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Abstract

Applications of Wavelet Transforms in Pattern Recognition

and De-noising

Guangyi Chen

[n this thesis, we study the application of wavelet transforms in two important
areas: pattern recognition and de-noising. In the area of pattern recognition, we
propose and implement two invariant descriptors for the recognition of 2-D patterns.
The first invariant descriptor is concerned with patterns which can be represented
by periodic 1-D signals. The method first performs orthonormal shell decomposi-
tion on the periodic 1-D signals, then applies Fourier transform on each scale of the
shell coefficients. The essential advantage of the descriptor is that a multi-resolution
querying strategy can be employed in the recognition process and that it is invariant
to rotation of the original 2-D pattern. The second invariant descriptor can be used
for any pattern. We first transform the pattern to polar coordinate (r,8) using the
centre of mass of the pattern as origin, then apply the Fourier transform along the
axis of polar angle 6 and the wavelet transform along the axis of radius r. The fea-
tures thus obtained are invariant to translation and rotation. Experimental results
show that the two invariant descriptors are efficient representation which can provide
for reliable recognition.

In de-noising, we develop a new translation-invariant(T[) multiwavelet de-noising
algorithm. Instead of using univariate thresholding developed by Donoho, we adopt
bivariate thresholding as pioneered by Downie and Silverman. Numerical simulation
shows that TI multiwavelet de-noising is better than TI single wavelet de-noising

when soft thresholding is used.
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Chapter 1
Preliminaries

[n this chapter, we will review some basic aspects of the Fourier and wavelet trans-

forms.

1.1 The Fourier Transform

The Fourier transform’s utility lies in its ability to analyse a signal in the time domain
for its frequency content. The transform works by first translating a function in
the time domain into a function in the frequency domain. The signal can then be
analysed for its frequency content because the Fourier coefficients of the transformed
function represent the contribution of each sine and cosine function at each frequency.
An inverse Fourier transform does just what you expect, transform data from the

frequency domain into the time domain.

1.1.1 The Continuous Fourier Transform

Let f(z) be a continuous function of a real variable. The Fourier transform of f(z)

is defined by the equation

. +00 »
f) = [ ez M
Given f(u), f(z) can be obtained by the inverse Fourier Transform
L™ fuyed 2
fle)=5- [ flu)eiedu @)



The Fourier transform can be easily extended to a function f(z,y) of two variables:

- +o0o  p4o0 .
fwoy= [ [ fla et dady 3)
and
flz,y) = _1_/+°° +°°f. e =) gy d 1
ey) =13 [ fwoet=rndud (+)

where u and v are the frequency variables.

1.1.2 The Discrete Fourier Transforms

The discrete Fourier transform(DFT) estimates the Fourier transtorm of a function
from a finite number of its sampled points. The sample points are supposed to be
typical of what the signal looks like at all other times. Suppose that a continuous
function f(r) is discretized into a sequence of {f(xq). f(xo + Ax),.... f(xo + (n —

1)Axz)} by taking n samples Ar apart. We may define

flz) = f(zo + zAr)

where r now assumes the discrete values 0, L. ..., n — 1. With this notation in mind,

the discrete Fourier transform pair that applies to sampled functions is given by

-~ n-l .
flu) = = 3 flajeminet (5)
=0
for u=20,1,2,...,n—1, and
n-1 . )
flz) =3 fu)e=in (6)
u=0

forr=0,1,2,...,n-1.
In the two-variable case the discrete Fourier transform pair is given by the equa-

tions

. 1 n—ln~1

flu,v) == Y3 f(z,y)etluteviin (7)

r=0 y=0
foru=0,1,2,...,n-1,v=0,1,2,...,n— 1, and

n—~1n-1

flz,y) =3 3 flu,v)eltes+min (8)

u=0 v=0
forz=0,1,2,...,n—-1,y=0,1,2,...,n— 1.
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1.1.3 The Fast Fourier Transform

To approximate a function by samples, and to approximate the Fourier integral by
the discrete Fourier transform, requires applying a matrix whose order is the number
of sample points n. Since multiplying a matrix by a vector costs on the order of O(n?)
arithmetic operations, the problem gets quickly worse as the number of sample points
increases. However, if the samples are uniformly spaced, then the Fourier matrix can
be factored into a product of just a few sparse matrices, and the resulting factors can
be applied to a vector in a total of order O(nlog, n) arithmetic operations. This is

the so-called Fast Fourier Transform(FFT).

1.1.4 Some Properties of the Fourier Transform

Attention is focused in this section on properties of the Fourier transform which will

be of value in subsequent discussions.

Translation: The translation properties of the Fourier transform pair with one

variable or two variables are given by

flz)e™o= /™ <= flu— uo) (9)
f(x = xo) <= f(u)e=iumo/n (10)
and
Flz.y)etost o/t ey flu — ug, v — vo) (11)
F(x = ro,y — yo) == f(u,v)e uzotvwol/n (12)

[t is interesting to note that a shift in f(z) or f(r,y) does not affect the magnitude

of its Fourier transform since

|flw)e=™=/| = | f(u)| (13)
|f(u, v)ememoresol/n| = | flu, v)| (14)
This property is especially useful in deriving invariant features in pattern recognition.

Rotation: If f(z,y) is rotated by an angle 6y, then f (u,v) is rotated by the same
angle. Similarly, rotating f(u,v) causes f (z,y) to be rotated by the same angle.



1.2 The Wavelet Transform

[n this section we briefly review the most important properties of the wavelet trans-
form and the wavelet based multiresolution decompositions. For more detailed in-
formation about wavelet transform, readers can be directed to (2], [7], [10], [11],
[34]-[38]. Wavelets are functions that satisfy certain mathematical requirements. The
very name wavelet comes from the requirement that they should integrate to zero,
“waving” above and below the z-axis. The diminutive connotation of wavelet suggest
the function has to be well localised. Other requirements are technical and needed
mostly to insure quick and easy calculation of the direct and inverse wavelet trans-
form.

The orthonormal basis of compactly supported wavelets of L2(R) is formed by the

dilation and translation of a single function ¥(«)
Wik(r) = 271927 r — k),

where j, k € Z. The function ¢(z) has a companion, the scaling function é(.r), and

these functions satisfy the following relations:

L-1

o(z) = V2 Y hio(2z — k), (15)
k=0
L—-1

¥(z) = V2 Y qo(2z - k), (16)
k=0

where A and gy are called low-pass and high-pass filter coefficients respectively, and
ge=(—D*hpkmy, k=0,...,L—1

/+°° é(z)dr = 1.

-0

The filter coefficients are assumed to satisfy the orthogonality relations:

Z hnhn+‘2j = 6(j)» (17)

and
z hngn+2j =0. (18)

for all j, where 6(0) =1 and 6(j) =0 for j #0.



The vanishing moments property simply means that the basis functions are chosen
to be orthogonal to the low degree polynomials, namely, if the set of functions {¥(z —

k)}kez is an orthonormal basis of Wy, then

+o0
/ b(z)e™dr =0, m=0,...,M L (19)

The number of coefficients L in (15) and (16) may be related to the number of

vanishing moments M. However, no matter what conditions are imposed, L is always

even.

1.2.1 Multi-resolution Analysis

The wavelet basis induces a multi-resolution analysis on L?(R). i.e., the decomposition

of the Hilbert space L*(R), into a chain of closed subspaces

"'C%CVIC‘/E)CV_IC‘/’_.)C... (20)

such that

I. NjezV, = {0} and UjezV; is dense in L2(R)

[
.

For any f € L*(R) and any j € Z, f(r) € Vj if and only if f(2z) € V,_,
3. For any f € L*(R) and any k € Z, f(z) € Vg if and only if f(r — k) € V,

4. There exists a function ¢ € Vg such that {¢(x — k)}rez is an orthogonal basis
of Vg.

Let us define the subspaces W as an orthogonal complement of V; in V;_,,

Vieo = V; & W (21)

and represent the space L?(R) as a direct sum

AR = D W, (22)
JEZ
Selecting the coarsest scale J, we may replace the chain of the subspaces (20) by

Vic---chocWhcWhceV,CcV,C--- (23)
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and obtain

L*R) =V, W, (24)

i<d
If there is a finite number of scales then, without loss of generality, we set j = 0

to be the finest scale and consider

Vic---cVacWcVe, VocCL*R) (25)

On each fixed scale j, the wavelets {1 x(z)};ez form an orthonormal basis of W;
and the functions {¢;(r) = 2"%¢(2~/x — k)},ez form an orthonormal basis of Vi.
The coefficients H = {hx}E2} and G = {gr}EZ} are quadrature mirror filters. Once
the filter H has been chosen, it completely determines the functions ¢ and ¢. Let us

define the 2w —periodic function

then the function mg(u) satisfies the equation

Imo(u)[* + [mo(p + 7)|* = L. (27)

for the coefficients h;.

1.2.2 The Fast Wavelet Transform

Daubechies has discovered that the wavelet transform can be implemented with a
specially designed pair of Finite Impulse Response(FIR) filters called a “Quadrature
Mirror Filter”(QMF) pair. The output of the QMF filter pair are down-sampled by a
factor of two, that is, every other output sample of the filter is kept, the others are dis-
carded. The low-frequency filter output is fed into another identical QMF filter pair.
This operation can be repeated as a pyramid algorithm, yielding a group of signals
that divides the spectrum of the original into octave bands with successively coarser
measurements in time as the width of each spectral band narrows and decreases in
frequency.

The fast wavelet transform is actually more computationally efficient than the

Fast Fourier Transform. As mentioned previously, a FFT of length n (where n is
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Figure 1: Some single wavelet families used in this thesis

an integral power of 2) takes on the order of O(nlog, n) operations. A fast wavelet

transform of length n requires approximately O(n) operations - the best possible.

1.2.3 Some Wavelet Families

There are many kinds of wavelets. One can choose between smooth wavelets, com-
pactly supported wavelets, wavelets with simple mathematical expressions, wavelets
with simple associated filters, etc. [n order to test the performance of different wavelet
families in our pattern recognition experiments, we use the following wavelet filters.
Figure 21 shows these wavelets reproduced from WAVELAB developed by D. L.

Donoho.
The Haar filter is discontinuous, and can be considered a Daubechies-2. [ts scaling

filter is



H=(1/V2,1/V?).

The Daubechies-4 filter has its advantage on its most compact support of 4
and its orthogonality. The size 4 is indeed shortest even span in which the second

derivatives are computable. Its scaling filter is
H = (0.482962913145, 0.836516303738, 0.224143868042, —0.129409522551).

The Coiflet filters are designed to give both the mother and father wavelets 2, 4,
6, 8, or 10 vanishing moments (see Daubechies for the definition of vanishing moments
and their usefulness). Here we only test the 6 vanishing moment case. Its scaling

filter is

H = (0.038580777748., —0.126969125396. —0.077161555496. 0.607491641336,
0.745687558934.  0.226584265197).

The Symmlet-8 is the least asymmetric compactly-supported wavelets with 8

vanishing moments. Its scaling filter is

H = (-0.107148901418. —0.041910965125,  0.703739068656, 1.136658243408,
0.421234534204, -0.140317624179, —0.017824701442, 0.045570345896).

1.3 Fourier versus Wavelet Transform

1.3.1 Similarities between Fourier and Wavelet Transform

The fast Fourier transform(FFT) and the discrete wavelet transform(DWT) are both
linear operations that generate a data structure that contains log,n segments of
various lengths, usually filling and transforming it into a different data vector of
length 2".

The mathematical properties of the matrices involved in the transforms are similar
as well. The inverse transform matrix for both the FFT and the DWT is the transpose
of the original. As a result, both transforms can be viewed as a rotation in function

space to a different domain. For the FFT, this new domain contains basis functions



that are sines and cosines. For the wavelet transform, this new domain contains more
complicated basis functions called wavelets, mother wavelets, or analysing wavelets.

Both transforms have another similarity. The basis functions are localised in
frequency, making mathematical tools such as power spectra (how much power is
contained in a frequency interval) and scalegrams useful at picking out frequencies

and calculating power distribution.

1.3.2 Dissimilarities between Fourier and Wavelet Trans-

forms

The most interesting dissimilarity between these two kinds of transforms is that indi-
vidual wavelet functions are localised in space. Fourier sine and cosine functions
are not. This localisation feature, along with wavelets localisation of frequency.
makes many functions and operators using wavelets sparse when transformed into
the wavelet domain. This sparseness, in turn, results in a number of useful appli-
cations such as data compression, detecting features in images, and removing noise
from time series.

One way to see the differences in time-frequency resolution between the Fourier
transform and the wavelet transform is to look at the basis function coverage of
the time-frequency plane. Figure 2 shows a windowed Fourier transform, where the
window is simply a square wave. The square wave window truncates the sine or cosine
function to fit a window of a particular width. Because a single window is used for
all frequencies in the Fourier transform, the resolution of the analysis is the same at
all locations in the time-frequency plane.

An advantage of wavelet transforms is that the windows vary. In order to isolate
signal discontinuities, one would like to have some very short basis functions. At the
same time, in order to obtain detailed frequency analysis, one would like to have some
very long basis functions. A way to achieve this is to have short high-frequency basis
functions and long low-frequency ones. This happy medium is exactly what you get
with wavelet transforms. Figure 3 shows the coverage in the time-frequency plane
with one wavelet function, the Haar wavelet.

The Wavelet representation also provides a coarse-to-fine matching strategy in
pattern recognition, called multi-resolution matching. The matching starts from the

coarsest scale and moves on to the finer scales. The costs for different scales are quite



__ IS
_E

Frequency

W\
_

Time
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different. Since the coarsest scale has only a small number of coefficients, the cost
at this scale is much less than for finer scales. In practice, the majority of patterns
can be unambiguously identified during the coarse scale matching, while only few
patterns will need information at finer scales to be identified. Therefore, the process
of multi-resolution matching will be faster compared to the conventional matching
techniques.

One more thing to remember is that wavelet transforms do not have a single set
of basis functions like the Fourier transform, which utilises just the sine and cosine
functions. Instead, wavelet transforms have an infinite set of possible basis functions.
Thus wavelet analysis provides immediate access to information that can be obscured

by other time-frequency methods such as Fourier analysis.

1.4 Outline of the Thesis

[n this thesis, we consider new applications of wavelet transform in pattern recognition
and signal de-noising. We propose and implement two invariant descriptors for the
recognition of 2-D patterns and one translation invariant de-noising schermne by using
multiwavelets. The organisation of the thesis is as follows.

Chapter 2 proposes an invariant descriptor for recognising 2-D patterns which
can be represented by periodic 1-D signals such as the contour of an object, the
ring-projection, the line-moment, etc. The descriptor performs orthonormal shell
decomposition on the periodic 1-D signal, then applies Fourier transform on each
scale of the shell coefficients. The essential advantage of the descriptor is that a
multi-resolution querying strategy can be employed in the recognition process and
that it is invariant to rotation of the original 2-D pattern. The translation- and scale-
invariant properties can be obtained while extracting the 1-D periodic signal from
the original 2-D pattern. Experimental results show that the descriptor proposed is
a reliable tool for pattern recognition and it is robust to white noises.

Chapter 3 presents a novel descriptor for recognising complex patterns such as
aircrafts, keys, road signs, printed Chinese characters, etc. We first transform the
pattern to polar coordinate (r,0) using the centre of mass of the pattern as origin,
then apply the Fourier transform along the axis of polar angle § and the wavelet

transform along the axis of radius r. The features thus obtained are invariant to

11



translation and rotation. As an example, we apply the method to a database of 85
printed Chinese characters. The result shows that the descriptor using a combination
of Fourier and wavelet transforms is an efficient representation which can provide for
reliable recognition.

Chapter 4 gives a translation-invariant(TT) multiwavelet de-noising scheme using
bivariate thresholding rule. TI single wavelet de-noising was developed by Coifman
and Donoho [13] and it is better than the non-T1I single wavelet de-noising. Strela
et al. [47] has found that non-TI multiwavelet de-noising gives better results than
the non-TI single wavelets. In this thesis we extend Coifman’s TI single wavelet de-
noising scheme to multiwavelets. The experiment results show that TI multiwavelet
de-noising is better than the single wavelet case for soft thresholding.

Finally, Chapter 5 gives the conclusions of current work and propose the future

work in the area of pattern recognition and de-noising.
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Chapter 2

Multi-resolution Orthonormal
Shell-Fourier Descriptor for

Pattern Recognition

2.1 Introduction

[n pattern recognition the dimension of the feature vector is very important in recog-
nition process. A very big feature vector may require a large amount of computation
time. Therefore, it is desirable to have a smaller feature vector while keeping the
original pattern’s important features as much as possible. Among all the existing
techniques, one major approach is to transform the original 2-D pattern into a 1-
D periodic signal, say, the contour of a pattern, the line moment of a pattern, the
ring-projection, and so forth.

Fourier transform has been a powerful tool for pattern recognition ([1], [21], [31],
[50], [54]). However, Fourier basis is not local in the spatial domain. A local vari-
ation of the input signal can affect all the Fourier coefficients. In addition, Fourier
descriptor does not have a multi-resolution representation. Whatever the size of the
target and the noise level, matching has to be performed at a designed scale. Wavelet
descriptor([5], [30], (32]-[42], [52], [38]}, on the other hand, provides better global
shape features at the low scales as well as detail features at high differential scales.
Besides, wavelet descriptor offers a natural multi-resolution representation of the sig-

nal so that we can employ a multi-resolution matching strategy. It has been claimed
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that wavelet descriptor can provide higher recognition rate for hand-printed character
recognition([29], [52]) and aircraft recognition [30].

One intuitive way is to apply wavelet transform directly on the 1-D signal in our
application. However, wavelet transform is not translation-invariant. A small shift in
the input signal may cause totally different wavelet coefficients. Therefore we have
to find a way to overcome this shift-variance problem before wavelet descriptor can
be used here.

Basically speaking, there are two ways to overcome the shift problem. One is to
normalise the input signal so that the starting point is fixed at a specific position.
Another way is to use shift invariant wavelet decomposition. Several methods based
on the best-basis-selection approach have been proposed in order to get shift-invariant
wavelet decomposition([32], [33], [39]). In those methods, a cost function is used as
a measure of shift-invariant property. The input signal is decomposed into wavelet
coefficients for all possible shifts by means of a tree structure. The set of wavelet
coefficients that minimises the given cost function is then chosen as the shift invariant
wavelet representation. Another kind of shift-invariant wavelet transform is proposed
by Y. Hui et al. ([25], [26]). They establish a framework for shift-invariant filter
bank by connecting the relation between the polyphase representation and shift-
invariant property of the filter banks. The proposed framework is independent of input
signal and yields filters with shift-invariant property without changing the structure
of dydiac wavelet transform.

Even though the above mentioned methods can deal with the shift problem in
wavelet transform, they could not be successfully applied in pattern recognition ap-
plications. The reason is that they are very sensitive to noise in the original signal.
Little noise in the original signal may cause totally different decision. Therefore, we
do not adopt the above mentioned methods. Instead, we use a combination of the
concept of orthonormal shell decomposition introduced by Saito and Beylkin [42] and
the Fourier transform to eliminate the shift problem.

The basic idea proposed in this chapter is as follows. Following Saito and Beylkin
[42], we decompose the 1-D signal into multi-resolution scales using orthonormal
shell expansions (wavelet transform without down sampling). In order to eliminate
the shifts in each scale, we perform Fourier transform on it and obtain the spectrum.
The feature obtained in this way is invariant to the original pattern’s orientation. The

translation- and scale-invariance can be guaranteed during the process of extracting
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the periodic 1-D signal. Experimental results show that the new descriptor is better
than the Fourier descriptor for recognising printed Chinese characters.
[t should be mentioned that both Fourier transform and the orthonormal shell

decomposition (wavelet transform) used in this chapter are discrete transforms.

2.2 The Orthonormal Shell Expansion

This section reviews briefly the concept of orthonormal shell developed in [42]. It
has been mentioned in the introduction that the coefficients of orthogonal wavelet
expansions are not shift-invariant. However, if all the wavelet coefficients of n circu-
lant shifts of a vector (signal) are computed, we may use them when shift invariance
is important. Based on this observation, the notion of a shell (much more redundant
than a frame) was introduced in [42] to obtain a redundant but shift-invariant family
of functions.

In our applications, there is always the finest and the coarsest scales of interest and
therefore the number of scales is finite and we can consider only shifts by multiples
of some fixed unit. Assuming that the finest scale is described by the n-dimensional
subspace Vg and consider only circulant shifts in V5. Let V,, be the subspace describing
the coarsest scale (1 < jo < J) where n =27, and let ¥;,(zx) = 2-%(2/(z — k)) and
oik() = 275427 (z — k)). Therefore, the functions {¢ikh<jcio0ckcas~—1 and

{®jo.k Jock<2/-10 - generate the coefficients s and di:

si = [ f@)6,u(x)da. (28)
and

di = [ flaypisla)de. (29)
for j =1,2,...,joand k =0,1,...,2/77 — |. The coefficients {di}lsjsJ‘o.Osks?"J—l

are known as orthonormal wavelet coefficients.

In the case of orthonormal shell decomposition, Saito and Beylkin defined the
functions {¥;(z)}1<j<io0ck<2/~1 and {@jk(Z)ock<as—1 as a shell of the orthonor-
mal wavelets for shifts in V5. As a consequence, the coefficients {di}lstjo,OSkSW-l
and {sP Yock<2/-1 are called the orthonormal shell coefficients. Clearly the set of

coefficients in the orthonormal shell is much more abundant and overly redundant
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compared to the set of coefficients in the orthogonal wavelet transform. However,
this redundancy is needed for our shift invariant property.

Assuming that the orthonormal wavelet coefficients of the finest scale {s)}ock<n—1
are given as an original signal and let us consider the function f = 17! s3¢g 4. The
orthonormal shell coefficients of this function f are obtained from the quadrature
mirror filters H = {hi}ocic-1 and G = {g1}o<i<cL—1 (associated with the orthonormal

basis of compactly supported wavelets)

L-1
j -1
st = ) hsia-n (30)
=0
and
&= asiihm (31)
=0

for j=1,....50, k=0,....2/79 — 1. The complexity of (30) and (31) is O(n log n).
[t is easy to show that the recurrence relations (30) and (31) compute the or-
thonormal wavelet coefficients of all circulant shifts of the function f. For di, the

first scale is:

L-1 L~1 L-1
dk = Z .‘]l°L+l Z 9132k+l + z 9152k+1+1 = dzk + dzk+1 (32)
=0 =0 =0
for k=0,...,2-1.

)
[t is clear that the sequence {d},} contains all the orthonormal wavelet coefficients

that appear if f(z) is circularly shifted by even numbers and the sequence {dj,,,}
contains all the orthonormal wavelet coefficients for odd shifts.

Similarly, at the j-th scale

L-1
-1
dglk+m Zgls;J“(2k+l)+m’ (33)
=0
and
L-1
Spkbm = lZ husy; =} (2k+l)+m* (34)
=0
for k=0,1,...,2/-7, =01 I
The sequences {d), k} {d},, +1} AL 2k42:1} contain the orthonormal wavelet

coeflicients of the j-th scale of the 51gna.l shifted by 0,1,...,27 —1, respectively. There-
fore, the set {di}ISijOvOSksz"-m‘l and {sP° }o<k<2-10-1 contain all the coefficients of
the orthonormal wavelet expansion of f(z), f(z +1), ..., f(z +n —1). This set of
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Figure 4: A scheme illustrating the algorithm for expanding a signal into multi-
resolution scales using the quadrature mirror filter H = (hq, k1, ks, hg).

coefficients defines the orthonormal shell decomposition. The diagram for computing

these coefficients is illustrated in Figure 4.

2.3 Extracting Periodic 1-D Signal

The problem of discriminating planar object is one of the most familiar and funda-
mental problems in pattern recognition. Among all the existing techniques one major
approach is to transform the original planar object into I-D signal and then extract-
ing features from the signal. The major advantage of this approach is that the size of
the feature vector is reduced, and so is the computation workload. There are many
ways to get 1-D signals from the original planar object. One of the most compelling
methods is to extract the outer contour of the object by means of chain code [18],
angular bend functions [54], or parametric curves [21].

The chain code first described by Freeman [18] approximates a continuous contour
by a sequence of piecewise linear fits that consist of eight standardised line segments.
The code of a contour is then the chain V of length &

V =ajaqa3...ay,
where each link a; is an integer between 0 and 7 oriented in the direction %a; (as
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measured counter-clockwise from the z-axis of the z-y coordinate system) and of
length 1 or v/2 depending, respectively, on whether a; is even or odd.

The angular bend functions in [54] are defined as follows. We assume 7 is a
clockwise-oriented simple closed curve with the parametric representation (z({), y({)) =
z(l) where [ is arc length and 0 <! < L. Denote the angular direction of ¥ at point
[ by the function 6(l). Define then the cumulative angular function ¢(l) as the net
amount of angular bend between starting point { = 0 and point [. So ¢(l) = 6(1)—6(0)
except for possible multiples of 27 and ¢(L) = —2x. Finally define the ¢7(¢) as
o~(t) = ¢(.§‘—;) +t where ¢ ranges from 0 to 2x. [t is clear that ¢*(¢) is invariant under
translation and scaling,.

The parametric curve can be represented by parameterised r- and y-coordinates
[21]. Let us denote the contour of the object by a clockwise-oriented simple closed
curve with the parametric representation (z({), y(!)) = =({), where [ is the arc length
along the contour. A point moving along the boundary generates the complex function
u(l) = z(1)+iy(!) which is periodic with period L. This representation is translation-
invariant only. However, the scale-invariance can be achieved by normalising the arc
length to a fixed length.

The chain code, angular bend function, and parametric curve are only suitable
for patterns with a simple contour. For complex patterns. it is difficult to trace
their boundary or recognise them in terms of a single closed curve. Therefore, other
methods such as ring-projection or line moment is introduced.

The ring-projection is used by Y. Y. Tang et al. [48] for optical character recogni-
tion. Suppose a 2-D pattern is represented by a binary image. One can first transform
the pattern into polar coordinates by using the centroid of mass as the origin. For
any fixed r € [0, M], where M is the longest distance of the pattern point to the

centroid, we compute the following integral
2T
p(r) = A f(rcos,rsin6)d6.

The signal p(r) is equal to the total mass along the circular rings. It is clear that p(r)
is translation- and rotation-invariant.

The line moment is defined by Wang et al. [50]. For object O, we form N angularly
equispaced radial vectors r; departing from the centroid C where angular step is 2%
and k is the index of n vectors. The end point of r; is object’s boundary point in

the direction of r¢. Each r; includes black line segment By, and white line segments
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Wii. Black line segment By represents a line segment of r; where only object exists
and | <! < Ni in which Vi is the number of black line segments of ri. For black
line segment By one can obtain its line length Ly and its line centroid Ci. Thus we
have the moment of r; defined by m; = Zﬁ_"l |Cti = C|Lyy. The line moment my is
invariant to translation only. However, we can normalise it by m; = Z’E":‘: so that

my is also scale-invariant.

2.4 Orthonormal Shell-Fourier Descriptor

Feature extraction is a crucial step in pattern recognition. In this section we describe
an invariant descriptor based on a periodic 1-D signal obtained from the original
unknown pattern as we described in the previous section. In general. good features
must satisfy the following requirements: First, intraclass variance must be small,
which means that features derived from different samples of the same class should be
close (e.g., numerically close if numerical features are selected). Secondly, the inter-
class separation should be large, i.e., that features derived from samples of different
classes should differ significantly. Furthermore, features should be independent of the
size and location of the characters. This independence can be achieved by processing
or by extracting features that are translation-, rotation-, and scale-invariant.

As we explained in the section 2.2, the orthonormal shell expansion is a linear
operation that decomposes a signal into components that appear at different scales.
This transform is based on the convolution of the 1-D signal with a dilated filter. From
the discussion of section 2.2 we know that if f(z) is a periodically shifted version of
f(z), then d(zr) and si(z) are also circularly shifted versions of d’(z) and si(z) for
all scales j = 1,...,jo. Since the spectrum of Fourier transform of a signal is the
same no matter how much the signal is shifted, we apply Fourier transform on d’(z)
at each scale j (1 < j < jo) and the average s”°(z) and then get the spectra, which
are invariant to rotation. Please note that the translation- and scale-invariance can
be obtained while extracting the periodic 1-D signal from the unknown pattern. The
feature vector is constructed from the low and intermediate scale wavelet coeflicients
and the low pass coefficients.

We can summarise the Orthonormal Shell-Fourier Descriptor as follows:
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Figure 5: Block diagram of the Orthonormal Shell Fourier descriptor

1. Get the translation- and scale-invariant 1-D periodic signal f(z) from the un-

known pattern.

(S
.

Apply orthonormal shell decomposition on the signal f(r) up to scale j, to get
& (r)(1 < j < Jjo) and s2(z).

3. Perform Fourier transform at ¢’(x)(l < j < jo) and s°(r) to get the spectra.

4. Use the resultant Fourier coefficients to query the database at different scales.

Figure 5 is the block diagram of the algorithm. Figure 6 illustrates the whole
process of the algorithm. Figure 6(a) is the original character used in the experiment.
Figure 6(b) is the calculated line moments f(z) defined in [50]. Figure 6(c) is
the multi-resolution orthonormal shell decomposition of the line moment, denoted
by d?(z)(l € j < 5) and s%(z), and Figure 6(d) shows the Fourier spectra of the
decomposition coefficients at different scales. Please note that in Figure 6(c) we use
—Jj{1 £j £5) to represent d?(z) and —6 the average s°(zr).

The computational complexity of the algorithm can be estimated as follows. Let
n be the number of sample points in the periodic 1-D signal. The multi-resolution or-
thonormal shell decomposition of the signal will take O(n log n) operations, since we
can decompose the signal up to logn scales. For each resolution shell scale, we have
to perform 1-D Fourier transform, so we need O(nlogn) x logn = O(n(log n)?) oper-
ations for the third step of the algorithm. In total, we need O(n log n + n(logn)?) =

O(n(log n)?) operations.

2.5 Fast Implementation of the Algorithm

The implementation of the previous algorithm spends a lot of computation time when

the original signal size is large. In fact, we can reduce the complexity of the algorithm

20



(b)

(a)

10}

20

30¢

Line Moment

40

S0

60}

20 40 60

40 €60 80 100 120
Polar Angle
(d)

?

Orthonormal Shelt
b
Fourier Spectra

i

-8 M\/\/\/\/‘
-7 . R . N R . -7 . .
20 40 60 80 100 120 20 40 60
Polar Angle Polar Angle

Figure 6: Representations of a pattern at each step of the new algorithm. (a) The
original character in the experiment. (b) The line moment calculated from the charac-
ter. (c) Multi-resolution orthonormal shell decomposition of the line moment. Please
note that we use —j(1 < j < 5) to represent d’(z) and —6 the average s°(z). (d) The
spectra of Fourier transform at each scale and the average.



from O(n(logn)?) to O(nlogn).

Let us rewrite (30) and (31) in the Fourier domain

§(p) = V2 mo(2 1) (p), (35)
and

& (p) = V2 my (D)5 (). (36)
for j=1..... Jo.

Here the mg(p) and m;(u) are defined as

mo(p) = Z hye'ks (37)
L—O
and
my(p) = }: gre'* (38)
k-o

Taking the modulus of (35) and (36), we have

|8 ()] = V2Imo(2 = w)|I5~ (w)), (39)
and

| ()| = V2Imy (27 )15 ()] (40)
for j=1,..., Jo-

We know that s° is the original 1-D signal, so by recursively applying (39) and

(40) we can have a much cheaper implementation of the algorithm:

L. Get the translation- and scale-invariant 1-D periodic signal f(z) from the un-

known pattern.
2. Calculate |J’ | (1 £j < jo) and |37| by recursively applying (39) and (40).
3. Use the resultant coefficients to query the database at different scales.

Applying (39) and (40) will take O(n) operations because mo(u) and m,(u) have
only L terms. As such, we need O(n logn) operations to recursively apply (39) and
(40). In total, the fast algorithm requires O(n log n) operations.

N
(3]



2.6 Multi-resolution Matching

In theory, the matching process can be done from coarse to fine scales. For each scale,
we match the features of the target with those of the patterns in the database and

we have three decisions to make:

l. Accept the target as a specific pattern.

[

. Reject the target.

3. Mark those entries in the database that are similar to the target as to be de-

termined and begin the next iteration.

If the target is accepted or rejected, the matching process is then terminated. If
the target is undetermined, we continue the matching process to the next finer scale,
but only those entries that are marked as to be determined are used. Since there are
less entries in the finer scale. the matching process can be conducted much cheaper
than the traditional matching method. We can use either L, or L, distance metric
in each scale. Figure 7 illustrates the multi-resolution matching process.

Even though the above mentioned multi-resolution approach is similar to humans’
simultaneous interpretation of visual information, it is not trivial to apply it in real
applications. There are two aspects we have to consider. First, we have to determine
a threshold in order to give a guideline for acception., rejection, and to be determined.
There is no way to give an optimal threshold mathematically. One has to choose
it by doing a lot of experiments. Second, significant features are lost at very low
resolution scales and it is likely that for very high resolution scales the intraclass vari-
ance becomes larger because of the deformation of the pattern and the accumulation
errors during the transformations. Therefore, it is desirable to use only intermediate

resolution scales, say 3 - 5, during the classification phase.

2.7 Experimental Results

[n order to test the efficiency of the proposed algorithm, we use the 1-D line moments
of an object defined in [50] in our experiments. The definition of moments in this
experiment is nearly the same as [50] except we normalise it to have zero mean. The

experiments are done under Sun Solaris 2.5. There are 85 printed Chinese characters
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Figure 7: The multi-resolution Matching

in our experiments. Each character is represented by 64 x 64 pixels, with | denoting
the object and 0 the background. We use 128 samples points in the computed 1-D
line moment and all its multi-resolution Orthonormal Shell decomposition signals.
Since the spectra of Fourier transform are symmetric, we only keep 64 coefficients at
each scale. We use L; distance in the recognition process.

We tested the algorithm when rotation and scaling are present. The tested rotation
angles are 30°, 60°, 90°, 120°, 180°, and 270°, while the scaling factors are 0.5, 0.6,
0.7,0.8, 0.9, and 1.2. For illustration, we show the six rotation angles in Figure 8, the
six scaling factors in Figure 9, and a combination of rotation and scaling in Figure 10
for the printed Chinese character “zai”. The wavelet families used in our experiment
are Haar, Daubechies-4, Coiflet-6, and Symmlet-8.

The Orthonormal Shell coefficients of a signal have multi-resolution representation
of the original signal. Generally speaking, the coarse scale coefficients represent the
global feature of the signal, while the fine scale coefficients represent the details. Due
to noise introduced in the pattern, it is advantageous to use only a few low and
intermediate scale coefficients. As the Fourier coefficients are becoming smaller as
the index goes up, we keep only 20 low frequency Fourier coefficients for each scale.
As such, the total coefficients stored in the database for each character are reduced

significantly and we can make the querying process faster.
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In our experiment, we test the performance of the Orthonormal-Fourier descriptor
when only three scales are used. For each scale we only use the magnitude of 20 low
frequency Fourier coefficients. When only rotation is presented to the Orthonormal-
Fourier descriptor, we obtain 100% recognition rates for all different rotation angles
by using different kind of wavelets. When only scaling is added to the testing pattern,
we get the results in Table 1 by using features d*, d® and s°. In addition, we obtain the
experimental results in Table 3 by using features d°, d* and d°>. When a combination of
rotation and scaling factors are added to the testing pattern, we get the experimental
results in Table 2 by using features d', d® and s®. Also. we obtain the experimental
results in Table 4 by using features d®, d* and d°.

We do the same experiments by using the Fourier descriptor. Since we use the
Fourier spectrum of the 1-D signal in the Orthonormal Shell-Fourier descriptor. we
also use the Fourier spectrum as invariant features for the Fourier descriptor. From
Table 3 and Table 4 one can see that the Orthonormal Shell-Fourier descriptor is
much better than the Fourier descriptor in the sense of recognition rate, and it is
very robust to geometric distortion.

We also test the robustness of the new algorithm against pseudo-random noise. In
our experiments we add white noise to the 1-D periodic signal with different signal to
noise ratios (SNR). The SNR is defined as \/var(f)/a?. where var(f) is the variance
of the signal f(¢). Figure 11 shows the signal (solid line) and the noisy signal (dash dot
line) with white noise added. Table 5 lists the recognition rates of the Orthonormal
Shell-Fourier Descriptor for different SNR's. It is clear that the new descriptor is very

robust to noise.
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Figure 11: A periodic signal: with (dash dot line) and without (solid line) noises

, Scaling Factor
Descriptor
0.5 0.6 0.7 0.8 0.9 1.2
Haar 97.65% 100% 10% 10% 10% 100%

Daubechies 4] 97.65% 100% 100 % 100 % 100% 100%
Coiflet 3 98.82% 100 % 100 % 100 % 100% 100%
Symmlet8 | 9765% 100% 100% 10% 100% 10%

Table 1: The recognition rates of the Orthonormal-Fourier descriptor for different
scaling factors. The features used in this experiment are from scales d*, d® and s°.
For each resolution scale, only the first 20 low frequency Fourier coefficients are used.



_ ' Rotation Angle
Descriptor Scaling

FaCIOI' 0 ¢ 60° 90° 120 0 180° 70 ]

05 9765% %1% %N59% 5% 9176% BR%
Haar 08 0% 10% 10% 0% 10% 10%
12 00% 10% 100% 10% 10% 10%

0.5 9765% 95.29% 9059% 858% 9294% 982 %
Daubechies4| 08 0% 10% 10% 10% 10% 10%
12 0% 10% 100% 10% 10% 100%

05 %12% 8706% 8106% 8706% %% %471%
Coiflet 3 08 0% 10% 10% 10% 10% (0%
12 0% 10% 10% 10% 10% 100%

05 W12% BU% 8BU% 588% 941% 9765%
Symmlet§ | 08 0% 10% 100% 0% 10% 10%
12 0% 10% 10% 100% 100% 100%

Table 2: The recognition rates of the Orthonormal-Fourier descriptor for a combi-
nation of rotation angles and scaling factors. The features used in this experiment
are from scales d*, d® and s°. For each scale, only the first 20 low frequency Fourier
coefficients are used.

: Scaling Factor
Descriptor
0.5 0.6 0.7 0.8 09 1.2

Haar 9882% 100% 100 % 100 % 100 % 100 %

Daubechies 4| 9882% 100% 100 % 100 % 100 % 100 %

Coiflet 3 9882% 100% 100 % 100 % 100 % 100 %

Symmlet8 | 9882% 100% 100 % 100 % 100% 100%

Fourier 9%.12% 100% 100 % 100 % 100% 100%

29

Table 3: The recognition rates of the Orthonormal-Fourier descriptor and the Fourier
descriptor for different scaling factors. The features used in the Orthonormal-Fourier
descriptor are from scales 3, d* and d°. For each scale, only the first 20 low frequency
Fourier coefficients are used.




_ : Rotation Angle
Descriptor Scaling

Factor | °  e0 w0 00 g0 20

05 9765% 9%647% 9294% 87.06% 9059% 98.82%
Haar 08 0% 100% 10% 100% 100% 100%
1.2 0% 100% 10% 100% 10% 100%

0.5 9882% 9.47% 9294% 8706% 8824% 98.82%
12 0% 100% 10% 100% 10% 100%

0.5 9765% 9765% 91.76% 8941% 8588% 97.65%
Coiflet 3 0.8 0% 100% 100% 100% 100% 100%
1.2 100% 100% 100% 100% 100% 100%

0.5 9882% 9765% 9294% 8824% 87.06% 97.65%
Symmlet§ | 08 0% 100% 100% 100% 10% 100%
12 0% 100% 100% 100% 100% 100%

05 9765% 9529% 8706% 8588% 8588% 97.65%
Fourier 0.8 0% 100% 10% 100% 10% 100%
1.2 0% 100% 100% 100% 100% 100%

Table 4: The recognition rates of the Orthonormal-Fourier descriptor and the Fourier
descriptor for a combination of rotation angles and scaling factors. The features used
in the Orthonormal-Fourier descriptor are from scales d®, d* and d®. For each scale,
only the first 20 low frequency Fourier coefficients are used.

SNR

40

20

10 5

4

3

2

Recognition Rates

100 %

100 %

100% 100 %

100 %

100% 97.65%

Table 5: Recognition rates when noise is added to the 1-D signal but no rotation or
scaling of the original pattern is included.

30



Chapter 3

Invariant Pattern Recognition by
a Combination of Wavelet and

Fourier Transforms

3.1 Introduction

Feature extraction [49] is a crucial processing step for pattern recognition, and most
research has been devoted to finding measures that concisely represent a pattern and
that at the same time contain enough information to ensure reliable recognition. In
general, good features must satisfy the following requirements: First. intraclass vari-
ance must be small, which means that features derived from different samples of the
same class should be close(e.g., numerically close if numerical features are selected).
Secondly, the interclass separation should be large, i.e., that features derived from
samples of different classes should differ significantly. Furthermore, features should
be independent of the size and location of the patterns. This independence can be
achieved by processing or by extracting features that are translation-, rotation-, and
scale-invariant. In this chapter, we introduce a second algorithm for invariant pattern

recognition based on a combination of wavelet transform and Fourier transform.
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3.2 Rotation-Invariant Features Derived by a Com-

bination of Wavelet and Fourier Transforms

Consider the rotation of an image through angle . If the rotated image is denoted
by f, the relationship between the original and rotated images in the same polar co-
ordinates is f (r,8) = f(r,8 —a). The transform from Cartesian coordinate system to
polar coordinate system can be done as follows. Let d be the radius of the pattern. We
draw n concentric circles centred at the centroid (z,y) with radius %,i =1,2,....n.
Also, we form n angularly equi-spaced radial vectors 6; departing from (Z.j) with

angular step 22. For any small region:
Si={(rd)|ric<r< ri+1,0; <8 < 9j+[}

we calculate the average value of f(z,y) over this region, and assign the average value
to g(r.0) in the polar coordinate system.

The replacement of Cartesian coordinate system to polar coordinate system does
not add any deformation to the original rotative distortion. The sample patterns of
f(z.y) and g(r, 0) are different, which result in two different matrices. However, since
both f(xr,y) and g(r, ) are discrete formats of the same image function, regardless of
digitisation error, a replacement between them should not affect the geometric nature
of the image function itself. Hence, the change of coordinate system has transformed
the rotation into a translation along the axis polar angle 8. [n order to eliminate
rotational variance, we apply 1-D Fourier transform along the axis of the polar angle
0 of g(r,8) to obtain its spectrum G(r,p). Since the spectra of Fourier transform
of circularly shifted signals are the same, we obtain a feature which is also rotation
invariant.

As we know the wavelet coefficients represent pattern features in an efficient way,
so we can apply wavelet transform along the axis of radius of the resulting G(r, ).
The dydiac wavelet transform decomposes a signal into a set of signals at different
resolution scales. The information at the fine scales is strongly affected by noise
and quantisation errors which are due to the use of the rectangular grids in digital
images. In order to reduce such effects, only a few low resolution scales should be
used for distinguishing among objects. This makes the representation robust in a

noisy environment and reduces the amount of computation.
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The matching task is to recognise an unknown object in an image as one of a
number of patterns whose representation are known. The process consists of two
phases: learning and classification. In the learning phase, the system constructs the
object representation in a noise-free environment. Only a few selected intermediate
scales should be used in the matching process. Under uniformly distributed noise,
the signal to noise ratio at these scales is improved and the effect of noise is reduced
significantly. Therefore, choosing a suitable number of scales makes the representation
more robust. [n the classification phase, the representation of unknown object is
compared with all the objects in the database using a distance metric. An object is
recognised as one of the known patterns if the distance between the object and that
pattern is the smallest.

The idea of polarisation followed by a combination of wavelet and Fourier trans-
forms can be accomplished in two ways by interchanging the order of wavelet trans-
form and Fourier transform. We call the Polarisation-Fourier-Wavelet process as the
PFW algorithm. I[nstead, we call the Polarisation-Wavelet-Fourier process as the
PWF algorithm.

The steps of the PFW algorithm can be summarised as follows:

1. Normalise the pattern f(z,y) so that it is translation- and scale-invariant.

[SM]
.

Transform f(z,y) into polar coordinate system to obtain g(r.d).

3. Conduct 1-D Fourier transform on g(r,8) along the axis of polar angle 6 and

obtain its spectrum:

G(r,p) = [FTo(g(r,8))|-

4. Apply 1-D wavelet transform on G(r,¢) along the axis of radius r:

WF(r,¢) = WT(G(r, ).

5. Use the wavelet coefficients to query the pattern feature database at different

scales.
The steps of the PWF algorithm can be summarised as follows:
1. Normalise the pattern f(z,y) so that it is translation- and scale-invariant.
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Figure 12: Block diagram of the PFW algorithm

(R
H

Transform f(z,y) into polar coordinate system to obtain g(r.#).

3. Apply 1-D wavelet transform on g(r,8) along the axis of radius r:

WT(r,0) = WT,(g(r,8)).

4. Conduct 1-D Fourier transform on WT(r,8) along the axis of polar angle § and

obtain its spectrum:

FW(r,0) = |FTy(WT(r.0))|.

W1

Use the wavelet coefficients to query the pattern feature database at different

scales.

Figure 12 and Figure 14 are the block diagrams of the PFW and PWF algorithms,
respectively. Figure 13 depicts how a printed Chinese character is transformed after
each step of the PFW algorithm. Figure 13 (a) is the character in (z, y)-coordinate
system. Figure 13 (b) is the polarised character g(r,8) in polar coordinate system
where each unit in the axis of the Polar Angle represents 6 degrees. Figure 13 (c)
shows the spectrum density of the Fourier transform G(r,¢) = |FTy(g(r,6))|, and
Figure 13 (d) shows the wavelet coefficients W F(r, o) = WT,(G(r, ¢)).

Figure 15 shows how a printed Chinese character is transformed after each step
of the PWF algorithm. Figure 15 (a) is the character in (z, y)-coordinate system.
Figure 15 (b) is the polarised character g(r,8) in polar coordinate system where each
unit in the axis of the Polar Angle represents 6 degrees. Figure 15 (c) shows the
wavelet coefficients WT(r,0) = WT,(g(r,8)). Figure 15 (d) illustrates the spectrum
density of the Fourier transform FW(r,¢) = |FT3(WT(r,0))|.

The computational complexity of the PFW and PWF algorithms can be calculated

as follows. Let n be the number of discretized sample points along one axis of the
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Figure 13: An illustration of how a printed Chinese character is transformed after each
step of the PFW algorithm. (a) The original printed Chinese character in Cartesian
coordinates (b) The polarised character in polar coordinates where each unit in the
axis of the Polar Angle represents 6 degrees (c) The Fourier spectrum of the polarised
character (d) The wavelet coefficients based on the Fourier spectrum
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Figure 14: Block diagram of the PWF algorithm

original image. we can finish the replacement of Cartesian coordinates into polar
coordinates in O(n?) operations. Since the complexity of FFT on a signal of length
n is O(nlogn) and we have O(n) rows in the polarised image g(r,8), the Fourier
transform along the axis of polar angle  takes O(n® logn) operations. As we know,
the wavelet transform of a signal of length n takes O(n) operations. We have in
total n signals to be processed by wavelet transform. Therefore, the third step of the
algorithm requires O(n?) operations. In summary, the number of operations for the

algorithms is
O(n?) + O(n? logn) + O(n*) = O(n®logn)

[t is noted that the features extracted by the PFW algorithm are a superset of that
of the Ring-Projection approach. Tang et al (1996) introduces the Ring-Projection
of a pattern by o

P(r)= A f(rcos@,rsin §)dl
where r is the radius of the ring. It is shown that P(r) is equal to the pattern mass
distributed along circular rings.

From Fourier transform we have

G(r,p) = Z g(r,0)e” =,
N g=0
When ¢ = 0, we get the average value along the axis of radius r

n-l

G(r,0) = Zng)

M 4=0
Le.
G(r,0) = P(r).
The PFW algorithm extracts more features from the pattern than the Ring-Projection
approach does. Therefore, we can expect that the PEW algorithm gives higher recog-

nition rate.
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Figure 15: An illustration of how a printed Chinese character is transformed after each
step of the PWF algorithm. (a) The original printed Chinese character in Cartesian
coordinates (b) The polarised character in polar coordinates where each unit in the
axis of the Polar Angle represents 6 degrees (c) The wavelet coefficients after wavelet
transform along radius (d) The Fourier spectrum based on the wavelet coefficients
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3.3 Translation and Scaling Normalisation

As discussed in the previous section, the proposed descriptors are only rotation in-
variant. However, the considered images have scaling and translation differences as
well. Therefore, prior to extraction of features using a combination of wavelet and
Fourier transforms, these images should be normalised with respect to scaling and
translation.

To achieve scaling and translation uniformity. the regular moments m,, of each im-
age can be utilised. The regular moments m,, are defined as m,, = [+ zPy? f(z, y)dzdy.
Translation invariance is achieved by transforming the image into a new one whose
first order moments, mg; and mq, are both equal to zero. This is done by transform-
ing the original f(r,y) image into another one which is f(r + £,y + j), where £ and

§ are the centroid location of the original image computed from

- _ Mo _ Mo
rI=—, y=—
Moo Moo

In other words, the origin is moved to the centroid before moment calculation.
There are three commonly used methods to achieve scaling-invariance. First,
Scaling invariance can be accomplished by enlarging or reducing each shape such
that its zeroth order moment mqo is set equal to a predetermined value 3 [28]. Note
that in the case of binary images mgqq is the total number of shape pixels in the
image. Let f(%,%) represent a scaled version of of the image function f(z,y). Then,

the regular moment m,, of f(z,y) and m’

by
mo = L] 290G

Since the objective is to have ml, = {3, one can let a = \/-2-. Substitutin
J 00 mao g

— . 1 . 1 — 2 —_ . - . .
a =,/ ;n*‘:—o into mg,, one obtains mg, = a*mgy = B. Thus scaling invariance is

pqr the regular moment of f(Z, 1), are related

)dzdy = a?*?tim

an
Q|w

achieved by transforming the original image function f(z,y) into a new function
f(%,4) with a = ,/—L Second, we can achieve scaling invariance by setting a =

G’

( )¢o \/(a: -z +(y - y)2 the longest distance from (Z, §) to a point (z,y) on the
x,

pattern. This method, however, is rarely used in noisy environment since it is very
sensitive to noise. The third method is to normalise the image so that the average

radius rq for the activated pixels is a quarter of the input grid dimension; i.e., we
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have

Il K& .
ro=-—23 Y flzi,y)\/z? + v}

Moo J=lk=1
n

a=—.

47‘0
[n summary, an image function f(z,y) can be normalised with respect to scaling
and translation by transforming it into f(Z +Z, £ + g), with (I, §) being the centroid
of f(z,y) and a suitable scaling factor a. Wherever (£+Z, £ + ) does not correspond
to a grid location, the function value associated with it is interpolated from the values

of the four nearest grid locations around it.

3.4 Replacement of Cartesian Coordinates into

Polar Coordinates

There are two issues in the replacement of Cartesian Coordinate system to Polar
coordinate system, i.e. the way of mapping coordinates (z, y) to (r,8) and determining
the value of the new function g(r, ).

In the case of continuous functions, such replacement can be achieved by
r=rcosf, y=rsinb

and there is a one-to-one correspondence between the two functions g(r,8) = f(r cos 4,
rsin@). With regard to discretized coordinate system, however, the task becomes a
little bit more complex. Assume the discretized intervals between two consecutive
coordinate values in Cartesian coordinate system (z,y) and polar coordinate system
(r,0) are (Az,Ay) and (Ar, Ad), respectively. Then their image pixels are AzAy
and rrArAd, as shown by the shaded area in Figure 16, where rp = (k + 3)Ar.

The best way to solve this problem is to divide the image pixel into smaller areas,
called sub-pixels. In our experiment, we divide image pixel AzAy into 162, denoted
by p?, sub-pixels, so that each sub-pixel is small enough to be mapped into a unique
pixel rArAf. With the division of pixels into sub-pixels, we can calculate g(r;,8;)
as the average value of those sub-pixels that fall into region S;; = {(r,0)| i < r <
risn,0; <0 < 0;4.}.
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Figure 16: Polarisation of a pattern

3.5 Experimental Results

In order to test the efficiency of the PFW and PWF algorithms, we use the same
set of 85 printed Chinese characters in our experiment. In Zhang et al. [55], Fourier
descriptors together with a new associative memory classifier for recognition were
developed and tested on the same set of Chinese characters. The original Chinese
character is represented by 64 x 64 pixels, and so is the polarised character. Since
the spectrum of 1-D Fourier transform is symmetric, we only keep half of the Fourier
coefficients. Therefore, the size of FW (r, o) is 64 x 32 and so is the size of the wavelet
coefficients W F(r, ).

Because translation will not change the relative position of the centre of mass of
the character, our major concern is the system’s performance on rotation and scaling.
For each character, we tested six rotation angles and six scaling factors. The six
rotation angles are 30°, 60°, 90°, 120°, 180° and 270°, and the six different scaling

factors are 0.5, 0.6, 0.7, 0.8, 0.9 and 1.2. We use four kinds of wavelet transforms in our
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experiments, namely, Haar, Daubechies-4, Coiflet-6, and Symmlet-8. We obtain 100%
recognition rate for all the rotation angles for both the PFW and PWF algorithms.

The wavelet coefficients of a signal have multi-resolution representation of the orig-
inal signal. The coarse resolution wavelet coefficients normally represent the global
shape of the signal, while the fine resolution coefficients represent the details of the
signal. Due to noise introduced in the original image and the errors accumulated in
the process of polarisation, the detail coefficients are becoming less important than
the coarse scale coefficients. Therefore, it is desirable to usc low and intermediate
resolution wavelet coefficients as a robust feature in the classification phase. We test
the PFW algorithm by using Daubechies-4 wavelet and different scales. Table 10
show the experimental results of the PFW algorithm with regard to recognition rates
by using features at different scales. [t is clear that the average and the low scales
carry significant invariant features.

We test the performance of the PFW and PWF algorithms for different wavelets
when only features in a few low scales are used. For each wavelet. we test the per-
formance of the algorithms when only scaling is presented or when a combination
of scaling and rotation are presented. When only scaling is used, we obtain the fol-
lowing results. Table 6 shows the recognition results of the PFW algorithm when
only features d°, d® and s® are used. Table 8 illustrates the recognition results of the
PFW algorithm when only features d*, d® and ° are used. Table 11 tabulates the
recognition results for the PWF algorithm when only features d*, d°, d%, and s® are
used. When a combination of rotation and scaling are presented, we get the following
experimental results. Table 7 shows the recognition results of the PFW algorithm
when only features d°, d® and s® are used. Table 9 illustrates the recognition results of
the PFW algorithm when only features d*, d® and d® are used. Table 12 tabulates the
recognition results for the PWF algorithm when only features d*, d°, %, and s® are
used. These results demonstrate the effectiveness of the feature extraction algorithms
against geometric distortion.

We also test the noise tolerance and sensitivity of the PWF algorithm. The noisy
images with different orientations are generated by adding white noises to the noise-

free images. The signal to noise ratio (SNR) is defined as

\/ZZ.-,,-(fa.j — avg(f))?
Zi.j("i.j — avg(n))?

SNR =
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, Scaling Factor
Descriptor
0.5 0.6 0.7 0.8 0.9 1.2
Haar 98.82% 100% 100% 100% 100% 100%
Daubechies 4| 98.82% 100% 100 % 100 % 100% 100%
Coiflet 3 98.82% 100%  100% 100% 100% 100%
Symmlet8 | 9882% 100% 100% 100%  100% 100%

Table 6: The recognition rates of the PFW algorithm for different scaling factors.
The features used in this table are d5, %, and s®.

SNR=15
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Figure 17: The noisy patterns with SNR = 20, 15, 10, 5, 4, 3, 2, and I, respectively.

where f is the noise-free image, n is the added white noise, and avg(f) is the average
value of the image f. Figure 17 shows some noisy patterns for SNR = 20, 15, 10,
3, 4, 3, 2 and 1, respectively. We test the PWF algorithm for SNR = 30, 20, 10,
5 and 2, and for rotation angle = 30°, 60°, 90°, 120°, 180° and 270°. The features
d*, d°, &®, and s® are used in the classification phase. Also, Two different distance
metrics, L, and L,, are employed. The results are tabulated in Table 13 and Table 14,
respectively. Our experiments verify that the PWF algorithm is very robust to white

noises.
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: Rotation Angle
Descriptor Scaling
Factor | 3° 6"  9°  1° 1 @ m0°
0.5 9765% 9%647% 929% 9059% 9294% 9529%
Haar 0.8 00% 100% 100% 10% 100% 100%
1.2 0% 100% 100% 100% 100% 100%
0.5 9765% 100% 9647% 9765% 9765% 95.29%
Daubechies4 | 08 0% 100% 100% 100% 100% 100%
12 0% 100% 100% 100% 100% 100%
05 882% 9B2% %647% 9%47% 9529% 9765%
Coiflet 3 0.8 0% 100% 100% 100% 100% 100%
12 00% 100% 100% 100% 100% 100%
0.5 9882% 98.82% 9647% 9%47% 9529% 9765%
Symmlet§ | 08 0% 10% 100% 100% 100% 100%
1.2 0% 100% 100% 10% 100% 100%

Table 7: The recognition rates of the PFW algorithm for a combination of rotation
angles and scaling factors. The features used in this table are d°, d®, and s®.

, Scaling Factor
Descriptor
0.5 0.6 0.7 0.8 0.9 1.2
Haar 9882% 100% 100% 100% 100% 100%

Daubechies 4| 9882% 100% 100 % 100 % 100 % 100 %
Coiflet 3 9882% 100% 100 % 100 % 100 % 100 %
Symmlet 8 9882% 100% 100 % 100 % 100 % 100 %

Table 8: The recognition rates of the PFW algorithm for different scaling factors.
The features used in this table are d*, d°, and d®.
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, in Rotation Angle
Descriptor Scaling
Factor | 3° 6 9 1w
0.5 100% 100% 9882% 10% 9765% 9647%
Haar 08 0% 100% 10% 10% 100% 100%
12 100% 10% 100% 9882% 0% 10%
0.3 100% 100% 100% 9882% 10% 9%882%
Daubechies4 | 038 0% 10% 100% 10% 100% 100%
12 100% 100% 100% 10% 100% 100%
05 100% 100% 100% 10% 9882% 9765%
Coiflet 3 08 100% 10% 100% 10% 100% 100%
12 100% 100% 100% 10% 100% 100%
05 0% 100% 100% 100% 100% 9882%
Symmlet§ | 08 0% 10% 10% 100% 10% 100%
12 100% 10% 100% 9882% 100% 100%

Table 9: The recognition rates of the PFW algorithm for a combination of rotation
angles and scaling factors. The features used in this table are d*, d°, and d°.
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Resolution | Scaling Rotation Angle
Scales Factor 30" 60° %" o0’ 180" 70"
) 6 0.5 9882% 100% 9765% 9882% 9204% 9882%
d '6d 08 100% 100% 10% 100% 100%  100%
S 12 0% 9882% 9647% 9882% 9%.12% 9647%
3 6 0.5 0% 100% 9882% 9882% 9882% 98.82%
d '6d 08 00% 100% 100% 100% 100%  100%
S 1.2 100% 100% 100% 10% 100% 100%
PR 0.5 00% 100% 100% 9882% 100% 98.82%
d'6d 0.8 10% 100% 100% 100% 10% 100%
S 1.2 0% 100% 100% 10% 10% 100%
P 0.5 9882% 100% %47% 9165% 9529% 9765%
6 0.8 100% 100% 10% 10% 0% 10%
S 12 0%  100% 10% 100% 100%  100%
& 0.5 9765% 9765% 94.12% 9059% 91.76% 9525%
6 0.8 100% 100% 100% 100% 9882% 100%
S 1.2 00% 100% 9882% 9882% 9647% 100%
0.5 9529% 8941% 77165% 7882% 6824% 8588 %
g8 08 100% 100% 9765% 9529% 8588% 9647%
1.2 100% 100% 9529% 94.12% 8941% 9765%
0.5 100% 100% 100% 9882% 100% 98.82%
dta® 03 100% 100% 100% 10% 10% 100%
12 0% 100% 100% 100% 100% 100%
0.5 100% 10% 100% 9765% 9647% 97.65%
d>q® 08 100% 10% 100% 100% 10% 100%
12 100% 100% 100% 9882% 9882% 100%
05 9%.12% 91.76% 8824% 7882% 80.00% 8941%
& 08 100% 100% 100% 9882% 9765% 100%
12 UN% NH%E %B12% 8538% 858% 8941%

Table 10: The recognition rates of the PFW algorithm by using Daubechies-4 wavelet
and features at different scales
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, Scaling Factor
Descriptor
0.5 0.6 0.7 0.8 0.9 1.2
Haar 100% 100% 100% 100% 100% 100%
Daubechies 4| 100% 100%  100% 100% 100% 100%
Coiflet 3 100% 100% 100% 100% 100% 100%
Symmlet 8 100% 100% 100 % 100 % 100% 100%

Table 11: The recognition rates of the PWF algorithm for different scaling factors.
The features used in this table are d*, d°, d%, and s5.

i Rotation Angle
Descriptor Scaling

Factor | 3° 6  0°  10° 10°  m°

05 0% 100% 9882% 100% 9882% 9882%

Haar 08 0% 10% 10% 100% 10% 100%
12 0% 10% 10% 10% 9%B8% 10%

05 0% 100% 10% 100% 9882% 100%

Daubechies4 | 08 0% 100% 10% 10% 10% 100%
12 0% 100% 10% 100% 100% 100%

05 0% 100% 10% 10% 100% 100%

Coiflet 3 08 0% 100% 10% 100% 100% 100%
12 100% 10% 10% 10% 9882% 9882%

05 0% 10% 10% 10% 9882% 10%

Symmlet§ | 08 100% 10% 100% 10% 10% 100%
12 0% 100% 100% 10% 100% 100%

Table 12: The recognition rates of the PWF algorithm for a combination of rotation
angles and scaling factors. The features used in this table are d*, d°, d®, and s8.
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Rotation Angle
SNR R ]
0 30 60° %0° 120° 180° 270°
30 100 % 9%47% 100% 100 % 100 % 100% 97.65%
2 0% 9765% 9765% 100% 100% 100% 100%
10 100 % 9%47% 9647% 100% 100% 100% 98.82 %
5 100% 947% 9765% 100% 100% 100% 100 %
2 9765% 9529% 9765% 9765% 9647% 97.65% 96.47%
Table 13: The recognition rates of the PWF algorithm for different SNR's. The
features used in this table are d*, d°, df and s®, and the distance metricis L,.
Rotation Angle
SNR [ [}
0 30 60° 20° 120° 180° 270°
30 0% 947% 9647% 10% 100% 100% 9882%
20 00% 9647% 9647% 9882% 100% 100% 9882%
10 100% 9529% 9647% 100% 100% 100% 9882%
5 100% 9765% 9647% 9882% 100% 100% 9882%
2 100 % 9765% 95.29% 9647% 9765% 100% 98.82%
Table 14: The recognition rates of the PWF algorithm for different SNR’s. The

features used in this table are d*, d°, d® and s®, and the distance metric is L,.
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Chapter 4

Translation-Invariant De-noising

Using Multiwavelets

4.1 Introduction

In the second area of applications, we will discuss the use of translation invariant mul-
tiwavelet transform in signal de-noising. This is a very active research area pioneered
by recent work of Donoho and his co-workers at Stanford. I[n de-noising, single or-
thogonal wavelets with single-mother wavelet function have played an important role
(see [14] - [16]). The pioneering work of Donoho and Johnstone ({14], [15]) can be
summarised as follows: Let g(¢) be the noise-free signal and f(¢) the signal corrupted
with white noise =(t), i.e., f(¢) = g(¢t) + o=(t), where z(¢) has a normal distribution
N(0,1). Donoho and his coworkers proposed the following three-step algorithm:

I. Transform the noisy signal f(¢) into an orthogonal domain by discrete single

wavelet transform.

N
.

Apply soft or hard thresholding to the resulting wavelet coefficients by using

the threshold A = /252 logn.

3. Perform inverse discrete single wavelet transform to obtain the de-noised signal.

The de-noising is done only on the detail coefficients of the wavelet transform. It
has been shown that this algorithm offers the advantages of smoothness and adap-

tation. However, as Coifman and Donoho [13] pointed out, this algorithm exhibits
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visual artifacts: Gibbs phenomena in the neighbourhood of discontinuities. There-
fore, they propose in {13] a translation invariant (TI) de-noising scheme to suppress
such artifacts by averaging over the de-noised signals of all circular shifts. The ex-
perimental results in [13] confirm that TI single wavelet de-noising performs better
than the traditional single wavelet de-noising. However, it is known that there is a
limitation for the time-frequency localisation of a single wavelet functions. Multi-
wavelets have recently been developed by using translates and dilates of more than
one mother wavelet functions ([47}-[53]). They are known to have several advantages
over single wavelets such as short support, orthogonality, symmetry, and higher order
of vanishing moments. [n addition, Strela et al. [47] claimed that multiwavelet soft
thresholding offers better results than the traditional single wavelet soft thresholding.
Since TI single wavelet de-noising also has better performance than the traditional
single wavelet de-noising, it is natural to attempt TI multiwavelet de-noising and
compare the results with TI single wavelet de-noising.

The organisation of this chapter is as follows. Section 1.2 gives a short introduction
to multiwavelets. Section 4.3 explains how TI multiwavelet de-noising works. Section
4.4 discusses univariate thresholding and bivariate thresholding, respectively. And

finally section 4.5 shows some experimental results.

4.2 Discrete Multiwavelet Transform

Wavelet transform plays an important role in de-noising. This is because most of the
noise will accumulate at the detail scale coeflicients of the wavelet transform. In this
section, we will give a short introduction to multiwavelet transform. Multiwavelets
are generalisation of single wavelets. Multiwavelet basis uses translations and di-
lations of M > 2 scaling functions {@i(z)}1<k<amr and M mother wavelet functions
{¥r(z) hrickcnr. If we write @(z) = (¢1(z), da(z), ..., dm(z))T and ¥(z) = (¢(z),
Ya(z), ..., ¥am(z))T, then we have
L-1

®(z) =2 Hi®(2z - k), (41)

k=0

and
L-1

U(z) =23 Gi®(2z — k). (42)
k=0
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where { Hi }o<k<z—1 and {Gx Yo<k<z—1 are M x M filter matrices. The scaling functions
¢i(z) and associated wavelets ¢;(z) are constructed so that all the integer translations
of ¢;(z) are orthogonal, and the integer translations and the dilations of factor 2 of
¢i(z) form an orthonormal basis for L2(R).

As an example, for M = 2, L = 4, we give the most commonly used multiwavelets

developed by Geronimo, Hardin and Massopust [19]. Let

g 30 2v2/5 g 310 o0
Tl =vaio =320 )0 T\ 9vare0 12

o

0 0
Hy = . H
’ ( 9V3/40 -3/20 ) ’

o —V2/40  =3/20
T\ -y -3v8/20 )

and

|
(<o o)
ol

9v/2/40 —1/7
9/20 '

( 9v2/40 —3/20 ) ( —V3/40 0 )
G2 = ’ 03 = .
-9/20 3v2/20 /20 0

then the two functions ¢)(r) and ¢;(z) can be generated via (41). Similarly, the
two mother wavelet functions ¢, (r) and ¢,(r) can be constructed by (42). Let V;
be the closure of the linear span of 2//2¢y(2/x — k), = 1.2; k € Z. With the
above constructions, it has been proved that ¢;(x — k), { = 1,2: k € Z form an
orthonormal basis for V4, and moreover the dilations and translations 27/2yy(2z — k),
Il = 1,2; j,k € Z form an orthonormal basis for L2(R) [13]. In other words, the
spaces Vj, j € Z, form an orthogonal multiresolution analysis of L?(R). The two
scaling functions ¢;(z) and ¢,(z) are supported in [0, 1] and [0, 2], respectively. They
are also symmetric and Lipschitz continuous. This is impossible to achieve for single
orthogonal wavelets.

The original noisy signal f(¢) should be first discretized into the vector { fihi<icats
where n = 2/ = signal length, and prefiltered before it can be used as input of the
discrete multiwavelet transform (DMWT). While single wavelet transform has one
input stream of size n x 1 which is provided by { fit1<iczs, multiwavelet transform
requires input that consists of M streams each of size n x 1. Therefore a method

of mapping the data {fi};<ic3s to the multiple streams has to be developed. This
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mapping process is called preprocessing and is done by a prefilter or a repeated signal
filter {12]. We will return to the prefilter later in this section.

For the sake of clarity, we use {Sok}ock<2s-1 to denote the multiple streams
obtained by applying a prefilter to the original discretized signal { fihicicas. Also,
we use S, and D;, which are periodic in k£ with period 27!, to represent the low-
pass and high-pass coefficients. The forward and inverse DMWT can be recursively
calculated by:

L-1
St = V2 Y HoS; (neakpmod(ar)s (43)
n=0
L-1
Dipri= \/52 GnSj (nt2k)mod(27)+ (44)
n=0
and
L/2-1
13 T
Siaker =V2 Y (g sy St (nbkymod(2#1) + Conip Dit1intkymodz+t))s (45)
n=0

foryj=0,1,...,J =1 p=0,1;k=0,L,... It is noted that Eq.(45) is different from
Eq.(3.7) of [33]. A simple verification can show that the inverse DMWT in Eq.(3.7)
of [53] is incorrect. For example, let us consider reconstructing S;o from {S;e1x}x
and {Dj;1x}%. Before passing through the synthesis filters, we have to upsample (i.e.
insert zeros) {S;s+14}x and {Djy 4} first. Since the upsampled version is 0 in every

other sample, S;q can only be the sum of the form
Sio = V2(H Siv10+ GE Djsro + HY Sjsra + GE Djsra +-+),

that is, with coefficients of Hg, H,, Hy, . ..and similarly with G. However, the equation
in [53] has terms with Hy, H,, H,, H;, .

Because a given signal consists of one stream but the DMWT algorithm requires
that the input data be multiple streams, a method of mapping the data to the multiple
streams has to be developed. This mapping process is called preprocessing and is done
by a prefilter Q [12]. A postfilter P just does the opposite, i.e., mapping the data

from multiple streams into one stream. Thus, with M = 2,

A )

fa(ntk)+2
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The postfilter P that accompanies the prefilter @ satisfies PQ = I, where [ is the
identity filter. So, if one applies a prefilter, DMWT, inverse DMWT and postfilter to

any sequence the output will be identical to the input. The commonly used prefilters

Lo
Q°=(0 1)'

0 =(2+\/§/10 2—\/'5/10)

are:
Identity prefilter

Xia prefilter

V2+3/20 V2-3/20
Minimal prefilter
2/2 -2
Qo = :
1 0
Repeated signal prefilter is different from the definition above. [t is defined by

SO.k = fre ( |

[t has been shown by Downie and Silverman [12] that the repeated signal filter is very
good for de-noising purposes, we also get the same conclusion in our experiments.
Multiwavelets have some advantages in comparison to single ones. For example,
such features as short support, orthogonality, symmetry, and higher order of van-
ishing moments, are known to be important in signal processing. A single wavelet
cannot possess all these properties at the same time, but multiwavelets can. It is con-
firmed that multiwavelets can give better results than the single wavelets in image

compression and de-noising [47].

4.3 Translation Invariant Multiwavelet De-noising

TI de-nosing suppresses noise by averaging over thresholded signals of all circular
shifts. TI table is a fast way of implementation, rather than having to do transform
on the original signal n times. We can realize the T multiwavelet de-noising algorithm

by the following steps:
1. Prefilter the original noisy signal into multiple streams by a specific prefilter.

52



Bivariate
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Multiwavelet
Transform
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Figure 18: The block diagram of the TI multiwavelet de-noising

. Forward
Noisy .
Sienal = Multiwavelet
gn Transform
2.
in [13].
3
4.
processes in step 2.
3.

Postfilter the de-noised multiple streams to get the de-noised signal.

Decompose the multiple streams into a T1 table which is similar to the TI table

. Apply the univariate or bivariate thresholding (soft/hard) on the TI table.

Calculate the de-noised multiple streams from the TI table by reversing the

Figure 18 shows the block diagram of the TI multiwavelet de-noising scheme. The

TI table in [13] is for discrete single wavelet transform. Below we describe the TI

table for discrete multiwavelet transform: The TI table is an n by WM matrix with

0 < W < log, n. For convenience, we partition the TI table into W column groups

with columns (w — 1)M + | through wM into column group w for 1 < w < W.

Similarly, the w-th column group is partitioned into 2% “boxes”, where each box is a

n/2¥ by M matrix. These boxes contain all the multiwavelet coefficients at scale w

for different shifts. We also need an n x M matrix, denoted by S, to store the low

pass coefficients. This matrix is dynamically filled during each resolution scale.

The fill-in of the TI table and « are fulfilled by a series of decimation and filtering

operations. Let G and H stand for the usual down-sampling high pass and low pass

operations of the wavelet theory. Also let R, stand for circular shift by k. Set Soo =

the multiple streams by applying a prefilter to f, and initialise

then, the recursive equations follow

Dx.o = GRoso.o;

51.0 = HRoso.o;

D J+1,.2k = GRS ok
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Sit12c = HRoS;k;  Sipr2k+1 = HR Sk

for j =1,...,Wand £ =0,1,...,22°! — 1. It should be mentioned that the scale
W is normally chosen to be smaller than log, n, and thus the scale j does not really
go from j =1 up to j = J — 1. We should place the vector D, x in bor k of column
group w + 1. Also, we need to place the S, s in bozx k of the average matrix S.
After thresholding on the TI Table, we can reverse the steps during the fill-in
process. Let G* and H* stand for the usual up-sampling high pass and low pass

operations. At scale j, for each k in the range 0 < k£ < 2/ — 1, compute
Y = (RoG™S;2k + R-1G™Sjak1)/2, 6k = (RoH Djar + R H*Dj 3541 ) /2,

and

Sictk =Tk + Ok

for j = W,...,1 and k = 0,1,...,27! — |. The de-noised multiple stream multi-
wavelet coefficients are then given by Soo. A postfilter has to be applied in order to

get the de-noised signal f(t).

4.4 Univariate vs Bivariate Thresholding

The success of wavelet thresholding lies in that usually the signal will be compressed
into a few large coefficients whereas the noise component will give rise to small coeffi-
cients only. Univariate thresholding is developed by Donoho and Johnstone [15] and
two kinds of thresholding methods, soft and hard, are discussed. The hard threshold-
ing will kill all the wavelet coefficients whose magnitudes are less than the threshold
to zero while keeping the remaining coefficients unchanged. The soft thresholding
kills the smaller wavelet coefficients, too. However, all the coefficients whose magni-
tudes are greater than the threshold will be reduced by the amount of the threshold.
Univariate thresholding is successfully used in multiwavelet de-noising by Strela et
al. [47].

Even though univariate thresholding will work in multiwavelet de-noising, it does
not give enough noise reduction. This is because multiwavelet transform normally
produces correlated coefficients. Therefore, we have to use a thresholding method that
will treat the multiwavelet coeflicient vector as a whole entity. Downie and Silverman
developed the bivariate thresholding method by setting the universal threshold to
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A = 2logn. The theory behind bivariate thresholding can be briefly reviewed as
follows [12].
Suppose we apply the DMWT with an appropriate prefilter to a noisy function,

then we get L stream coefficients of the form,
Dx= D;,k + E;x

where Ej, has a multivariate normal distributation N(0,V;). The matrix V; is the
covariance matrix for the error term which depends on the resolution scale j. Using

the standard transform
Ok = DI, V' Djx

we obtain a positive scalar value which in the absence of any signal component will
have a y? distribution. [t is these values that are thresholded, and the coefficients
vectors can then be adapted accordingly. To find the universal threshold, we need to
find the asymptotic maximumof n i.i.d. y% random variables. If M, is the maximum
of n i.i.d. \2 variables (p > 1) and ), is the infimum of all sequences a, that satisfy

P(M, < a,) = | as n — o0, then one can show that
An =2logn + (p—2)loglogn.

For the result to hold, it is sufficient to show that nP(X > ),) — v as n — oo,
where X ~ x2 and 7 is a positive real number. Using the distribution function for a
X2 distribution and repeated integration by parts, it can be shown that this limit is
attained when A\, = 2log n+(p—2)log logn. When p = 2. the universal threshold for
multiple wavelets simplifies to A, = 2logn. Unlike in the single wavelet thresholding
the variance term o does not appear in the universal threshold formula.

Suppose we use a threshold of A\. Then the hard thresholding rule in bivariate
thresholding can be written as

b, = { Dix if6;x> )

0 otherwise

where 0;, = Df, V. D;, and V; is the covariance matrix for the error term depending

on the resolution scale j. The bivariate soft thresholding can be formulated as

. A H N
Dj,k _ D,k(l - a—):) if 0,,k > A
0 otherwise
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We can use a robust covariance estimation method to estimate V; directly from
the observed coefficients [24]. The pseudo code for robust covariance estimation can

be listed as follows:

#define mad(y) 1.4826 * median(abs(y — median(y)))
float a1, ay, by, by, V;[2][2];

a = 1.0/mad (row,);

a, = 1.0/mad (row,);

b, = mad (a; * row, + a, * row,);
b, = mad (a; * row; — as * rows);
Villilt] = /(@i = a1);

Vil22] = 1/(a2*aa);

Vil = (b = bo)/((by + b) * a1 * ay):
vii2llt) = vi[u]2);

4.5 Experimental Results

In our experiments we use the same signals given in [13]: Blocks, Bumps, HeaviSine,
and Doppler. Gaussian white noise is added to the signals so that the signal-to-noise
ratio(SNR) is 7. The SNR is defined as \/var(f)/o?, where var(f) is the variance
of the signal f(¢). The number of sample points for each signal is n = 2048. Fig-
ure 19 shows the four noise-free signals and the noisy signals. Unless otherwise spec-
ified, we use the minimal repeated signal prefilter for the TI multiwavelet de-noising
experiments. The coefficients are thresholded using universal univariate threshold
v20%logn and bivariate threshold 2log n. The inverse multiwavelet transform and
post-filter are applied to obtain the smoothed estimate of the noise-free signal. All
detail scales except the five coarsest scales are thresholded. The mean square error
(MSE) is used as the distance measure between the noise-free signal and the de-noised
signal.

We compare the performance of the TI GHM multiwavelets with TI Daubechies-4
single wavelets. Figure 20 shows the de-noised signals by using the TI Daubechies-4
wavelets, while Figure 21 illustrates the de-noised signals by using the TI GHM multi-
wavelets with univariate thresholding. The mean square errors are given in Table 15.
It is clear that the TT GHM multiwavelets with soft thresholding gives better results
than the TT Daubechies-4 single wavelets. However, the TI GHM multiwavelets with
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hard thresholding still keeps a lot of noise. As Downie and Silverman [12] pointed
out, the DMWT produces correlated coeflicients, so a method which accounts for
the noise and the signal components within the whole vector should be developed.
We implement the TT GHM multiwavelets de-noising with bivariate thresholding [12]
and obtain better results. Figure 22 shows the four signals de-noised by using TI
GHM multiwavelets with bivariate thresholding, respectively. From Table 15 one can
see that TI GHM multiwavelets de-noising with soft bivariate thresholding obtains
smaller MSE than both the TT single wavelet de-noising and the TI GHM multiwavelet
de-noising with soft univariate thresholding. Also, the TT multiwavelet de-noising
with bivariate hard thresholding is better than with univariate hard thresholding.
Even though TI multiwavelet de-noising with hard thresholding can suppress more
noise than with hard univariate thresholding, it does not always outperform TI single
wavelet de-noising. Ounly Blocks and Doppler have smaller MSE in our experiments.
We also compare the performance of the TI multiwavelet de-noising with the non-TI
multiwavelet de-noising by using univariate thresholding and bivariate thresholding,
respectively. Generally speaking, TI multiwavelet de-noising is better than non-TI
multiwavelet de-noising no matter what thresholding method is used. Furthermore,
we can see that bivariate hard thresholding is better than univariate hard thresh-
olding. This confirms the claim by Downie and Silverman. However, bivariate soft
thresholding gets bigger MSE for Heavisine and Doppler. Figure 23 and 24 show
non-T1 univariate de-noising and bivariate de-noising by using GHM multiwavelets.

We test the performance of the TI multiwavelet bivariate thresholding for SNR =
7 and different prefilters. The prefilters used in our experiments are Identity, Xia,
Minimal, and Repeated row. From Table 16 one can see that the repeated row
prefilter gets the smallest MSE for all four signals. We also test the T multiwavelet
bivariate de-noising for different SNR’s. Table 17 illustrates the experimental results
for SNR = 3, 5, 7, and 9. [t is meaningful that the TI multiwavelet bivariate
de-noising works well when the noise level is high. The comparision between the TI
multiwavelet bivariate de-noising and TI single wavelet de-noising is given in Table 18.
The single wavelets that are used include Daubechies 4 (D4), Symmelet 8, Haar, and
Coiflet 4. TI multiwavelet bivariate de-noising obtains superior performance over all

single wavelet de-noising.
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Figure 19: Four noise-free signals and four noisy signals
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Figure 20: TI D4 Wavelet Shrinkage
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Figure 21: TI GHM MultiWavelet Threshold: Univariate
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Figure 22: TI GHM MultiWavelet Threshold: Bivariate

61



(a) GHM, Soft,[Blocks]

0 0.5 1

(c) GHM, Soft,[HeaviSine]

0.5
(a) GHM,Hard,[Blocks]

-

20
15}
10t

-5
-10
0

05

-t

(c) GHM,Hard,[HeaviSine]

10

-10}

-15
0 0.5

—

(b) GHM,Soft,{Bumps]

0.5 1

(d) GHM, Soft,[Doppler]

0 0.5
(b) GHM,Hard,[Bumps]

-

50}
40
30¢
20
10t

-10
0 0.5

—

(d) GHM,Hard,{Doppler]

0.5

b

Figure 23: GHM MultiWavelet Threshold: Univariate
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Blocks | Bumps I;-leavisine Doppler

T D4 34.175 35.173 11.838 25.383
TIGHM | 57,08 24965 | 11.187 14.869
(Univariate)

Soft | TI GHM | 59469 20.428 11.387 13.586
(Bivariate)
GHM 29.763 32,647 12.380 19.937
(Univariate)
GHM 28.246 30.582 13.001 21.297
(Bivariate)
TI D4 14.461 13.898 8.307 12.686
TIGHM | (6637 17.312 11.975 12.571
(Univariate)

Hard | TI GHM | ;4 95 14.961 10.183 10.951
(Bivariate)
GHM 2012 | 24087 15.697 18.596
(Univariate)
GHM 18.029 23,000 11352 17.168
(Bivariate)

Table 15: Mean Square Errors (MSE) for single wavelet and multiwavelet de-nosing

Prefilter | Blocks | Bumps |Heavisine| Doppler

Identity | 73.107 35.581 56.742 55.752

Xia 161.85 410.12 68.966 413.47

Minimal | 57483 49.695 22.984 32.113

Repeated

23.869 20.428 11.387 13.386
Row

Table 16: MSE for the T multiwavelet bivariate thresholding with different prefilters
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SNR Blocks | Bumps |Heavisine| Doppler
3 25232 22.849 8.680 12.938
5 25.623 21.147 10.266 13.264
7 23.869 20427 11.387 13.586
9 22.006 20.127 11.989 13.737

Table 17: MSE for the TI multiwavelet bivariate thresholding with different signal-
to-noise ratio (SNR)

Wavelets | Blocks | Bumps |Heavisine| Doppler
D4 34.175 35.173 11.838 25.383
Symmlet8} 34.173 35814 12.095 19.473
Haar 24.299 39.524 11.447 32754
Coiflet4 | 39.712 39.896 12,671 20.632
GHM 23.869 20.428 11.387 13.588

Table 18: MSE for different TI single wavelets thresholding and TI multiwavelet
bivariate thresholding
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Chapter 5
Conclusion and Future Work

[n this thesis. we study the application of wavelet transforms in two important areas:
pattern recognition and de-noising. [n the area of pattern recognition, we introduce an
invariant descriptor for recognising 2-D patterns which can be represented by periodic
L-D signals such as the contour of an object, the ring-projection, the line-moment,
etc. The method first performs orthonormal shell decomposition on the periodic 1-D
signal, then applies Fourier transform on each scale of the shell coefficients. The
descriptor is invariant to the rotation of the pattern, and we can use a coarse-to-fine
matching strategy in the classification process. The translation- and scale-invariance
can be achieved while extracting the periodic 1-D signal from the 2-D pattern. we
get 100% recognition rate for nearly all combinations of translation. rotation, and
scaling. [t is shown that the orthonormal shell-Fourier descriptor gets higher recog-
nition rates than the Fourier descriptor for recognising printed Chinese characters.
The orthonormal shell-Fourier descriptor can be applied to any 1-D periodic signal,
say the contour of an numeral, aircraft, etc.

The multi-resolution Orthonormal Shell-Fourier Descriptor can be applied to any
1-D periodic signal, say, the contour of an object. In hand-printed numeral recog-
nition, we can first trace the contour of a numeral and then represent the contour
by two periodical coordinate signals Contour_z and Contour_y. We can decompose
the two signals into multi-resolution orthonormal shell by means of a specific wavelet
filter. After that, we get the Fourier spectra Feature_z and Feature_y by applying
Fourier transform on each shell scale. The query process can be performed on complex
numbers Feature_r +¢ Feature_y by using a coarse-to-fine matching strategy. It

is also possible that we combine neural network with the Orthonormal Shell-Fourier
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Descriptor.

The PFW and PWF algorithms proposed in Chapter 3 are computational reliable
tools for pattern recognition. Both algorithms are invariant to translation, rotation,
and scaling. We achieve very high recognition rate for all different rotation angles and
scaling factors by using different wavelets. We only use a few low scale wavelet coef-
ficients in the classification phase. It should be noted that although our experiments
are done on a set of printed Chinese characters, our method is equally applicable
to other pattern recognition problems such as air planes, key sets, or road signs.
Future work can also be done for recognising more deformed and noisy patterns by
incorporating neural network into the PFW and PWF algorithms.

In Chapter 4, we discuss and imp!cment signal de-noising by using TI multi-
wavelets. Instead of applying univariate thresholding, we experiment with bivariate
thresholding as pioneered by Downie and Silverman. Experimental results show that
Tl multiwavelet de-noising gives better results than the conventional TI single wavelet

de-noising. In future work we will apply this scheme to image de-noising.
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