INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleedthrough, substandard margins, and improper alignment

can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overlaps. Each original is also photographed in
one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UM! directly to order.

®

UMI

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

nD-SQL: EXTENDING SCHEMASQL TOWARDS
MULTIDIMENSIONAL DATABASES AND OLAP

FREDERIC GINGRAS

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER oF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MoNTREAL, QUEBEC, CANADA

DECEMBER 1998
© FREDERIC GINGRAS, 1999

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre relérence
Our file Notre reférence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette these sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette these.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-39112-4

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Frederic Gingras
Entitled: nD-5QL: Extending SchemaSQL Towards Multidimensional
Databases and OLAP

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science
complies with the regulations of this University and meets the accepted standards with respect to
originality and quality.

Signed by the final examining commitee:

Chair

Examiner

Examiner

Supervisor

Approved
Chair of Department or Graduate Program Director

19

Dr. Nabil Esmail, Dean
Faculty of Engineering and Computer Science

Abstract

. nD-SQL: Extending SchemaSQL Towards Multidimensional Databases and OLAP

Frédéric Gingras

Decision support systems are becoming tools of basic necessity for corporations big
and small, but the costs in time and money to integrate the various sources containing
the data to be analysed is often prohibitive. In view of those costs, a non-intrusive
solution would be an attractive alternative to porting data and applications from
legacy systems to a common platform. In this context, one of the key problems for
interoperability lies in the heterogeneity in schema of the underlying sources. We
propose a combined solution to the above problems. This thesis proposes a formal
model for a federation of relational databases with possibly heterogeneous schemas.
The Federation Model is comprehensive enough for: (i) capturing the diversity of
schemas arising in practice, allowing a symmetric treatment of data and schema, and
(ii) capturing the complete space of dimensional representations of data, fully exploit-
ing the n logical dimensions structured along the three physical dimensions implicit in
the relational model ~ row, column, and relation. An n-dimensional query language
called nD-SQL is also proposed. This language makes use of the Federation Model and
is capable of: (a) resolving schematic discrepancies among a collection of relational
databases or data marts with heterogeneous schemas, and (b) supporting a whole
range of multiple granularity aggregation queries like CUBE, ROLLUP, and DRILLDOWN,
but, to an arbitrary, user controlled, level of resolution. In addition, nD-SQL can
express queries that restructure data conforming to any particular dimensional repre-
sentation into any other. The semantics of nD-SQL is downward compatible with the
popular SQL language. The thesis also proposes an extension to relational algebra,
capable of restructuring, called restructuring relational algebra (RRA). We use RRA
as a vehicle for efficient processing of nD-SQL queries, and we propose an architecture
for this purpose. We develop query optimisation strategies based on the properties of
RRA operators. We have implemented the operators of the RRA and we have tested
the performance of heuristics developed for query optimisation.

ii

To my mother, my father and Annie.

Each loving and helping me in their own, special way.

Acknowledgments

So many people have shaped who I am today, in small or enormous measures, that
properly acknowledging them all would take more pages than the length of this thesis.
I shall nonetheless endeavour to thank here as many as I can.

I would like to thank my mother and my father, who have always encouraged me
to be true to myself. They believe in me and have taught me to do the same. I could
never thank them enough for the support, love and friendship they have given me
over the last twenty-five years.

I would also like to thank Annie, my love. You have helped me stay sane (that is
as sane as [was before [met you), reaching out to me when I needed it most, bringing
a smile to my face when my troubles seemed overwhelming. Your love sustains and
strengthens me and [hope that my own love can do the same for you.

To all the friends who have endured me over the years, [say thank you (and se-
cretly wonder how you managed it). All of you, fans of science-fiction or fantasy,
role-players, card players, pool players, bowling players or badminton players. Dil-
letantes in movie soundtracks, in theoretical, particle or astro-physics. Critiques who
studied and debated with me the fine points of the impact theory of mass extinc-
tions. All those who shared with me their appreciation of Loreena McKennitt or
Sarah McLachlan. I must thank you all from the bottom of my heart for your friend-
ship, your help, your time and your positive influence on my life. If a person could
be the sum of who his friends are, I know I would be a much better person than I
can ever hope to become.

Over the years, the numerous teachers who taught me have managed to kindle my
interest in each of their subjects of predilection. They also recognised my interests
and abilities and slowly guided me on this marvelous journey of discoveries. I would
like to thank them all for the incredible opportunity they gave me in teaching me to
look at the world in a myriad of different ways.

Special thanks must go to my thesis advisor, Dr. Laks Lakshmanan. Laks’ knack

for taking the best parts of what you said. and massaging those into ideas that can
be worked upon, never ceases to amaze me. His interests are so varied and his mind
so agile that it is always a pleasure to converse with him on any subject. Even when
we do not agree on something, there is always room for discussion and in the end, a
better understanding emerges. Laks, if it was in my power to do so, I would find you
a whole department of students to work on your projects. I know that you would have
something fascinating for each of them to do and that in the end, the next generation
of database technology would become a reality very fast.

[would also like to gratefully acknowledge the financial support I received from the
J.W. McConnell Memorial Fund, and the NSERC grants I obtained through Laks. [
also made use of these awards for attending conferences.

Last, but not least, I would like to thank the members of my extended family, blood
related or otherwise. Your interest in me, kindness and warmth keeps on helping me

along the path of success.

Someone wise once said that when you travel, what should matter is not the
destination but the journey itself. The Chinese people also have a saying, which can
be a blessing as well as a curse: “May you live in interesting times”. Well, life’s
Journey has been incredibly interesting up to now, and I certainly do not want to
reach the destination anytime soon. May I be so lucky as to keep meeting people as
extraordinary as all of you who touched my life up to now. Thank you again everyone.
This is dedicated to all of you.

vi

Contents

List of Figures ix
List of Tables x

1 Imtroduction

1.2 Structure and Contributions of This Thesis 4

2 The Federation Model 7
2.1 The Federation Model: A Formal Model for a Federation of Relational Databases . . 7
2.2 Real Federations and Federation Model Bridged 11

3 The Syntax of nD-SQL 15
3.1 Multi-dimensionality and Restructuring 15
.11 mD-SQL Syntax 15

3.1.2 Allowable Abbreviations 20

3.1.3 Well Typing 21

3.2 Enhancing nD-SQL for OLAP: Multiple Visualisations and Arbitrary Sets of Group-bys 24
3.2.1 Extensions to the nD-SQL Syntax 25

4 The Semantics of nD-SQL 30
4.1 Informal Presentation of the Semantics 30
4.2 SQL Semantics Reviewed 31
4.3 nD-SQL Semantics 35

5 Query Processing 48
5.1 Processing of Queries that Do Not Involve Dimension Variables 48
9.1.1 Restructuring Relational Algebra 49

5.1.2 Translation fromnD-SQLto RRA 56

5.1.3 Optimisation 65

9.2 Processing of Queries With Dimension Variables 70

vii

6 Implementation

6.1 [Implementation Details
6.2 Performance Results
6.2.1 Preliminary Statements . . .
6.2.2 Testing Methodology
6.23 Results

7 Comparison With Other Work

7.1 SQL Extensions
7.1.1 SchemaSQL

8 Summary and Future Work

8.1 Summary
8.2 FutureWork
Bibliography

Appendix: Grammar of nD-SQL

viil

72
72
73
73
T4
75

85

87

88

89
39
90

92

95

List of Figures

A federation of relational databases with heterogeneous schemes, containing stock
market data. oL Lo
The catalog database associated with the federation of Figure 1.
Result of query Q3
Algorithm for verifying if a query is well-formed
Groupingsdone by query Q8
Multiple visualisations resulting from query Q9
The “neighbourhood” operator
The set of instantiations Zg1o corresponding to query Q12
The set aggtupleqg)a corresponding to query Q12
The set of logical instantiations I’°9i°Q13 corresponding to query Q13
The set of logical tuples Iaggloggcqls corresponding to query Q13
(i) The relation structqq3(v) and (ii) the final result after merging
nD-SQL Server Architecture

ny2m::prices.,
Algorithm for RRA operator ADD_REL
Algorithm nD-SQLtoRRA
Result of operation I"pate Tickersm (bSe prices)
Result of operation 6*prjces50.00(bse :prices)
Algorithm for operator IT™
Algorithm for operator o
Performance of ADD_.COL vs REM_COL for varying number of input tuples

Performance of Join vs REM_COL for varying avg join selectivity
Performance of Join vs REM_COL for varying nbr of input tuples
Performance of Join vs REM_COL for varying avg compactness
Performance of Join vs ADD_COL for varying avg join selectivity
Performance of Join vs ADD_COL for varying nbr of input tuples
Performance of Join vs ADD_COL for varying avg compactness

List of Tables

O 00 N O U AW N

b— = e
LI)

New elements of syntax in nD-SQL
Syntax for dimension variables; Xi,..., X, are all the dim_vars declared in the query.
RRA subexpressions for VITs of variables declared in the FROM clause
Rules for select_objects in the SELECT clause

Performance of ADD_COL vs REM_COL for varying number of input tuples

Performance of Join vs REM_COL for varying avg join selectivity
Performance of Join vs REM_COL for varying nbr of input tuples
Performance of Join vs REM_COL for varying avg compactness
Performance of Join vs ADD_COL for varying avg join selectivity
Performance of Join vs ADD_COL for varying nbr of input tuples

Performance of Join vs ADD_COL for varying avg compactness

Chapter 1

Introduction

We are rapidly reaching the end of the twentieth century and in the span of a few
decades, our needs in terms of information processing and analysis have reached a
point where powerful automated systems are no longer a nice thing to have, but a basic
necessity. The database community has thus been forced to adopt new paradigms
centered on the concepts of efficiency, productivity and competitivity, paradigms like
data warehouses, on line analytical processing (OLAP) and data mining. These
paradigms are all proposed as components of decision support systems.

One of the most important facts that has to be dealt with in this context is
interoperability : if it can be helped, users do not want to throw away their existing
systems. Replacing them would involve costs in time and money that must be avoided.
But empowering existing systems with the new functionalities needed, and integrating
these systems in a greater whole that would enable seamless cross-querying, is one of
the biggest challenges faced by today’s database community.

The interoperability problem entails the resolution of incompatibilities and con-
flicts on a number of different fronts, including: the myriad of platforms in use today;
the differences in schema of databases containing information of similar nature; the
variety of transaction management systems; the syntactic differences between lan-
guages used to access data in each system; and numerous others.

Some of these problems arise because the various sources of data, often inside a
single organisation, have been designed by different people, at different points in time,
to cater to different needs, and in most cases to be autonomous. The same autonomy
that was a blessing when it enabled distinct entities to administrate, query, update
and restructure data, has quickly become a curse of a sort. The tradeoff between

autonomy and the need for integration appears clearer today than ever before in

corporations that need powerful, integrated decision support tools. For example. the
Canadian telecommunication company Bell Canada has created over the years numer-
ous systems storing information about different aspects of its network of cables spread
over an immense territory. Today, in order to make sound business decisions about
the assignment of network repair crews and maintenance and installation budgets, the
corporation painstakingly developed an in-house tool that permits it to incorporate
data from its various systems. This tool was designed to analyse in various ways the
data coming from all the different sources, without necessitating any changes in the
individual systems.

As this example tries to illustrate, there is a real need for a sound and formal basis
to facilitate interoperability between different database systems. It would have made
life much easier for Bell Canada if there was a system capable of integrating those
components DBMS and interoperate among them. Such systems should not have to
be built using ad hoc designs, particular to each individual case.

It has been proposed in the literature that data-mining and OLAP being computa-
tionally expensive, they are best supported by a data warehouse. But, as discussed in
[CD97], building a data warehouse is a long, complex, and costly process, often taking
up to several years to complete. Many organisations adopt an intermediate solution,
whereby they create the so-called data marts, which are essentially miniature data
warehouses integrating small subsets of the operational databases. At the opposite
end of the spectrum, some organisations tend to adopt a virtual warehouse approach,
at least for a limited time, before they analyse their needs and customise their sys-
tems. Thus, in the evolutionary life-cycle of a data warehouse, one has to cope with
interoperating among operational databases, among data marts, and among both.
Given the ultimate need to perform OLAP-style computations, it would be desirable
to have one query language that can express not only conventional queries across
component databases (or data marts), but also OLAP-style queries.

It has been recognised that even in the apparently simple context of a federation
consisting of relational databases, the conflict among the component schemas raise
serious challenges for interoperability. For instance, an entry such as “ibm” might
appear as a domain value in one component database, as an attribute in another, and
as a relation name in the third (see Figure 1 for an example federation of relational
databases). It is known that conventional languages like SQL or variants cannot be
used to overcome this conflict (see [LSS96]), without a host language.

This thesis addresses the dual problem of solving the above kinds of interoperability

conflicts between relational sources, while enabling OLAP-style computations to be

performed on that data.

Ticker | Date Measure | Price
}:m ig}g;{g; olpen gggg Stocks | Date open | close
om close : ibm 1027197 | 63.67 | 62.56
ms 11]01|97 { open 4460
ms 11]01]97 | close 46.17 | LTS 11[01]97 | 44.60 | 46.17
(a)nyse: :prices (b)tse: :quotes
Date open_ibm | open_ms | open_... | ... | close_ibm | close_ms | close_...
10|27]97 63.67 50.23 62.56 48.54
11j01]97 65.23 44.60 63.05 46.17
(c) bse::prices
Date open | close | ... Date open | close
10]27{97 | 63.67 | 62.56 | ... 10}27|97 | 50.23 | 48.54
11]01]97 | 65.23 | 63.05 | ... 11]01]97 | 44.60 | 46.17
mse: :ibm mse::ms

(d) relations in mse

Figure 1: A federation of relational databases with heterogeneous schemnes, containing stock market
data.

Only relevant relations from each database are shown. The notation db: :rel means db is a database
containing relation rel. The same data is used in every database to clearly show the schema
correspondence.

To properly contrast the thesis with the existing research, the next section reviews

some of the existing works in the field.

1.1 Current State of Research

The problem of presenting to users an integrated view of the data in multiple database
systems has been studied by researchers for a long time. Surveys on this subject
are found in [ACM90], and [ACM94]. A more focused discussion can be found in
[S97]. Another important reference on the subject is Won Kim ([KCGS93]). The
main approaches are: (i) mapping component databases to a common canonical data,
model and (ii) using a non-procedural language for cross-querying.

The common data model approach consists in mapping the databases of a fed-

eration to a common model that is rich enough (in terms of modelling power) to

3

capture their similarities in information content. Often. users will be presented a
‘view’ of the various sources that all fit the user’s perception of his or her data. This
way a user will not need to know that there exist any schematic discrepancies be-
tween the sources. Examples of the use of the common data model approach are:
the Multibase project([LR9289]), the Mermaid project ([Tem87]), and the Pegasus
project ([ASD*91]).

The non-procedural language-based approach has been very popular over the years.
It consists in using a language that allows users to define and manipulate several
autonomous databases in a non-procedural fashion. This approach has the advantage
of giving more flexibility, since the common data model is not necessary and is, in
some sense, redefined each time dynamically by the use of the language. Much work
has been done following this approach. The following is a selection from those with
which we compare our work in Chapter 7: [Lit89, ASD*91, KKS92, Bee93, CL93,
GLRS93, SSR94, KGK*95, MR95, Cat96, SQLI6].

More recently, a family of related works has been proposed using higher order
languages as vehicles for information integration. We note SchemaLog([Andr*96]), a
logic language, Tabular Algebra ([GLS96]), and the SchemaSQL language ([LSS96]),
a SQL-compatible language which was the starting point for our work. A comparison
of our work with SchemaSQL can also be found in Chapter 7.

Industry efforts to solve the interoperability problem have also made their way
into commercial products. Among those, we note Oracle/SQL (from Oracle Corp.)
([ORA]) and Data Joiner, from IBM ([DB296]). The latter lets users combine relations
coming from different sources, and query them as if they were in one (DB2) source.

The work is promoted as a decision support tool.

1.2 Structure and Contributions of This Thesis

As stated earlier, even in the context of a federation consisting of relational databases,
the conflicts among the component database schemas raise serious challenges for
interoperability.

The body of work pertaining to the interoperability problem is impressive. How-
ever, none of the proposed common data models or non-procedural languages sat-
isfactorily solves the problem. For each of the works mentioned in the preceding
section, either: (i) there is an inherent rigidity present in the common data model

proposed, which means costly changes to a system whenever an additional source

must be integrated, or when changes are made to the schema of one of the sources:
(i1) the language or model proposed is not rich enough to effectively solve the schema
discrepancy problem; (iii) the language is not clearly downward compatible with SQL,
which is the language of choice for most commercial DBMS in use today; (iv) the
approach is intrusive insofar as it demands (sometimes extensive) changes to exist-
ing systems; or (v) the approach does not provide the necessary functionalities to
incorporate OLAP-style computations.

Both of the main approaches have merit, but we contend that a hybrid approach
can make use of the best of both worlds to cleanly resolve the problem. We believe
that the need for mappings to a common schema calls for a high level query language
capable of resolving schema conflicts automatically, assuming additional information
on the component schemas is added to the federation in a non-infrusive manner.

Moreover, given the ultimate need to perform OLAP-style computations, this
query language should not only be able to express conventional queries across com-
ponent databases (or data marts), but also OLAP-style queries.

This thesis proposes a formal model for a federation of relational databases with
possibly heterogeneous schemas. The model is comprehensive enough for: (i) captur-
ing the diversity of schemas arising in practice, allowing a symmetric treatment of
data and schema, and (ii) capturing the complete space of dimensional representations
of data, which fully exploits the three physical dimensions implicit in the relational
model - row, column, and relation. This separation of data dimensions from the
physical dimensions will enable us to both solve the schematic heterogeneity problem
for interoperability and to support OLAP-style computations. The Federation Model
is presented in Chapter 2.

An n-dimensional query language called nD-SQL is then proposed. This language
makes use of the Federation Model and is thus capable of: (a) resolving schematic
discrepancies among a collection of relational databases or data marts with heteroge-
neous schemas, and (b) supporting a whole range of multiple granularity aggregation
queries like CUBE, ROLLUP, and DRILLDOWN, but, to an arbitrary, user controlled, level
of resolution. In addition, nD-SQL can express queries that restructure data con-
forming to any particular dimensional representation into any other. The semantics
of nD-SQL is downward compatible with the popular SQL language. The syntax of
nD-SQL is presented in Chapter 3 while its semantics is presented in Chapter 4.

The thesis also proposes an extension to relational algebra, capable of restruc-
turing, called restructuring relational algebra (RRA). We use RRA as a vehicle for

efficient processing of nD-SQL queries, and we propose an architecture for this purpose.
We develop query optimisation strategies based on the properties of RRA operators.
We have implemented the operators of the RRA and we have tested the performance
of heuristics developed for query optimisation. Chapter 5 presents the RRA and dis-
cusses query processing and optimisation, while Chapter 6 presents and discusses the
performance results for query optimisation. Then, nD-SQL and its approach are com-

pared with related work in Chapter 7. Finally, Chapter 8 summarises and discusses

our future work.

Chapter 2

The Federation Model

This chapter proposes a formal model for collections of relational databases that we
call the Federation Model. The highlights of this model are: (i) It captures het-
erogeneous schemas of relational databases arising in practice, including cases where
domain values in one database may appear as schema components in another; (ii) It
gives a first class status to the three physical dimensions implicit in the traditional
relational model - row, column, and relation; (iii) Using this, it gives a precise mean-
ing to representations of n-dimensional data using three physical dimensions; (iv) it
is straightforward to incorporate (relational) data marts with the federation model,

and this is discussed at the end of the chapter.

2.1 The Federation Model: A Formal Model for a Federa-

tion of Relational Databases

Let us begin with the notion of a scheme. The size of practical database schemas may
not be fixed and may be data dependent (e.g., the number of columns of tse and
the number of relations in mse, in Figure 1). This problem is solved by proposing a
“federation scheme”. This notion makes it possible to view the scheme of a relation,
a database, or a federation, as a fized entity independent of the contents in it, just
as in the classical case. Let us assume pairwise disjoint, infinite, sets of names,
N, values, V, and id’s, ©. Typewriter font is used for names (e.g., Measure) and
Roman for values (e.g., open), regardless of what positions they appear in— data
or relation/column label positions. Ids will always be clear from the context. The
partial function dom : N ~+2V maps names in A to their underlying domains of

values. Names that only correspond to relations or databases do not have associated

domains.

Definition 2.1.1 (Federation Scheme) A federated name is a pair (N, X) where
N € N is a name and X C N is a finite subset of names, such that N¢X. In a
federated name, the component N is referred to as the concept and the set X as the
associated criteria set. A federated name (N, X) is simple (resp., complex) provided
X =0 (resp., X #0). Simple federated names (N,®) are usually denoted just as
N, following the classical convention. A federated attribute or relation name is any
federated name. A federated relation scheme is of the form R(Cy,....Cy), where R is
a federated relation name and the C;s are all federated attribute names. A federated
database scheme is a set of federated relation schemes, and a federation scheme is a

set of named federated database schemes.

The intuition behind the above definition is two-fold: Firstly, a complex attribute
name translates to a set of complex column labels in an instance. Similarly, com-
plex relation names translate to a set of complex relation labels. For example,
the complex attribute name (Price, {Measure, Ticker}) in the scheme might cor-
respond in an instance to the set {Price FOR Measure = low AND Ticker =
tbm, ..., Price FOR Measure = close AND Ticker = hp} of column labels. For

example, the federation scheme of the instance shown in Figure 1 is:

S1 = {nyse :: prices(Ticker, Date, Measure, Price), tse :: quotes(Ticker, Date, (Price, {Measure})),

bse :: prices(Date, (Price, {Measure, Ticker})), mse :: (prices, {Ticker})(Date, (Price, {Measure}))}.

We use the notation db::rel to indicate that a relation rel is from database db. Notice
that in the instance shown in Figure 1, the somewhat cryptic labels like “open” take
the place of the formal label “Price FOR Measure = open”. It will be shown later
that the exact labels used are unimportant, and we will provide a clean mechanism
for keeping track of their meaning.

Secondly, notice that the notion of a federated relation scheme formalises the idea
that certain attribute domains are arranged along each of the three dimensions —
relation, column, and row. Specifically, in an instance of a federated relation scheme
(e.g., mse:: (prices, {Ticker})(Date, (Price, {Measure}))), domain values of rela-
tion criteria (here Ticker) are placed along the relation dimension, domain values of
criteria of complex columns (here Measure) are placed along the row dimension, and

domain values of simple columns (here Date) are placed along the column dimension.

Definition 2.1.2 (Federation Instance) Let S = {di :: B{(C,..... Ce)eeenidm
Rn(Dy,..., D)}, the d; not necessarily distinct, be a federation scheme. Then a
federation instance (instance for short) of this scheme is a 7-tuple T = (D, rel, col, tup,

conc, crit, val), defined as follows.

® D= {d,...,dn}, i.e. D consists exactly of the distinct database names men-

ttoned in the scheme S.

o rel: D—29 isq function that maps each database name in D to a finite set of
relation id’s. Below, R = Uyep rel(d) is used to denote the set of all relation id’s

tn the instance.

e col : R—29 is q function that maps each relation id to a finite set of column
id’s.

e tup is a function that maps each relation id r in R to a finite set of tuples tup(r)

over the set of columns col(r).

e conc : O—=N is a function that maps each id to a name, called its underlying

concept.

o crit : 02N s a function that maps each id to a finite set of names, namely

its underlying set of criteria.

e val: O x N~V is a partial function that maps an id and @ name (viewed as a

possible criterion associated with the id) to a value.

For example, an instance of the scheme S, above is the federation shown in F ig-
ure 1, intuitively speaking. There are four database names— nyse, tse, bse, mse,
each of them having their associated simple/complex relations. For instance, mse has
the relations “ibm, ms, ...”, each having the same set of column labels— “Date, low,
high, ...”. All these labels intuitively correspond to (relation and column) id’s in the
formal definition.

A small subset of the abstract instance corresponding to the federation of F igure 1
would be:

D = {nyse, tse, bse,mse}
rel(nyse) = {prices}
col(nyse :: prices) = {Ticker,Date, Measure, Price}

tup(nyse :: prices) = {(ibm,10—27—97, open, 63.67), ...}

conc(nyse :: prices) = prices
conc(Ticker) = Ticker

rel(bse) = {bse :: prices}

col(bse :: prices) = {Date, open_ibm, open_ms, ...}
conc(open_tbm) = Price

crit(open_ibm) = {Measure, Ticker}
val(open_ibm,Measure) = open

val(open_ibm, Ticker) = ibm

etc.

In an instance, simple columns of relations are denoted as in the classical rela-
tional model, while complex columns are of the form (concept FOR criteria = v),
where criteria is a list of criteria and % is a tuple of values of the appropriate
type for the criteria. In formal definitions, such complex columns are denoted as
(concept, tcriteria), Where fcriteria is the tuple that maps criteria to v. Some-
times, {criteria are referred to as criteria-tuple. A similar remark applies for complex
relations.

The concepts and criteria associated with labels are typically not recorded in real-
life federations. However, intuitively, it can be understood that the concept associated
with the label “low” is Price and that the only associated criterion is Measure.
In the sequel, the formal notion of instances defined above shall be referred to as
abstract instances to distinguish them from the “real” (i.e. real-life) instances, defined
shortly. For an abstract instance to be a legal instance of a federation scheme, certain
consistency conditions should be met.

Definition 2.1.3 (Legal Instances) Let 7 be an abstract instance of a federation
scheme S. Then T is said to be a legal instance provided it satisfies the following
conditions.

1. The following sets are pairwise disjoint: each set of relation id’s associated with

a given database, each set of column id’s associated with a given relation.

2. Whenever a,b € col(r), a # b, and both a,b correspond to compler attribute
names, i.e. crif{a) # 0 # crit(b), it is required thai crit(a) = crit(b). In words,
the criteria sets associated with any two compler columns in a relation must be
identical.

3. For each relation id r, for each tuple t € tup(r), for a € col(r), it is required

that t[a] € dom(conc(a)), i.e. the relations must respect the types of the concepts

10

assoctated with their column labels.

4. Fora € col(r)Urel(d), r being any relation id, and d being any database in D, and
N € crit(a), it is required that val(a, N) € dom(N), i.e. the values associated

with criteria should belong to the appropriate domains.

In the sequel, references to abstract instances should be understood as references to
legal (abstract) instances. The first condition simply ensures that the id’s associated
with columns and relations are unique. Condition 2 ensures that a fixed set of at-
tribute domains are placed along the row dimension, thus making the 3-dimensional
representation of information consistent. Conditions 3 and 4 simply say that the

instance respects attribute types.

2.2 Real Federations and Federation Model Bridged

The notion of abstract instances defined in Definitions 2.1.2 and 2.1.3 makes the idea
of (legal) instances in the federation model precise. In addition, it also makes the
notion of a 3-dimensional representation of data containing several logical dimensions
(attributes) precise. However, the following questions arise: (1) How can real-life
federations be captured in the formal framework? (2) How relevant is the formal
notion of abstract federation instances to practice, and specifically, for the purpose

of interoperability? Let us deal with question 1 first, by defining real instances.

Definition 2.2.1 (Real Instance) A real instance F of a federation scheme S is
simply a named collection of relational databases such that: (i) F contains a database
corresponding to each database name d in S; (ii) each simple (resp., complez) relation
name R associated with a database d in S corresponds to a relation label (resp., set of
relation labels) in F; (iti) each simple (resp., complez) attribute name A associated
with a relation name R in database d in S corresponds to a column label (resp., set of
column labels) in F; (iv) all relation labels corresponding to a relation name R have

the same set of associated column labels.

Given an abstract instance Z of a federation scheme S, it is straightforward to
construct a real instance F by turning the various id’s in Z into labels. Such a real
instance F is called the real instance corresponding to the abstract instance Z. The
federation shown in Figure 1 is indeed the real instance of the federation scheme Sy,

corresponding to the abstract instance sketched following Definition 2.1.2. Notice

11

that (i) the notions of concepts and criteria are not present in the definition of a real
instance; (ii) there is no constraint on the labels chosen for the relations or columns.
Indeed, in real-life federations, users most often have total control over the chosen
labels, and the concept and criteria information may not be explicitly present. Thus,
the notion of real instances captures real-life federations.

Let us next address question 2 above. Abstract and real instances can be connected
by treating the various labels in the real instance as though they were id’s. The actual
concepts and criteria associated with them, which are not explicitly present, can be

attached in a non-intrusive wayin the form of system catalog tables, formalised next.

Definition 2.2.2 (Catalog Database) The catalog database associated with an ab-
stract instance I consists of the following three relations (which are called cata-
log tables): dbscheme(db, relid, rel_label, rel concept), relschemes(relid,
attrid, attr_label, attr_concept), criteria(id, criteria, value) satisfy-

ing the following conditions.

e the relation dbscheme contains a tuple (d,r,¢, c) exactly when, according to T,
database d has a relation with relation id r whose label is ¢ and underlying concept

s c.

e the relation relschemes has a tuple (r,a,?, c) ezactly when, according to I, re-
lation with id v has attrid a as one of its associated attributes, ¢ ts the label of a

while c is its underlying concept.

e the relation criteria has a tuple (2, cr,v) exactly when, according to I, the id i

has cr as one of its criteria which has the associated value v.

The catalog database associated with the federation of Figure | is shown in Fig-

ure 2.
The database catalog can be treated as a distinguished database from a formal

viewpoint in that it always consists of the three catalog tables defined above. Let us
stress that casual users do not have to explicitly manipulate the catalog db. For link-
ing an abstract instance to its corresponding real instance, the notion of an augmented
instance is proposed and defined next. Let F be a real instance corresponding to an
abstract instance Z. The augmented instance associated with F and 7 means the
federation obtained by adding to F the distinguished database catalog, the catalog
database associated with Z. Our first result is that there is a one-to-one correspon-

dence between the (legal) abstract instances of a federation scheme and augmented

12

db relid | rel label | rel_concept relid | attrid | attr_label | attr_concept
nyse ry prices prices r; a Ticker Ticker
tse ro quotes prices .
bse r3 prices prices r3 a; open_ibm Price
mse T4 ibm prices
mse r5 ms prices T4 a;j low Price
mse .
dbschemes relschemes

id | criteria | value

ry4 Ticker ibm

rs Ticker ms

a; Measure open

a; Ticker ibm

a;j | Measure low

criteria

Figure 2: The catalog database associated with the federation of Figure 1.

real instances.

Theorem 2.2.1 Let S be a federation scheme. Then to every abstract instance of S,

there exists an equivalent (augmented) real instance of S, and vice versa.

PROOQF:

For a given abstract instance 7, a simple encoding scheme lets us create an equivalent

augmented real instance.
First, we construct a real instance corresponding to Z in the following manner:

e For each id in Z, we choose a new label that has never been used before;

¢ The real instance has a database d «= d € D;

e Vd € D, database d in the real instance has one relation corresponding to each

relation id r € rel(d);

 Let r be a relation id € rel(d) and let real(r) be the corresponding relation in

the real instance. Then, real(r) has one column corresponding to each column

id ¢ € col(r);

® Let r be a relation id € rel(d) and let real(r) be the corresponding relation in the

real instance. Let ¢ be a column € col(r) and let real(c) be the corresponding

13

colummn in the real instance. Then, V tuple ¢ € tup(r) real(r) has a tuple real(t)

s.t. real(t)[real(c)] = t[c]
Then, we can build the catalog tables for that real instance in the following manner:

o for each database d; in the abstract instance, for each relation id r; ; € rel(d;),

a tuple (d;, i ;,rij, cone(ri;)) is added to table dbschemes;

e for each relation id r; in the abstract instance, for each column id cij € col(r;),

a tuple (r;, ¢;j, ¢ij, conc(ci;)) is added to table relschemes;

o for each relation id r; in the abstract instance, for each criterion k;; € crit(r;),

a tuple (r;, ki ;,val(ri, k; ;)) is added to table criteria;

e for each column id ¢; in the abstract instance, for each criterion &; ; € crit(c;), a

tuple (c;, ki j,val(ci, ki j)) is added to table criteria;

It is obvious that the above construction preserves information.

Going from real augmented instance to abstract instance is simply done by using
the converse of this scheme, which means defining the set D and the various functions
rel, col, tup, crit, conc and val such that they agree with the entries in the catalog
tables and the content of the real instance. E.g., in the abstract instance, tup(r) will
have a tuple <= the corresponding relation in the real instance has that tuple.

Again, the fact that the information is preserved should be obvious. In particular,
the mappings in either direction do not map two instances whose information is not
equivalent to the same target instance. From this the one-to-one correspondence
follows. »

Incorporating data marts: So far, attention has been focused on relational
databases. Many data marts (like data warehouses) that are based on the so-called
ROLAP approach adopt a star schema or a snowflake schema for their implemen-
tation. Let us call such data marts relational data marts. It is easy to see that
such schemas correspond to federated schemas where both relation names and at-
tributes are simple. Thus, the notions of a federation scheme and instance defined in

Definitions 2.1.1 and 2.1.2 subsume relational data marts.

14

Chapter 3

The Syntax of nD-SQL

In this chapter, we present the nD-SQL language, a query language downward compat-
ible with SQL and which takes advantage of the Federation Model to query, restructure
and aggregate data. This language also lets users express queries asking for the com-
putation of arbitrary sets of group-bys and/or multiple visualisations of the same
results. This thesis covers only the non-nested, querying fragment of nD-SQL.

Chapter 3 presents the syntax of nD-SQL by explaining the additions made to SQL.
The semantics of nD-SQL will be illustrated with examples. For a formal description
of the semantics, refer to Chapter 4. The complete syntax of nD-SQL in the form of
a grammar is given in the Appendix.

The first part of this chapter explains the syntactic extensions for multi-dimen-
sionality and restructuring. The second part will present the extensions regarding
multiple granularity aggregations and multiple renderings of the same query result.
Throughout the thesis, the federation of Figure 1 will be used as a running example

to illustrate the nD-SQL queries.

3.1 Multi-dimensionality and Restructuring

3.1.1 nD-SQL Syntax

nD-SQL uses the classic SELECT, FROM, WHERE, GROUP BY and HAVING clauses of SQL,
but adds to the syntax in several manners. Table 1 summaries the syntactic additions
and we refer the reader to that table for details on the following points.

(1) FROM clause: In addition to declaring the usual tuple variables (called ‘aliases’

in SQL), users can now also declarc variables ranging over database names, a set of

15

relations, or a set of columns of relation(s). These new variable types are inspired by
those used with the SchemaSQL language ([LSS96]). The syntax of variable declara-
tions is summarised in Table 1. In that table, db and rel can be either constants or
variables of the appropriate kinds.

(2) WHERE clause: nD-SQL introduces two new interpreted constraints (in Table 1)
which may be used in the WHERE clause to constrain relation or column variables
to range over a “homogeneous” set of schema objects, i.e. over relations/columns
having the same concept and set of criteria. The use of such constraints will help
ensure queries are “well-typed”, a notion that will be formally defined in Section

3.1.3. In Table I (constraining variables), var can be a rel_var or a col_var.

Syntax for... New Element of Syntax
declaring Variable Type Declaration Syntax Variable ranges over...
variables db_var -> var the names of the dbs in the federation
in rel.var db -> var the relations in database(s) db
FROM col_var db::rel -> var the columns of the relation(s) rel in database(s) db
clause tuple.var db::rel var the tuples of the relation(s) rel in database(s) db
constraining
variables Constraint Syntax Variable constrained to range over...
in ISA condition var ISA concept objects representing concept concept
WHERE HASA condition var HASA criterion objects having criterion criterion in their criteria set
clause
extracting
domain Domain Type Values in domain
values db_var database names db_var ranges over
in tuple_var.attribute values of attribute attribute in the tuples tuple_var ranges over
SELECT, col.var.criterion values of criterion criterion of the columns col_var ranges over
WHERE, rel_var.criterion values of criterion criterion of the relations rel_var ranges over
GROUP BY tuple_var.col_var values of concept concept(col_var) under each column
and HAVING col_var ranges over in the tuples tuple.var ranges over
clauses
creating
complex
;::[umns domaing [AS label] FOR (domaim {, domaim}), i > 1
SELECT
clause
creating
complex
lati
:: tons SELECT (select_objects list) [AS label 1 FOR domain; {, domain;}, i > 1
SELECT
clause

Table 1: New elements of syntax in nD~SQL

16

As an example of the use of variable declarations and of proper constraints, here

1s what the FROM and WHERE clauses could contain in order to query the data from
Figure 1(d):

FROM mse ~> R, mse::R T, mse::R -> C
WHERE R HASA Ticker AND C ISA Price

Note how the rel_var R is restricted to range over the relations of database mse
having Ticker values as criteria values, and how the col_var C is restricted to range
over the columns of these relations having Price values as their underlying concept.

(3) Since SQL allows only tuple variables, it has only one type of domain expres-
sion, expressions of the form tuple_var.attr (abbreviated as attr). In addition
to this, nD-SQL also allows the domain expressions db_var, tuple_var.col_var and
V.criterion, where V is a relation (or column) variable and criterion is one of the
criteria of the relations (or columns) the variable ranges over. The expression db_var
extracts the names of the databases in the federation, the next expression extracts
values of the concept in complex columns, while the last expression is used to extract
criteria values from the federated relation schema. All of these domain expressions
can be used in the SELECT and GROUP BY clauses, and in conditions in the WHERE and
HAVING clauses.

Also, the underlying concept of a domain is defined as follows:

Definition 3.1.1 (Underlying concept of a domain)

(db_var if domain is of the form db_var
attribute if domain is of the form tuple_var.attribute
undconc(domain) = { criterion if domain is of the form rel_var.criterion
criterion if domain is of the form col_var.criterion
| conc(colvar) if domain is of the form tuple_var.col_var

where the concept of a complex column over which a col_var ranges is referred to
as conc(col.var). In the rest of this thesis, the set of criteria associated with a column

or relation variable var is referred to as crit(var).
As an example of the use of each kind of domains, the following query “flattens”
the data from the tables of Figure 1(d) into a form similar to table nyse::prices:

SELECT R.Ticker, T.Date, C.Measure, T.C AS Price
(Q1) FROM mse -> R, mse::R T, mse::R -> C
WHERE R HASA Ticker AND C ISA Price

17

Note in this query, in addition to the use cf the HASA/ISA conditions to constrain
the relation and column variables, the extraction of the values of criteria C.Measure
into a column of its own. The multiple columns that C ranges over are aligned into a
single column by the select_object T.C AS Price. Here, each tuple of each table of
Figure 1(d) is broken down into many output tuples, one per value of the criterion
Measure.

(4)In order to create complex columns and relations, a mechanism is needed in
order to deposit data values as criteria values. To deposit data values as column
criteria values the following new type of select_objects is to be used in the SELECT
clause:

domaing [AS label | FOR (domain; {, domain;}), i > 1

The optional labels use the following syntax: any series of constant strings (in
double quotes) or domain expressions among those for the criteria domain;,j > 1,
concatenated together using the ampersand (&) symbol. Examples of labels when
the criteria list (domain, {, domain;}), ¢ > 1 is (T.ticker) could be: “Price for
Year =7 & T.Ticker, “Price for " & T.Ticker, T.Ticker & “’s Price” or even simply
T.Ticker.

If no label (AS sub-clause) is present, then a default should be used. When there is
no FOR sub-clause, it is proposed to use the name of the underlying concept (Definition
3.1.1) of domaing (similar to the SQL convention in the absence of an AS sub-clause).
When one FOR sub-clause is present, the proposed default is a comma separated list
of the criteria values (equivalent to the label domain; & “,” & domain, & “,” &)l
When more than one FOR sub-clause are present in the SELECT clause, that list of
criteria values could be preceded by undconc(domaing), the name of the underlying
concept of the column.

Relating the syntax and the model: The use of the FOR sub-clause with a
select_object indicates that there should be a complex attribute with name:
(undconc(domaing), {undconc(domain;), undconc(domain,), ...}) in the output rela-
tion schema).

The following example illustrates the use of this syntax by transforming the content

of nyse: :prices into a format similar to the one of table tse: : quotes.

SELECT T.Ticker AS Stocks, T.Date, T.Price AS T.Measure FOR T.Measure
(Q2) FROM nyse::prices T

Note in this query how the multiple Price columns are created, one for each

18

Measure values. by the use of the FOR sub-clause. Note also how these Measure
values are used as column labels. This representation of data is an example of what
is commonly called the cross-tab representation.

(5)To deposit data values as relation criteria, the select_objects of the SELECT
clause are enclosed in parentheses and an outer FOR sub-clause is applied:

SELECT (select.objectslist) AS label FOR domain, {, domain;},i>1

Relating the syntax and the model: The use of the outer FOR sub-clause indi-
cates that a relation with name (rely, {undconc(domain,) , undconc(domain,) , ...})
should be created. The relation concept rel; for the output relations should be
system-generated in order to prevent conflicts with other relation concepts in the
catalog.

The following example illustrates the creation of complex relations, while an ag-

gregation is performed.

SELECT (Avg(T.C) AS "AvgPrice FOR Measure = " & C.Measure FOR C.Measure)
AS T.Date FOR T.Date
(Q3) FROM bse::prices -> C, bse::prices T

WHERE C ISA Price
GROUP BY C.Measure, T.Date

This query takes the aggregation of each individual Price for a given Measure on
a given Date (i.e. the aggregation is over Tickers). Here, note that the aggregation
is performed over a subset of the criteria of C. The aggregation is performed on T.C
(i.e. Price values), grouping by C.Measure (extracting the values of Measure) and
T.Date. The inner FOR sub-clause restructures the averages into multiple columns,
one per value of Measure, while the outer FOR sub-clause restructures the result into
multiple relations, one per value of Date. The result of the query is shown in Figure 3,
where the output relations are assumed to be temporarily viewed as members of a

database named “output”.

AvgPrice FOR AvgPrice FOR | ... AvgPrice FOR AvgPrice FOR
Measure = open | Measure = close | ... Measure = open | Measure = close
50.68 52.87 | ... 5905K 6308K

output: :10[27]|97 output::11}01]97

Figure 3: Result of query Q3

19

3.1.2 Allowable Abbreviations

Various abbreviations are acceptable in our syntax. All the abbreviations mentioned
here can be used in the SELECT clause.

(1)The abbreviation V.*, for a rel/col_var V, is a shorthand for the enumeration
V.criteriom, ..., V.criterion,, where crit(V) = {criterion, ..., criterion, }. This can
also be used in the GROUP BY clause in aggregating queries;

(2)The abbreviation T.concept, for a tuple_var T, used as a select_object in the
SELECT clause, is equivalent to the expression T.C FOR C.*, C being a col_var declared
over the same relation(s) and with underlying concept concept. This abbreviation says
to select each instance of a complex column as is, without restructuring;

(3) The abbreviation T.*, for a tuple_var T, used as a select_object, says to select
all columns of the relation that T ranges over, as in classical SQL. As an example of all
these abbreviations, query Q4 selects all the columns of relation bse: :prices. Here,
Q4a uses the simplest abbreviation, Q4b and Q4c are intermediary equivalent queries,

and Q4d is the fully expanded, explicit query equivalent to the other three.

SELECT T.* SELECT T.Date, T.C FOR C.=*
(Q4a) FROM bse::prices T (Q4c) FROM bse::prices T, bse::prices -> C
WHERE C ISA Price

SELECT T.Date, T.Price SELECT T.Date, T.C FOR (C.Measure, C.Ticker)
(Q4b) FROM bse::prices T (Q4d) FROM bse::prices T, bse::prices -> C
WHERE C ISA Price

(4)Suppose the same aggregation is to be performed individually on each column
of a relation that “is a” concept. Then the abbreviation AGG(T. concept) can be used
instead of using the select_object AGG(T.C) FOR C.* and having to explicitly declare
and constrain the column variable. Example Q5a exemplifies the use of this abbrevi-
ation by querying bse: :prices and taking the average of the Prices throughout the

Dates for each Measure and Ticker. Q5b is the equivalent explicit query.

SELECT AVG(T.Price) SELECT AVG(T.C) FOR (C.Measure, C.Ticker)
(Q5a) FROM bse::prices T (Q5b) FROM bse::prices T, bse::prices -> C
WHERE C ISA Price

Note that we will use the term ezplicit query to denote a query for which all

abbreviations are expanded.

20

3.1.3 Well Typing

Intuitively, a query can be meaningful only if it maps legal instances to legal instances.

More precisely, the following definition is used.

Definition 3.1.2 (Well-Typing) An nD-SQL query Q is well-typed provided for ev-
ery legal instance I, Q(T), viewed as an instance is also legal.

Ensuring well-typing is important for query processing, not only to make sure the
result presented to the user is meaningful, but also for ensuring aggregations can
be correctly applied. Thus, an efficient algorithm for testing well-typing is essential.
In order to develop such an algorithm, we define a syntactic notion stronger than

well-typedness, well-formedness:

Definition 3.1.3 (Well-Formedness) An nD-SQL query Q is well-formed provided
that it fulfills the following conditions:

(i) each relation variable is restricted (by ISA and HASA conditions) to range over

relations having the same concept and criteria set;

(1t) each column variable is restricted (by ISA and HASA conditions) to range over

columns having same concept and same set of criteria;
(iii) all the complez columns created in the SELECT clause have the same set of crite-
ria;
As stated above, well-formedness is a stronger notion than well-typedness. For-
mally:

Theorem 3.1.1 If a query is well-formed it is also well-typed.

PROQEF:

Let Q be a query. let 7 be a legal instance and Q(Z) the output of Q on Z.

1. Clearly, condition I of legality will be met by construction of Q(Z), since all id’s

produced will be unique;

2. Suppose that a and b are two column id’s in Q(Z) that correspond to complex
columns. Since Q(Z) has complex columns it implies that Q must involve select
objects of the form domainoe [AS label]l FOR domain_list. By condition (iii) of

21

well-formedness, every list of domains domain_list in inner FOR sub-clauses will
contain the same domains, and thus a and b will have the same criteria set. The

query result will thus meet condition 2 of legality.
3. Conditions (i) and (ii) of well-formedness imply that:

— For each domain expression of the form tuple_var.attr (attr being a con-
stant), the value will come from the domain of attr. The condition on re-
lation variables ensures the tuple_var ranges over relations having identical
schemas, and the type of a given concept (attr) in all these relations must
be fixed by virtue of the legality of T;

— For each domain expression of the form tuple_var.col_var, since col_var is
restricted to range over columns with the same concept, the same argument
as above can be made;

— By virtue of the legality of Z, the condition on relation variables ensures
that, for each domain expression of the form rel_var.crit, the value comes
from the domain of criterion crit;

— By virtue of the legality of T, the condition on column variables ensures
that, for each domain expression of the form col_var.crit, the value comes

from the domain of criterion crit.

Since the arguments above apply to each select expression appearing in the

SELECT clause, we conclude that condition 3 of legality has to be met by Q(Z).

4. Since the arguments from 3 above also apply to each expression appearing in a

criteria position in a FOR sub-clause, we conclude that condition 4 of legality is

also met by Q(Z).

"

Theorem 3.1.1 immediately yields a sufficiency test for testing well-typing: test
whether the query satisfies the conditions for being well-formed. We can test the
latter in time linear in the size of a given query, provided the catalog tables are
properly indexed. The algorithm veryfying a query is well-formed is presented in
Figure 4. The semantics of nD-SQL (presented in the next chapter) is defined for
well-formed queries, and thus not for all well-typed queries (see section 8.2 for an
example of a query which is well-typed but not well-formed and that is thus not

supported by the current semantics). A more complex semantics would be necessary

22

to support all well-typed queries, and developping such a semantics is part of our

ongoing work.

INPUT: An nD-SQL query
The catalog database for the federation being queried

OUTPUT: A boolean value, true if query is well-formed, false if not

still_good = true;
first_for_sub-clause = true;
for each select.object in the SELECT clause do
if the select_object has a FOR sub-clause then
if first_for_sub-clause then
store crit.list in variable criteria;
first _for_sub-clause = false;
else
if critldist is not equivalent to criteria then
still_good = false;
end if
end if
end if
end for

if still_good then
for each condition in the WHERE clause do
if the condition is an ISA or an HASA condition then
associate the condition with the proper variable;
end if
end for

for each variable declaration in the FROM clause do
if still_ good AND the declared variable is a rel_var or a col_var then
if the range of the variable contains a non-instantiated variable then
delay the chack for this variable;

else
using the range of the variable + the associated ISA and HASA conditions,

query the catalog database to instantiate the variable, also getting each instance's
concept and criteria set;
if all instances do not have same concept and criteria set then
still_good = false;
end if
end if
end if
end for
end if

if still_good then
return true;
else
return false;
end if

Figure 4: Algorithm for verifying if a query is well-formed

The algorithm first checks if the criteria set in every FOR sub-clause is the same. If
so, it then associates each ISA and HASA condition in the WHERE clause to the proper
variable and verifies for each rel_var and col_var declared in the FROM clause that
those conditions associated with it, combined with the variable’s declared range, are
sufficient to restrict it to range over objects having same concept and same criteria

set. This ensures that all three conditions for well-formdness are met.

23

As an example of the use of the algorithm, query Q1 is found to be well-formed in
the following manner: (1) since there is no inner FOR sub-clause in the SELECT clause
the query passes the first test; (2) the condition R HASA Ticker is associated with the
rel_var R and the condition C ISA Price is associated with the col_var C; (3) using
the range of R and the condition R HASA Ticker, the catalog database is queried and
all returned instances for R have same concept (prices) and criteria set ({Ticker}).
All possible instances for C are also found to have same concept and criteria set. The

three conditions for well-formdness are thus met.

3.2 Enhancing nD-SQL for OLAP: Multiple Visualisations
and Arbitrary Sets of Group-bys

Since the proposal by Gray et al. [Gray+96] for the powerful CUBE operator, re-
searchers have developed several efficient algorithms for computing this expensive
operator [Agart96, ZDN97]. The CUBE operator corresponds to aggregation at ex-
ponentially many granularities. It has been recognised [Agar*96, ZDN97] that in
practice, a user may be interested in specific subsets of group-bys. Two such ex-
amples are ROLLUP (e.g., {{Date, Ticker}, {Date}, {}) and its converse DRILLDOWN.
While these operators are important, in general, and depending on the application at
hand, users may be interested in subsets that need not be covered by these operators.
See Example 3.2.4 for one such “interesting” subset. In this section, some simple ex-
tensions to nD-SQL are developed which lead to a powerful mechanism for expressing
arbitrary subsets of group-bys. In addition, together with the restructuring capa-
bilities of nD-SQL, these extensions allow for the computation of arbitrary multiple
granularity aggregations and the visualisation of the results in multiple ways.
Following OLAP terminology, each of the names in a federation scheme is referred
to in the sequel as a logical dimension. Each variable declared in the FROM clause of

an nD-SQL query can thus be associated with a set of logical dimensions, as follows:

Definition 3.2.1 (Logical Dimensions associated with a variable) Let Q be an
nD-SQL query and let V be a variable declared in the FROM clause of Q. The set of

24

logical dimensions associated with V is:

{D}, if D =V is a database variable,

{V.crity, V.crity, ..., V.crit, }, if Vis a column or relation vartable,
having criteria crit;, i < p

{T.simpy, T.simps, ..., T.stmp,, T.Cy, wwT.Cs}, if T =V is a tuple variable, the rela-
tions over which T ranges have u
stmple columns with concepts
stmp;,t < u and s complex
columns for which a column variable

C; s declared, j < s

Definition 3.2.2 (Logical Dimensions associated with a query) Let Q be an
nD-SQL query. The logical dimensions associated with Q is the set of logical dimen-

stons associated with the variables declared in the FROM clause of Q.

3.2.1 Extensions to the nD-SQL Syntax

The enhancements to the syntax of nD-SQL permitting the expression of multiple
sub-aggregates and visualisations are summarised in Table 2. The main addition
is a new kind of variable called dimension variable, ranging over the names of all
logical dimensions associated with the query, except those being aggregated. An
nD-SQL query) with dimension variables still maps a federation to a set of relations.
However, for such a query we define the mapping in the following manner: The result
of @ is the same set of relations as the combined result of the set of nD-SQL queries
without dimension variables, obtained by instantiating the dimension variables in Q
to all possible dimension names that satisfy the constraints on the dimension variables,
specified in the WHERE clause of (). Here is an extremely simple example to illustrate

the ideas.

Example 3.2.1

SELECT X, SUM(T.Price)
@7 FROM nyse::prices T, DIM X
GROUP BY X
The only dimension variable is X. The only non-dimension wvariable declared in the
FROM clause is T, whose associated dimensions are T.Date, T.Ticker, T.Measure
and T.Price. Of these, T.Price is being aggregated. So, the dimension variable X

25

ranges over the dimension names T.Date, T.Ticker, and T.Measure. The equiva-

lent set of queries without dimension variables are as follows.

SELECT T.Ticker, SUM(T.Price) SELECT T.Date, SUM(T.Price)
(Q7a) FROM nyse::prices T (Q7b) FROM nyse::prices T
GROUP BY T.Ticker GROUP BY T.Date

SELECT T.Measure, SUM(T.Price)
(Q7c) FROM nyse::prices T
GROQUP BY T.Measure
Thus, this query expresses the aggregation of T.Price with respect to each of the
three possible group-bys — T.Ticker, T.Date, and T.Measure, which corresponds

to the level-1 slice of a CUBE. =
Syntax for... New Element of Syntax
declaring
variables Variable Type Declaration Syntax Variable ranges over...
in dim_var DIM var logical dimensions associated with query,
FROM except those being aggregated
clause
Constraint Syntax Effect
rel-ops var Op dimension, var must satisfy the relationship Op

(Op being one of =, <, ...) w.r.t. dimension

constraining var) Op var; instantiations of var; and var,
variables must satisfy the relationship Op
in membership var I¥ set of dimensions instantiation of var must belong to
WHERE the set of dimensions specified
clause var NOT IN set of dimensions instantiation of var must not belong to
the set of dimensions specified
special var CAK BE HORE range of var includes
the special constant NORE

'abbreVIa.CIons Description Syntax Equivalent to
SELECT Shorthand for declaring DIN Xy, X3, ..., Xn DIN X;, DIN X5, ..., DIN Xn

multiple dimension variables
clause

Description Syntax Equivalent to
abbreviations Shortha_nds for constraints DIMS CAE BE NOEE X{ CAN BE NOKNE AND
in on all dimension variables --. Xn CAN BE HONE

DIMS IN set of dimensions X; IN set of dimensions AND ...

WHERE . .
clause AND X, IFK set of dimensions

Shorthand for transitive X; < X2 < X3 X; < X2 AND

constraints X2 < X3
Table 2: Syntax for dimension variables; X, ..., X, are all the dim_vars declared in the query.

Conceptually, the nD-SQL query Q7 can be thought of as producing as output the

three relations corresponding to the results of queries Q7a-c. An alternative way to

26

think about it is that it produces the union of the three relations mentioned above.
In forming such a union, one can adopt Gray et al.’s approach of using the special
value "All” to correctly represent the union.

Constraints on dimension variables include the standard rel-ops =, <, <, >, >, #.
They are interpreted w.r.t. the lexicographic ordering of the dimension names. E.g.,
T.Date < T.Ticker. Such constraints may be used to eliminate duplicate group-bys
from being presented in the result, similar to the use of the DISTINCT keyword in the
SELECT clause. Also useful will be a special constant, NONE, inspired by the special
constant all introduced by Gray et al. [Gray+96].! The constant NONE is given a
special status w.r.t. the way the rel-ops are interpreted. It is assumed that NONE Op
NONE is always true for all rel-ops Op; furthermore, it is assumed that (dimension) <
NONE is always true, for all dimension names (dimension). Besides rel-ops, constraints
involving the IN operator are also allowed, with the obvious semantics.

Finally, a special type of constraint is introduced using which a dimension variable
is allowed to assume the value NONE. This feature is particularly useful for specifying
multiple granularity aggregations, as several examples will show. Table 2 also explains

the abbreviations allowed in nD-SQL.

Example 3.2.2 Let us now revisit the previous ezample and see how a CUBE of Price
values over the dimensions T.Ticker, T.Date and T.Measure can be expressed.
SELECT X, Y, Z, SUM(T.Price)
FROM nyse::prices T, DIM X,Y,Z
Q8) WHERE X < Y < Z AND DIMS CAN BE NONE
GROUP BY X, Y, Z
In this query, X, Y and Z can each range over the dimension names {T.Ticker,
T.Date, T.Measure, NONE}. The condition X < Y < Z (an abbreviation for X < Y
AND Y < Z) further restricts the possible groupings, thus the only groupings done will
be as shown in Figure 5. This query computes exactly the CUBE operator over the
previously mentioned dimensions. Note that the condition X < Y < Z prevents the
same result from being presented more than once. Without that condition, the query
could be instantiated in one case with X = T.Ticker, Y = T.Date and Z = NONE
and in another with X = T.Date, Y = T.Ticker and Z = NONE. Both groupings are
simply structural permutations of the same logical result.
Finally, note that if the user wants to express ROLLUP, in place of a CUBE, then all

s/he needs to do is modify the constraints on dimension variables to: X IN {T.Date,

! The name EDBE seems more appropriate for the use made of this constant here.

27

NONE} AND Y IN {T.Measure, NCNE} AND Z IN {T.Ticker, NONE} AND X < Y < Z.
The reader can easily verify that this will produce exactly the group-bys {T.Date,

T.Measure, T.Ticker}, {T.Date, T.Measure}, {T.Date}, and {}. "
X Y YA group by...
T.Date T.Measure | T.Ticker | T.Date, T.Measure and T.Ticker
T.Date T.Measure NONE T.Date and T.Measure
T.Date T.Ticker NOKE T.Date and T.Ticker
T.Measure | T.Ticker NONE T.Measure and T.Ticker r
T.Date NONE NONE T.Date
T.Measure NONE NONE T.Measure
T.Ticker NONE NONE T.Ticker
NONE NONE NONE nothing

Figure 5: Groupings done by query Q8

The next example shows the interplay between multiple granularity aggregation

and restructuring.

Example 3.2.3

SELECT X, AVG(T.Price) FOR Y

(Q9) FROM nyse::prices T, DIM X, Y
WHERE DIMS IN {T.Date, T.Measure, T.Ticker}
AND X <> Y

GROUP BY X, Y

This query generates all possible groupings of AVG(T.Price) along two logical di-
mensions among T.Date, T.Measure and T.Ticker. Furthermore, it restructures each
particular grouping in multiple ways along the (physical) row and column dimensions,
such that multiple visualisations of the same data are provided at once. The visualisa-
tions are shown in Figure 6. The instantiated queries thus correspond to the follow-
ing schemas: output(Date, (AVG(Price), {Measure})) output(Date, (AVG(Price),
{Ticker})) output(Measure, (AVG(Price), {Date})) output(Measure, (AVG(Price),
{Ticker})) output(Ticker, (AVG(Price), {Date})) output(Ticker, (AVG(Price),

{Measure})) .
The last example in this section illustrates the power of nD-SQL to generate sets

of multiple granularity aggregations which do not seem to be obviously expressible
using a combination of operators like CUBE and ROLLUP.

Example 3.2.4 Consider a relation db: :rel(A,B,C,D,E,F,G), and suppose a user
is looking at the result of SUM(G) grouped by A,B,C. It is very natural for the user to

28

Measure Ticker Date Ticker ate Measure
AVG (Price) ! AVG (Price) AVG (Price) AVG (Price) AVG (Price) AVG (Price)

Date Date Measure Measure Ticker Ticker

Figure 6: Multiple visualisations resulting from query Q9

want to look at the “neighbourhood” of this group-by, I level below and above {A,B,C}
in the group-by lattice. Specifically, the user might be interested in examining the
group-bys {A,B,C,D}, {4,B,C,E}, {A,B,C,F} (each of which contains exactly one
extra dimension and is one level above {A,B,C}) and the group-bys {A,B}, {A,C},
and {B,C} (which are one level below {A,B,C} and are adjacent to it in the cube
lattice).
This query can be expressed as follows.
SELECT W, X, Y, Z, SUM(G)
(Q10) FROM db::rel T, DIM ¥,X,Y,Z
WHERE W < X < Y < Z AND W IN {A,B,C} AND
X IN {A,B,C} AND Y IN {C, NOKE} ARD
Z 1§ {D,E,F, NONE}
Figure 7 depicts the "shape” of this set of group-bys. [t is not clear how such a

query can be expressed using known operators. .

ABCE
| o
ABC
AB/ l \BC
AC

Figure 7: The “neighbourhood” operator

29

Chapter 4

The Semantics of nD-SQL

[Note: The format of this chapter, and at times the content of section 4.2, follows
that of chapter { of [S97], with permission of the author]

This chapter presents the semantics of the nD-SQL language. In Section 4.2, the
semantics of SQL will be reviewed and in the following section (4.3) the semantics of
nD-SQL will be related to that of SQL. But first, a high level, informal description is

given.

4.1 Informal Presentation of the Semantics

The SQL language is structured in clauses each having a different purpose. The
semantics of SQL is that each table declared in the FROM clause plays the role of a tuple
variable that is to be instantiated to some tuple from that table. Each instance tuple
for a variable is concatenated with those of the other variables, and the conditions
in the WHERE clause are applied to determine whether the concatenated instances
satisfy them. In the case of an aggregation query, the satisfying instantiations are
then grouped into equivalence classes, some aggregate operations are applied, and
one aggregated tuple is produced for each such class. Then, for each of these tuples,
the conditions in the HAVING clause are applied. The aggregated tuples satisfying the
conditions are then restricted to those columns that are enumerated in the SELECT
clause. The restrictions of the (possibly aggregated) tuples so obtained make up the
query result.
The major differences between nD-SQL and SQL are that:

1. nD-SQL allows variables of a higher order than tuple variables;

30

An input to a SQL query is a database, whereas an input to an nD-SQL query is

(O]

a federation, i.e. a set of databases;

3. The output of a SQL query is a relation, whereas the output of an nD-SQL query

is a database, i.e. a set of relations;

4. nD-SQL queries data that is structured along 3 physical dimensions but represents

n logical dimensions;

5. Input databases to mD-SQL queries can structure their data along 3 physical

dimensions, namely row, column and relation;

6. Databases output by nD-SQL queries may be similarly structured.

These differences are reflected in the semantics in the following manner: In nD-SQL,
the variables are instantiated to appropriate entries or “objects”, corresponding to
the 3 physical dimensions. Then, even if the data being queried is structured along
those physical dimensions, it actually corresponds to a set of “logical dimensions”
and we can model the data as being “flat” by instantiating each variable to some
logical tuple over all the logical dimensions associated with the variable. Fach logical
tuple instance for a variable is concatenated with those of the other variables, and
the conditions in the WHERE clause are applied to determine whether the concatenated
instances satisfy them. In the case of an aggregation query, the satisfying logical tuples
are then grouped in equivalence classes, some aggregate operations are applied, and
one aggregated tuple is produced for each such class. Then, for each of these tuples,
the conditions in the HAVING clause are applied. The aggregated tuples satisfying the
conditions are then restricted, and physically structured as dictated by the SELECT
clause, which in general may result in a set of output relations.

The following sections will clarify and formalise the above descriptions.

4.2 SQL Semantics Reviewed

We consider the non-nested, querying fragment of SQL.
Throughout this section, query Q12 will be used as a running example to illustrate

SQL’s semantics. Query Q12 is applied to database nyse.

31

SELECT T.Date, T.Ticker, AVG(T.Price)
(Q12) FROM prices T

WHERE T.Ticker >= 'm’ AND T.Ticker < ’'n’

GROUP BY T.Date, T.Ticker

A query in SQL assumes a fired scheme for the underlying database, and maps each
database to a relation over a fixed scheme, called the output scheme associated with
the query. Let D be the set of all database instances over a fixed scheme. Let a query
@ be of the form

SELECT attr_list, agg_list
FROM from_list

WHERE where_conds

GROUP BY groupby_list

HAVING have_conds

Let R be the set of all relations over the output scheme of the query Q. The query

@ induces a function

Q:D-R

from databases to relations over a fixed scheme, defined as follows. Let D € D
be an input database, and 7p the set of all tuples appearing in any relation in D.
Let 7 be the set of tuple variables declared in the FROM clause of @. We define an
instantiation as a function : : 7—7p which instantiates each tuple variable in Q to
some tuple over its appropriate range. The conditions where_conds in the WHERE
clause induce a boolean function, denoted sat(z,Q), on the set of all instantiations,
reflecting whether the conditions are satisfied by an instantiation. This is defined in
the obvious manner. Let Ty = {2 | ¢ is an instantiation for which sat(z, Q) = true}
denote the set of instantiations satisfying the conditions in the WHERE clause.

The set Iy, is shown in figure 8.

T.Date T.Ticker T.Price
10]27]97 ms 50.23
10]27]97 ms 48.54
11j01|97 ms 44.60
11)01]97 ms 46.17

Figure 8: The set of instantiations Zq12 corresponding to query Q12

32

The query assembles each satisfying instantiation into a tuple for the answer rela-
tion, as follows. Let TattrList, denote the set of all tuples over the scheme attr_list
such that each value in each tuple appears in the database D. Then the tuple assembly

function is a function tupleg : Ig —*Tattr[.istq defined as follows.

tupleq(:) = X o(t)[A]

“t.A"eattr_list
Here, the predicate “¢4.A” € attr_list indicates the condition that the attribute
denotation t.A literally! appears in the list of attributes attr_list in the SELECT
clause. The symbol @ denotes concatenation, and +(t)[A] denotes the restriction of
the tuple ¢(¢) to the attribute A. For an instantiation z, tupleg(:) produces a tuple
over the attributes attr 1ist listed in the SELECT statement. Suppose Q is a regular
query, t.e. a query without aggregation. In this case, the agg-list is empty, the
HAVING and GROUP BY clauses are absent, and the result of the query is captured by
the function
Q(D) = {tupleg(r) | : € Ig}

To account for aggregation, we need the following extension. We define a relation
~ on the instantiations.
Definition 4.2.1 For ¢, j € Ig, ¢ ~ 5 iff V“t.A” € groupby list, 1(¢)[A] = (t)[A].
[t is straightforward to see that ~ is an equivalence relation on Zg. This definition
essentially says that two instantiations (satisfying the conditions in the WHERE clause)
are ~-equivalent provided they agree on all attributes appearing in the GROUP BY

clause.

Let 7;380 denote the set of tuples over the attributes in the groupby_list, the ag-
gregate expressions in agg_list and the aggregate expressions in the HAVING clause.
We define a function aggg : Zg —Tagg,, as follows.

aggo(z) = (%4 2(¢)[C]

“t.C"egroupby.list
aggs(b()Bl 1y € g, 3 ~ 1))

“aggp(t-B)"€agg-list U having_conds

For a given instantiation 2, aggg considers all instantiations equivalent to ¢, and, for
each aggregate operation, say aggp, indicated on the attribute ¢.3 in the agg-list or

the HAVING clause, it performs the operation ¢ggg on the multiset of values associated

! Modulo the abbreviations permitted in SQL.

33

with this attribute by any instantiation equivalent to z. We use [...] instead of {...}
to denote multisets.
Since only those tuples satisfying the having_conds should be used to obtain the

query result, let the set of such tuples be:

aggtupleqg = {aggq(:) |2 € Zg A the tuple aggg(z) satisfies the conditions

have_conds in the having clause}.

As an illustration, the set aggtupleg,; is shown in figure 9.

T.Date C.Measure T.C

10]27[97 open 6367575
10[27{97 close 6368342
10[27[97 low 6360329
11[01]97 open 6367111
11]01|97 close 6368340
11|01{97 low 6366500

Figure 9: The set aggtupleq,, corresponding to query Q12

We may need to discard some extraneous attributes and/or aggregations that are
not mentioned in the SELECT clause in order to obtain the query result.

Let Tobjectustq be the set of tuples over the attributes and aggregates in the
attr_list and the agglist. We define a function discg : Taggq — ZobjectList, as
follows:

Given a tuple A € aggtupleg, then

discg(A) = ® A[A]

A€attr_list U agg.list

where A is any attribute or aggregate expression appearing in the attr_list or
the agg list.
The query result is then defined as:

Q(D) = {discg()) | A € aggtupleg}

For our example, the query result Q12(D) = aggtupleg:, since there are no at-
tributes or aggregations captured by aggtupleg;s that are not selected in the SELECT

clause.

34

4.3 nD-SQL Semantics

In this section we assume without loss of generality that all abbreviations in the given
query have been expanded (i.e. that we are dealing with ezplicit queries).
Throughout this section, query Q13 will be used as a running example to illustrate

nD-SQL’s semantics.

SELECT T.Date, SUM(T.C) FOR C.Measure
(Q13) FROM bse::prices -> C, bse::prices T

WHERE C ISA Price

GROUP BY T.Date, C.Measure

The main difference between nD-SQL and SQL is that nD-SQL allows for querying
data structured along the three physical dimensions underlying the relational model
(that is row, column and relation).

The semantics defines a query result as a mapping between the federation model’s
view of the data in terms of logical dimensions, irrespective of the physical structure,
and the desired output structure. This mapping covers the satisfaction of WHERE
conditions and also covers aggregation.

Let a query @ be of the form

SELECT (simple_col_list, agg_simple_col_list,
complex_col_list, agg_complex_col_list)
FOR outer_for_crit_list

FROM vardec_list
WHERE isa_and_hasa_conds AND other_where_conds

GROUP BY groupby_list
HAVING have_conds
where the complex.col 1ist and the agg_complex._col 1ist are the select_objects

with FOR sub-clauses.
Let F be the set of all possible federation instances and let D be the set of all

possible federated database instances (as defined in Chapter 2).

Then, the query @ induces a function
Q:F—-D
informally defined as follows:
Each variable in Q is mapped to an object (database, relation id, column id or

tuple) over the appropriate range. Then we introduce the notion of a “logical tu-

ple”. A logical tuple consists of a tuple over each of the logical dimensions associated

35

with a query (as per definition 3.2.2). For example, one logical tuple associated with
the query Q13 would be (open, ibm, 10]27(97, 63.67) over the dimensions {C.Measure,
C.Ticker, T.Date, T.C}. Since to each variable’s instance, a set of logical tuples is
associated, the semantics is thus obtained in two phases: (i) sending each variable to
an appropriate object and (ii) extracting the logical tuples associated with the vari-
able’s instance and associating it with the variable. The logical tuple instantiations
are then aggregated, restricted and/or restructured into possibly several relations
which become the query result.

These notions are now formalised.

Preliminary Definitions

Formal federation instances are considered below, using the following definitions:

Let F € F be a given federation instance. Then, let:

Objr = the set of all objects, i.e. dbs, rel ids, col ids and tuples,
appearing in federation instance F.
Vo = the set of all variables declared in Q.

Let there be respectively d, r, c and t database, relation, column and tuple variables

declared in the FROM clause of Q (d, r, ¢ and ¢ > 0 and at least one is >1).

Then, let D € {D, D, ..., Dy}, one of the database variables
R € {Ri, R;, ..., R}, one of the relation variables
C € {Ci, Cy, ..., C.}, one of the column variables
T € {Th, T3, ..., T}, one of the tuple variables

Let us also define the following sets of dimensions by looking at the SELECT clause

of @:

Let Simp = {simp,, simp,, ..., simp,} be the set of selected non-aggregated
and aggregated dimensions in simple_col_list and agg_simple col_ list.

Let Comp = {comp,, comp,, ..., comp,} be the set of selected non-aggregated
and aggregated dimensions in complex_col list and agg_complex_col_list.

Let Colerit = {crity, crit,, ..., crit, } be the set of dimensions in criteria position

in complex.col list and agg complex_col_list (i.e. in inner FOR sub-clauses).
Let Relcrit = {relerit,, relerit,, ..., relcrit,} be the set of dimensions in relation

criteria position in outer for_crit_list.

36

Let NVonAggdim = {dim,, dim,, ... dim,} be the set of non-aggregated di-
mensions in simple col_list and complex_col_list.

Let Aggezpdim = {AGGi(aggdim,), AGGy(aggdims), ..., AGG,(aggdim,)} be
the set of aggregate expressions in agg-simple col_list and agg_complex_col list.

Let Aggdim = {aggdim,, aggdim,, ..., aggdim,} be the set of aggregated

dimensions in agg simple_col_list and agg_complex._col list.

In the following, a vector notation will be used as shorthand to simplify some

enumerations, as follows:

° T.si;np(rel) = T.simp,, T.simp,, ..., T.simp,, where the simps are all the
simple columns of rel;

o C.crit(col) = C.crity, C.crity, ..., C.crit,

and

® val(col, cr-i't(col)) = wval(col, crit,), val(col, crity), ..., val(col, crit,),
where the crits are the criteria of column col;

e Recrit(rel) = R.crity, R.crity, ..., R.crit,

and

e val(rel, crit(rel)) = val(rel, crit;), val(rel, crity), ..., val(rel, crity),

where the crits are the criteria of relation rel;

e (Comp, Colcrit) = (compy, Colcrit), (compa, Colerit), ..., (comp,, Colcrit),
the enumeration of the complex column schema that should appear in the query
output.

As an illustration of the above, for query Q13, we would have:

Simp = {T.Date}

Comp = {T.C}

Colcrit = {C.Measure}

Relerit = {}

NonAggdim = {T.Date)}

Aggezpdim = {SUM(T.C)}

Aggdim = {T.C}

T.simp(bse :: prices) = T.Date
C.c;it(open_ibm) = C.Ticker, C.Measure
val(open_ibm, cr-‘it(open.ibm)) = val(open_ibm, Ticker), val(open_ibm, Measure)
(Comp, Colerit) = (T.C, {C.Measure})

37

Instantiation of Variables

Definition 4.3.1 [Instantiation]

An instantiation : is a function ¢ : V; — Objp such that : maps each variable in Vg
to an object in the appropriate range, i.e. each db var to a db, rel var to a rel id, col
var to a col id, and tuple var to a tuple (see the definition of a federation instance).

Instantiations 2 are also extended such that:
(1) for each literal constant ¢, 1(c) = c;

(i) whenever T is a tuple variable declared as db::rel T and col is one of the
simple columns of z(rel), 1(T.col) appears in column col in relation 1(rel), and

furthermore, 2(T.col) = #(T)[col];?

(iif) whenever C is a col var declared as db::rel -> C and crit is one of the criteria
of the columns that C ranges over, ¢(C.crit) is one of the values of the criterion
crit of the columns that C ranges over, and furthermore,
y(C.crit) = wal(:(C), crit);3

(iv) whenever R is a rel var declared as db -> R and crit is one of the criteria of the
relations that R ranges over, ¢(R.crit) is one of the values of the criterion crit of

the relations that R ranges over, and furthermore t(R.crit) = wval(2(R), crit);

(v) whenever T and C are tuple and col variables declared as db: :rel T and
db::rel -> C respectively, :(T.C) is one of the values appearing in column ¢(C)

in the relation rel, and furthermore, 1(T.C) = (T)[2(C)].

The main intuition behind the above definition is that the : function maps each
variable to an object of the appropriate type in a federation instance. Furthermore, 1

also maps the properties of each object (e.g., columns, or criteria) to the instantiation.

Definition 4.3.2 [Consistent Instantiations]
An instantiation ¢ : Vo — Objr is said to be consistent provided it satisfies the

following conditions.

e Whenever R is a rel var declared as db -> R, 2(R) is mapped to a rel id corre-
sponding to the database 1(db), i.e. ¢(R) € rel(z(db)).

2 As usual, t[col] denotes the restriction of tuple t to column col.
3See Def. 2.2 for the definition of the val function.

38

o Whenever T is a tuple variable declared as db: :rel T, ¢(T) appears in relation

¢(rel) in database ¢(db), i.e. ¢(T) € tup(s(rel)).

® Whenever C is a column variable declared as db::rel -> C, 2(C) is mapped
to a column id corresponding to relation :(rel) in database ¢(db), i.e. 1(C) €
col(z(rel)).
Definition 4.3.3 [Valid Instantiations]
An instantiation 2 : Vg — ObjF is said to be valid provided it satisfies the following

conditions.

e Whenever Vis a rel var or col var declared in the FROM clause, and V ISA concept
is a condition in the WHERE clause, ¢(V) is mapped to a rel id or col id such that

conc(z(V)) = concept.

e Whenever V is a rel var or col var declared in the FROM clause, and V HASA crit
is a condition in the WHERE clause, (V) is mapped to a rel id or col id such that

crit € crit(y(V)).

The set Iy is defined as Zg = {2 | ¢ is a consistent and valid instantiation}.
E.g., for Q13, take the instantiation 2 such that:
(T) = (10{27]97,63.67,50.23, ...,62.56,48.54, ...) and 1(C) = open-ibm.
This instantiation is not bnly consistent but also wvalid since the column with id
open_ibm has concept Price.
Since we only consider well-formed queries (see Section 3.1.3), we thus have that
V rel var R and col var C:
Vi,7 € Iy : crit(y(R)) = crit(3(R))
Vi, 7 € Iy : crit(z(C)) = erit(3(C))
Vi,7 € Iy : col(z(R)) = col(j(R))

Logical Tuples

After having obtained an instantiation for the variables in the query, we must
obtain a logical tuple corresponding to this instantiation, in the following way.
Let the set LogT upg be the set of all possible tuples over the set of logical dimen-

sions associated with query Q.
Let Cy, Cy, ..., C,, be the s; column variables having the same db and rel component

as T; in their declarations (s; > 0).

39

Definition 4.3.4 [Logical [nstantiation]
We define a logical instantiation as a function g : Zg—LogT upg which, given an
instantiation : for the variables in @, produces a tuple over an appropriate set of

dimensions.
The function 254:-(2) produces a logical tuple as follows:

Uogic(1) = Q) ((D:)) Q@ T)lsimpij]) & ((THE(Cr,)])

1<i<d 1<i<t, 1<j<u, 1<i<t, 1<5<l,
® (val(z(Cy), crit; ;) ® (val(2(Ry), crit; ;)
1<i<e 1<j<n, 1<i<r 1<j<u,

where d, r, ¢, and ¢t are respectively the number of database, relation, column
and tuple variables in the query, u; is the number of simple columns associated with
variable T}, [; is the number of column variables Cr,, having the same db and rel
component as T; in their declarations, v; is the number of criteria associated with
column variable C; and w; is the number of criteria associated with relation variable
R;.

If there are no database, relation and column variables in the query, the function

can be simplified and becomes:

Zlo_qic(z) = ® z(T;)[simp.-,j]

1<i<t, 1<j<u;

which corresponds to the SQL case.

Using our earlier example instantiation, one of the logical tuples corresponding
to instantiation 2 is 2,0ic(2) = (10|27|97, open,ibm,63.67), a logical tuple over the

logical dimensions {T.Date, C.Measure, C.Ticker, T.C}.
Satisfying Logical Instantiations

The conditions other _where_conds* in the WHERE clause induce a boolean function,
denoted sat(u1gic(2), @), on the set of all logical tuple instantiations, reflecting whether
the conditions are satisfied by an instantiation. This is defined in the obvious manner.
Let Ilo_,,,-cq = {10gic(2) | 1 €Ty A Uogic(2) 1s a logical tuple for which sat(zi0g:(2), Q) =
true} denote the set of logical tuples satisfying the conditions in the WHERE clause.

The set Z-’°9i°Q13 is shown in figure 10.

*Recall that other shere_conds are similar to the regular conditions allowed in the WHERE clause of SQL queries.

410

T.Date C.Measure C.Ticker T.C

1027197 open ibm 63.67
10[27{97 open ms 50.23
10|27|97 close ibm 62.56
102797 close ms 48.54
11|01{97 open ibm 65.23
11{01|97 open ms 44.60
1101|197 close ibm 63.05
11j01]97 close ms 46.17

Figure 10: The set of logical instantiations I"’”"‘Q 13 corresponding to query Q13

Discarding Extraneous Dimensions

Once the satisfying logical instantiations have been obtained some dimensions
may have to be discarded before structuring the data according to the proper output
structure.

Let the set of dimensions SELECTg be those dimensions mentioned in the SELECT
clause. We define a function discg: LogT upg—SELECTg as follows:

Given a tuple) € Z}ogicq, then

diSCQ(/\) = ® /\[D]
DGSELECTQ

The set of all restricted satisfying logical tuples is then defined to be:

LogiCJestQ = {dZSCQ(/\) I AE LogiCQ}

Aggregation

Similarly to the SQL case, to account for aggregation, we need the following exten-

sion. We define a relation ~ on the logical tuples.

Definition 4.3.1 For A, « two logical tuples € Tiogicqg» A ~ & iff V dimensions
D € groupby.list, A\[D] = «[D]. Itis straightforward to see that ~ is an equivalence

relation on Ziogicq- This definition essentially says that two logical tuples (satisfying

41

the conditions in the WHERE clause) are ~-equivalent provided they agree on all the

GROUP BY dimensions.

Let Taggo denote the set of tuples over the dimensions in groupby list and those
in aggregate expressions in agg_simple.col list, agg_complex_col list and the
HAVING clause. We define a function aggg : Tiogicq ——rﬂggQ as follows.

aggq(}) = = AD]

“D'" € groupby_list
039 aggp([[D] | & € Tiogicy, & ~ A])

“aggp(D)” € Aggerpdim U having_conds

For a given logical tuple A, aggg considers all logical tuples equivalent to A,
and, for each aggregate operation, say aggp, indicated on the dimension D in the
agg-simple_col list, in the agg.complex_col 1ist or in the HAVING clause, it per-
forms the operation aggp on the multiset of values associated with this dimension by
any logical tuple equivalent to A\. We use [...] instead of {...} to denote multisets for
aggregation. The function aggq also appends to the aggregated values the values of
the dimensions grouped by.

Note that if there are no complexcol list, agg complex_col list and
outer for crit list, aggg(A) reduces to:
agge(N)= X AD']

“D'™ € groupby_list
® aggD([K[D] I K € l?oyicc;"Ic ~ /\]

“aggp(D)" € agg-simple _col_list U having_conds

which is equivalent to the SQL case.

We define the set of logical tuples Iagglog,-cq(/\) as:

Laggiogica = {ag9Q(A) | A € Tiogicy, A aggq(A) satisfies the conditions in having list}.

As an illustration, the set Iagglogfcms is shown in figure 11.

Also in the case of aggregation, once the satisfying aggregated tuples have been
obtained some dimensions may have to be discarded before structuring the data
according to the proper output structure.

Let the set of dimensions TseLect, be those dimensions mentioned in the SELECT

clause. We define a function discCaggq: TaggQ—»ﬂ;ELECTQ as follows:

42

T.Date C.Measure T.C

10|27|97 open 6367575
10[27197 close 6368342
10|27|97 low 6360329
11]01|97 open 6367111
11}01|97 close 6368340
11j01]97 low 6366500

Figure 11: The set of logical tuples Iaggloygcqls corresponding to query Q13

Given a tuple r € Iaggloggcq, then

discageo(t) = & (rlaggn(D)]) X (r[D)

D € Aggdim D’ € NonAggdim U Relcrit

The set of all restricted aggregated tuples is then defined to be:

Iagglogic.restQ = {discaggq(T) I T E IagglogiCQ}

Structuring of Data Along the Physical Dimensions

The tuples in Tiogic_restq (OT Zagglogic_resto for aggregation queries) contain all the
data necessary to answer the query. But that data may need to be structured in a
set of relations each having perhaps a number of complex columns.

We need to define another equivalence relation:

Definition 4.3.2 Let v, p be two tuples € Ziogic_restq- We define v = p, provided
v[D] = p[D] ¥V D in outerfor_crit_list. Clearly = is an equivalence relation.

We can define the equivalence relation = on tuples belonging to Z'aggbg,-c_rcstq in a
similar fashion. In the sequel, we will assume that = is defined on both the sets of
tuples Ziogic_restq and Zoggiogic_restq -

We see that the equivalence relation = partitions the logical tuples (or aggregated
logical tuples) in sets of tuples agreeing on all dimensions to be placed in relation
positions.

The logical tuples =-equivalent to (aggregated) logical tuple v will thus contribute
to a relation, structg(v) with schema (output, Relcrit)(Simp, (Comp, Colcrit)), as

follows.

43

Let S, be the set of column instance corresponding to the schema of the tuples

10 Zyogic_restq (O € Zaggiogic_restq in the case of an aggregate query). For each logical

tuple i € Tiogic restq (OF in Zaggiogic_restq for the aggregation case), such that u = v,

structg(v) contains a tuple ¢, defined as follows. Let A € S,. Then

t{A]

,

\

¢[D], whenever A = D € simple col_list
rlaggp(D)]), whenever A = D € agg.simple_col list
©[D], whenever A = (D, < plerity], ulerity], ..., plerit,] >),

D € complex col list

#laggp(D)], whenever A = (D, < plerity], plerits], ..., plerit,] >),

D € agg complex._col list

null, otherwise.

Figure 12(i) shows structqis(v) for query (Q13), where v is any logical tuple for

Q13 (all of them are =-equivalent).

T.Date (SUM(T.C), <open>) (SUM(T.C), <close>) (SUM(T.C), <low>)
1027|197 6367575 nuli null
10]27|97 nulil 6368342 null
10|27|97 null null 6360329
11j01{97 6367111 null null
11}01]97 null 6368340 null
11{01]97 null null 6366500

6)
T.Date (SUM(T.C), <open>) (SUM(T.C), <close>) (SUM(T.C), <low>)
10|27|97 6367575 6368342 6360329
11j01]97 6367111 6368340 6366500

6

Figure 12: (i) The relation structqi3(v) and (ii) the final result after merging

Finally, the tuples in siructg(v) are merged in the following manner:

Let DOM denote the union of all values € Valf, together with the null value, null.

Define a partial order on DOM, by setting null < v, Vv € DOM. In particular, note

that any two distinct non-null values are incomparable. The least upper bound lub of

44

two values in DOM is defined in the obvious way.

u, ifv<u
lub(u,v) =< v, ifu<vw

unde fined, otherwise.
We now have the following

Definition 4.3.3 Two tuples ¢;,t, over a relation scheme R = {C1,...,Crn} of col-
umn instances C; are mergeable provided for each i = 1,...,n, either ¢,[Ci] = t,[C],

or at least one of ¢,{C}] or ¢,[C}] is a null.

Definition 4.3.4 Let two tuples ¢;,%, over a relation scheme R = {Ci,...,Cr} be
mergeable. Then their merge, denoted t = t; O ta, is defined as t[C;] = lub(t,[C], t2[Ci]),
¢t = 1,...,n. We extend this definition to an arbitrary set of mergeable tuples. A
set of tuples is said to be mergeable if each pair of tuples in the set are mergeable.
The merge of a set {¢1,¢3,...,t,} of mergeable tuples is defined as Ofti,t2,. .., ta} =
L Ot O(. .. O(ta=1 O ta) .. .)) Clearly, the operator © is commutative and associa-

tive.

It should be noted that mergeability is not an equivalence relation. In general,
three tuples ¢;, ¢, and #3 can be such that ¢- is mergeable with ¢; or ¢35 but ¢3 is not
mergeable with ¢;. For example, the set of tuples t; = (10[27(97,6367575, null, null),
ta = (10|27]97, null, 6368342, null) and t; = (10[27]|97,6367222, null, null) present
this behaviour. Thus one can partition this set of tuples into sets of mergeable tuples
in several ways. The possibilities are P, = {{t1,¢2}, {ta}}, P2 = {{t:}, {t2,¢3}} or
even the trivial partition P; = {{¢,}, {£;}, {¢ta}}

It will be convenient below to extend the operator ® to any relation containing
an arbitrary (i.e. not necessarily mergeable) set of tuples.

Let r be any relation over the scheme R. Using the mergeability property, we can
partition the relation into sets of mergeable tuples. Let MP(r) be the set of all such
partitions of mergeable tuples.

Now recall the notion of refinement of partitions. We say that partition P, is a
refinement of partition P, & Vcell p; € P, I some cell Dy '6 P, st.p; C p;.
The notion of refinement defines a partial order over partitions such that @ mazimal

partition with respect to refinement is one which is not a refinement of any other

partition.

45

Using the preceding example of partitions of mergeable tuples, we have that par-
tition P; is a refinement of both P, and P,, while the latter two partitions are each
maximal.

Using the notion of refinement of partitions, we can compare the elements of
MP(r). Note that in general there may be several maximal elements of MP(r), as
seen in the previous example.

We now define the merge of a relation as:

Definition 4.3.5 Let r be any relation over the scheme R. Let II be any maximal
element of MP(r). Then the merge of r, denoted (O r, is defined as follows.
Or={t|{ti,...,tn} €Nt =0Oft1,.--,tm}}-
Note that ®O{¢1,...,tn} is as defined in Definition 4.3.4.
Notice that O r is defined based on any maximal element of MP(r). Thus, choos-
ing different maximal elements of MP(r) can give rise to different values for O r.
We shall see below that the difference resulting {rom this is irrelevant as far as the

information content is concerned.

The output relation produced by logical tuples =-equivalent to v € Tiogic_restq (O
Tagglogicrestg fOT an aggregation query) is given by @ structg(v) and has relation label
(output, < v(relerity], v(relcrity], ..., v[relcrity] >).

Since the © operator is defined as using any maximal mergeable partition of
structg(v), it is important to note that every application of the © operator results
in sets of tuples that are equivalent with respect to the underlying logical tuples.

For example, in the case of the three tuples ¢;,¢; and ¢3, their merge could be
either:

{(10]27]97, 6367575, 6368342, null), (10]27(97, 6367222, null, null)}

or

{(10]27]97, 6367575, null, null), (10|27|97, 6367222, 6368342, null)}

according respectively to partitions P, and P;.

Finally, we can define the semantics of an nD-SQL query as follows. Q(F) =
{O structq(v) | v € Tiugierestq (07 Luggiogic_restq for an aggregation query)} This is
a set of relations if Relcrit is not empty. Note that if the set Colerit is empty (i.e.
if there is no inner FOR clause in the query), the tuples of structg do not need to be
merged. If the set Relcrit was also empty (i.e. if there were no outer FOR sub-clauses

either), then the query result is simply Tiogic_restq (O Zagglogic_resty fOr an aggregation

query).

46

As an example, the final output produced by query (Q13) is relation output(T.Date,

(T.C,<open>), (T.C,<close>), ...) as shown in Figure 12(ii).

47

Chapter 5
Query Processing

This chapter discusses the efficient implementation of the nD-SQL language. The first
section (5.1) deals with queries that do not involve dimension variables. The process-
ing of queries involving dimension variables is covered in Section 5.2 In this chapter,
all queries are assumed to be ezplicit (i.e. all abbreviations have been expanded).
Section 5.1.1 presents the Restructuring Relational Algebra (RRA), used for query
processing. Section 5.1.2 then presents an algorithm to obtain an RRA expression

equivalent to a given nD-SQL query. Section 5.1.3 will discuss optimisation.

5.1 Processing of Queries that Do Not Involve Dimension

Variables

In order to efficiently process nD-SQL queries, an extension to classical Relational
Algebra (RA) is proposed. Restructuring Relational Algebra (RRA) extends classical
RA with restructuring operators. Thus, to process nD-SQL queries, a translation of
the query will be made into an equivalent RRA expression, just like SQL queries
are translated into RA expressions. This will permit the processing engine to take
advantage of the properties of the RRA operators to optimise the expressions. It is
also possible to take advantage of downward compatibility of RRA with RA to push
some of the processing to remote databases. The query processing architecture is
illustrated in Figure 13. Its highlights are that it is non-intrusive, requiring minimal
extensions to existing technology, for deployment on top of existing SQL systems.

Before going into details about processing, the RRA is defined next.

48

% -> [Query Interface]

L
[M -SQL to RRA Translator]
L
r RRA. Optimizer I
~ L L

RRA to SQL
l > Translater < I RRA Executor

Source . Source 2 Source

Figure 13: nD-SQL Server Architecture

5.1.1 Restructuring Relational Algebra

RRA consists of the classical RA operators (that are slightly extended), together
with new restructuring operators. These address the issues arising from: (i) com-
plex relations and columns; (ii) restructuring with a dynamic input and/or output
schema. Recall that in the model (see Chapter 2), simple columns of relations are
denoted as in the classical relational model, while complex columns are of the form
(concept, teriteria)- The operators of RRA are thus: o, I1, x, p, ADD_COL, REM_COL,
ADD_REL and AGG where the latter supports any of the usual aggregations.

First, the new operators are defined, then the extensions to the classical operators

are explained.

Definition 5.1.1 (Add Criteria to Columns)

The operation ADD_COL ., in—concuine(T€L), critList and concList being sets of concepts,
applied to a relation with name rel, has the following effect. Let r be any instance
of the relation name rel in the database. Then, the operation produces an output

relation v’ with the same concept as r, satisfying the following conditions.
o The column labels of v’ are cols(r’) = (cols(r) — {A | A is a simple column of r

with concept in critList} —{B | B is a column of r with concept in concList})
U{(C,tc @t opitrist) | (C.tc) is a column of r with concept in concList A
3t € r: tleritList] =t o1 st} @ denotes the concatenation of tuples.

o The instance of ' consists of a set of tuples over cols(r'), defined as
inst(r') = {t | Y(C,tc @t opitfist) € cols(r’) —cols(r) : Is € r : VA € cols(r) N
cols(r') : t[A] = S[A]AL ppii st = SleritList] A t[(C,te @ t o ist)] = sI(C te)]}.

49

[t should be noted that the column (C. ¢{¢) could be a simple or complex column,
in the above definition. As an illustration of the above operator, the expression
ADD_COLpMeasure—Price(Ryse :: prices) would produce a relation with column labels
similar to those of tse::quotes of Figure 1, and contents equivalent to those of

nyse: :prices. The resulting table, call it ny2t, is shown in Figure 14.

Ticker | Date open | close
itbm 1027]97 | 63.67 | 62.56
ms 11|01]97 | 44.60 | 46.17

Figure 14: ny2t::prices

An algorithm that implements the ADD_COL operator is given in figure 15.

INPUT: Table 7, with schema R,
Set C of criteria to add
Set $ of concepts to add criteria to

OUTPUT: Table 7, with schema R,

let Rs be the set of complex columns from R, with their concept in S,
Ro =R, ~(CURs);
for each tuple ¢; in 7, do
let t;[C] be the restriction of t; over the criterian C
for each complex column (s,,t.,;) in Rs do
o =RoU {(‘n ty, 5 (%] ‘j[C])};

end for
let t;{R, — (CURs)] be the restriction of t; over the columns of R, neither inC norin Rs

if there does not exist a Merge Class for t;[R, — (CU Rs)] then
create the Merge Class;
add t; to the Merge Class;
else
if in some Merge Class for t;[R, — (C U Rs)] there is no tuple with the same set of values of t,[C] then
add t; to that Merge Class;
else
create another Merge Class for ¢;[R, — (C U Rs));
add ¢t; to that Merge Class;
end if
end if
end for

for each Merge Class do
initialise output tuple t, for 7, to all nulls;
let ti be any tuple in the Merge Class
t[R —(CURS)] = te[R:, — (CU RS
for each tuple t; in the Merge Class do
for each (s,,t;,;) € Rs do
tol(si,ti,5 @ to[Ch] = tif(se, ta5)):
end for
cnd for
end for

Figure 15: Algorithm for RRA operator ADD_COL

Definition 5.1.2 (Remove Criteria from Columns) The operation

50

REM _COL iitise—cancrie (T€L). critList being a list of criteria and concList a list of con-
cepts, applied to a relation with name rel, has the following effect. Let v be any
instance of the relation name rel in the database. Then, corresponding to each such
relation r, the operation produces an output relation v/, with the same concept as r,

satisfying the following conditions.
® The column labels of ' are cols(r') = {A | A is a simple column in cols(r)} U

{(B,tc)[C — critList] | (B,tc) is a complez column in cols(r) with criteria set
C} U (critListNC). Here cols(r) is the set of column labels of r.

o The instance of r' consists of a set of tuples over cols(r'), defined as inst(r') =
{t | 3s € r : 3 a criteria-tuple tc : (V simple column A € cols(r) : t[A] =
s[A]) A(V complex column (C,tc) € cols(r) : t[(C, tc[C — critList])] = s[(C, tc)]) A
tleritList N C] = tc[critListN C]}.

As an illustration, the expression REM_COLMeasure—Price(Ry2% :: prices), applied to

the relation ny2t: :prices of Figure 14, exactly yields the relation nyse: :prices of

Figure 1.
An algorithm that implements the REM_COL operator is given in figure 16.

INPUT: Table T, with schema R,
Set C of criteria to remove

OQUTPUT: Table T, with schema R,

Ro =R, UC;
for each column r, in R, do
if r, is an instance of 2 complex column then
let t, be the criteria_tuple of r, and Cqy be the criteria_set of ry
Ro =Ro ~ {((concept(r,), ‘l)};
Ro = Ro U {((concept(r,), t,[Cant — CD};
store t,[C] in set criteria_tuples;
end if
end for

for each tuple ¢; in T,
for each criteria_tuple ;[C] in the set criteria_tuples do
initialize output tuple t, for 7, to all nulls;
let R, be the set of simple columns of R,
to[R.] = t;[R,];
t.[C] = t[C];
for each instance r, in R, of a complex column do
tof(concept(r,), tx[C])] = to[r.];
end for
if some t,[(concept(r,), tx[C])] is not null then
add t, to T,;
end if
end for
end for

Figure 16: Algorithm for RRA operator REM_COL

Definition 5.1.3 (Add Criteria to Relations) The operation ADD_REL.,,,,.(rel),
critList being a list of criteria, applied to a relation with name rel, has the following
effect. Let r be any instance of the relation name rel in the database. Assume for
stmplicity that all criteria in critList are concepts of simple columns in r. Then, cor-
responding to each relation r, the operation produces multiple output relations r', with

the same concept as r, and with criteria critList, that satisfy the following conditions.
o The column labels of every r’ are cols(r') = cols(r) — critList

o There is one output relation r’ corresponding to r and to each distinct critList-

value, say ¢ pis1isy, tn r. Let the label of this relation r' be (rel, teritListi)-

o The instance of each (rel, teritList;) consists of a set of tuples over cols(r'),
defined as inst(r'); = {t | Is € r : (VA € cols(r’) : t[A] = s[A]) A teritlist: =
s[erit List]}.

As an illustration, the expression ADD_RELTjcker(Ry2t :: prices) would produce

multiple relations, with relation labels similar to those of mse: :quotes of Figure 1,
with column labels similar to the ones of those relations, and contents equivalent to

those of ny2t: :prices. The resulting table is shown in Figure 17.

Date open close | ... Date open | close
10]27{97 | 63.67 | 62.56 | ... 10[27]97 | 50.23 | 48.54
11]01[97 | 65.23 | 63.05 | ... 11{01]|97 | 44.60 | 46.17

ny2m: :ibm ny2m: :ms

Figure 17: ny2m: :prices

An algorithm that implements the ADD_REL operator is given in figure 18.

INPUT: Set 7, of tables with schema R,
Set C of criteria to add, € C {set of simple columns in R,}

OUTPUT: Set T, of tables with schema R,

initialise 7, to be empty;
for each table T, € 7;: do
let t, be the criteriatuple of table T,
for each tuple ti in table T, do
To =T, U {(concept(T,), tr @ t:[CI(R, - C)};
add the tuple tx[R, — C] to table (concept(T,), tr, ® L[CH(R, —C);
end for
end for

Figure 18: Algorithm for RRA operator ADD_REL

52

It turns out the converse of ADD_REL, call it REM_REL, is not needed as an
explicit operator, as its sense is built into the query processing algorithms. A more
complete explanation is deferred to Section 5.1.2.

The classical RA operators are extended in the following way: we allow that
parameters to these operators refer to one specific column instance of a complex
column by using its label. We also also allow them to refer to the set of instances
of a complex column by using the column’s concept. This serves as a shorthand for
enumerating every column label and applying the same (e.g. IIpjce(nyse: :prices)
denotes the projection of relation nyse: :quotes on the set of columns having concept
Price). This is perfectly compatible with RA since when a column is simple, this
abbreviation reduces to the classical select or project.

Finally, the p (renaming) operator is extended in the following way: when renaming
complex columns (by using as argument its concept as allowed above), complex labels
are allowed (of the form used in the SELECT clause of an nD-SQL query, see point (5)
of Section 3.1.1).

For simplicity in presentation, the operators have been defined as applying to sin-
gle tables. Operations sometimes have to be applied to joins of tables where different
columns could have the same concept. A simple way to support this is that parameter
lists should accept pairs (table.concept) or (table.criteria) wherever concepts or cri-
teria were used in the definitions (e.g. we could have AGGsym(T1.Price), {T1.Date,T2.Date}
where SUM(T1.Price) is the aggregation to be performed, 1.Price is the dimension

being aggregated, and {T1.Date, T2.Date} is the set of group-by dimensions).

Useful Identities

An important property of the new restructuring operators is that they preserve the
logical tuples underlying the physical data. From this, we can obtain several identities
that will be useful for query processing or optimisation. These identities are based

on the notions of logical equivalence and n-dimensional equivalence defined next.

Definition 5.1.4 (Logical Equivalence) We say that Table, is logically equivalent
to T'able; (denoted Table;=(,q4:cT able, iff the set of logical tuples underlying Table,
is equal to the set of logical tuples underlying T'able,.

Definition 5.1.5 (n-Dimensional Equivalence) We say that Table, is n-dimen-
stonally equivalent to Table, (denoted Table,=,pT able,) iff Table;=io4icTable; and

53

Table; and Table; have the same federated schema.

Note that when Table;=,pT able;, both tables will have the same set of associated
dimensions, those dimensions will be structured in the same manner along the row and
column dimensions, and their set of underlying logical tuples will be the same, which
means that if there are complex columns, their number of instances and the criteria
tuples of those instances will be the same for both tables. Thus, =,p-equivalence can
- be different from equality only in terms of the merging of logical tuples.

In a similar fashion, we define =, p-equivalence of nD~SQL queries as follows:

Definition 5.1.6 (n-Dimensional Equivalence of nD-SQL queries) We say that
two nD-SQL queries @; and Q; are n-dimensionally equivalent (denoted Qi =,pQ-)

iff they give =,p-equivalent outputs when applied to =,p-equivalent inputs.

Since the restructuring operators of RRA preserve the set of logical tuples, we
obtain several identities which are useful for query processing and optimisation.
First, operators of the RRA commute provided certain conditions are met. This

is formalised in the following theorems.

Theorem 5.1.1 Commutativity of operators.

(2) ADD_RELaddrelcritList [ADD-COLaddcritList—addconcList (1'able)]
=np ADD_COL,ddcritList—addconcList | ADD_RELaddrelcritList (1'able) |, provided the
sets of domains referred to in the following pairs of parameter lists are disjoint:
(i) addrelcritList, addcritList, (ii) addrelcritList, addconcList;

(b) ADD_RELagdrelcritList [REM _COLemcritList —remconcList (Table)]
=aD REM—COLremcritList.-—remconcList [ADD-RELaddrelcritLisr. (Table)]7 pFOVided the
sets of domains referred to in the following pairs of parameter lists are disjoint:

(i) addrelcritList, remcritList, (ii) addrelcritList, remconcList;

(C) ADD_COLaqdcritList—addconcList [REM _COL remcritList —remconcList (Table)]
=nD RENI—COLremcritList—remconcList. [ADD—COLaddcritList—.addconcl'_.ist (Table)]7 pro-
vided the sets of domains referred to in the following pairs of parameter lists are

disjoint: (i) addconcList, remcritList, (ii) addcritList, remconcList;

(d) Let RES-OP be either of REM_COL or ADD_COL. Then,
OTselList [RES'OPcritList,concList (Table)] =nD RES‘OPcritList,concList [JselList (Table)]7
provided none of the concepts and criteria in critList and concList are present

in the conditions in selList;

54

(e) HprojList [REM—COLremcritListo—remconcList (Tab[e)]
=nD REM_COLemcritList —remconcList [HprojList—remcritList (Table)]-.
provided (remcritList U remconcList) C projList;

(f) ADD_COL.ddcritList—addconcList | WprojList (T'able)]
=nD HprojList—addcritList [ADD_COLaddcritList—addconcList (Table)]7
provided (addcritList U addconcList) C projList;

(g) AGGaggList,groupbyList [REM_COLremcritList —remconcList (Table)]
=nD REM_COLremcritList —remconcList [AGGaggList,groupbyList-remcritList (Table)]7
provided remcritList C groupbyList and every dimension aggregated in aggList

is in the remcoancList;

(h) ADD_COLaddcritList—addconcList [AGGaggList,groupbyList (Table)]
=nD AGGaggList, groupbyList—addcritList [ADD_COL,ddcritList—addconcList (Table)],
provided addcritList C groupbyList and every dimension aggregated in aggList

is in the addconcList;

(i) Let RES-OP be either of REM_COL or ADD_COL. Then,
Tabley x [RES-OPcritList,concList (Tables)]
=nD RES-OPcritList,concList | 1 able; x Table,],
provided the restructuring operation applies only to Table; and that for the pur-

pose of the restructuring operation, all columns of Table; are considered simple.

PROQOF:

Identities (a), (b) and (c) follow from the fact that REM_COL, ADD_cOL and
ADD_REL each preserve the underlying sets of logical tuples. The conditions on the
parameter sets insure that one operator does not move a criteria (or concept) from
(or to) the row position while the other operator was needing it in the other position.

Identity (d) follows from the fact that the logical tuples satisfying the selections
are the same for both expressions, and the condition insures that the concepts and
criteria involved in the restructuring are not parameters for the selection, and thus
do not need to be in column positions for the selections to be performed.

Identities (e) and (f) follow from the fact that the projection does not eliminate
any columns involved in the restructuring. Thus, applying the projection before of
after the restructuring does not change the values involved in the restructuring. In

each case, the concepts moving into criteria positions do not need to be projected on.

55

[dentities (g) and (h) follow from the fact that whenever the values in complex
columns are aggregated, the criteria set of the column act as a set of group-by
dimensions. Thus, whenever the condition is met, both results will be =, p-equivalent.

Identity (i) states that by considering all columns of Table; as simple, we can
apply a restructuring on the columns of Table; even after having taken the Cartesian
product of the tables. For REM_COL, each tuple of Table, is simply broken down in
many tuples in @ manner independent of the values in the columns not involved in the
restructuring. Thus, doing the scalar product before or after will change neither the
number of, nor the nature of the tuples created, For ADD_COL, we observe that the
operation merges logical tuples that have identical values in all simple columns not
tnvolved in the restructuring. Two tuples having that characteristics will necessarily
produce, after a Cartesian product, pairs of tuples that still have the same property.

Thus the order of execution of the two operators will produce the same result. .

5.1.2 Translation from nD-SQL to RRA

This section presents and explain algorithm nD-SQLtoRRA, which takes as input an
nD-SQL query and produces as output an =,p-equivalent RRA expression.

Consider the generic nD-SQL query

SELECT (select_objectl, ..., select_objectk) FOR criteria_list
FROM variable_declarations
WHERE where_conditions

GROUP BY groupby_dimensions
HAVING having_conditions

where inner FOR sub-clauses may be present.

The output of algorithm nD-SQLtoRRA is a simple RRA expression that is equiv-
alent to the nD-SQL query. However, the expression is in general far from optimal.
The goal of the algorithm is to obtain an expression =,p-equivalent to the given
nD-SQL query so that subsequently, the optimisation techniques described in Section
5.1.3 can be exploited to transform it into another =, p-equivalent, but more efficient
RRA expression.

The expression resulting from nD-SQLtoRRA conforms to a basic template, T,
given as follows:

T : ADD_REL ysrutiai (£remimiine (ADD COL yurin—aazonerine (W projiine (Tnaverins

AGG i, groappytine(Tuctiod (REM_COL, i rmconctins(X proazin))))))))

56

The two major differences between nD-SQL query translation into an RRA ex-

pression, and the classical case of a SQL query translated into and RA expression

are:

1. An nD-SQL query allows multiple types of variables, which is reflected in query
processing by different types of Variable Instantiation Tables (or VITs), some for
which the data needed to instantiate a variable is available in the catalog tables,

some for which we need to obtain data from remote sources;

o

The restructuring capabilities of nD-SQL bring new operators into play, which
translates into an additional pre-processing phase and more complex analysis of

query clauses.

A very high level description of the algorithm follows.

Intuitively, it is expected that the classical SQL parts of an nD~SQL query translate
into the corresponding classical RA operations (e.g. selected objects in the SELECT
clause become parameters of projections, conditions in the WHERE clause become pa-
rameters to selections, etc). In addition to this, the new parts of the syntax will induce
additional operations. Specifically, restructurings are derived from both (i) the new
FOR sub-clauses of the SELECT clause, and (ii) the column variables declared in the
FROM clause which are linked to some tuple variable through their range declaration.

The tables to which these operations will be applied are obtained from the in-
stantiations of the variables. Note that while the information necessary to instantiate
non-tuple variables is contained in the catalog tables, pulling data by querying remote
sources is necessary to instantiate tuple variables. The Variable Instantiation Table
containing the instantiations of a variable V; is denoted by VIT_V;.

The RRA subexpressions that create the VITs for the various types of nD-SQL
variables can be found in Table 3. Note that to each tuple of a tuple_var is appended
the name of the database and relation from which it originates. Also note that the
VIT of a rel_var will contain one column per criteria of the relation (if the latter is
complex). Thus, for a tuple_var declared with a complex relation in its range, the
join of the tuple_var VIT with it’s parent rel_var VIT gives exactly the same result as
a potential REM_REL operator would. This is why there is no explicit need for an
operator REM_REL in the RRA.

The algorithm nD-SQLtoRRA can be found in Figure 19. Without loss of gener-

ality, it considers an nD-SQL query where all variables are made explicit, expanding

57

necessary abbreviations if necessary. The query is assumed to be well-typed. For
simplicity in exposition, it is further assumed that the WHERE clause is a conjunction
of conditions.

Algorithm »D-SQLtoRRA will produce an RRA expression (following template T)
equivalent to the input nD-SQL query. The algorithm makes use of Tables 3 to 5,
filling in the appropriate parameters by analysing the nD~SQL query. Note that in the
algorithm, T denotes a tuple variable, R a relation variable, C a column variable and

V either a relation or column variable. We have the following result about algorithm

nD-SQLtoRRA:

| Declaration] RRA subexpression for VIT

-> D | VIT.db = [I45(dbscheme)

db -> R p(ualue,crilcria){ADD-COLcriceria—-value(Hdb.rcl_label,criteria,ualue[
dbscheme M, f;g=rctia T€lschemes M, jig=iq criterial)}.

db::rel C p(ualue,criteria){ADD-COLcriteria—-value(Hdb,rcl_label,attr._label,criteria,ualue[
dbscheme M, j;d=rctid TelSchemes Mgesrig=iq criterial)}.

db::rel T | Uy, [{'dbi} x Uy, ({'reli} x rel;)]

where db; € {range of the db component of T’s declaration}
and rel; € {range of the rel component of T’s declaration}
and we assign the concept db to the column with values ’db;’
and the concept rel label to the column with values 'rel;’

We add to the expressions for rel_vars and col_vars appropriate selections corresponding to the ISA
and BASA constraints present in the WHERE clause, and to each constant present in the ranges of vari-
able declarations in the FROM clause. For example, for a col_var C declared with the range d::rel
-> and the constraint C ISA Price, the VIT will be created by adding inside the projection the
selections db = ’d’ AND rel_label = ’rel’ AND attr_concept = Price.

Also, for relation and column variables, whenever the db component of the range is a variable,
the database variable should be instantiated first and a selection added to the VIT subexpression of
the rel of col var of the type db = ’db;’ OR db = *dby’ OR ... OR db = ’db, where the db;’s
are the databases the db var ranges over.

Table 3: RRA subexpressions for VITs of variables declared in the FROM clause

Theorem 5.1.2
The RRA expression obtained by ezecuting algorithm nD-SQLtoRRA for an nD-SQL

query Q is =,p-equivalent to the query Q.

58

Algorithm nD-SQLtoRRA
// definitions

Relp = {R. | R, is a rel_var declared in the FROM
clause A R, has D as db component in
its declaration}

Parc = {T, | T, is a tuple_var declared in the FROM
clause A T, has the same db and rel component
than C in its declaration}

Childg = {T, | T, is a tuple.var declared in the FROM

clause A R is the rel component in
T,’s declaration}
concept(V) = concept associated with col_var
(or relvar) V
criterion(V) = set of criteria associated with col_var
(or rel_var) V

pammLis:VIT'V = {domain, |

VIT_V.domain, € paramList}

Let ADD(domain) =

VIT_D.{(db} if domain is o.t.f. D
VIT_T.(attribute) if domain is o.t.f. T.(attridute)
VIT. T.concept(C) if domain is o.t.f. T.C
VIT.R.(criterion) if domain is o.t.f. R.{criterion)
VIT.C.(criterion) if domain is o.t.f. C.{criterion)

A [|Parc]] =0
if domain is o.t.f. C.(criterion}
A [[Parc]| > 0

VIT_T¢ (criterion)

// pre-processing

for each declared col_var C do
generate set Parc;
identify concept(C);
generate set criteria(C);
if ||Parc{l > 0 then
add VIT_T,.erit; to remList
and VIT_T,.concept(C) to remconcList,
V T, € Parg,V crit; € criteria(C);
if [|[Parc|| > 1 then
add VIT.T,.crit; = VIT T.crit; to selList,
v T, Tk € Parc, T: # Tk,
¥ erit; € criteria(C),;
choose a T, € Parc to be T¢;
else // ||Parc|] =1
the only T € Parc becomes Tg;
end if
else // ||Parc|| =0
add VIT.C to prodList;
end if
end for
for each declared tuple_var T do
add VIT_T to prodList;
end for
for each declared rel_var R do
generate set Childg;
if 3 expression R.{criterion) in the query then
add VIT_R to prodList;
add VIT_R.db = VIT_T,.db to selList,
Vv T, € Childg; .
add VIT_ R.rel_label = VIT_T,.rellabel to selList,
¥ T, € Childg;
end if
end for
for each declared db_var D do
add VIT.D to prodList;
add VITD.db = VITR,.db to selList,
¥ R, € Relp;
end for
for each declared variable do
create the RRA subexpression for
the variable's VIT
end for

// scanning of the query clauses

for each condition in the WHERE clause do
if the condition is neither an ISA
nor an HASA condition then
use the appropriate rule in Table 5;
end if
end for
for each domain in the GROUP BY clause do
add ADD(domain) to groupbyList;
end for
for each condition in the HAVING clause do
use the appropriate rule in Table 5;
end for
if the SELECT clause has
an outer FOR sub-clause then
for each domain in the critlist do
add ADD(domain) to projList;
add ADD(domain) to addrelList;
end for
use the (label) for the output table(s) name(s);
end if
for each select_object in the SELECT clause do
use the appropriate rule in Table 4;
end for
for each parameter list do
eliminate duplicate parameters in list
end for

Figure 19:

Algorithm nD-SQLtoRRA

59

| Expression in the nD-SQL query | List] Parameter to be added to the List
domain [AS label] projList ADD(domain)
[renamList | (ADD(domain), label) 1
domain [AS label 1 FOR critlist projList ADD(domain)
addconcList | ADD(domain)
addList ADD(domain), ¥V domain € critlist
projList ADD(domazin), ¥ domain € critlist
[renamList { (ADD(domain), label)]
AGG(domain) [AS label] projList AGG(ADD(domatn)
[renamList | (AGG(ADD(domain), label)]
AGG(domain) [AS label] FOR critlist | projList AGG(ADD(domain)
addconcList | AGG(ADD(domain)
addList AGG(ADD(domain), Y domain € critlist
projList AGG(ADD(domain), ¥ domain € critdist
[renamList | (AGG(ADD(domain), label)]

Table 4: Rules for select_objects in the SELECT clause

| Expression in the WHERE clause

] Parameter to be added to selList]

domain; Op domaing

ADD(domain;) Op ADD(domainz)

domain Op “value”

ADD(domain) Op “value”

“value” Op domain

“value” Op ADD(domain)

| Expression in the HAVING clause | Parameter to be added to havelist |

AGG(domain;) Op AGG(domain;)

AGG(ADD(domain;)) Op AGG(ADD(domain,))

AGG(domain;) Op domain,

AGG(ADD(domain;)) Op ADD(domain,)

domain; Op AGG(domainy)

ADD({domain;) Op AGG(ADD(domainz))

AGG(domatn) Op “value”

AGG(ADD(domain)) Op “value”

“value” Op AGG(domain)

“value” Op AGG(ADD(domain))

Table 5: Rules for conditions in the WHERE and HAVING clauses

60

PROQOF:
The proof of Theorem 5.1.2 consists of 2 parts. In Part I, we show that an RRA
expression following template T is equivalent to the nD-SQL semantics. Then, in
Part II, we show that the nD-SQLtoRRA algorithm creates an RRA expression fol-
lowing template T and with the right parameters to give the correct result for Q.
Part I:
Recalling the semantics of nD-SQL we know that in general, a query result is

obtained by:
(i) First instantiating variables to objects and then to logical tuples;
(ii) Then, keeping those logical tuples satisfying the conditions in the WHERE clause;

(iii) Then, aggregating tuples and keeping those satisfying the conditions in the
HAVING clause;

(iv) Then, discarding extraneous dimensions;

(v) Then, separating tuples in equivalence classes based on the values in the dimen-

sions destined to become relation criteria;

(vi) Finally, applying a merge on each equivalence class to restructure some of the

logical dimensions along the row dimension.

The operations in the template can be shown to be equivalent to these steps, as

follows:

(a) In the template, the task of obtaining instantiations of logical tuples is achieved
by a combination of several operations. VIT subexpressions are created for
each variable. For database, relation and column variables, this corresponds to
instantiating the variables and obtaining their set of logical tuples. For tuple
variables, the logical tuples are obtained by applying a REM_COL operation
to the VIT whenever a column variable is declared having the same db and rel
range component as the tuple variable. Then, all the tables above are joined
using conditions ensuring that the logical tuples for corresponding databases,
relations, columns and tuples are joined together.

In the template, the join and restructuring of VITs are split into first a Cartesian
product of the VITs, then a REM_COL operation for all necessary criteria
removals, then some selections. This sequence of operations is =,p-equivalent

to the one dictated by the semantics, as per the Identities 5.1.1-(d) and (i);

61

(b) Satisfying logical tuples are obtained by applying additional selections in the
third step of the template, corresponding to the conditions of the WHERE clause;

(c) The aggregated tuples are then obtained by the use of the AGG operator, fol-
lowed by an additional selection to keep only those aggregated tuples satisfying
the HAVING clause conditions;

(d) Discarding extraneous dimensions is then done through a projection;

(e) The last two steps, corresponding to restructurings along the relation and row
dimensions for (v) and (vi) respectively, are done using the ADD_COL and
ADD_REL operators, but in the opposite order to that dictated by the seman-
tics. The result is =,p-equivalent as shown by Identity 5.1.1-(a).

Part II:
We now show that the algorithm creates the proper RRA expression for the query.

We proceed according to the steps recognized in Phase [:

(a) First, we examine the process of preparing the VIT subexpressions. For database,
relation and column variables, the catalog tables are queried. The RRA subex-
pression for database variable VIT obviously corresponds to the right instances.
For VITs of relation and column variables, the use of selections based on the
ISA and HASA conditions of the query, and the use of ADD_COL to create one
column per criteria, ensure that valid instances are associated with the variable.
As for tuple variables, the tuples from every table in the variable’s range are
included in the VIT. To ensure that all instantiations are also consistent, appro-
priate join conditions between the VITs are generated (as parameters added to

the selList) in the pre-processing step.

Once the VIT subexpressions are prepared and the appropriate selection pa-
rameters are added to the selList, the useful VITs are added as parameters to
the prodList for the scalar product. The VIT of a column variable will only
be added to the prodList if there are no tuple vartables declared with the same
range components. This because if there was at least one such tuple variable, a
REM_COL operation will be planned for its VIT such that the column criteria
will become concepts of simple columns, and conditions on the column variable’s
criteria will be applied to these columns. This also ensures the creation of proper

logical tuples for the tuple variables;

62

(b)

(d)

In the second step. the WHERE clause is scanned and every non-ISA, non-HASA
condition is translated into a parameter in the selList for the selection, thus

ensuring that only satisfying instantiations be retained;

In the third step, the GROUP BY and HAVING clauses are scanned and param-
eters are added to the groupbyList and havList. Then, the scanning of the
select_objects in the SELECT clause will add in the aggList, the last parameters

necessary for aggregation;

In the fourth step, the scanning of the SELECT clause ensures that for every
concepts and criteria needed in the output structure, the appropriate columns

are added as parameter to the projList;

In the fifth and final step, the scanning of the SELECT clause will determine
what restructuring needs to be executed. Parameters will be added to the ad-
dList, addconcList and addrelList, which will be used by the ADD_COL and
ADD_REL operators.

Thus the algorithm does create an RRA expression which gives the correct result

for the nD-SQL query according to the semantics described in Chapter 4. =

Here is an example query to illustrate the translation process.

(Q14)

SELECT (AVG(T1.C1) FOR C1.Measure) FOR T.Date

FROM bse::prices -> C1, bse::prices T1
mse -> R, mse::R -> C2, mse::R T2

WHERE C1 ISA Price AND R ISA prices AND C2 ISA Price
AND C1.Ticker >= ’m’ AND Ci.Ticker < ’n’
T1.Date > 10127|97 AND Ti.Date <= 11[01(97
AND Ti.Date = T2.Date AND Ci.Measure = C2.Measure
AND Ci.Ticker = R.Ticker AND T1.C1i > T2.C2

GROUP BY T.Date, Cl.Measure

This query compares the values from exchanges mse and bse for the week of Octo-
ber 27 to November 1 1997, and for the Tickers which names start with an 'm’. The

query further only takes the average of those values from exchange bse that exceed

the corresponding values on the same day in exchange mse.
Following the steps of the nD-SQLtoRRA algorithm, we obtain:

63

After the pre-processing steps. the definitions applied to query Q14 become:
Parc; = {T1} = [|Parci|| =1 = Tc; = T1
concept(Cl) = Price
criteria(C1l) = {Measure, Ticker}
Pargs = {T2} = [|Parca|| = 1 = Tgy = T2
concept(C2) = Price
criteria(C2) = {Measure}
Childg = {T2}

Some parameter lists are initialised as such:
remList = {VIT.T1.Measure, VIT_T1.Ticker, VIT_T2.Measure}
remconcList = {VIT_T1.Price, VIT.T2.Price}
prodList = {VIT_T1, VIT.T2, VITR}
selList = {VIT_T2.db = VITR.db,VIT T2.rel_label = VIT.R.rel_label}

The RRA subexpressions for VITs are given by the following expressions:
VITR = pvalue—.criteria{ADD—Co Lcriteria—vvalue(Hdb.rel_label,criteria,value[

Odb='mse’ A rel-concept:’prices'{

dbscheme X, ./iy=,e1ig Telschemes M, .iy=;y criteria}])}
VIT.C1 = pva_[ue_,criteria{ADD_COLcn'teria—;va.lue(Hdb,relJabel,attr.label,criteria.,value[

Odb='bee’ A reljabel='prices’ A attr_concept='"Price’{
dbscheme M, .(ij=reiig Telschemes Mgy rig=ia criteria}])}.
VIT.C2 = ADD_COLcriteria—value([Lab,rei_tabet,attr tavel,criteria value|
Odb="mse’ A attr.concept:'Price’{
dbscheme M, e/iy=reiid Telschemes Mgyrig=iq criteria}]).
VITT1 = Urel,=bsesprices ({reli}) = bse :: prices
VITT2 = Urel.-:mse::ibm, mse:ms, ... ({rel:})
After scanning the query clauses, some values have been added to the various pa-
rameter lists as follows:
WHERE: add to selList {VIT_T1i.Ticker >= ‘m’, VIT.T1.Ticker < ‘n’
VIT_Ti.Date > 10[27[97, VIT.T1.Date < 11[01[97,
VIT.Ti.Date = VIT_2.Date, VIT_Ti.Measure = VIT_T2.Measure,
VIT.Ti.Ticker = VIT.R.Ticker, VIT_T1.Price > VIT.T2.Price}
GROUP BY: groupbyList = {VIT_Ti.Date, VIT.Ti.Measure}
SELECT: projList = {VIT_T1.Measure, VIT.T1.Date, AVG(VIT.T1.Price)}

64

addrelList = {VIT_T1.Date}
concList = {AVG(VIT.T1.Price)}
addList = {VIT Ti.Measure}
aggList = {AVG(VIT.T1.Price)}

The list selList will thus end up as:
selList = {VIT_T2.db = VITR.db, VIT_T2.rel label = VIT R.rel_label,
VIT Ti.Ticker >='m’, VIT_T1i.Ticker <'n’,
VIT_Ti.Date > 10]27(97, VIT.T1.Date < 11[01]97,
VIT.T1.Date = VIT_T2.Date, VIT_T1.Measure = VIT_T2.Measure,
VIT_T1.Ticker = VIT.R.Ticker, VIT.T1.Price > VIT_T2.Price}

The final RRA expression is obtained simply by using template T with the above
parameters, plus the RRA subexpressions for the VITs whose names appear in pa-
rameter list prodList.

It is very important to note that all VITs have to be instantiated, not just those in
the prodList. Those not in the prodList will not be used in the Cartesian product.

On the other hand, they play an important role in optimisation.

5.1.3 Optimisation

Many opportunities for optimisation arise from the use of RRA in processing nD-SQL
queries. Remember that tuple variables must be instantiated by querying various
local sources. By taking advantage of the downward compatibility of RRA to RA
and by using the various identities presented in Theorem 5.1.1, we find that there
exists the opportunity to push to remote sources some computations. Is can be
possible, for example, to push some selections, projections, aggregations and even
joins. Eventually, although our architecture does not demand it. if a local database
supports restructuring, it would be possible to also push some of those operations to
the local system.

A preliminary step in optimising the computations consists in ordering the in-
stantiation of variables and using the technique of sideways information passing (sip)
first proposed in [Bee87]. This becomes particularly important in order to determine
what database and/or relation to access to instantiate some tuple variable. Equally

important is the possibility of passing bindings from a first instantiated variable to

65

the query instantiating a second one. This opportunity arises when a join is called for
between tables originating from two distinct sources. In some situations, the instan-
tiation of the second variable should be delayed until the values of the join column(s)
obtained from the first variable’s instantiations can be passed as bindings. These
bindings would be passed on as selections in a SQL query.

In addition to using the identities of Theorem 5.1.1, an RRA optimiser can also
use the classical identities involving the operators of RA. Also, the following equiva-
lences arising from the symmetry between the restructuring operators REM_COL and

ADD_COL, can be used for optimisation purposes:

Theorem 5.1.3 RRA expression equivalences.
® ADD.COLp, _.p, [REM_COLy,—p, (Table)] =,p ADD_COLy, _p,—.p, (Table),

if p3 C p1;

® ADD_COLy,_p, [REM_COLy,,, (Table)] =,p REM_COLy,_p,—p, (Table),
if pr C pa;

® ADD_COLy ., [REM_COL,,.—p, (Table)] =.p Table, if p; = ps;

PROOF: Obuvious

Another set of optimisation rules rely on the following heuristic:
Heuristic 5.1.1 [t s in general more efficient to perform join or restructuring on

fewer tuples, albeit they be wider.

Since in general ADD_COL lowers the number of tuples and REM_COL increases it,

the following additional heuristics can be derived:

Derived Heuristics 5.1.1

a) REM_COLy,. o, [ADD_COLp,—p, (Table) | is more efficient than
ADD_COLy, ., [REM_COLy,_,, (Table)].

b) If X, and REM_COLy,. ,, can commute and p; only refers to Table,,
then REM_COL, ., [Table; X, Table,]| is more efficient than
Table; ™M, [REM_COLp,—p, (Tables)], provided the join selectivity is high.!

!Recall, the higher the join selectivity, the fewer the tuples that result from the join.

66

c) If X, and ADD_COLp, ., can commaute and p, and p3 refer only to Table,,
then Table, M, [ADD_COLp, ., (T'able;) | is more efficient than
ADD_COLp,—p, [Table, M, Table; |, provided the join selectivity is low.

d) REM_COLp,.p, [AGGp,, p,—ps (Table) | is more efficient than
AGGp,, p, [REM_COLp,.,, (Table)]

Another form of optimisation would be to take advantage of what we call “inter-
leaving”. Interleaving is the efficient implementation of a series of operators that are
often called for in sequence, similar to the way join is a more efficient implementa-

tion of Cartesian product ’'interleaved’ with selection. In RRA, two such series of

operations can be pinpointed:

l. A selection applied to the values of a criterion of a complex column, without
any restructuring of the criterion being otherwise necessary, can be implemented
more efficiently than by first removing the criterion, selecting on it, and adding

it back.

2. A selection applied to the values of the concept of a complex column, without
any restructuring of the columns being otherwise necessary, can be implemented
more efficiently than by removing all criteria of that complex column, selecting

on the concept and adding all the criteria back.

Let us define two new operators, I[I* and o* that capture the sequence of operations

1 and 2 respectively.

Definition 5.1.7 (II*) The operation HtprojLz'st, selList(rel), projList being a list
of column concepts and column labels of rel, and selList being a list of conditions
involving criteria of complex columns of rel, applied to a relation with name rel,
has the following effect. Let r be any instance of the relation name rel in the database.
Then, corresponding to each such relation r, the operation produces an output relation

r’ satisfying the following conditions.
o The column labels of ' are cols(r') = {A | A € cols(r) A(concept(A) € projList

V A? € projList}u {C | C is a complex column of r A C's criteria values fulfill
the conditions in selList}

o The instance of v’ consists of a set of tuples over cols(r’), defined as inst(r’) =
{t|3s € r Atle;] = s[ci], Ve: € cols(r')}

as a label

2

67

Definition 5.1.8 (0™) The operation o™ iy ;o;(rel), selList being a list of conditions
tnvolving concepts of compler columns of rel, applied to a relation with name rel, has
the following effect. Let r be any instance of the relation name rel in the database.
Then, corresponding to each such relation r, the operation produces an output relation

', with the same schema as r, satisfying the following conditions.
o The columns of ' are cols(r’) = cols(r). Let C, be the set of simple columns of

v’ and let C. be the set of complex columns of .

o The instance of r' consists of a set of tuples over cols(r'), defined as inst(r') =
{t|3s er:tle] =slc], Veaels Atlg] = slcl, Y €C. s.t. s[ej] fulfils
the conditions in the selList A t[ck] = null, Ve € C. s.t. s[ck] does not fulfill the
conditions tn the selList A dc; € C. s.t. s[cj] fulfils the conditions in the selList}

As an example of the use of the interleaving operators, the result of the operation
II"pate Ticker>m/(bse :: prices) is given in Figure 20 while the result of operation

O"price>50.00({bse :: prices) is given in Figure 21.

Date open_ms | open.... close_ms | close_...
10|27|97 50.23 48.54
11]01|97 44.60 46.17

Figure 20: Result of operation [I*pate Tickersm:(bse :: prices)

Date open_ibm | open_ms | open.... close_.ibm | close_ms | close_...
10|27]97 63.67 50.23 62.56 null
11]01]97 65.23 null 63.05 null

Figure 21: Result of operation 6*prjces50.00(bse :: prices)

Figure 22 gives an algorithm for implementing operator [I* while Figure 23 gives
an algorithm for implementing operator o~.

The intuition behind the algorithm implementing operator IT~ is as follows: we
project the tuples of the relation, keeping those columns that have their concepts in
selList or that are instance of complex columns such that their criteria values fulfill
the conditions in the selList.

The intuition behind the algorithm implementing operator o~ consists in scanning

each tuple of an input table. If an instance of a complex column has its concept in

68

INPUT: Table 7, on which to project, with schema R,
Set projList of concepts of columns of R, to project
Set selList of conditions on criteria of complex columns of R,

OUTPUT: Table T, of selected tuples, with schema R,

Ro ={}L
for each column r, € R, do
if concept(r,) € projList then
Ro = RouU {r,};
else if r, is an instance of a complex column of 7, then
if r,'s criteria values fulfill the conditions in selList then
Ro =Rou{r.};
end if
end if
end for

for each tuple t, € 7, do
add ¢,[Ro]to T,
end for

Figure 22: Algorithm for operator I1*

INPUT: Table T; on which to select, with schema R,
Set selList of conditions on concepts of complex columns of R,

OUTPUT: Table T, of projected tuples, with schema R,

for each tuple ¢, € T, do
let t, be a new tuple for output table T,
good_tuple = false;
for each r, € R, s.t. r, is an instance of a complex column do
if t,[r,] fulfills the conditions in the selList then
‘O[rll = ‘:["l];
good_tuple = true;
else
to(r.] = NULL;
end if
end for

if good_tuple then
for each r, € R, s.t. r, is a simple column do
to["u] = t-["l];
end for
add t, to T,;
end if
end for

Figure 23: Algorithm for operator o~

69

the selList, if the value in that column does not fulfill the conditions in the selList.
it is replaced by a null value. If all complex column values are replaced by nulls, the
tuple is dropped, otherwise it is kept.

Since in general the local sources will not support restructuring operations, but
will support classical RA operations, those may be pushed to the local sites. Thus, it
will often be the case that the first operation to be executed on the data transferred
from a local source will be a restructuring. Given this, another interesting interleaving
to be implemented would be the restructuring of data as it is received from a local
source, rather than receiving all the data, storing it as a table and then restructuring
it. This would be particularly interesting in cases where great volumes of data are
transferred and have to be restructured.

Another opportunity for optimisation in the nD-SQL setting concerns redundant
data transferred from the same remote course. Some queries may involve multiple
tuple variables for which the ranges overlap. An optimisation strategy should be
employed in order to eliminate (or at least minimise) the quantity of redundant data
transferred. One idea would be to define one or more “envelopes” such that in a
given situation (parametrised by the selections to apply, the projections to make and
any available statistical information about the remote source), the envelope(s) would
represent the optimal SQL query or queries to be sent to the remote database in order
to transfer all the information needed without (or without much) redundancy.

The data corresponding to each tuple variable may differ both in the fields selected
(i.e. the projections that can be pushed to the remote source) and the conditions on
the various dimensions. Also, the specific cost model has to be taken into account:
should we optimise the amount of data transfered or the CPU time needed to compute
the envelope versus the one needed to compute each individual data set. Probably a
combination of both. Thus the problem of defining a proper envelope is a non trivial
one. This problem has also arisen in other settings involving the querying of data
from different sources ([SV98]).

5.2 Processing of Queries With Dimension Variables

The most interesting (and challenging) class of queries of this kind are the ones
which involve aggregation. The key idea in their processing is recognising that they
involve computing a subset of group-bys from the cube lattice. Such computations
are referred to as partial cubes [Agart96, ZDN97]. ROLLUP is a common example of

70

a partial cube. See Example 3.2.4 for another interesting example of a partial cube.
The references [Agar*96, ZDN97] discuss how algorithms for computing the CUBE
can be adapted for computing partial cubes. Optimisation of partial cubes is a topic
of its own interest and is orthogonal to this thesis. It should mainly be observed
that queries with dimension variables and aggregation may in general involve: (i)
computing a partial cube, and (ii) computing multiple visualisations of the result.

The processing of such queries can be organised as follows.

1. Identify the precise partial cube to be computed, by instantiating the dimension

variables in the query;

2. Apply any fast algorithm in the literature for computing the partial cube. These
algorithms can be made more efficient by taking advantage of the implicit group-

ing provided by column and relation criteria;

3. Apply the required restructuring operations for each group-by computed in step
2.

An interesting research problem left for future work is: how to interleave the
computation of the partial cube with the required restructuring for each group-by in

the partial cube.

71

Chapter 6
Implementation

In this chapter, we discuss the performance results obtained by testing various heuris-
tics developed for RRA expression optimisation. Those performance evaluations
are crucial to understand the tradeoffs between alternate strategies for processing
nD-SQL queries and developing an nD-SQL Server, currently an ongoing activity. To
set the context, Section 6.1 discusses our work on the nD-SQL Server, while Section

6.2 presents and discusses the performance results.

6.1 Implementation Details

As Figure 13 indicates, the implementation of an nD-SQL Server can be realized as an
external module, independent of the databases in the federation. The Server’s main
components are: a Query Interface, a resident database engine storing the catalog
database, a Translator to go from nD-SQL to RRA, an RRA Expression Optimiser
and an RRA Expression Executor.

Some explanations about the system’s architecture are in order. Once a query is
accepted by the Interface, the Translator creates an =,p-equivalent RRA expression
which is sent to the Optimiser for a first pass. Then, The Translator builds the SQL
queries that will create the tuple_var VITs and those queries are submitted to local
databases, using sip to determine the order of submission, and passing parameters
from one result to another query. After all the VITs are instantiated, the Optimiser
does a second pass optimisation of the RRA expression. The Executor then executes
the optimised expression, using restructuring operations, and presents the final result

to the user.

72

Our implementation work has focused on the Expression Executor and the Op-
timiser. We have done some preliminary work on the Translator and the Query
Interface modules. These are not discussed in detail in this Thesis. The work that
remains to be done is discussed in Chapter 8.

The current implementation was done on the PC platform, under Windows 95
with the RRA operators coded in C++ and using the MS Access database engine.

6.2 Performance Results

In order to verify the validity of some of the heuristics we derived in Section 5.1.3, we
carried out some experiments using our implementation of the RRA operators. The
performance results for three heuristics are presented in the next section. However,

before presenting those results, some preliminary statements are necessary.

6.2.1 Preliminary Statements

First, we need to identify the set of parameters that can influence the efficiency of
the operators involved in the performed tests.

An important parameter is the number of tuples in the input tables for each
operator. Thus, the number of tuples in the base input tables is our first parameter.
Then, we need to parametrise the number of tuples in the output of each operator.

For the Join operator, the join selectivity is the measure of the number of tuples
in the output. We use the following definition of join selectivity:

nbr of tuples in T'able; x nbr of tuples in Table,
nbr of tuples in T'able; X Table,

join selectivity =

In all our tests, sequences of operations involving Joins also involve some restruc-
turing operation. Of the two input tables to each sequence, when varying the input
size, we thus vary only the size of that table involved in the restructuring. In that
setting, the impact of the join selectivity can be better understood by using a nor-
malised selectivity. We define the average join selectivity with respect to a table Table;
as:

nbr of tuples in Table;
nbr of tuples in T'able; ™M Table,

avg join selectivity w.r.t. Table; =

This normalisation is defined such that the avg join selectivity w.r.t. Table; is 1

when on average, there is one tuple in the output of the Join per tuple in the input

73

table T'able;. Whenever the result of the Join contains more tuple than table Table;,
the normalised selectivity is < L, while it is > 1 when the result of the Join contains
less tuple than table Table;.

Another important property of the data is the average compactness of a table with
respect to a restructuring. This is a measure of the average number of logical tuples
that are merged together in a certain structural representation of the data compared
to another representation.

Formally, the average compactness of a table with respect to a criteria set C and a

set of concepts A is

nbr of tuples in the least compact representation w.r.t. C and A

avg compactness = ; .
& P nbr of tuples in the most compact representation w.r.t. C and A

where the most compact representation is the one for which all ¢; € C are criteria
of the concepts in A, and the least compact representation is the one for which all
¢; € C are concepts of simple columns.

As an example of this, refer to Figure 14 which shows the result of performing
operation ADD_COLpfeasyre—Price(nySe :: prices). Say there are 5 distinct Measure
values in nyse::prices and ny2t::prices, and moreover suppose that there are
Price values for all these Measures for each Ticker and each Date. Then, the
compactness of both nyse and ny2t with respect to the criterion Measure and the
concept Price is 5.

Several other parameters affect the efficiency of our restructuring operators. Among
them: the number of criteria involved, the number of concepts of complex columns
involved, the compactness wvariance (in conjunction with the average compactness),
and the size of the input, intermediary, and output data sets compared to the amount
of available main memory. In a distributed environment, where an nD-SQL server is
used to query simultaneously several distinct data sources over a network, the net-
work traffic, the size of the various pipes and the cost models associated with each
source (which can all be different!) must be factored in by the optimiser. Testing the
efficiency of query evaluation strategies with respect to each of these parameters, and

combination thereof, is part of our ongoing work, to be discussed in Chapter 8.

6.2.2 Testing Methodology

Tests were conducted in pairs on a PC. Both possible orderings of operations for

a heuristic were tested in the same test run, the ordering expected to run faster

74

(according to the heuristic) running second. In this way, if the slowest and most
demanding ordering of operations pushed the memory usage over the RAM threshold,
the faster ordering should also be slowed by the use of swapping.

The data sets used were manually generated for each pair of tests in order for them
to have the necessary characteristics (avg compactness, avg selectivity, etc.)

Each pair of tests was run several times, the results averaged over the number of
tests. The variance of the results in each case was not significant and is not reported

in the following section.

6.2.3 Results

Of the four heuristics derived in Section 5.1.3, performance evaluations of the first
three have been performed. Note that for all the results presented in this section, the
times given are in seconds.

The results are as follows:

ADD_COL vs REM_COL

Our first set of experiments tested heuristic 5.1.1 a). The varying parameter was
the number of tuples in the input table. The compactness of the input table was fixed
at a value of 12.

The results of the tests are summarised in Table 6. A graphical representation of

the results is presented in Figure 24.

Nbr tuples Time for Time for Speed-up
in Table REM_COL (ADD_COL (Table)) | ADD.COL (REM_COL (Table))

10 18.25 17.25 0.95

100 48.50 148.00 3.05

300 331.67 721.33 2.17

1000 2999.00 7713.00 2.57

3000 26079.00 72933.50 2.80

5000 68372.00 197621.00 2.90

Table 6: Performance of ADD_COL vs REM_COL for varying number of input tuples

We can see that, as expected, the execution times of both sequence of operations
is proportional to the number of tuples in the input. Also, as the number of input

tuples increases, we observe a general increase in the speed-up of the first sequence

75

~m-- ADD_COL(REM_COL(Table))
—e— REM_COL({ADD_COL (Tabla))

180000.00 - S

160000.00

14000000 §

12000000 }
2 100000.00
-

80000.00 3

tuples In Table

Figure 24: Performance of ADD_COL vs REM_COL for varying number of input tuples

of operations with respect to the second. This is in accordance with our heuristic.
Why is REM_COL(ADD_COL(Table)) a more efficient sequence of operations?
Simply because the input to both operators are smaller than in the reverse sequence.
By applying ADD_COL first to the input table, the number of tuples then given as
input to the REM_COL operator is reduced, albeit each of these tuples is wider. The
tuples contain the same information, but some redundancy is eliminated by putting
data in schema positions since the data value will be stored only once (in the schema)
instead of appearing appearing in several tuples. A similar observation applies to the
input of the ADD_COL operator, which is smaller when this operation is applied to
the input table then when its input is the result of the REM_COL operator.

REM_CQL vs Join

The second set of experiments tested heuristic 5.1.1 b). Here, 3 distinct param-
eters were varied. In one series of tests, we varied the join selectivity while the avg
compactness and the number of input tuples were kept constant. In another series
of tests, we varied instead the avg compactness while the other two parameters were
kept constant. Finally, for the last series of tests comparing Join and REM_COL, we

varied the number of tuples of input table T'able; while keeping the other parameters

76

constant.

Varying the join selectivity
For the series of tests in which we varied the join selectivity, the other parameters

were fixed at the following values: avg compactness of T'able,: 4; nbr tuples in Table;:

18; nbr tuples in Tabley: 2160.
The results of the tests are summarised in Table 7. A graphical representation of

the results is presented in Figure 25.

Avg join selectivity Time for Time for Speed-up
w.r.t. Tables REM_COL (Table; M Table;) | Table; M (REM_COL (Table,))

1/4 1039.00 419.00 0.40

1/1 305.66 352.00 1.15

12/1 30.66 388.00 12.65

36/1 15.33 384.00 25.05

142/1 8.66 373.00 43.07

Table 7: Performance of Join vs REM_COL for varying avg join selectivity

—+—REM_COL(Table1 Join Table2)

Fu—-*ramm Join (REM_COL (Tabla2)) l

Time

1210

10

Avg Join selectivity w.r.t Table2

Figure 25: Performance of Join vs REM_COL for varying avg join selectivity

As predicted by the heuristic, past a threshold of high selectivity, the sequence
Join followed by REM_COL is more efficient than the the the reverse sequence.
This follows from the fact that when the selectivity is high enough, the number of

77

tuples produced by the Join is smaller than the number of tuples in Table,, thus
the REM_COL operation receives fewer tuples as input. As the avg join selectivity
increases, so does the speed-up since the input to the REM_COL operation gets
smaller. We would expect the high selectivity threshold to be reached when the avg
selectivity w.r.t. Table; > 1. On the other hand, the result of the REM_COL
operation applied to T'able; is larger than Table, itself, which means a smaller input
to the Join in the sequence REM_COL followed by Join than in the reverse sequence.
The threshold is therefore reached when the avg selectivity w.r.t. Table, is slightly
lower than 1.

There were no indices defined on the input tables used for our experiments. This
explains the flatness of the curve for the sequence REM_COL followed by Join: the
time needed to execute the Join was independent of the selectivity. However, in
general, Joins can make use of indices to be much more efficient, which would benefit
both sequence of operations.

Varying the number of input tuples

For the series of tests in which we varied the number of tuples in Table,, the other
parameters were fixed at the following values: avg compactness: 4; avg join selectivity
w.r.t. T'able;: 12; nbr tuples in Table;: 18.

The results of the tests are summarised in Table 8. A graphical representation of

the results is presented in Figure 26.

Nbr tuples in Table, Time for Time for Speed-up
REM_COL (Table; X Table;) | Table; M (REM_COL (Tablez))

108 6.66 28.33 4.25

540 12.33 81.33 6.60

1080 19.00 153.00 8.05

2160 30.66 388.00 12.65

4320 107.00 805.00 7.52

6480 210.00 1467.00 6.99

10800 330.00 3426.00 10.38

Table 8: Performance of Join vs REM_COL for varying nbr of input tuples

As predicted by the heuristic, the sequence Join followed by REM_COL is more
efficient than the reverse sequence. We would, however, have expected the speed-up
of the sequence Join followed by REM_COL with respect to the reverse sequence to
increase with the number of tuples. The observed behaviour does not correspond to

our expectations and further experiments will have to be performed.

78

Time

[~u- Table1 Join { REM_COL (Table2))

~—e— REM_COL(Table1 Join Table2)

tuples in Table2

Figure 26: Performance of Join vs REM_COL for varying nbr of input tuples

Varying the avg compactness

For the series of tests where we vary the avg compactness, the other parameters

were fixed at the following values: avg join selectivity w.r.t. to Table,: 12: nbr tuples

in T'able,: 18; nbr tuples in Table,: 2160.

The results of the tests are summarised in Table 9. A graphical representation of

the results is presented in Figure 27.

Avg compactness Time for Time for Speed-up
of REM_COL REM_COL (Table; X Tablez) | Table, b4 (REM_COL (Table,))

1 T.67 49.33 6.43

4 27.33 217.00 7.94

6 47.67 359.67 7.54

10 137.00 1088.50 7.95

20 269.00 2075.00 T.71

40 1278.00 13244.50 10.36

Table 9: Performance of Join vs REM_COL for varying avg compactness

These results are particularly interesting since they fall outside the bounds of

our heuristics. Figure 27 shows how the compactness affects the efficiency of the

79

100000

! —m—Table1 Join (REM_COL (Table2)) |
—e— REM_COL(Tabiet Join Table2)

1 10 100
Avg compactness

Figure 27: Performance of Join vs REM_COL for varying avg compactness

REM_COL operation. We observe that the speed-up increases in general with the
compactness. This behaviour corresponds to the following intuition: As the average
compactness increases, the REM_COL operation breaks down each input tuple into
more output tuples, which not only is a costlier operation but also passes a larger

input to the Join in the sequence REM_COL followed by Join.

ADD_COL vs Join

Our last set of experiments tested heuristic 5.1.1 c). We varied the same three pa-
rameters as before, with one parameter varied for each series of tests. The parameters
were: the join selectivity, the avg compactness and the number of input tuples.
Varying the join selectivity

For the series of tests where we varied the join selectivity, the other parameters
were fixed at the following values: avg compactness of ADD_COL: 4; nbr tuples in
Table,: 18; nbr tuples in Table,: 432.

The results of the tests are summarised in Table 10. A graphical representation of
the results is presented in Figure 28.

As predicted by the heuristic, past a low selectivity threshold, the sequence Join
followed by ADD_COL becomes much less efficient than the reverse sequence. This

80

follows from the fact that when the selectivity is low enough, the Join produces more
tuples than the number of tuples in Table,, thus passing on a larger input to the
ADD_COL operation. As the avg join selectivity decreases, the speed-up increases
since the input to the ADD_COL operation gets larger. We would expect the low
selectivity threshold to be reached when the avg selectivity w.r.t. Table, < 1. On the
other hand, the result of the ADD_COL operation applied to Table, is smaller than
Table; itself, which means a smaller input to the Join in the sequence ADD_COL
followed by Join than in the reverse sequence. The threshold is therefore reached

when the avg selectivity w.r.t. Table, is slightly higher than I.

Avg join selectivity Time for Time for Speed-up
w.r.t. Table, Table, X (ADD_COL (Tablez)) | ADD_COL (Table; % Tables)
3/1 27.33 11.66 0.42
1/1 27.00 34.33 1.27
1/6 28.66 407.00 14.20
1/10 27.00 1171.00 43.97
1/18 30.00 3246.50 108.22
1/40 27.00 17279.00 639.96
1/80 29.50 75806.50 2569.71

Table 10: Performance of Join vs ADD_COL for varying avg join selectivity

—e—Table1 Join { ADD_COL (Table2)) |
—®—ADD_COL (Table1 Join Table2)

Time

10 1 o 11100
Avg Join selectivity w.r.t Table2

Figure 28: Performance of Join vs ADD_COL for varying avg join selectivity

81

Again. the flatness of the curve for the sequence ADD_COL followed by Join is
explained by the absence of indices defined on the input tables.
Varying the number of input tuples

For the series of tests where we varied the number of tuples in T'able,, the other
parameters were fixed at the following values: avg compactness of ADD_COL: 1 /4;
avg join selectivity w.r.t. T'able,: 1/6; nbr tuples in Table,: 18.

The results of the tests are summarised in Table 11. A graphical representation of

the results is presented in Figure 29.

Nbr tuples in Table, Time for Time for Speed-up
Table, M (ADD.COL (Table2)) | ADD_COL (Table; M Tabdle;)

48 8.66 21.66 2.50

432 48.66 407.00 8.36

1296 103.00 3224.66 31.31

2592 282.00 13646.00 48.39

4320 731.00 37906.66 51.86

5184 939.50 57183.50 60.87

Table 11: Performance of Join vs ADD_COL for varying nbr of input tuples

~—- ADD_COL (Table1 Join Table2)
: —e—Table1 Join (ADD_COL (Tabie2)) -

40000.00 £ :

30000.00 { _ -

Time

[1000 2000 3000 4000 5000 e0co
tupies in Table 2

Figure 29: Performance of Join vs ADD_COL for varying nbr of input tuples

As predicted by the heuristic, the sequence ADD_COL followed by Join is more ef-
ficient than the reverse sequence. Moreover, the speed-up of the sequence ADD_COL

82

followed by Join with respect to the reverse sequence increases with the number of
input tuples. The intuition behind this behaviour is that for a fixed Join selectivity,
the output of a Join increases with the size of the input.
Varying the avg compactness

For the series of tests where we varied the avg compactness, the other parameters
were fixed at the following values: avg join selectivity w.r.t. to Tabley: 1 /6; nbr
tuples in T'able;: 18; nbr tuples in Table,: 1000.

The results of the tests are summarised in Table 12. A graphical representation of

the results is presented in Figure 30.

Avg compactness Time for Time for Speed-up
of ADD_COL Table; X (ADD_COL (Tablez)) | ADD_COL (Table, X Table,)

1 55.66 1292.66 23.22

4 30.66 407.00 13.27

9 31.00 295.66 9.53

48 76.00 350.33 4.60

72 158.00 753.33 4.76

Table 12: Performance of Join vs ADD_COL for varying avg compactness

—4—Table1 Join (ADD_COL (TableZ]) ,
~#i— ADD_COL (Tablet Join Tabiez) |

:

80000 £ -

40000 [Tt

Avg compactness

Figure 30: Performance of Join vs ADD_COL for varying avg compactness

Once more, these results are particularly interesting since they fall outside the

83

bounds of our heuristics. Figure 30 shows how the compactness affects the efficiency
of the ADD_COL operation. The behaviour corresponds to the following intuition:
As the average compactness increases, the number of Merge Classes decreases, but
for each Merge Class the number of tuples to be merged, and the width of the merged
tuples, increases. The algorithm we used to implement the ADD_COL operator
has the following features: (i) an overhead associated with each Merge Class, and
(ii) a cost to merge tuples in a Merge Class which increases with the width of the
merged tuples. Thus, a great number of small Merge Classes as well as a small
number of very large Merge Classes are two extremes which are treated less efficiently
than a medium number of Merge Classes each of medium size. Other algorithms
could present different behaviours. Depending on the specific behaviour, it could
become very important for the optimiser to use all available statistics about the data
distribution in order to predict the efficiency of the operator.

The speed-up seems to follow a behaviour similar, by and large, to the one de-

scribed above, and for similar reasons.

84

Chapter 7

Comparison With Other Work

In this chapter, the contributions of the thesis are compared with previous work in
the field. Section 7.1 compares nD-SQL with previously proposed extensions to SQL,
including SchemaSQL (Section 7.1.1), while Section 7.2 compares nD-SQL to related

work on multi-database query optimisation.

7.1 SQL Extensions

There have been numerous extensions to SQL-like languages over the years, some
inspired by multi-database interoperability requirements ([Lit89, GLRS93, SSR94,
MR95]) and some motivated by querying OODBs ([KKS92, ASD*91, CL93]). Unlike
nD-SQL, though, none of the above languages has both restructuring and complex
aggregation capabilities.

First, Litwin et al. [Lit89, GLRS93] proposed a language called MSQL, capable of
expressing multi-database queries “joining” data in different heterogeneous databases
in one shot. [MR95] extends MSQL with external functions (for resolving semantic het-
erogeneity). MSQL (with this extension) does not treat schema and data in a uniform
manner. So, schema independent querying and overcoming schematic heterogeneity
pose a problem. UniSQL/M[KGK™"95] is a relational multi-database system. However,
SQL/M, the language supported by UniSQL/M, has limited support for manipulating
meta-data. Thus, restructuring transformations and complex aggregations of the form
supported by nD-SQL are hard to express in such an environment.

The idea of using of a catalog database in order to model relational data with the
federation model has some similarities to the ideas used in the C-SQL project [SSR94]

in that both are non-intrusive additions to existing database systems. However, unlike

85

nD-SQL, no formal semantics for C-SQL has been given and C~SQL does not have
restructuring and complex aggregation capabilities.

Important extensions to SQL inspired by OODB querying include Kifer et al.’s XSQL
[KKS92], Ahmed at al.’s HOSQL [ASD*91], and Chomicki and Litwin’s 0SQL [CL93].
XSQL permits very complex and powerful queries. However, the concern about its
effective and efficient implementability has not been addressed by its authors. Both
HOSQL and 0SQL do not allow ad hoc queries that refer to more than one component
database in one shot. Finally, it is not clear that the semantics of HOSQL and 0SQL are
downward compatible with SQL, and we are are not aware of any formal semantics
for XSQL. The powerful emerging standard for SQL3 ([SQL96, Bee93]) supports ADTs,
oid’s, and external functions, but to our knowledge, does not directly support the kind
of higher-order features for meta-data manipulation as in nD-SQL; programming such
features would thus be very low level and tedious. Some of the expressions for ex-
tracting domain values and values of criteria in nD-SQL resemble the path expressions
of 0QL [Cat96]. However, path expressions are unlimited in their depth of nesting,
whereas in nD-SQL, the design and semantics being inspired by multi-database in-
teroperability, there is a natural bound on the levels of nesting for such expressions.
There also seems to be no direct facility for restructuring in 0QL.

Two noteworthy extensions to SQL from the vendor side are DB2/sqQL [DB296]
and ORACLE/sSQL [ORA]. Of these, DB2/SQL is being incorporated in DatalJoiner,
IBM’s new middleware for interoperability, and supports queries involving joins of
tables from multiple DBMS in one select statement. As far as we know, restructuring
and complex forms of aggregation of the kind supported in nD-SQL are not directly
supported at a high level. ORACLE/SQL’s DECODE feature is worth noting, since it
permits some limited form of cross-tabbing. Still, this is very limited compared to
the restructuring capabilities of nD-SQL.

Finally, Ross [Ros92] and Gyssens et al. [GLS96] are two recently proposed al-
gebras which have the power of manipulating meta-data. Of these, the algebra in
[Ros92] has limited restructuring capabilities, while that in [GLS96] has been shown
to be complete for all generic restructuring transformations. However, both languages
do not handle aggregation. Ross et al. [SRC97] generalise CUBE into a multi-feature
CUBE, and propose fast algorithms for computing queries involving this operator.

Their contributions and those of this thesis are complementary.

86

7.1.1 SchemaSQL

SchemaSQL is a multi-database interoperable query language proposed by Laksh-
manan et al. [LSS96], capable of restructuring and complex aggregations, and is
the closest language to nD~SQL. In particular, the syntax for database, relation, and
column variables was inspired by SchemaSQL. However, there are the following major
differences between the two languages.

1. Lack of typing: SchemaSQL offers no aids to the programmer to control an
indiscriminate use of column/relation variables. This can lead to “ill-typed” and
meaningless queries; e.g., it is easy to write a query in SchemaSQL that puts all values
appearing in all columns of bse: :prices into one output column! In the presence of
aggregation, the problem gets even more serious.

2. Limited restructuring: At most one attribute domain can be placed in the
relation/column dimension; e.g., one cannot transform the data in tse::quotes to
the representation similar to bse: :prices. Thus it is impossible to add or remove
more than one criteria to or from a column at a time, nor is it possible to do cascaded
additions or removals. Besides, unlike nD-SQL, only views, and not queries, can
express restructuring, leading to an unpleasant asymmetry.

3. Loss of meta-data: The underlying model of SchemaSQL cannot keep track of
meta-data against restructuring; e.g., when nyse: :prices is restructured into the
schema of mse, the fact that ‘ibm’ is a Ticker is lost. In nD-SQL, the notions of
concepts and criteria are rich enough to always retain meta-data.

4. Limited sub-aggregation: SchemaSQL does not allow many sub-aggregates; e.g.,
it is impossible to compute the daily total price (over all stocks) for each measure
type in bse: :prices. By contrast, this is straightforward in nD-SQL (e.g., see query
(Q3), page 19).

5. Multiple granularity: One of the strengths of nD-SQL is its ability to express
multiple granularity aggregation, possibly together with multiple visualisations (see
Section 3.2), something SchemaSQL cannot do. On the query processing side, unlike
[LSS96], this thesis proposes an algebra and exploits its properties for query optimi-

sation purposes.

87

7.2 Multi-database Query Optimisation

Much work has been done in the context of multi-database query optimisation, par-
ticularly in integrating data sources with diverse capabilities. See Haas et al. [Haa97]
for a survey. Du et al. [DKS92], Qian [Qia96] and Florescu et al. [Flo95] are related
works studying query optimisation in multi-database systems. The query optimi-
sation concerns of this thesis are different: the focus is on algebraic optimisation
of queries across multiple relational databases with heterogeneous schemas, where
queries can involve attribute/value conflicts, restructuring, and complex OLAP-style
aggregation. To my knowledge, optimisation in such a setting is new. There are
many interesting open research problems in this context, which are currently under
investigation.

In recent work, Ross et al. [CR96] propose syntactic constructs for expressing
aggregations with multiple features. In [SRC97], they show how these constructs
can be combined with the CUBE operator leading to multi-feature cube queries. The
main contribution of these papers are: (i) the syntactic extensions to SQL, and (i1)
an algorithm which translates these constructs into a query execution plan that min-
imises database scans. Thus, they generalise the data cube operator of Gray et al.
[Gray+96]. As shown in Chapter 3, nD-SQL can express not only the CUBE, but many
interesting and practically useful variations of it, together with multiple visualisa-
tions. A careful examination of [CR96, SRC97] reveals that the extensions to the
CUBE proposed by them are orthogonal to those expressible in nD-SQL.

88

Chapter 8
Summary and Future Work

In this Chapter, we review the objective and contributions of this thesis (Section 8.1).
We then identify and discuss the various avenues of future research opened up by this

thesis (Section 8.2).

8.1 Summary

The dual problem studied by this thesis was to solve the schematic heterogeneity
problem for interoperability among relational sources, while enabling OLAP-style
computations to be performed on that data in a non-intrusive fashion.

We proposed the Federation Model, a formal model for a federation of relational
sources with possibly heterogeneous schemas, which: (i) captures the diversity of
schemas arising in practice, allowing a symmetric treatment of data and schema, and
(i) that captures the complete space of dimensional representations of data, fully
exploiting the three physical dimensions implicit in the relational model. The notions
of concepts, criteria and federated names, and the use of a catalog database to model
existing relational sources, are central to the Federation Model.

We also proposed a query language called nD-SQL which makes use of the Federa-
tion Model and is capable of: (a) resolving schematic discrepancies among a collection
of relational databases or data marts with heterogeneous schemas, and (b) support-
ing a whole range of multiple granularity aggregation queries like CUBE, ROLLUP, and
DRILLDQWN, but, to an arbitrary, user controlled, level of resolution. In addition,
nD-SQL can express queries that restructure data conforming to any particular di-
mensional representation into any other. We presented the syntax of nD-SQL and its

semantics, which is downward compatible with the semantics of SQL.

89

The thesis also proposed an extension to relational algebra, capable of restruc-
turing, called restructuring relational algebra (RRA). RRA is used as a vehicle for
efficient processing of nD~SQL queries. We proposed an architecture for this purpose
and we developed query optimisation strategies based on the properties of RRA op-
erators. We have implemented the operators of the RRA and we have tested the
performance of heuristics developed for query optimisation.

The non-intrusiveness of the nD-SQL Server architecture makes it an attractive
option when there is a need for integration and OLAP-style analysis, of information
locked away in individual autonomous sources which are hard to port to a common
database, either because of security reasons, or because of the amount of labour
involved. An nD-SQL Server can also be used during the life-cycle of a data ware-
house, to interoperate between the various components that have not yet been fully

integrated, while immediately providing a decision support mechanism.

8.2 Future Work

Many opportunities revealed by this thesis remain to be fully explored:

e Semantics and Well-Formed queries: We have been considering the impact
of modifying the semantics in order to relax some conditions of well-formed
queries. This would permit a richer class of queries to be expressible in nD-SQL.
For example, a query like:

SELECT C.Year

FROM ->D, D->R, D::R > C
WHERE C HASA Year

is not well-formed if the relations R ranges over do not all have the same schema.
But it would be possible to modify the semantics such that, if each relation R
ranges over has a complex column with criteria Year, the semantics would be

well-defined;

® Query Optimisation: As mentioned in Section 5.1.3, several possibilities for
further research exist in the nD-SQL context. First, additional interleaving of
operators could be identified. Then, we should study the impact of using the
notion of envelopes in efficient processing of remote queries dispatched by the
nD-SQL server. In a recent paper ([SV98]), Subramanian and Venkataraman

proposed the notion of transient views applicable for query optimisation in a

90

single database. It is interesting to note that transient views are actually a
special case of our notion of envelopes

The optimisation of nD-SQL queries with dimension variables is a very challenging
area of research. Arbitrary sets of group-bys may need to be computed, while

multiple renderings of the same result may need to be presented.

Efficient processing of the group-bys requires computing them in batch. In this
context, connection of our work with Ross et al.’s multi-feature cubes ([SRC97])
merits a serious study. Exploiting materialised views for answering queries in-
volving arbitrary group-bys is a promising area. An important piece of related
work is [HRU96].

We also need to investigate how the coupling of a rendering engine with the
optimisation engine would influence the efficient computation of nD-SQL queries

with dimension variables.

nD-SQL Server Implementation: The tests we have conducted merely scratched
the surface. Thorough testing of the efficiency of the restructuring operators with
respect to all the parameters identified in section 6.2.1 is mandatory and should

lead to interesting discoveries.

A few words need to be said about the efficient implementation of the RRA
operators. For a commercial implementation of an nD-SQL Server, where perfor-
mance is paramount, the RRA executor should be completely integrated with
a database engine. The operators need to be coded as an integral part of the
engine, at a low level. Such an approach was out of the scope of this thesis
work. Instead, an existing database engine was used to store and interact with
all tables (including catalog tables and VITs). Thus, the RRA operators were
implemented as an application and hence were coded at a much higher level
than the classical operators. They make use of the APIs provided by the exist-
ing database engine in order to, for example, add entries to the catalog tables, or
scan a table to remove criteria from complex columns. Therefore, the threshold
above which a given heuristic becomes useful would very likely be lower than the
one reported by the tests (i.e. the query rewrite heuristics would be applicable
even more often!) if the restructuring operators were coded at a lower level and
integrated in the engine. We would like to efficiently code our operators at a

much lower level in a query engine before completing our testing.

These, and others, are part of our ongoing work.

91

Bibliography

[ACM90]
[ACMO4]
[Agart96]

[Andr*96]

[ASD*91]

[Bee93]

[Bee87]
[Cat96]

[CDY7]

[CL93]

[Dat95]

[DB296]
[DKS92]

[CR96]

ACM ACM Computing Surveys, 22(3), Sept 1990. Special issue on HDBS
ACM ACM Transactions on Database Systems, Volume 19, June 1994

Agarwal, S. et al. On the Computation of Multidimensional Aggregates
In Proc. 22nd VLDB Conf., 1996.

Alanoly Andrews, Laks V.S. Lakshmanan, Nematollaah Shiri and Iyer N.
Subramanian On Implementing SchemaLog: An Advanced Database Pro-
gramming Language In Proc. Intl. Conf. on Information and Knowledge
Management, Baltimore, MD, November 1996.

Ahmed, R., Smedt, P., Du, W., Kent, W., Ketabchi, A., and Litwin,
W. The Pegasus Heterogeneous Multidatabase System. [EEE Computer,
December 1991.

Beech, D. Collections of Objects in SQL3. In Proc. [9th VLDB Conf.,
1993.

Beeri, Catriel and Ramakrishnan, Raghu On the Power of Magic In Proc.
PODS 1987

Cattell, R.G.G. The Object Database Standard: ODMG-93 Release 1.2,
Morgan-Kauffmann, San Francisco, CA, 1996.

Chaudhuri, Surajit and Dayal, Umesh. An Overview of Data Warehousing
?{nd OdLAP Technology, Tutorial - VLDB’96 and SIGMOD’97, SIGMOD
ecord '97.

Chomicki, J. and Litwin, W. Declarative Definition of Object-Oriented

Multidatabase Mappings. In Ozsu, M.T, Dayal, U, and Valduriez, P,
editors, Distributed Object Management. M. Kaufmann Publishers, Los
Altos, California, 1993.

IBM DataJoiner - A Multidatabase Server Second Edition, May 1995
http://www.software.ibm.com/data/pubs/papers/djlwp.ps

IBM DB2 for MVS/ESA Version 5, 1996. — Programmer’s Manual.

Du, Weimin, Krishnamurthy, Ravi, and Shan, Ming-Chien. Query Opti-
mization in a Heterogeneous DBMS. In Proc. Int. Conf. on Very Large
Data Bases., pages 277-291, Dublin, Ireland, 1992.

Chatziantoniou, Damianos and Ross, Kenneth A.. Querying Multiple Fea-
tures of Groups in Relational Databases. In Proc. 22th VL.DB Conf., pages
295-306, Bombay, India, September 1996.

92

[Flo95]

[GL97]

[GLYS]

[GLRS93]

[GLS96]

[GLS*97]

[Gray+96]

[Haa97]

[HRU96]

[KCGS93]

[KGK*+95]

[KLK91]

[KKS92]

[Lit89]

Florescu, Daniela. Rachid, Louiqa and Valduriez, Patrick Using Hetero-
geneous Equivalences for Query Rewriting in Multidatabase Systems. In
Proc. 23rd Int. Conf. on Cooperative Information Systems, 1995.

Gyssens, Marc and Lakshmanan, Laks V.S.. A Foundation for Multi-
Dimensional Databases. In Proc. 29rd Int. Conf. on Very Large Data
Bases, pages 106-115, Athens, Greece, August 1997.

Gingras, Frédéric and Lakshmanan, Laks V.S. nD-SQL: A Multi-
dimensional Language for Interoprability and OLAP. To appear in Pro-
ceedings of the 2{th Int. Conf. on Very Large Data Bases, New York, USA.
August 24-27, 1998.

Grant, J., Litwin, W., Roussopoulos, N., and Sellis, T. Query Languages
for Relational Multidatabases. VLDB Journal, 2(2):153-171, 1993.

Gyssens, Marc, Lakshmanan, Laks V.S., and Subramanian, Iyer N. Tables
as a Paradigm for Querying and Restructuring. In Proc. ACM Symposium
on Principles of Database Systems (PODS), June 1996.

Gingras, Frédéric, Lakshmanan, Laks V.S., Subramanian, Iyer N., Pa-
poulis, Despina, and Shiri, Nematoliaah. Languages for Multi-database
Interoperability. In Proc. of the ACM SIGMOD, Tucson, Arizona, May
1997. Tools Demo.

Gray, J. and Bosworth, A. and Layman, A. and Pirahesh H.. Data Cube:
A Relational Aggregation Operator Generalizing Group-By, Cross-Tab,
and Sub-Totals In Proc. of the 12th Intl. Conf. on Data Engineering

(ICDE), 1996.

Haas, Laura et al. Optimizing Queries Across Diverse Data Sources. In
Proc. 23rd Int. Conf. on Very Large Data Bases, pages 276-285, Athens,
Greece, August 1997.

Harinarayan, V., Rajaraman, A. and Ullman, J.D.. Implementing data
cubes efficiently. In Proceedings of the ACM SIGMOD Conference on
Management of Data, pages 205-216, 1996.

Kim, W., Choi, I., Gala, S. K. and Scheevel, M. On resolving schematic
heterogeneity in multidatabase systems. In Distributed and Parallel

Databases, 1(3), 1993.

Kelley, W., Gala, S. K., Kim, W., Reyes, T.C., and Graham, B.
Schema Architecture of the UniSQL/M Multidatabase System. In Modern
Database Systems, 1995.

Krishnamurthy, R., Litwin, W., and Kent, W. Language Features for
Interoperability of Databases With Schematic Discrepancies. In ACM
SIGMOD Intl. Conference on Management of Data, pages 40-49, 1991.

Kifer, Michael, Kim, Won, and Sagiv, Yehoshua. Querying Object-
Oriented Databases. In Proc. ACM SIGMOD Intl. Conf. on Management
of Data, pages 393-402, 1992.

Litwin, W. MSQL: A Multidatabase Language. [Information Science,
48(2), 1989.

93

[LR9239]

[LSS96]

[MR95]

[ORA]

[Qia96]

[Ros92]

[597]

[SQLY6]

[SRC97]

[SSR94]

[SV9g]

[Tem87]

[ZDN97]

Landers, T. and Rosenberg, R An overview of multibase Distributed
Databases, pages 153-184, 1982

Lakshmanan, L.V.S., Sadri, F., and Subramanian, [. N. SchemaSQL -
a Language for Querying and Restructuring multidatabase systems. In
Proc. IEEE Int. Conf. on Very Large Databases (VLDB’96), pages 239~
250, Bombay, India, September 1996.

Missier, P. and Rusinkiewicz, Marek. Extending a Multidatabase Manip-
ulation Language to Resolve Schema and Data Conflicts. In Proc. Sizth
[FIP TC-2 Working Conf. on Data Semantics (DS-6), Atlanta, May 1995.

Oracle? Server SQL Reference. available from:
http://www.oracle.com/documentation/sales/html/o7sqlref.html.

Quian, Xiaolei. Query Folding. In Proc. IEEE Int. Conf. on Data Eng.,
New Orleans, LA, February 1996.

Ross, Kenneth. Relations With Relation Names as Arguments: Algebra
agg2Ca.Iculus. In Proc. 11th ACM Symp. on PODS, pages 346-353, June
1992.

Subramanian, Narayana Iyer A Foundation for Integrating Heterogeneous
Data Sources Ph.D. Thesis, Concordia University, Montreal, Quebec, Au-
gust 1997.

SQL Standards Home Page. SQL 3 articles and publications, 1996. URL:
www.jcc.com/sql articles.html.

Srivastava, Divesh Ross, Kenneth A. and Chatziantoniou, Damianos.
Complex Aggregation at Multiple Granularities. In Proc. 23rd Int. Conf.
on Very Large Data Bases, pages 116-125, Athens, Greece, August 1997.

Sciore, E., Siegel, M., and Rosenthal, A. Using Semantic Values to Facil-
itate Interoperability Among Heterogeneous Information Systems. ACM
Transactions on Database Systems, 19(2):254-290, June 1994.

Subramanian, Subbu N. and Venkataraman, Shivakumar Cost-Based Op-
timization of Decision Support Queries Using “Transient Views” in Proc.
ACM SIGMOD Intl. Conf. on Management of Data, pp.319-330, Seattle,
Washington, June 2-4, 1998.

Templeton, M. Mermaid: A front-end to distributed heterogeneous
databases In Proc. [EEFE 75, 5, pages 695-708, May 1987.

Zhao, Yihong, Deshpande, Prasad M., and Naughton, Jeffrey F.. An
Array-Based Algorithm for Simultaneous Multidimensional Aggregates In
Proc. ACM SIGMOD Intl. Conf. on Management of Data, pages 159—169,
Tucson, Arizona, 1997.

94

Appendix: Grammar of nD-SQL

nD-SQLQuery := select_clause

from_clause

where_clause
[groupby_clause
[having_clause]]

select_clause := SELECT select_list

| (SELECT select_list) [AS label] FOR crit_list

select_list := select_object {, select_object}

select_object := domain [AS label] [FOR crit_list]

| agg_op(domain) [AS labell [FOR crit_list]

domain := db_var
| tuple_var.attribute
| tuple_var.col_var
| col_var.criterion
| rel_var.criterion
agg_op := SUM
| COUNT
| MAX
[MIN
| AVG
label := label_piece { & label_piece}
label_piece := domain
| "label_string"
crit_list := domain {, domain}
from_clause := var_dec {, var_dec}
var_dec := -> db_var
| db_var -> rel_var
| db_var :: rel_var tuple_var
| db_var :: rel_var -> col_var
db_var := string
rel_var := string
tuple_var := string
col_var := string
attribute := string
criterion := string
concept := string
where_clause := where_cond { AND | OR where_clause}

| (where_cond { AND | OR where_clause})
| where_cond { AND | OR (where_clause)}
| (where_cond { AND | OR (where_clause)})

95

where_cond := hasa_cond
| isa_cond
| rel_op_cond
| other_cond

hasa_cond := rel_var HASA criterion
col_var HASA criterion
isa_cond := rel_var ISA concept
| col_var ISA concept
rel _op_cond := operand rel_op operand
operand := domain
| value
value := any_string
string := character {character}
character := one of the characters among a-zA-Z0-9_
label_string := label_character {label_character}
label_character := one of the characters among a-zA-~Z0-9.;:/\+=
~_1o#$Y"&x()"I<>
any_string := any_character {any_character}
any_character := any character from the ASCII set that is acceptable
in values in a tuple
rel_op := =
| <>
| >
| <
| <=
[>=
other_cond := other type of conditions allowed in any of the flavors of SQL.
where operands can be domains when appropriate.
E.g.: LIKE conditions, IN conditions, EXISTS condition
groupby_clause := domain {, domain}
having_clause := having_cond { AND | OR having_clause}
| (having_cond { AND | OR having_clause})
| having_cond { AND | OR (having_clause)}
| (having_cond { AND | OR (having_clause)})
having_cond := having_operand rel_op having_operand
having_operand := domain
| agg_op(domain)
value

96

