-

diate consequence of the fact that the function

ψ(x)− log(x) +
1
2x

+
1

12x2
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is completely monotonic (cf. [13, p.304]) and thus, nonnegative.

Lemma 3.2 Let φ be as defined in (15), and let Lt, t > 0 be as defined in (4).

We have

‖Ltφ(x)− φ(x) +
x log x

2t
+

1
3t2

‖ ≤ 3
8t2

. (26)

Proof. Let x > 0 and t > 0 be fixed. First of all, we can write

φ(x) =
1

2t2

(
3(tx)2

2
− (tx)2 log(tx) + (tx)2 log(t)

)
. (27)

On the other hand,

x log x

2t
+

1
3t2

=
1

2t2

(
(tx) log tx− (tx) log t +

2
3

)
. (28)

Therefore, using Lemma 3.1, (27) and (28) we can write

Ltφ(x)− φ(x) +
x log x

2t
+

1
3t2

=
1

2t2

(
− tx

2
− 1− (tx)2ψ(tx)− (tx)ψ(tx) + (tx)2 log(tx) + (tx) log(tx) +

2
3

)

=
1

2t2

(
(tx)2

(
log(tx)− ψ(tx)− 1

2(tx)

)
+ tx(log(tx)− ψ(tx))− 1

3

)
. (29)

By (24) we can write

1
6
≤ tx(log(tx)− ψ(tx))− 1

3
≤ 2

3
. (30)

Thus, using (29), (30) and (25), we obtain (26). ¤

We are in a position to enunciate the following.

Theorem 3.1 Let g ∈ D, as defined in (7) and let L
[2]
t , t > 0 be as defined in

(6). We have

|L[2]
t g(x)− g(x)| ≤ 1

6t2
‖xg′′′(x)‖+

9
16t2

‖x2giv(x)‖.
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Proof. Let g ∈ D. Note firstly that this implies that

‖xg′′′(x)‖ ≤ ‖x2giv(x)‖ < ∞. (31)

First of all it is easy to see that

lim
x→∞

g′′′(x) = 0. (32)

This can be deduced because for all 0 < α < 1, the fact that ‖x2giv(x)‖ <

∞ implies that lim
x→∞

x1+αgiv(x) = 0. By L’Hopital’s rule, we have also that

lim
x→∞

xαg′′′(x) = 0 thus obtaining (32) easily. Then, taking into account (32),

we can write

g′′′(x) =
∫ ∞

x

giv(u)du

and therefore

|xg′′′(x)| ≤ x

∫ ∞

x

|u2giv(u)|
u2

du ≤ ‖x2giv(x)‖,

thus implying (31).

Now, let t > 0 and Lt be as defined in (4). As a previous step, we will prove

that

|Ltg(x)− g(x)− xg′′(x)
2t

− xg′′′(x)
3t2

| ≤ 3
8t2

‖x2giv(x)‖, x > 0. (33)

To this end, let x > 0. Using and a Taylor’s series expansion of the random

point u = S(tx)/t around x, and taking into account that E(S(x) − x) = 0,

E(S(x)− x)2 = x and E(S(x)− x)3 = 2x, we can write

Ltg(x)− g(x) = Eg

(
S(tx)

t

)
− g(x)

=
E(S(tx)− tx)2

2t2
g′′(x) +

E(S(tx)− tx)3

6t3
g′′′(x) +

1
6
E

∫ S(tx)
t

x

giv(θ)(
S(tx)

t
− θ)3dθ

=
xg′′(x)

2t
+

xg′′′(x)
3t2

+
1
6
E

∫ S(tx)
t

x

giv(θ)(
S(tx)

t
− θ)3dθ. (34)
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Then, using (34) we get the bound
∣∣∣∣Ltg(x)− g(x)− xg′′(x)

2t
− xg′′′(x)

3t2

∣∣∣∣ =
1
6

∣∣∣∣∣E
∫ S(tx)

t

x

giv(θ)
(

S(tx)
t

− θ

)3

dθ

∣∣∣∣∣

≤ ‖x2giv(x)‖
6

E

∫ max(x,
S(tx)

t )

min(x,
S(tx)

t )

∣∣∣∣
S(tx)

t
− θ

∣∣∣∣
3 1

θ2
dθ

=
‖x2giv(x)‖

6
E

∫ S(tx)
t

x

(
S(tx)

t
− θ

)3 1
θ2

dθ. (35)

Let φ(· ) be as in (15). Using (34) and (16) we have

Ltφ(x)− φ(x) +
x log x

2t
+

1
3t2

=
1
6
E

∫ S(tx)
t

x

(
S(tx)

t
− θ

)3 1
θ2

dθ. (36)

Then, by (35) and (36) we can write

|Ltg(x)−g(x)− xg′′(x)
2t

− xg′′′(x)
3t2

| ≤ ‖x2giv(x)‖‖Ltφ(x)−φ(x)+
x log x

2t
+

1
3t2

‖.

Thus, (33) follows applying Lemma 3.2.

Observe that in (33), the only term of order 1/t is the one accompanying to

the second derivative. We will see that by means of the operator L
[2]
t , as defined

in (6) we can eliminate this term. In fact, using (33) we have

L
[2]
t g(x)− g(x) = 2 (L2tg(x)− g(x))− (Ltg(x)− g(x))

= 2
(
L2tg(x)− g(x)− x

4t
g′′(x)− x

12t2
g′′′(x)

)

−
(
Ltg(x)− g(x)− x

2t
g′′(x)− x

3t2
g′′′(x))

)
− x

6t2
g′′′(x)

≤ 1
6t2

‖xg′′′(x)‖+
9

16t2
‖x2giv(x)‖. (37)

This completes the proof of Theorem 3.1. ¤

Finally, in the following result we consider the approximation properties of

M
[2]
t .

Theorem 3.2 Let g ∈ D1, as defined in (9) and let M
[2]
t , t > 0 be as defined

in (8). We have

‖M [2]
t g − g‖ ≤ 1

8t2
‖g′′(x)‖+

1
6t2

‖xg′′′(x)‖+
9

16t2
‖x2giv(x)‖.
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Proof. Note firstly that g ∈ D1 implies that ‖xg′′′(x)‖ < ∞, thanks to (31).

Now let t > 0 and x > 0 be fixed. We write,

M
[2]
t g(x)− g(x) = (tx− [tx])

(
L

[2]
t g

(
[tx] + 1

t

)
− g

(
[tx] + 1

t

))

+ ([tx] + 1− tx)
(

L
[2]
t g

(
[tx]
t

)
− g

(
[tx]
t

))

+ (tx− [tx])
(

g

(
[tx] + 1

t

)
− g(x)

)
+ ([tx] + 1− tx)

(
g

(
[tx]
t

)
− g(x)

)
. (38)

Using the usual expansion

|g(y)− g(x)− (y − x)g′(x)| ≤ (y − x)2

2
‖g′′‖ (39)

and taking into account that

(tx− [tx])
(

g

(
[tx] + 1

t

)
− g(x)

)
+ ([tx] + 1− tx)

(
g

(
[tx]
t

)
− g(x)

)

= (tx− [tx])
(

g

(
[tx] + 1

t

)
− g(x)− [tx] + 1− tx

t
g′(x)

)

+ ([tx] + 1− tx)
(

g

(
[tx]
t

)
− g(x)− [tx]− tx

t
g′(x)

)
, (40)

we obtain from the above expression and (39)
∣∣∣∣(tx− [tx])

(
g

(
[tx] + 1

t

)
− g(x)

)
+ ([tx] + 1− tx)

(
g

(
[tx]
t

)
− g(x)

)∣∣∣∣

≤
(

(tx− [tx])
([tx] + 1− tx)2

2t2
+ ([tx] + 1− tx)

([tx]− tx)2

2t2

)
‖g′′‖

=
(tx− [tx])([tx] + 1− tx)

2t2
‖g′′‖ ≤ 1

8t2
‖g′′‖, (41)

the last inequality as as for each k ∈ N, the supremum of (u−k)(k+1−u), k ≤
u ≤ k + 1 is attained at u = k + 1/2. On the other hand, taking into account

Theorem 3.1 we have
∣∣∣∣(tx− [tx])

(
L

[2]
t g

(
[tx] + 1

t

)
− g

(
[tx] + 1

t

))

+([tx] + 1− tx)
(

L
[2]
t g

(
[tx]
t

)
− g

(
[tx]
t

))∣∣∣∣

≤ ‖L[2]
t g − g‖ ≤ 1

6t2
‖xg′′′(x)‖+

9
16t2

‖x2giv(x)‖. (42)
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The result follows by (38), (41) and (42). ¤

4 Application to gamma distributions

In this Section we will study the case of gamma distributions, that is, with

density function as given in (3). It is not hard to see that these distributions

are in the class D1, for a shape parameter p = 1 or p ≥ 2, and therefore, we are

a position of apply Theorem 3.2. The aim of this Section is to show that in fact,

the bounds in this Theorem can uniformly bounded on the shape parameter,

which will be an advantage when dealing with mixtures of these distributions.

From now on, we denote by

fp(x) :=





e−xxp−1

Γ(p)
, x > 0, if p ∈ IR \ {0,−1,−2, . . . };

0, x > 0, if p ∈ {0,−1,−2, . . . },
(43)

Note that for p > 0 the function above is the density of a gamma random variable

as in (3) with scale parameter a = 1. Results for another scale parameter

will follow by a change of scale (see Proposition 5.2 below). First of all we

will consider the case p = 1, that is an exponential random variable. As the

distribution function of this random variable has no computational problems,

it makes no sense to approximate it. However, when we consider the problem

of approximating a general mixture of Gamma distributions, the exponential

distribution could be a component.

Lemma 4.3 Let F (x) = 1− e−x, x ≥ 0. For t > 0, let M
[2]
t F be as defined in

(8). We have that

‖M [2]
t F − F‖ ≤

(
1
8

+
1
6e

+
9

4e2

)
1
t2
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Proof. First of all, note that |F (k)(x)| = e−x, and that sup
x≥0

xke−x = kke−k, k =

1, 2, . . . . Thus, we have

‖F ′′‖ = 1, ‖xF ′′(x)‖ = e−1 and ‖x2F iv(x)‖ = 22e−2 (44)

The conclusion follows taking into account Theorem 3.2. ¤

Now we will deal with the case p ≥ 2 in (43). The following Lemma will be

useful in order to bound the derivatives of this density.

Lemma 4.4 Let fp(· ), p > 0 be as defined in (43). We have for all n ∈ N

dn

dxn
fp(x) =

e−xxp−n−1

Γ(p)

n∑

i=0

(
n

i

)
(−1)i




n−i∏

j=1

(p− j)


xi

=
n∑

i=0

(
n

i

)
(−1)ifp−n+i(x), x > 0, (45)

in which
0∏

j=1

(p− j) = 1.

Proof. Let n ∈ N, p > 0 and x > 0. We recall (43) and apply Leibniz’s rule for

derivatives to write

dn

dxn
fp(x) =

1
Γ(p)

n∑

i=0

(
n

i

)
di

dxi
e−x· dn−i

dxn−i
xp−1

=
1

Γ(p)

n∑

i=0

(
n

i

)
(−1)ie−x




n−i∏

j=1

(p− j)


xp−1−(n−i),

which proves the first inequality in (45). The second equality follows because

fp−n+i(x) =
e−xxp−n−1

Γ(p)




n−i∏

j=1

(p− j)


xi, i = 0, 1, . . . n (46)

Actually, for p − n + i ∈ IR \ {0,−1,−2 . . . } we recall (43) and the fact that
Γ(p)

Γ(p− n + i)
=

n−i∏

j=1

(p − j). For p − n + i ∈ {0,−1,−2 . . . }, observe that both

terms in (46) are equal to 0. ¤
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The aim of the following results is to get bounds of the quantities required

in Theorem 3.2, depending on the shape parameter p, but also decreasing on

this parameter.

First of all we formulate a technical lemma in which we define certain de-

creasing functions, which will be used to bound the weighted derivatives of fp.

Its proof is rather long, although only elementary calculus is required.

Lemma 4.5 We have

(i) The function

g1(p) :=
1

Γ(p)
e−(p−1)(p− 1)p−1, p > 1, (g1(1) = 1) , (47)

is decreasing in p.

(ii) The function

g2(p) :=
1

Γ(p)
e−(p− 1

2+ 1
2
√

4p−3)
(

p− 1
2

+
1
2

√
4p− 3

)p−1/2

, p ≥ 1 (48)

is decreasing in p.

(iii) The function

g3(p) :=
1

Γ(p)
e−(p−1−√p−1)(

√
p− 1− 1)p−2(

√
p− 1)p−1, p > 2, (49)

(g3(2) = 1), is decreasing in p.

(iv) The function

g4(p) :=
1

Γ(p)
e−(p−√3p−2)(p−

√
3p− 2)p−2(

√
3p− 2− 1)3, p > 2 (50)

(g4(2) = 1) is decreasing in p.

Proof. Parts (i) and (ii) are proven in [14]. (see Lemmas 5.1 and 5.2 in this

paper for (i) and (ii), respectively).

13



To show part (iii), define the auxiliary function

l3(u) := − log Γ(u2+1)−u(u−1)+(u2−1) log(u−1)+u2 log(u), u > 1. (51)

Note that g3(· ), as defined in (49), can be expressed as

g3(p) = el3(
√

p−1), p > 2. (52)

We will show firsty that l3 is decreasing. In fact, it follows by calculus (recall,

(17)) that

l′3(u) = 2u(−ψ(u2 + 1) + log(u(u− 1))) + 2, u > 1. (53)

Now, we use (24) to write

l′3(u) ≤ 2u

(
− log(u2 + 1) +

1
u2 + 1

+ log(u(u− 1))
)

+ 2, u > 1. (54)

Divide the right hand side by 1/(2u) and call

d3(u) := − log(u2 + 1) +
1

u2 + 1
+ log(u(u− 1)) +

1
u

, u > 1.

It can be checked by calculus that

d′3(u) =
1− 2u + 4u2 + u4

u2(u− 1)(u2 + 1)2
≥ 0, u > 1

and that limu→∞ d3(u) = 0. Then, we conclude that d3(u) ≤ 0, u > 1, and

therefore, by (54), that l′3(u) ≤ 2ud3(u) ≤ 0, thus showing that l3(· ) is decreas-

ing. This implies, recalling (52) that g3(p) is decreasing, thus concluding the

proof of part (iii). The proof of (iv) is very similar to the proof of (iii). Firstly,

define

l4(u) :=− log Γ
(

u2 + 2
3

)
− (u− 1)(u− 2)

3
+

u2 − 4
3

log
(

(u− 1)(u− 2)
3

)

+ 3 log(u− 1), u > 2.

We observe that

g4(p) = el4(
√

3p−2), p > 2. (55)
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We will show that l4(· ) is decreasing. Thus, taking derivatives it can be checked

that

l′4(u) =
2u

3

(
−ψ

(
u2 + 2

3

)
+ log

(
(u− 1)(u− 2)

3

))
+

2u

u− 1
, u > 2.

Now, using (25), we have

l′4(u) ≤ 2u

3

(
− log

(
(u2 + 2)

3

)
+

3
2(u2 + 2)

+
3

4(u2 + 2)2
+ log

(
(u− 1)(u− 2)

3

))

+
2u

u− 1
, u > 2. (56)

To show that l′4(u) ≤ 0, we divide by 2u/3 the above expression and define

d4(u) :=− log
(

(u2 + 2)
3

)
+

3
2(u2 + 2)

+
3

4(u2 + 2)2
+ log

(
(u− 1)(u− 2)

3

)

+
3

u− 1
, u > 2.

After some computations we see that

d′4(u) = 3
2u4 − 2u3 + 13u2 − 10u + 24

(u− 1)2(u2 + 2)3(u− 2)
≥ 0, u > 2.

This means that d4 is increasing. As limu→∞ d4(u) = 0, we have that d4(u) ≤
0, u > 2. Then, using (56) we conclude that

3
2u

l′4(u) ≤ d4(u) ≤ 0, u > 2.

This shows that l4(u) is decreasing. Using this fact and taking into account

(55), we obtain (iv). The proof of Lemma 4.5 is complete. ¤

Lemma 4.6 Let fp be as in (43) We have

(i) sup
x≥0

|fp(x)| = g1(p), p ≥ 1.

(ii) sup
x≥0

|xf ′p(x)| = g2(p), p ≥ 1.

(iii) sup
x≥0

|f ′p(x)| = g3(p), p ≥ 2.
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(iv) sup
x≥0

|xf ′′p (x)| ≤ max{g1(p− 1), g2(p− 1)}, p ≥ 2.

(v) sup
x≥0

|x2f ′′′p (x)| ≤ g4(p) + 3g2(p− 1) + g1(p− 1), p ≥ 2.

Proof. To show part (i), it is clear that, for p ≥ 1,

sup
x≥0

fp(x) = fp(p− 1) =
e−(p−1)(p− 1)p−1

Γ(p)
,

and (i) follows recalling (47). To show part (ii) we have (cf. [14] Remark 3.2.

and Lemma 5.2)

sup
x≥0

|xf ′p(x)| = 1
Γ(p)

(
p− 1

2
+

1
2

√
4p− 3

)p−1/2

e−p− 1
2+ 1

2
√

4p−3, p > 1, (57)

and (ii) follows recalling (48). To show part (iii), by (45), we have for p ≥ 2,

f ′p(x) =
1

Γ(p)
e−xxp−2(p− 1− x), x > 0, (58)

f ′′p (x) =
1

Γ(p)
e−xxp−3((p− 1)(p− 2)− 2(p− 1)x + x2), x > 0, (59)

and it can be checked easily that the zeroes of f ′′p (x) are p1 := p − 1 −√p− 1

and p2 := p − 1 +
√

p− 1. Therefore, |f ′p(x)| must attain its maximum value

either at p1 or p2. Actually p1 corresponds to the maximum. To show that we

will see that

f ′p(p1)
|f ′p(p2)| = e2

√
p−1

(√
p− 1− 1√
p− 1 + 1

)p−2

≥ 1, p ≥ 2. (60)

To show the last inequality in (60), taking logarithms we will prove that

r1(p) :=2
√

p− 1+(p−2)
(
log(

√
p− 1− 1)−log(

√
p− 1 + 1)

)
≥ 0, p > 2. (61)

Call

ρ1(b) :=
2b

b2 − 1
+ (log(b− 1)− log(b + 1)) , b > 1.

Note that

r1(p) = (p− 2)ρ1(
√

p− 1), p > 2. (62)
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We will firstly prove that

ρ1(b) ≥ 0, b > 1. (63)

To show (63), it is readily seen that ρ′1(b) = −4(b2 − 1)−2, b > 1, so that ρ1 is

decreasing. As limb→∞ ρ1(b) = 0, we have (63). This implies also (61), recalling

(62). Therefore, we conclude that

sup
x>0

|f ′p(x)| = f ′p(p1) =
1

Γ(p)
e−(p−1−√p−1)(

√
p− 1− 1)p−2(

√
p− 1)p−1, (64)

this, together with (49), shows (iii).

To show part (iv), note that using (45), we can write f ′p(x) = fp−1(x)−fp(x)

and therefore,

xf ′′p (x) = xf ′p−1(x)− xf ′p(x), x > 0, p ≥ 2. (65)

On the other hand, we see in (59) that f ′p−1(x) and f ′p(x) have the same sign

for 0 < x < p− 2 and p− 1 < x < ∞ and therefore, using part (ii), and Lemma

4.5(i), we can write

sup
x 6∈[p−2,p−1]

|xf ′′p (x)| ≤ max(g2(p− 1), g2(p)) = g2(p− 1). (66)

On the other hand we have by (59)

xf ′′p (x) =
1

Γ(p)
e−xxp−2((p− 1)(p− 2)− 2(p− 1)x + x2) (67)

using the above expression and taking into account that for p− 2 ≤ x ≤ p− 1

e−xx(p−2) ≤ e−p−2(p−2)p−2 and |(p−1)(p−2)−2(p−1)x+x2| = p−1, (68)

the last inequality as |(p− 1)(p− 2)− 2(p− 1)x + x2|, p− 2 ≤ x ≤ p− 1 attains

its maximum value at p− 1. From (67) and (68), we conclude that

sup
x∈[p−2,p−1]

|xf ′′p (x)| ≤ 1
Γ(p)

e−(p−2)(p− 2)p−2(p− 1) = g1(p− 1), (69)
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the last inequality by (i). Thus (66) and (69) conclude the proof of (iv). To

show (v), let p ≥ 2. We have firstly, by (45)

f ′′′p (x) = fp−3(x)− 3fp−2(x) + 3fp−1(x)− fp(x)

=
e−xxp−4

Γ(p)
((p− 1)(p− 2)(p− 3)− 3(p− 1)(p− 2)x + 3(p− 1)x2 − x3)

=
e−xxp−4

Γ(p)
((p− 1− x)3+3(p− 1)(x− (p− 2))−(p− 1)), x > 0. (70)

Therefore, if we call

hp(x) :=
e−xxp−2

Γ(p)
(p− 1− x)3, x > 0.

We have, recalling (58)

x2f ′′′p (x) =
e−xxp−2

Γ(p)
((p− 1− x)3 − 3(p− 1)(x− (p− 2))− (p− 1))

= hp(x) + 3xf ′p−1(x)− fp−1(x), x ≥ 0. (71)

We will firstly see that

sup
x≥0

|hp(x)| = g4(p), (72)

with g4(· ) as defined in (50). Note that

h′p(x) =
e−xxp−3

Γ(p)
(p− 1− x)2(x2 − 2px + (p− 1)(p− 2)), x > 0

The maximum value of |hp| will be attained at the roots of the last polynomials,

being p1 := p +
√

3p− 2 and p2 := p −√3p− 2. To check which value attains

the maximum, call u :=
√

3p− 2. Note that p1 = (u + 1)(u + 2)/3 and p2 =

(u− 1)(u− 2)/3. Then, with this notation we will prove that

|hp(p2)|
|hp(p1)| = e2u

(
(u− 1)(u− 2)
(u + 1)(u + 2)

)u2−4
3

(
u− 1
u + 1

)3

≥ 1, u > 2. (73)

To show the last inequality in (73), taking logarithms, we will show that

ρ2(u) := 2u +
u2 − 4

3
log

(
(u− 1)(u− 2)
(u + 1)(u + 2)

)
+ 3 log

(
u− 1
u + 1

)
≥ 0 u > 2. (74)
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Note that

ρ′2(u) =2 +
2u

3
log

(
(u− 1)(u− 2)
(u + 1)(u + 2)

)
+

u2 − 4
3

(
1

u− 1
+

1
u− 2

− 1
u + 1

− 1
u + 2

)

+ 3
(

1
u− 1

− 1
u + 1

)
=

4u2

u2 − 1
+

2u

3
log

(
(u− 1)(u− 2)
(u + 1)(u + 2)

)
u > 2.

We will show that ρ′2(u) ≤ 0, u > 2. In fact,

d

du

3
2u

ρ′2(u) =
36

(u + 1)2(u− 1)2(u2 − 4)2
≥ 0, u > 2.

and then 3(2u)−1ρ′2(u) is increasing. As limu→∞ 3(2u)−1ρ′2(u) = 0, we conclude

that 3(2u)−1ρ′2(u) ≤ 0, and thus that ρ′2(u) ≤ 0. Therefore, ρ2(u) is decreasing.

This, together with the fact that limu→∞ ρ2(u) = 0, proves (74), and therefore

(73). Then ‖hp‖ = hp(p2) = g4(p), thus proving (72). Now, the proof of part

(iv) follows easily recalling (71) and using (72) and parts (i) and (ii). ¤

As an immediate consequence of Theorem 3.2 and Lemma 4.6 we have the

following

Corollary 4.1 Let Fp be a gamma distribution of shape parameter p ≥ 2, that

is whose density function is given by (43). Let M
[2]
t , t > 0 be as defined in (8).

We have

‖M [2]
t Fp − Fp‖ ≤

(
17
12

+
27
16e

)
1
t2
≈ 2.0375

t2

Proof. Let p ≥ 2 be fixed. The result is an immediate consequence of Theorem

3.2, as F ′p = fp as defined in (43). Therefore by Lemma 4.6(iii) and Lemma 4.5

(ii) we have that

‖F ′′p ‖ = ‖f ′p‖ = g3(p) ≤ g3(2) = 1. (75)

On the other hand, we see we have by Lemma 4.5 (i) that

g1(p− 1) ≤ g1(1) = 1 and g2(p− 1) ≤ g2(1) = e−1, p ≥ 2 (76)
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Thus, using the above inequalities and Lemma 4.6(iv), we have

‖xF ′′′p (x)‖ = ‖xf ′′p (x)‖ ≤ 1. (77)

Finally by Lemma 4.6(v), Lemma 4.5 (iv) and (76) we have

‖x2F iv
p (x)‖ = ‖x2f ′′′p (x)‖ ≤ g4(2) + 3g2(1) + g1(1) = 2 + 3e−1. (78)

Using (75), (77), (78), and Theorem 3.2, we obtain the result. This completes

the proof of Corollary 4.1. ¤

5 Applications to mixtures of Erlang distribu-
tions and phase-type distributions

In this Section we apply the results in the previous Section to mixtures of Erlang

distributions, and to random sums of them. In order to make the study for an

arbitrary scale parameter, we see in the following result the behaviour of M
[2]
t F

under changes of scale.

Proposition 5.2 Let X be a random variable with distribution function F .

For a given c > 0 denote by F c the distribution function of cX. Let M
[2]
t F and

M
[2]
t F c, t > 0 be the respective approximations for F and F c, as defined in (8).

We have that

M
[2]
t F c(x) = M

[2]
ct F (x/c), x ≥ 0. (79)

Therefore,

‖M [2]
t F c − F c‖ = ‖M [2]

ct F − F‖. (80)

Proof. Let t > 0 and c > 0 be fixed. First of all, we will see that

M
[2]
t F c

(
k

t

)
= M

[2]
ct F

(
k

ct

)
, k ∈ N, (81)
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and therefore, (79) is satisfied for points in the set k/t, k ∈ N. To this end, we

use (12) and (6), and take into account that

F c(x) = F (x/c), x ≥ 0, (82)

to write, for all k ∈ N,

M
[2]
t F c

(
k

t

)
= 2EF c

(
S(2k)

2t

)
− EF c

(
S(k)

t

)

= 2EF

(
S(2k)
2ct

)
− EF

(
S(k)
ct

)
= M

[2]
ct F

(
k

ct

)
, (83)

thus proving (81). For a general x > 0, we use (8) and (81), to see that

M
[2]
t F c(x) = (tx− [tx])M [2]

t F c

(
[tx] + 1

t

)
+ ([tx] + 1− tx)M [2]

t F c

(
[tx]
t

)

(tx− [tx])M [2]
ct F

(
[tx] + 1

ct

)
+ ([tx] + 1− tx)M [2]

ct F

(
[tx]
ct

)
= M

[2]
ct F

(x

c

)
,

the last inequality being trivial, as tx = (ct)(̇x/c). This concludes the proof of

(79). Finally, (80) follows easily from (79) and (82), as we have

sup
x>0

|M [2]
t F c(x)− F c(x)| = sup

x>0
|M [2]

ct F (x/c)− F (x/c)|

This concludes the proof of Proposition 5.2. ¤

As an application of the results in the previous Section, we will consider the

class of (possibly infinite) mixtures of Erlang distributions recently studied by

Willmot and Woo (cf. [16]). More specifically let F(a,j), a > 0, j ∈ N∗, be the

distribution function corresponding to the density f(a,j) given in (3). (an Erlang

j distribution with scale parameter a). By convention F(a,0) a > 0, will mean

the distribution degenerate at the point 0. We will consider a finite number of

scale parameters arranged in increasing order (0 < a1 < · · · < an), and a set of

nonnegative numbers pij , i = 1, . . . n, j = 0, 1, 2, . . . , such that
n∑

i=1

∞∑

j=0

pij = 1,

and define the class of distribution function ME(a1, . . . , an) given as

F (x) =
n∑

i=1

∞∑

j=1

pijFai,j(x) (84)

21



As it was pointed out in Willmot and Woo (cf. [16]), a distribution as in

(84) admits an alternative expression by using only the maximum of the scale

parameters, that is

F (x) =
∞∑

j=0

pjFan,j(x) (85)

(see [16] for more details). Moreover, the class (85) is a wide class containing

many of the distributions considered in applied probability, such as (obviously)

finite mixtures of Erlangs, but also the class of phase-type distributions (see

Proposition 5.4 below). Every random variable having a representation as in

(84) can be approximated by means of M
[2]
t , as it is shown in the following.

Proposition 5.3 Let F be a distribution function of the form ME(a1, . . . , an),

0 < a1 < · · · < an, as in (84). Let M
[2]
t , t > 0 be as defined in (8). We have

‖M [2]
t F − F‖ ≤

(
17
12

+
27
16e

) ∑n
i=1(

∑∞
j=1 pij)a2

i

t2
. (86)

Proof. Let t > 0 and 0 < a1 < · · · < an be fixed. Note that the linearity of

M
[2]
t allows us to write

M
[2]
t F (x) =

n∑

i=1

∞∑

j=0

pijM
[2]
t Fai,j(x), x ≥ 0. (87)

By Corollary 4.1 we can write, for a scale parameter 1,

‖M [2]
t F1,j − F1,j‖ ≤

(
17
12

+
27
16e

)
1
t2

, j = 2, 3, . . . (88)

Moreover, using Lemma 4.3 we have

‖M [2]
t F1,1 − F1,1‖ ≤

(
1
2

+
1
6e

+
9

4e2

)
1
t2
≤

(
17
12

+
27
16e

)
1
t2

(89)

Let now the general scale parameters ai, i = 1, . . . , n. We use that given X a

gamma random variable of scale parameter 1, then, X/ai is a gamma random
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variable of scale parameter ai, and therefore, using Proposition 5.2, (88) and

(89), we have for each ai, i = 1, . . . , n and j ∈ N∗

‖M [2]
t Fai,j − Fai,j‖ = ‖M [2]

t/ai
F1,j − F1,j‖ ≤

(
17
12

+
27
16e

)
a2

i

t2
. (90)

It can be checked, using (6) and (8) that M
[2]
t Fai,0 = Fai,0. Thus using (87)

and (90) we have

‖M [2]
t F − F‖ ≤

n∑

i=1

∞∑

j=1

pij‖M [2]
t Fai,j − Fai,j‖

≤
(

17
12

+
27
16e

) ∑n
i=1(

∑∞
j=1 pij)a2

i

t2
. (91)

This completes the proof of Proposition 5.3. ¤

Let (Xi)i∈N∗ be a sequence of independent, identically distributed nonneg-

ative random variables. Let M be a random variable concentrated on the non-

negative integers, independent of (Xi)i∈N∗ . Consider the random variable

M∑

i=1

Xi, (92)

with the convention that the empty sum is 0.

As a consequence of the previous result, we can provide error bounds for

compound distributions of mixtures of Erlangs, as stated in the following

Corollary 5.2 Let G be a compound distribution of mixtures of Erlangs, that

is the distribution function of a random sum as in (92), in which the sequence

of (Xi)i∈N∗ has a common distribution ME(a1, . . . , an), 0 < a1 < · · · < an, as

defined in (84). Let M
[2]
t be as in (8). We have that

‖M [2]
t G−G‖ ≤

(
17
12

+
27
16e

)
(1−G(0))a2

n

t2
,

Proof. The proof is immediate taking into account that a mixture of Erlangs

ME(a1, . . . , an), 0 < a1 < · · · < an can be expressed as in (85), and compound
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distributions of these random variables are also mixtures of Erlang (cf. [16,

p.106], with a slight modification in the coefficients, as we allow a point mass

at 0), that is, we can write

G(x) =
∞∑

j=0

qjFan,j(x), x ≥ 0,

in which {qj , j = 0, 1, . . . } form a probability mass function. Note that, ob-

viously, q0 = G(0). Using the above expression the result is immediate by

Proposition 5.3. ¤

The class of phase type distributions, of great importance in applied prob-

ability, can be expressed as mixtures of Erlangs. Phase-type distribution are

defined as the time until absorption in a continuous-time Markov chain with

one absorbent state (cf., for instance [10, Ch.II], or [5, Ch.VIII], and the refer-

ences therein). A phase-type distribution can be expressed in terms of a matrix

exponential as follows. Consider a vector α = (α1, . . . αn) of nonnegative num-

bers such that α1 + · · · + αn ≤ 1. Let A be a n × n matrix with negative

diagonal entries, non-negative off-diagonal entries and non-positive row sums.

A nonnegative random variable X is a phase type distribution PH(α, A) if its

distribution function is written as

F (x) = 1− αexA1′, x ≥ 0,

in which 1′ represent the transpose of the n th dimensional vector 1 = (1, . . . , 1).

Note that phase-type distributions are absolutely continuous random variables

when α1+· · ·+αn = 1, having positive mass at 0 (of magnitude 1−(α1+· · ·+αn))

when α1 + · · ·+αn < 1. Phase-type distributions have been extensively studied

both from a theoretical and practical point of view. In particular, the following

property of phase-type distributions, due to Maier (cf.[11, p.591]) allows us to

give expressions of phase-type distributions in terms of mixtures of Erlangs.
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Let f be the density of an absolutely continuous phase-type distribution.

There exists some c > 0 verifying

cj :=
dj

dxj
ecxf(x)

∣∣∣∣
x=0

> 0, j ∈ N. (93)

We are in a position to enunciate the following.

Proposition 5.4 Let F be a phase-type distribution PH(α,A), with α1 + · · ·+
αn > 0. Let c > 0 be such that the absolutely continuous part of F satisfies

property (93). Then F can be expressed as a mixture of Erlangs, that is

F (x) =
∞∑

j=0

pjFc,j(x), x ≥ 0, (94)

in which p0 = 1− (α1 + · · ·+ αn).

Proof. To prove (a) assume firstly that F is absolutely continuous, that is,

α1 + · · ·+αn = 1. Then, its density is given by f(x) = −αexAA1′, x > 0. We

choose c > 0 verifying (93). Note that we can write

ecxf(x) = −αex(cI−A)A1′, x ≥ 0. (95)

It can be easily checked that the function −αex(cI−A)A1′, x ∈ IR is analytic

in IR, so that if we consider the Taylor’s series expansion of this function around

0, and take into account (93) and (95), we have

ecxf(x) =
∞∑

j=0

cj
xj

j!
, x > 0,

from which we can write (recall (3))

f(x) =
∞∑

j=0

cj

cj+1

cj+1xje−cx

j!
=

∞∑

j=0

cj

cj+1
fc,j+1(x), x > 0

and in this way we obtain the expression of f in terms of a mixture of Erlang den-

sities with shape parameter c (by construction the coefficients are non-negative,
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and integrating both sides in the above expression we see that their sum is 1).

As a consequence we can write

F (x) =
∞∑

j=1

cj−1

cj
Fc,j(x), x ≥ 0, (96)

thus having F expressed as a mixture of Erlangs, as in (94). Now assume that

0 < α1 + · · ·+ αn < 1. This means that F has a point mass at 0 of magnitude

p0 := 1− (α1 + · · ·+ αn). The absolutely continuous part of F (F ac) is a phase

type distribution (PH(ᾱ, A)), with ᾱ = (α1 + · · ·+ αn)−1α. Let c > 0 be such

that F ac verifies property (95). We can write thanks to (96)

F (x) = p0F0,c(x)+(1−p0)F ac(x) = p0F0,c(x)+
∞∑

j=1

(1−p0)
cj−1

cj
Fc,j(x), x ≥ 0

This completes the proof of Proposition 5.4. ¤

Remark 5.1 Similar expansions to that given in Proposition 5.4 can be found

in [10, p. 58]. These expansions are obtained using a representation PH(α, A)

of the distribution under consideration. Note that if we denote by ‖A‖ the

maximum absolute value of the entries of A, it is easy to check using (95) (cf.

[12, p.751]), that c = ‖A‖ verifies (93). However, as the representation of a

phase type is not unique this value might not be the optimum one. Observe

also that the error bound given in (86) indicates that we should take c as small

as possible. This problem then, is closely connected with Conjecture 6 in [12],

concerning the minimum c satisfying (93) and its relation with a phase-type

representation having ‖A‖ as small as possible. To the best of our knowledge,

this conjecture remains, nowadays, unsolved.

Remark 5.2 It is well known that phase-type distributions have a rational

Laplace transform. Thus, we can easily approximate a phase-type distribution

using Proposition 2.1, as this methods is based on the Laplace transform and

its successive derivatives. Moreover, for a given random variable X, we have (cf.
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[1, p. 228] that tX•t, as defined in (1) represents the number of Poisson events

(of rate 1) during a random interval tX, so that if X is continuous phase type,

we deduce (see [10, p.50]) that tX•t is discrete phase type. On the other hand,

Corollary 5.4 says us that phase-type distributions can be expressed as mix-

tures of Erlangs, so that we can give error bounds in the approximation using

Proposition 5.3. We can also use our discretization method to approximate the

distribution of random sums having phase type summands. This can be done

by a straightforward application of Proposition 2.1 if we have a closed form

expression for the Laplace transform of the random sum. Otherwise, we can use

(1) to discretize the individual summands, and use afterwards computational

methods existing in the literature to calculate the probability mass function

of the discretized random sum (see [6],[8] or [15] for general methods, and [9],

for a simple recursive formula when the summands are of discrete phase-type).

Afterwards, we would use Proposition 2.1 to get the final approximation. The

error bounds in this case, would be given by using Corollary 5.4. Finally, recall

that a random sum of phase-type distributions is itself a phase type distrib-

ution, when the random summation index is of phase-type. In this case, we

could apply matrix-analytic methods to compute the distribution function of

the random sum (cf. [5] and the references therein). However, when the ran-

dom summation index is not a phase-type distribution, the resulting compound

distribution might not be of phase type (cf. [10, p.56]).
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I would like to thank José Garrido, for suggesting me the final applications

in phase-type distributions when I was at Concordia University. This research

has been partially supported by the research grants 2006-CIE-05 (University

of Zaragoza) MTM2007-63683 and PR 2007-0295 (Spanish Government), E64

27



(DGA) and by FEDER funds.

References

[1] Adell, J. A. and de la Cal, J. (1993). On the uniform convergence of

normalized Poisson mixtures to their mixing distribution, Statist. Probab.

Lett. 18, 227-232.

[2] Adell, J. A. and de la Cal, J. (1994). Approximating gamma distrib-

utions by normalized negative binomial distributions, J. Appl. Probab. 31,

391-400.
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93. Md. Sharif Mozumder and José Garrido, On the Relation between the
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