INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI fiims the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bieedthrough, substandard margins, and improper alignment
can adversely affect reproduction.

In the uniikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0800

IN SEARCH OF A RATE CONTROL POLICY FOR XTP:
UNICAST & MULTICAST

Louis HARVEY

A REPORT
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FoR THE DEGREE OF MASTER OF COMPUTER SCIENCE AT
CoNcORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

MARCH 1999
©Louis HARVEY, 1999

i+l

National Library
of Canada du Canada
Acquisitions and Acquisitions et

Bibliographic Services

3895 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliotheque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your tie Votre reference

Our file Notre reférence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-43554-7

Canada

Abstract

In search of a rate control policy for XTP:
unicast & multicast

Louis Harvey

From the sender’s viewpoint, the combined underlying data delivery medium and
the receiver(s) can be viewed as a global system endowed with absorption capacities.
But how could a sender dynamically adjust its data transfer rate to best match the
apparent residual absorption capacities of this system? To resolve this question, use
could be made of the concept of saturation curves whereby a system responds linearly

(or almost) to increasing load and then yield.

The purpose of this report is to investigate the rate control mechanisms and the rate
control performance capabilities of one implementation of the Xpress Transport Pro-
tocol (XTP) - SandiaXTP. The structure of SandiaXTP as a whole, and also more
particularly its rate control mechanisms, are analysed with the help of Object Mod-
eling Notation (O.M.T.). Some changes to the rate control algorithm are proposed,
followed by the presentation and interpretation of 26 unicast and multicast rate con-
trol experiments done in a LAN environment. The study shows that rate control with
a user level implementation such as SandiaXTP needs careful consideration of many
factors if the quality of the rate control effectively exercised by the software should

meet the expectations.

iti

Acknowledgements

Though they do not wear the official title of magician, many persons involved in
the Computer Science field are de facto magicians. In my view, Dr. J.W. Atwood
is certainly one of those modern day magicians, practising his magic in the domain
of Computer Science. [was fortunate that he accepted to supervise my work for my
Major Report. Countless number of times, when in deep confusion, I would S.0.S.
him for a meeting. After the meeting, I would return enthusiastically to my work
with the feeling “Surely, Dr Atwood is a magician - how could he turn around my
confusion so quickly into insight?”. Admittedly, his thinking pervades this whole re-

port, and [owe him my deepest gratitude.

During the course of this study, I was also fortunate to attend to one working session
of the XTP Forum at Concordia University, Montréal, December 1997. There, I also
observed other magicians performing their art of converting problems into plain so-

lutions. Thanks to Dr. Atwood for inviting me to this conference.

Certainly, even if far from sight, Dr. Tim Strayer has been present every day of my
study through the provision of the SandiaXTP implementation. And when potential
employers ask me to describe my practical experience about the client-server model,
about object modeling, about C++ programming, about network programming, I

can quote my work with SandiaXTP. Thank you very much Dr. Strayer.
Thanks to Dr. Terry Fancott, the examiner for this report. I appreciate his comments.

Thanks also to fellow students Marie A. Wallace, Torsten Auerbach, Deric Sullivan,
and Pierre Falcot who have blazed the trail before me. I greatly benefited from their

work.

Finally, a special thanks to Lucille, my life companion, for her unfailing support.

iv

Contents

List of Figures X
List of Tables xii
1 Summary of the report 1
1.1 Contextofthestudy 1

1.2 Reportorganization., 1

1.3 Howtousethisreport, 4

2 Introductory notes 5
2.1 Saturation e e e 5
2.2 Saturation and the Internet, . 6
23 XTPatthe HSPLab 6
2.4 Expectations of the present study 6
25 Futurework e e 9
2.6 Updateonexpectations 10

3 The Xpress Transport Protocol (XTP) 12
3.1 The OSI Basic ReferenceModel 12
3.2 Historical perspective - The XTP Project 15
3.3 XTP - A bird’s eye view of a parameterized protocol 18
3.3.1 Multicast/unicast oo 20

332 Flowcontrol« . i 20

3.33 Errorcontrol oo 21

334 Ratecontrolo 22

3.3.5 Prioritization e 27

336 Addressing. i e 28

3.4 XTP - The working environment 29
341 Protocolstacks 29

3.4.2 Communication reachability - unicast 30

3.4.3 Communication reachability - multicast 33

3.5 XTP - A system architectureview 4
3.5.1 Theunicastmodel, 36

3.5.2 The multicast model 42
3.6 Protocol implementation strategies 48
3.6.1 User level implementationof XTP 48
3.6.2 Kernel level implementationof XTP 50
The structure of the SandiaXTP implementation 51
4.1 About OMT, the diagrams and the notation used 52
4.1.1 About the Class diagrams used in this report 53
4.1.2 About the Object diagrams used in this report 54
4.1.3 About the Event trace diagrams used in this report 55
4.2 SandiaXTP global architecture and dynamics 57
4.3 SandiaXTP Daemon withOM.T. 61
4.3.1 Daemon startup - Class diagram 61
4.3.2 Daemon startup - Object diagram 71
4.3.3 Daemon startup - Event Trace 74
4.4 SandiaXTP Client with OM.T. 78
4.4.1 Client-Receiver startup - Class diagram 79
4.4.2 Client-Receiver startup - Object diagram 83
4.4.3 Client-Receiver startup - Event Trace 85
Rate Control with SandiaXTP 94
5.1 Rate control Event traces (Sender and Daemon) 94
5.2 Rate control algorithm with SandiaXTP 101
5.3 Rate control analysis with ascenario 110
5.4 Concluding remarks about rate control with SandiaXTP . . cee e 115
Changes to SandiaXTP rate control mechanisms 120
6.1 Tracing the behavior of the rate control algorithm 120
6.2 Imprecision on select() return timeout / MAXANTICIPATION 122
6.3 Select() minimal timeout value / SELECT_.FLOOR 124
6.4 Linked list of timers- principles 125
6.5 Linked list of timers - Implementation details 131
6.5.1 Timertypes i i it e e 133
6.52 Timeritemsttt 133
6.53 Virtualmethods. 133

vi

6.5.4 Redefinitionof virtuals... 134

6.5.5 Enqueuing a timer of type WTIMER 135
6.6 Changes specific to multicast experiments 137
Organization of the experiments 139
7.1 ‘Task: reliable data transfer 139
72 Topology o o i e e e 139
7.3 Experiments structuring for data organization 139
7.4 Data gathering and presentation 141
7.5 Programming for implementation of experiments 145
7.6 Option settings for the experiments 149
7.7 Typical data transfer session scenarios 153
Experimental results and interpretation 156
8.1 Synopsis of the experiments 156
8.2 Elements for interpretation 156
8.2.1 Limits on physical resources 156
8.2.2 SELECT.FLOOReffect 159
8.2.3 Bombardment (of XTP_SEND requests) effect 160
8.2.4 Harmonization of burst and rate values 163
8.3 Presentation and interpretation of theresults. 166
8.3.1 Basic unicast experiments/curves 166

8.3.2 Unicast - impact of using a MAXANTICIPATION margin . . 171
8.3.3 Unicast - impact of reducing the SELECT_.FLOOR threshold . 174
8.3.4 Unicast - impact of SELECT_FLOOR & MAXANTICIPATION 182

8.3.5 Unicast - lack of bombardment effect 187
8.3.6 Multicast experiments/curves 192
8.3.7 Other experiments/curves 196
8.4 Synthesis of the results and global evaluation 196
Concluding remarks 204
9.1 Significance of the report for XTP4.0 204
9.2 Significance of the report for SandiaXTP-1.5.1 205
9.3 Significance of the report for more rate control experiments with San-
diaXTP e e e e e 207

vii

Appendices

A Experimental data and saturation curves
Al ux0l . . e e e
A2 ux02 . . . e e e e e e e e e
A3 ux03 e e e e e e e e e e
Ad ux04 . . . o e e e e e e e e
A5 ux05 . . . e e e e e e e e
AB ux06 e
AT ux0T . o e e e e e e e
A8 ux08 e e
A9 ux09 e e e e e e e

AL UXLD . e
AL uxld . . e
A LA uxld . . e
A LS UXLD . o e
A LB UXLIB . . o e
ALTUXLT o o e
A LB UXIS . . e
AL UxIO e e e e e e e e e e e e e e e e e e e
A20UX20 e
AL mX0L e
A22mMX02 . . . o e
A23mx03 e e e e e e e e e e e e e e e e e e
A24mx0d e
A5 mMX0S . . . ot e
A26mMX06 s e

B Review of recent studies at the HSP Lab
B.1 Work by Marie A.Wallace
B.2 Work by Torsten Auerbach
B.3 Work by DericSuilivan

viii

209
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

C Programming and tools used for the experiments

C.1 Sandia source files modified

......

.................

C.2 Client programs used for testing (C++ sourcecode)

C.3 Perl utility programs

C.4 Udip - a unicast/multicast testing program

D SandiaXTP class description dictionary

E Keywords summary
References

Index

..........

ix

.................

...............

252
252
252
252
252

254

257

261

263

List of Figures

O 0 -1 O O W= W Ny —

N DD = e = e e g e e e
-0 W 00~ O U ok LN~ O

22

Typical saturation Curves 7
Hypothetical Internet Saturation Curve 8
OSI 7-layer BRM and Data encapsulation 13
XTP Projectinbrief 16
Relationship RTIMER, burst & rate 27
Protocolstacks 29
Communication reachability 31
XTP - theunicast model 35
XTP - the multicast model 43
Implementation strategies, 49
SandiaXTP global architecture 58
SandiaXTP daemon startup - Class diagram 62
SandiaXTP Daemon startup - Object diagram 72
Sandia XTPdaemon startup dynamic model (part 1) 75
Sandia XTPdaemon startup dynamic model (part 2) 76
Receiver startup - Class diagram 80
Receiver startup - Object diagram 84
Client-receiver startup Event trace - part 1 86
Client-receiver startup Event trace-part 2 87
SandiaXTP rate control - daemon Event trace Part [. 95
SandiaXTP rate control - daemon Event trace Part IT 96
SandiaXTP rate control - daemon Event trace Part III 97
SandiaXTP Rate Control - Sender Event Trace 98
Send rate control algorithm with SandiaXTP 102
SandiaXTP rate control algorithm -EFSM 103
SandiaXTP rate control Algorithm - Updating of shortest and timeout 104
Ideal VS SandiaXTP ratecontrol 116
Logical network connectivity 140
Use of the naming scheme 142
ux00 saturation curve.o 144
ux01 - saturation curve-global 209
ux02 - saturation curve - global 210

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

ux03 - saturation curve-global
ux04 - saturation curve-global

ux05 - saturation curve-global

ux06 - saturation curve-global,
ux07 - saturation curve-global
ux08 - saturation curve-global
ux09 - saturation curve-global,
ux10 - saturation curve-global, ...
uxll - saturation curve-global
ux12 - saturation curve-global,
uxl13 - saturation curve-global
uxl4 - saturation curve-global
ux15 - saturation curve-global
ux16 - saturation curve-global
ux17 - saturation curve-global
ux18 - saturation curve-global
uxl9 - saturation curve-global
ux20 - saturation curve-global,
mx01 - saturation curve-global
mx02 - saturation curve-global,
mx03 - saturation curve-global,
mx04 - saturation curve-global,
mx05 - saturation curve-global,
mx06 - saturation curve-global,
Marie’sfindings oo i i
Torsten's rates computations
Data encapsulation for unicast experiments.
Unicast data rate range of values
Unicast saturation curve for all window sizes

Unicast window size - throughput gain curve at point C (rate=50) . .
Unicast window size - throughput Diminishing Return curve

Software organization after installation

xi

List of Tables

Thematic guide for using thisreport
The functionality of the OSI Reference Model
XTP parameterized features - summary
Scenario - State Summary (25/1440)
ux00 log summary
ux00 data summaryo b i e e e
Typical data transfer session scenario - Unicast

Typical data transfer session scenario - Multicast

Synopsis of Experiments
Machine characteristics
Evolution of RTIMER when burst = 1440 bytes
Harmonizing burst and rate values
Rate control with SandiaXTP - Global problem structure

Degree of precision of the select() system call on a TMOUT case .

Benefits of lowering the SELECT_FLOOR threshold value
Sample of original Deric’s data for rate=10
Recalculation of Deric’s data for unicast saturation curves
Unicast Time duration VS Window Size at point rate=50 Bpms .

Unicast window size - throughput incremental analysis
List of Sandia files modified
List of Perl utility programs
MTL class/file organization
SandiaXTP subclass/file organization

xii

1 Summary of the report

1.1 Context of the study

Throughout the period of time devoted to the investigatory work and to the writing
of this report, the two most important themes have been: (1) earliest in time, the
multicasting aspect; (2) then later, increasingly, the rate control aspect. For various
reasons, such as the non-feasibility of conducting multicast rate control experiments
using the Internet/Mbone environment outside the Computer Science Department at
Concordia University and also the desirability of a better framework for interpreting
former as well as current rate control experiments results, there was a gradual shift

of emphasis from the multicast aspect to the rate control aspect.

1.2 Report organization

The logical progression of the subject material contained in this report follows the
familiar project life cycle sequence of phases. The report begins with a global plan-
ning statement presented in Chapter 2 - Introductory notes, and winds up with
Chapter 9 - Concluding remarks, which is akin to the last phase of a project (i.e.,

the project review phase).

As the root of the report lies with the Xpress Transport Protocol Revision 4.0
(XTP4.0), Chapter 3 centers around the protocol itself. First, XTP is shown to
have been conceived with the OSI-Basic Reference Model (OSI-BRM) in mind. Be-
ing a transport level protocol, XTP provides the type of functionalities assigned by
the OSI-BRM to this layer, which includes flow control, error control, rate control,
and the like. In accordance with the OSI model, XTP presumes that the services
of an underlying network layer are available down below. Similarly, XTP provides
services to a layer above. Throughout this report, this layer above XTP bears many
names, such as “the user”, or “the client”, or also “the application program”. For the
later rate control experiments, the role of the “user” (i.e., the above layer) is played

by the “mmetric” application program.

Once XTP has been cast within the OSI-BRM, the report gives a brief historical

1

perspective of the evolution of the XTP project, including a glimpse at the function-
ing of the XTP Forum, the social body that turned XTP from a dream to a reality.
More particularly, Section 3.2 shows that XTP can be perceived as a superset of
the TCP and UDP protocols, with additional features provided such as multicasting

and quality of service, of which the rate control aspect is widely covered in this report.

Then, the report provides a global overview of the protocol itself (Section 3.3). As
XTP is a large and sophisticated protocol, it was necessary to favor one angle of attack
in accordance with the problem space treated in this report. Such an angle consists
of highlighting the parameterized dimension of XTP whereby the protocol provides
orthogonal mechanisms that can be selected through the setting of arguments and

switches from above. Table 3 presents a summary of these parameterized features.

Gradually, the shift of the XTP global presentation is toward the SandiaXTP im-
plementation. In this direction, Section 3.4 covers the working environment of XTP,
showing XTP as peer of other protocols on different LANs. Section 3.5 presents a
high level view of the unicast as well as the multicast models as conceived by XTP,
to cover more precisely XTP specific concepts and terminology such as contezt. The
global presentation of XTP terminates with a discussion of protocol implementation

strategies.

The focus of the next two Chapters (Chapters 4 & 5) is to articulate a model view of
the SandiaXTP implementation of XTP, which embeds the protocol into a user level
daemon process, at the service of “user level” client processes (the layer above XTP).
In terms of the project life cycle model, we have now reached the Design stage, even
though we use the terminology “SandiaXTP implementation”. To grow this model,
and as the Object paradigm was used to develop SandiaXTP, we make use of Object
Modeling Techniques (O.M.T.), such as Class Diagrams, Object Diagrams, and Event
Traces. Being a work of reverse engineering, the model is derived from studying the
source code with two scenarios in mind (starting the daemon, and starting one client),
then preparing Event Traces, deriving Object Diagrams from the Event Traces, and

finally deriving the Class Diagrams from the Object Diagrams.

This work of analysis of the SandiaXTP implementation is performed for two pur-
poses: (1) first to understand the global structure of the SandiaXTP implementation
of XTP, which has a set of base classes embedded into a Meta Transport Library
(MTL), and a set of protocol specific derived classes (sandiaXTP); (2) then to under-
stand precisely the rate control mechanisms used by SandiaXTP to implement rate
control, which eventually culminates into the formulation of the rate control algo-
rithm (as presented in Figure 24), and a finite state machine (Figure 25) to account

for the dynamic behavior of the daemon.

Studying the whereabouts of the SandiaXTP rate control algorithm have led to ob-
serving some shortcomings, and then to attempts at correcting or improving them.
Chapter 6 presents and discusses the changes introduced to the SandiaXTP rate con-
trol algorithm, which cover esentially three aspects: (1) introduction of a linked list
of timers (for all timers) to help understandability of the rate control algorithm; (2)
turning a 50 ms hardcoded minimum timeout value conveyed to the select() system
call into a tunable SELECT.FLOOR threshold to reduce the duration of wait periods;
(3) introducing a MAXANTICIPATION margin to compensate for the fact that the
select() system call may return slightly earlier than specified (causing another long
waiting period), and also for soon to ezpire timers (also causing the daemon to yield

to select() for a much longer wait period).

Finally, the last three chapters (Chapters 7, 8, and 9) are concerned with the design,
presentation and interpretation of the rate control experiments done within the con-
text of a LAN environment. The goals of these experiments are to gain some insight
into the rate control limitations of a user level implementation, and also to challenge
SandiaXTP with a wide range of command line options so as to learn to circumvent
its idiosyncrasies for eventually conducting meaningful multicast rate control experi-

ments within the Internet/Mbone environment.

Chapter 7 defines the data organization for conducting and recording the experiments.
Chapter 8 presents the results of the experiments and provides tentative interpreta-
tions, as well as discusses the success of the changes introduced to the SandiaXTP

rate control mechanisms. Finally, Chapter 9 is a global discussion of the report and

includes some recommendations for: (1) revising the specification of the protocol to
incorporate success criteria and minima to be met by any implementation for par-
tially attainable features such as rate control; (2) revising SandiaXTP to incorporate
some of the changes proposed in this report; (3) conducting further rate control ex-

periments.

The report also includes many detailed appendices, whose information content is in

an “unfinished” state, but which could be useful to some other student of XTP.

1.3 How to use this report

Table 1: Thematic guide for using this report
Specific interest of the user Parts to consult

Obtain a global overview of the results of the report.

Section 8.4, (p.196)

Read about the various features offered by XTP

Section 3.3, (p.18)

Learn about protocol implementation strategies

Section 3.6, (p.48)

Discover how rate control is conceived by XTP and
how it is implemented by SandiaXTP

Section 3.3.4, (p.22)
Chapter 5, (p.94)

Explore the changes made to the SandiaXTP rate
control algorithm, and see the consequences

Chapter 6, (p.120)
Section 8.4, (p.196)

Observe how the Object paradigm has been used
to implement XTP

Chapter 4, (p.51)

Focus on the multicast aspect

Section 3.3.1, (p.20)
Section 3.4.3, (p.33)
Section 3.5.2, (p.42)
Section 8.3.6, (p.192)

Do more rate control experiments with Sandi-
aXTP, such as on the Internet (look up optimized
experiments)

Section 8.4, (p-196)

Check the details of how the experiments were done
(client programs, Perl scripts)

Appendix C, (p.252)

To ease the task of an eventual reader who might be interested to consult or use this
report with some specific interest in mind, Table 1 provides a thematic guide juxta-

posing anticipated interests and the corresponding most pertinent section numbers.

2 Introductory notes

“Quand on ne sait pas ce que l'on cherche,

”

on ne voit pas ce que l'on trouve.

Dr Claude Bernard (1813-1878)

Introduction a I’étude de la médecine expérimentale.

English translation:
If you do not know what you are looking for,

you will not see what you find.

Mainly written during the summer of 1997, after a long gestation period devoted to
integrating as many multicast concepts as possible, and before effectively starting the
live multicast experiments, this part of the report is meant to give the author (and
the reader) a sense of direction and purpose (as per the saying of the great French
physiologist, Dr. Claude Bernard). Only subsection 2.4 (Update on expectations)
is meant to be written later, when all experiments are done and the report is almost

completed.

2.1 Saturation

Saturation is a pervasive phenomenon that has been studied in many areas of activ-
ity. In the domain of structural mechanics, a material will withstand increasing load
(with accompanying deformation) up to a point where its capacity is exceeded, and
failure may follow if the load increase continues. The stress-strain curve models this
behavior. In the domain of economics, it is reported that additional units of labor
input will produce increasing units of output, up to a point where a plateau is reached
and more labor input just produces less output. This is known as the Law of variable
proportions. Thrashing is another well known saturation phenomenon in the domain
of Computer Science. With virtual memory, the degree of multiprogramming can be

increased, up to a point where the system does more paging than useful work.

With these phenomena, the recurring pattern consists of: (a) a rising phase along

which the system in question responds positively to an increasing demand; (b) a

5

plateau where the previous trend changes; (c) a downfall where the system fails.
Examples of curves depicting this behavior are given in Figure 1. Given the nature of
things, a rational approach (one that has been used in many engineering disciplines,
such as Structural Engineering) is to experiment with a given system, draw its be-
havioral curve under loading conditions, and then adopt some sensible policy based

on these observations.

2.2 Saturation and the Internet

The Internet is a large sytem, one that is subject to a greatly varying load over time.
When its plateau is reached, its natural reaction is to silently drop packets. When
reliable communication is underway, the saturation phenomenon becomes evident
through an increase in activity of the error mechanisms; more packets get lost and need
to be retransmitted. For instance, the phenomenon of saturation was well observed
in 1986 [VANJ], when a sequence of congestion collapses led to the introduction of a
series of new algorithms, collectively known as slow-start. These algorithms are now
part of the overall TCL/IP protocol suite strategy to effect congestion avoidance and

control on the Internet.

2.3 XTP at the HSP Lab

The Xpress Transport Protocol (XTP) has inbuilt mechanisms for congestion con-
trol, but no pre-defined congestion control policy in order to behave as a nice user
when running above [P in the Internet environment. Under the direction of Dr J.W.
Atwood, at the HSP! Lab, a series of experimental studies was launched in 1994 to
investigate the rate control mechanisms of XTP in a Wide Area Network (WAN)

environment, using one implementation of XTP - SandiaXTP.

2.4 Expectations of the present study
The present study is the fourth (for the other ones, refer to ([AUE], [SUL] , [FALCOT])

of the series of studies launched at the HSP Lab to investigate the rate control mech-
anisms of XTP. The three previous studies explored the rate control mechanisms of

XTP for the unicast mode of communication. The mandate of the present study is

See Appendix Keywords summary - HSP Lab

6

*
[o4]

Key
A = Elastic limit
B = Yield point
C = Ultimate strength
D = Breaking strength

Unit stress
>

>

Unit elongation

(a) Stress-strain diagram for steel
(in Steel Buildings by Crawley & Dillon, Wiley 1970, p374)

k
cc’

Units of Output per W

-

Labor (personhours per week)

(b) Law of variable proportions
(in Managenal economics, by Haynes & Henry, Irwin 1974, p220)

T

CPU utilizalio!]

-

degree of multiprogramming

(c) Thrashing
(in Operating System Concepts, by Silberschatz & Galvin, AW 1994, p331)

Figure 1: Typical saturation Curves
7

A throughput

(arbitrary tuming point)
knee@------------------------
. saturation
o plateau
,/ rise fall
0
0 rate of offered load

Figure 2: Hypothetical Internet Saturation Curve

to explore the multicast case through reliable file transfer in a WAN environment.

In July 1997, at the time of really preparing for the live multicast experiments, the

expectations and assumption space of the study are as follows:

1. Saturation curve(s), relating the offered load (the sender side - in bytes/msec)
with the throughput (the receiver(s) side - also in bytes/msec), could be found
to model the reactive behavior of the Internet. Even if such a curve is valid only
at a specific moment in time and for a very small subset of links, this is all that
matters for an ongoing communication association. The expectation that the
reactive behavior of the Internet could be modeled with the help of saturation
curves is based on the intuition that the Internet behaves just as any other
system when subjected to increasing load. In a sense, the important dimension
would be the bare “existence” of the curve rather than its particulars. As will
be explained later, knowing its existence would allow us to eventually devise a
valid rate control policy for XTP. A very rough approximation of the type of

saturation curve expected for the Internet is shown in Figure 2.

2. Given the existence of “Internet saturation curve(s)”, this fact could be used
to dynamically adjust the rate of data transfer when doing important commu-
nication “jobs” with XTP. With reference to Figure 2, the strategy would be

8

to gradually increment the offered load up to the point where the drop rate
increases significantly. Even if not knowing all the particulars of the saturation
curve at this moment in time, and for the links being used, it would mean that
the plateau phase of the curve has been reached, and that the offered load has

to decrease.

3. For the multicast mode of communication, the “presumed Internet saturation
curve” will be a resultant of the many Internet links in use for a particular mul-
ticast association. For instance, if a multicast sender is located at Concordia
University, and the task consists of reliably transfering a file to three receivers
(one located in Karlsrhure, Germany; one in Evry, France; and one in North
Carolina, USA), then the combined throughput plotted on the curve will be the

lowest throughput of the three receivers.

To summarize expectations, this study is based on the hope that the concept of
saturation curves can be used to model the reactive behavior of the Internet, more
particularly as applied to the multicast mode of communication over the Internet, and
that we will be able to produce a set of meaningful saturation curves. The provision
of the data and the plotting of these curves mark the limit of our currently (summer
1997) defined mandate.

2.5 Future work

Conducting load experiments with steel and plotting its stress-strain curve is only one
part of the whole investigatory endeavor. Policy is subsequently needed to manage
these “facts of life” rationally. For steel, the policy part comes in the form of Gov-
ernment controlled Codes of Practice stipulating the permissible stresses. Given
the loads that a structure is planned to withstand, and allowable stresses, one can

deduce the amount of steel needed.

To make a “wise” use of the XTP rate control mechanisms, and supposing that the
“curve searching phase” has been successfully discharged, analysis of all the studies

made and synthesis work will be needed. This work will be part of a subsequent

effort. Let us briefly outline the high level algorithm that could be used to exercise

dynamic rate control with XTP (if, in fact, the curve has the shape that we expect):

at the sender:

get receiver(s) status with SREQ

plot point p0

repeat forever:
wait DELTA units of time
get receiver(s) status with sreq
plot point pil
if slope of pl-p0 is negative then

decrease rate of offered load by delta

otherwise increase rate of offered load by delta

po = p1

2.6 Update on expectations

In October 1998, the global direction of the report remains valid, but there were
dramatic adjustments made to the modus operandi. One main reason for such an
adjustment has been the gradual recognition, after many unsuccessful attempts, that
conducting multicast rate control experiments using the Internet/Mbone environment
would not be possible, at least from Concordia University. Even within Concordia
itself, when conducting most of the rate control experiments in September 1998, mul-
ticast was only partially working at the IP/network layer. For instance, it was not
possible to exchange multicast packets between machines that belong to the HSP
Lab subnetwork (forest or pine) and other machines that belong to other concordia
subnets. Another main reason for change has been the gradual discovery that Sandi-

aXTP does not always exercise the quality of rate control that would be expected.

As the original mandate consisted of conducting multicast rate control experiments
within the Internet/Mbone environment using SandiaXTP, and given that problems
existed with both the Internet and the SandiaXTP premises, there was a gradual
shift to: (1) more investigatory work into the rate control mechanisms used by San-
diaXTP; (2) proposed changes to the SandiaXTP rate control algorithm; (3) and

finally a decision made in May 1998 to conduct the rate control experiments within

10

the Concordia University subnetworks only.

What started as an outward journey was eventually redirected into an inward one,
which does not imply that no progress was made. Quite the contrary, the main
components of the study are still present (rate control, multicast, saturation curves)
and it is felt that the ground is well prepared for further rate control studies using the
Internet/Mbone environment when that environment becomes more accessible from

Concordia.

11

3 The Xpress Transport Protocol (XTP)

The investigations and experiments reported here being secondary to the existence of
XTP, it is proper to first provide a cursory purview of the protocol itself. We begin
with a review of the OSI 7-layer Basic Reference Model (OSI 7-layer BRM).

3.1 The OSI Basic Reference Model

One widely used approach to tame complexity is the so-called divide-and-conquer
strategy. As applied to data communications, this strategy takes the shape of “layer-
ing”. The technique consists of building a stack of layers, each one assigned respon-
sibility to deal with one part of the total problem, offering services to the layer above
it, and after some value-added functionalities of its own, uses the services of the level

below it to fulfil its promises.

The OSI 7-layer BRM shown in Figure 3 is a widely known layering conceptual model
applied to the field of data communications. The OSI 7-layer BRM provides not only
a framework for the development of multi-vendors protocol and network software that
are designed to work together, but it also introduces a notation and common termi-
nology used and understood throughout the data communications field. We make

extensive use of this terminology throughout the remainder of this report.

Figure 3 also illustrates the activity of sending some data from one application process
to another application process. Most of the time, the two communicating processes
would be running on different hosts/machines, but it need not necessarily be the
case. The communication would still be possible between two processes running on
the same machine, though at a higher overhead than using some form of interpro-
cess communication, such as pipes, shared memory or message queues. As per the
model, same level layers establish a logical connection; for instance, with respect to

Figure 3, the left Transport layer is communicating with its peer right Transport layer.
Despite its wisdom, OSI 7-layer BRM offers only a framework, the layer being the

locus of residence (so to speak) of some protocol that undertakes to deliver some or all

of the responsibilities assigned to that layer. Essentially, a protocol defines the rules

12

process receiving information

process sending information
Application Application
;gc& """""""""""""" DATAT=-==~ ;rgcess
' '
]]
Outgoing frame . . ; ' Incoming frame
i e logical connection T i
construction 7 | Application | - -ean ceeeet . - ----- A reduction
polcaton - 1 ween peet ayers PCI ! DATA ‘ +| Application | 7
6 | Presentation f-----m--cemcoonnn PCl. APDU f----- -»1 Presentation | 6
Each layer §1 Sesion [----c---e---- PCl : DU f----- 1 Sessi] Exch layer
performs functions - 'L : - performs functions
and sends the data TRASPOI b -eceeeeae- T and sends the data
4 | Trnsport PCl SPDU | Trnspont | 4
to the next-lower '!ﬁ : 10 the next-higher
tayer 3§ Newok p----- 0{ pcl; TPDU j— ----- » Nework | 3 fayer
. 1
2| Lk [--spcr, NPDU rpeif--+| Link 2
1| Physical Physical | !
. Sourve: Data Communication, Computer Networks and Open Systems
. by Fred Halsall '
1 1
: - - : -
e] Encoded bit stream froee-a- Miumm

Figure 3: OSI 7-layer BRM and Data encapsulation

of the communication and the data formats to be used in order to fulfil its promises.
More than one protocol may belong to a specific layer. In order to establish a success-
ful communication, not only are some same level protocols needed, but these must

be identical protocols at both the sending and receiving ends.

With regards to Figure 3, let us briefly discuss the construction of outgoing packets
from the left to the right stack. Each layer treats the data passed to it as an opaque
object, not to be scrutinized. This is called encapsulation. For instance, to use an
analogy, a handwritten message to be forwarded would correspond to the DATA part
shown at the top of Figure 3. The first element of overhead would consist of insert-
ing this message into an envelope, with some addressing on it and possibly handling
instructions (shown as PCI - Protocol Control Information on Figure 3). Next, the
letter (with the message encapsulated into it) could be handed to some mail carrier,
who might decide to incorporate the letter into its own standard one, possibly fill up

records for control, or make a copy for eventual retransmission in case of loss.

Here, we point out the fact that encapsulation does not prevent opening the envelope

13

Table 2: The functionality of the OSI Reference Model

OSI Layer Layer Functions

7 - Application Application-specific services

6 - Presentation Data compatibility between heterogenous systems
5 - Session Dialogue maintenance

4 - Transport Reliable end-to-end data transfer

3 - Network Routing between network segments

2 - Data Link LLC | Multiplexing users through access points

2 - Data Link MAC | Basic framing and delivery service

1 - Physical Digital-to-signal transmission for transmission

Source - XTP: The Xpress Transfer Protocol, by Strayer, Dempsey and Weaver

to make a copy, rather it means that the downstream layer does not depend on the
data part passed to it by the upstream layer in order to do its value added work. In
the analogy, the same carrier seems to ignore some layer (for instance, no cryptogra-
phy is used for privacy of the message - which would correspond to the presentation
layer responsibility) and to perform the work of more than one layer (for instance, the
control information could belong to the Session layer and the copying to the Trans-
port layer). Similarly, in practice, data communication software does not necessarily
respect layer boundaries, as long as the work gets done. This process would continue
for all layers until the message is actually “put on the wire”. When the message
reaches the other end, a reverse process occurs, with each peer layer stripping off its
header to discharge its assigned duties. Finally, the net DATA is delivered at the top

of the right stack to the receiving process.

A high level description of the responsibilities assigned to each layer within the OSI
T-layer BRM is shown in Table 2. Layer 4 Transport is highlighted to signal the
fact that we are mainly concerned with the transport level in this report. Table 2
assigns “Reliable end-to-end data transfer” functionality to the Transport layer. How-
ever, the reliability aspect is not assumed by all transport level protocols, as UDP
is a transport level protocol, is end-to-end but does not support a reliable service.

Other transport levels protocols could also provide the reliability aspect, such as TCP.

14

3.2 Historical perspective — The XTP Project

The purpose of Figure 4 is threefold: (1) first to trace the timewise evolution of XTP
with regards to its life cycle since its inception in the late 1980’s (the left part of
the diagram, from top to bottom); (2) second to relate XTP functionalities to other
pre-existing peer protocols such as TCP and UDP (the upper-right quarter of the
diagram); (3) finally to relate the present study to one particular implementation
of the XTP protocol, namely SandiaXTP (lower-right quarter of the diagram). We
now comment in some detail on the left portion of the diagram, which is meant to

summarize the main stages of the evolution of the XTP project.

The box labeled “perception of the needs for XTP” marks the origins of the
protocol. Since the design of the TCP/IP protocol family in the late 1970’s (about
10 years earlier than XTP), there had occured sufficient changes in terms of needs,
improved quality of hardware and evolving new technologies (such as ATM & FDDI)
to justify the development of an improved transport level data communications pro-
tocol. Such a protocol would subsume the functionalities provided by existing ones,
such as TCP and UDP, but also provide sufficient convincing new features (such as
multicast and quality of service) that would warrant its market acceptability. Rather
than linger here on the motives that led to the development of XTP, we refer the
reader to a text written by some of the designers of XTP [SDW] that covers this

aspect in much more detail.

The box labeled “organization & management” is meant to characterize the meth-
ods of development and the social structure used by the developers of XTP. The pro-
duction of XTP is the result of the efforts of a group of international researchers, in an
era when the Internet was fully functional, with the support of electronic mail to facil-
itate exchanges, and also with other protocols (such as TCP) opened to scrutiny. To
channel this group effort, the XTP Forum was eventually created late 1992 (or early
1993) out of Protocol Engines Inc. The mandate of the XTP Forum was to meet at
regular intervals of time to discuss design issues, to agree on further work to be done
and related deadlines, and also to publish interim versions of the XTP specification in

15

perception of needs for XTP transport level (TL) functionalities
rasons e more reliable medium Adressing g (down)
high speed needs %ﬂﬁ”
nuhimtgpbﬂiﬁes varcast
QoS specifications serves clients (abave) data wransfer
spoasor: US Navy __penod: cirea 1988 uses underlying DmDelniz&mre
[1
& t relisble TL service unreliable TL service
iom for: & produce umlmdrmh':luu flow control
ot iow iepeniente
T
u?":uyu&dflima;wmwm offers offers
Hold wpetr A et (o metog TCP upP
cieca 1977 | circa 1977
[J
: 7
lmm;jmlaiig-w.nmu.lm offers TL services
us revision for multicast (March 1996) 0
copyright XTP Forum QuS (rase cootrol, burst control, etc)
1 |
XTP design (for) & im tion XTP research & testi
design paradigm: Obiect. modular, functional error control
language: C.Cos, rate control
sntegies OS. integrated, user level multicast
Opentingsys: UNIX, WNT, W95, ex.

Network APt Sockets, TLI

market commercisl. scademic. m!
Procurement method: _ Sales Freeware
] |
mentat Network Xpress High Speed Protocols Lab
Los Any West Virginia Concordia University, Montreal |
Mentat UNIX . kernel Real Time - kernel Sandis 00 a&l&lﬂm‘u
design paradigm: STREAMS (rwock design pandigm: functional design paradigm: Object error control
longuage: c language: c language: Cor | uses)} dvnamic rase control (wnicast)
stiaicgy: kemel insegraied strategy: kernel level sTategy: dacmos user level e cootrol experiments (unicast)
0s. UNIX special os: special R.T. sysiem market segment: academiciresearch rate coatrol experiments
Network prog: streams Network prog: self API fintavailable: 1997 CL
market segmenc commercial market segment militry main developer: Dr. Tim Strayer
 first available: 1997 fistavailsble: 19977 dancer.
main developer: Jokn Featon main developer: Dr. Alfred Weaver currrent study
(procuremen: mes | |procuremest privee
Meta T MTL)
comumon features of TL prosocols:
contexts
buffer space
interface with DDS
SandiaXTP
0S: UNIX

Figure 4: XTP Project in brief

16

natural language (English). As advertised at the beginning of the XTP specification,
the XTP Forum included a core of about 15 international researchers, with Dr. Tim

Strayer of Sandia National Laboratories acting as Editor-in-chief for the specification.

The box labeled “XTP specification & conceptual design” stands for the key
item of the whole XTP Project. Seen from above, it is the output of the work of the
XTP designers and the official document published by the XTP Forum (©by XTP
Forum). Seen from below, it is the document of reference for all legitimate imple-
mentations that can be done of XTP. The revision that we refer to in this report
is the XTP Revision 4.0 - March 1, 1995, plus an addendum written in March
1996 after the June XTP Forum meeting in Dallas. This addendum contains mainly

additional features for the mnanagement of multicast groups.

The box labeled “XTP design (for) & implementation” and its derivatives
labeled “Mentat”, “Network Xpress”, and “Sandia National Laboratories”
(these being names of US organizations) cover the implementation aspects of XTP.
Each one of these three widely known implementations of XTP is targeted at a spe-
cific market segment and also entails some different technical decisions. For such a
general protocol as XTP, it is not incongruous to use the label implementation design,
as there are numerous implementation strategies that can be used, depending on the

targeted market segment.

The reference implementation used for this report is the one done by Dr. Tim Strayer
at Sandia National Laboratories (which we shall thereafter refer to as SandiaXTP).
The market segment targeted by SandiaXTP is the academic/research sector. The
source code is freely available and experimenting with the protocol is encouraged.
SandiaXTP is characterized as being a user level implementation of the protocol,
meant for a UNIX environment, with a daemon (server) process running as a user
level process. The object paradigm has been used with the C++ language. The
network programming is done with BSD sockets. Many more details about the San-

diaXTP implementation are presented later in Chapter 4.

The Mentat implementation, developed at a Los Angeles based company of the same

17

Table 3: XTP parameterized features - summary

features defines sub-choices XTP options | remarks
multicast/ relationship Xor MULTI=0]| 1 | default MULTI=0
unicast _ (unicast)
flow control | reliability oft NOFLOW=1
reservation mode | RES=1 default RES=0
regular default alloc=some value
error control | reliability off NOERR=1
no check mode NOCHECK=1
go-back-N implementation issue
(selective reXmit) spans(a;, b;).nspans...
agressive FASTNAK=1
rate control | traffic spec. rate=some value
burst=some value
prioritization | priorities (R.T.) | 0..65535 SORT=1 sort=some value
addressing protocol stack Internet domain Ex:
aformat=0x01
adomain=17(UDP)
Xerox (XNS)
IP v6

name by John Fentat and others, is targeted at the commercial market. It is a kernel
level implementation, meant for a UNIX environment, and written in C (for compati-
bility with the remaining of the kernel source code, and also for speed). The network

programming is done with System V-TLI (Transport Layer Interface).

The Network Xpressimplementation is a special/custom one developed by Dr. Alfred
Weaver for one of the sponsors of the XTP Project, namely the US Navy. Being a

private implementation, little is known (to the author, at least) about its details.

Globally, we observe that a good twelve years have elapsed since XTP was nurtured
in the mind of its sponsors and designers; today, it is still being tested and only at
the beginning of its life-span on the protocol market. Such a long time span clearly
reveals that the design, implementation, testing, and market penetration of real life
data communication protocols is a complex and long term endeavor; one that sharply

contrasts with the short time span of the hardware.

3.3 XTP - A bird’s eye view of a parameterized protocol

XTP is a parameterized transport level protocol. The design of XTP was guided by

18

two main objectives: (1) to provide to the user (here, the term user really means
the network application programmer - acting on behalf of the user) a large palette of
mechanisms to choose from, and let the needs of the applications dictate the policies;
(2) through careful observance of the principle of orthogonality, make those mecha-

nisms as independent and separately selectable as possible.

As an application example of the principle of orthogonality, consider the problem of
packet drop, which could occur mainly at intermediary routers along the path, or at
a slow receiving end. One approach, ignoring the principle of orthogonality, would
be to presume a unique problem and use the flow control mechanism to resolve it.
True enough, if one reduces the window size, this will have the effect of reducing
the data flow, as the sender is stalled more often awaiting credits from the receiver.
The drawback of this indiscriminating approach is that it may entail an underuse of
the resources. Suppose for instance that the bottleneck is not the receiver, but some
intermediary router. Suppose also that this router would be quite capable of handling
the same number of packets, but provided that their rate of arrival is slightly reduced.
If one would split the problem in two sub-problems with focused solutions, the net
result might be much lower total duration for the data transfer, as the waiting time
for receiver acknowledgements is reduced. Consequently, an alternate approach based
on the principle of orthogonality would be to postulate two problems: (1) consider
the possibility of swamping a slow receiver with too much data too quickly and use
the flow control mechanism to resolve it; (2) consider also a path related conges-
tion problem and use the rate control strategy to resolve it. With the orthogonal
approach, not only do we stand better chances of resolving the congestion problem
more efficiently, but we also give more freedom of choice, as one mechanism can be
selected independently of another one, which means that only one mechanism could

be used, or the two together, or even none of them.

The purpose Table 3 is to present a global summary highlighting the parametric na-
ture of the design of XTP. The presentation and the critical comments that follow are
based on the author’s (limited) knowledge of XTP, plus: (1) an article by Atwood &
al [AMZ]; (2) the book by Strayer, Dempsey & Weaver [SDW]; (3) the XTP specifi-
cation itself [XTP40].

19

3.3.1 Multicast/unicast

Within the traditional unicast model, the term connection implies the connected state
of two communicating endpoints. To also accomodate multicast, XTP introduces the

more general term association, which could refer to either unicast or multicast.

Multicast is a major distinctive feature of XTP meant to save network bandwidth.
For instance, suppose that a message has to be sent to one thousand receivers from
Montreal to various hosts/sites spread out on the territory of France. Further-
more, suppose that the network topology is such that the messages travel though
the same sequence of routers whose endpoint routers are called Montréal/Monty
and Paris/Eloile. With unicast, the same message would be sent 1000 times from
Montréal, and hence would travel 1000 times the path between routers Montréal/Monty
and Paris/Etoile. With multicast, the message would be sent only once from
Montréal/Monty, and thus would travel the path Montréal/Monty to Paﬁs/E"toile
only once; the latter router being responsible to disseminate the message to the 1000
sites within France, possibly with further bandwidth savings due to multicast and

depending on the details of the local topology.

For the user, the choice between multicast or unicast is mutually exclusive (shown
as Xor on Table 3), and done once per association. The MULTI bit in the header
options field defines which of multicast or unicast is used. If not set (MULTI=0 - the

default), the mode is unicast; otherwise it is multicast.

3.3.2 Flow control

Flow control is a typical end-to-end transport level service. The aim of flow control is
to prevent swamping a slow receiver with too much data too quickly by transferring

control to the receiver who then issues credits to the sender.

XTP offers a threefold range of choice for flow control, whereby services equivalent
to well known protocols, such as UDP (no flow control exercised; NOFLOW=1) or
TCP (flow control exercised; the default for XTP), could be provided.

20

XTP also offers an interesting intermediary choice called reservation mode. By set-
ting the RES bit in a packet header, the sender instructs the receiver to advertise only
the actual buffer space allocated by the user for the context. This forces the receiver
to adopt a conservative policy making sure that no packets can be lost due to lack
of buffer space at the receiving end. When the RES bit is set, the user is in control.

When the RES bit is off (the default for XTP), the implementation is in control.

3.3.3 Error control

Error control is essential for reliability, and cares for problems such as corrupted data,
lost data, reordering at reception points and duplicates. As shown on Table 3, XTP
offers many possibilities of choice, ranging from “none at all” to an “aggressive” ap-
proach (FASTNAK set to 1 by sender) whereby the receiver is requested to signal

missing packets as soon as they are detected.

One distinctive feature of XTP for error control is the nocheck mode (NOCHECK
set to 1 by the sender), whereby the checksum is being computed for the header of
the packet only, and not for the data part (payload). Handling the checksum on
the header is needed at all times in order to be able to steer incoming packets to
proper receiving contexts. As per Atwood & al [AMZ], for some delivery audio, “It
is probably not worthwhile to bother to checksum the data, as delivering an invalid

set of samples will probably not be any worse than filling the time period with silence”.

With regards to retransmission, XTP has the data structures and the mechanisms for
both go-back-N and selective retransmission. The feedback from the receiver is trig-
gered by the sender when a packet is sent with the SREQ bit set. The receiver then uses
a CNTL packet to forward alloc (the limit up to which the sender can send), rseq (the
sequence number of the highest contiguous packet received so far), nspan (number
of discontinuous received segments) and spans(a;,b;) (the limits of these segments)
whereby the sender can deduct the missing gaps at the receiver and retransmit ac-
cordingly. If go-back-N is used, the sender can then retransmit packets starting with

sequence number rseq and up to eseq-1 (eseq is one greater than the ending sequence

21

number for sent but unacknowledged data). The receiver can always force go-back-N
explicitly by issuing a CNTL packet with one span: spans!=(hseq,hseq) (hseq being

the receiver “high water mark™).

Though XTP provides the mechanisms for either go-back-N or selective retransmis-
sion, a specific implementation is not forced to support both algorithms. The go-
back-N algorithm is appropriate when both the storage capacities of the circuits and
the round-trip-time are low. Such would be the case for an Ethernet local area net-

work with a 500 m cable.

At the other end of the spectrum, the selective repeat algorithm is appropriate when
both the storage capacities of the circuits and the round trip time are high. Such
would be the case for a 7000 Km long data path with a data rate of 10 Mbps. A
lost packet could be followed by many other packets “still on the wire” that will be

received correctly.

One design criterion for XTP is interoperability between implementations that would
support only one of the two algorithms, as the ECNTL packet format has fields for
both. A go-back-N sender would ignore some information provided by a selective
retransmission receiver; a selective retransmission sender being automatically also
capable of go-back-N would cooperate seamlessly with a go-back-N receiver. The
choice is the responsibility of the implementer; what has been done at the level of
the specification is to ensure that whichever choice is made, the implementation will

interoperate with an implementation that made the opposite choice.

3.3.4 Rate control

Rate control aims at resolving the problem of congestion along the path, such as
at routers, where the data of numerous senders (possibly other routers) combine to

overun a receiver-router.

Rate in XTP is specified in bytes per second, which differs from the units generally

used by the theoretical data communications field where the data rate is expressed in

22

bits per second, such as 56.6 Kbps for modem or 10Mbps for 10 BASE-T Ethernet.
In practice, bytes are sent one at a time, but in a sequence up to a certain number of
bytes called a packet. The sending/receiving granularity is therefore the packet. Some
time elapses between the start and the end when sending a packet. Whilst a packet
is being sent “rate control” does not govern, as the job is done at hardware speed
(for typical software/hardware configurations at least, such as through an operating
system and Ethernet network technology); the limiting factor being host processing
time or network technology (such as 10 Mbps for 10 BASE-T Ethernet). From this
perspective, rate control implies that there could be some idle time during which no
packet is being sent and yet the job is not over; otherwise, back-to-back packets are

being sent at hardware rate and no rate control is exercised.

The quality of the rate control that can be exercised is also subject to the limitations
of the underlying software (mainly operating system) and the hardware. For instance,

one can send no faster than either host or network technology will allow.

To gain better insights into the workings of XTP rate control mechanisms, let us use
speculative reasoning and work out some typical scenarios. Suppose we reason for
a period of time of one second. The idle time inherent to rate control could have
various distribution patterns, depending on the size of the set-of-packets being sent.
For XTP, burst defines the size the these sets-of-packets; although burst is expressed

in bytes, not in packets.

For instance, an extreme scenario (call it scenario 1) would be for size(set-of-packets)
= 1. Only one packet is sent at a time, and total idle time within a second is the
sum of equal duration partial idle times. This would yield an even distribution of idle

times.

Another scenario (call it scenario 2) would be for size(set-of-packets)=n (where n
equals all packets to be sent within the second, given the specified rate). For this
case, all the packets are sent back-to-back at hardware rate with all idle time con-
centrated from the moment the last packet is gone until the beginning of the next

second. This would yield a concentrated distribution of idle time.

23

Other intermediary scenarios are possible varying the size(set-of-packets) from 1 to
n. Let us now further illustrate the scenarios with made up data and using XTP

variables names:

made up data: e rate=25000 bytes/s
e packet size = 1400 bytes
e can send at half Ethernet 10 BASE-T, i.e., I0Mbps/2
or 1250000/2 bytes/s, or 625000 bytes/s, or 445 packets/s
e time to send one byte: 0.0000016 s
e time to send one packet: 0.00224 s
o time to send 25000 bytes: 0.04 s

e presuming plenty of data to send.

Scenario 1 (idle time evenly distributed)

e burst = 1400 bytes

¢ RTIMER = %rst = M. — (,056s, which is much larger than the time required

to send one packet (i.e., 0.00224s).

events credit time
arm RTIMER (0.056s) 1400 O

start sending packet 0

end sending packet 0 0.00224s
wait 0.05376s until RTIMER times up... 0.056s
arm RTIMER (0.056s) 1400 0.056s
start sending packet 0.056s
end sending packet 0 0.05824s
wait 0.05376s until RTIMER times up... 0.112s
arm RTIMER (0.056s) 1400 0.112s
etc.

24

Scenario 2 (idle time concentrated at the end)

e burst = 25000 bytes
¢ RTIMER = burst — 300 _ | 5 which is still much larger than the time required

to send all the bytes/packets (i.e., 0.04s)

events credit time
arm RTIMER (1.0s) 25000 Os

start sending packet 1 0s

end sending packet 1 23600 0.00224s
start sending packet 2 0.00224s
end sending packet 2 22200 0.00448s
start sending packet 18 0.03776s
end sending packet 18 0 0.04s
wait 0.06s until RTIMER times up... 1.00
arm RTIMER (ls) 25000 1.00
etc.

Scenario 3 (idle time with size(set-of-packets)=3, burst=4200 bytes))

e burst = 4200 bytes
o RTIMER = st = 4200 _ (g]68s.

rate 25000

25

events credit time

arm RTIMER (0.168s) 4200 Os

start sending packet 1 Os

end sending packet 1 2800 0.00224s
start sending packet 2 0.00224s
end sending packet 2 1400 0.00448s
start sending packet 3 0.00448s
end sending packet 3 0 0.00672s
wait 0.16128s until RTIMER times up... 0.168
arm RTIMER (0.168s) 4200 0.168
start sending packet 4 0.168
etc.

If burst equals zero, then RTIMER equals zero, with the result that the context
can send without constrainst (RTIMER forces idle time between bursts; if RTIMER
equals zero, then waiting time is null). On the other hand, if rate equals 0, implying
a division by zero, a check for this condition is made and transmission is halted im-

mediately until rate has a nonzero value, or burst has a zero value.

The lesson to be learnt from these scenarios is the fragility of the interrelationships
between the trio burst, rate and RTIMER with regards to practicability on real
computer systems. As shown on Figure 5, if we increase the rate, keeping the burst
value constant (line 2), then RTIMER decreases linearly. A similar phenomenon
occurs if we decrease the burst value, keeping the rate value constant (line 1). Surely,
there must be a lower limit where RTIMER values become meaningless, depending
on the precision of the clock and the details of the implementation. Suffice to mention
that RTIMER values are generally small fractions of a second, otherwise XTP would

not stand to its general promise of being a “fast” protocol.

26

RTIMER

(normally
well < Is)

burst/rate
(1) varying burst (with rate constant)
(2) varying rate (with burst constant)
(3) perceived lower limit for RTIMER with respect to real computer systems

Figure 5: Relationship RTIMER, burst & rate

3.3.5 Prioritization

The SORT option bit, and the corresponding sort field, is XTP’s response to hierarchy
in application needs. For instance, the packets of real time (R.T.) clients can be
processed before other competing XTP clients; out-of-band data could also be served
at a lower priority level than real time but before regular data. In fact, the sort
field being a 16-bit number, it is theoretically possible to discriminate amongst 65536
levels of priority. If the sort mechanism is armed, incoming packets are processed in

priority order; otherwise, they are handled on a FIFO basis.

Though the number of priority levels appear very abundant (at 65536 different val-
ues), their wise management on an open system (i.e., a non dedicated system) does
not appear evident from a practical side. Without a coordinating instance, preten-
tious applications could always claim highest priority, thereby defeating the purpose
of the scheme. On the other hand, the mechanisms are available for use on a dedi-

cated system (such as the command and control system on a ship).

27

3.3.6 Addressing

XTP’s approach to addressing is based on the recognition that: (1) there are already
many protocol stacks in use, each with their own addressing scheme; (2) many of
those schemes are likely to survive and thrive on the market for the forseeable future.
XTP’s approach to addressing is therefore a pragmatic one that can be summarized
with the popular saying “If you can’t fight them, join them”. Consequently, XTP sup-
ports many alternatives, such as Internet Protocol Address (IP), ISO Connectionless
Network Layer Protocol Address, Xerox Network System Address, etc.; depending
on the particulars of the protocol stack that XTP operates in (essentially defined by
the Network Level protocol underneath XTP - more about protocol stacks, layering

of protocols in the next subsection).

The address format field (aformat) is used to specify the address format, such as Inter-
net Protocol Address. Within an address format, the address domain field (adomain)
is also needed to demultiplex (to disambiguate) packets destined to different proto-
cols. For instance, within the Internet Protocol Addressing scheme, the port number
is used as a demultiplexer to target a unique endpoint. However, port number 155
is not enough, as this very same port number could also be used by an application
making use of the UDP protocol, or even another application making use of the TCP
protocol. Hence the need of the adomain field, whose value could be 17 for UDP, 6
for TCP or even 36 for XTP (yes, XTP could be part of a protocol stack with [P
underneath along with TCP and UDP as peers).

For the user, XTP does not have any option bit to specify the addressing scheme.
Such silence implies that that the provision of the necessary information needed for
the values of the aformat and adomain fields is an implementation issue to be in-
cluded in the design of that implementation’s Application Programming Interface.
The necessary information could be supplied implicitly, i.e., derived from the actual
format of the address given by the user, or a tagging system similar to the Address
Format field could be used.

28

4-layer TCP/IP Novell Netware

OSI 7-layer BRM protocol suite protocol suite
7 Application Application
6 Presentation fip, telnet
5 Session
Socket APL
4 Transport uop | Tce | xrp spx | xrp protocol
stacks
3 Network P PX
, Link Link
2 Data link
" device driver device driver
. & &
! Physical interface card interface card

Figure 6: Protocol stacks

3.4 XTP - The working environment

So far, we have only hinted at the working environments of XTP. In this section,
the standpoint is to look at XTP from the outside; to expose its intended role and
position with regards to other protocols, as if XTP had to find its position within the

society of data communications protocols.

3.4.1 Protocol stacks

The OSI 7-layer BRM is only a conceptual framework. In practice, either some well
rooted protocols were developed before the introduction of the OSI model, or were
developed after the model, but not necessarily respecting a one-to-one mapping be-
tween the 7 identified layers and the implementation modules. Protocols were often
developed as a group, for a particular type of hardware and networking technol-
ogy, and meant to interconnect together. Examples of such families of protocols are
the TCP/IP, DECnet, Appletalk and Novell’s SPX/IPX families of protocols. In
this context, our use of the term protocol stacks refers more specifically at the duo
Transport/Network layers, which are accessible to the Network Application Program-
mer through an Application Programming Interface (API), such as the BSD socket

interface.

29

Figure 6 is meant to illustrate the difference between the QSI 7-layer BRM and actual
families of protocols, such as the TCP/IP protocol suite. The two models somewhat
differ for the low and high layers: where the OSI model identifies the Data Link
and Physical layers, the TCP/IP model identifies only the Link layer; where the OSI
model identifies the Session, Presentation and Application layers, the TCP/IP model
identifies only an Application layer. Accounting for the differences between the two
models not being the purpose of this report, we simply observe that the two models
are quite in harmony for the Transport and Network layers, which are the important

ones for the present report.

The main protocols that belong to the TCP/IP protocol suite are TCP (Transmission
Control Protocol) and UDP (User Datagram Protocol) at the transport level. TCP
supports reliability whereas UDP does not. IP (Internet Protocol), at the Network

level, is mainly responsible for routing.

With reference to Figure 6, XTP is shown at the Transport layer, as peer of TCP and
UDP, to highlight the fact that XTP could also be used within the TCP/IP protocol
suite, whether as a replacement for either TCP or UDP, or for additional functional-
ities provided by XTP such as reliable multicast. In this case, XTP would use IP as
its data delivery service (DDS). We have seen before that XTP supports the [nternet
Address format. In fact, for the remaining of this report, the TCP/IP 4-layer protocol
stack is the model being used, with XTP at the Transport level evidently. In Figure
6, we have also shown that XTP is meant to work with other protocol stacks such as
with Novell Netware, as an alternative to SPX, or for functionalities not provided by
SPX.

3.4.2 Communication reachability - unicast

Although XTP was designed, inter-alia, to take advantage of emerging fast technolo-
gies, such as Fiber Optics and ATM, it does not necessarily interface directly with
them. These technologies are under the control of their own native device drivers,
layers below the transport layer at which XTP operates. The purpose of Figure 7
is to illustrate the possibilities of exchange of packets given a hypothetical network

30

-?| XTP client|

application layer
transport layer

client _ |*.
[TCP { UDP S

1P network layer P >
Ethernet | link layer Ethernet
Host A V- ,~ | XTP clieny T~e Host D
R XTP RS
4 empty |
Ethemet |
Host B P
medium. Ethernet LAN segment (10 BASE-
I . -=" |LXTP client|
-7 XTP
P P | empty
Eth/FDDI Host C Ethernet
Interney r S e
WAN Pad
(a) Topology
—inedinm,
client N
.* | TCP client TCP I UDP | XTP R
- TCP P .
IP FDDI
Host E FDDI Host F . AN Host G

(b) Communication reachability

%—/j——.\ G- wF&A D‘/——:—\—G
) (i. oo {I. (1
F ——eGaA c E
XTP XTP TCP
u = unicast

m = multicast (if IP multicast everywhere)

i

ubp

Figure 7: Communication reachability

topology built of two LAN segments interconnected through a router, which also acts

as a gateway to Internet, a Wide Area Network.

The technology of one LAN segment is a typical coaxial 10 BASE-T (10 Mbps) Eth-
ernet bus cable. The technology of the other LAN segment consists of an Optical
FDDI (100 Mbps) bus cable. Both being bus technologies, all data is broadcast and

every host can listen to circulated packets. For the remaining of this subsection, we

consider only the exchange of unicast packets, i.e., packets sent from one source host

to exactly one targeted destination host. In the next subsection, we consider the

multicast case.

31

Ethernet LAN: Within the Ethernet segment, XTP clients running at Host-B and
Host-C can exchange XTP packets because they both use the XTP protocol. The
absence of a protocol at the Network level is not a deterrent to their connectivity.
Indeed, no routing is needed on this bus broadcast medium. Host-A cannot exchange
transport level packets with either Host-B or Host-C. The reason being that XTP
at Host-B would receive an [P packet (IP packet format is encapsulated within an
Ethernet packet at Host-A, with the Ethernet header stripped off at Host-B, but
still delivering an [P packet to XTP), which would be dropped by XTP because of
incompatible packet format. In the other direction, IP at Host-A would receive an
XTP packet, which would also be dropped by IP because of incompatible packet for-
mat; XTP would never be passed the packet. Host-D cannot exchange transport level
packets with any host on the Ethernet segment, as no other host has the required
TCP or UDP protocols available.

Router: The task of the router is to allow the exchange of packets between the
two LANs, even if not of the same network technology. This router would have the
hardware interface cards (NIC) of both technologies (Ethernet/FDDI), and would
translate link level packets from the Ethernet format to the FDDI format, or vice
versa. There is no need for the router to run XTP, as XTP packets are encapsulated
within [P packets, which themselves are encapsulated within link level packets. This
router also has the role of acting as a gateway to the Internet, a wide area network.

The router has the required [P protocol to do its routing work.

FDDI LAN: Within the FDDI segment, Host-E and Host-G can exchange transport
level packets, but only through the TCP protocol, as TCP is available at both hosts.
Host-F and Host-G can exchange XTP packets, as XTP is also available (as peer of
UDP and TCP) at Host-G.

Ethernet-to-FDDI: Now we consider exchanging unicast packets between the two
LAN segments. Host-A and Host-F, or Host-A and Host-G, can exchange XTP pack-
ets. Host-B and Host-C cannot exchange XTP packets with any host on the FDDI
segment, even if XTP is available at Host-F and Host-G. The absence of IP at Host-B

32

and Host-C has the consequence that they are unknown to the router who cannot
receive packets from them or pass packets to them. Host-D and Host-E can exchange
transport level packets using TCP. Host-D and Host-G can exchange unicast transport
level packets using either TCP or UDP. Figure 7 (a) Communication reachabil-

ity summarizes the possibility of packet exchange between the hosts on the two LANs.

3.4.3 Communication reachability - multicast

First of all, let us consider the TCP/IP protocol family with regards to multicast.
The Network layer with its routing functionalities also has a very important role to
play in order to deliver a multicast service to the client A unicast packet can be sent
to a receiver even if this receiver did not ask for it. In contrast, an over-LAN-segment
multicast packet is forwarded to a receiver by a router only if the receiver had previ-
ously advertised its interests in receiving to the routers, who can then update their
routing tables accordingly. This initial receive-request is broadcast to all routers sup-
porting multicast and takes some time to become into effect. If any multicasting is
to be done with the Internet stack, a recent revision of IP (such as the one included

with Solaris2.5) that supports multicast must be available at the Network level.

Even if IP multicast is available, any host where only TCP (an unlikely case in prac-
tice because UDP is always available with TCP) is available can’t send or receive
multicast packets because TCP is strictly a unicast protocol. Therefore, Host-E on
the FDDI segment cannot exchange muticast packets at the transport level because
only TCP is available. On the other hand, UDP is a minimal transport level protocol
that offers a datagram service. Through some (socket) options, it offers an interface
to IP whereby the services of [P multicast can be marshalled. As UDP is available at
Host-D and Host-G, clients running at those two host can use the UDP protocol to
exchange transport level multicast packets, provided of course that the receiver (only
one possible in this case) had advertised its interest for receiving to the router before
the sender starts sending. A scenario not shown on our topology, i.e., bypassing all
transport level protocols and opening a direct connection with IP from the applica-

tion level (IP raw) would also allow clients to exchange multicast packets.

33

Multicasting with XTP: To illustrate multicasting with XTP, let us suppose that
Host-A sends XTP multicast packets on a multicast address such that all other hosts
shown in Figure 7 that can receive it will indeed receive it. We presume that potential
receivers of XTP packets have previously advertised their interest in receiving to the
router, from the Internet/WAN as well as from the FDDI segment, and that a recent
version of [P supporting multicast is available at the router. First of all, we note
that even if Host-B and Host-C are on the same broadcast LAN segment and XTP is
available, they are not able to receive any multicast packet from Host-A. The reason
preventing them to receive succcesfully XTP multicast packets is the same as the one
given for unicast; namely packets dropped by XTP because of their wrong format (IP
format). If IP was available though, they both could receive XTP multicast packets.

On the FDDI segment, Host-F and Host-G are legal receivers of the XTP multicast
packets sent from Host-A. In contrast to unicast though, there could be many re-
ceiving clients running at Host-F or Host-G. Other multicast receivers situated on
the Internet could also receive the XTP multicast packets sent from Host-A, pro-
vided that they also have [P and XTP available in their protocol stack. Figure 7 (b)
Communication reachability also summarizes the situation for the exchange of

multicast packets at the transport level with XTP.

3.5 XTP - A system architecture view

The goal of this section is to articulate a system architecture view of XTP based on
the interaction of three main components: (1) clients of XTP (Application layer);
(2) the XTP specification acting as a server to XTP clients (Transport layer); (3) a
data delivery service (DDS) that supports XTP (Network layer). Though the outlook
is still quite implementation independent, there is certainly a drift towards turning
the high level specification of the protocol into something useful that can eventually
be implemented. In the process, we introduce more terminology and idiosyncrasies
related to XTP. Using the same overall structure, as displayed in Figure 8 and Figure

9, we first outline the unicast model, and then the multicast model.

19piaoad

01A198 A19A1(9p viep
Suilpaopun

ED

TETTEY

*g19x9ed Sufwoduy osred
“* g18p pus
IXUO0D puty
1sanbas 1doaoe
Spp duiAtopun oy des
SI9PI0 1UI41O 105 9nanb 1sonbas
* SJBW INEM
ojus ANus
M

A

b, |
{
J d o w d n 1
A3y syisp uodisp [2ojuws | syxus | wodass [Aax

ITT] [TES
ragﬂal - T \
A3 pauBisse A[[ed0] Aq pax3pul spI02AL 1XNUOI 4
9 18J - 0 1820} sred jo 9By oL M S IXAUOD ®
SPI0J3I 1XUOI JO IsequIeq

1Iplaosd

J[qei[uuT) Wnipawus

wjodpus uonedUNWIWOD = FO)

upANU]

SujupruresSosy
vopreonddy - |4y
uo A1oexy ——
asowt 10 3uo +[

20Ul 10 0192
s{oquis 1

901A13s K12A119p Biep
SugApgopun

4>

SPPp SulApopun 10)
S19pI0 1UY}D 10§ anonb 1390

- gyrwut 1910
ojug ams

L a

S a

1 d i))]] e)

L£T] SySp | uodisp | dojwxu | 1syss | uods | Aoy

7] 1230]

‘HIIXIJaoy -4 ‘Josse osoddns xg

£9% pauBisse A([ed0] AqQ PIXIPUL SPIOIA IXANUOD
3 se) - 5 |ed0] sred jJo oFuwwsy 100w Ny 2 IXANUOD ©
SPI02AU 1X31UOD JO IsBqEIECY

(uoneidosse [enia)

$3dA1 19%0ud
ssaippe dus
P! [0d0102d
[od010ud 41X
—TIRTN
e 818D 9A(20U / puay
m dLX Yiim 10181304
PUEI TR des 41X
puas 1dY
1XAMoa Ut * g1es pIsodou
dLX \nim 1ppe 1501y 159¢]
0114V 93 S0 +1| guod onbjuny -0 "
Pt $$9301 R - !
IR dLX 4 X

OENOENO)

(ssasppuisedtunisoyapnsi g) d-ISOY

paeloosse
2wi0d9q AjjeniusAd

wIISAS pIINqLISIp

sadA1 1onoud
ssasppe dey
Pt jodo10sd
(odojoxd 41X
19A198
818p 9A19331 / put
dLX Yum 191318
...,.“a 5 i
puss
** 9ym1 pasodoud IXANUOD Uy
ippe 150y 189p dLX Yim S
1opuss | guod snbung¥T SeU |, 14V osn
a0 Pt $$3001
H. ﬁmu ..U WHP dLX

(ssauppe 1suoun 1soy i st 4) | J-3S0Y

Figure 8: XTP - the unicast model

35

3.5.1 The unicast model

Figure 8 shows two large vertical rectangles, labeled respectively Host-F and Host-
P, which represent two interconnected remote computers. The information within
a large rectangle refers to concepts related to a particular host, concerning events
happening within the hardware boundaries of that machine. The diagram also shows
two horizontal lines going from the inside of one machine to the inside of the other
machine. The top horizontal line represents a virtual connection only and accounts
for a unicast data exchange from Host-F to Host-P. To simplify the diagram, and
the presentation, Host-F' is attributed the role of the sender and Host-P the role of
the receiver. However, in reality, the exchange can be duplex with Host-P returning
acknowledgements and control information to Host-F for instance. Below the top
horizontal line, the box labeled unicast association accounts for the attributes of
the relationship between the communicating endpoints. Such relationship being vir-
tual only, a mirror image of it is recreated in the contextDB operated by the local

implementation instance of XTP, as explained later in more detail.

The thick bottom line represents the physical connection and accounts for the fact
that both machines need to be connected through hardware components such as net-
work interface cards (NIC), electrical wires, switches, routers and such. This hard-
ware medium is naturally lossy (unreliable), as packets can be lost due to magnetic
storms, overflow at router queues, etc. We emphasize the fact that our aim is to
model a distributed system, the physical distance between hosts could be as small as

one thousand millimeters, or as large as ten thousand kilometers or more.

We now shift the emphasis to the inside of rectangles labeled Host-F and Host-P.
The information content of both rectangles is quite similar, differing only in the field
contents of table contextDB. Each rectangle contains the three-component archi-
tecture view of XTP referred to previously: (1) the top box labeled XTP client
stands for the XTP client component; (2) the larger middle rectangle labeled XTP
protocol stands for the XTP protocol component; (3) and the lower box labeled
DDS stands for the underlying data delivery service. Two Application Programming

Interfaces (API) boxes are also shown between the three main components.

36

Within a given host, there must be only one instance of the XTP protocol in activity,
acting as server to local as well as to remote clients. This exclusiveness is necessary
to allow the demultiplexing of packets by lower level protocols, such as [P. However,
there could be zero or more local clients active at any time (indicated by the e no-
tation), provided of course that an instance of the XTP protocol is on duty. For
XTP, communication endpoints (CE) are mirrored with contert. The bare existence
of one XTP client implies at least one context, but there could be many contexts per
XTP client (1+ notation in the diagram). An example would be a Netscape type
of client that needs many unicast associations with remote servers. A contert con-
sists of a set of records representing one instance of the use of XTP at an endpoint,
including its state. Within a host, each XTP context needs to be uniquely identifiable.

contextDB: With reference to Figure 8, we show examples of XTP clients with three
communication endpoint instances, respectively labeled as communication endpoint
R, S, T at Host-F, and U, V, W at Host-P (these are transport level port#). Each
time one client registers a CE, XTP effectively creates a new contezt, or modifies
existing data structures to keep track of it. Table labeled contextDB is used as
a pseudo minimal database to illustrate important aspects related to XTP record
keeping and identification of contexts. The key-local, srcport, srchst, memloc, dstport
and dsthst fields pertain to information available locally and can be filled as soon as
the local context is created. The key-far field pertains to information learned from
the remote context with whom the local context may eventually form an association.

We review the semantics of these fields in the next paragraphs.

The key-local is a unique context identifier assigned locally by XTP. If a received
packet (reasoning from the receiver’s viewpoint) contains the local key (i.e., the key
assigned at the receiving end), then the abbreviated context lookup procedure can be
used to find the relevant receiving context more quickly than otherwise. However, a
received packet does not always include the local key, but it would otherwise always
contain the remote key (i.e., far key in receiver’s contextDB, the local key of the
sender). In this case, use is made of the pair (source address, remote key) to find the
proper receiving context. For this case, the XTP specification uses the terminology

full contezt lookup.

37

The srcport field is used to store a local “port” number, which identifies a Transport
Service Access Point (TSAP - in the ISO world). For the unicast model, and given a
Transport level protocol such as XTP within a given host, a port uniquely identifies
a context with regards to the transactions between the client and XTP. A port is vis-
ible to both client and XTP, whereas the key is only visible to XTP. For the unicast

model, one port number maps to exactly one key.

For a kernel implementation of XTP, the srcport field value is equal to the port num-
ber used by the client application when binding a BSD socket (for instance) with the
Operating System for receiving purposes. XTP being part of the kernel, the O.S. is

therefore aware of the port number.

For a user level implementation of XTP, the srcport field value is a logical port number
known to both the application and XTP, but not known to the Operating System. For
such case, another pre-agreed O.S. aware DDS identifier (with UDP or IP raw for in-

stance) would be supplied by the user (or hardcoded) when starting the XTP daemon.

The srcport-local being unique, why also invent another unique identifier mechanism,
i.e., the key? The reason lies with the problem of aliasing, which occurs for instance
when a receiving endpoint prematurely terminates with possible reallocation of the
same identifier to a new receiver. Packets could then reach the wrong receiving con-
text. One solution to the problem of aliasing consists of waiting some delay before
reallocating an identifier. The drawback of this method on a highly active system
might be a “hold” on a significant part of the identifier numbering space (not counting
the overhead of the timers...). XTP’s response with the key mechanism is to subdi-
vide it in two sub-fields: (1) an index part used for locating the client’s context; (2)
an instance part used to validate active index values. The key is valid only when the
two local instance values match with the ones included with a received packet. This
decoupled mechanism reduces the chances of packets being delivered to the wrong

context.

The srchst-local field is used to contain the unicast address of the local host, which

38

uniquely identifies this machine within a network. For convenience here, we assign

unicast address “F” to machine labeled Host-F, and “P” to machine labeled Host-P.

The memloc field stands for memory location. The interaction of XTP with its local
clients implies a locus of exchange for the movement of data; i.e., buffer space needed
to store incoming data if the client acts as the receiver, or to store outgoing data to
be passed to XTP if the client acts as the sender. Such a memory address, which is
useful only locally, is nonetheless an important item of information to be maintained
by XTP for each context. The two following examples illustrate the potential use
of the memloc field: (1) when the same XTP client has multiple contexts, such as
allowed with the multicast mode, the memloc field is a way for XTP to discriminate
between contexts for the data movements; (2) for a user level implementation (seen
later), and if shared memory is used between XTP and a client, then the memloc field

automatically targets a specific context for data movements.

The dstport field is the reciprocal of the srcport field described previously, but for the
other (destination) host. In general, a priori knowledge of an O.S. aware port number

is needed when sending packets.

For a kernel level implementation, the dstport field value is equal to the O.S. port
number used to build a destination address structure (containing destination address,
destination port number) after opening a BSD socket (for instance). As it is used at
the other end by XTP to demultiplex (upwards) to the proper receiving application

context, the destination port changes with each different unicast association.

For a user level implementation, the dstport field would contain the logical port num-
ber known to both the application and XTP, but not known to the Operating System.
For such case, another pre-agreed O.S. aware DDS identifier (with UDP or IP raw
for instance) would be supplied by the user (or hardcoded) when starting the XTP
daemon. The destination logical port number changes with each different unicast
association and is used by XTP to demultiplex in the direction of its clients; whereas
the O.S. aware DDS identifier remains constant throughout the lifetime of the XTP
daemon, and is used upwards by the DDS to deliver packets to XTP.

39

The dsthst-far field corresponds to the unicast address of the other party. For an
initially sending context, a priori knowledge of it is needed and would usually be
supplied by the user (as well as the dstport). For the initially receiving context, XTP
soon learns the unicast address of the other party, such as upon reception of a FIRST

packet.

The key-far field contains the key used by the other party, but as learned by local
XTP through receiving a packet from the other party, such as a FIRST or a TCNTL
packet. It corresponds to the definition of XTP's return key.

Unicast scenario: We now illustrate the functionalities of our make up table con-
textDB with a scenario, presuming: (1) communication endpoint R at Host-F, act-
ing as the sender, is forming a unicast association with communication endpoint U
at Host-P, who is the receiver; (2) a reliable file transfer; (3) the Internet Proto-
col Address Format; (4) an instance of XTP is on duty at both hosts; (5) a kernel
implementation; (6) we abstract out many other important aspects, such as traffic

specifications, etc.

At Host-P (unicast): The first move consists of starting up the XTP client at Host-
P that registers with XTP for the purpose of receiving. XTP immediately creates
a record in its table contextDB for this new context (known as context U), assigns
a local key (keylocal=I) to it and fills up source host address (srchst=P) and the
memory location (memlock= m) fields. The dstport, dsthst and key-far fields are left

empty for the time being.

At Host-F (unicast): The next events occur at Host-F. One XTP client is started
and registers with XTP for the purpose of sending data. The port number (U) and
the address of the destination host (i.e., P for Host-P) are included by the client
with the registration request. XTP immediately creates a record in its contextDB
for this context, assigns a local key to it (key-local=C), fills up the source host ad-
dress (srchst=F), memory location (memloc=m), and the address of the remote host
(dsthst=P). At this point, only the keyfar field is left empty. XTP, on behalf of

40

context C, then sends a FISRT packet including in it its locally available information
(key-local=C, srchst=F, srcport=R), dsthst=P, dstport=U). The SREQ bit is also set

to elicit feedback from the receiver.

At Host-P (unicast): Upon reception of this FIRST packet at Host-P, XTP has to
use the “FIRST packet matching” algorithm to find an appropriate listening context.
As this first packet is not a duplicate, the matching is done using the information
contained in the Address Segment of the FIRST packet and some acceptance criteria
(such as traffic specifications - ignored with the present scenario) that were set when
context U was registered with XTP. As a result of a successful comparison, context
U is identified as the receiving context. XTP at Host-P can now fill up the remaining
fields of its table contextDB for context U, i.e.,: (1) the key at which the correspond-
ing context is known at the remote Host-F (key-far=C) ; (2) the unicast address of the
remote host (dsthst=F); (3) the port number (dstport=R). XTP’s contextDB record

for context U at Host-P is now complete.

XTP at Host-P can now react and send back a TCNTL packet to Host-F and pro-
ceed further with the key exchange procedure. Within the TCNTL packet, XTP also
includes its local key for context U (xkey=I) and set the RTN bit to indicate that the
key field in the FIRST packet contains a return key.

At Host-F (unicast): Upon reception of the TCNTL packet, XTP at Host-F can
use the abbreviated context lookup procedure to locate context C and fill up the
only remaining field of its contextDB for this record, i.e., the key at which the cor-
responding context is known at Host-P (key-far=I). ContextDB record for context C
at Host-F is now complete, and so is the key exchange procedure. Contexts R and U

have now formed a unicast association.

Thereafter, both contexts can set the RTN bit in their outgoing packets, signifying
that the content of the key field is a return key (i.e., the key was generated by the
receiver of the packet). The abbreviated context lookup procedure can then be used
at both ends by XTP as an optimum method for mapping an incoming packet to the

appropriate context.

41

3.5.2 The multicast model

Figure 9 shows the three-component system architecture view of XTP for the mul-
ticast model. To describe the multicast model, we use “differential thinking”, i.e.,
we concentrate mainly on the differences specific to the multicast model with respect
to the unicast model (our base line). For convenience, the areas of difference are
indicated with thick arrows on Figure 9, and also labeled with numbers (Ex: (1)) for

cross-referencing purposes between the text and the diagram.

We also develop only the one-to-many multicast model (as opposed to the more
general many-to-many multicast model). The plurality of receivers is illustrated on
Figure 9 in many ways: (1) arrow 3 pointing to the context box illustrates the case
of one or more (1+ notation) receiving communication endpoints (CE) that belong
to the same XTP client (this same pattern could multiply for the same XTP instance,
as there could be many XTP clients); (2) arrow 6 pointing to the DDS box illustrates
the case of one or more (14+ notation) receiving hosts. The latter case is probably

more suggestive of real life multicast groups, with a mapping one contezt-to-one host.

Within the XTP multicast model, the multicast mode is generally used for data ex-
change in the direction from the sending context to the receiving contexts. However,
the unicast mode is used when the receiving contexts return their feedback to the
sending context. This use of the unicast mode for returning feedback to the sending
context is at the root of the “implosion” problem, which occurs when several receiving
contexts return their TCNTL packet at approximately the same time to the sending
context. The implosion problem is still an active subject of research within the mul-
ticast research community. As the XTP specification does not preclude use of the
unicast mode by the sending context, for instance to send the END bit to a very slow

receiver (ref. [XTP40, p81]), we also take into account this possibility in the following
paragraphs.

One important difference of the multicast mode (WRT unicast) consists of the use of
the same group address by all members of a multicast group; all receiving contexts
listen “on the group address” and the sending context uses this group address when

sending data. It is the job of multicast capable routers (network layer) to forward

42

Topiaoxd \\ 9) (3(qeyjuun) wnipow Topjacid
21A198 K19A119p w18 +] 991A138 K19A119p viEP
Suikjsopun 1wiodpus uoHEIIUNWILIOD = F7) Suikpapun
w~=- Munuy gﬁ-
Supunwuwnosg 1oA108
m vonmoddy - [Jv &
Wy uo Ap1oBxs —— Wi
~ s19xoed Juiuiodus Isred ot 10 U0 +{ “ s19%0ud Supwoouy
** v1ep puds AUOW 10 01927 “* gjep pu
1XNUOI put} sjoquiAs | .no.co“.m
1sanbas 1daooe 1sanbas ydad
spp Fuikjiopun 10j des | [di/sad] spp SuiApapun Ioj di
SIFPI0 1uAN[D 10§ andnb 189nbas dVSN§ S19pI0 1U3)[3 10§ ananb 1s9n
* gyrew 1918m 0 SN 1218
ojup ams Jan|aoL _H_.rm ojuy s
dVSL f d 1ppesd - - A - 13
D [d | we¥| u U |4 | njf (uod) m T | d |[eoed| - — 1 4 - |a
O 1d Jweudy w d nii . g N Ead LU w d 419
L.£7] ens | syisp [sodisp| oof wows [isyxus| uodass | Xay dVSN ¥ dVSL E L£T] Wi | isyisp | Modisp| 00] W | wyus | wodass | A9y
Jej 1850 1uy [TE]
HOXIuoy — [THTIF : \ HIXuoy N-d ‘N-o ‘oosse ssoddns xg
Aoy pouBysse Kjjeso] Aq paxapur spuodas xau0d | Koy pouBisse K|[820] AQ PIXIPUY SPIOIAI N0
2 185 - 2 [820] J1ed Jo IFew oUW AP S 1XANUOI ¥ (s) 3 1e) - 3 (w30 s1ed Jo 9uwn JoLL MY S1 IXINWOD 8
SPI0JA IXMUOD JO IseqEIBQ SPI0Ia1 1XIUOD JO Isuqere(y
sad£) 19%oud . sad£1 19%0ed
ssuppe des ,/ ssatppu deg
pt {o30104d pt (020108d
10001044 J1LX {oo0j0sd 4 1.X
—TXTIY 19A13%
218D A1 / pudy 218 A0 / pu
m dLX {im 1951921 dLX Yim sas1d
w3t ces di oS diX TEITR)
puos IdV¥ 1dV Bii%
1XANUOJ W) - 3101 pasodal \ X302 1y
dLX \im 3 1ppe dnoug dLX Ynm 8
101 |4V 98N Seq¥T| guod anbiu ﬁ..m:: . (uon1BI20SSY [ENYIIA) Jopiias | guod anbjun 101 {4y osny
P! 89001 29 ; paeroosse o) Pt $83304!
NP dLX 4 .} WO033q A[{emiudAd @ mmu @ NP diX

OEEOMEO)

(ssauppeiseojunisoysig) J-IS0Y

wI)SAs pIInqLISIp

(ssappe 1sedIUN IS0 81 .4) J-ISOY

Figure 9: XTP - the multicast model

43

the packets, as per the semantics of the multicast model. As the sending context
issues only one packet, a group addressing technique is needed in order to reach many
receiving contexts. Such change is flagged on Figure 9 by arrow 1 and arrow 4. The
repercussions for table contextDB are traced with the help of the following multicast

scenario.

Another important difference of the multicast mode (WRT unicast) consists of the
relaxation of the exclusivity rule for the attribution of port numbers by the Operating
System. For the unicast mode, the exclusive use of a port number by only one context
is dictated precisely by the semantics of unicast. However, the semantics of multi-
cast is different and is such that many contexts can receive the same data, though
in their own memory address space. One could provide the semantics of multicast
by using only the multicast group address to target receiving contexts and not care
about the port number. Another tactic would be to use the port number, in addition
to the multicast group address, but to allow multiple receiving contexts to listen (to
bind) on the same port number within the same host. Many reasons militate in favor
of the latter method (i.e., use both port number and group address when sending
and receiving): (1) the ubiquity of the unicast mode and the consequent widespread
need to specify both destination address and port number when sending data on real
computer systems; (2) its better conformance with the semantics of the multicast

mode.

Note: Some O.S. may enforce the port number exclusivity within a host even for multicast,
thereby preventing several receiving contexts listening on the same port number within the
same host. This behavior should however be considered a peculiarity of this O.S., rather in

deviance with the semantics of the multicast mode.

contextDB: Figure 9 shows one XTP client at Host-P that has two receiving com-
munication endpoints labeled with the same port mumber U. Table contextDB has
one more field (rua-far). We now comment on the fields that have a slightly different

semantics for the multicast mode.

The dsthst filed contains the multicast groups address, as normally supplied by the

user.

44

The rua field title stands for return unicast address. This new field is needed with
the multicast mode for two reasons: (1) at the receiving sides, to keep track of the
sending context unicast address for the purpose of returning feedback (such as ac-
knowledgments) to the sending context; (2) at the sending side, to learn and store the
unicast address of each receiving context, thus know who the members of the group
are for reliability, and also to potentially send some unicast packest to a particular

receiver.

Multicast scenario: Admittedly, our model used to represent XTP multicast falls
short of the specification itself and the revision to XTP4.0 (date March 1996) follow-
ing the June Forum meeting in Dallas. However, given the outlook of the present
report, it is judged sufficiently elaborate to provide some insights into the workings
of XTP multicast.

For the nexts paragraphs, we refer to table contextDB (arrow 5 and 7) shown on
Figure 9 and its various fields. Our assumptions for this multicast scenario are the
following: (1) communication endpoint R at Host-F, acting as sender, is forming a
multicast association with communication endpoints U at Host-P, the receivers; (2)
a reliable file transfer; (3) the Internet Protocol Address Format; (4) an instance of
XTP is on duty at both ends; (5) a kernel implementation; (6) we abstract out many

aspects, such as traffic specifications, etc.

At Host-P (multicast): Same as for unicast, the first move occurs at Host-P and
consists of starting the XTP client, who then registers with local XTP two contexts
for the purpose of receiving. In contrast to unicast, a multicast client must pass the
multicast group address as part of of its registration request (the steps are described
in Section 3.4.3). XTP immediately creates two records in its contextDB and assigns
keys to them (key-local=I to one and key-local=J to to the other). The other local
fields are also filled up (i.e., sreport=U and srchst=P for both, memloc=m for one
and memloc=n for the other, and dstaddr=graddr for both). The other far fields
(i.e., dstport, rua, and key-far) fields are left void, for ignorance of the identity of the

sending context at this point.

45

At Host-F (multicast): The next events occurs at Host-F. One XTP client is
started that registers with local XTP one context for the purpose of sending mul-
ticast data (MULTI=I1). The destination port number (U) and the multicast group
address (graddr) are supplied by the client with the registration request. XTP im-
mediately creates one record in its contextDB for this context, known locally as R
(sreport=R), assigns a local key to it (key-local=C), and also fills up the other local
fields (i.e., srchst=F, memloc=m, dsthst=graddr and dstport=U). The other far fields
(1.e., rua and key-far) for this context will never be filled, as they are not needed
for multicast sending (cannot use a return key when sending to many endpoints).
XTP on behalf of context C at Host-F, then sends a FIRST packet, including only
its locally available information (i.e., using XTP FIRST packet field names key=C,
srchst=(unicast address)F, srcport=R, dsthst=multicastgraddr). The SREQ bit is
also set to elicit feedback from the receiving contexts, and thus learn who the receiv-

ing contexts are.

At Host-P (multicast): Even if there are two listening contexts (a particularity of
this scenario only), the semantics of the multicast mode is such that only one FIRST
packet hits Host-P (the last router “puts” only one packet on the sub-net, therefore
only one packet is delivered to XTP). This FIRST packet is matched against all lis-
tening contexts. For this scenario, the only relevant match criteria is the multicast
group address (field local dsthst in table contextDB). Consequently, contexts [and J
are identified as the receiving contexts, having the same multicast group address as
the one contained in the FIRST packet. Handling this FIRST packet, XTP also learns
the unicast address (from the srchst field) and the key of the sending context. XTP
can then update its table contextDB accordingly (i.e., dstport=R, rua=F and key
far=C) for the two records. The pair (far unicast address, far key) of sending context
will be used thereafter to find listening contexts on incoming packets at Host-P from
Host-F. Though the sending context does not yet know about the receiving contexts,
the XTP specification considers that a multicast association has been formed at this

point. The contextDB is complete at Host-P.

XTP, on behalf of contexts [and J at Host-P, can now return two unicast TCNTL

46

packets to reveal the identities of the receiving contexts to the sending context. As
there is only one sending context, XTP at Host-P can use the return key (key=C with
RTN bit set to 1) to facilitate context lookup at the other end (abbreviated context
lookup). XTP also includes the local keys (i.e., I for one and J for the other)

At Host-F (multicast): The reception of the two TCNTL packets at Host-F allow
XTP to update its table contextDB, creating two new records to keep track of the
two receiving contexts. Each record is assigned a unique local key (key-local=D for
one and key-local=E for the other); the unicast address of the two receiving contexts
(rua=P for both records) and the return key (key-far=I, key-far=J) are also stored.
Table contextDB is now complete at Host-F, who has a complete knowledge of the
multicast group. Therefore, XTP at Host-F has all the necessary information to
ensure multicast reliability (knowing the identity of all receivers, it can ensure that
feedback is complete) and to possibly engage a unicast exchange with some particular

contexts, if and when the need arises.

The necessary unicast exchanges between the sending context and the receiving con-
texts, while using XTP multicast mode, are done through the same NSAP (Network
Service Access Point) opened by XTP with its underlying data delivery service (DDS),
rather than the one used to exchange multicast packets. As illustrated on Figure 9
(boxout labeled TSAP & NSAP), a port is a Transport Service Access Point used
for the exchange of the data part of multicast packets between XTP and its clients.
For the unicast packets, the client remains unaware of their exchange, though they
transit through the same NSAP; they remain at the XTP (Transport) level and never
bubble up to the user (Application) level.

For example, presuming some feedback is returned by XTP from Host-P on behalf of
context with key-local=I, the packet field contents could be as follows: (1) MULTI=I;
(2) dsthst=F; (3) srchst=P; (4) dstport=R; (5) srcport=U; (6) key=C; (7) RTN=I;
(8) xkey=I; (9) adomain=0x01; (10) aformat=36(XTP). At the reception end (at
Host-F), the packet is delivered to XTP by the DDS and XTP has to handle the
packet. With regards to our scenario and table contextDB, an Abbreviated Contezt
Lookup with criteria key-local=C easily yields the proper context, and the dstaddr

47

field reveals the graddr used. A search in contextDB with criteria (dsthst=graddr

AND key-far=I) yields proper local context D.

3.6 Protocol implementation strategies

This section marks a definite transition from our outlook at XTP as an implementa-
tion independent specification towards the Sandia implementation presented in the
next chapter and used for the rate control experiments. Our assumptions become
stronger towards considering XTP in conjunction with an Operating System (0.S.),
namely UNIX with its characteristic timesharing and multitasking dimensions, and
a particular network environment, namely the Internet with IP at the Network level.
Given those assumptions, we develop two implementation strategies: (1) the imple-
mentation of XTP as a user level daemon process, as done by Sandia; (2) or as
integrated within the kernel code of the O.S. Both strategies are summarized on

Figure 10.

3.6.1 User level implementation of XTP

XTP is implemented as a user level daemon process, acting as a server to its clients,
but with same status as its clients with regards to the O.S. kernel. The XTP server is
a process created, managed and scheduled by the kernel, the same as its XTP clients,
and context switches are needed to pass control from server to client and vice versa.
Any user can start the XTP daemon, but care must be taken so that only one daemon

is running at a given host.

As shown on the left part of Figure 10 (User Level Implementation), there is a need
for an Application Programming Interface (API) to define the format of the messages
(data structures) and effect the transactions between the daemon and its clients. Such
an API must be designed to convey to the daemon the client requests, such as for the
setting of option bits (Ex: MULTI=1) and other parameters, such as amount of data,

quality of service (Ex: rate=25), etc.

Furthermore, with regards to the exchange of the data, the daemon and its clients are
in a producer/consumerrelationship. Consequently, there is also a need for the design

of the interprocess communication mechanisms (IPC) to convey the messages between

48

e m e D M A an A E Mm e W W Em e SN N G S MR M SR s e M e e A G Gn G EE A e e G EP G e Tm G e e e Mn G e e Em e BA w Gm e

'
(3uorUl NP JO UOISUNNAD 1A)
Narsab oNLLV A0 83014138 '
Suppiomiou '
SIDALIP J0MAIP SIALIP 3D1ApP “
Nur| thsﬂw thB:w .-whsﬂu YU "
wdw “
'
ETH] odi ss3001d |
(dD dn '
FICTSETY] YIOMION "
S|[ed uonouny '
UII [PWf ‘§'O Isn '
idl "
1lL 10 '
dOoLidanidix -
d ** SNOLLAO 41X ‘xgd $19%208 LANI AV (uodsuen '
uodsuen I'LL 10 S19%005 3sn :xg dl Me110 4an :xg dol | d '
S[[29 W3NSAS Mau ‘Adp 1943 [y saaq Suifpapun asn ."
udNowered s, 41X [9A9] 1380 s1andedd 1 X | ﬁ
U des 41x ssaippe des ﬁ
1dV Idl mel
**soydetuds x5
SIDIALIS "GO IsN
S19%208 XINN AV x3 201d UowWIBp d|,
Jdl 'S'O sn (uodsuen)
*ouls 1311um/19peat joo0103d 4.1.X
papasu Odi
(dl meygan x3)
$ad jo 3vtoyd)
' sigourered s, 41X
des 41X
(uoneariddv) 1dV uonesf[ddy
WP ALY WD JIX

uojlejudwajdu) |9A3T] [aUId)

Kou31211J9 191505
‘$'0 Yum pajdnod

xly 01 Asea KjAne|a

uonejuswajdili] joAST Josn

Figure 10: Implementation strategies

49

the clients and the server and to ensure coordination in their producer/consumer in-

teractions.

At a lower level, the O.S. is effectively acting as the data delivery service (DDS) for
the XTP daemon. For multiplexing and demultiplexing purposes, all data transac-
tions towards or from the network must transit through the daemon. Hence, there
is a need to use a Network Programming Interface (call it Implementation Program-
ming Interface - [PI) embedded within the code of the daemon to deal with the O.S..
As shown on the left part of Figure 10, the XTP daemon has two alternatives: (1)
whether to interface directly to IP, in which case root permission is needed; (2) or
interface indirectly to IP through UDP, as only regular user permissions are needed.

UDP being a minimal protocol, it can be used as a DDS to XTP.

3.6.2 Kernel level implementation of XTP

This is the first and last time we discuss kernel level implementation of XTP, as the
Sandia implementation presented in the next chapter and used for the rate control
experiments is a user level implementation. With such an implementation, the XTP
client (rather the Network Application Programmer using XTP) interfaces directly
with the services of the 0.S., the same as when using kernel integrated protocols such
as TCP or UDP. In fact, the API of a kernel level implementation closely resembles
the [PI of a user level implementation. The Network Application Programmer would
use such well known API such as BSD sockets or TLI (Transport Layer Interface).
For the system programmer, a kernel implementation implies possibly the design and
implementation of some new system calls, and at the very least new options to allow
the Network Application Programmer to care for the issue of XTP specific options

and other numerous parameters.

The code of XTP would be integrated within the kernel code, but as shown on the
right part of Figure 10, there would still be a need for an IPI, which would consists

of internal kernel function calls to make use of the services of other kernel modules,

such as IP.

50

4

The structure of the SandiaXTP implementa-
tion

“The best programmers,
like the best craftsmen,
understand the tools

they use.”

Dr Jack Davidson
Professor of Computer Science,

University of Virginia

Taking advantage of the Object paradigm, which features inheritance and component

reuse, the approach adopted at Sandia National Laboratories for implementing XTP

has two levels: (1) within the user level architectural framework, isolate a core of

Transport level functionalities that would be common to all Transport level protocols;

(2) provide XTP’s functionalities as a specific extension of this basic core, with view of

being able to eventuallly derive other Transport level protocols as well from the same

core. This basic core of Transport level functionalities identified at Sandia National

Labotatories consists of the following:

L.

'C}!

maintain contezts, i.e., structured memory space used to mirror the state of

associations (database aspect);

provide the services of a contezt manager to demultiplex incoming user requests

or incoming packets to the proper context (search and match).

supply packet shells, i.e., structured memory space used for sending and receiv-

ing packets (list management);

interact with some underlying data delivery service (DDS) to send and receive

the packets referred to in (2) via the network (network programming);

provide access to the functionalities of the protocol, i.e., an Application Pro-

gramming Interface (API);

3l

The result of this work of abstraction is embedded into the Meta-Transport Library
(MTL), i.e., a set of C++ basic classes designed to provide an infrastructure for de-

riving Transport layer protocols.

Consequently, Sandia distributes its software in two separate packages respectively
identified as follows: (1) Meta-Transport Library - A protocol Base Class Library;
(2) SandiaXTP - An Object-Oriented Implementation of XTP4.0 Derived from the
Meta-Transport Library. The MTL package only is needed to compile Client pro-

grams, whereas the two packages are needed to compile a daemon program.

Making use of Object Modeling Techniques (OMT), the goal of this Chapter is to
articulate a global perspective as well as detailed internal views of the SandiaXTP
software as formed of a conglomerate of several MTL base classes coupled with XTP

derived classes. First, the daemon is studied, and then the Client.

Admittedly, SandiaXTP has much more inbuilt generality than that exposed in this
chapter. The focus has boundary names such as: UDP as the data delivery service;
Internet as the network carrier; rate control as the the preferred XTP feature; and
the gain of insights for the interpretation of the experimental results and for possibly
changing the source code. Furthermore, there is no attempt to paraphrase Sandia’s
documentation, which is abundant, very well written and was heavily used to develop
this OMT based model. Such documentation consists of: (1) comments embedded
within the source code; (2) the Meta-Transport User’s Guide; (3) the Meta-Transport
Library Reference Manual; (4) the Sandia XTP User’s Guide; (5) and the Sandia X TP

Reference Manual.

4.1 About OMT, the diagrams and the notation used

Being a task of “reverse-engineeering”, executed by a “newcomer” to both OMT and
XTP, one should not develop too stringent expectations regarding the accuracy of the
diagrams and the accompanying text produced, when compared to the “real® XTP
implementation. The analogy with a geographical chart holds; not fully accurate

with regards to the circumvolutions of the terrain, but good enough to guide one’s

52

whereabouts.

The model being developed is expressed primarily with diagrams having many for-
mats and purposes: (1) Object Model - Class diagram; (2) Object Model - Object
diagram; (3) Dynamic Model - Event Trace; (4) Draft Class dictionary. The latter
was not meant to be fully developed, but rather used as a convenient memento to
support interim progress with the preparation of the diagrams. Being at a level of
detail that would disrupt the flow of the text, it is included in its up-to-date draft
status in Appendix D.

Though we do not pretend to formalism in building our model, we have tried to ad-
here as much as possible to the current usage for notation and type of diagrams used,
such as presented in “Object-Oriented Modeling and Design” by Rumbaugh &
al. The diagrams are presented in their “life cycle order”, i.e., as they would evolve
when OMT is used before writing the code. However, reverse-engineering means that
a reverse path/order was followed for preparing the diagrams: first, study the source
code; then start preparing a draft class dictionary; then proceed with event traces
and Object diagrams; and finally abstract the class diagrams. Of course, the sequence

was not that smooth, with frequent re-visits of previous stages.

4.1.1 About the Class diagrams used in this report

A Class diagram depicts classes, their structure, and the static relationships be-
tween them. Normally, a rectangle used to represent a class with OMT has three
parts: (1) a top part with class name; (2 a middle part listing attributes/variables
that belong to the class; (3) a bottom part listing methods/functions. For want of
space, many of the Class diagrams used in this report, such as the ones shown on
Figure 12 or Figure 16, show only the class names. However, much more detailed

information (though still largely incomplete) is presented in Appendix D.
MTL classes, i.e., the ones that are part of the MTL package, are represented with

dashed contour rectangles. XTP derived classes are represented with regular contour

rectangles, but are also easily recognized for having the prefix XTP or ztp prepended

33

to their names. [llustration:

class name
attributes
public:
protected:
private: | e dieeeeaoas .
oo]
methods | MIL baseclass e _
public:
- inheritance
protecied:
pﬁ"'ﬁ XTPsubclass name
Usual OMT Class diagram Class diagram used in the text

The relationships between classes are expressed in many ways: (1) inheritance is
shown with the arrow pointing from the derived class towards the base class; (2) 1+
means one or more, the dot ® means zero or more, - means exactly one; (3) like
an arrow with more mass concentrated at the tip of the pointing side, the relative
location on the diagram of the link attribute indicates the “direction” of the seman-
tics (Ex: “mtldaemon has packet_pool” or “packet_pool has mtldaemon™? - the fact
that has is located closer to class packet_pool than to class mtldaemon on the dia-

gram indicates the proper semantics, i.e., “mtldaemon has packet_pool”). Illustration:

--------- 1 I |
. packet_pool (has , mtldaemon i
b e e e - - — = J Lo - - J

4.1.2 About the Object diagrams used in this report

An Object diagram depicts a particular object structure at run time. As they show
instances of the classes, the term instance diagram is equivalently used for such dia-
grams. Instance diagrams are mainly used to show examples to help clarify a complex
Class diagram, as it conveys much more information regarding the data types and the
data structures used, the nature of the asssociation links between the objects shown

on the Class diagram, and the number of objects being created.

54

The symbol used to represent an instance of a class, or of a hierarchy of classes (such
as base class«—subclass), is a two part rectangle with rounded edges. The top part,
which is relatively small, shows the object identifier, which is borrowed as much as
possible from the source code. Sometimes, the class name is used as the object identi-
fier (EX: context_manager). Otherwise, the pointer associated with the C++ new
function call, when the object gets created (dynamically claiming memory space), is

used (Ex: from context_manager, c.s_bm = new buffer_manager()).

The lower part of the rounded rectangle lists many entries, with class names indicated
with bold captions, followed by some illustrative class attributes. Within the lower
part, the object hierarchy appears in the bottom-up fashion, i.e., the subclass name
appears below the base class name. For example, as class XTPcontext is derived from
class context (context——XTPcontext), the XTPcontext class name and its attributes

are listed below the context class name and its attributes.

Whereas arrows are used to convey inheritance relationships on Class diagrams, they
are used on Object diagrams to represent a pointer owned by one object and pointing

to another object.

[llustration:

/~ objectName\ / \

MTLbaseClass

someVar;

XTPsubclass

object* ptr;

4.1.3 About the Event trace diagrams used in this report

An Event trace diagram shows the flow of requests between objects. Figure 14 and
Figure 15 are two examples of the particular brand of Event trace diagrams used in
this report. The vertical dimension from top to bottom represents the flow of time.

Vertical lines represent objects, i.e., compiled instances of their corresponding classes.

55

The line for an object becomes solid once the object has been constructed. Horizontal
lines represent calls made from one object to another, with tail of the arrow indicating
the source object making the call and the head indicating the object that executes
the call.

To avoid confusing an underscore (-) with a horizontal line, all the underscores of la-
bels based on the source code are replaced in the Event trace diagrams with a hyphen

(Ex: d_cm becomes d-cm).

Most (if not all) objects shown on Object diagrams are also represented on their
corresponding Event trace diagram, with the same label identifiers appearing high-
lighted at the top of the vertical lines on the Event trace diagram. To help for clarity,
pseudo-objects are sometimes used, such as user-main() (see Figure 14) representing

the actions of the user, and O.S. representing the Operating System.

In as much as possible, the notation used on the Event trace diagrams is the exact
replication of some variable, or line of code contained in the source code. However,
this rule is not followed strictly (Ex: XTPcontext_manager might be abbreviated to

XTPcontext_mgr for want of space, as shown on Figure 14).

The Object identification scheme used at the top of the vertical lines is coordinated
with the one used on the Object diagrams. For example, d.cm (ref. Figure 14)
refers to the context manager object instance. The fact that this object instance is a
compound made up of a MTL base class and a XTP derived class is represented with
two vertical lines situated at a close distance. Of the two, the left line represents the
derived class component, with corresponding label indented relatively to the left and
at the top (i.e., XTPcontext.mgr for this example); the right vertical line represents
the base class component, with its corresponding label indented a bit to the right

(i.e., context.manager is indented to the right of XTPcontext_manager). Illustration:

56

/ d.cm w d_cm
XTPcontext_mgr

context_manager context.manager
XTPcontext_mgr
Object diagram Event trace

The labels shown on top or between the horizontal arrows are function calls or state-
ments extracted from the source code. Some “code independent comments” (starting
with //) are also presented. In most cases, identation matters. A line of code that
belongs to a MTL base class, such as the init_daemon() method implemented by mti-
daemon, would be indented to start over the vertical line representing the mtldaemon
class component; with following calls properly indented. For example, start_.daemon()
is indented to the right of init_daemon(), as the call is made from init.daemon. [llus-

tration:

DAEMON

XTPdaemon
mtldaemon

ifjit-ddemon(...)
mtldaemon::init-daemon(...) // call to base class

-daemon(...)
daemon-startup(...)

4.2 SandiaXTP global architecture and dynamics

The formulation of the model starts with a global presentation of the SandiaXTP

implementation, to be refined and elaborated in later subsections.

Figure 11 is meant to illustrate the global architecture and dynamics of SandiaXTP at
a given host. To facilitate recognition with the three-component view of XTP intro-
duced previously (see Figure 8 & Figure 9), these same three components appearing
again in Figure 11 have been highlighted (bold contour) and are described as follows:
(1) the XTP client takes the form of user level processes and is represented by the
upper-left class rectangle labeled as such; (2) the XTP protocol takes the form of

a user level daemon process and is represented by one upper-right class rectangle

57

XTP client APL [\ meta transport library
V' (MTL)
L process
sender/ writer/
(receiver) (reader) send_area
(recv_area)
?adg{) XTP protocol
£ wrn
share memory area (server)
daemon process
server
inf jout
DDS provider
AF_INET socket

UNIX (solaris2.5 for multicast)
socket layer (for intra-host & inter-host communications)
device driver support though raw IP or UDP

// daemon waiting for events
int select (int maxfdpl, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout)

// shared memory claim & data movements between client/daemon
int shmget (key_t key, int size, int shmflag)

char *shmat (int shmid, char *shmaddr, int shmflag)

memcpy (char *src, char *dest, int nbytes)

// intra-host and inter-host communications
int socket (int family, int type, int protocol)
// family = AF_UNIX for intra-host (clienvdaemon) comm.
// family = AF_INET for inter-host (daemon/Internet) comm.
int bind (int sockfd, struct sockaddr *myaddr, int addrlen)
int setsockopt (int sockfd, int level, int optname, char *optval, int optlen)
// Ex: IP_ADD_MEMBERSHIP for multicast
int sendto (int sockfd, char *buff, int nbytes, int flags, struct sockaddr *to, int addrlen)
int recvfrom (int sockfd, char *buff, int nbytes, int flags, struct sockaddr *from, int addrien)
int sendmsg (int sockfd, struct msghdr msg(}, int flags) // scatter-gather
int recvmsg (int sockfd, struct msghdr msg(], int flags)

send interrupts jnf fout

NIC / data communications hardware

sends / receives (ethernet) packets

sends interrupts to O.S. when data received .
I medium

Figure 11: SandiaXTP global architecture
58

labeled as such; (3) the role of the DDS is undertaken by the operating system and
is represented by the large class rectangle labeled as operating system.

The MTL is shown at the top-right of the diagram. We show that both client and
XTP inherit (with the usual arrow pointing to the base class) from the MTL. The
client inherits the API by including the MTL in its source code; XTP inherits many
base classes as will be explained with many more details later. The lower part of
Figure 11 shows the host networking hardware (NIC) and the medium. This layer
(Link layer) is under the control of the Operating System with its device drivers and

need not concern us any more.

The role of the operating system is paramount. For the daemon, it is the DDS. It
also facilitates all communications between the daemon and all client processes. Such
interprocess communication needs take two forms: (1) regarding the movement of net
data to be sent or received; (2) regarding user requests passed to the daemon about
the net data to be sent or received. To illustrate the dynamics and the interactions
between the three main components, two scenarios are used; one for sending data,

one for receiving data.

Scenario for sending data: First, the daemon is presumed to be on duty, but idle
(i.e., not running) at the present time. Having made use of the select() system call, it
is probably awaiting on some I/O queue for the earliest occurence of one of the three
following events: (1) reception of some user request; (2) arrival of some packet(s) from
the network; (3) or a timeout if neither of the preceeding two events had occurred. At
this point, the operating system is in full control, as it is responsible for the handling
of these three events. User requests are conveyed to the daemon via internal sockets
(AF_UNIX), an IPC mechanism operated by the kernel. Incoming packets from the
network are handled by modules integrated within the kernel, such as the network
device driver necessary the handle the interrupt when a packet comes in, and IP for
demultiplexing which protocol should the packet be delivered to. The clock for the

timeout is also under the control of the Operating System.

To start the ball rolling, the client process would deposit some data into the shared

39

memory send area (send_area). At this point, the daemon is still unaware of the
action and intents of the client. To express its needs to the daemon, the client fills
up a data structure, including its expectation to send the data, the offset from the
beginning of the send area, and the data byte count. The client would then convey
its request to the daemon using an internal socket (AF_UNIX) [PC mechanism, and
possibly block waiting for the daemon’s response. It now presumed that the client

process becomes idle (i.e., is placed waiting on some /O queue for instance).

The issue of such user request to send data being one of the three events described
previously, the operating system would now schedule the daemon process for running.
The daemon would then take action in accordance with the client’s expectations con-
tained in the user request data structure, apply the rules of the protocol, and make
up a complete XTP DATA type packet with header. It would then call again on the
services of the operating system (with system calls such as sento() or sendmsg()) for
further handling, such as by IP to include routing information and the network device

driver to “put” the packet on the wire. Qur high level send scenario is now complete.

Scenario for receiving data: [t is presumed that a client has blocked after hav-
ing issued a user request to the daemon and is waiting the reception of data from
the network. Packets can arrive any time (asynchronously) from the network. The
occurrence of such an event would make the daemon return from the select() system
call (the work of the operating system again) with a copy of the packet being made
from kernel space to XTP’s own memory space (packet shell). Using the header in-
formation, it is the job of the context manager (one part of the daemon) to find the
appropriate awaiting context (probably using the Abbreviated Contezt Lookup proce-

dure).

The XTP daemon would then engage in a three-phased action: (1) use again the
services of the operating system to copy the data part of the packet from its own
memory space to the shared memory receive area (recv.area); (2) fill up a message
structure, including offset from the beginning of the shared memory receive area
and the data byte count; (3) send this message to the client via an internal socket

(AF.UNIX) IPC mechanism, thereby using again the services of the operation system.

60

The client can now be scheduled (again the operating system - in its scheduling
capacities) to run and act upon the data. The high level receive scenario is now also

complete.

4.3 SandiaXTP Daemon with O.M.T.

4.3.1 Daemon startup - Class diagram

Figure 12 illustrates the class diagram for the SandiaXTP daemon. The small dia-
gram labeled keymap, and situated at the upper-left corner of Figure 12, reproduces
at a reduced scale the three-component user-level implementation architecture used
in SandiaXTP. This medallion, also to appear on some subsequent diagrams, is meant
to highlight the component(s) (here the XTP protocol embodied in the daemon) that

the remainder of the diagram focuses on.

Some comments follow regarding the semantics conveyed by the Class diagram for
the daemon. At the highest level of abstraction the classes can be lumped in two
clusters (call it the daemon cluster and the contezt cluster), whose focal points are
highlighted on Figure 12. Expressed in a nutshell, the daemon cluster plays the role
of a nervous reactive system, offering common services to all contexts, whether before
a particular context has been found, or in reaction to calls made from a particular
context. In contrast, the viewpoint of the context cluster is rather egocentric. When
a particular context has been identified, control is passed to the context cluster with

per context items and actions.

The focal point of the daemon cluster is the pair mtldaemon base class and its cor-
responding XTPdaemon subclass. The satellite classes in the daemon cluster are:
(1) the pair context_manager/XTPcontext. manager; (2) the MTL packet_pool class
and its related packet class; (3) the MTL delsrv base class with its ip_del_srv and

udp_del_srv subclasses.

The focal point of the context cluster is the pair MTL context base class with its
Sandia XTPcontext subclass. The satellite classes members of the context clus-
ter include (anticlockwise on Figure 12): (a) the XTPpacket base class and its six
subclasses, each one corresponding to some XTP packet type such as the FIRST-

61

" e mecewsa 4 eecccecccece=
]

 AasTpopTdy | 1 Joped ! OJy1yoed | Ssauppe”spp_dpn, sw s dix
R +1{s1oxoed"winu .:o_.ll..__: [-
LA e - . Ssppe BsurBardx

| 108euewixawoogLx |

sey sey

T O W

v ananbTudAd | 1 SuyoewIms!
[IO

]
I EE T T Ve 11 e — .
[}

y b 0908000 oo sl ——————— (Teeccwcaa.a 4

| @¥oedviva 19%9edLINDH| | sse2poaup dix |

[¥ed5vid] ¢ S T

Figure 12: SandiaXTP daemon startup - Class diagram
62

packet type/subclass, the DATApacket type/subclass, etc.; (b) the MTL event_queue
class; (c) the MTL state.machine base class and its X TPstate_machine derived class;
(d) the MTL buffer_manager class; (e) the MTL userrequest base class and its
Sandia xtp_trans_msg, xtp.req.msg and xtp_state_msg derived classes; (f) the MTL
dds_address base class and its MTL ip_dds_address and udp_dds.address subclasses;
(g) the MTL packetfifo class. Further comments are presented around this “two

clusters” theme.

THE DAEMON CLUSTER

Classes mtldaemon & XTPdaemon: The behavior of the whole daemon process
is event driven. With regards to the subsequent processing, the mtldacmon base class
acts as the work engine of the whole daemon. Directly, or indirectly though its allied

classes, the mtldaemon class cares for the following aspects:

1. Directly, it provides a method for the parsing of command line arguments (vir-
tual int parse_args()), as specified by the user. Being a virtual method, only a
default implementation is provided and the derived protocol is encouraged to

provide its own implementation.

2. Directly, it has method init_.daemon(), which converts the user process into a
Unix daemon (call to private method start_daemon()), then installs the signal
handlers (call to method install_handlers()), and also initializes other services

covered by following items.

3. Directly, it has the mainJoop() method for awaiting endlessly for some event
to occur. Such an event could consist of an incoming packet from the network,
a user request from some client, or a timeout if none of the previous two events

had occurred.

4. Directly, it operates one FIFO request queue for receiving orders from clients,
and eventually responding. For instance, method setup_request_queue() is used
to set up the request queue; while methods recv_request() and send_reply() hide
the underlying IPC mechanisms needed for the exchanges.

5. Indirectly, through its allied del_srv base class and derivatives ip.del_srv and

63

udp_delsrv subclasses, it deals with the DDS/O.S. for the purpose of receiving

packets from the network, or for sending packets through the network.

6. Indirectly, through its allied packet_pool and packet classes, it operates a pool

of packet shells for the temporary storage of protocol packets.

7. Indirectly, through its allied context_manager class, it is responsible for the de-
multiplexing of incoming packets to the proper receiving context, or of incoming

user requests to the proper context.

The XTPdaemon derived class contributes few functionalities beyond the ones pro-
vided by the mtldaemon base class. One main contribution of the XTPdaemon sub-
class consists of reimplementing the MTL virtual parse_args() method. XTP knows
best what command line arguments are needed from the user to start the daemon
component. One such argument consists of the choice of the underlying data delivery
service, whether raw [P or UDP (this is strictly not XTP specific, but needs to be
included with the reimplementation of method parse_args()). If UDP is selected, then
some mtldaemon protected variable is set accordingly (i.e., d.in.dds.t = UDP_type).
Other important daemon startup command line arguments include the selection of
the number of contexts and of the number of packet shells (mtl protected variables

respectively called d_num_contexts and d_num_packets).

Classes context_manager & XTPcontext_manager: The context manager acts
as matching entity between incoming packets or user requests on the one hand, and the
appropriate context on the other hand. To eventually find a match, the context man-
ager must conduct searches, which implies search criteria, proper organization and free
access to the data. Class context.manager is therefore responsible for assigning keys to
contexts (method init_each_context()), which are then later used as search criteria to
retrieve a context given a key value (method find_context() - effectively implementing
the abbreviated contezt lookup procedure). To access the data, class context_manager
is declared a friend by class context. Exploiting the fact that class context has
pointer variables for linking contexts together, class context.manager operates linked
lists of active and quiescent contexts (EX: context* cm.active list protected variable,
and method add.active_context()). Virtual function handle_new._packet(), meant to

be superseded by the protocal specific implementation, is designed to match an in-

64

coming packet from the network to a specific context and place the packet on that

context’s incoming FIFO queue.

Class XTPcontext_manager adds little to base class context_manager. One ma-
jor contribution of class XTPcontext_manager consists of reimplementing the virtual

method handle_new_packet().

Classes del_srv, ip.del_srv & udp._del_srv: The role of class delsrv, and its
ip-del_srv and udp_del.srv subclasses, is to deal on behalf of the mtldaemon class
with the underlying DDS for the purpose of sending packets through the network,
or to reccive packets from the network. Base class delsrv is an abstract base class
that plays the role of an interface for the choice of a particular DDS. It provides
many virtual methods, such as send() and receive() to be implemented by each of its
subclasses. Class ip.del_srv is based on raw I[P, whereas class udp.del.srv is based on
UDP.

Classes packet & packet_pool: Much more detailed descriptions of class packet_pool
and class packet are provided in Appendix D. To explain the role of both classes, a
limited outlook is adopted. On their way in, net transport level packets are delivered
to XTP without even knowing their type, the identity of the receiving context, or if
any receiving context at all will be found. The daemon object must therefore have a
supply of packet recipients, first for its own use while searching for a receiving con-
text, then that can be placed on the incoming queue of a particular context if one
is found, and eventually to be recycled for later reuse. These activities imply packet
holders with suitable data structures for list management. The solution developed at
Sandia National Laboratories is to make use of packet shells (class packet) to serve
as packet holders and of a packet pool entity (class packet_pool) needed to create the

required number of packet shells and to manage them with a list.

A packet shell is a data structure with many more fields than the ones strictly needed
to contain the actual transport level packet. Amongst its many fields, a packet shell
includes: (1) a pointer (packet* p_pnext) for linking packets shells together; (2) a

flag to indicate whether it is being used as a monolith container or for scatter-gether

65

[/O; (3) an array of contiguous bytes in case it is used as a monolith; (4) a list of
many address/length pairs in case it is used for scatter-gather [/O. In addition to
providing the data structure, class packet has methods such as is.mono() to test if a
packet shell is being used as a monolith or not, and method pkt_start() to return the

beginning of the data part if monolith.

Class packet.pool has methods to claim a packet shell from the pool list (get()) and

to replace it for eventual reuse while it is not needed (put_back()).
THE CONTEXT CLUSTER

Classes context & XTPcontext: The role of the context is to act as a repository
containing the dossier for the end point of an association. As much of the state
information is protocol specific, one can expect that the derived class will add much
to the base class. Knowing all about these particulars, the context is also a launching
base by making calls to methods that belong to other classes for finally sending or
receiving the data. Directly, or indirectly through its allied classes, base class context

takes care of the following aspects:

1. Directly, it stores identity information such as the key, the port number (TSAP)

and the user’s process id.

2. Directly, it has vitual methods for sending or receiving the data, such as send()

and receive(), which are meant to be redefined by the derived protocol.

3. Indirectly, though its allied buffer_manager base class, it manages the shared

memory send and receive areas.

4. Indirectly, through its allied state_machine base class, it provides an interface

(pure abstract class) for the implementation of protocol specific state machine.

5. Indirectly, through its allied event_queue base class, it provides methods for the
queuing of events that drive the protocol specific state machine. The events

themselves are encoded by the derived protacol.

6. Indirectly, through its allied user.request base class, it provides a basic format

66

and methods for interacting locally with client processes. Class user_request

serves as a base class for protocol specific user requests.

~1

. Indirectly, through its allied dds_address class, ip.dds_address and udp_dds_address
subclasses, it cares for the formulation and storage of the addressing needed by

the various DDS.

8. Indirectly, through its allied packet_fifo base class, class context cares for pos-
sibly enqueuing incoming or outgoing packets waiting to be further processed

whether by the context or by the DDS.

Subclass XTPcontext is very important and adds much to the functionality pro-
vided by class context. For example, class XTPcontext must cater for the several
parametric dimensions of XTP, such as rate, credit, burst and r_timer variables as-
sociated the rate control mechanism. For incoming packets, the context manager is
responsible to demultiplex a packet to a proper receiving context. However, to do so,
it makes calls to methods provided by class XTPcontext, such as method get_fclu() to
conduct a full context lookup (the abbreviated context lookup procedure is handled
by class context - method find_context(key)). Furthermore, XTPcontext’s method
process_packet() is used to process an incoming packet, which in turns makes other
local calls to methods such as process_FIRST _packet(), depending on the packet type.
When a context needs to send data, method send() redefined by XTP creates a packet
out of the information given in the shared memory send area of the appropriate con-
text’s shared memory, as specified by the user request. The packet might be sent
immediately, or enqueued on this context’s outgoing packet_fifo queue for later pro-

cessing.

Class XTPpacket & subclasses: Base class XTPpacket abstracts and encapsulates
some unchanging aspects common to all XTPpacket types, which are based on the 32-
bit fixed length header used for all XTP packet types. Consequently, class XTPpacket
has methods for header placement and extraction (put_header(), get_header()), for
placement and extraction of many specific header fields (insert_checksum(), get key()),
and to return a pointer to the middle part of a packet (middle_ptr()).

A set of subclasses is also derived from class XTPpacket, one corresponding to each of

67

the seven packet types defined by XTP, with appropriate methods. For example, sub-
class FIRSTpacket has methods for address placement and extraction (put_address(),
get_address()); subclass CNTLpacket has methods for placement and extraction of

control information (put_cntl(), get_cntl()); etc.

The relationship between MTL base class packet and the XTPpacket base class needs
clarification. The documentation provided by Sandia and the source code appears to

support two conflicting viewpoints, which are now reviewed.
Thesis 1: class XTP packet is not a subclass of MTL class packet

“The packet class is not designed to be a base class, as other MTL classes
are. The packet class is just a repository for data to be sent or received via
the data delivery service; packet classes from the derived protocols should
contain a member variable of type packet*, and their member functions
should impose some order onto the raw data contained within.” [Meta-
Transport Library, User’s Guide, June 12, 1997, p16]

“The packet class is not designed to be the base class for protocol specific
packet structure. Rather, protocol-specific packet classes should be de-
fined so that they contain a member variable of the type packet*, where
the packet shell is held...” [Meta-Transport Library, Reference Manual,
MTL version 1.5, December 1996, packet(3)]

Supporting the same thesis, the code declaration for class XTPpacket has

the following form:

class XTPpacket {

private:

protected:
packet* x_pkt;

[File XTPpacket.h - SandiaXTP-1.5]

68

Thesis 2: class XTP packet is a subclass of MTL packet class

“...the XTPpacket is derived from the MTL base class packet, and FIRST-
packet, CNTLpacket, etc., are derived from XTPpacket” [SandiaXTP
User’s Guide, June 12, 1997, p.§]

“Class XTPpacket is the protocol data unit for XTP. It is derived from the
MTL base class packet ...” [SandiaXTP Reference Manual, SandiaXTP
version 1.4, February 1996, XTPpacket(3)]

As shown on the daemon startup Class diagram (Figure 12), the modeling approach
favored consists of giving priority to the source code and shows no inheritance asso-
ciation links between MTL class packet and class XTPpacket. It is presumed that
class XTPpacket and its derivatives are used to cast a structure on the packet shell’s
field used for containing the packet data, which is mandatory for the parsing and

interpretation of the packet.

Class event_queue: A protocol specific taxonomy of events is needed to drive the
XTP state machine, which is designed for two data streams (one incoming and one
outgoing). The role of the MTL class event_queue is to provide an infrastructure
consisting of: (1) a 32-bit value available for the protocol specific encoding of events;
(2) methods for enqueuing and dequeueing events, or for peeking without removing
(respectively put(), pull() and peek()). The XTP implementation can instantiate
two such event_queue objects. The encoding of XTP specific events is given in file
XTPtypes.h (EX: EOM, WCLOSE, END, etc.).

Classes state_machine & XTPstate_machine: The MTL state_machine is a pure
abstract class, i.e., an interface from which protocol-specific state machines are de-
rived. The role of the XTPstate_machine subclass is to hold the state for the context
and the association as defined in the XTP Context State Machine ([XTP40, p52]) and
the XTP Association State Machine ([XTP40, p53]). It has many related methods,
such as: (1) goistening() to place a context in a listening state; (2) is_Quiescent()
to test if a context is in Quiescent state; (3) is_.OutStream.-AssocClosed() to test if

OutStream is in AssocClosed state or not; (4) trans_on_rcvd(event) to perform a state

69

transition after a receive operation in event.

Class buffer_manager: Recall that shared memory is used for moving the data be-
tween a client and the daemon’s context. This shared memory area comes in pairs
of segments; one being used for sending and another used for receiving. A differ-
ent buffer manager manages each. Class buffer_manager has a method to create one
shared memory area, which is used only twice per context, i.e., once to create the
send area and once to create the receive area. The creation task is triggered from
class mtldaemon following a registration request received from the client. Through
some IPC mechanism, the daemon can return the share memory id (shmid) to the
client that created its own two reciprocal buffer managers (the mtlif class is seen
later when tracing a client startup) and attach to the same shared memory areas.
Class buffer_manager has several methods for managing data pointers in the shared
memory area and used to move the data such as: (1) read() to copy len bytes of data
from the shared memory segment to a user buffer; (2) write() to copy len bytes of

data from a user buffer into the attached shared memory segment.

Class user_request & subclasses: Within the Sandia user level implementation ar-
chitecture, there is a need for interprocess communications between the daemon and
client processes. The Operating System supplies the IPC mechanisms, but cannot
define the formats or the semantics of the messages. Class user_request is a base class
for protocol specific user requests. SandiaXTP derives three subclasses as follows: (1)
subclass xtp_req-msg which is used for registering with the daemon. Subsequent
actions include the creation of two shared memory segments (if necessary), attach-
ment by the daemon to these segments, and the handling of many other options, such
as rate control, etc.; (2) subclass xtp_trans_msg used for the many regular trans-
actions between the daemon and client such as SEND, RECEIVE, etc.; (3) subclass

xtp_state_msg for change of traffic specifications.

Class dds_address and subclasses: The use of a DDS entails the preparation of
corresponding address structures containing, for instance, one’s own port number and
network address as well as the port number and network address of the correspon-

dent receiving context. Class dds_address is a pure virtual class that serves as an

70

interface for the implementation of its virtual functions by derived classes, such as
ip-dds_address (when raw IP is used as the DDS) and udp.dds_address (when
UDP is used as DDS). The constructor instantiates a DDS specific address structure,
fills it with blanks, automatically sets the address family (here to AF_INET) and the
default daemon port number (to DAEMON_PORT, i.e., 2795). Method put_hostid()
is used to put the host identifier (i.e., the 32-bit netid/hostid) into the address struc-

ture; method get_hostid() returns a pointer to the host identifier.

Class packet_fifo: Two per-context packet FIFO queues are needed for the tem-
porary storage of: (1) incoming packets from the DDS, after the context manager
has found a receiving context, but before that context can further handle the pack-
ets; (2) outgoing packets towards the DDS, after the context has built the packet,
but before it can be passed to the DDS. Class packet_fifo manages such a FIFO
queue of packets awaiting processing. The contructor returns two pointers of type
packet (head=tail=(packet*)NULL). Method put() enqueues a packet at the rear of
the FIFO structure; method get() dequeues a packet from the head.

4.3.2 Daemon startup - Object diagram

Figure 13 shows the instance diagram corresponding to the daemon startup Class
diagram shown on Figure 12. As can be inferred from the keymap appearing on
Figure 13, the instance diagram fuses a hierarchy of classes into a single object in-
stance. The term “hierarchy” is defined here to mean a base class and its derived
classes. [llustratively, while the keymap on Figure 12 shows two class rectangles
MTL«—SXTP, the keymap on Figure 13 shows only one rounded edge rectangle
labeled xtpd. This pattern is repeated throughout the whole instance diagram, as

explained further in the following paragraphs.

Here follow some specific observations explaining how the daemon startup Object

diagram contributes to a better understanding of the SandiaXTP software.

DAEMON: On the class diagram, the relationship between class mtldaemon and
class context_manager is expressed with a line linking the rectangles and a label (has).

11

(— appe uwowssp) () ﬁ Tazis nadJoep dgakq) (~'SUOTIdO GTLoYs) (" :peay $1oNNS1UIAD)
U1~ 1ppexd0s 1dnns f91]as™d wowdd"30A Sswi suway djx SRR TILJ HINNSTIUIAY
tous 1ppe”sppdpn tasu~d _ manb wand

3)puey oty 193208/ ‘woy™d 4ssuppespp Ippurys”aar uy ba w
*pI~UOWDRP My ‘uay~d zgpsom .Eju_u .__.ﬂ_x_.mh. ~ g
A" p dpn e 3n7d s3n™1onoed ox popiom [peay Ldonns 1uand)
e} tixaud 41o%0ed ‘putd PR I245 10NNSTIUIAD
A2 PP onded sonbas 10 amanb juand
Spp W P C soond bawiqo | C b |)
?.S_Hnr::_:_ 0})
661
IR 19
‘LS jaxoed
'puay s1a%0ud (") ([™IINDT PRFLLNDM)
(ood Joxoed T LU S1NRdLSHIY
jood p EWJ: oao..eu.coz
1 ‘boTIno ananb iuaAd
‘YW NS unoRw - ANNSg) X
() U0 LXK
tuowrdepd 1 X 180 M Dd1// IR WIS L
1ppe 2SN 1dNUISTIppY b
193208 3,19%2ud Bujtoouyy 1bas™%1q ™9 Gisanbas"19sn upgoew e
SpJTulTp 1987y ‘199pTISEOW ™) 4$SAUPPETSPP { Yo e
1ppPR Dd] vowssepy; HSIPTISVINTI LS$JUPPYSPP
Jppe_uowoep”p 190ns”ippe_bas '0JyTPpUS™I Loj1y 19y Ied
191208 18anbaup yuy 1051~ ATI Lo T ed
‘WQTIT JII8wmumwiTIagng _|
— ‘SPPTUITP 4A3387(9p OnimIS HuqTsTo Jsa8vuvursagng
L 'sppTIn0OTp (AI3ST[Ip OneIs
{iood™p 4tood 1oxaed aney SPIALBISULSIILING ™D 1y
‘WoTp LeuvuwINANUOD ‘pidn™o 1 prd
uoudeppus 1+Ka%7d poprom - ‘pruys 1uy
L NOWAVd P A%ud™I LIXANUOY — 138wunar Jagyng
1 IXAUTD LIXNU0D wq s >
(XNU0d
tsafwuew xayu =
034LX ___ - X uid J dewiay
_ - (s1x31u05 " winuj (o
(PR TIud0sIANb WO L1xMu0d (€9l E
SPEAITIANIETWD LIXIMU0D
2197w 41xANU0d
snSvusw XU -
r >) ()

Figure 13: SandiaXTP Daemon startup - Object diagram

T2

The semantics of this notation was defined as “daemon has a context_manager™.
The Object diagram reveals the exact programmatic nature of this link, in the form
of a pointer (context.manager* d.cm) to object context_manager owned by DAE-
MON. Here, the arrow represents “a pointer to”. The same explanation applies to

packet_pool and the DDS.

Delivery service (d_in_dds): The daemon is designed to have two distinct data
delivery services, one for incoming packets and one for outgoing data packets. The
Object diagram shows that the two are actually merged (a socket offering duplex

exchanges) and one single object instance gets created.

packet & packet_pool: The organization of the packet_pool, with pointers to packet
objects for list management, is made more explicit with the Object diagram. An ar-
ray of packet shells objects get created immediately at daemon startup, with default
size of 200 packet shells. The structure of a packet shell is also made more evident,
which could be used as a monolith or for scatter-gather I/O, depending on the p_tag

flag.

context_manager: The setup of the context_manager, with pointers to first context
object (context{0]), and pointers of context type for managing the active and quies-

cent lists of contexts is made more explicit with the Object diagram.

context & XTPcontext: An array of context object instances gets created imme-
diately (by the context_manager) at the daemon startup, having default size of 64
contexts all ready to be assigned. The links with most satellite object instances, such
as buffer_manager, are made more explicit with pointers. In contrast, the state.mach,
out_eq and in_eq are embedded within a context object, rather than being created as
separated objects, with context having pointers to them as it is done for the other

satellite objects.

buffer_manager (cs_bm & c_r_bm): The Object diagram clearly shows that two
buffer_manager object instances get created per context, one for managing the send

and one for managing the receive shared memory segments.

73

4.3.3 Daemon startup - Event Trace

Figure 14 and Figure 15 show an Event trace for the initialization of the SandiaXTP
daemon, and consists of the sequence of method calls made between objects in re-
sponse to starting the daemon by the user (xtpd -d udp). This Event trace is split in
two parts, appearing on different report size sheets for reason of space. Markers are
given to link the two parts (Ex: (1) on part 1 - Figure 14 continues to (1) on part 2
- Figure 15). The interested reader might decide to make copies and paste the two

parts together before continuing.

Some observations are now presented regarding the semantics conveyed by the dae-
mon startup Event trace diagram. When starting the daemon program, the user can
set a number of switches through command line arguments. For instance, the user can
specify which DDS to use (UDP or raw IP), the number of contexts or of packet shells
to instantiate. For the Event trace, UDP is presumed to be the DDS selected, letting
the default values apply for all other options. The daemon program would then be
started with command line xtpd -d udp as shown at the top-left portion of Figure 14.

Internally, a driver program including the C++ main() function (file xtp.C) is used
to compile the daemon process, with all major later calls being made from main()
(i.e., DAEMON—parse_args(), DAEMON—1init_daemon(...),
DAEMON-—mainloop()). Right at the onset, a daemon object instance gets created,
with global variable DAEMON being a pointer to this object.

The next call made from main() is to parse the command line arguments given by
the user (DAEMON—parse_args()). The program might terminate at this point if
parsing reveals errors. Otherwise, much will happen before the next call

(DAEMON —init daemon(...)) made from main() returns. The role of function dae-
mon.start() is to convert the user process into a Unix daemon process that can survive

after the initiating user logs out.
The second object being created consists of the data delivery service (dds.insrv =

new ...). As UDP is being used, as datagram type of socket (SOCK_DGRAM) is

opened with the operating system, and added to the set of file descriptors for even-

4

Figure 14: Sandia XTPdaemon startup dynamic model (part 1)

75

DAEMON d-pool head d-cm cm-cixt c-snd-fifo
XTPcontext-mgr XTPcontext crev-ffo
user xtpd.C-main() mildaemon packet-pool packet]...] context-manager context packet-fifo
'd !] [B [
| XTPdaemon, X) y Co Ve
XTPdsement DAEMON = & tmp; ! : X ' ' '
1 X Pl : : L.
d-ou!-dds-t-d-mﬂdst-UDPKype : : E o :
DAEMON. P! -args() : : . : : :
' [- '
DAEMON->ifi on("x?p" xrg-m:-:ﬂo Q-ALDR) . . X
inft t ! v ! L !
I n(on..lmt-dae#aon(Sl.SZ) : : : o :
it-daemon(..) ! ! - Lo X
daemon-start() | Il become a daemon, process: ‘ : : E ' ' qee part2
_Munqwahw — !)
setuprequest-qoeve(regaddr) | b E : :
! - |) :] : Tl (2)
: R L]
FD-SEI‘(dfeqm-sockct. &d-infds) : E b '
J] '
_thﬁnht-pool(d-nW) v E ! :
ket-pooknum-pkis) v N :
o D! '
o Yo '
daemon o '
)
E‘E‘f‘_‘f Xmg:n-mmgcr(im mlltw'rontem) n
context NTPontext® tmp = E\v muwml
luster
liset up the segd packet FIFCE
Iset up the regeive packet :
!l instantiate the buffer m# ©)]
“@
&)
©
M
®
c-blk-)
[xt=(context®) mn
%h—comext()
it-each-context()
tmp->c-ucast D kEMON->
T {return (m:i Em);)_ — 0
DAEMON->iin{loop()
-
main-loop()
switch(wait-on-input(shortest)}
select (32, &uept-ids, 6,0, &ti) /Iwni(ingfa'lqeventmhappurisuﬂeq.pxhtort' an

0s.

udp-dds-address
dds-address

del-serv

-in
udp-del-serv

-req
Xip-irans-msg
user-

in-eq siate-mach c
out-eq XTPstate-machine
event-queue state-machine

c-5-bm
c-rev-bm
buffer-manager

SOCK-DGRAM,)

&
...... Al
llllll IIMI..W “.Lll
R
SH
......] .m---m.l:m..

I

m............l...u.....t..-l

Ilwnilingchq:eulohappen: userReq, Jacket of limeout

................... 1 [} [
nnnnnnnnnnnnnnnnnnnnnnnnnnnnn B T
[
aeagioedioglieatioolicolegloale B * ﬂ
= 8 8 S eE &8 g =

del (part 2)

1C Mo

.

Sandia XTPdaemon startup dynam

Figure 15

76

tual use with the select() system call. The long arrow, all the way to the rightmost
vertical line of Figure 15 with label O.S. illustrates the opening of the socket with
the Operating System.

Next, the DAEMON object opens an internal Unix socket (family AF_UNIX), of
type datagram, with the Operating system (d_request_socket = socket(AF_UNIX,
SOCK_DGRAM,0), which is also added to the FD_SET for eventual use with the se-
lect() system call. Through select(), the daemon is effectively requesting the O.S. to
be notified whenever something happens on those two sockets. The path name used
to fill up the internal address structure is “/tmp/s.xtpd”. The communication path
with the client is now opened, and clients can specify this pathname when sending
requests to the daemon. There is only one such Unix domain socket to streamline all
client requests, which will thus be processed by the daemon on a FIFO basis. Noie
that the UNIX datagram facility does not provide flow control.

Next, still executing mtldeamon::init.daemon() code, the packet pool object gets cre-
ated (d_pool = new packet_pool(...)). In turn, when the packet_pool object initializes
itself (constructor), it triggers the creation of an array of two hundred

(start=head = new apcket[num_pkts]) packet objects.

Subsequently, the last satellite object instance of the daemon cluster (show by a
marker on the left margin of Figure 14) is created, namely the context_manager ob-
ject (d_cm = new XTPcontext_manager(...)). The creation of this object entails the
creation of all the other objects that belong to the context cluster. More precisely, the
creation of the XTPcontext_manager (constructor) entails the subsequent creation of:
(1) the two packet._fifo objects (c_snd_fifo, c_rcv_fifo); (2) the two buffer_manager ob-
jects (cs.bm & cr_bm); (3) the two event_queue objects (in.eq & out_eq); (4) the
state machine object (state_mach}; (5) a transaction user request message (c.blk req),
which will allow the daemon to receive the first incoming user request from clients.
Terminating this object creation frenezy, function init_each_context() is called to ini-

tialize each context and control is finally returned to main().

The last call made from main(), i.e., DAEMON—mainloop(), results in the execu-

[

tion of the main loop code that belongs to the mtldaemon base class. The daemon
stalls on executing the select() system call, effectively relinguishing control to the
operating system. Because of the former measures taken with FD_SET, the daemon
will be awakened by the operating system, on the earliest occurence of one the three
following events: (1) an incoming packet; (2) an incoming user request; or (3) a clock
timeout if none of the preceeding events had occured. The timeout is necessary to en-
sure the proper long term functionality of the daemon (not taking into consideration
preventing being swapped out from memory). Each time it occurs, the daemon does
a systematic check on pending work to be done such as: (1) checking XTP timers for
eventual retransmissions; (2) sending a new burst of packets subject to rate control;

etc.

All the object instances shown on the daemon startup Object diagram have been

created and the daemon process is fully functional.

4.4 SandiaXTP Client with O.M.T.

In principle, clients running at each host could simultaneously manage one outgoing
and one incoming data stream, with each client assuming alternatively the role of
sender and receiver. To simplify the preparation and the presentation of the Client’s
Object Model (O.M.), a clear cut division of responsibilities is presumed, with one
client acting as the sender and the other one acting as the receiver (unicast mode).
For the Event trace at least, the emphasis is also from the receiver viewpoint, as start-

ing a receiver is the next logical step to perform once a daemon is up and running.

The details of the model have been inferred from tracing and studying the source
code, using program bulk (file bulk.C and common.h) as the starting point. Program
bulk, which is one of the several examples of network application client programs
included with the SandiaXTP distribution, is meant to illustrate bulk data transfer.

It supports unicast as well as multicast.
Recall also that there is a need for an Application Programming Interface (API) be-
tween the client and the running instance of XTP for a user level implementation of

XTP (see Figure 10). Base class mtlif and the xtpif subclass embody this API for

78

the SandiaXTP implementation. Consequently, the model building path is straight-
forward: from program bulk, follow the calls made to mtlif/xtpif methods(); which
lead to the SandiaXTP source code, and eventually infer a meaningful Object Model
(Event trace, Object diagram and Class diagram) for the client.

4.4.1 Client-Receiver startup - Class diagram

The fundamental entity representing the Client consists of some application pro-
gram, which has to marshal the services of the SandiaXTP daemon for performing
some useful task for the user, such as reliable file transfer. However, in order to
marshal the services of the daemon successfully, the programming constructs used in
the application program would have to follow the rules of a well defined Application

Programming Interface (API).

Globally, the Class diagram shown on Figure 16 illustrates the class organization of
one client of the SandiaXTP daemon, with the pair mtlif baseclass/xtpif subclass
providing the functionalities of the API (call it the interface). The lib_manager is
a per-process entity. Only one instance of the lib_manager gets created (the role of
each class is better described later) per application program. The mtlif constructor
calls the lib_.manager initialize() method, which effectively executes itself only once

because of some internal flag that gets set the first time it is called.

Though this is not necessarily frequent, there could exist many instances (1+ notation
on the Class diagram) of the interface (mtlif/xtpif) created from the same application
program. Recall (from Section XTP - A system architecture view) that XTP
models each endpoint of a communication as a different contezt, and there could be
many contexts per client, with each one possibly represented at the client’s level by

one interface object instance.

Each new interface instance entails the creation of two buffer managers; one to man-
age the send shared memory segment, and another one to manage the receive shared
memory segment. The daemon also has reciprocal buffer managers for managing the

same shared memory segments on its side. For each interface, some user request ob-

79

sasn

Sswsuen "dix

(559201d 1od 3u0)
Jogewewqy

Aq papiaoxd
IdV sosn

weigoid

uonearddy

dewAdy

§0

dLXS

Class diagram

Figure 16: Receiver startup

80

jects also get created.

The creation of an interface object by the application program does not necessarily
imply a legitimate communication endpoint. Some contacts with the daemon are
needed for this purpose. After creating an interface object, the application program
can: (1) register with the daemon, i.e., communicate with the daemon for the assign-
ment of a context corresponding to the interface object, create the shared memory
segments, and get back from the daemon the key and the shared memory identifi-
cation numbers; (2) bind an address with the daemon, thereby allowing the match
of a FIRST packet with a listening context; (3) communicate with the daemon to
get/set the traffic specifications; (4) again communicate with the daemon for entering
the listening states; (5) communicate with the daemon to receive or send data. The

application need not step through all the phases for all the interface objects it creates.

Classes mtlif & xtpif: Basically, the role of the mtlif baseclass is twofold: (1) to
provide the necessary infrastructure to allow clients to contact the daemon and re-
ceive replies; (2) indirectly, through its associate buffer_manager class, to manage the

shared memory segments on the client’s side.

As part of its attributes, class mtlif has the data members that act as global vari-
ables for its class (static) such as: (a) a pointer to the first mtlif created from the
same application program; (b) a pointer to the last interface object created; (c) the
interface socket descriptor for sending requests to the daemon; (d) one address struc-
ture needed by all interface instances to get replies from the daemon; (e) one address
structure needed when sending requests to the daemon. As part of its other attributes
(i.e., the ones particular to each interface object), class mtlif also has: pointers to the
next and the previous interface object, if any; the process identification number; two

embedded buffer managers for managing the two shared memory segments.

Class mtlif has methods for communicating with the daemon, such as issue(),
send_to.daemon() and recv{from.daemon(). It also has some virtual methods such as
reg() (to register with the daemon) and release(), to be reimplemented the protocol-

specific implementation.

81

Subclass xtpif adds few attributes but many XTP specific methods to the mtlif base-
class. Some of the attributes added by XTP include: (1) the amount of data unread
waiting in the receive shared memory segment; (2) a configuration structure needed
for passing information to the daemon; (3) one embedded XTP transaction user re-

quest (in fact a data structure); (4) a structure to hold traffic segment fields.

Some of the methods added by the xtpif subclass include: (a) config(), which effec-
tively copies some XTP configuration parameters given as command line arguments
by the user into the configuration structure known by the interface (i.e., item (2) of
the preceding paragraph - the original one contained all default values); (b) reg(), to
register with the daemon, i.e., get back from the daemon a context identifier (key)
and the shared memory identifiers; (c) bind(), to bind one address with the daemon
for the purpose of FIRST packet context matching; (d) overloaded send() and re-
ceive(), with one version for regular [/O and another version for scatter-gather /O,

for sending and receiving data.

Class buffer_manager: This MTL class is described in Section Daemon startup

- Class diagram.

Class lib_-manager: Class lib_.manager is not really part of the class design. Its dec-
laration and definition, normally in separate files (declaration.h and definition.C), are
included in the mtlif definition file (file mtlif.C). The declaration is made as follows:
class libmanager{...} _1m. Class lib_manager has only one attribute, a flag (int
ready), which is set when the lib_.manager::initialize(...) method is called the first
time by the mtlif() constructor.

Class lib_manager has only two methods, namely initialize() and cleanup(). The pur-
poses of method initialize() are manifold: (1) build two address structures, one to
target the daemon when issuing user requests, the other to be reached by the daemon
(call it interface address); (2) open an interface socket, and bind with the O.S. the
interface address on this socket. This one IPC communication channel is valid for

all interface objects created from this application program/process. The application

82

program does the demultiplexing automatically by making API calls from a particular

interface object; (3) activate the interrupt handlers.

Method initialize() is called by the mtlif() constructor. Therefore, it is called each
time one interface object is created, but it is effectively executed in its entirety only
once (the first time) because of the ready flag (initialize(...) if(ready) return(l) ...).
Method cleanup() is called by the ~lib_manager() destructor to release the interface

objects and the interface socket.

Classes user_request & xtp_trans_msg: A client formulates requests and the dae-
mon responds. A data structure is needed to encode the contents of any message
exchanged between the client and the daemon. Base class user_request provides a
common header for all types of user requests, with fields such as key and shared mem-
ory identification numbers. Subclasses xtp_reg_msg, xtp_state_msg and xtp_trans_msg
provide protocol-specific user requests for respectively containing registration infor-
mation, traffic specification information for instance, and regular transaction informa-

tion with regards to the movements of the data to/from the shared memory segments.

Class mtlif provides a handle to base class user_request so that header fields are acces-
sible with protocol-specific user requests. The mtlif class declaration (mtlif.h) embeds
only the xtp.trans_msg user request, probably because this particular one is needed
throughout the lifetime of the client process. Other short lived user requests, such as
xtp_reg_msg and xtp_state.msg are created for specific purposes within the scope of

a particular AP[method call.

4.4.2 Client-Receiver startup - Object diagram

Figure Figure 17 shows the instance diagram corresponding to the Receiver startup
Class diagram (Figure 16). Here follows some specific observations explaining how
the Client startup Object diagram contributes to a better understanding of the San-
diaXTP software.

83

Ormq (3 (Fyuod / uonesyddy

(h (" IH. El f tsuondo uoys h f t2adey ayen)
Ax Iswsuen~dix 408 g[LIoYs uppe uowIos ssappe
yo~dix Syuos—dix ‘uajewp zgpiom uyoswTAMSd L X
Buniem~eimp 11 Sswi suwny dyx Jsw nes dix
ndix PpruysTAd Uy X 58 auies
‘pruysTpus uy sanbas"s08m
Koy popiom
tprdn y"pid g SX y
1 = pasansidary tpwd 1y
[= pajeisuys1agynqj1 sanbos"ssn m
1Isanba~j ,isanbas~128n nx tb
—— — . J o
wqTs 71 se8euvwTaagng 5
wq—IT 193euviuT1agng -) ' ‘er ggpiom) m
prdn~1 17pid P — .
it tozisTnpd zepiom m.w..
Aand g1 g1 — L | I tysew 5ok g[uoys '
S Ox IXAUTPL Q1w - Py—— ‘suoido 9juoys =y
— . *¥? —
= ‘ojur LojuiTwq LR m
Appo uowavp fi 1onus ippo bas onvis ‘prusys 1y X se swes w
a 4ppo_a13sn [} 1onus” ippy” bas onvys sanbai " sen 8
g Y205 fi 1uy opv1s fogufuq { 2
= os s I toz1s zepiom q 3ax J v
B, 1o1 i Jipw opois —— WM
< Pray fi Jinu onors mx.aEJuoﬁ_ vopsom
) $122[qo fijiu 1sSuotup pa.toys - opois 1y * .__8_ N“M” b
Jmu ‘pesy popiom (-)dnuespo i
[} N WP - IX } 1008 japadfy (“)ozrentuy o
ey a »’ Jdsuew” 3 ng ‘Kpear 1t (e
!
X _ - =
T T peay)1 N THED R J dewmion
: (so)
C&E._.x xg OFar1x :xg
" (o)
L Opear _(owm Opuss 0oa31 5005 weiSord

84

dm (lib_manager): The Object diagram shows clearly that there is only one
lib_manager object instance per application program, no matter how many interface
objects get instantiated from this application program. No programming link is shown
with other objects, as the lib manager object exists independently of the other objects.
The lib_manager object is created as part of the compilation process (see description
of Class lib_manager); its method initialize() is called by the mtlif() constructor;
the destructor (~lib_manager() cleanup(...);) calls its own method cleanup(), which

in turn calls the mtldaemon’s shutdown() method.

Xi - interface: The object diagram illustrates clearly the organization to the inter-
face: (1) with new interface instances inserted at the tail of a linked list; (2) with
per-interface-instance embedded objects such as the two buffer managers (if_r_bm,
if_s_bm) object instances and one xtp transaction user request object instance. The

mtlif pointer if_request provides access to common header fields such as key.

xrg & xs: The Receiver startup Object diagram also shows separately one xtp reg-
istration user request (xrg) and one xtp state user request (xs) object instances,
which can be used respectively for registering a context with the daemon and obtain-

ing/changing a traffic specification.

4.4.3 Client-Receiver startup - Event Trace

When staring program bulk, the user has to specify (through command line argu-
ments) all the options defining the role of the client and the details of the data
communication task. Some of these arguments are used by the client program (bulk)
to determine which mtlif/xtpif method() to call, whilst many others are eventually
conveyed to the daemon. Examples of such command line arguments include: (1) the
role of the client, be it sender or receiver; (2) the mode, unicast or multicast (Sandi-
aXTP examples are built around the convention that a lower case letter defining the
role implies unicast whilst an upper case letter implies multicast (Ex: -r would mean

a unicast receiver, -R would mean a multicast receiver); (3) the output rate; (4) etc.

As the emphasis of this subsection is neither the API nor a comprehensive setting

of the XTP parameters, a minimal set of illustrative command line arguments is

85

User COM.H xi if-r-bm _Im
xtpif if-s-bm
bulk.C-main() . mihif buffer-,manager lib-meager
User [bulk-rk-p..j.-J.. '
starts tp-config xcf; :
as recv tpif xi; X
Init. comm. channe! ®! /isee boxout |
with the dsemon itialize(req-addr)
mil:if-sock o socket(...) - ()
tp-c:n ig xtp-cf, // filled up with Sefaults
— >
f init x1f, xip-cf & ts (o default values| sec boxout 2
Getdefault config, | Xiconfig(XCHGETALL, &xcf)
Parse cnud line args [) while()
IFRECEIVER... linit-receivegl®xi &xcf,flags,input-rate,inpug-burst)
Config receiver iﬂil-mivex()
Lxi-configifisgsacl)] // trangfer config from xcf to xtp-cf
Reg. rcv with daemon| 5330 | D——
*(3)
if-request->cmd=REG
Issue .. 1o dacmon issue(if-request) / send ")Im“if'”‘k'"ﬂi"i > (
: n-m—n—:‘(g
Install buffers install-buffers(if-request)
a3 5 id)
o PRGPREPRpS. I
if-buffers-installed = |
istered =
xt 11 see boxout 3
Create addr 1o bind -sezmemuidnllseeholi "
& bind the address i
ind()
xip-ftate-msg xs(&xtr.NULL addiNULL XTP-BIND) o
i) /l same as REGISTER - Jines (4) & (5) . (8)
Getdft traffic spec li-mpt((ﬂtﬂ"‘)&!!ﬁ;
>
& possibly change it b squiispec(iraffic)rspgs] /e as above I same s above ?
Listening 1" xi-alisten(block. £0pt) o
|Tm()
xtr.
m . -
i W‘Fﬁl—.ﬂm

Figure 18: Client-receiver startup Event trace - part 1

86

0sS.

xtr xrg xs
Xtp-trans-msg xtp-reg-msg xtp-state-msg
| Uuser-request , user-request | user-request
[] !] 1) '
4 i T T
: boxout 1 ! ' boxout;2
/1 dono only otc: per process ! : xtr.upid = if-q'ﬁd; '
li fyi;'n mfk 5 :ea::r;u&p&m;ggl(DE.?RAM: 0 xtr.snd-buf-siz.e B SNPBUFSIZE;
mtlif:if-sock & socket(AF- ;
mktcmp(mtllﬂ if-user-addr.sun-path); l ' nm:v-buf-sn# - RC?,BUFSIZE'
L Nmpidg XXXXXK 1 sipcfaate=G
]
bind(muif: .fsock.mmt fuseraddr,.) tssformat = 0§0L:
" acw{atc mta'rup(handlers X ' X '
m _mﬂ_im_‘mkdl..lllm.MIML :r . : .
1 ! ' '
|) |] !
2 —Xip-trnggnsg xi¥; : ' ! X
' ' 1 !
]
b'Txout 3 : E : btlixout 4
/1 make a copy of some of the results : ' addms-segmclnl addxf
: oy addr.IPaddr.stchost =i(word32) INADDR-ANY
v addr IPaddr.dfthost =(word) INADDR-ANY:
! ' addr.[Paddr.shport -:Pom (2025)
b
' '
] 1
] '

(6) —info.= fm-i

I i T T I ey . SR

t)) i s)

xip-sisg-msg 4s(.... XTP-GETTSPEC)

9

Blocks until a HIRST packet arrives !!

(lo) __im"ﬁ.lr\

Figure 19: Client-receiver startup Event trace - part 2

87

presumed, which consists of the following: (1) client is to act as a unicast receiver
(hypothetical option label -r); (2) Client is to block (BLOCK) until the arrival of
matching FIRST packet (hypothetical option label: -k); (3) user sets the protocol
data unit size (PDU) (hypothetical option format: -p ...); (4) user sets the incoming
data rate (hypothetical option format: -j ...); (5) user sets the incoming burst value

(hypothetical option format:-J ...).

The -r argument is used by the client (bulk) program to determine which interface
method to call, such as receive(). The other arguments (-k, -p, -j, -J) are eventu-
ally conveyed to the daemon via arguments to interface methods called from main().

Hence, the hypothetical client would be started with the following command:

bulk -r-k-p... -j ... -J ..

The following paragraphs make reference to the Receiver startup Event trace shown
in Figure 18 and Figure 19. The upper-left arrow with label bulk -r -k -p ... -j ...
-J ... represents the initial action of the user starting program bulk.

Create the interface (xi) and the buffer manager objects (if_r_bm & if_s_bm):
The driver program (main()) uses the xcf configuration structure (xtp.config is de-
fined in file XTPtypes.h) to store various options typed by the user having implica-
tions for the daemon. The xcf structure is filled up later when parsing the command
line arguments. At the beginning of main(), the declaration xtpif xi also triggers the
creation of the xi interface object, which is a compound of MTL baseclass mtlif with
the xtpif subclass. The xtpif() subclass constructor immediately calls the mtlif() base
class constructor, passing as parameter the local address for sending requests to the
daemon. This call has the following form:

xtpif::xtpif():mtlif(XTP DAEMON_REQ.ADDR). The local address of the daemon
is defined in file XTPtypes.h (i.e., ‘*/tmp/s.xtpdg’’). Recall that this same address

was used by the daemon when setting its request queue (see Figure 14, line (2) ff).

The mtlif object uses two address structures: (1) if.daemon_addr to store the local
address of the daemon; (2) if_user_address to store the local address of the client.
The function of these two data structures will become evident shortly. The mtlif

88

constructor also creates two buffer managers for this client (if_r.bm & if_s_bm).
These will manage respectively the receive and the send shared memory segments for
the client. The daemon has its own reciprocal buffer managers. Even if the client is
to act exclusively as receiver, the daemon still creates two shared memory segments.

On the client’s side, at least two buffer managers are created by the mtlif object.

Initialize communication channels needed to communicate with the dae-
mon: A call is then made from the mtlif() constructor to the lib_manager for ini-
tializing the communication channels needed by the client to communicate with the
daemon (Im.initialize($1) on Figure 18). Such a call is made only once per process
when the mtlif() constructor is first called, no matter how many interface objects are

later created from the same process.

Let us now focus on the details of the work done by the lib_manager, as shown on Fig-
ure 19, boxout 2. First of all, the daemon lccal path address string (¢ ¢ /tmp/s . xtpdg’’)
received as an argument gets copied into the if.daemon_addr structure (refer to be-
ginning of boxout 1: strcpy(mtlif::if daemon_addr.sun_path = $1)). Not shown on the
diagram, the family field would also be filled in (i.e., mtlif::if.daemon_addr.sun_family
= AF_UNIX). This completed if_daemon_addr structure is used later when the client
needs to send requests to the daemon. It is passed as the to argument with the
sendto(...,struct sockaddr *to,...) system call, which specifies the protocol-specific

address of where the data are to be sent.

Next, it is also necessary to make sure that the client can be reached by the dae-
mon. As shown on Figure 19, within boxout 1, the steps are as follows: (1) open a
UNIX domain datagram socket with the Operating System, which is always acting
as the middle person for the exchange of messages (mtlif::if sock=socket(AF_UNIX,
SOCK_DGRAM,0)); (2) fill up a local address structure:

(a) mtlif::if user_addr.sun_family=AF_UNIX),

(b) strepy(mtlif::if user_addr.sun_path, ‘ ‘/tmp/dg . XXXXX*’),

(c) mktemp(mtlif::if user_addr.sun_path). The mktemp() system call generates a
unique pathname within this host; (3) bind the local address with the operating

system so that the client can be reached by other processes, i.e., by the daemon in

89

this case (bind(mtlif::ifsock,...)).

At this point, the client has performed all the necessary steps to be reached by the
daemon. The links are to be done by the Operating System, which knows the ad-
dress structure of the client because of the bind() system call. When receiving, the
daemon uses the recvfrom(..., struct sockaddr *from,...) system call, which fills in the
protocol-specific address of who sent the data into from. The daemon can then use
this from address structure as an argument when using the sendto() system call to

return a reply to the local client.

Start building the data structures for contacting the daemon: Now, back to
the mainstream of Figure 18. As the IPC mechanisms are in place, the focus becomes
preparing the message contents for registering with the daemon. For this purpose,
the xtpif object has three attributes: (1) xtp_cf, a configuration structure (xtp-config
xtp-cf), which gets filled up with all the default values by the xtpif() constructor; (2)
ts, a traffic structure (traffic ts), which also gets filled up with default values by the
xtpif() constructor; (3) xtr, a xtp transaction structure (xtp_trans.msg xtr - arrow
(2) on Figure 18). Sample initialization values used by the xtpif() constructor to fill

up these three data structures are shown on Figure 19, boxout 2.

Parse the command line arguments: With regard to the handling of command

line arguments, the logic of the program steps into a three-phase operation:

1. From main(), using the interface config() method, obtain a copy of the default
configuration parameters as known to the interface object
(i.e., xi.config{ XCFGETALL, &xcf) - which triggers a copy of xtp.cf into xcf);

2. Parse command line arguments, set some flags and possibly change some con-
figuration parameters copied to the xcf structure controlled by main(). For
instance: (a) the -r argument would result in the setting of some flag, such
as is_recv=TRUE; (b) -k would result in changing the extra modes field (i.e.,
xcf.extra.modes |[=BLOCK); (c) -p would result in xcf.pdu_size=atoi(optarg),
flags|=XCFPDUSIZE; (d) -j would result in input_rate=atoi(optarg); (e) -J
would result in input_burst=atoi(optarg). If some other command line argu-

ment were used, such as to set the output rate for a sender, then some field of

90

the configuration structure would be set accordingly (i.e., xcf.rate=atoi(optarg),

flags|=XCFRATE).

3. From main(), return the modified configuration structure (xcf) to the interface
object, which will eventually convey it to the daemon. This latter phase is
greatly expanded in the Event trace diagram, as explained in the following

paragraphs.

Given the -r option, call init_receiver(&xi,&xcf,flags) made from main() has many
implications. Its arguments have the following purposes: (1) &xi, a memory address,
is needed to specify which interface object is concerned; (b) &xcf, conveys the address
of the configuration structure as known by main() after the parsing of command line
arguments; (3) flags specify which fields of the configuration structure were changed,
if any. The goal of the next call, xi_config(), is to update the xtp_cf interface con-
figuration structure from the xcf structure provided by main(). So doing, control is

passed to the xi interface for the next several calls.

Build the registration request object: Always keeping in mind the goal of es-
tablising the first contact with the daemon, the next significant call is made from
the xtpif object, i.e., xtp_req-msg(&xtr,&xtpcf, REGISTER). This call results in the
creation of a xtp registration user request (i.e., a data structure), with all the nec-
essary fields automatically filled up when the object gets instantiated, such as: (a)
xrg.cmd=REGISTER; (b) xrg.extra.modes=xtp_cf.extra_modes;

(c) xrg.pdu_size=xtp_cf.pdusize; (d) xrg.upid=xtr.upid. A pointer is set to this data

structure (if_request=_&xrg).

Contact the daemon: The stage is now ready for contacting the daemon, which
is done from mitlif with the issue(if request) method. Method issue(..) is defined as

follows (file mtlif.h):

int issue(user_request* req) {
return(((send_to_daemon(req, req->len) == EXOK) &&
(recv_from_daemon(req) == EXOK)) ? EXOK : EXCOMM);

91

int send_to_daemon(void* message, int len) {
return((sendto(if_sock, (char*)message, len, 0,
(struct sockaddr*)&if_daemon_addr,
if_servlen) != len) ? EXCOMM : EXOK);

int recv_from_daemon(void* message) {
return((recvfrom(if_sock, (char*)message, MAX_MSG_SIZE, 0,
(struct sockaddr*)0, &if_tmp) < 0) ? EXCOMM : EXOK);

Consequently, the client blocks at this point awaiting an answer from the daemon. The
message is conveyed to the daemon using the if socket, but providing the if_daemon_addr
structure as the destination address argument. This exchange with the daemon, via
the Operating System, is illustrated on Figure 18 and Figure 19 with lines (4) and
(5) spanning both parts of the Event trace diagram.

Synopsis of the processing at the daemon: Though tracing the ensuing sequence
of events on the daemon side is not the purpose of this subsection, nor is it shown
on the Event trace diagram (in fact, it happens between lines (4) and (5)), a brief
outline is given here. The daemon would return from the select system call

(mainloop(); switch(wait_on_input(shortest); select()) and control is passed to method
XTPdaemon::dispatch_request(...), case REGISTER. A call is then made to the con-
text manager to initialize a context (d_cm—init_context(...)). The context_manager
assigns a key, and stores it in the user request structure so that it gets returned to

the client. Similar steps are performed for the shared memory identification numbers.

Complete registration request: Control is back to the client, which got its reply
from the daemon in a user request data structure. The base class user_request has
fields such as key, snd_shmid and rcv_shmid. As the client’s buffer manager objects
already exist, calls to buffer_manager’s attach() method are made to get the starting
address of the two shared memory segments, using the shmid’s returned by the dae-
mon. Only the call for the receive segment is shown on the Event trace diagram. The

end of the registration procedure includes making copies of essential information for

92

later transactions with the daemon (see Figure 19, boxout 3).

Create and bind an address with the daemon: The next step consists of filling
up and binding an address structure so that this bound address can be used as a filter
in discriminating against incoming FIRST packet addresses (the sender must specify
the same transport level address when sending). Otherwise, how could the daemon
be able to identify a proper listening context? SandiaXTP being a user level imple-
mentation, a DDS port number would steer a FIRST packet to XTP, but no further.
For this purpose, XTP dispenses logical port numbers to each context. The creation
and the completion of the client’s address structure for use with the bind() method is
illutrated on Figure 19, boxout 4. Following the same sequence of calls made for the
REGISTRATION request, method issue() is used to contact the daemon for binding
the address to the context. Note that the daemon makes no bind() system call to the

Operating System, keeping the issue at the user level.

Traffic specifications: Now at the bottom of the Event trace diagram, the next
step triggered from main() (common.h) consists of obtaining the current traffic spec-
ifications from the daemon, and making changes as per the command line arguments
typed by the user (-p, -j and -J arguments). Handling this isssue independently from
the registration request confers more generality to the mechanism, which could again
be used later to change the traffic specifications. The daemon returns the information
into an xtp_state_msg structure, which includes as one of its fields a traffic structure
(trafic tpesc; with fields maxdata, inrate, inburst,...). The client can then set the
desired values(from main() - common.h) to: (a) tspec.tsl.maxdata=xcf—pdu.size);
(b) tspec.tsl.inrate=input_rate;

(c) tspec.tsl.inburst=input_burst. Method xi—puttspec(...) is then used to convey
the revised traffic specification values to the daemon, with issue(...) and following
the same sequence of calls made for the REGISTRATION request.

Listening: From main() (common.h), interface method xi—listen(0,&opt) is the last
one called. Because of the -k command line argument, block has a non-zero values and
the method will block until the arrival of a FIRST matching packet. The description

of the Receiver startup Event trace is now complete.

93

5 Rate Control with SandiaXTP

The goal of this section is to disclose the detailed mechanisms used by SandiaXTP to
implement the XTP rate control feature. The methodology used consists of a three

phase abstraction process:

L. First, starting from the source code and with the help of Event trace diagrams,
stage the interactions of a sender process with the daemon for sending data,
eliminating as many details as possible that have no critical impact on rate

control.

o

. Second, using the Event trace diagrams prepared in step 1, abstract (preferably
on a single page) the salient points of the rate control algorithm buried in the
SandiaXTP source code.

3. Third, using the algorithm produced in step 2, apply it to a typical send scenario

with the intent of gaining insight into its functioning.

The following subsections present the results of this investigatory work into the rate

control mechanisms used by SandiaXTP.

5.1 Rate control Event traces (Sender and Daemon)

The rate control Event trace for the sender fits on a single page and is shown on
Figure 23. The one for the daemon is much more intricate and consists of parts I,
II, and III, respectively shown on Figures 20, 21, and 22. These two Event trace
diagrams are commented on in the following paragraphs, which are ordered as per
the interleavings of events that would normally occur when a client process sends

data to a remote receiver via the daemon.
DAEMON - Part I (Figure 20)

The dynamic behavior of the daemon is implemented with a do {...} while (!dae-
mon_stop) loop. At this point, it is presumed that the daemon was started at some
host by the user and has halted execution on the select(..., &timeout) system call wait-

ing for client orders. The previous calls for starting up the daemon are not shown on

94

DAEMON d-pool d-cm ¢ d-out-dds 0.sS.

XTPdaemon XTPcontext-mgr XTPcontext XTPpacket udp-del-srv
xtpd.C-main() mtldaemon packet-pool context-manager context packet del-srv
DAEMON->rhai
"m;J'“"o DAEMON
i Part|
'/lﬁ.lggs waiting Tr arders
- |
do 1
switch(wait-on-in

itchiwail-on-in t(shortest)) /{ timeout, usef Jequest, or #nlommg chket

iftimeopte=-1) timeout ={POPL-FREQ // | or 10s
i L-FREQ)

select (..., &timeout) I THE SENDFR

if(FD-ISSEI‘(d-mqm-kaetlr&tcst-{ds)) returt (UEERREQ):
case USERREQ:
itch(dispatch-requestireq-msg, &uses-addr)

(d- ;m->ﬁndmex((Tq&->key))

|

¢ continuation, see
DAEMON

Parti

—

P e e e e e e e e e v e e e e e e e o e e o

Figure 20: SandiaXTP rate control - daemon Event trace Part I
95

xtpd.C-main()

DAEMON

XTPdsemon

d-pool

mtidaemon packet-pool

iy to
ifi?
et

i case US - conti
swll:Fl:gl-mT'
RPLY:

send-reply(..) //

any

) {
-from-dds()

et

Figure 21: SandiaXTP rate control - daemon Event trace Part II

d-em ¢ d-out-dds
XTPcontext-mgr ~ XTPeontext XTPpacket udp-del-stv
comext-manager context packet dell-srv
) i continved fojm DAEMON
snd-fifoQ) //se m
I aFIRST sent before
DATApacket dpkt comm-lL!LwMI)
it [ls-active()
1l do this while th data left to send
while (bytes-left 0] {
Il get a packet
1t if this packeq is subject to rate L, jnd the
Il credit is O, mprk it s going ontot
if (burst = 0 & gredit == 0) put-onfifd = |
1 read from the segd buffer to fill the
1 put the packdt lhesendFlFOtoL later
if (put-on-fifo
c-snd-fifo-pp
11 start the gate kontrof timer, if wi
if (burst !={0 Ir-timer-arm
stan-timey() // see boxout Pyt {
else {
// launch
es=3ap
1l do the ntrol stuff
ifburst != 1) {
credit -hdr->dlen;
if{'r-tirger-prmed) {
stary-rtimer(); //see box I
DAEMON}>d l->put->b|ck(01h)
end clse
mum-packets+
} i end while (.}
retum (xtr->data-{en)
} 4 end if (is-active)
Lend send(...
1 bontinuing from Part [
rtplylolhcsa!ﬁ
ing work
for continuatian, pee
DAEMON
Part

96

xtpd.C-main()

DAEMON

0s.

d-pool d-cm ¢ d-out-dds
XTPdaemon XTPcontext-mgr XTPcontext XTPpacket udp-del-stv
mitldaemon packet-pool context-manager context packet dell-sw
1)
A uy to satisfy any g work {continuation from Part Ii) m
= d-cm->satj:
7 A T T 1T X
| infshomest=-1 :
V| I
X a context from ive list head X
: repister XTPcontexty c ¢ (XTPeontext®)activethead() :
: C g for work to do :
t]
: ke processing awiﬁng packets :
: :
]]
[]]
1]
] !
]]
' '
] i
) [}
' Bmestam w i
]]
' shortest = (int) (c¢-tinjer - now); !
: i
1 1
] [}
: tijer)) // RTIMER bis ekpired |
: ;
' imet-amied = 0 :
' adi =/burst '
E shortest = miz ::I(r-timcr - now), Jan) E
: :
[}]
] $
']
] [}
]]
] '
]]
i | 14 end while(...) '
X if [shortest != - 1) requmi(max(shorest, 50} :
: :Iremn(slmm) !
v f engd satisfy() '
Wead case USERREQ - 1{-1--------~ I e “fooomeoeed =t----- '
case TMOUT
11 try o satsfy any outstanding ﬁ?rk
—shotest o d-cm-satisfy()
m 1 see boxout{Parg 11f
l}wlnle !daemon)-stop)
Ihend main-loop()

97

Figure 22: SandiaXTP rate control - daemon Event trace Part III

User

COMH

bulk.C-main()

bulk -t <..>| -a <.> -b <.

main()
block =0

L £ 3 3
case 'a’
case ‘b’
case 'c’
case 'C’

xcf.bu

case 'f’
first-opt

case 'S’
xcf.ext
cast. ond-
/1 additiol
xcf.options

I/parse comnde line arguments

amount «
bufsize =

xcf.rate «

xi
xtpif

if-s-bm

melif buffer-manager

atoi(optarg)

atoi (optarg)
= atoi (optarg)

el

send(..)

ize = atoi (optarg)
modes = SELRETRANS

f-size = atoi (optarg) //size ﬁf sdnd shared memory segmelu

options
= RES | RCLOSE

xcf.extra-mixdes = GRACEFULCLOSE SO

init-sende“«

infit-sender(...)

)

Il register with daemon

licreate & bind a transport le
11 ger & set traffic spec

and ()

char* buf = (char®) malioc
soptions = first-opt; /fi.e. S
word32 blk;
blk = (soptions & (SREQ|
do {

res xi->send(buf, len, ILR

> ¢<.>Ce> [pa -

atoi (optarg) //user send bquf gze

= SREQ //SREQ in FIRST pickdt

5 -We.>

Sender

| CNTLONEDGE

0id* p, length, block, opfions)
ite the data from p into the send buffer

te)

xtf.cmd = XTP-SEND

xth.extra-modes = block & RLOCK
l:k:! the send request to the daemon

(&xtr)

0s.

pkis++ -
Sent +e= res
if (sent = amount) done =

0
-

} while (‘done)

Figure 23: SandiaXTP Rate Control - Sender Event Trace

98

the diagram.

The select() system call allows a user process (i.e., the daemon) to instruct the oper-
ating system kernel to monitor the eventual occurence of several events and to wake
up the process only when one of these events occur. Effectively, the semantics of
select() is: “return when one of the specified descriptors is ready for [/O, but don’t
wait beyond a fixed amount of time, specified by variable timeout”. The descriptors
could be a user request coming through an internal UNIX socket, or an incoming

packet coming through an Internet UNIX socket.

The monitoring activity of the daemon is illustrated by the highlighted rectangle
shown on Figure 20. The focus of the inquiry now switches to the Event Trace dia-

gram of the sender shown on Figure 23.
The sender (Figure 23)

To embody the sender process, program bulk (one of SandiaXTP example programs)
is used with typical rate control related command line arguments to suit the present

purpose. These options are now reviewed:

¢ -a <...> specifies the amount of data to be sent, in bytes (say of the order of
1 MB)

o -b <...> specifies the size of the user buffer for transferring the data from user

space to the shared memory send_area
o -c <...> specifies the suggested output rate, in bytes per millisecond (Bpms)
¢ -C <...> specifies the suggested output burst, in bytes

o -f specifies that the FIRST packet be sent with the SREQ bit set so that the

receiver reacts immediately
e -p <...> specifies the Protocol Data Unit (PDU) size, in bytes

e -S specifies usage of the selective retransmission flow control mechanism (the

other being go-back-N).

99

o -W <...> specifies the size of the send and receive shared memory areas.

Given these configuration parameters, a call is made to initialize the sender

(init_sender(...)), which is not traced further, as the steps are very similar to the ones
needed to initialize a receiver. Such a scenario has already been traced in detail in
Section 4.4.3. Then, the sender is about to engage into the send operation with call
to method send(..). Memory is claimed for a user buffer of size bufsize, as specified

by the user.

This same buffer will be used repeatedly to transfer all the data to the send shared
memory area; its size defines the granularity at which the data will be passed to the
send shared memory area; and its size combined with amount defines the number of

send requests that will be issued to the daemon for sending all the data.

The options have been selected such that the user does not block on acknowledge-
ments (i.e., blk=0), which means that the sender will block on each send request
issued (each time method issue() is called) to the daemon, but the daemon won’t
delay much before returning its reply to the sender. Otherwise, each time method
issuc() is called (see later the do {...} while (!done) loop), the daemon would delay
its reply until an acknowledgement is received for the last packet issued as a result of

this request.

Then the sender begins its send loop (do {...} while (!done)). This loop is cycled
repeatedly to send amount of data. The quotient of amount by bufsize defines the
number of cycles, plus eventually one more cycle for the remainder. The services
of the zi interface, and subsequently of the buffer_manager are invoked to copy the
data into the shared memory area (if_s_bm.write(p, length, overwrite)). The request
is then conveyed to the daemon via the the issue() method, with command XTP_SEND.

The focus now switches back to the daemon, never to return to the sender.
DAEMON Cont. - Part I (Figure 20)

As a consequence of the user request issued by the sender, the daemon is awaken by

the Operating System, i.e., it returns from the select() system call. Being a request to

100

send data (case USERREQ: & case XTP_SEND:), the XTPcontext method send(...)

is called, and much will happen before it returns.

Method send(...) is essentially composed of four parts: (1) on behalf of the sender,
a call is made to method drain_snd_fifo() to clear any outstanding packets that may
have accurnulated on the send FIFO queue of this context, if the value of variable
credit (and other conditions) allow it; (2) the discharge of the work being conse-
quent to the request, resulting whether in sending a packet immediately if possible,
or otherwise enqueuing the packet on the send FIFO queue to be sent later; (3) the
issue of the reply to the sender (method send_reply()) so that the sender can do one
more cycle in its do {...} while (!done) loop (see Figure 23); (4) an attempt to satisfy
any outstanding work, now on behalt of all contexts that the daemon may be dealing
with. With respect to rate control, it is the call to method satisfy() that is really
significant. Method satisfy() is shown on Part III of the daemon Event Trace (Figure

22) and its logic is explored later while describing the rate control algorithm.

In terms of tracing, case TMOUT adds nothing new as it calls only method satisfy(),
which will be dealt with shortly.

5.2 Rate control algorithm with SandiaXTP

The process of abstraction is now carried one step further in this subsection through
the presentation of the rate control algorithm inferred from the Event trace of the
daemon, which is shown on Figure 24. As space is at a premium on this diagram, it
has dictated the exact form of the language used to express the algorithm, which is
a mixture of pseudo-code and code constructs borrowed from the SandiaXTP source
code. At times, when the source code is too complex or would look rather incompre-
hensible, it is replaced by a C++ style comment. For example, //send the packet is

used in lieu of the more precise source code, which would be:
int res = dpkt.send(is_mcast xmitter()?c_mcast.dest:c_ucast_dest)

In any case, the labels used on the Event trace diagram are much more precise and
can be used to clarify statements that would appear confusing in the algorithm. The

relationships between the rate control Event trace diagram for the daemon presented

101

Send Rate Control Algorithm with SandiaXTP wait-oc-input (int timeour)
initially: rate=tspec.ts!.outrate = xrg->rate if (timeout==-1) timeout=POOL_FREQ
burste=credit=tspec.ts|.outburst = xrg->burst else timeout = min (timeout, POOL_FREQ)
POOL-FREQ = 10000 (10s) select (... &timeout)
maln IoopO{ drain-snd-Bfo()
shortest = -| while(... packet length <= credit)
- do{ dequeue packet
E - switch (wait-on-input(shortest)) { if (burst ' 0 && !r-timer-armed)
.. case USERREQ: start-ntimer()
' 10 case XTP-SEND: credit -= out-hdr->dlen
: send(...) | llsend the packer
S Iffirst, aempt 1o clear any packets from the FIFO queve
: - drain-snd-fifo() satisfy()
: . * Il presume a FIRSTpacket was sent before shortest = -1
Dol if (is-active) while (there are contexs)
© © ¢ while (more bytes to send) { ¢->drain-snd-fifo()
© D if (burstis0 && credit==0) put-on-fifos| shortest = check-timers()
Dot (put-on-fifo) ¢->drain-snd-fifo()
- enqueue paket on FIFO if (shortest '= -1) return (max(shortest, 50))
/1 start the rate control timer, if warranted else return(shortest)
if (burst!=0 && !r-timer-armed) 11 end satisfy()
Dol start-rtimer()
D else o check-timers()
/1 launch the packet... sow = DAEMON->timestamp()
if (burst '=0) // do the rate control stuff int shortest = (int) (c-timer - now)
credit -= out-hdr->len /CTIMEQUT shouid be later than RTIMER
if ('r-timer-armed) start-ttimer() _ Hicheck the RTIMER
}// end while (more...) if (r-timer-armed)
: }/ end if (is-active) if (timer expired)
Lot Nendsend() © stop-ttimer()
© Iinow, ry to satisfy any outstanding work © rdimer-armed =0
D00 shortest = d-cm->satisfy() credit = burst
: : o ¢ Nendcase XTP_SEND shortest = min ((r-timer - now), shortest)
-+ . [l end case USERREQ } Hfend if(r-rtimer-armed)
-+ . case TMOUT: retum (shortest)
/itry to satisfy any outstanding work 1 ead check-timer()
: ;. shortest =d-cm->satisfy()
-+ - /lend case TMOUT L __|start-rtimer()
E - Il end switch(wait...) now = DAEMON->timestamp(Q)
,}wlnle (’dqemon) rtimer = bow + (burstate)
} ___rdimer-ameds]

Figure 24: Send rate control algorithm with SandiaXTP

102

Ju3s pue
pananbap 19x0ed

Riqe|teae 1pand yy
1w~ QL puas

1XA0 2u0 yord

qujreAr 1P
dwa~ Oy puas

¥

s
eu__o:cov_ﬂ“u&

uotisuen
sinourered) (o0
e il)
puadiy

puas 01 sa14q s0ul ou
¥y Aiduso Npasd
SIX9IU0D [[e 2000 JH I JO
ySnong Sujoho teyaq uo June

(0§ “1sauioys)xew

doss uo!

©)

(~*)1231as uo Sunrem

G0
O

pu3s o} sakq Iy
37 JAqe{pAe 1pasd

dqejteatpad py
Kidwo~ Q1 puas

1u3s pue
ponanbap 10wd

aNds dLX
n 15anbas
¢ 180

waumuad jou
{ pasojdxa jou

Suwooul
paAtasal 1ayoed

19y9ed

Figure 25: SandiaXTP rate control algorithm - EFSM

103

main-loop()
shortest = -1
do {

shortest = d_cm->satisfy()

satisfy()
shortest = -1
shortest = check-timers()

check-timers()
shortest = (c-timer - now) = more

if (r-timer-armed)

shortest = min(r-timer - now), more)
__retumn (shortest)
return (max(shortest,50))
// shortest is then passed to select(..., shortest)

while (!done)

Figure 26: SandiaXTP rate control Algorithm - Updating of shortest and timeout

in the previous subsection, and the rate control algorithm presented on Figure 24
should be relatively easy to establish by the reader, as many of the keywords that
appear on both diagrams have the same font size and also have been highlighted
(bold) (Example: keywords do { and } while (!daemon_stop)).

The right hand part of Figure 24 shows some methods, circumscribed with boxouts,
which are generally called more than once from the mainstream algorithm shown
on the left hand part of the same figure. To save space and also help following the
logic of the algorithm, only the name of these repetitive methods are given in the
main algorithm, with arrows pointing to the boxouts that contain the method itself.
For convenience, the dynamic aspect of the rate control algorithm shown on Figure
24 is also shown on Figure 25 in the form of an extended finite state machine (EFSM).

Before describing the logic of the algorithm itself, let us consider separately two of its

important dimensions and their related state variables: time and credit management.

104

Time management

The management of time is of the essence in rate control. The two main variables
names used by the algorithm to manage the time aspects are shortest and timeout.
Variable shortest, in fact, appears at three scopes of visibility. The highest most
general scope is within the main_loop() itself. The second level of visibility of variable
shortest is within the scope of method satisfy(). The third, most restricted, level
of visibility is within the scope of method check_timers(). In fact, variable shortest
could have different names within the scope of these three methods. During the
course of the execution of the algorithm, the value of shortest is bubbled up from
the lowest level (i.e., check_timers()) to the most gencral level which is within the
scope of the main_loop(). As seen later, there are some conditions that may restrict

the exact value of shortest that is bubbled up.

Variable timeout is particular to method wait_on_input() (see boxout). In fact, once
the daemon is rolling, it is the value of shortest as it is at the end of one cycle of the
do {...} while (!daemon_stop) loop that imposes itself to timeout, i.e., timeout

being a parameter of method wait_on_input(timeout) takes the value of shortest.

With regards to the dynamics of the program, variable timeout is particularly impor-
tant, because it is passed to the operating system via the select system call (select(...,
&timeout)), and it effectively defines how long the daemon will sleep if no user re-

quest is issued in the meanwhile or no packet comes in from the network.

The algorithm is such that timeout is never larger than POLL_FREQ (i.e., 10s), such
as when the daemon is first started up, or never smaller than 50 ms (see boxout with
method satisfy()). Generally, for the present staging, the value of timeout is equal to
RTIMER if larger than 50ms, or 50ms otherwise. The implications of this minimum

of 50ms will be explored extensively later in this report.

Figure 26 is meant to clarify the levels of visibility of variable shortest and how it

is passed to select.

105

Credit management

The management of variable credit is also critical to the operation of the rate control
algorithm abstracted. Before starting a new burst of packets, the value of credit
equals the value of variable burst, which itself is specified by the user. Then credit
is decremented each time a packet is sent, until the value of credit is smaller than

the size of a packet. This occurence signifies the end of sending a burst of packets.

With regards to the algorithm presented on Figure 24, decrementing credit is done
at two locations (both highlighted with bold italic fonts). One location is the third
line after the else statement, which represents the case when the daemon has been
contacted by the sender and is reacting to this request by sending a packet. Another
location is at the end of method drain_snd.fifo(), which occurs when the daemon

checks for work to be done.

In contrast, variable credit is incremented to the value of variable burst only once
in the algorithm, i.e., towards the end of method check_timers(). This occurence rep-
resents the case when the rtimer has expired and the daemon is about to begin the

operation of sending the next burst of packets.
Dynamics of the algorithm

The execution of the algorithm is started at the beginning of the mainloop(), as
shown on Figure 24. At this point, variable shortest is set to -1. Consequently,
variable timeout takes the value of POLL_FREQ (i.e., 10s) and select is called for
waking up the daemon at most 10 seconds later (select(..., &timeout=10000)).

case USERREQ:

Soon, probably before the timeout occurs, the daemon is likely to awaken as a result
of a send user request issue by the sender. With regards to the algorithm, this event
translates to case USERREQ: & case XTP_SEND:. Now, the algorithn is being ex-
ecuted by the daemon on behalf of the particular context that sent the user request.

106

Immediately at the beginning of method send(...), a first attempt is made to drain

the send FIFO queue of this context.

This step is reasonable, as the send operation may have been ongoing for a while and
some packets may already have accumulated on the send FIFO queue of this context.

These packets should have priority over the one(s) underlying the current user request.

If there is still credit available and the r_timer_armed flag is not set, it effectively
means that the daemon is starting to send a new burst of packets out of the send
FIFO queue, and measures should be taken now to detect the end of the current
burst. Consequently, method start_timer() is called from drain_snd_fifo(). The effect

is of computing a new value for the r_timer variable, and arming it.

On the other hand, if the r_timer_armed flag is set to 1, then it just means that the
daemon is continuing to send a burst of packets, and only decrementing the value of

credit is neceded.

The execution of the algorithm has now reached the line if (is_active). The goal is to
handle the data that underlies the XTP_SEND request passed by the sender; i.e., make
packets and either send them immediately, or place them on the send FIFO queue
of this context for sending later. If the value of credit is nil (credit == 0 is true),
then the packet has to be enqueued on the send FIFO queue; consequently, the flag
puton_fifo is set accordingly and the packet is enqueued. If the r_timer_armed

flag is not set, then method start_timers() is called to prepare for the next burst of

packets to be sent.

Otherwise, if the value of credit allows it, the packet is sent immediately (follow
up after the else statement). After decrementing the value of the credit variable,
method start_timer() is also possibly called. The tracing of the algorithm has now
reached the end of method send (...).

The next step of the algorithm, still within case USERREQ:, consists of trying to
satisfy any outstanding work, with call shortest = d_cm—satisfy(). The daemon

107

now switches from acting on behalf of the particular context that made the request

to cycling through all contexts that it has to serve with method satisfy().

The outlook is now from method satisfy() (see boxout), cycling through all contexts.
Whilst executing method satisfy(), two attemps are made to drain the send FIFO
queue of each context. The first one is made prior to calling method check_timers(),
and another one is made afterwards. As method check_timers() may result in re-
furbishing the value of credit to its full burst value, presumably the first call to
method drain_snd_fifo() is needed to make sure that packets that would belong to the
current burst on the send FIFO queue are sent (if credit allows it of course), prior
to engaging in the next burst. Then the statement shortest = check_timers() gets
executed, which may possibly result in upating the value of shortest passed to the

main_loop() and also the value of credit.
Method check_timers()

All the timers for a particular context are checked. For the present rate control study,
it is presumed that the value of the connection timer (CTIMEOUT) is much larger, and
only the RTIMER needs consideration. Variable credit gets incremented to the value
of burst if the r_timer_armed flag was set and it has expired, which means that it is
now time to replenish credit in prevision for the next burst of packets. This is the

only location in the algorithm where the value of credit is incremented.

Within check_timers(), the statement that does the updating of shortest is as follows:
shortest = min((r.timer) - now), shortest

As shortest was set to CTIMER at the beginning of method check_timers(), it should
be much larger that the value of RTIMER and could be ignored. Hence, the equation

to update shortest within method check_timer() is as follows:
shortest = r_timer - now

This value is returned to method satisfy().

108

Variable shortest is updated if the r_timer_armed flag was set to 1, whether it has
expired or not. If the r_timer_armed flag was set (i.e., the rtimer was armed) but
had not expired, then a new value for shortest needs to be recomputed. Given the
old value of variable r_timer, and the value of variable now being larger than it was,
then the updated value of shortest will be smaller than its previous value, which is
reasonable. If, on the other hand, the r_timer_ armed flag was set to 1 and RTIMER
had expired, then a new value for shortest is also recomputed, but using the expired
r-timer value. Consequently, shortest takes a negative value (as now is larger in
r-timer-nov). Later on, this negative value for shortest implies that 50 ms might
be bubbled up to select(), and not a timer related value as expected. Even if RTIMER
has expired, other timers might be pending, and shortest should convey the next

one to expire.

Method satisfy() - back

Now, the second call to method drain_snd_fifo() is made, which may be necessary
because of replenishment of variable credit and having not finished up draining the
send FIFO when method drain_snd_fifo() was called before. Method start_rtimery() is
likely to be called again, with updating of the r_timer value and the setting of the
r-timer_armed flag. However, this recalculation of the r_timer value happens too
late to be conveyed to the mainloop() and the select() system call via shortest, as

shortest within the scope of method satisfy() is already fixed.
The tracing for case USERREQ: is now complete.
case TMOUT:

The focus is now on case TMOUT:, which would occur when the value of shortest
passed to select() times out and neither a user request nor any packet was received
by the daemon in the meanwhile. As per the algorithm shown on Figure 24, the only

call being made is to method satisfy() as follows:

shortest = d_cm—satisfy()

109

Having no particular context in view, the daemon has to cycle through all contexts
in search of work to do. The logic of the algorithm for method satisfy() is not traced
again, as this work was done in the preceeding paragraphs while discussing case
USERREQ:. The presentation of the algorithm is completed. General comments and

observations about the algorithm are presented later in Section 5.4.

5.3 Rate control analysis with a scenario

The purpose of this subsection is to explore more precisely the working of the algo-
rithm with the help of a typical scenario, similar to the ones presented in Section
3 for the rate control feature. As expressed previously, the exercise of rate control
implies some periods of idle time during which no packet is being sent. Otherwise,
the send operations are done at the hardware send rate capacity, and no rate control
is effectively exercised. The scenarios used take into consideration the manner with

which the idle time is distributed within the time needed to send a burst of packets.

Scenario - idle time evenly distributed, rate=25 Bpms

The general assumptions that are valid for this scenario are as follows:

® a sender is reliably sending a large amount of data to a receiver, using the

unicast mode;

e the connection establishment phase is over, i.e., a FIRST packet was sent and
replied to and the sender is about to contact the daemon for sending data

packets;

e the size the send window (i.e., the size of the send shared memory area) is very
large so that the operation of the flow control algorithm has minimal impact on

the rate control algorithm;

o alogical clock is used to keep track of time; for processing at the sender, only the
time needed to “put a packet on the wire” is accounted for; the send operation
is presumed to be done at half the Ethernet speed (i.e., about 3 ms for a packet
of PDU size of 1440 bytes); the time needed to enqueue packets, etc., is ignored.

110

Table 4: Scenario - State Summary (25/1440)

logical shortest (ms) timeout | r_timer(ms)

clock (check | (waiton | =now + | r.timer | credit
state | = now | (main()) | (satisfy()) | _timers()) | input()) | (burst/rate) | .armed | (bytes)
So 0 -1 10000 0 1440
S 3 57.6 57.6 57.6 60.6 1 0
Sa say 3 57.6 57.6 57.6
[}
Sn 60.6 0 0 0 1440
Sn+t 60.6 507?7 118.2 1 0
L]
Sm
Sm-{—l
etc

rate = 25 Bpms; burst = 1440 bytes
RTIMER = (burst/rate) = (1440/25) = 57.6 ms
So - at the beginning, halted on select()
S\ - case USERREQ: after launching a first DATApacket
S3 - case USERREQ: after placing a packet on the send FIFO queue
Sy - case TMOUT: halfway through satisfy(), before 2nd drain_snd_fifo()
Sn+1 - case TMOUT continued: after drainsnd_fifo() - 1 packet sent
Sm - case TMOUT: halfway through satisfy(), before 2nd drain_snd_fifo()
Sm+1 - case TMOUT continued: after drain.snd_fifo() - 1 packet sent

Table 4 shows a summary of the data for the simulated execution of the scenario. To
produce an even distribution of the idle time, the burst is defined to be the size of
one packet (i.e., 1440 bytes). Given a rate of 25 bytes per millisecond, the value of
the RTIMER is 57.6 ms.

State S5p - at the beginning, halted on select()

At this point, the daemon has opened a context for the sender, but has not started
the task of sending data yet. It is waiting on select() to be contacted by the sender

with the request for sending data (see boxout wait_on_input). The first row of Table

4, corresponding to state = Sy, shows a summary of the state variables being traced
at this point: shortest = -1 within the main_loop(); timeout = POOL_FREQ= 10000;

the rtimer is not armed (r_timer_armed=0); and credit = burst = 1440.

111

State S, - case USERREQ: after launching a first DATA packet

With respect to the execution of the algorithm since state Sp, the daemon returned
from the select() system call, and branched to case USERREQ:. The send(...) method
was called, which eventually resulted in launching a packet after the else statement.
The send activity is presumed to have taken 3ms, and the logical clock was updated
accordingly on the second row of Table 4. Then variable credit got decremented
(now credit = 0), and method start_timer() was invoked with updating of the state

variables (i.e., now=3; r_timer=now + (burst/rate) = 60.6; r_timer.armed=1).

Method satisfy() was called, but as the send FIFO queue was empty, it did not follow
through full execution. Method check_timers() was called; and as r_timer.armed=1,
shortest = min((60.6 - 3),CTIMEQUT) = 57.6 got returned to satisfy() (shortest
= check_timers()). From satisfy(), as shortest != -1, statement return(maz(57.6,
50)) got executed and the value shortest = 57.6 got returned to the main_loop()
and subsequently passed to select (..., &timeout=57.6). The summary of the state

variables is shown on 4, row 5.

State 5; - case USERREQ: after inserting a packet on the send FIFO queue

With respect to the execution of the algorithm since state S;, the sender contin-
ued copying data into the send shared memory area and issued another XTP_SEND
request to the daemon. The path followed by the daemon was similar to 5,, but
with slight modifications. As the value of credit was nil, the flag put_on_fifo was
set to 1, and the packet was enqucued on the send FIFO queue of the sender con-
text. As the rtimer was already armed, method start_timers() was not called. Again
the statement shortest = d.cm—satisfy() got executed. Because there is no more
credit available, the first call to method drain_snd_fifo() did not follow through.
From satisfy(), shortest=check_timers got executed. As r_timer.armed=1, state-
ment shortest=min((r_timer - now), CTIMER) got executed, but eventually the same
value for shortest (i.e., 57.6ms) got returned at the scope of the main_loop, and the

daemon is back waiting on select(..., &timeout=>57.6).

112

Row §; of Table 1 presents a summary of the state variables with practically no

change as compared to row S,.
Between S; and S,

Given that there is much data to be sent, it is presumed that not much change in
terms of the state variables will occur. Only more packets will be enqueued on the
send FIFO queue of this context. Change will however occur at some point when it

is found out that the rtimer has expired.

State S, - case TMOUT: halfway through satisfy(), but before the 2nd call
to drain_snd_fifo()

At this point, it is presumed that the send FIFO queue has filled up, the logical
clock has advanced such that the daemon returned from the select() system call with
a rtimer timeout (case TMOUT:). From the mainloop, the only method that got
called is

shortest=d_cm—satisfy(). From satisfy(), the first call to method drain_snd_fifo()
did not follow through full execution because the value of credit was still nil. How-
ever, this time, the statement shortest=check_timers() has produced different re-

sults.

As the rtimer had expired, method stop_rtimer() was called, which reset some of the
state variables (i.c., r_timer_armed=0; credit = burst). Asthe value of the r_timer
variable had not been updated at this point, the statement shortest = min((60.6-
60.6), CTIMEOUT) returned 0 (possibly in reality, it would return less than 0, but

does not change much the current logic) to the scope of satisfy().

State S, - case TMOUT: continued from the 2nd call to drain_snd_fifo()

Now that the value of credit had improved, the second call made to method
drain_snd_fifo() from satisfy() did follow through to full execution, and one packet
was sent from the send FIFO queue. As the r_timer_armed flag was not set, method

start_rtimer() was called with consequent review of some state variables (i.e., r_timer

113

= 60.6 + 57.6 = 118.2; r_timer.armed = l). As shortest =0 at the level of satisfy(),
statement return(maz(0, 50)) resulted in returning shortest = 50 at the level of the

main_oop to be conveyed to select via timeout.

It is here that [feel that the algorithm does not behave as expected. The value for
shortest that gets returned to select() should be around 57.6 ms, and not 50, more
particularly for this case when the value of credit is only one packet. The next burst
should time out 57.6 ms later. The rationale underlying this expectation is explained

in the following paragraphs.

Regarding the evolution of the algorithm, the set of specific circumstances are that a
timer has just fired, ihe implied task handled and the daemon is about to yield to the
O.S. for a maximum timeout duration. All events that could follow can be classified
in two categories: (1) predictables ones such as the ones for which the daemon already
has a context opened and that are timer paced; (2) unpredictable ones such as user
requests for sending or receiving data, user requests for opening a context or packets
received. Unpredictable events have no bearing on the timeout valued used to yield
to the O.S. When they happen, the daemon is awakened for other reasons than the

expiration of the timeout value.

The claim here is that the daemon should always yield to the O.S. for a predictable
timer related timeout value (preferable the carliest timer to fire). In contrast, one
observes that in the specific circumstances described above, the daemon always yields
for a 50 ms timeout value (whatever the value of RTIMER for example, be it greater
than or smaller than 50 ms). As long as a timer has not fired yet, shortest has a
positive value and it is faithful to its semantics (one indicator of the timing of the
next timer paced job to be done). However, once a timer has fired, shortest has a
negative value and results in yielding to the O.S. for a timeout value of 50 ms when
a timer related value should more appropriate. Waking up the daemon carlier (say 50
ms later rather than 57.6 ms for the illustrated case) implies that the timer will not
have fired. Besides reducing understandability, the costs are a spurious wake up of
the daemon and possibly sending the daemon back to sleep for a much longer period

than the 7.6 ms left (50 ms is the minimum timecut used).

114

5.4 Concluding remarks about rate control with SandiaXTP

Figure 27 stresses a contrast between ideal rate control on the one hand, and the kind

of practical rate control exercised by SandiaXTP on the other hand.

Ideal rate control [Figure 27 (a)]

RTIMER defines the beat for rate control activities, similar to the year for the re-
current rotation of the earth around the sun. For the ideal case, the timing up of
RTIMER marks the end of an idle time (possibly of duration 0) period and the begin-
ning of a new cycle of rate control related activities, which would include the following

management activities, data transmission activities, and inactivity:

1. Replenishing credit to a value equal to burst so that no more data than what

“ought to be” sent is effectively sent;

2. Computing a new value for RTIMER and starting some sort of alarm clock of
RTIMER duration to trigger the beginning of the next cycle;

Note: the fact that thesec management activities are of short duration, but nonctheless

take some time, is indicated with thick vertical lines on Figure 27.

J. Transmitting the data packets, thereby consuming and decrementing credit until

it becomes nil. This is shown by a staircase effect on Figure 27.

4. Finally, possibly a period of relative inactivity (packets could still be built and

enqueued).

Being an ideal case, such details as the method used to account for the passage of
time and the accuracy of the timing measurements are of no concern; we just presume

that it is done somehow.

115

(a) Ideal Rate Control
(1) timeup timeup timeup
‘—-——RBML_—_.
creditd
e T T Uy ey Sy QS Sy Mgy S ‘ - burst
idle ti
sending
u’me=
t i- RTIMER t i+RTIMER
(1) At timeup (start of burst) -> credit = burst
compute RTIMER
trigger next timeup
immediately start sending burst of packets
(b) Rate Control with SandiaXTP
step! Do rate control stuff
step4 Start draining send FIFO
e e aemon step? Yield to select (...
(XTP-SEND) (with value = 160)
step3 timeout, i.e. retum stepS Yield to select (...)
from select(...) (with value = 50777)

arbitrary time -
I 1220 1260 machine clock o
1200 =now 1 1420
(now = 1200)
stepl //do rate control stuff step2 shortest = check-timers()
now = timestamp() (=say 1220) check-timers()
r-timer = now + (burst/rate} shortest = min((r-timer-now),CTIMEOUT)
(say: pdu = 1440 bytes; shortest = min(1420-1260), ...) = 160
burst = 4320 bytes or 3 packets; return 160
rate = 20 Bpms; retum (max(160, 50))
time to send | packet = 20 ms) retum 160
1/ RTIMER = (burst/rate) = 4320/20 = about 200
r-timer = 1220 + 200 = 1420
step3 shortest = check-timers()
check-timers()
armed && expired
rtimer-armed = 0
stepd r-timer = 1420 + 200 = 1620 credit = burst
r-limer-armed = | shortest = min ((r-timer-now, ...)
shortest = min (0, ...)
| sepS retun (max(0.50)) | rewm 0

Figure 27: Ideal VS SandiaXTP rate control

116

Practical rate control [Figure 27 (b)]

With SandiaXTP, rate control timing considerations are much more complicated than
for the previously outlined ideal rate control case. Both the client and the daemon
are user level processes, and they have no direct notion of the passage of time. For

timing considerations, they have to rely on the operating system.

At this point, it is necessary to distinguish between RTIMER and r_timer. RTIMER
is an interval of time; in practice, it is only useful to be added to whatever cumulative
time it is now, and thus determine some cumulative time in the future (this due time
is in effect r_timer) to mark the beginning of a next cycle. This practical way of doing

things has many implications that are worth mentioning:

o Precisely at what moment r.timer is being computed matters. For the ideal case,
we presumed that the end of a cycle is immediately followed by the beginning of
another one. For the practical case, there might be an interval of time between
the end of a cycle and the beginning of the following one. As it is used as a
comparative reference to determine if it has timed up, the computing of r_timer
effectively marks the beginning of a cycle, and its computation should be delayed
until there are indeed data to send. Hence the necessity to uncouple the two

events: end of one cycle and beginning of the next one.

e Once computed, r_timer is not conveyed as such to the operating system. Be-
tween the moment r_timer is being computed, and the moment the daemon
yields to the operating system, the data packets have to be sent, and this activ-
ity takes time. When the daemon is ready to yield to the operating system, a
new timestamp is taken and it is the interval between r_timer and now (r_timer-

now) that is reported to the operating system.

e When the daemon wakes up again for whatever reason, it will have to check
again which timer has timed up, if any, and this implies that the discovery is
made after the fact. How much later depends on practical considerations such

as how many contexts are active and the level of activity.

117

Figure 27 (b) illustrates more precisely the mechanisms used by SandiaXTP for rate
control, presuming the aforementioned algorithm and send scenario. As the detailed

scenario was covered previously, only the most salient points are summarized here:

¢ When the daemon resumes execution after a TIMEOUT event (step 3), method
satisfy() is called;

o As there is no credit available, method drain_snd_fifo() is called for the first

time, but does not follow through;

e Method check.timer() is called, which results in replenishing the credit equal
to burst; a value for shortest is also returned based on the previous r_timer
value, which implies a 0 value or most likely a negative value (presumably an
updated value for r_timer cannot be used at this point, as it would imply
starting the next cycle, and there is no evidence yet that there are data to be

sent - we are only sure of the timeout).

¢ Method drain_sndfifo() is called for a second time, which results in recomputing
a new value for r_timer (if we have reached this point, there are indeed data

to send - see step 4).

o Ultimately (step 5), a value of 50 ms (a non-timer related value) is passed to

select().

This tracing of the rate control algorithm is not fulfilling our expectations. It was

judged sufficient to continue inquiring into it, which is the object of the next chapter.

More general remarks about rate control SandiaXTP

Finally, the type of rate control exercised by SandiaXTP, given the user level im-
plementation architecture used, occurs between the memory space of the daemon
process and the memory space of the operating system. The sending of a packet by
the daemon results in a system call such as sendto(), and the choice of the precise
moment when the packet leaves the machine is relinguished to the operating system
and the underlying network technology. The select () system call itself is blocking,
but when it returns it does not necessarily mean that the Q.S. has effectively sent the

118

packet. When opening a socket, a kernel send buffer is associated with it (SO_SNDBUF,
probably of size 32768 bytes). This buffer space allows the Operating System the

possibility to do the send operation asynchronously, depending on its own priorities.

119

6 Changes to SandiaXTP rate control mechanisms

The goal of this chapter is to motivate and to expose some changes made to rate
control as exercised by SandiaXTP. Whereas the method used to abstract the rate
control algorithm in Section 5, and to trace its behavior with a minimal scenario,
was mainly of a speculative nature, the approach used in this Chapter is essentially
experimental. First, are presented the effects of additional traces aimed at monitor-
ing the behavior of the algorithm and recreating the minimal scenario presented in
Section 5.3. As these changes led to further observations, many other modifications

aimed at enhancing the algorithm are presented.

6.1 Tracing the behavior of the rate control algorithm

The hypothetical scenario presented in Section 5.3 that led to apparently unexpected
behavior needed to be exposed experimentally in order to test its accuracy and to
expose its repercussions. Consequently, many monitoring changes were introduced in
the source code at key points as per the view of the algorithm presented in Figure

24. In addition to numerous timestamps, these changes consist of the following:

¢ immediately before returning from method check_timers() (file XTPcontext.gen.C),
display the value of variable shortest that is being conveyed to the scope of
method satisfy(). This is the lowest level towards returning a time duration

value to be used as the timeout argument value to system call select().

e immediately before returning from method satisfy() (file XTPcontext_manager.C),
display the value of variable shortest that is being conveyed to the scope of

the main_loop.

o immediately before yielding to the operating system through the select() sys-
tem call, display the value of variable timeout (file mtldaemon.C, method
wait_on_input()) conveyed to select(), and a timestamp to record the cumu-

lative time at this moment.

e immediately after returning from system call select() (file mtidaemon.C,
method wait_on_input()), display the reason of the wake up (TMOUT, USERREQ,

or incoming PACKET), and take again a timestamp.

120

The outcome of these monitoring changes led to the confirmation of the anticipated
but unsatisfactory behavior as traced in Section 5.3. Here follows some trace excerpts

that confirm this unsatisfactory behavior:

...up on TMOUT 146 ms later, now=2659892808
(26) 0x3780 RTIMER expired now=2659892808

->Bubbling up shortest to select()<-
check_timers()-returning shortest_orig=~4, now=2659892809
(27) 0x3780 Sending packet from send FIFO, seq = 2880

->RTIMER - start_rtimer()
RTIMER=144, r_timer=2659892953, now=2659892810

(28) 0x3780 DATApacket BEING SENT at 2659892811
satisfy() - returning shortest_orig=50, now=2659892812

->shortest (top level do { }while(!ds))= 50, now=2659892812
timeout (before select(...,&timeout))= 50, now=2659892812

daemon going to sleep.......

Indeed, on a TMOUT case (with rate=10, i.e., RTIMER = 144), a negative value for
shortest is being returned, and 50 is eventually bubbled up to select().

Whereas the hypothetical scenario was halted at this point, the execution of the pro-
gram goes on. At worse, the 50ms would eventually time out, and control would
return to the deamon. In the present case, the deamon is awakened much earlier than
after 50ms, whether by one XTP_SEND user request or an incoming control packet.
On this later pass, the updated value of r_timer is properly taken into consideration,

and method check_timers() returns a non-negative value.

121

6.2 Imprecision on select() return timeout / MAXANTICIPATION

The changes introduced to monitor the behavior of the algorithm and test the an-
ticipated unexpected scenario led to the observation that select() would often return
after a shorter timeout period than the one specified. For instance, the daemon could
yield to select() with a timeout value of 50ms, but control would come back to the
daemon after a shorter period of time, say 45ms. Naturally, a check reveals that the
timer has not expired and control would return back to the operating system via the
select™() system call with possibly a timeout value of 50ms. In this case, the discovery
that the timer has expired could be made well after it has expired, depending on the
timing of the next event that provokes a return of control to the daemon. Here follow

traces that display this imprecision effect on the timeout value of select():

->shortest (top level do { }while(!ds))= 78, now=2659892582
timeout (before select(...,&timeout))= 78, now=2659892582

daemon going to sleep.......
...up on TMOUT 76 ms later, now=2659892658

A similar situation could happen when the daemon is serving many contexts. Once
the daemon has finished acting on behalf of the context targeted by the user request,
and before it yields to the operating system, the daemon cycles through all active
contexts for work to do. A check on a timer that is soon to expire, say 4 ms later,
would reveal that it has not expired, and control could return to the Q.S. via the
select() system call with possibly a timeout value of 50ms. For both cases, the dis-

covery that a timer has expired could be made well after it has effectively expired.

To care for the imprecision on the select() return timeout value, and also for those
soon to erpire timers, the idea of allowing for an anticipation margin is introduced.
With the original code, a timer is considered to have expired only when the current
cumulative time (riow) at the moment of the check is greater than r_timer. Here
follows code excerpts that illustrate the nature of the checks made and the criterion
used (file XTPcontext_gen.C, method check_timer()):

// Check the RTIMER

122

if (r_timer_armed) {
if ('1t32(now, r_timer)) {
stop_rtimer();
}

shortest = min((int)(r_timer - now), shortest);

With the revised code, and taking into consideration the anticipation margin, r_timer
is considered to have expired if the time duration left before it effectively expires is less
than a MAXANTICIPATION margin. The basic philosophy is to accept the limitations of
the implementation architecture with regards to timing considerations, but attempt to
ease its implications. In effect, it is equivalent to discharging now some soon to mature
tasks, or else they might get done much too late anyway. A tentative value of 10ms
for the MAXANTICIPATION margins used to compensate for all cases of imprecision on
select() return timeout value, and yet maintain reasonable rate control. Here follows

code excerpts that illustrate the changes:

// Check the RTIMER

if (r_timer_armed) {

//---icici---
#define MAXANTICIPATION 10
//it has expired || it will expire soon
if ((11t32(now, r_timer)) ||
((r_timer > now) && ((r_timer-now) <= MAXANTICIPATION))) {

//---icici--
stop_rtimer();

}

shortest = min((int)(r_timer - now), shortest);

123

6.3 Select() minimal timeout value / SELECT _FLOOR

Given the original implementation, a lower limit of 50ms is hardcoded to guarantee
that the daemon never yields to the operating system via the select() system call
with a timeout value of less than 50ms. For instance, if a timer will expire in 15ms,
the daemon yields to select() with a timeout value of 50ms, and the discovery that
the timer has expired could be made only about 35ms after it has expired. The
consequence of this practice is a decrease in the quality of the type of rate control
effectively exercised by the SandiaXTP implementation. However, the designer has
justified this choice on the ground that with a lower timeout value than 50ms, there
might be instances when the select() system call never returns, thereby stalling the
execution of both the client and the daemon processes; which is certainly a greater

evil than some decrease in the quality of the rate control exercised.

As an intermediary step towards possibly converting this low limit into a tunable
parameter, the symbolic constant SELECT FLOOR is being introduced. Programming
wise, this change is trivial, but the shift in approach is considered conceptually mean-
ingful. The intent is to experiment with different SELECT_FLOOR threshold values,
starting with a larger value than 50ms, and then using much lower values than 50ms.
The expectations are: (1) a better mapping of the repercussions of this limit on
the quality of rate control that can be achieved given the SandiaXTP user level im-
plementation strategy; (2) to determine in what specific circumstances system call
select() would never return when given a lower timeout value than 50ms. Here
follows code excerpts showing the situation before and after the change (file XTP-

context_manager.C, method satisfy()):

Original implementation:
return(max(shortest, 50));
Modified code (the other changes are explained later):

#define SELECT_FLOOR 50

shortest = max((dueTime - now), SELECT_FLOOR);

124

6.4 Linked list of timers - principles

The fact that method check_timers() often returns a negative value for variable short-
est has the consequence that the 50ms non-timer related related timeout value is
passed to the select() system call. The least inconvenience of this occurence is a spu-
rious call to select(), as the 50ms soon expires anyway. However, the consequences

could also become more devastating, a exposed through the following scenario:

e method check_timers() returns a negative value, and 50ms is bubbled up to

select();

e select() returns about 50ms later, but the timer has not expired yet (say because
RTIMER is slightly larger than 50ms, ex: 1440/23=62ms);

e the daemon yields again to select() for another 50ms.

In this case, there is not only a spurious call to select, but the task of sending the
packet is also much delayed. This type of bad scenario cannot be cured with the MAX-
ANTICIPATION margin, unless the value of this margin is incremented. Clearly, the
solution is preferably not on the side of a larger anticipation factor, as this tactic

would amount to discharging too many tasks too early.

Primarily to help understandability of the SandiaXTP rate control algorithm, but
also secondarily to care for the type of scenarios as exposed above, it was decided
to implement a linked list of timers, including all XTP timers (i.e., CTIMEOUT,
RTIMER, STIMER, WTIMER, CTIMER), sorted in ascending order of cumulative due
time (r_timer) to fire in the future. The idea is similar to the UNIX callout queue
implemented in the kernel, and which records functions that the kernel must invoke

at a later time.

At the origin of the SELECT_FLOOR problem lies the fact that method check timers()
uses the expired value of r_timer to compute shortest and thus return a negative value
for shortest (shortest = r_timer-now). Subsequently, and before the daemon yields
to select(), an updated value for r_timer is most likely computed, but it has no effect
on the value of shortest taken into consideration immediately before returning from

method satisfy(). With a linked list of timers, this problem disappears, as the head

125

of the linked list of timers is read only immediately before returning from method

satisfy(), and the updated value for r_timer is taken into consideration.

Though this linked list of timers could mean a whole re-architecture of the code, it was
done to intermesh as seamlessly as possible with the existing code and with minimal
changes, taking advantage of the existing situation. For instance, methods are called
when a timer is being started or stopped (ex: methods start_rtimer and stop_rtimer(),
file XTPcontext_gen.C). When those method are invoked, a call is made to enqueue
or to dequeue a timer. Here follows examples of such calls (file XTPcontext_gen.C,

method start_rtimer()):

//=---icici---
DAEMON->d__cm->enq_timer (key(), RTIMER, r_timer);

//---icici--~

//---icici-~-~
DAEMON->d_cm->dq_timer(key() , RTIMER, r_timer);

//---icici~---

The linked list of timers is consulted only at the end of method satisfy(), immediately
before returning a timeout value to be used in the scope of the main loop. This
ensures that timer related values are taken into consideration before yielding to the

operating system, and thereby breaking the unsatisfactory circle described previously.

As mentioned, most of the original behavior of the algorithm remains intact, with
shortest being returned as usual up until the end of method satisfy(), where it is
bypassed by reading from the linked list of timers. Here follows some trace displays
that show how the original and the updated mechanisms intermesh, and where the
reading from the linked list result in returning a different timeout value at the scope

of the main loop:

->Bubbling up shortest to select()<-
check_timers()-returning shortest_orig=-5, now=2731988849

(35) 0x5580 Sending packet from send FIFO, seq = 5800

126

->RTIMER - start_rtimer()
RTIMER=57, r_timer=2731988907, now=2731988850

->enq_timer() called
key=0x5580, timer_type=RTIMER, due_time=2731988907

=>print_timers_onq() called:

of timers ongq=2 now=2731988850

key= type= due_time= derived delta time to fire (ms)=
0x5580 RTIMER 2731988907 57

0x5580 CTIMER 2735588531 3599624

(36) 0x5580 DATApacket BEING SENT at 2731988851

satisfy() - returning shortest_orig=50, now=2731988852
->SATISFY() -~ bypassing shortest_original
->read_first_timer_onq() called
timers_list_head->due_time=2731988907

time left to fire: 54 ms

->satisfy() - returning shortest_NEW=55, now= 2731988852
->shortest (top level do { }while('ds))= 55, now=2731988853

timeout (before select(...,&timeout))= 55, now=2731988853

daemon going to sleep.......
The code at the end of method satisfy that produced the value returned is as follows:

File XTPcontext_manager.C

word32 XTPcontext_manager::satisfy() {

127

//if (shortest != -1)
// return(max(shortest, 50));
//return(shortest);

//---icici---old way
int shortest_orig;
if (shortest !'= -1) {
shortest_orig=max(shortest, 50);
} else {
shortest_orig=shortest;
}
if (TRACE && trace) {
log_print("\t satisfy() - returning shortest_orig=%d, now=%u \n",
shortest_orig, (word32) DAEMON->timestamp());
}

//-=--icici---o0ld way

//if (shortest != -1)
// return(max(shortest, 50));
//return(shortest) ;

//---icici---new way

now = (word32) DAEMON->timestamp();
if (TRACE && trace) {
log_print("\n->SATISFY() - bypassing shortest_original\n");
}
// read_first_timer_onq() returns the next absolute clock

// due_time, we have to substract now to get interval
if ((word32) (dueTime = read_first_timer_onq()) == 0) {

// meaning there is no timer onq
shortest = -1; // i.e., impose POOL_FREQ

128

} else if ((int) (dueTime - now) < 0) {

//it has a negative value, return select_floor for now!!

shortest = select_floor;

} else {
//it has a positive value

shortest = max((dueTime - now), select_floor);

//print_timers_onq();
if (TRACE && trace) {
log_print("->satisfy() - returning shortest_NEW=Y%d, now= %u \n\n",

shortest, now);

}
return (shortest);

//---icici---new way

} // end satisfy()

File XTPcontext_manager.h

int select_floor;

File XTPcontext_manager.C

XTPcontext_manager: :XTPcontext_manager(int num_contexts)

: context_manager(num_contexts) {
//--=icici---
select_floor = SELECT_FLOOR;

//---icici---

129

XTPtypes.h

#define SELECT_FLOOR 50 //for example

As one can observe, the logic used to return a timeout value at the scope of the main
loop, from the end of method satisfy(), still considers the possibility that a timer
could have expired (i.e.,dueTine-now is negative) when reading from the head of the
linked list of timers. Such an occurence would indicate that a timer has expired, but
the corresponding stop_?timer() method has not been called yet. [t could happen in
rare circumstances when a daemon is very busy serving many contexts, with many

timers coming to maturity at short interval of time (say 1 or 2ms).

As per the design of the algorithm, the daemon checks the timers of all contexts for
work to be done. It could happen that when a timer is being checked, it has not
expired, but by the time the other timers of other contexts have been checked, and
the corresponding work done, that it has expired as revealed when reading from the

head of the linked list of timers.

At this point, i.e., at the end of method satisfy(), the natural flow of the algorithm
is to return to the scope of the mainJdoop and yield to the operating system via the
select() system call. Rather than doing so, the daemon could remain in control and
method satisfy() could be called again recursively (so to speak), as if select() had re-
turned on a TMOUT case, to serve the context with the expired timer. However, at
the end of this next pass, another timer may have expired, and this recursive process

could linger for long.

Besides the programming difficulties involved by this recursive approach, it was felt
preferable not to disrupt the logical flow of the algorithm and let the operating system
regain control as designed as soon as possible. For the proper working of the daemon,
control must switch seamlessly between the operating system that is responsible for
event monitoring and notification, such as incoming user requests or incoming packets,
and the daemon who is reponsible to discharge the tasks consequent to the occurence

of these events.

130

As will become evident later, the SELECT_FLOOR effect is greatly attenuated by
these continuously upcoming events, with returning from select() well before the spec-
ified timeout periods. Consequently, SELECT_FLOOR is returned at the scope of
the main loop. Finally, let us mention that such a case is not even visible with the
unmodified algorithm.

To conclude this subsection, we summarize with two points:

L. Given the fact that select() often returns well before the specified timeout
period, the difference between the original algorithm, with check timers() of-
ten returning negative values for shortest and 50ms being bubbled up to se-
lect(), and the linked list of timers sometimes returning negative values and
SELECT-FLOOR being bubbled up to select(), is one of degree only; the latter
fostering understandability of the algorithm and also improving efficiency and

the quality of the type of rate control exercised.

2. The idea of not disrupting the flow of the algorithm and let the operating system
regain control as soon as possible for event notification also greatly precludes
another idea which would consist of using busy-wait to let the daemon stand idle
until @ soon to ezpire timer would expire. This approach would also disrupt the
normal working of the daemon, by postponing the handling of other events, and
could also lead to abuse as the end of a busy-wait period could also be followed by
another one. The previously explained decision to use a MAXANTICIPATION
margin is in accordance with this “least disruption of event notification and

handling” principle.

6.5 Linked list of timers - Implementation details

The goal of this subsection is to explain with more detail how the additional source
code needed to implement the linked list of timers is integrated with the source code
of the MTL base classes and SandiaXTP derived classes.

All the changes made to the source code are indicated with the keyword //-=-icici~--

appearing before and after the changed code. As such an expression is unlikely to

131

appear in the regular code, it can be used as a regular expression with a text editor
to search for the changes rapidly in a large file. Preferably, the changes are made in
the form of additions; leaving intact, but commenting out the original source code

segment.

Though the initial goal was to introduce changes only to the SandiaXTP derived
classes, it soon became evident that some changes also needed to be made to the
MTL source code, essentially virtual methods added to the context_manager base

class.

Because the linked list of timers is for all contexts, and this is precisely the outlook of
the context manager, the data structure for the linked list of timers, and the meth-
ods needed to manage it are part of the XTPcontext_manager subclass, with some
virtual methods (the ones that need to be called from another class) added to the
context_manager base class. The fact that method satisfy() belongs to the XTPcon-
text-.manager subclass, and that the linked list is consulted at the end of method
satisfy() before returning to the mainloop is another reason to attach the linked list

of timers to the XTPcontext_manager subclass.

However, many of the methods needed to manage the list are called from the XTP-
context subclass, as timers are context specific items and methods start_?timer() and
stop.’timer() belong to class XTPcontext. The manner used for insertion of timers
in the queue, or extraction are explained in Section 6.4. Hence, most methods related
to the management of the linked list of timers are public and are called from subclass

XTPcontext (such as eng_timer() or dq.timer()).

There are also some linked list management methods that are kept private to subclass
XTPcontext_manager. One instance is method read_first_timer.onq(), which is called
at the end of method satisfy() to help determine the timeout value to be eventually

bubbled up to system call select().

For the time being, the nature of the changes are not considered to be optimized.

Should such an approach using a linked list of timers be considered for including in

132

a standard SandiaXTP release, some changes could be done differently. Suggestions

are presented in the following paragraphs.

6.5.1 Timer types

(file XTPtypes.h)
//---icici---
// For the timer linked list operated by the context manager
typedef enum {
CTIMEOUT, //CTIMEQUT
RTIMER, //RTIMER
STIMER, //wtimer
WTIMER, //WTIMER
CTIMER //CTIMER
}timerType;

//---icici---

6.5.2 Timer items

(file XTPcontext_manager.h)
//---icici---

typedef struct timer_item {

word64 c_key; // the key of the context

timerType timer_type; //CTIMEQOUT, RTIMER, STIMER, WTIMER, CTIMER
word32 due_time; //a timer to expire in the future

struct timer_item* next; //the next item in the list

} timer_struct;

//---icici---

6.5.3 Virtual methods

(file context_manager.h)
public:

//---icici---
virtual void enq_timer(word64 key, word32 type, word32 time) = 0;

133

virtual void dq_timer(wordé64 key, word32 type, word32 time) = 0;
virtual void cleanup_context_timers_onq(word64 key) = 0;
virtual word32 test_if_timer_onq(word64 key, word32 type, word32 time)=0;

//---icici-=--

6.5.4 Redefinition of virtuals...

(file XTPcontext_manager.h)

private:

//-=--icici---
timer_struct* timers_list_head=NULL;

int timer_items_onqg=0;

word32 read_first_timer_onq();
void print_timers_onq();
char* timer_type_to_string(word64 tt);

//---icici---
public:

//---icici-~--

void enq_timer(word64 key, word32 type, word32 time);

void dq_timer(word64 key, word32 type, word32 time);

word32 test_if_timer_onq(word64 key, word32 type, word32 time);
void cleanup_context_timers_onq(word64 key) ;

//---icici--~

Methods print_timers.onq() and timer.type_to_string() are convenience ones that be-
come effective when the daemon is started with the trace option. The first is called
after inserting a timer item in the linked list, or after removing one, to show the state
of the queue at this particular moment. It is most useful to understand what is going
on. The second method is a complement of the first one and is used to convert the
numeric representation of a timer to its string equivalent (ex: timer type 0 is displayed
in the trace as CTIMEOUT). Here follows a display example of these methods:

134

->print_timers_onq() called:

of timers onq=3 now=2831287449

key= type= due_time= derived delta time to fire (ms)=
Ox1cO RTIMER 2831287503 54

O0x1cO WTIMER 2831287866 363

Ox1cO CTIMER 2834887368 3599502

The purpose of method test_if_timeronq() is explained in the next subsection. We
now explain the raison d’étre of method cleanup_context_timers(). As a result of us-
ing method print_timers.onq(), it was observed that when the daemon is kept alive
and many application program instances are started in sequence (i.e., many contexts
are created), then the last WTIMER would remain in the linked list even when one
particular instance of the application program has halted. The inference was that
method stop_wtimer() is not called on this last instance of the WTIMER.

The solution was to invent method cleanup_context_timers(), which is called when a
context becomes zombie (i.e., it is called from method start_zombie(), file XTPcon-
text_gen.C). It ensures that all timers that belong to the context, with the exception
of the CTIMEOUT timer, are removed from the linked list of timers.

6.5.5 Enqueuing a timer of type WTIMER

(file XTPcontext_gen.C)
void XTPcontext::start_wtimer(word32 factor) {

//---icici-=--

// make sure we do not end up with 2 or more WTIMER onq

if (DAEMON->d_cm->test_if_timer_onq(key(), WTIMER, w_timer)) {
DAEMON->d_cm~->dq_timer(key(), WTIMER, w_timer);

}

//---icici---

word32 now = DAEMON->timestamp();

w_timer = now + duration;

135

w_timer_armed = 1;

//---icici---
DAEMON->d_cm->enq_timer(key(), WTIMER, w_timer);

//---icici---

} // end start_wtimer()

Again as a consequence of using method print_timers.onq(), it was observed that
more than one instance of the WTIMER for one context could be present in the
linked list of timers. Typically, one would never be removed; it would expire, but
remain at the head of the queue and wreck the operation of the queue. Upon further
inquiry, it was observed that occasionally, such as when the output data rate is high
(30 Bpms and above), a subsequent WTIMER for the same context would be started
without stopping the previous one. The inference is that method start.wtimer() is
called twice, but without any intervening call to method stop_wtimer(). Eventually,
the same test-and-set solution had to be adopted for the CTIMEOUT timer also (file
XTPcontext.gen.C).

With the unchanged implementation, this occurence creates no apparent difficulty,
as the value to the w_timer is just overwritten. However, with the linked list ap-
proach, each insertion has to be matched with a removal. The purpose of method
test.if_timer.onq() is part of the tactic used to solve this problem. Before a timer
of type WTIMER is inserted in the queue, a check is made (as shown in the above
code excerpt) to determine if another one is already in the queue. If so, it is removed

before inserting the new one.

Currently, the test is made from the XTPcontext subclass, which means that method
test_if timer_onq() that belongs to subclass XTPcontext_manager has to be made
public. However, this test could become a private affair to the XTPcontext.manager
subclass. The reason for the current state of affairs is that method dq.timers() needs
three parameters: the key, the type of the timer, and the timer itself. If only method
enq-timer() was called from the XTPcontext subclass, knowledge of the previous timer

would be lost, and method dq-timer() as currently implemented would not work.

136

Given a confirmation by the XTP designers that only one timer of a type could be
active for any context at any given moment, method dq.timer() could be reimple-
mented with two parameters only: i.e., the key and the type. These two arguments
only are neded to conduct the test and remove a timer item from the queue. This
is one example of code optimization that could be introduced in case of longer term

interest for the linked list approach for SandiaXTP.

6.6 Changes specific to multicast experiments

As explained at the beginning of the report, the evolving horizon of the work underly-
ing this report has already been the realization of multicast rate control experiments
using the [nternet/Mbone environment. To perform this task, and as a result of un-
successful attempts using the Internet, a special purpose multicast testing program
was developed and also some changes implemented to SandiaXTP, which are reported

in this section.

The realization of the live multicast data transfer experiments from the Concordia
University HSP Lab was a long term endeavor with many preparatory steps. For
instance, the Sun Solaris2.5 Operating System supporting [P multicast at the net-
work level was installed, and some multicast testing programs were developed (udip,
a C++/UDP based testing program is presented in Section C.4 at the end of this

report).

The TTL, or Time-To-Live, is a settable key factor for performing multicasting. It
defines how far out from the sender an [P multicast addressed packet will be propa-
gated by the mrouters to reach awaiting receivers. As the early multicast attempts on
the Internet were not successful, first doubts went to the TTL factor, which was set
to a default value of 10 in MTL file MTLtypes.h. After some trials to effect a TTL
change from the user level testing program only, conveyed to the daemon through
the xtp_config structure and the xi.reg() method, a decision was made to change the
default value, and have the effective O.S. used TTL value displayed when the daemon

starts. Here follows some excerpts from the source code outlining these changes:
File MTLtypes.h

137

#define MCAST_DIAMETER 127 // Multicast transmission diameter

// was 10 before LH Nov. 1997

File udp_del_srv.C

setup()
#ifdef IP_ADD_MEMBERSHIP

byte8 ttl = (byte8)MCAST_DIAMETER;

setsockopt(daemon_id, IPPROTO_IP, IP_MULTICAST_TTL .
(char*)&ttl, sizeof(ttl));

//-- -=- - -
byte8 ttlos; // added LH Dec. 1997

// to check effective 0.S. ttl
int optlen;

optlen = sizeof(ttlos);

if (getsockopt(daemon_id, IPPROTO_IP, IP_MULTICAST_TTL,
(char*)&ttlos, &optlen) < 0) {
fprintf(stderr, "ERROR: getsockopt(ttl) failed in udp_del_srv\n");
return(0) ;
}
fprintf(stderr, "with TTL: %d\n", ttlos);
//----- ettt

#endif /* IP_ADD_MEMBERSHIP */

After recompiling the MTL libary and SandiaXTP, the daemon now starts with the

following type of message:

Starting XTP Daemon (3519) on forest Sat Dec 20 20:12:56 1997
with TTL: 127

138

7 Organization of the experiments

7.1 Task: reliable data transfer

The global task consists of: (a) conducting unicast and multicast data transfer exper-
iments; (b) collecting “meaningful” monitoring data that will hopefully help devising
a rate control policy for XTP. The data transfer part consists of sending a large
amount of data (one megabyte). More detailed descriptions of the subtasks needed

to discharge this global task are provided in the next subsections.

7.2 Topology

Figure 28 shows the logical network connectivity including only the subnetworks and
the machines used for the experiments. The dotted decimal notation address of the
end machines are not of much significance with multicast, as a group address (Class

D internet address) is needed.

7.3 Experiments structuring for data organization

To conduct the experiments in an orderly fashion, and also to organize the data

gathering and presentation tasks, some structure is needed.
Data transfer job

At the most primitive level, we have the activity of reliably sending the specified
amount of data from one sender to possibly multiple receivers. Timewise, this activity
extends from the moment the application program transfers the first buffer full of
data, until the moment the sender has received the last acknowledgment from the
last receiver. The send rate is specified at the beginning and remains fixed for the

whole data transfer job.
Data transfer session

A data transfer session consists of many data transfer jobs; in fact as many as we

wish to include discrete values in our range of test send rates. The task to discharge

139

(132.205.62.2) pine (132.205.66.2)
Concordia University

Ethernet coax. 10Mbps @1 ring
132.205.62.0/ 24 HSP Lab (100Mbps) >132
-- p— | cem=——- ;
! }
| (32205620 | T0reSt 1735205 66.1) !
! i
(outside ! (132.205.45.24) |
Concordia) ! 10Mbps !
Intemet : !
r : . 10 !
switch) switch sunset !
(Computer :] :
Services)[1go 1 | SWwitch 100 :
!]
100 100 | dahlia |
! 100)
! itch itch 1
switch ' swite switc 100 !
X orchid |
! 100 !
']
monty :) 10 i !
(multicast ! switch daffodil :
router) ! :
|- - .. Onesinglebroadcastentity | __________ !

(Computer Science)

Figure 28: Logical network connectivity

205.66.0/24

(132.205.67.1)

(132.205.45.28)

(132.205.45.61)

(132.205.45.15)

within a data transfer session is to repeatedly transfer the specified amount of data,

starting with the first data transfer job at the lowest send rate, then the next one at

the next higher send rate, and so on until the last data transfer job gets completed

at the highest send rate.

The delay between the moment a data transfer job gets completed (say at rate=r) and

the moment the next data transfer job gets started (say at rate = rpye, + Ar) should

be as small as possible. The output of a successful data transfer session (also called

an experiment unit) produces all the data necessary to plot one saturation curve,

such as the one shown in Figure 30; with every point of the curve being the result of

one “in session” data transfer job. The window size remains constant throughout.

140

7.4 Data gathering and presentation

Naming scheme: For data gathering and referencing purposes, a labeling scheme is
used to uniquely identify the data related to each experiment unit. For the reliable
multicast experiments, the slowest receiver governs and the data for all members are

organized into one logical unit identified with a single label.

The generic label used is:
ujmxSN where:

ux - stands for unicast ezperiment unit;
mX - stands for multicast experiment unit;

SN - is a unique 2 digit sequence number, such as 00;

Example:

ux00 -a prefix used to organize and refer to the data for one reliable unicast experi-
ment

ux00.log -the log file for experiment unit ux00

ux00.xy -the files containing the xy coordinates of the saturation curve (xtractXY
ux00.log > ux00.xy)

ux00.xy.ps -the ps file for the saturation curve (xgraph ux00.xy -saved as ps)
Table ux00.log - log summary -derived from ux00.log and included in this report
Table ux00.xy - data summary -derived from ux00.xy and included in this report

Figure z: ux00 saturation curve

Use of the naming scheme

Figure 29 illustrates the naming scheme at work for the purpose of gathering and
presenting the data. For one experiment unit, the basic source file is the log file,
out of which all the other files, Tables and Figures documenting the experiment are
derived. These consist mostly of a log summary and data summaries in tabular as

well as graphical forms (saturation curve) presented in Chapter 8.

141

live experiment unit (ali rates)

Unicast Multicast
senderl scndcrl
path1/yxSN.log pathl/mxSN.log

file
system
path1/uxSN.xy pathl/mxSN.xy
path/uxISN .Xy.ps pachImx'SN.xy.ps
saturation curve log summary saturation curve log summary
(Figure) (Table) (Figure) (Table)
report data summary data summary
(Table) {Table)

Notes: path!=/mnt/jwa/jwal/grad/harveyl/experiments/withSXTP/logNxy/
path2=/mnt/jwa/jwal/grad/harveyl/report/expResults/

Figure 29: Use of the naming scheme

The log file is a plain ASCII file and is not included as such in the report. For the most
part, it is filled automatically from instrumentation messages through redirection of
standard output of the testing program. The details of the instrumentation messages
and the redirection are covered later in the report. Here follows a verbatim excerpt

to illustrate the type of information contained in a log file.

Thu Dec 18 09:22:54 1997

mmetric starting (5441) on orchid

mode=MULTICAST, off_load=10 Bpms, WinSiz=102400 bytes,

mmetric -T 239.159.100.40 -S -g -f -p 1472 -b 1440 -C 1440
-a 51200 -o 250 -W 102400 -c 10

Transmitting to 239.159.100.40
51200 bytes using buffers of size 1440 bytes

Timing: 5908 ms
Throughput: 8.666 Bpms - Bytes per ms
xy: 10 8.666

142

Throughput: 0.069 Mbits/sec
Number of calls: 36
Latency: 164.111 ms/call

Sent 51200 bytes
Thu Dec 18 09:23:01 1997

—— e o o —— P o Y Y N —.
P2 S 2 2 ettt 2 1t 1 T

Table 5: ux00 log summary

Table ux00.log - log summary (at sender)
Date: 97.12.18 | Start: 09:22:54 | End: 09:23:01 | Duration: 07 min: | Mode: Multicast
Synopsis: Using SandiaXTP-1.5.1 Unmodified, SELECT.FLOOR = 50 ms
MAXANTICIPATION = 0 ms, Harmonization Burst/Rate = No
Commands:
mmetric -T 239.159.100.40 -S -g -[-p 1472 -b 1440 -C 1440 -a 51200 -0 250 -W 102400 -c 10..
mmetric -R 239.159.100.40 -S -g -p 1472 -b 1440 -J 1440 -0 250 -w 102400 - 10..
Sender: orchid | Receiver(s): forest 132.205.45.24

A typical sample of a log summary is shown in Table 5. The log summary is subdi-
vided into four parts: (1) the top part gives contextual details about the experiment
unit, such as the date it was done, the time of day, etc.; (2) the second part provides
a synopsis of the main parameters of the experiment unit, such as whether the un-
modified or modified version of SandiaX TP was used, the values of the SELECT_FLOOR
and MAXANTICIPATION daemon parameters, whether harmonization of burst and rate
values was used or not, and any other pertinent detail regarding the development of
the experiment; (3) the third part lists the commands used for starting the testing
programs (i.e., the “user”) at the sender and at the receiver(s); (4) finally, the fourth

part lists the machines used for the experiments.

Table 6 shows a typical tabular presentation of the data for one experiment unit.
The load label corresponds to the offered load (i.e., the outrate at the sender), and
is presented in the native unit of the SandiaXTP implementation for rate (i.e., in

bytes per millisecond - Bpms). The offered load (load) corresponds to the x axis of

143

Table 6: ux00 data summary

tput(y) | 7.111 | 10.222 | 12.333 | 15.444 | 25.555
(Bpms)

load(x) | 10 15 20 25 30
(Bpms)

its corresponding experiment saturation curve. The tput label corresponds to the

throughput and transposes on the y axis of its corresponding saturation curve. In Sec-

tion A, the tput and the load labels are not repeated but can be inferred easily from

the relative position of the data, and the number of precision digits (x - 10, y - 7.111).

ux00 saturation curve - giobal

throughput - Bpms

26.00

25.00

24.00 — |- - - R

23.00
22.00

21.00 --
20.00 -

19.00
18.00

17.00
1600 ~f - - -
15.00

14.00 -
13.00 -

12.00
11.00

10.00
9.00 -

8.00

7.00

10.00

15.00

20.00

Figure 30: ux00 saturation curve

30.00

load - Bpms

The throughput is computed at the sender. A typical sample of a saturation curve

corresponding to the hypothetical list of Xy coordinates for the reliable experiment

shown in Table 6 is presented in Figure 30.

144

7.5 Programming for implementation of experiments

User level testing programs (mmetric & mbulk)

The user level testing programs used for the data transfer experiments (multicast as
well as unicast) are an extension of the ones used for the HSP Lab May 1997 unicast
experiments ([SUL]). These are in turn derived from the example program suite pro-
vided with the SandiaXTP implementation, namely metric.C, bulk.C and common.h.

As we inherit much of their functionalities, further indications are provided about
the design of these testing programs, as originally conceived by the designers of San-
diaXTP. Program bulk is compiled from source file bulk.C and common.h. Here
follows some excerpts of the README file concerning program bulk:

This program is the sender and receiver (issue “bulk -?” to see the flags
to set) for a bulk data transfer. [nformation is printed to the screen as the
data is transferred, so the timing has more to do with standard [/O than
data transfer. Multicast is allowed. Since bulk does reliable multicast, it
is important to remember to send an SREQ in the FIRST packet, so at

least the "-f” switch must be used.

Program metric is compiled from source files metric.C, bulk.C and common.h. The
additional code in file metric.C consists of very few lines that have the effect of
silencing the numerous messages sent to the screen (stdout) by bulk and also to
trigger the computation of throughput statistics. Here follows what the README

file states about program metric:

This derivative of “bulk” removes any of the print statements, so the

timing is more accurate.

Though retaining the same global functionality, the source code underlying programs
metric and bulk have been greatly modified to suit the peculiar needs of the experi-
ments done at the HSP Lab. To retain the inheritance link, but still mark the differ-

ence, the names of the source files have been prefixed with letter m (for multicast)

145

respectively to mmetric.C, mbulk.C and mcommon.h, and their executable versions
to mmetric and mbulk. The in-extenso listings of the source code for these files are
presented in some of the appendices. Some indications of the changes introduced in

the code are presented in the following paragraphs.
Instrumenting the code

The types of data needed are the offered load and the throughput. The offered
load is given as a command line parameter and presents no measurement difficulty.
Essentially then, throughput measurements are needed. To compute throughput, two
components are needed: the amount of data sent and the time interval. Again,
amount presents no measuremnt difficulty, as the actual quantity is provided by the
user and can be displayed quite easily at both the sender and receiver sides. The task
for measuring the time interval is more complicated though, and accuracy has to be

bargained with.

The viewpoint adopted for the timing measurements is from a user level perspective.
Therefore, the computations are made from the user level testing programs used. For
reliable experiments, a timestamp marks the beginning of the time interval, immedi-
ately before the test program engages in its send loop. Similarly, another timestamp
marks the end of the time interval, immediately after the testing program exits its
send lcop. The difference between the two timestamps is the time interval used as the
denominator to compute the throughput (throughput=amount/tsl-ts0). Here follows
some excerpts from the code outlining how the timing computations are made and

the throughput is measured.

in mcommon.h

238 #ifdef TIMING

239 timer tm;

240 word32 start = tm.timestamp();
241 #endif

242 do {

146

243

284

285

286

287
288

289
290

291
292
293
294

295
296
297
298
299
300
301
302
303
304
305

if ((res = xi->send(buf, len, blk, &soptions)) < 0) {

} while ('done);

#ifdef TIMING

/* sent is in bytes */

tm.timestamp();
stop - start;

word32 stop
word32 diff

fprintf(stderr, "Timing: %d ms\n", diff);
printf("Timing: %d ms\n", diff);

fprintf(stderr, "Throughput: %.3f Bpms - Bytes per ms\n",
(double) ((double) sent/(double)diff));
printf("Throughput: %.3f Bpms - Bytes per ms\n",
(double) ((double)sent/(double)diff));

/*
* now the xy coordinates for the log file
*
*/
fprintf(stderr, "xy: %d %.3f \n",
outrate, (double)((double)sent/(double)diff));
printf("xy: %d %.3f \n",
outrate, (double)((double)sent/(double)diff));

fprintf(stderr, "Throughput: %.3f Mbits/sec\n",
(double) (sent#*8)/(double) (((double)diff)*(double)1000.0));

147

306 printf("Throughput: %.3f Mbits/sec\n",
307 (double) (sent#*8)/(double) (((double)diff)*(double)1000.0));

308 fprintf(stderr, "Number of calls: %d\n", pkts);
309 printf("Number of calls: %d\n", pkts);

310 fprintf(stderr, "Latency: %.3f ms/call\n",
(double)diff/(double)pkts);
311 printf("Latency: %.3f ms/call\n", (double)diff/(double)pkts);

312 #endif /* TIMING */

Therefore, for the measurement of the time interval, there is at least a half round trip
time interval inaccuracy (at the end). Given the large amont of data transferred, this
does not introduce a large error though. Furthermore, a greater number of bytes than
the number of bytes used for the throughput computations get effectively handled,
as there are the overheads of the various headers for XTP, UDP, IP and Ethernet.
Both factors contribute to yield a reported throughput slightly lower than the effec-
tive throughput.

Capturing instrumentation messages

While conducting the live experiments, it was felt that two main observation require-
ments had to be satisfied: (1) one was to keep the progression of the experiment
continually under the monitoring eyes of the experimenter; (2) the other was to up-
date as quickly as possible the log file for later evaluation and curve plotting. To
meet these two requirements, the technique used consists of duplicating most of the
instrumentation messages (i.e., one is sent to standard output - the screen unless redi-
rected, and the other is sent to standard error -the screen). This message duplication

has the form:

fprintf(stderr, “message”);

print(“message”);

148

as is illustrated in the previous code excerpt. When conducting the numerous sim-
ple mock experiments, the test program can be run with all messages sent twice to

the screen, or redirection could be used as follows to get rid of one stream of messages:

mmetric -args > /dev/null

When conducting an experiment with the intention of completing it (i.e., covering all

send rates), the testing program can be run as follows:
mmetric -args >> m|xSN.log

to automatically update the log file and still be able to monitor the ongoing live

experiment.

7.6 Option settings for the experiments

For convenience, the xtp_config structure (included in XTPtypes.h) used by client pro-
grams to convey to the daemon the terms of a communication association is included
verbatim. Many of the command line arguments used with mmetric to conduct the

experiments result in the setting of fields that belong to this structure.

typedef struct {

short16 options; // preset options

shorti6 yes_mask; // what options MUST be set for incoming
short16 no_mask; // what options MUST NOT be set

shorti6 sort; // priority value

short16 edge_freq; // how frequently to change the EDGE bit
short16 mcast_diameter; // how far out to send multicast packets

shorti6 mcast_max_act_rcvrs; // max number of active receivers

short16 mcast_min_act_rcvrs; // min number of active receivers

word32 excess_alloc; // optimistic send buffer credit

word32 w_timer_limit; // limit on how large wtimer can get
word32 c_timeout_interval; // time spent in synchronizing handshake
vord32 retry.count; // number of retries for sync handshake

149

word32 init_rtt; // initial round trip time setting

word32 maxspans; // number of selective retransmission spans
word32 pdu_size; // PDU size
word32 rate; // outgoing rate value
word32 burst; // outgoing burst value
word32 extra_modes; // user-controlled modes of operation
word32 snd_buf_size; // send buffer size
word32 rcv_buf_size; // receive buffer size
} xtp_config;

Typical command line arguments used for the experiments are as follows:

e Unicast experiment, sender side;
-t 132.205.45.24 -S -g -f -p 1472 -b 1440 -C 1440 -a 1048576 -0 250 -W 102400 -c 10

e Unicast experiment, receiver side;
-r -5 -g -p 1472 -b 1440 -J 1440 -0 250 -w 102400 -j 10

e Multicast experiment, sender side;

-T 239.159.100.40 -S -g -f -p 1472 -b 1440 -C 1440 -a 1048576 -0 250 -O 127 -W 102400
-c 10

o Multicast experiment, receiver side.

-R 239.159.100.40 -S -g -p 1472 -b 1440 -J 1440 -o 250 -w 102400 -j 10

where :
-t or -r -are respectively used to designate a unicast transmitter or receiver.

132.205.45.24 -is the IP class B address designating the receiver; in this case ma-

chine forest.cs.concordia.ca.

-T or -R -are used respectively to designate a multicast transmitter or receiver.
Consequently, the MULTI bit is set (xcf.options |= MULTI), and a flag is also set

(is-trans=1 or is_recv=l).

150

239.159.100.40 -is an arbitrary [P class D multicast group address used for the ex-
periments. All members of a multicast group must share the same [P group address

and port number. (see mcommon.h for the arbitrary port number used).

-a 1048576 (bytes) —is used to convey the amount of data to be sent. This quantity
is used only within the mmetric program to make repeated calls using a buffer of
buffersize (-b 1440) for sending the data (xtpif::send(buffer,...)).

-b 1440 (bytes) -defines the user level buffer size (i.e., the service data unit-SDU)
when making send calls to transfer the data in the send shared memory area
(xtpif::send(buffer,...)). If we add 32 bytes for the xtp header to 1440, then we obtain
the PDU size of 1472 bytes.

-c 10 (bytes per ms - Bpms) -is used to convey the output rate at the source (outrate
- Traffic Field), here shown at its minimal value of 10 Bpms used for the rate control
experiments. The output rate (also called send rate or offered load elsewhere in the
report) is progressively increased during one unicast or multicast experiment unit to

cover all test rates. (xcf.rate = 10, ...).

-C 1440 (bytes) -is the suggested output burst value. With reference to XTP4.0,
section 4.5 Rate Control, “The burst value specifies the maximum number of bytes
to be sent in a burst of packets”. The goal of matching the burst size and the user
level buffer size (both at the same value, here at 1440 bytes) is to force an evenly
distributed outflow of packets in time, and thus achieve a better queuing discipline
with regards to the operating system. It is worth mentioning that the burst value of
1440 is conceived from a user level perspective (as well as the send rate (offered load)

and throughput), implying that more bits are effectively dealt with.

-f -is used to set SREQ in the FIRST packet, which forces a synchronizing handshake
and key exchange procedure (see also comments about the -g argument).

-g -is used to block the sender on acknowledgements. For all practical purposes, it
means that the first xtpif::send() call is made with the value of block set to BLOCK

151

and the options to SREQ (xtpif::send(...,BLOCK,&soptions=SREQ)), which results
in blocking the transmitter awaiting a control packet response. For the following
xtpif::send() calls, the returned &soptions conditions are likely to be different, there-
fore the call becomes non-blocking. This approach is used to prevent needless filling

of the send shared memory area.

-j 10 (bytes per ms - Bpms) -is used to convey the input rate for the incoming data
stream (tspec.tsl.inrate=input_rate). The input rate and the output rate (-c at the

receiver side) are kept in synchrony all along the experiment unit.

-J 1440(bytes) -is used to set the input burst (tspec.tsl.inburst = input_burst), which
is kept in synchrony with the output burst.

-0 250 (ms) -is the initial round trip time (xcf.initrtt = 250). The particular value
of 250 ms is the default value used by SandiaXTP.

-0 127 -is used to set the multicast diameter (xcf.mcast.diameter), here set at its

maximum value of 127.

-p 1472 (bytes) -is used to define the PDU size (xcf.pdusize = 1472) at the trans-
port level. A particular PDU size of 1472 bytes prevents packet fragmentation at the
physical level.

-S -is used to specify selective retransmission (rather than the default go-back-N),

which was felt more appropriate for long distance, large data transfers. (xcf.extra_modes
|= SELRETRANS).

-w 102400 (bytes) -is used to convey the receive window size (xcf.rcv.bufsize =
102400); i.e., the size of the client/daemon shared memory area when the client is
receiving. The window sizes are kept in synchrony both at the sender and at the

receiver side.

152

-W 102400(bytes) -is used to define the send window size (xcf.snd_buf_size = 102400),

i.e., the size of the shared memory area when the client is sending.

7.7 Typical data transfer session scenarios

Tables 7 and 8 summarize the main steps of typical data transfer sessions. For the
sake of simplicity, we show only one receiver, but the steps would be the same if there
are many receivers. We also presume that the send operation is done from the ex-
perimenter’s machine, which is not a necessity. Any receiver is started first of course,
awaiting a slight delay before starting the sender in case of a multicast experiment
(to allow IP_.ADD MEMBERSHIP message sent from receivers to propagate to the
mrouters). Actually, those steps are automated with PERL programs (called play

and playm) presented as appendices.

153

Table 7: Typical data transfer session scenario - Unicast

SENDER

cd_play #to conduct experiment in a temporary subdirectory
recompile the daemon for SELECT _FLOOR and MAXA if needed
use configPlay to fix the user parameters (presuming prefix=ux00)
...play> xtpd -d udp #to start the daemon
#make sure receiver is started before issuing next command !
use ’play -ut’ to start the sender and cover all ranges
sample command launched by play:
mmetric -t $DST -S -g -f-p 1472 -b $UBUF -C $BUR -a $AMT

-0 $RTT -W $WS -c $rate >> $log file

Throughput: 9.607 Bpms - Bytes per ms
xy: 10 9.607

Sent 1048576 bytes
#make sure receiver is started before issuing next command !

#automatically repeated by play for each remaining send rate

the following are automatically performed by play at the end:
...play> xtpdrm #experiment session terminated, remove daemon
...play> xtractXY $log-file > $xy_file #build XY file

...play> xgraph $xy_file & # plot curve and save in ux00.xy.ps
...play> xtabLOG $log_file > $data_file #build Table ux00.log
...play> xtabXY 8xy._file >> $data_file #build Table ux00.xy

possibly relocate files permanently

...play> mv 8log_file $xy_file $xy file.ps $data_file files (y/n)?:

update $log_file with receiver command, etc.

RECEIVER
...play/jeux> telnet receiver.cs.concordia.ca
s>
play/jeux> xtpd -d udp
play/jeux> play -ur

Received 1048576 bytes
#automatically repeated by play for each remaining send rate

the following is automatically performed by play at the end:
play/jeux> xtpdrm

154

Table 8: Typical data transfer session scenario - Multicast

SENDER

cd_play #to conduct experiment in a temporary subdirectory
recompile the daemon for SELECT_FLOOR and MAXA if needed
edit playm to fix the experiments parameters (presuming prefix=mx00)
playm automatically starts and stops the daemon for each data transfer job
a separate file with all data rates is needed
...play> playm -init #to reset rates file
#make sure receiver is started before issuing next command !
#the following command must be restarted interactively until r=1250
...play> playm -mt
sample command launched by playm:
mmetric -T $DST -S -g -f -p 1472 -b $UBUF -C $BUR -a $AMT

-0 $RTT -W $WS -c $rate >> 8log_file

Throughput: 9.607 Bpms - Bytes per ms
xy: 10 9.607

Sent 1048578 bytes

the following are automatically performed by playm when rate=1250:
...play> xtractXY 8log_file > $xy file #build XY file

...play> xgraph $xy file & # plot curve and save in mx00.xy.ps

...play> xtabLOG 8$log_file > $data_file #build Table mx00.log

...play> xtabXY $xy file >> $data_file #build Table mx00.xy

possibly relocate files permanently

...play> mv $log_file $xy file $xy _file.ps $data_file files (y/n)?:

update $log_file with receiver command, etc..

RECEIVER(s)
...play/jeux> telnet receiver.cs.concordia.ca
...>
#the following command must be restarted interactively until r=1250
play/jeux> playm -mr

Received 1048576 bytes

155

8 Experimental results and interpretation

8.1 Synopsis of the experiments

Table 9 shows the planning used for conducting the experiments. There are seven
groups of experiments, and the group labels are also used later as section headings
for the purpose of presenting and interpreting the results. Each line provides the
main parameters that characterize each experiment unit, and that were used for re-
compiling the daemon (if needed), for conducting the experiment and for recording
its results. The key identification label for each experiment unit is given in column

“Prefix”.

Experiments shown in Table 9 follow a logical order. For example, the fact that ux18
follows ux04 simply indicates that ux18 was executed later in time than ux17, and
that its raison d’étre was not apparent at the begining but became apparent later as
a result of executing other experiments. The order used in Section 8.3 for the purpose
of presenting and interpreting the results is the same logical order as used for Table
9. However, a purely sequential order based on the prefix is used for presenting the

data and the saturation curves in Appendix A.

8.2 Elements for interpretation
8.2.1 Limits on physical resources

Table 10 shows some physical characteristics of the machines used for the experi-
ments. The data for the second column (Mean delay) were derived from a set of
special purpose experiments done with SandiaXTP. Packets (1440 bytes of data each)
were sent from a faster machine to a slower machine, with burst set to 14400 bytes

so that about 10 back-to-back packets are sent in a burst of packets.

The indicators used are traces (with timestamps added) reported by the daemon once

it has sent a packet. Ex:

(10) 0x67c0 DATApacket BEING SENT at 2924694589
(11) 0x67c0 DATApacket BEING SENT at 2924694591 etc.

156

Table 9: Synopsis of Experiments

Using SEL? | MAX3 | Har* | WS°

SXTP-1.5.1 | (ms) | (ms) | (y/n) | (bytes) | Sender | Receiver(s) Mode Prefix

Basic unicast experiments/curves:

Unmodified | 50 no | 102400 | orchid forest Unicast | ux01

Unmodified | 50 no | 102400 | dahlia orchid Unicast | ux02

Unmodified | 50 yes | 102400 | orchid forest Unicast | ux03

Unicast - impact of using a MAXANTICIPATION margin ..:

Modified 50 10 no | 102400 | orchid forest Unicast | ux04
Modified 50 5 no | 102400 | orchid forest Unicast | uxl8
Modified 50 10 yes | 102400 | orchid forest Unicast | ux05

Unicast - impact of varying the SELECT.FLOOR threshold:

Modified 100 0 no | 102400 | dahlia orchid Unicast | ux06
Modified 25 0 no | 102400 | dahlia orchid Unicast | ux07
Modified 10 0 no | 102400 | dahlia orchid Unicast | ux08
Unicast - impact of SELECT_FLOOR & MAXANTICIPATION..:
Modified 100 10 no | 102400 | dahlia orchid Unicast | ux09
Modified 25 10 no | 102400 | dahlia orchid Unicast | uxl10
Modified 10 10 no | 102400 | dahlia orchid Unicast | uxll
Modified 10 5 no | 102400 | dahlia orchid Unicast | uxl9

Unicast - lack of bombardment effect:

Unmodified | 50 no | 102400 | orchid forest Unicast | ux12°®
Modified 50 10 no | 102400 | orchid forest Unicast | ux13
Modified 10 10 no | 102400 | orchid forest Unicast | uxl4
Modified 10 0 no | 102400 | orchid forest Unicast | ux167
Modified 0 0 no | 102400 | orchid forest Unicast | uxl?

Multicast experiments/curves:

Unmodified | 50 no | 102400 | orchid | daffodil | Multicast | mx01

Unmodified | 50 no | 102400 | orchid dahlia Multicast | mx02

Unmodified | 50 no | 102400 | orchid | dah/sunset | Multicast | mx03

Unmodified | 50 no | 102400 | orchid | dah/sun/daf | Multicast | mx04
Modified 50 10 no | 102400 | orchid | dah/sun/daf | Multicast | mx05

Other experiments/curves:

Unmodified | 50 no 51200 | orchid forest Unicast | uxl5
Modified 0 5 yes® | 102400 | orchid dahlia Unicast | ux20
Modified 0 5 yes | 102400 | orchid | dah/sun/daf | Multicast | mx06

1 SELECT_FLOOR threshold value

2 MAXANTICIPATION margin value

3 Harmonization of rate and burst values
4 Window size
5 User buffer size = 14400 bytes instead of 1440 bytes, ux12, ux13 & uxl4
6 User buffer size = 28800 bytes (ux16 & ux17)
7 Burst = rate * 1000 * 0.1 (ux20 & mx06)

157

Table 10: Machine characteristics

Name | Mean | Derived | Features 0.S.
delay! | Capacity
(ms) | (Bpms)
dahlia 0.5 2880 Sun 2X UltraSPARC-1I 296MHz,2 cpus,896MB mem 2
orchid 1.0 1440 Sun 2X UltraSPARC 168MHz,2 cpus,640MB mem ?
sunset 2.5 576 Sun SPARCstation-10 50MHz,448MB mem 2
daffodil 36 400 Sun SPARCstation-10 36 MHz,256MB mem 2
forest 7.0 206 Sun 4.75 SPARCstation 2 40MHz, 32MB mem 2
pine 7.0 206 Sun 4.50 SPARCstation IPX 40MHz, 32MB mem ?
1 Mean delay between sending consecutive back-to-back 1440 bytes
2 Solaris2.5

Each line of the traces ends with a timestamp. The difference between two sequential
timestamps yields an interval of time (2 ms for the example given above), which is
interpreted as the time required to send a packet. The average of many such intervals

is reported in column Mean delay of Table 10.

Based on the mean delay, it is then possible to extrapolate and derive the apparent
capacity of a machine. For instance, given that 0.5 ms are needed by machine dahlia
to send a 1440 byte data packet, then it can send 2880 bytes per millisecond. The
derived machine capacities are reported in the third column Derived capacity of
Table 10.

There is no claim to absolute precision with these machine characteristics, but they
can be of relative use when interpreting the saturation curves. Even if the data were
obtained for sending back-to-back packets, it can also indicate the relative speed of
the machines when receiving. For instance, for a scenario where orchid is used for
sending, and forest for receiving; it is to be expected that the bottleneck won’t be
orchid (at 1440 Bpms), or Ethernet (at 1250 Bpms), but forest with an indicative
capacity of 206 Bpms. The mean delay could also supply ammunition for interpreta-

tion when considering the bombardment effect as explained later.

158

Table 11: Evolution of RTIMER when burst = 1440 bytes
RTIMER (ms): | 144 [96 |72 |57.6 |48 |41.1 |[28.8 |19.2 | 14.4

Rate (Bpms): |10 |15 {20 |25 |30 |35 |50 75 100

e ——————————————
——————— — =

RTIMER (ms): [11.5 9.6 [82 [72 |57 [48 [41 |36 |28

Rate (Bpms): |[125 | 150 | 175|200 | 250 |[300 |350 |400 [3500
rm—_—____.—_;__—'__—_______
RTIMER (ms): (2.4 |20 |18 1.6 [1.4 |13 [1.2 [1.1

Rate (Bpms): | 600 | 700 | 800 | 900 | 1000 | 1100 | 1200 | 1250

Finally, it may appear strange that the send capacity of dahlia at 2880 Bpms is
higher than the underlying capacity of the Ethernet network technology at 1250
Bpms. However the puzzle disappears when considering two explanations: (1) those
are extrapolated data from sending about 10 back-to-back packets; in reality, a ma-
chine will not send back-to-back packets all the time; (2) SandiaXTP is a user level
implementation, and the timestamps reported by the daemon are probably the rate
at which the data is moved from shared memory/user space to kernel space. The
O.S. probably allows enqueuing many packets in its internal buffer space to be sent

asynchronously later.

8.2.2 SELECT_FLOOR effect

Trial experiments with traces have shown that, amongst all the XTP timers and if
RTT is large, the RTIMER is the one that dominates most of the time (i.e., has lowest
absolute value and thus has most effect on the timeout value passed to the select()

system call).

Table 11 shows the evolution of the values of RTIMER, given a fixed burst size of
1440 bytes, and the various discrete data rates used for the experiments. One can
observe that the values of RTIMER (computed as burst/rate) steadily decrease as

the values for the rate increase.

At a particular rate value of 30 Bpms, the value of RTIMER is 48 ms, which is close
to the threshold value of 50 ms allowed by the unmodified SandiaXTP-1.5.1 imple-

mentation to be passed as the timeout parameter to the select() system call. Given

159

the particular combinations of command line arguments used for many of the exper-
iments conducted at the HSP Lab, it is as if the SandiaXTP implementation did not
allow a data rate higher than approximately 30 Bpms. Our colleague, Mr. Pierre
Falcot, has first thrown light on this phenomenon (call it the SELECT _FLOOR
effect), which is frequently invoked later in this report to explain parts of the shapes

of the curves.

Other events limit however the impact of the SELECT _FLOOR effect, as explained
later. Here follows edited trace excerpts to illustrate the SELECT.FLOOR effect (for
rate = 100 Bpms), when RTIMER equals 14 ms, but 50 ms is the value of the timeout

parameter conveyed to the select() system call:

->RTIMER - start_rtimer() RTIMER=14
(87) 0x4180 DATApacket BEING SENT at 3255285002
satisfy() - returning shortest_orig=50, now=3255285003

->shortest (top level do { }while(!ds))= 50, now=3255285003
timeout (before select(...,&timeout))= 50, now=3255285003

daemon going to sleep.......

8.2.3 Bombardment (of XTP_SEND requests) effect

The SELECT.FLOOR effect described in the previous subsection dominates only
within a subset of the range of send rates. Throughout however, what we label as the
“bombardment phenomenon”, comes into play to mitigate slightly at low data
rates, and dramatically at high data rates, the impact of the SELECT_FLOOR effect.

The bombardment phenomenon can be defined as the incessant upcoming of
events, such as incoming packets or incoming XTP_SEND requests issued by the
user, with the consequence that the select() system call returns well before the spec-

ified timeout value. Recall from Figure 25 that the daemon could get awakened as a

160

consequence of these two events also.

For instance, here follows edited trace excerpts that illustrate the daemon being
awakened prematurely because of an incoming CNTL packet received from the other

party:

->shortest (top level do { }while(!ds))= 138, now=3274857552 icici
timeout (before select(...,&timeout))= 138, now=3274857552 icici

daemon going to sleep.......
....up on INCOMING PKT 2 ms later, now=3274857554 icici

(446) 0x7£80 CNTLpacket RECEIVED from 132.205.45.24

For the rate control experiments done at the HSP Lab, the sizes of the user buffer,
PDU and burst have been matched, with the (probably intuitive) consequence that
there would be approximately as many XTP_SEND requests issued as there were
packets to send. This scenario really creates a bombardment effect on the daemon
with incessant XTP _SEND user requests.

At low rate values, implying high values for RTIMER, the daemon gets awaken pre-
maturely (i.e., well before the timeout expiration given to select()), but as r_timer
has not expired, the packet is just inserted on the send FIFO quéue and the daemon
returns to inactivity. Ifin the proper range of send rates, the SELECT.FLOOR effect

still dominates.

From observation of many saturation curves and of traces, the bombardment/boiling
effect seems to become effective when the value of RTIMER has about the same value
as the time needed by a machine to send a packet. The scenario of the bombardment

effect can be summarized as follows:

1. The daemon gets awaken prematurely, probably on a XTP_SEND request, and
discovers that RTIMER has expired, a new RTIMER (say of value 3 ms) is

computed and armed before sending a packet;

2. A packet is sent (suppose the time needed is about 3 ms). When this is done,

161

whether r_timer has expired or will expire soon is of no consequence, as it is not

checked yet;
3. The daemon yields to select() with a timeout value of 50 ms;

4. Select() returns immediately (or almost) as a consequence of one XTP SEND

request;

5. The r.timer is checked, found that it has expired, and the pattern repeats itself

resuming again at step 1.

Though it conveys the essence of the phenomenon, let us emphasize that this sce-
nario is slightly simplified in the following manner. When the daemon resumes from
select(), there could be some packets on the send FIFO queue, and one could be sent.
In this case, the one corresponding to the send request could be enqueued. Then,
as shown on Figure 25, the daemon would proceed with a check of timers for all
contexts, and depending whether r_timer has expired, another packet for the same
context could again be sent before the daemon yields to select(). So, instead of one
packet being sent on a pass, two could be sent. But even with this revised scenario,
select() would again return immediately (or almost), and the resulting pattern is not
changed significantly. What happens exactly depends on the exact value of RTIMER,

and probably other factors, such as process scheduling.

When the bombardment effect starts occuring, the SELECT_FLOOR effect is com-
pletely wiped out, and the daemon effectively jumps to sending packets presumably
at a send rate closed to the machine capacity. The transmitter will be periodically
halted, because of the flow control mechanism and window size, with the net result
tempered also by the capacity of the receiver. Whatever the new throughput achieved,

we can expect a sudden surge in the saturation curve.

Here follows trace excerpts that illustrate the bombardment effect at high data rates:

Note : rate=1250
(102) 0x5480 DATApacket BEING SENT at 3181192617
satisfy() - returning shortest_orig=50, now=3181192618

162

->shortest (top level do { }while(!ds))= 50, now=3181192618
timeout (before select(...,&timeout))= 50, now=3181192619

daemon going to sleep.......
...up on USERREQ O ms later, now=3181192619

(103) XTPdaemon XTP_SEND request for 0x5480
(104) 0x5480 Putting packet on send FIFO, seq = 15880
(105) 0x5480 RTIMER expired now=3181192619 icici

(106) 0x5480 Sending packet from send FIFQ, seq = 15880
RTIMER=1, r_timer=3181192622, now=3181192621

(107) 0x5480 DATApacket BEING SENT at 3181192623
satisfy() - returning shortest_orig=50, now=3181192624

->shortest (top level do { }while(!ds))= 50, now=3181192624
timeout (before select(...,&timeout))= 50, now=3181192624
daemon going to sleep.......

...up on USERREQ 1 ms later, now=3181192625

etc...

8.2.4 Harmonization of burst and rate values

The SELECT_FLOOR effect has important negative impacts on the quality of the
rate control exercised by SandiaXTP only when the value of RTIMER falls below the
SELECT_FLOOR threshold (i.e., below 50 ms with the SandiaXTP-1.5.]1 unmodified

release). More particularly, given the particular combination of command line argu-

ments used previously at the HSP LAb for many rate control experiments, this too

low RTIMER value occurred as a result of maintaining the burst value constant, but

progressively increasing the rate value.

One approach that can be used to circumvent the SELECT.FLOOR effect problem, in
fact one that has already used in for previous study done at the HSP Lab ([FALCOT]),

163

Table 12: Harmonizing burst and rate values

Rate Bytes to #packets | Appr.send | Idle time Burst Ratio # gaps | inter-bursts
{Bpms) send/s to send/s | time (ms) (ms) (bytes) | burst/PDU gap (ms)
(1) (2) 3) (4) (5) (8) (7) (8) (9)
=(1)*1000 | =(2)/1440 | =(3)*4 ms | =1000-(4) =(6)/1440 | =(3)/(7) | =(5)/(8)

10 10000 7 28 972 1440 1 7 139

15 15000 10 40 9260 1440 1 10 96

20 20000 4 56 944 1440 1 14 67

25 25000 17 68 932 2880 2 8.5 109

30 30000 21 84 916 2880 2 10.5 87

35 35000 24 9% 904 2880 2 12 75

50 50000 35 140 860 4320 3 11.6 74

7 75000 52 208 792 5760 4 13 61
100 100000 69 276 724 8640 [11.5 63
125 125000 87 348 652 11520 8 10.8 60
150 150000 104 416 584 15840 11 9.4 62
200 200000 139 556 444 28800 20 6.9 64
250 250000 174 696 304 43200 30 58 52
300 300000 208 832 168 103680 72 2.9 58
350 350000 243 972 28 103680 100 - -

400 400000 278 1112 - 103680 - - -

500 500000 347 - - 103680 - - -
600 600000 417 - - 103680 - - -
700 700000 486 . - 103680 - - -
800 800000 556 - - 103680 - - -
900 900000 - - - 103680 - - -
1000 1000000 - - - 103680 - - -
1100 1100000 - - - 103680 - - -
1200 1200000 - - - 103680 - - -
1250 1250000 - - - 103680 - - -

consists of varying both the rate and the burst such that RTIMER does not fall below
the SELECT.FLOOR threshold. Table 12 shows some detailed calculations used to
derive combinations of burst and rate values to meet this criterion, given the range of
rates used for the current experiments. The key columns are: (a) column (1) listing
the rate; (b) column (6) listing the corresponding burst; (c) column (9) listing inter-
bursts gaps between the end of sending one burst of packets and beginning of the
next one. Roughly, column (9) corresponds to the value of the timeout parameter
passed to the select() system call. The purpose of Table 12 is to make sure that the
inter-bursts gap (column (9)) never gets below the SELECT_FLOOR threshold (here
presumed at 50 ms). We now comment on the details of Table 12, with particular

emphasis on the first data row.

1. Columns (1) & (2): Given that column (1) shows the rate in Bpms; column
(2) indicates how many bytes per second need to be sent to satisfy the rate
specified in column (1). As there are 1000 milliseconds in one second, and for

a rate of 10 Bpms, then 10 000 bytes would need to be sent in one second.

164

b

Column (3): Presuming that each packet contains 1440 bytes of data, column
(3) shows the approximate number of packets that would need to be sent, i.e.,
7 packets for the first data row (10 000/1440=6.9).

3. Column (4): Again presuming that 4 ms of host processing time are needed
per packet (probably a too high value), column (4) indicates the total processing
time, i.e., 28 ms for the first data row (7*4=28 ms).

4. Column (5): Given that there are 1000 ms per second, and that column (4)
gives the total processing time, then column (5) shows the total waiting time
per second, i.e., 972 ms for the first data row (1000-28=972).

5. Column (8): The purpose of the remaining columns (6), (7), (8), and (9)
is to adjust the burst value such that the inter-burst gap is not less than the
SELECT_FLOOR threshold (here at 50 ms). Column (6) lists the tentative
burst value, i.e., 1440 bytes for the first data row.

6. Column (7): For a given burst value and a given PDU size of 1440 bytes
(in actuality 1472 bytes), column (7) shows the ratio burst/PDU (or burst size
expressed in number of packets), i.e., | for the first data row (1440/1440).

7. Column (8): Given the ratio burst/PDU, column (8) supplies the implied
number of gaps by dividing the number of packets to send by the burst size,
i.e., 7 for the first data row (7/1=T7).

8. Column (9): Finally, column (9) supplies the inter-burst gap by dividing the
total waiting time (column (5)) by the number of gaps (column (8)), i.e., 139 ms
for the first data row (972/7=139). As this is well above the SELECT_FLOOR
threshold, there is no problem with this mix rate=10/burst=1440.

With a data rate of 30 Bpms, and keeping the burst value constant to 1440 bytes, the
inter-bursts gap would reach 43.6 ms, which is below the SELECT_FLOOR thresh-
old. This is the reason why the burst value is increased to 2880 bytes, producing an
inter-burst gap of 87 ms. The remaining of Table 12 does about the same kind of

harmonization of burst and rate values.

165

Again, let us emphasize that these data are not meant to be rigorously precise with
respect to the reality of actual machines, but to “improve” on the SELECT.FLOOR
effect. More particularly, the higher values of Table 12 reveal the appearance of
physical limits, which would be different with real machines. For example, with a
processing time of 4 ms per packet, and a rate of 400 Bpms, it would take more than
one second for a presumed one second duration task (1112 VS 1000). Also, the burst
size has reached a greater value than the window size used for the experiments (103680
VS 102400). The higher data rates have been maintained to keep in perspective this
hard Ethernet physical limit of 1250 Bpms, though the actual maximum throughputs
expected are likely to be well below 1250 Bpms. Given the mixes of rate and burst
values shown on Table 12, additional rate control experiments can be conducted, and

the results compared with experiments done with other parameters.

8.3 Presentation and interpretation of the results

To conserve space, a decision was made to separate the present Section from the
experimental data and the saturation curves, which are included in Section A. The
format used for presenting the data and the saturation curves is one erperiment
unit/one sheet, with the top part being the log summary, the middle part being the

data summary (x,y coordinates), and the bottom part being the saturation curve.

8.3.1 Basic unicast experiments/curves

ux01 - SXTP-1.5.1 unmodified, orchid to forest

Table ux01.log, Table ux0l.xy (refer to Section A), and Figure 31 show respectively
the log summary, the data summary, and the saturation curve for the ux01 unicast
experiment unit. The experiment was done with SandiaXTP-1.5.1 unmodified (i.e.,
with a threshold value of 50 ms passed to system call select() as the minimum timeout
parameter). Machine orchid is acting as the transmitter and machine forest is acting

as the receiver, hence a mix of fast and slow machines.

As shown on Figure 31, the resulting saturation curve can be subdivided into four

segments for interpretation purposes:

166

1. Low rising segment (up to load=30 Bpms): This part of the curve displays
the expected behavior of a system under light loading conditions, i.e., there is
some loss due to overhead, but the throughput is proportional and very close to
the offered load (about 96%). With reference to Table 11, the value of RTIMER
is above or about equal to the SELECT_FLOOR threshold of 50 ms, and the

select floor effect is of no apparent consequence.

2. The SELECT FLOOR plateau (from load=30 to load=700 Bpms) For this
part of the curve, RTIMER has decreased below the SELECT _FLOOR thresh-
old of 50 ms (check again Table 11) and the throughput remains stable and
equivalent to a rate of 30 Bpms (or RTIMER of about 50 ms). The SE-
LECT_FLOOR effect is in full control.

3. The steep rise (from load=700 to load=800 Bpms:) For this part of the
curve, the bombardment effect described previously has taken over. Given the
time needed to send a packet, and the fact that RTIMER is small enough, the
daemon would yield to select() but select() returns immediately (or almost) due
to incessant XTP_SEND user requests. Hence the steep rise in the curve. Here
follows edited trace excerpts at rate=800 Bpms to substantiate this interpreta-

tion:
...up on USERREQ O ms later, now=3357170611

(56) XTPdaemon XTP_SEND request for Ox4dcO
(57) 0x4dcO DATApacket BEING SENT at 3357170612

->RTIMER - start_rtimer()
RTIMER=1, r_timer=3357170614, now=3357170613

(58) 0x4dcO RTIMER expired now=3357170614

=>dq_timer() called
key=0x4dcO timer_type=RTIMER due_time=3357170614

->print_timers_onq() called:

167

of timers onq=1 now=3357170615
key= type= due_time= derived delta time to fire (ms)=
0x4dcO0 CTIMER 3360770447 3599832

~>Bubbling up shortest to select()<-
check_timers()-returning shortest_orig=0, now=3357170615
satisfy() - returning shortest_orig=50, now=3357170615

->SATISFY() - bypassing shortest_original

->read_first_timer_onq() called
timers_list_head->due_time=3360770447
time left to fire: 3599831 ms

->satisfy() - returning shortest_NEW=3599831, now= 3357170616

->shortest (top level do { }while(!ds))= 3599831, now=3357170616
timeout (before select(...,&timeout))= 10000, now=3357170616

daemon going to sleep.......
...up on USERREQ 0 ms later, now=3357170616 icici

(59) XTPdaemon XTP_SEND request for 0x4dcO
(60) 0x4dcO DATApacket BEING SENT at 3357170617

etc..

This trace was obtained by running the modified version of SandiaXTP-1.5.1.
Using the modified version is of no consequence on the data reported on Table
ux01.xy, as the goal is to prove the working of the bombardment effect. However,
one could feel puzzled by the greatly varying timeout value bubbled up at the
level of the main loop with the 2 methods. With the unmodified version, 50
ms would be bubbled up; with the modified version, the value of the CTIMER
(359983) is bubbled up, and eventually POOL_FREQ (10000 ms - the maximum
allowed timeout value) is passed to select(). This appears an awful long duration

of passible inactivity for the daemon. However, such is in the nature of things.

168

The packet that was sent was the one accompanying the XTP_SEND request
(i.e., as shown on Figure 24, acting on behalf of THE contezt that made the
request, loop 2). Then the daemon goes to check the timers of all contexts. At
line (58), this check is reported and it is discoverd that RTIMER has expired.
However, as there is presumably no packet on the send FIFO queue, nothing
is done and r_timer is not started. The daemon has to yield to select(), and
not knowing if there is anything more to send, the CTIMER value is bubbled
up. However long a value, it is of no consequence because of the bombardment

effect and select() returns immediately.

4. The high plateau (above load=800 Bpms: The maximum throughput reached
is about 120 Bpms, which is roughly 60% of the recognized 206 Bpms capacity
of the receiver (see Table 10) forest. The throughput fluctuates (for unknown
reasons) little and remains high, as the bombardment effect once started remains

active,

ux02 - SXTP-1.5.1 unmodified, dahlia to orchid

Experiment unit ux02 is meant to validate the results of ux0l. A degree of variation
is introduced in the design of the experiment by sending from presumably the fastest
machine (dahlia) to the second fastest machine (orchid). For experiment ux0l, the
receiver was comparatively very slow (forest - refer to Table 10). Again, SandiaXTP-

1.5.1 unmodified is used.

The results of the experiment are presented on Table ux02.log, Table ux02.xy, and
Figure 32. When comparing the two saturation curves (Figure 31, Figure 32), one can
observe a close concordance between the shapes of the two curves, and the data for
the first two segments. The remaining thoughputs obtained for the ux02 (rate = 800
Bpms and above) saturation curve (Figure 32) are much lower. For instance, at rate
= 800 Bpms, the throughput for ux02 is about 47 Bpms (Table ux02.xy), when it is 95
Bpms for ux01 (Table ux01.xy). Another experiment was done immediately after with
similar results. Another experiment done the following day (thurs. 10 sept 98 around
14:30-14:45) gave very similar low results; with a jump to 46 throughput at rate=800.

169

Such throughput results for the offered loads above 800 Bpms are rather against
expectations, as both dahlia and orchid are very fast machines with a high capacity
100 Mbps network connection (forest has a 10 Mbps network connection). Given
that the shapes of the two curves are in close concordance, which is the important
criterion for the present study, questions of comparative maximum throughput are not
considered worth of further inquiry at this point. Finally, the explanations regarding
the shape of the saturation curve for ux02 are the same than the ones presented for
ux01.

ux03 - SXTP-1.5.1 unmodified, orchid to forest, rate/burst harmonized

The intent for conducting experiment unit ux03 is to show the consequences of har-
monizing the burst and rate values such that the value of RTIMER does not fall
below the 50 ms threshold. With reference to Figure 33, the expectation is to extend
as much as possible the first linearly rising segment of the saturation curve, and thus
eliminate the SELECT_.FLOOR plateau where throughput is constant at about 30
Bpms due to the SELECT_FLOOR effect. The parameters used for experiment ux03
are the same as the ones used for ux01, except for adjusting the burst values as per
Table 12. Table ux03.log, Table ux03.xy, and Figure 33 show respectively the log

summary, the data summary, and the saturation curve for ux03.

As one can observe on Figure 33, the expectations are reasonably well satisfied. What
is a four part curve shown on Figure 31 has now changed into a two part curve made
up of one linearly rising segment (from load=10 to load=250 Bpms) and one relatively
flat segment above load = 250 Bpms, probably indicating that the the maximum pro-
cessing capacity of the receiver forest has been reached (Table 10 shows 206 Bpms for

forest).

When comparing with ux01 (Figure 31), the maximum throughput of ux03 is about
twice better (120 for ux01 - 220 for ux03). Presumably, this large increase in maxi-
mum thoughput is accountable not only to greatly reducing the consequences of the
SELECT_FLOOR effect, but also to performing the work more efficiently through
handling many packets in a row at higher offered load.

170

With the one packet burst size policy of ux01, the intent is to ease the strain on
the network as much as possible, even if at the expense of more overhead processing
(more stop and go) at the host. With harmonizing the burst and rate values, there is
a remarkable and observable improvement of the quality of the rate control exercised
by SandiaXTP (through elimination of the SELECT_FLOOR plateau), accompanied
by less overhead processing work at the host, but with paradoxically more strain on
the network. For the current experiments, which were performed in a closed LAN
environment, an increase in throughput may appear as a boon, but it may also have its
drawbacks on a WAN such as the Internet. In some respects, the SELECT_FLOOR
effect is a throttling mechamism, and it has its good sides for preventing abuse of a

shared facility. However, this mechanism is not under the control of the user.

8.3.2 Unicast - impact of using a MAXANTICIPATION margin

The goal of the next few experiments is to evaluate the impact of a less stringent
criterion for considering that RTIMER has expired. For doing so, the modified
SandiaXTP-1.5.1 release is being used. With unmodified SandiaXTP-1.5.1, a timer
(any timer) is considered to have expired only if the timestamp at the moment of
making a check is greater than or equal to r_timer. With modified SandiaXTP-1.5.1,
the RTIMER (only) is considered to have expired if the lapse of time left before
it expires is less than or equal to a MAXANTICIPATION margin (abbreviated to
MAXA margin hereafter in the text) when r_timer is being checked. The reasons for
introducing the MAXA margin are outlined in Section 6.

ux04 - SXTP-1.5.1 modified, orchid to forest

A value of 10 ms is used for the MAXA margin. Table ux04.log, Table ux04.xy (refer
to Section A), and Figure 34 show respectively the log summary, the data summary,
and the saturation curve for the ux04 unicast experiment unit.

As one can observe, the shape of the saturation curve for ux04 (Figure 34) has a

hybrid form halfway between the shape of the curve for ux01 (Figure 31), where the
SELECT_FLOOR effect is in full control for the second part of the curve, and the

171

curve for ux03 (Figure 33), where the SELECT floor effect is practically non-existent.

There is a definite improvement in the sense that the length of the SELECT_FLOOR
plateau is greatly reduced. Again the throughput tapers off at load = 30 Bpms, but
it remains stable up to rate=100 Bpms only (it extended until load=700 Bpms for
ux01). Then, there is a quick rise to a maximum throughput of about 210 Bpms,
which is in the same range as for ux03, for which harmonization of the burst and rate

values was used.

One expected implication of using the MAXA margin is doing work a bit prematurely,
to prevent its being done much later because of the SELECT_FLOOR effect. The
consequences of this policy becomes apparent because the throughput is more than
the offered load for two points of the curve (188 > 150, 209 > 200). Per se, this excess

is quite acceptable.

However, the early rise to maximum throughput, with few intermediary points, is
questionable. The change starts occuring at rate= 125 Bpms, which corresponds to
RTIMER value of 11.5 ms (see Table 11). This RTIMER value of 11.5 ms is very close
to the 10 ms MAXA margin. Given that the bombardment effect is always active,
it would appear that, because of the MAXA margin, the r_timer is always found to
have expired whenever it is being checked, producing a too early jump to maximum
throughput. With respect to the SELECT_FLOOR effect, which maintains arbitrar-
ily the offered load too low, there could be a reverse of the situation once the RTIMER
value is about equal to or smaller than the value used for the MAXA margin. Beyond
this upper threshold, effective rate control is no longer being exercised. Let’s call this
scenario the MAXANTICIPATION effect (abbreviated to MAXA effect hereafter in
the text), and the set of points included the MAXANTICIPATION plateau (abbrevi-
ated to MAXA plateau thereafter in the text) for later referencing purposes.

Given the bombardment effect, a burst size of one packet, and a MAXA margin of 10
ms, this upper threshold would correspond to an offered load of about 150 Bpms; if 5
ms is used for the MAXA margin, then the upper threshold would correspond to an
offered load of about 300 Bpms (Table 11, rate=300, RTIMER=4.8); etc. This newly

172

hypothesized MAXA effect at high offered load, whereby no more rate control would
be effectively exercised, cannot be fully verified here with ux04, as the maximum
throughput is well below the offered loads for the highest half points of the saturation

curve.

Refering again to Figure 5 discussed in Section 3.3, this phenomenon implies that
rate control becomes problematic once RTIMER reaches low values. Given that the
tapering off of the throughput may occur at quite low offered loads (say below 100
Bpms) on the Internet, then this MAXA effect may not be of much consequence for

such an environment.

ux18 - SXTP-1.5.1 modified, orchid to forest (MAXA=5)

The purpose of conducting experiment ux18 is to verify the proposition put forward
in the description of ux04 postulating an interruption of effective rate control for
RTIMER values in the vicinity and below the value of the MAXA margin (called
MAXA effect). The MAXA margin is now reduced by 50% to 5 ms; machine orchid

is used for sending, and dahlia for receiving.

Table ux18.log, Table ux18.xy (refer to Section A), and Figure 48 show respectively
the log summary, the data summary, and the saturation curve for the ux18 unicast

experiment unit.

Asshown on Figure 48, the proposition is verified. There is a huge jump in throughput
to a value of 1434 Bpms corresponding to a rate of 250 Bpms. Refering to Table 11,
a rate of 250 Bpms corrresponds to a RTIMER value of 5.7 ms, and the MAXA effect

appears to be verified.

ux05 - SXTP-1.5.1 modified, orchid to forest, rate/burst harmonized

For ux05, both a 10 ms MAXA margin and the harmonization of the burst and rate
values are being used. Table ux05.log, Table ux05.xy (refer to Section A), and Figure

35 show respectively the log summary, the data summary, and the saturation curve

173

for the ux05 unicast experiment unit.

The net result is a very interesting curve, with about half of the points (rate=10 to
rate=250) nicely distributed in the left rising part of the curve, and the other half
of the points (rate=300 to rate=1250 Bpms) slightly fluctuating at the maximum
throughput. The fact that the lower half points have a much better distribution than
for ux04 can be attributed to the elimination of the SELECT_FLOOR effect through
harmonizing the burst and rate values. The fact that the resulting throughput values,
also for the lower half points of the curve, are much closer to the offered loads than
for ux03 can be ascribed to the anticipated smoothing effect of using a 10 ms MAXA

margin.

There is still the possibility of this MAXA effect described for ux04 at high offered
loads, but it is again not verifiable as the range of highest throughput remains rela-

tively low.

8.3.3 Unicast - impact of reducing the SELECT_FLOOR threshold

The goal of conducting the next few experiments is to map more precisely the pattern
of the SELECT_FLOOR effect. Very often, select() returns much more prematurely
than the timeout value that it receives as a parameter, and this is caused by the bom-
bardment of XTP_SEND requests that continually pop up. At low data rates, the
bombardment is of no consequence as the data packets implied by the XTP_SEND

requests are simply inserted on the send FIFO queue.

The exact value of the SELECT_FLOOR threshold matters for those circumstances
when only a small lapse of time is left before RTIMER expires, and the daemon is
about to yield to select(). For example, supposing RTIMER = 57.6 ms (rate = 25,
RTIMER = 1440/25), and only about 7.6 ms are left. If SELECT_FLOOR = 50 ms
(as the hardcoded default for SandiaXTP-1.5.1), then the next waiting round may
last up to about 50 ms. Obviously, a lower SELECT_FLOOR value than 50 ms is
going to decrease the excess gap between the duration that is left before RTIMER
fires, and the actual incurred waiting period. It also matters when RTIMER is smaller
than SELECT_FLOOR, and we have not reached the start of the bombardment effect

174

(which occurs about at load=800Bpms)

For the following experiments, we cover a range of values for SELECT_FLOOR vary-
ing from as high a value as 100 ms to as low a value as 10 ms; 10 ms being quite
a precise resolution for select(). The 50 ms case is not covered, as ux01 already de-
scribes it. Modified SandiaXTP is being used, but with a 0 ms MAXA margin (i.e., as
if non-existent). Machine dahlia is used for sending, and orchid for receiving. Using
the same two machines for ux02 yielded a similarly shaped saturation curve as the
one for ux0l (where orchid and forest were used), but with lower throughputs for

higher offered loads.

ux06 - SXTP-1.5.1 modified, dahlia to orchid (SEL=100, MAXA=0)

The SELECT_FLOOR threshold is set to 100 ms. Given the one packet burst size used
and the SELECT_FLOOR effect, the expectation is that throughput should taper off
for a long while at 14.4 Bpms, i.e., once RTIMER reaches a value equal to or less
than the SELECT_FLOOR threshold. It is as if SELECT_FLOOR equaled RTIMER
or vice versa (hence rate or offered load = 1440/100, because RTIMER = burst/rate).

Table ux06.log, Table ux06.xy (refer to Section A), and Figure 36 show respectively
the log summary, the data summary, and the saturation curve for the ux06 unicast

experiment unit.

As one can observe on Figure 36, the expectations are well satisfied; throughput
indeed tapers off at 14.4 Bpms for many points of the curve. In conformity with
the saturation curve for ux01, the throughput also jumps to much higher values at
load=800 Bpms because of the bombardment effect. There is no apparent surprise
with this ux06 saturation curve (Figure 36), whose shape is very similar to the one

for ux01.

ux07 - SXTP-1.5.1 modified, dahlia to orchid (SEL=25, MAXA=0)

SELECT.FLOOR is set to 25 ms, i.e., half the hardcoded value of unmodified

175

SandiaXTP-1.5.1. Given the one packet burst size used and the SELECT_FLOOR
effect, the expectation is that throughput should taper off for a long while at 57.6
Bpms (1440/25; see ux06 for an example of more detailed calculations), which is an-

other way of stating that the software maintains the same offered load for a while.

Table ux07.log, Table ux07.xy (refer to Section A), and Figure 37 show respectively
the log summary, the data summary, and the saturation curve for the ux07 unicast

experiment unit.

As shown on Figure 37, the results are slightly disappointing, as throughput tapers
off at 48 Bpms rather than 57.6 ms. The number of points that belong to the SE-
LECT.FLOOR plateau (not so low now) is less than for ux06.

A throughput of 48 Bpms in a plateau also means a constant offered load (rate) of
about 50 Bpms, which in turn means that the SELECT.FLOOR value effectively
obeyed by select() is about 29 ms (1440/50), and this would explain why we get this
plateau at 48 Bmps. Here follows edited trace excerpts that support this interpreta-
tion (rate=150):

(186) 0x2fc0 Sending packet from send FIFO, seq = 41760

->RTIMER - start_rtimer()
RTIMER=9, r_timer=3865788947, now=3865788938

->enq_timer() called
key=0x2fc0, timer_type=RTIMER, due_time=3865788947

->print_timers_onq() called:

of timers onq=2 now=3865788938

key= type= due_time= derived delta time to fire (ms)=
0x2fc0 RTIMER 3865788947 9

0x2fcO0 CTIMER 3869388069 3599122

(187) 0x2fcO DATApacket BEING SENT at 3865788939

176

Destination: 132.205.45.61

satisfy() - returning shortest_orig=50, now=3865788939
->SATISFY() - bypassing shortest_original
->read_first_timer_onq() called
timers_list_head->due_time=3865788947
time left to fire: 8 ms
->satisfy() - returning shortest_NEW=25, now= 3865788939
->shortest (top level do { }while(!ds))= 25, now=3865788940
timeout (before select(...,&timeout))= 25, now=3865788940
daemon going to sleep.......

...up on USERREQ O ms later, now=3865788940

(188) XTPdaemon XTP_SEND request for 0x2fcO
(189) 0x2fc0 DATApacket BEING SENT at 3865788940

(190) 0x2fcO Putting packet on send FIF0, seq = 43200
->Bubbling up shortest to select()<-
check_timers()-returning shortest_orig=6, now=3865788941
satisfy() - returning shortest_orig=50, now=3865788941
->SATISFY() - bypassing shortest_original
->read_first_timer_onq() called

timers_list_head->due_time=3865788947
time left to fire: 6 ms

177

->satisfy() - returning shortest_NEW=25, now= 3865788941

->shortest (top level do { }while(!ds))= 25, now=3865788941
timeout (before select(...,&timeout))= 25, now=3865788941

daemon going to sleep.......
...up on TMOUT 26 ms later, now=3865788967

(191) 0x2fcO RTIMER expired now=3865788967

->dq_timer() called
key=0x2fc0 timer_type=RTIMER due_time=3865788947

->print_timers_onq() called:

of timers onq=1 now=3865788967

key= type= due_time= derived delta time to fire (ms)=
0x2fcO CTIMER 3869388069 3599102

->Bubbling up shortest to select()<-
check_timers()-returning shortest_orig=-20, now=3865788968
(192) 0x2fcO0 Sending packet from send FIFO, seq = 43200

For a rate of 150 Bpms, the value of RTIMER is 9.6 ms (see Table 11), and this is the
value shown at the beginning of the trace (truncated with no decimal shown). Note
that the last digits of the timestamp when RTIMER is started are 88938. Then the
SELECT-FLOOR value of 25 ms is bubbled up to select(), but select() returns imme-
diately because of an incomimg USERREQ. The packet underlying this XTP_SEND
request is inserted on the send FIFO queue for the context to be sent later (line
(190)). At this point, the duration left for RTIMER to expire is 6 ms, and again 25
ms is bubbled up to select(). Now, select() returns only after a timeout period of 26
ms, and the lasts digits of the timestamp are 88967. The difference between the two
timestamps is 29 ms (88967-88938), as declared before showing the trace. Because of
a particular sequence of events, a RTIMER of 25 ms is effectively acted upon 29 ms

later.

178

ux08 - SXTP-1.5.1 modified, dahlia to orchid (SEL=10, MAXA=0)

For ux08, the SELECT.FLOOR threshold is set to 10 ms. Given the one packet burst
size used and the SELECT_FLOOR effect, the expectation is that throughput should
taper off for a long while at 144 Bpms (1440/10; see ux06 for an example of more

detailed calculations).

Table ux08.log, Table ux08.xy (refer to Section A), and Figure 38 show respectively

the log summary, the data sumnmary, and the saturation curve for the ux08 unicast

experiment unit.

As one can observe on Figure 38, there are a few surprises; instcad of only one plateau,
the saturation curve displays what appears to be three plateaux. The most impor-
tant one (though with a smaller number of points than ux07) is the SELECT_FLOOR
plateau at throughput = 144 Bpms as expected. A smaller plateau (with 3 points)
is shown at throughput = 72 Bpms. Finally, another embryonic plateau (2 points)
can also be detected at throughput = 28 Bpms. Let's try to analyse the reasons
for the appearance of the most important unexpected plateau, the one appearing at

throughput = 72 Bpms using the same approach as for ux07 with daemon execution

traces.

Here follows trace excerpts for a scenario where rate = 100 Bpms (i.e., throughput =
71.9 - see Table ux08.xy) and RTIMER = 14.4 ms:

(66) 0x1000 Sending packet from send FIFO, seq = 12960

->RTIMER - start_rtimer()
RTIMER=14, r_timer=3860249626, now=3860249612

->enq_timer() called
key=0x1000, timer_type=RTIMER, due_time=3860249626

->print_timers_onq() called:
of timers onq=2 now=3860249612

179

key= type= due_time= derived delta time to fire (ms)=
0x1000 RTIMER 3860249626 14
0x1000 CTIMER 3863849423 3599797

(67) 0x1000 DATApacket BEING SENT at 3860249613
Destination: 132.205.45.61

satisfy() - returning shortest_orig=50, now=3860249613
->SATISFY() - bypassing shortest_original
->read_first_timer_onq() called
timers_list_head->due_time=3860249626
time left to fire: 13 ms
->satisfy() - returning shortest_NEW=13, now= 3860249613
->shortest (top level do { }while(!ds))= 13, now=3860249613
timeout (before select(...,&timeout))= 13, now=3860249614
daemon going to sleep.......

...up on USERREQ O ms later, now=3860249614

(68) XTPdaemon XTP_SEND request for 0x1000
(69) 0x1000 DATApacket BEING SENT at 3860249614

(70) 0x1000 Putting packet on send FIFO, seq = 14400
->Bubbling up shortest to select()<-
check_timers()-returning shortest_orig=11, now=3860249615

satisfy() - returning shortest_orig=50, now=3860249615

=>SATISFY() - bypassing shortest_original

180

~>read_first_timer_onq() called
timers_list_head->due_time=3860249626

time left to fire: 11 ms
->satisfy() - returning shortest_NEW=11, now= 3860249615

->shortest (top level do { }while(!ds))= 11, now=3860249615
timeout (before select(...,&timeout))= 11, now=3860249615
daemon going to sleep.......

...up on TMOUT 16 ms later, now=3860249631

(71) 0x1000 RTIMER wxpired now=3860249631

->dq_timer() called
key=0x1000 timer_type=RTIMER due_time=3860249626

->print_timers_onq() called:

of timers ong=1 now=3860249631

key= type= due_time= derived delta time to fire (ms)=
0x1000 CTIMER 3863849423 3599792

->Bubbling up shortest to select()<-
check_timers()-returning shortest_orig=-5, now=3860249632
(72) 0x1000 Sending packet from send FIF0, seq = 14400

~>RTIMER - start_rtimer()
RTIMER=14, r_timer=3860249646, now=3860249632

The explanation is similar to the one provided for ux07. When RTIMER is first being

computed in the above trace, the last four digits of the timestamp are 9612. Later on,
after handling one XTP_SEND request, select() returns on a TMOUT case 5 ms later
(16 vs 11), and the last digits of the timestamp are 9631. The difference between the
two timestamps is 19 ms (9631-9612). If the value of RTIMER was 19 ms, then the
value for rate would be about 76 ms (19=1440/rate), which is reasonably close to the

181

72 ms thoughput plateau being analysed. The essential reason would then be some
imprecision on exactly when select() returns on a TMOUT case, which in this range

of timeout values would appear to be about 5 ms late.

8.3.4 Unicast - impact of SELECT_FLOOR & MAXANTICIPATION

The impact of varying the value of the SELECT_FLOOR threshold value only was
explored in the previous Section 8.3.3. The reasons for conducting the following few
experiments are to evaluate the impact of also incorporating the MAXA margin (do
work somewhat earlier, otherwise it might be done much later). Hence, modified
SandiaXTP is being used with machine dahlia used for sending and machine orchid

for receiving.

Because of the additional loosening effect of a MAXA margin, we would expect better

throughputs than the ones obtained for the experiments described in Section 8.3.3.

ux09 - SXTP-1.5.1 modified, dahlia to orchid (SEL=100, MAXA=10)

For ux09, the SELECT_FLOOR threshold and the MAXA margin are respectively
set to 100 ms and 10 ms. The expectation for conducting ux06 (a similar experiment,
but without the MAXA margin) was a taper off plateau at throughput = 14.4 Bpms
because of the SELECT_FLOOR effect.

Table ux09.log, Table ux09.xy (refer to Section A), and Figure 39 show respectively
the log summary, the data summary, and the saturation curve for the ux09 unicast

experiment unit.

As one can observe on Figure 39, the results of the experiments are quite astonishing.
Record high throughput values are obtained, and 60% of the points of the satura-
tion curve belong to this very high throughput category. There is indeed a taper off
plateau at throughput = 14.4 Bpms, but it extends only up to load = 100 Bpms (for
ux06, it extended up to load = 700 Bpms).

At load = 150 Bpms, there is a drastic jump to throughput = 1025 Bpms. In fact,

182

throughput gets as high as 1296 Bpms at load = 1100 Bpms. This very high through-
put of 1296 Bpms is higher than the 10 Mbps (i.e., 1250 Bpms) nominal capacity of
10 BASE-T Ethernet, and presumed to be high limit for choosing the send rates of

the experiments.

In comparison with the other experiments where maximum throughputs are much
lower and the same two machines are being used (for example, ux02, where maxi-
mum throughput is 46.7 Bpms at load = 800 Bpms), 2 maximum throughput of 1296
Bpms is more acceptable, given that these two machines have a 100 Mbps (i.e., 12500
Bpms) network connection. After analysing this sudden jump to very high through-

puts, we formulate a tentative explanation of these record high throughputs.

Why this sudden rise in throughput at load = 150 Bpms? An offered load of 150
Bpms implies a RTIMER value of 9.6 Bpms (see Table 11). We presumably have a
verification of the MAXA effect described for ux08. With a RTIMER value of 9.6 ms,
and a MAXA margin of 10 ms, we are in the area where each check made to r_timer
is going to yield the conclusion that RTIMER has expired (MAXA > RTIMER). The
implication of this phenomenon is that, at load = 150 Bpms, the throughput is 6.8
times (1025/150) more than load, and we are clearly no longer exercising rate control.
This phenomenon is similar to the SELECT_FLOOR effect, but at the other/excessive
end of the polarity. Apparently, what was meant to be an improvement for anomalies
such as select() returning early, or a soon to erpire RTIMER, turns out in another

excess at high offered loads.

For ux09, both the MAXA and the bombardment effects are at work for high offered
loads. RTIMER is no longer a constraint, as it has always expired (because MAXA
> RTIMER). Surely, each XTP_SEND request passed by the client must be replied
to by the daemon. When the daemon yields to select() at some point, select() returns
immediately (or almost) because of another incoming XTP_SEND user request. As
RTIMER has expired, the packet is also sent immediately, and this cycle repeats
itself resulting in a batch of back-to-back packets being sent. Here follows edited
trace excerpts that support this interpretation (rate=200 Bpms, dahlia to orchid):

(30) 0x3000 DATApacket BEING SENT at 411146031

183

->RTIMER - start_rtimer()
RTIMER=7, r_timer=411146039, now=411146032

->enq_timer() called
key=0x3000, timer_type=RTIMER, due_time=411146039

->print_timers_onq() called:

of timers onq=2 now=411146032

key= type= due_time= derived delta time to fire (ms)=
0x3000 RTIMER 411146039 7

0x3000 CTIMER 414745999 3599960

(31) 0x3000 RTIMER expired now=411146033

->read_first_timer_onq() called
timers_list_head->due_time=414745999

time left to fire: 3599966 ms

->satisfy() - returning shortest_NEW=3599966, now= 411146033

->shortest (top level do { }while(!ds))= 3599966, now=411146033
timeout (before select(...,&timeout))= 10000, now=411146034

daemon going to sleep.......
...up on USERREQ 0 ms later, now=411146034

(32) XTPdaemon XTP_SEND request for 0x3000
(33) 0x3000 DATApacket BEING SENT at 411146034

->RTIMER - start_rtimer()
RTIMER=7, r_timer=411146042, now=411146035

(34) 0x3000 RTIMER expired now=411146035

184

->satisfy() - returning shortest_NEW=3599963, now= 411146036

->shortest (top level do { }while(!ds))= 3599963, now=411146036
timeout (before select(...,&timeout))= 10000, now=411146036

daemon going to sleep.......
...up on USERREQ 1 ms later, now=411146037

(35) XTPdaemon XTP_SEND request for 0x3000
(36) 0x3000 DATApacket BEING SENT at 411146037

->RTIMER - start_rtimer()
RTIMER=7, r_timer=411146044, now=411146037

etc..

For a data rate of 200 Bpms, RTIMER value is 7.2 ms, which is shown at the be-
ginning of the trace. When the daemon resumes execution (line (30)) as a result
of one incoming XTP SEND user request, the underlying data packet is being sent
immediately and r_timer is armed. Then the daemon proceeds to check all timers
and realizes that RTIMER has expired (necessary, because MAXA > RTIMER), but
has to yield to select() as there are no more data to send. However, select() returns
immediately because of another incoming user request and a packet is again sent

immediately. This pattern repeats itself probably until all data have been sent.

ux10 - SXTP-1.5.1 modified, dahlia to orchid (SEL=25, MAXA=10)

For ux10, the SELECT.FLOOR threshold and the MAXA margin are respectively
set to 25 ms and 10 ms. Similar to experiment ux07 (done without a MAXA margin),

we could expect a taper off plateau at throughput = 57.6 Bpms (1440/25).
Table ux10.log, Table ux10.xy (refer to Section A}, and Figure 40 show respectively

the log summary, the data summary, and the saturation curve for the ux10 unicast

experiment unit.

185

The taper off plateau occurs at throughput = 48 Bpms (rather than 57.6 Bpms, and
probably for the same reasons as the ones invoked for ux07). It extends for only 3
points (50, 75, and 100 Bpms). Recall that it extended up to load = 700 Bpms for
ux07. Then the throughput jumps to still higher values than for ux09. For example,
at load=150 Bpms, throughput = 1272 Bpms, i.e., throughput is about 8.5 times
more than the offered load. Clearly again, no more rate control is being exercised
and the MAXA effect described previously for ux09 has taken over. The following

trend now seems to emerge clearly:

1. The SELECT_-FLOOR effect produces a constant throughput plateau (or a
constant offered load producing the same throughput); the value of the SE-
LECT.FLOOR threshold determines the “altitude” of the plateau (or its through-
put value).

2. The value of the MAXA margin determines the length of the SELECT_FLOOR
plateau (or how many points of the curve are included), or stated otherwise, at
what offered load the throughput starts to explode to record high values (here
at offered load=150 Bpms for a MAXA margin of 10 ms).

ux1l - SXTP-1.5.1 modified, dahlia to orchid (SEL=10, MAXA=10)

For ux11, the SELECT.FLOOR threshold and the MAXA margin are both set 10 ms.
Similar to experiment ux08 (done without a MAXA margin), we could expect a taper
off plateau at throughput = 144 Bpms (1440/10) because of the SELECT_FLOOR

effect (recall that there was some disappointment for ux08).

Table uxll.log, Table ux11.xy (refer to Section A), and Figure 41 show respectively
the log summary, the data summary, and the saturation curve for the uxll unicast

experiment unit.

The shape of the saturation curve for ux11 (Figure 41) is very similar to the one for
uxl0 (Figure 40). Similar to ux08 (and probably for the same reasons), there is a
short taper off plateau at throughput = 72 Bpms (2 points, when it was 3 points for
ux08). Then there is a drastic surge to again record high throughput values.

186

Indeed, the saturation curve for uxll (Figure 41) is very similar to the one obtained
for uxl0 (Figure 40), and the same analysis applies. The impact of reducing the
SELECT_FLOOR threshold value seems to consist only of increasing the “altitude”
of the SELECT_FLOOR plateau (here at 48 Bpms).

ux19 - SXTP-1.5.1 modified, dahlia to orchid (SEL=10, MAXA=05)

Recall that experiment uxll produced grossly a two part saturation curve (Figure
41) with each part separated by a huge gap in throughput presumably attributable
to the MAXA effect. The purpose of experiment ux19 is to repeat experiment ux11,
but with a 50% reduction in the value of the MAXA margin from 10 to 5 ms. As
per Table 11, this change should result in shifting at most four points from the high

plateau to the linearly increasing part of the curve.

Table ux19.log, Table ux19.xy (refer to Section A), and Figure 49 show respectively

the log summary, the data summary, and the saturation curve for the ux19 unicast

experiment unit.

As shown on Figure 49, the jump in throughput starts at rate = 250 Bpms (through-
put = 989 Bpms). As compared to uxll, a 50% increase of the MAXA margin yields
a “shift” of only two points (150 & 200), and even those two points are on a plateau
by themselves with about the same throughput (144 Bpms). Consequently, the “re-
turn on investment” for reducing the MAXA margin is not very promising, given the

current mix of command line arguments at least.

8.3.5 Unicast - lack of bombardment effect

Recall that most unicast experiments done with unmodified SandiaXTP-1.5.1 so far,
such as experiment ux0l, get higher throughputs than the SELECT_FLOOR plateau
(parts 3 & 4 described for ux01) for a reason that we attributed to the bombardment
" effect. In turn, this bombardment phenomenon is presumed to be created through
matching the user buffer size and the PDU size such that there would be approxi-
mately as many XTP_SEND user requests as there are packets to send, which creates

an incessant flow of disturbances causing the select() system call to return much ear-

187

lier than scheduled.

The goal of the following few experiments is to evaluate the impact of greatly reducing
the frequency of the bombardment phenomenon, by specifying a user buffer size 10
times larger (14400 vs 1440 bytes used when talking of the bombardment effect). The
expectations are that: (1) the throughput should not increase much beyond the SE-
LECT.FLOOR plateau; (2) as the whole dynamics of the interactions client/daemon
might get changed, that there might also be implications even for the rising part of
the curve before the SELECT.FLOOR plateau, and also to the SELECT.FLOOR

plateau itself.

Unmodified SandiaXTP is used, with machine orchid for sending and forest for re-

ceiving.
ux12 - SXTP-1.5.1 unmodified, orchid to forest (-b 14400)

The parameters used for ux12 are identical to ux01, except that the size of the user
buffer is 10 times larger at 14400 bytes. For ux0l, the taper off SELECT.FLOOR

plateau was expected at throughput = 28.8 Bpms.

Table ux12.log, Table ux12.xy (refer to Section A), and Figure 42 show respectively
the log summary, the data summary, and the saturation curve for the ux12 unicast

experiment unit.

As one can observe on Figure 42, the resulting saturation curve is less than amenable
to dynamic rate control because of its erratic shape. There is indeed a plateau at
throughput = 28.8 Bpms, but the preceding and the following points show no relative
consistency. Also as expected, the throughput does not rise significantly beyond the
SELECT_FLOOR threshold for the later points.

Many trace inquiries and analysis (a time consuming process) would be needed to
track down more precisely the ups and downs of this saturation curve. As the global

expectation is verified, there is no further finer grained interpretation attempted.

188

By using a larger buffer size, one would normally expect that a better quality rate
control be exercised, as there is less time consumed for interprocess communications
between the daemon and the client, and also less boundary crossing between user
level proceses and the operating system. However, the result is quite the opposite.
For the particular mix of user level arguments used for ux12 (which are not odd at
all), it would appear that unmodified SandiaXTP does a less than acceptable job at

exercising rate control.

ux13 - SXTP-1.5.1 modified, orchid to forest (-b 14400)

Experiment ux13 is similar to ux12, but with the addition of a 10 ms MAXA margin.
Hence modified SandiaXTP-1.5.1 is used, with the same mix of machines (orchid and

forest).

Table ux13.log, Table ux13.xy (refer to Section A), and Figure 43 show respectively
the log summary, the data summary, and the saturation curve for the ux!13 unicast

experiment unit.

As one can observe on Figure 43, the shape of the resulting saturation curve is much
more regular than the one for ux12 (Figure 42). The rise to the 28.8 Bpms SE-
LECT_FLOOR plateau is very linear with throughput close to offered load (about
93%). However, once reached, the SELECT_FLOOR plateau extends for only five
points, from load=30 up to load=100 Bpms. Then there is a slight rise to a not
so high second plateau where throughput fluctuates slightly around 32 Bpms, and

includes about 66% of the points of the whole curve.

Let us try to explain the reasons of this low and stable second plateau. At a rate
of 125 Bpms, where the higher plateau begins, the value of the RTIMER is 11.5 ms
(1440/125). Given a burst of one packet, a 10 ms MAXA margin, and the particulars
of the SandiaXTP rate control algorithm (see Figure 24), each execution pass of the
algorithm by the daemon results in at most two packets being sent. Once a pass is
completed, the daemon yields to select() for a 50 ms specified timeout period. As
there are many fewer XTP_SEND user requests, select() is likely to return only after
about the scheduled timeout period, resulting in this much lower throughput.

189

Even if the rate is increased, say to 200 Bpms with a corresponding 7.2 ms RTIMER,
a 10ms MAXA margin, and the one packet burst size, each execution pass of the al-
gorithm by the daemon will just result again in no more than two packets being sent.
This recurring pattern explains why the throughput remains stable for the greater

part of the ux13 saturation curve.

Being very regular, the only apparent disadvantage of this saturation curve seems to

be its low maximum throughput range.

ux14 - SXTP-1.5.1 unmodified, orchid to forest (-b 14400, SEL=10)

For experiment ux14, the SELECT_FLOOR threshold and the MAXA margin are
both set to 10 ms. Hence, unmodified SandiaXTP-1.5.1 is used, with machine orchid
for sending, and forest for receiving. With the SELECT_FLOOR threshold set to
10 ms (rather than 50 ms for ux13), the expectation is that the throughput should

increase for many rate/loads.

Table ux14.log, Table ux14.xy (refer to Section A), and Figure 44 show respectively
the log summary, the data summary, and the saturation curve for the uxl4 unicast

experiment unit.

As one can observe on Figure 44, the shape of the saturation curve is very similar to
the one obtained for ux13 (Figure 43), but with many higher throughput values, as

expected.

The “altitude” of the higher plateau is approximately at throughput = 164 Bpms (it
was 33 Bpms for ux13). The first point of the higher plateau corresponds to load=150
Bpms, and a RTIMER of 9.6 ms (see Table 11). As explained for ux13, this marks
the beginning of the MAXA effect where RTIMER has always expired when checked,
and no increase of the offered load will improve the throughput significantly.

When compared to ux13, the “altitude” of the higher plateau is greater than the

one for ux13 because of the much shorter waiting period between two consecutive

190

execution passes of the algorithm by the daemon, which is caused by the much shorter
10 ms SELECT_FLOOR threshold (it was 50 ms for ux13).

ux16 - SXTP-1.5.1 unmodified, orchid to forest
(-b 28800, SEL=10, MAXA=0)

The purpose of conducting experiments ux16 and ux17 is to test the behavior of the
daemon under very different dynamic conditions. Recall that many experiments, such
as ux0l, were done with a minimal user buffer size of 1440 bytes, creating an incessant
flow of XTP_SEND user requests. The size of the user buffer size is now set to 28800
bytes, thereby reducing the number of XTP_SEND user requests to one twentieth of

what it was for many other experiments, such as ux01.

As for uxl4, the SELECT _FLOOR threshold value for ux16 is set to 10 ms, which
implies a taper off SELECT_.FLOOR plateau at throughput = 144 Bpms (1440/10).
The MAXA margin is set to 0 ms.

Table ux16.log, Table ux16.xy (refer to Section A), and Figure 46 show respectively
the log summary, the data summary, and the saturation curve for the ux16 unicast

experiment unit.

As shown on Figure 46, there is indeed a plateau corresponding approximately to
the SELECT_FLOOR threshold value (i.e., 144 Bpms). However, there is no rise
beyond this plateau, as such is the case for the experiments done with a user buffer
size matched to the PDU size (see ux01 - Figure 31). The relatively large user buffer

size justifies the particular shape of the ux16 saturation curve.

ux17 - SXTP-1.5.1 unmodified, orchid to forest
(-b 28800, SEL=0, MAXA=0)

For ux17, the SELECT_FLOOR threshold value is set to 0 ms. The goal of con-
ducting the experiment is to test the behavior of the daemon under limit conditions.
Whether the daemon crashes because of the nil value conveyed to select(), or whether
the daemon does a very good job through enlisting the cooperation of the operating

system for incoming user requests or packets, and still checking the timers for expi-

191

ration with a much improved time granularity and also sending the packets timely.

Table ux17.log, Table ux17.xy (refer to Section A), and Figure 47 show respectively
the log summary, the data summary, and the saturation curve for the ux17 unicast

experiment unit.

As shown on Figure 47, the daemon survived well. However, the shape of the resulting
saturation curve is quite irregular, and does not fulfill the expectation formulated of
an “ideal” rate control. More particularly, and despite the nil SELECT_FLOOR
threshold value implying that there should be no SELECT_FLOOR plateau, there
still appears to be one (though not so stable as when the SELECT_FLOOR threshold
has low values - such as for ux01) approximately at throughput = 144 Bpms.

8.3.6 Multicast experiments/curves

The goal of the following few experiments is to test the behavior of SandiaXTP-
1.5.1 (mainly unmodified SandiaXTP-1.5.1) for rate control experiments using the
multicast mode of communication. The data underlying the saturation curves being
gathered at the transmitter, and the task consisting of reliable data transfer, the
global expectation is that the shapes of the multicast saturation curves should be

very similar to the ones obtained for the unicast mode, such as for ux01.

Intuitively, two factors should reduce the throughput values of the resulting satu-
ration curves: (1) the capacities of the slowest receiver should impose its pace to
the whole group of receivers; the greater processing time at all hosts inherent to the

greater complexity of the multicast mode.

Machine orchid is generally used for sending. The evolution of the set of multicast
experiments consists of first producing a basic reference multicast saturation curve in-
cluding only the slowest machine (daffodil) in the group of multicast receivers. Then,
the next experiments include only the fastest machine (dahlia) in the group of re-
ceivers, and subsequently the two fastest machines (sunset and dahlia), and finally

the full group of multicast receivers (machines dahlia, sunset, and daffodil).

192

Proceeding gradually in this manner, the hypothesis to be verified is that there should
be a gradual decrease in the throughput values, particularly towards the end of the
curves where the SELECT_FLOOR effect has no impact.

Some multicast experiments needed a much longer period of time for their realization.
Whereas the task of conducting the unicast experiments could be automated with a
shell script, the same method did not work for multicast experiments with more than
one receiver in the group of receivers. Using the same shell script as for the unicast
experiments, the most frequent problem encountered was that the transmitter would
stall while in progress, say at the beginning of the data transfer job for load=400

Bpms, with the message:
reg: EXCNTXT: Exceeded the maximum number of contexts in daemon

The interpretation given to this message was the presence of zombie processes that
accumulated and could not be released before the next data transfer job started,
eventually reaching the default number of allowed contexts. The solution adopted
consisted of starting and stopping the daemon for each experiment (each point of
the saturation curve), with interactive intervention of the experimenter to start the

daemon, each receiver and the transmitter client programs for each data transfer job.

mx01 - SXTP-1.5.1 unmodified, orchid to daffodil

As stated in the general introduction about the set of multicast experiments, the goal
of experiment mx01 is to provide a basic reference multicast saturation curve with
only the slowest receiver included in the group of multicast receivers. Unmodified
SandiaXTP-1.5.1 is used, with machine orchid for sending and daffodil for receiving.

Table mx01.log, Table mx01.xy (refer to Section A), and Figure 51 show respectively
the log summary, the data summary, and the saturation curve for the mx01 multicast

experiment unit.

In conformity with the expectations, the shape of the multicast saturation curve

for mx01 shown on Figure 51 is very similar to the shape of the unicast saturation

193

curve obtained for ux0l (see Figure 31). Only the end parts of the two curves differ,
particularly with regards to the throughput values of mx01 being higher than ux01.
Daffodil being a faster machine than forest (see Table 10), this fact does not come as

a surprise.

mx02 - SXTP-1.5.1 unmodified, orchid to dahlia

As compared to mx01, the only change introduced for mx02 consists of using machine
dahlia for receiving. Table mx02.log, Table mx02.xy (refer to Section A), and Figure
52 show respectively the log summary, the data summary, and the saturation curve

for the mx02 multicast experiment unit.

Again the resulting multicast saturation curve obtained for mx02 and shown on Figure
52 is very similar to the one obtained for ux01 (Figure 31) and no further comments

are needed.

mx03 - SXTP-1.5.1 unmodified, orchid to dahlia/sunset

For mx03, the group of multicast receivers includes machines dahlia and sunset. Ta-
ble mx03.log, Table mx03.xy (refer to Section A), and Figure 53 show respectively
the log summary, the data summary, and the saturation curve for the mx03 multicast

experiment unit.

As expected and stated previously, a trend seems to emerge for lower throughput
values after the SELECT_FLOOR plateau. For instance, for rate=800 Bpms, the
throughput for mx02 is 144 Bpms; it is 90 Bpms for ux03.

mx04 - SXTP-1.5.1 unmodified, dahlia to orchid/sunset/daffodil

For mx04, the group of multicast receivers includes three machines: dahlia, sunset,
and daffodil. Table mx04.log, Table mx04.xy (refer to Section A), and Figure 54 show
respectively the log summary, the data summary, and the saturation curve for the

mx04 multicast experiment unit.

194

With mx04, the expected decrease in throughput corresponding to an increase in the
number of receivers does not clearly materialize. The saturation curve for mx04 (3
receivers - Figure 54) shows a decrease in throughput when compared to mx02 (1
receiver - Figure 52), but an increase in throughput when compared to mx03 (2 re-

ceivers - Figure 53).

The trend that seems to emerge is the drop in throughput after a maximum has been
reached for mx03 and mx04. This phenomenon is in accordance with the thrashing
effect observed in other areas of study, such as for demand paging as introduced at
the beginning of the report (Section 2). With mx03 and mx04, the so-called thrashing
phenomenon starts at load=900 Bpms. For such a rate, RTIMER equals 1.6 ms.

mx05 - SXTP-1.5.1 modified, dahlia to orchid/sunset/daffodil

Modified SandiaXTP-1.5.1 is used for experiment mx05. The MAXA margin is set
to 10 ms. The same set of machines is used as for mx04, i.e., orchid for sending;
dahlia, sunset, and daffodil for receiving. The unicast equivalent (with the same 10
ms MAXA margin) is ux04, which yiclded a very regular saturation curve (see Figure

34) having a low and a high plateau where throughput values are stable.

Table mx05.log, Table mx05.xy (refer to Section A), and Figure 55 show respectively
the log summary, the data summary, and the saturation curve for the mx05 multicast

experiment unit.

As one can observe on Figure 55, the shape of the resulting saturation curve is very
irregular, and correlates very little with the expectations. The beginning of the curve,
up to load=100 Bpms, has the familiar shape and expected throughput values of a
unicast curve, such as ux0l. Thereafter, the throughput jumps from low to high

values without apparent pattern.

195

8.3.7 Other experiments/curves

ux15 - SXTP-1.5.1 unmodified, orchid to forest, WS=51200

Other unicast studies conducted at the HSP Lab. ([SUL], [FALCOT]) in a WAN/Internet
environment have shown that a window size of 102400 bytes offers excellent through-
put results. Consequently, a window size of 102400 bytes was used for most of the

experiments reported in the present study.

The goal of experiment ux15 is to verify the expectation that a reduced window size
should not significantly change the shape of the saturation curve, except for lower
throughput values for the points situated beyond the SELECT_FLOOR plateau. The
reason being that a smaller window size implies more restriction on the sender, and
hence a longer period of time should be needed to complete the data transfer task.
For the points of the curve included in the SELECT_FLOOR plateau and the previ-

ous ones, the rates are so low that there should be no influence at all.

Unmodified SandiaXTP-1.5.1 is used, with machine orchid for sending and forest for

receiving.

Table ux15.log, Table ux15.xy (refer to Section A), and Figure 45 show respectively
the log summary, the data summary, and the saturation curve for the ux15 multicast

experiment unit.

As one can observe on Figure 45, the shape of the resulting saturation curve for
uxl3 is very similar to the one obtained for ux01 (with WS=102400 bytes - Figure
45). As expected, the higher throughput values for ux15 are lower than for ux01.
For example, corresponding to load=800 Bpms, the resulting throughput value is 69
Bpms for ux15, while it is 96 Bpms for ux01.

8.4 Synthesis of the results and global evaluation

The goals of this subsection are twofold: (1) to review the problem of exercising rate

control with SandiaXTP; (2) to evaluate the success of the changes introduced to the

196

algorithm.

The experimental method consisted of recompiling the source code of the daemon
as needed for the MAXA margin and the SELECT_FLOOR threshold, and also of
varying command line parameters conveyed to the daemon from a user level program
and contrast the results of both unmodified and modified SandiaXTP-1.5.1.

Rate control with SandiaXTP - Global problem structure

As any other software tool, SandiaXTP has capacities but also limitations that be-
came quite apparent when concenttating on its rate control facilities. At the beginning
- of the report, Figure 5 led to anticipating that there would be difficulties with exercis-
ing proper rate control below a lower RTIMER threshold value. Table 13 shows the
global problem structure that emerges as a result of having analysed the rate control
mechanisms used by SandiaXTP, and also testing its behavior through experimenta-

tion.

One problem that caused concern was understandability of the algorithm (item 1 on
Table 13) used when bubbling up a timeout value to the select() system call after a
timer (RTIMER) has expired. Normally, when a timer expires, one would expect that
the next timeout value bubbled up to select() would be a timer related timeout value,
or at least that a timer (if any ongoing) be taken into consideration. Such is not the
case with unmodified SandiaXTP-1.5.1. When a timer has expired, the discovery is
naturally made after the fact. Consequently, the difference between r_timer and now
yields a negative value for variable shortest. As no negative timeout value is allowed
to be passed to the select() system call, a hardcoded minimum timeout value (50 ms)
is passed to select(). The next execution pass of the algorithm is likely to bubble up
a proper timer related timeout value though, but at the cost of one possible spurious
call to select(), and another longer wait period if the lapse of time before RTIMER

expires is short (say 3 ms).

Mainly to foster understandability of the rate control algorithm, a linked list of timers
(for all timers) was introduced. Though tested only within the context of these rate

control experiments, the operation of this linked list appears to be correct.

197

Table 13: Rate control with SandiaXTP - Global problem structure

Implementation architecture characteristics: Being a user level implementation, the daemon
has to yield to the operating system to be notified of incoming user requests, incoming packets, or
after a timeout period, whichever comes first. The select() system call is used for this purpose. Each
time that select() returns, the timers are checked for expiration.

Problem areas:

1. Algorithm

Elements of solution:

Use a linked list of timers

Evaluation/implications:

Appears successful

2 SELECT_FLOOR threshold: As per the design, select() should not be passed a timeout value
below some threshold; otherwise it might never return (hardcoded to 50 ms with SXTP-1.5.1). Note:
this constraint was not effectively observed during the experiments with Solaris2.5.

2.1 SEL_FLOOR effect: Given
a fixed burst size, if the rate
increases, then RTIMER de-
creases to a point where it be-
comes smaller than or equal to
the SELECT_FLOOR threshold.
When this occurs, the offered
load remains constant, produc-
ing a plateau in throughput (SE-
LECT_FLOOR plateau).

2.2 Delay due to select() im-
precision: Often, select() re-
turns a few ms before the spec-
ified timeout period, implying
possibly another wait period.

2.3 Delay for soon to expire
timers: a timer to expire shortly
(say 3 ms after being checked)
could be acted upon much later
because of the SELECT.FLOOR
threshold.

3 Hard limit: In principle, no
more rate control is possible when
the time required to process a
packet is equal or greater than
RTIMER.

Use harmonization of rate and
burst values such that RTIMER
remains well above the SE-
LECT_.FLOOR threshold.

Reduce the SELECT.FLOOR
threshold value as much as possi-
ble (could also limit RTIMER to
a low value of 10 ms).

A MAXA margin (say 5 ms).

Same

Nothing to be done, except use a
faster machine.

Works well. Somewhat conflict-
ing objectives; when rate is high,
burst should decrease so as to
ease the strain on the network,
whereas it increases when using
harmonization.

Partly successful if done alone.
There is still a plateau, but with
less and less points included in it.

Partly sucessful; no more rate
control is possible when RTIMER
< MAXA. Could limit RTIMER
to a low value (say 10 ms)

Same

Another reason to fix a lower
limit to RTIMER.

198

Another important problem area that has much impact on the rate control quality
that can be exercised with the SandiaXTP implementation, and that stems from the
anticipated low limit conditions on RTIMER values, concerns the interaction between
the operating system and the daemon through the select() system call. The descrip-
tion of these problems occupy most of the space of Table 13 (items 2, 2.1, 2.2, and

2.3) and are explored in further detail in the following subsections.

Finally, Table 13 (item 3) shows that there is a hard limit to rate control possibilities,
which occurs when the time needed to process a packet is about equal to or exceeds
RTIMER. On a relatively slow machine such as forest.cs.concordia.ca, this would
imply that no rate control above the relatively low offered load of about 150 Bpms

(see Table 11) can be exercised.

Pertinence of a MAXANTICIPATION margin

A MAXA margin was introduced as an attempt to compensate for: (1) the observed
fact that sclect() sometimes returns slightly before the specified timeout period, re-
sulting in another wait period (ex: suppose select() returns 3 ms early, then the
daemon would yield for another 50 ms); (2) soon to ezpire timers, also resulting in
another wait period (ex: when checked, suppose 7 ms is left before RTIMER expires,
then the daemon would yield for possibly another wait period of about 50 ms). As
indicated on Table 13, the results of this change are only partly successful, and we

should consider two cases for evaluation purposes:

1. When the bombardment is at work: When comparing the throughputs
obtained for ux01 (Table ux01.xy), where no MAXA margin is being used, and
for ux04 (where a 10 ms MAXA margin is used), one can observe only a very
slight throughput improvement of the order of 1%. For example, corresponding
to load=10 Bpms, the throughput obtained for ux01 is 9.528 Bpms, and it is
9.623 for ux04. Such a meager improvement can be attributed to the fact that
at low offered loads, most of the time is spent waiting for sending the next burst

of packets anyway.

On the other hand, analysis of the results for other experiments (such as ux09,

199

Table 14: Degree of precision of the select() system call on a TMOUT case

SELECT FLOOR | Observed values on orchid (solaris2.5) | Average | Imprecision gap
(ms) (ms) (ms) (ms)
150 149 150 152 147 150 148 150 151 149 149 { 149.5 -0.1
125 125 126 125 130 125 125 125 123 125 125 | 125.4 +0.4
100 095 097 095 096 095 095 096 093 095 096 | 095.3 -4.7
075 076 075 076 076 076 075 075 078 076 076 | 075.9 +0.9
050 046 047 045 046 046 046 046 046 046 047 | 046.1 -3.9
040 036 036 037 039 035 036 036 036 036 036 | 036.3 -3.7
030 027 025 026 025 025 025 026 026 026 026 | 025.7 4.3
- 025 026 026 027 026 025 026 026 026 026 026 | 026.0 +1.0
020 016 016 016 016 016 016 016 016 016 015 | 015.9 4.1
015 016 017 016 016 016 016 016 017017 016 | 016.3 +1.3
010 004 002 006 006 010 006 006 009 006 006 | 006,1 -4.9
005 005 006 005 004 005 006 006 010 006 006 | 005.9 +0.9
000 000 001 000 001 000 000 000 000 000 000 | 000.2 +0.2

ux10, and uxll) have led to observing a nasty side effect of using a MAXA
margin. When the offered load reaches high values such that RTIMER < MAXA
(as per Table 11, this occurs when load=150 Bpms and RTIMER=9.6), then
there is a sudden jump to very high throughput values and effective rate control

is probably not being exercised.

nS

When there is a lack of bombardment effect: For those experiments (ux13
and uxl4), the user buffer is much larger than the PDU size and the daemon
does not benefit from this incessant upcoming of user requests (identified as
the bombardment effect). For such a scenario, select() is likely to trigger on the

specified timeout value much more often than for the previous case.

As one can observe on Figures 43 and 44, there is a noticeable improvement
over the results obtained for ux01 (where a MAXA margin is not used). This

suggest a potential use of a MAXA margin, given certain conditions.

Mainly as result of observing the side effect of the MAXA margin, special experiments
were conducted with the intent of mapping more precisely the lapse of time that occur

between the specified timeout value conveyed to select() and the moment that select()

200

Table 15: Benefits of lowering the SELECT_FLOOR threshold value

Experiment | SELECT_FLOOR | SELECT.FLOOR # of points
Number threshold plateau up to SF plateau
(ms) (Bpms)
ux06 100 014.4 02
ux01 050 028.8 05
ux07 025 048.0 07
ux08 010 144.0 11
uxl7 000 144.0 11

actually returns on a TMOUT case. Table 14 shows the results of such special purpose
experiments, using machine orchid for sending. The discrete SELECT_FLOOR values
cover the range of RTIMER values used for the experiments. A sample of ten actual
observed return values are being recorded. As one can notice, the imprecision gap is
never greater than 5 ms, and this suggests a more meaningful value (than 10 ms) for
the MAXA margin when being used, which would also postpone the beginning of the
MAXA effect.

Pertinence of varying the SELECT_FLOOR threshold value

Table 15 summarizes the benefits of lowering the SELECT_FLOOR threshold value.
The point of comparison consists of observing the “altitude” at which the

SELECT_FLOOR plateau occurs, and also the number of points that are included
in the growing linear part of the saturation curve (i.e., part | described for ux01).

As one can observe on Table 15, the results obtained respond well to the changes
introduced to the SELECT_FLOOR threshold value.

Pertinence of harmonizing the rate and burst values

The SELECT_.FLOOR effect problem is circumvented if RTIMER is not allowed to
have a lower value than the SELECT_FLOOR threshold value. As shown by the
ux03 and ux05 (Figures 33 and 35) saturation curves, harmonizing the rate and burst
values such that the SELECT.FLOOR effect does not occur when the rate value in-

creases is a winning tactic in terms of curve regularity. A curve that has the shape of

201

Figure 35 is highly amenable to dynamic rate control, as throughput keeps increasing

regularly up to a point where it yields and does not significantly improve thereafter.

[ntuitively though, there appears to be a drawback to using this policy for other
purposes than simply conducting rate control experiments for testing the behavior of
a network. The whole purpose of exercising rate control on a shared medium, such
as the Internet for instance, would appear to ease the strain placed on the network
while at the same time taking advantage of whatever residual capacity there might
still be available. Burst control carries this self-constrait possibility one step further
by providing for pacing as evenly as possible whatever data needs to be sent per unit
of time. If the rate is increased, the burst value should be presumably be kept as low
as possible in order to relieve the underlying network. Contrary to this philosophy,
harmonization is done by increasing the burst value in some proportion to the increase

in the rate value.

ux20 - SXTP-1.5.1 modified, orchid to forest, rate and burst harmonized

Given the lessons learned as result of conducting and analysing the previous experi-
ments, the goal of conducting experiment ux20 is to obtain as a regular and linearly
increasing saturation curve as possible (i.e., avoiding the idiosyncrasies of the Sandi-
aXTP software as much as possible). The daemon is recompiled and run with a 0 ms
SELECT_FLOOR threshold value and a 5 ms MAXA margin. Harmonization of rate
and burst values is used as per a formula that approximates the burst values shown
on Table 12 (i.e., burst=rate*1000*0.1).

Table ux20.log, Table ux20.xy (refer to Section A), and Figure 50 show respectively
the log summary, the data summary, and the saturation curve for the ux20 unicast

experiment unit.
As shown on Figure 50, the shape of the saturation curve satisfies the expecta-

tions very well, with some slightly higher throughput values than the offered load
attributable to the 5 ms MAXA margin.

202

mx06 - SXTP-1.5.1 modified, orchid to dah/sun/daf, rate and burst har-

monized

The reason for conducting experiment mx06 is similar to the ones explained for ux20,
but for the multicast mode of communication. Table mx06.log, Table mx06.xy (refer
to Section A), and Figure 56 show respectively the log summary, the data summary,

and the saturation curve for the mx06 multicast experiment unit.

As shown on Figure 56, the shape of the saturation curve is also very regular and
highly amenable to dynamic rate control. Consequently, the optimal mix used for the
ux20 unicast experiment also appears to yield very interesting results for the multi-

cast case.

At a value of 191 Bpms, the throughput starts to taper off corresponding to an
offered load of 200 Bpms. A throughput of 191 Bpms corresponds to about half the
maximum capacity recognized to machine daffodil on Table 10 (i.e., 400 Bpms). For
mx06, daffodil is the slowest receiver. In addition to expecting the slowest receiver to
pace the entirc data transfer task, it is also expected that multicast be slower than
unicast, the gain consisting of serving many receivers from a unique data transmission

source.

203

9 Concluding remarks

Throughout the period of time devoted to the investigatory work and to the writing
of this report, the two most important themes have been: (1) earliest in time, the
multicasting aspect; (2) then later, increasingly, the rate control aspect. For various
reasons, such as the non-feasibility of conducting multicast rate control experiments
using the Internet/Mbone environment and also the desire of a better framework for
interpreting former as well as current rate coﬁtrol experiments results, there was a

gradual shift of emphasis from the multicast aspect to the rate control aspect.

The outlook of the present section is to take some distance from the details of the
experiments and formulate tentative prescriptions for the future, which are presented
around the following themes: (1) Significance of the report for XTP4.0; (2) Signifi-
cance of the report for the SandiaXTP implementation; (3) Significance of the report

for more rate control experiments with SandiaXTP.

9.1 Significance of the report for XTP4.0

Providing mechanisms - a blessing and a curse

As perceived by the author, one basic tenet underlying the design of XTP consists
of “providing orthogonal mechanisms to the user, who is presumed to be in the best
position to decide about the policies to use”. As shown by this report, with the one
packet fixed burst size choice and no boundaries or minima stated by the specifi-
cation for any implementation to meet, this approach may lead to time consuming
disappointments. Not only does the “provide mechanisms” design approach greatly
complicate the work for designing and implementing the specification, the great vari-
ety of possible mixes creates a very complex situation to the “user” who then has the
burden of mapping the ground and discovering the pitfalls that may arise. The feeling
is that the specification should “limit” (or at the very least circumscribe) the degree
of variety left to the “user” to explore with some bottom line criteria to be satisfied
by any implementation. This does not imply a static state of affairs as some imple-
mentations could claim to achieve more, and the criteria given in the specification

could be progressively upgraded.

204

Quantitative criteria for rate control

Rate control is one area where it is felt that the specification, by not providing
measurable objectives and minima, can lead to time consuming disappointments.
[deal rate control is a nice selling argument, but it would appear as a result of these
studies that it is doable only to some extent and within some limits of precision, even
for a kernel level implementation because of the many other needs that a kernel has
to support. For example, one hypothetical future version of the XTP specification

could state some more specific/partly quantifiable requirement such as:

“Astested on a LAN with the SoAndSo test, the quality of the rate control
shall not decrease significantly for offered loads up to 150 Bpms and for a
low limit RTIMER value of 10 ms.”

Starting WTIMER again before receiving a reply

Another aspect, that may not concern the specification itself, consists of the observed
fact that using SandiaXTP and a linked list of timers there could be more than one
WTIMER inserted in the list. The inference is that a new WTIMER is started before
a reply to a previous one was obtained. The pragmatic solution consisted of checking
and removing from the queue a timer of a given type before inserting another one of
the same type. The same solution eventually had to be adopted for the CTIMEQUT

timer.

9.2 Significance of the report for SandiaXTP-1.5.1

Linked list of timers

The task of trying to understand the rate control mechanisms used by SandiaXTP-
1.5.1 was delayed because of the peculiar use of variable shortest, which has three
levels of visibility, and especially by the fact that shortest regularly returns a neg-
ative value (i.e., a non-timer related value) each time a timer expires. To foster
understandability of the rate control algorithm, a linked list of timer was introduced,

with timers sorted from earliest to latest to fire.

205

Though it does not have much impact on efficiency, this change being more in accor-
dance with timer management techniques (such as call outs) could be permanently
integrated to some later release of SandiaXTP. The main resistances to change will
probably consist of: (1) more thorough testing needed to check the behavior of the
management of the linked list for all timers and for multiple contexts and a busy
daemon; (2) the multiple changes needed to the source code with regards to vari-
able shortest. When the daemon is awakened on a timeout event, instead of cycling
through all contexts for work to be done, the possibility of using the linked list of

timers could be evaluated.

The SELECT FLOOR threshold

As there is some noticeable gain, and no bad side effects were observed with Solaris2.5
and as low a value as 0 ms, creating the symbolic variable name SELECT_-FLOOR,
using it in the code as suggested in Section 6 and making it a tunable paramecter could
also be made a permanent feature of a future rclease of SandiaXTP. There could be
a default value set in some header file (say XTPtypes.h - #define SELECT_FLOOR
50), but that could be overwritten with some command line arguments when starting

the daemon (similar to the -d argument used for choosing the data delivery service).
MAXANTICIPATION margin

The experiments have also shown that there could be some usefulness of incorporating
a MAXA margin as a criterion for declaring if a timer has expired when choosing a
proper mix of options at the user level. Such a change could also be introduced
permanently with some future release of SandiaXTP. It could only be done through
the introduction of the symbolic MAXANTICIPATION variable name in some header
file (say XTPtypes.h - #define MAXANTICIPATION 0), but set to a default value
of 0 ms. The code itself would use a logic based on existence of a margin (as indicated
in Secction 6). A change for a recommended value of 5 ms could be activated through

recompilation of the daemon’s code.

206

9.3 Significance of the report for more rate control experi-
ments with SandiaXTP

Interpretation framework

The report, through its presentation of the structure of the SandiaXTP implemen-
tation and more particularly the exposure of the rate control mechanisms, provides
a valuable framework for the interpretation of the data obtained when conducting
rate control experiments. Furthermore, by providing a model of “what is”, it can
also serve as a base for introducing changes of the type “what ought to be” for later

dynamic rate control investigations.

The many additional trace statements with timestamps, and available with the -t
option when starting the daemon, can also be used as such for later experiments,
or serve as a base for introducing additional traces as needed. A warning though !
The size of the trace file can get very large very quickly. Poking into this data is
a time consuming process that may lead to no insight unless “one has some idea of
what one is looking for”. Consequently, it should be used very carefully, such as for

transmitting a relatively small amount of data.

Receipe for conducting rate control experiments

The many settings of daemon variables and mixes of application program command
line arguments explored with the numerous experiments provide a mapping of what
can be expected. More particularly, the settings for experiments ux20 and mx06
provide a sample for using the SandiaX TP software avoiding many of its idiosyncrasies

and really testing the behavior of an underlying network.

Better interpretation of multicast rate control experiments results

The interpretation and experimentation efforts of the present study have finally con-
centrated more on the unicast results. The multicast mode was only explored from
the angle of some high level expectations, such as that the slowest receiver should im-

pose its pace to the whole multicast group. Some unicast findings, such as extending

207

the conditions of ux20 to mx06, were also extrapolated to the multicast mode and

proved quite successful.

However, even if SandiaXTP appears to work reasonably well for conducting multi-
cast rate control experiments, it is felt that the quality of the interpretation of the
results would gain from a more thorough investigation of the ways used by Sandi-
aXTP to implement multicast. This work could be done using the same (or similar)
object modeling techniques as the ones applied and presented earlier in the report for
understanding the global structure of SandiaXTP and its rate control mechanisms.

Such an effort could be part of another study, building on the current one.

208

A Experimental data and saturation curves

Al ux01

Table ux01.log - log summary (at sender)

Date: 98.09.08 | Start: 19:03:47 | End: 19:19:46 | Duration: 16 min: | Mode: Unicast

Synopsis: Using SandiaXTP-1.5.1 Unmodified, SELECT _FLOOR = 50 ms
MAXANTICIPATION = 0 ms, Harmonization Burst/Rate = No

Commands:
mmetric -t 132.205.45.24 -S -g -[-p 1472 -b 1440 -C 1440 -a 1048576 -0 250 -W 102400 -c 10..

mmetric -t -S -g -p 1472 -b 1440 -J 1440 -0 250 -w 102400 -j 10..

Sender: orchid | Receiver(s): forest 132.205.45.24

Table ux0l.xy - xy data summary (at sender)

9.528 | 14.289 | 17.574 | 23.782 | 28.719 | 28.805 | 28.754 | 28.850 [28.843
L0 15 20 25 30 35 50 75 100
28.824 | 28.925 | 29.082 | 29.569 | 29.486 { 29.779 | 29.493 | 31.093 | 31.500
125 150 200 250 300 350 400 500 600
31.631 | 95.109 | 111.102 | 100.796 | 95.282 | 108.966 | 127.254
700 800 900 1000 1100 | 1200 1250
ux01 - saturation curve - giobal
throughput - Bpms x 103

1.30 ‘ uxOl.xy

t20 - f——-—- } - - e - —_—

1.10 [;

100 - e e e —— —~—-—~§~~~» - il

090 - | — - - S S - - - L

0.80 .

0.70 - — . L

0.60

0.50 rmes e - - - -

0.40 — -+ j-- - R S

0.30

0.20 ~ -+ __f,__ — - —

0.10 — - - .. R /—:ﬁ 44(_‘_ -

0.00 ——'L

' load - Bpms x 103
0.00 0.20 0.40 0.60 0.80 1.00 1.20

Figure 31: ux01 - saturation curve - global

209

A.2 ux02

Table ux02.log - log summary (at sender)

Date: 98.09.09 | Start: 16:44:43 | End: 17:02:08 | Duration: 18 min: | Mode: Unicast

Synopsis: Using SandiaXTP-1.5.1 Unmodified, SELECT_FLOOR. = 50 ms
MAXANTICIPATION = 0 ms, Harmonization Burst/Rate = No

Commands:

mmetric -t 132.205.45.61 -S -g -f -p 1472 -b 1440 -C 1440 -a 1048576 -o 250 -W 102400 -c 10..
mmetric -r -S -g -p 1472 -b 1440 -J 1440 -0 250 -w 102400 -j 10..

Sender: dahlia | Receiver(s): orchid 132.205.45.61

Table ux02.xy - xy data summary (at sender)

9.603 | 14.405 | 17.907 | 24.007 | 28.776 | 28.808 | 28.800 | 28.808 | 28.816
10 15 20 25 30 35 30 75 100
28.808 | 28.816 | 28.807 | 28.855 | 28.886 | 28.808 | 28.807 | 29.168 | 29.169
125 150 200 250 300 350 400 500 600
29.169 | 46.707 | 46.498 | 45.195 | 45.003 | 45.391 | 46.293
700 800 900 1000 1100 1200 1250
ux02 - saturation curve - giobal
throughput - Bpms x 103
1.30 , Ux02.xy
120 — |~ e S S
110 - pee e e e m—'i»—- —*u e EEE T S
oo —fo e b
090 - | - - b eem o e -
0.80
0.70
0.60
0.50
0.40 — — e -t
0.30 - -- e e - -
020 t——— |f—-- - -
.10 - . . T L -
0.00 ——'£ -
load - Bpms x 103
0.00 0.20 0.40 0.60 0.80 1.00 1.20

Figure 32: ux02 - saturation curve - global

210

A3 ux03

Table ux03.log - log summary (at sender)
Date: 98.09.10 | Start: 14:58:02 | End: 15:07:53 [Duration: 10 min: | Mode: Unicast
Synopsis: Using SandiaXTP-1.5.1 Unmodified, SELECT_FLOOR = 50 ms
MAXANTICIPATION = 0 ms, Harmonization Burst/Rate = Yes
Commands:
mmetric -t 132.205.45.24 -S -g -f -p 1472 -b 1440 -C 1440 -a 1048576 -0 250 -W 102400 -c 10..
mmetric -r -S -g -p 1472 -b 1440 -J 103680 -0 250 -w 102400 -j 10..
Sender: orchid | Receiver(s): forest 132.205.45.24

Table ux03.xy - xy data summary {at sender)
9.521 14.257 | 17421 | 23.551 | 28.224 | 22.573 | 46.581 | 68.134 | 91.635

(10 15 20 25 30 35 50 75 100
(85.815 | 111.090 | 170.667 | 221.079 | 208.423 | 209.297 | 211.066 | 217.186 | 215.225

125 150 200 250 300 350 400 500 600

216.424 | 216.737 | 212.693 | 224.294 | 214.564 | 213.255 | 218.044
700 800 900 1000 1100 1200 1250

ux03 - saturation curve - global
throughput - Bpms x 103

1.30 - . ux03.xy

[}
H

120 - = | e = e e

i
1
N R B B e R

100 — -f-—— e m e

090 - - - L R L] T

0.80 ;
t

0.70

0.60

0.50
0.40 o e — o ok
030 - -}-- - . e m mlen - - - 4 ~

02 -t - LS z ——

0.10 ! - |— ————— e —,

0.00

‘ load - Bpms x 103
0.00 0.20 0.40 0.60 0.80 1.00 1.20

Figure 33: ux03 - saturation curve - global

211

A4 ux04

Table ux04.log - log summary (at sender)

Date: 98.09.09 | Start: 21:14:42 | End: 21:25:16

Duration: 11 min: | Mode: Unicast

Synopsis: Using SandiaXTP-1.5.1 Modified, SELI
MAXANTICIPATION = 10 ms, Harmonization Burst/Rate = No

ECT-FLOOR = 50 ms

Commands:

mmetric -t 132.205.45.24 -S -g -f -p 1472 -b 1440 -C 1440 -a 1048576 -o 250 -W 102400 -c 10..
mmetric -t -S -g -p 1472 -b 1440 -J 1440 -o 250 -w 102400 - 10..

Sender: orchid | Receiver(s): forest 132.205.45.24

Table ux04.xy - xy data summary (at sender)

9.623 14.418 | 18.124 | 24.038 | 28.802 | 28.794 | 28.813 | 28.800 | 29.346
10 15 20 25 30 35 50 75 100
70.261 | 188.220 | 209.005 | 211.066 | 209.338 | 205.523 | 211.364 | 207.310 | 204.242
125 150 200 250 300 350 400 500 600
207.886 | 208.672 | 207.968 | 207.516 | 207.721 | 209.046 | 209.380
700 800 900 1000 1100 1200 1250
ux04 - saturation curve - global

throughput - Bpms x 103

1.30 ‘ , Ux04dxy

120 o= —m b ~—l - -—-—}» e b e e

1,10 - —f- - - - - f~f»»f e N

R A Sh— S —

|

0.90 — T R . —

0.80 l

0.70 '

|

0.60 :

0.50 ;

0.40 - - R S

0.30 - - o - -

0.20 —- — _

0.i0 e - -

0.00

load - Bpms x 103
0.00 0.20 0.40 0.60 0.80 1.00 1.20

Figure 34: ux04 - saturation curve - global

212

A5 ux05

Table ux05.log - log summary (at sender)
Date: 98.09.10 | Start: 15:35:16 | End: 15:44:35 | Duration: 09 min: | Mode: Unicast
Synopsis: Using SandiaXTP-1.5.1 Modified, SELECT_FLOOR = 50 ms
MAXANTICIPATION = 10 ms, Harmonization Burst/Rate = Yes
Commands:
mmetric -t 132.205.45.24 -S -g -f -p 1472 -b 1440 -C 1440 -a 1048576 -0 250 -W 102400 -c 10..
mmetric -r -S -g -p 1472 -b 1440 -J 103680 -o 250 -w 102400 -j 10..
Sender: orchid | Receiver(s): forest 132.205.45.24

Table ux05.xy - xy data summary (at sender)
9.621 14.304 | 18.125 | 24.121 | 28.924 | 32.918 | 48.049 | 73.553 | 98.476
10 15 20 25 30 35 30 75 100

126.900 | 155.945 | 198.106 | 232.037 | 216.023 | 214.916 | 222.722 | 227.457 | 227.556

125 150 200 250 360 350 400 500 600
222.439 | 220.335 | 239.729 | 232.191 | 219.919 | 219.047 | 219.919

700 800 900 1000 1100 1200 1250

ux0S - saturation curve - giobal
throughput - Bpms x 103
1.30 - ux05.xy

1.20 - }— - B Y . _.1_—_ - [UUURIURE SR S
LI0 - e e o e L-—~~ e T

100 — - b o e —— e}

090 - --—:A B el St SRR S A“__._F..,_,_., D, .. e =

0.80

0.70

0.60

0.50
040 | - . . . S

0.30 - R - ——— - R .- . - [

0.20

0.10 - S S b S

0.00

load - Bpms x 103
0.00 0.20 0.40 0.60 0.80 1.00 1.20

Figure 35: ux05 - saturation curve - global

213

A.6 ux06

Table ux06.log - log summary (at sender)
Date: 98.09.10 | Start: 16:02:04 | End: 16:31:23 | Duration: 29 min | Mode: Unicast
Synopsis: Using SandiaXTP-1.5.1 Modified, SELECT_FLOOR = 100 ms
MAXANTICIPATION = 0 ms, Harmonization Burst/Rate = No

Commands:
mmetric -t 132.205.45.61 -S -g -f -p 1472 -b 1440 -C 1440 -a 1048576 -o 250 -W 102400 -¢ 10..

mmetric -r -S -g -p 1472 -b 1440 -J 1440 -0 250 -w 102400 -j 10..
Sender: dahlia | Receiver(s): orchid 132.205.45.61

Table ux06.xy - xy data summary (at sender)
9.603 | 14.404 | 14.405 | 14.402 | 14.400 | 14.404 | 14.405 | 14.404 | 14.405
10 15 20 25 30 35 30 75 100
14.404 | 14.402 | 14.404 | 14.404 | 14.405 | 14.404 | 14.424 | 14.564 | 14.605
125 150 200 250 300 350 400 500 600

(14.605 | 25.390 | 26.215 | 25.955 | 22.147 | 21.892 | 22.311
700 | 800 | 900 | 1000 | 1100 |1200 | 1250

ux06 - saturation curve - gilobal

throughput - Bpms x 103
1.30 ; ux06.xy

120 - fmm oo o e e e e L

L L R S e e ir—

100 —fF——— - = o ol e e .- -n -

0.90 R e — e ‘l.“_..; - s e] ST,

0.80

0.70

0.60

0.50
0.40 - —— [e e — e e = - - ;‘ - Ce—— - e -
030 - - b - b e oo
020 }f-— - 4 - - S e e
0.10 -} - e

0.00 ——}E ‘
' load - Bpms x 103

0.00 0.20 0.40 0.60 0.80 1.00 1.20

Figure 36: ux06 - saturation curve - global

214

A.7 ux07

Table ux07.log - log summary (at sender)

Date: 98.09.10 | Start: 17:08:49 | End: 17:22:21

Duration: 14 min | Mode: Unicast

Synopsis: Using SandiaXTP-1.5.1 Modified, SELECT_FLOOR = 25 ms
MAXANTICIPATION = 0 ms, Harmonization Burst/Rate = No

Commands:
mmetric -t 132.205.45.61 -S -g -f -p 1472 -b 1440 -C 1440 -a 1048576 -0 250 -W 102400 -c 10..
mmetric -r -S -g -p 1472 -b 1440 -J 1440 -0 250 -w 102400 - 10..

Sender: dahlia | Receiver(s): orchid 132.205.45.61

Table ux07.xy - xy data summary (at sender)

9.601

14.400 | 17.941 | 23.996

28.776

24.123

47.878

47.988

43.140

10

15 20 25

47.968

47.988 | 47.966 | 48.117

30
48.098

35
48.120

50
48.120

75
48.386

100
48.769

125

150

200

250

300

350

400

500

600

75.048

1000

73.838
1100

73.112
1200

72.914
1250

74.357
900

48.520
700

76.195
800

ux07 - saturation curve - global
throughput - Bpms x 103
1.30

ux07.xy

I

1.20 - —--

1.10 -—

1.00 -

0.90

0.80

0.70

0.60

0.50
040 --
0.30

020 -- -
0.10

oot

0.00

load - Bpms x 103

0.20 0.40 0.60 0.80 1.00 1.20

Figure 37: ux07 - saturation curve - global

215

A.8 ux08

Table ux08.log - log summary (at sender)
Date: 98.09.10 | Start: 18:21:00 | End: 18:30:58 | Duration: 10 min | Mode: Unicast
Synopsis: Using SandiaXTP-1.5.1 Modified, SELECT_FLOOR = 10 ms
MAXANTICIPATION = 0 ms, Harmonization Burst/Rate = No

Commands:
mmetric -t 132.205.45.61 -S -g -f -p 1472 -b 1440 -C 1440 -a 1048576 -o 250 -W 102400 -c 10..

mmetric -t -S -g -p 1472 -b 1440 -J 1440 -0 250 -w 102400 - 10..
Sender: dahlia | Receiver(s): orchid 132.205.45.61

Table ux08.xy - xy data summary (at sender)
9.603 14405 | 18.006 | 21.006 { 28.809 [28.831 | 47.856 | v1.712 | 71.909
10 15 20 25 30 35 30 75 100

72.062 | 143.582 | 143.582 | 143.385 | 143.582 | 143.582 | 143.582 | 144.174 | 144.771
125 150 200 250 300 350 400 500 600
144.971 | 151.682 | 209.213 | 295.874 | 171.001 | 166.891 | 263.925

700 800 900 1000 1100 1200 1250

ux08 - saturation curve - giobal
throughput - Bpms x 103

|

|

R e e e T Y S S
|

1.00 ——p- = - e m e e

090 |- —- - b e e b

0.80

0.70

0.60

0.50

0.40 | . e e e ; IR DI -
0.30 -} - R R - ——ge s e S
0.20 A - B . .- / \ /

load - Bpms x 103

0.00 0.20 0.40 0.60 0.80 1.00 1.20

Figure 38: ux08 - saturation curve - global

216

A.9 ux09

Table ux09.log - log summary (at sender)
Date: 98.09.10 | Start: 18:50:43 | End: 19:04:34 | Duration: 14 min | Mode: Unicast
Synopsis: Using SandiaXTP-1.5.1 Modified, SELECT_FLOOR = 100 ms
MAXANTICIPATION = 10 ms, Harmonization Burst/Rate = No
Commands:
mmetric -t 132.205.45.61 -S -g -f -p 1472 -b 1440 -C 1440 -a 1048576 -0 250 -W 102400 -c 10..
mmetric -t -S -g -p 1472 -b 1440 -J 1440 -0 250 -w 102400 -j 10..
Sender: dahlia | Receiver(s): orchid 132.205.45.61

Table ux09.xy - xy data summary (at sender)

9.603 14.408 14.405 14.405 14.405 14.405 14.406 14.424 14.425
10 15 20 25 30 35 50 75 100
21.756 1025.001 | 1022.004 | 1227.841 | 1197.005 | 1180.829 | 1205.260 | 1286.596 | 1248.305
125 150 200 250 300 350 400 500 600
1020.016 | 1156.093 | 1180.829 | 1192.919 | 1296.138 | 1183.494 | 1148.495

700 800 900 1000 1100 1200 1250

ux09 - saturation curve - giobal
throughput - Bpms x 103

- ~—)\ ZaN
i _A >
[\

1.00

ux09.xy

0.90

0.80 -- -t - R R i fhamtatad SRR SRR

070 -+~ -l mem b e b]

060 |- A SRR = S

0.50

0.40

0.30 - |- o i T S S

0.20

0.00 —'E‘J
load - Bpms x 103

0.00 0.20 0.40 0.60 0.80 1.00 1.20

Figure 39: ux09 - saturation curve - global

217

A.10 uxl0

Table ux10.log - log summary (at sender)

Date: 98.09.10 | Start: 19:16:32 | End: 19:25:14 | Duration: 09 min | Mode: Unicast

No

Synopsis: Using SandiaXTP-1.5.1 Modified, SELECT FLOOR = 25 ms
MAXANTICIPATION = 10 ms, Harmonization Burst/Rate =

Commands:

mmetric -t 132.205.45.61 -S -g -f -p 1472 -b 1440 -C 1440 -a 1048576 -0 250 -W 102400 -¢ 10..
mmetric -r -S -g -p 1472 -b 1440 -J 1440 -0 250 -w 102400 -j 10..

Sender: dahlia | Receiver(s): orchid 132.205.45.61

Table ux10.xy - xy data summary (at sender)

9.603 14.406 18.033 24.012 28.816 32.778 47.988 47.988 48.007
10 15 20 25 30 35 50 75 100
76.477 1285.020 | 1172.904 | 1263.345 | 1489.455 | 1232.169 | 1263.345 | 1239.452 | 1269.462
125 150 200 250 300 350 400 500 600
1227.841 | 1272.544 | 1191.564 | 1246.820 | 1305.823 | 1300.963 | 1172.904
700 800 900 1000 1100 1200 1250
ux10 - saturation curve - global
throughput - Bpms x 103

150 -t -~ --= | e -~ e --:o-- e e uxlﬁ.xy

1.40 x 4

l.3° -1 %\‘/ - - —'{f' - - i— - /

| 20 \#? \/T\/,\' _~ .

i !

1.10 I '

100 -+ - ———FH—¢ - —— . T .._ [FUUORRENN — |

0.90 ; {r

080 - {t--p— ———— ~t- - - —J:~ - ——'t R St - -

0.70 f

0.60 - RIS S . . F—

050 -t - - e ol E T SO

0.40 '

030 — - --- - - : L R

0.20

0.10 - - - - - -

0.00

0.20 0.40 0.60 0.80

1.00

1.20

Figure 40: ux10 - saturation curve - global

218

load - Bpms x 103

A.11 uxll

Table uxl1l.log - log summary (at sender)

Date: 98.09.10 | Start: 19:31:39 | End: 19:40:02 [Duration: 09 min | Mode: Unicast

Synopsis: Using SandiaXTP-1.5.1 Modified, SELECT.FLOOR = 10 ms
MAXANTICIPATION = 10 ms, Harmonization Burst/Rate = No

Commands:

mmetric -t 132.205.45.61 -S -g -f -p 1472 -b 1440 -C 1440 -a 1048576 -o 250 -W 102400 -c 10..
mmetric -r -S -g -p 1472 -b 1440 -J 1440 -0 250 -w 102400 -j 10..

Sender: dahlia | Receiver(s): orchid 132.205.45.61

Table uxll.xy - xy data summary (at sender)

9.603 14.405 18.039 23.610 28.808 33.026 47.985 71.953 71.958
10 15 20 25 30 35 50 75 100
110.179 | 1264.869 | 1235.072 | 1240.918 | 1255.780 | 1245.340 | 1242.389 | 1223.543 | 1245.340
125 150 200 250 300 350 400 500 600

[1229.280 | 1261.824 | 1267.927 | 1272.544 | 1245.340 [1305.823 | 1255.780

| 700] 800 900 1000 1100 1200 1250

ux1ll1 - saturation curve - global

throughput - Bpms x 103

1.30 r\

— - — -~ -~

1.20 -

1.00 -

0.90

0.80

0.70

0.60

0.50
0.40
0.30

0.20

0.00

0.00 0.20

0.40 0.60 0.80

load

1.00 1.20

Figure 41: uxl1 - saturation curve - global

219

—e
uxll.xy

-Bpms x 103

A.12 uxl2

Table ux12.log - log summary (at sender)

Date: 98.09.10 | Start: 19:48:33 | End: 20:13:57 | Duration: 25 min

Mode: Unicast

Synopsis: Using SandiaXTP-1.5.1 Unmodified, SELECT_FLOOR = 5(
MAXANTICIPATION = 0 ms, Harmonization Burst/Rate = No

ms

Commands:
mmetric -t 132.205.45.24 -S -g -f -p 1472 -b 14400 -C 1440 -a 1048576 -0 250 -W 102400 -c 10..

mmetric -t -S -g -p 1472 -b 14400 -J 1440 -o 250 -w 102400 -j 10..

Sender: orchid | Receiver(s): forest 132.205.45.24

Table ux12.xy - xy data summary (at sender)

8.756 | 14.338 | 14.233 | 13.086 | 13.752 | 28.799 | 28.772 | 28.798 | 28.824
10 15 20 25 30 35 50 75 100
28.798 | 28.910 | 13.824 | 29.323 [12.976 | 11.012 | 17.178 | 23.127 | 25.255 |
125 150 200 250 300 350 400 500 600
29.875 [20.153 | 24.763 | 16.888 [20.115 | 16.888 | 16.931]
700 800 900 1000 1100 1200 1250
ux12 - saturation curve - global
throughput - Bpms x 103
1.30 ; } ux1Zxy
S A
I L e ! S — ’- —
1.00 e e H -
090 | -m-ms memp e -t ———jr- e e T
0.80 ' }
0.70
0.60
0.50
0.40 - - |-+ oo} - - IS
030 o - m e e - e -
0.20 I - R s -t
0.10 - - | — -~ - b e — e ---
0.00 —ld ~ == -
' : load - Bpms x 103
0.00 0.20 0.40 0.60 0.80 1.00 1.20

Figure 42: uxl2 - saturation curve - global

220

A.13 ux13

Table ux13.log - log summary (at sender)

Date: 98.09.10 | Start: 20:23:44 | End: 20:41:19 | Duration: I8 min | Mode: Unicast

Synopsis: Using SandiaXTP-1.5.1 Modified, SELECT_.FLOOR = 50 ms
MAXANTICIPATION = 10 ms, Harmonization Burst/Rate = No

Commands:

mmetric -t 132.205.45.24 -S -g -f -p 1472 -b 14400 -C 1440 -a 1048576 -0 250 -W 102400 -c 10..
mmetric -r -S -g -p 1472 -b 14400 -J 1440 -0 250 -w 102400 -j 10..

Sender: orchid | Receiver(s):

forest 132.205.45.24

Table ux13.xy - xy data summary (at sender)

9.607 | 14.409 | 18.132

23.984 | 28.786

28.759

28.726

28.894

20
32.933

15
32.705

10
32.645

25 30
32.900 | 32.899

35

30

75

32.889

32.901

32.740

200
32.911

150
32.818

125
32.554

250 300

32.859 | 32.918

350
32.879

400
32.889

500

700 800 900

1000 | 1100

1200

1250

ux13 - saturation curve - global

throughput - Bpms x 103

1.30

.20 ---

1.10

1.00

090 - -

————— -

Uxi3.xy

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00 —r

0.00 0.20

0.40 0.60

0.80

1.00

Figure 43: uxl13 - saturation curve - global

221

load - Bpms x 103

A.14 uxl4

Table uxl4.log - log summary (at sender)

Date: 98.09.10 | Start: 21:02:30 | End: 21:12:24 | Duration: 10 min | Mode: Unicast

Synopsis: Using SandiaXTP-1.5.1 Modified, SELECT.FLOOR = 10 ms
MAXANTICIPATION = 10 ms, Harmonization Burst/Rate = No

Commands:

mmetric -t 132.205.45.24 -S -g -f -p 1472 -b 14400 -C 1440 -a 1048576 -0 250 -W 102400 -c 10..
mmetric -r -S -g -p 1472 -b 14400 -J 1440 -0 250 -w 102400 -j 10..

Sender: orchid | Receiver(s): forest 132.205.45.24

Table uxl14.xy - xy data summary (at sender)

9.608 14.375 | 18.098 | 23.996 | 28.737 | 29.546 | 48.069 | 71.963 | 73.693
10 15 20 25 30 35 50 75 100
81.665 | 164.845 | 163.968 | 163.712 | 164.019 | 164.328 | 164.767 | 164.328 | 164.096
125 150 200 250 300 350 400 500 600
163.814 | 164.019 | 163.482 | 163.891 | 164.251 | 163.000 | 164.276
700 800 900 1000 1100 1200 1250
uxl4 - saturation curve - global

throughput - Bpms x 103

1.30 Uxid.xy

120 - b e e S R

L1 - - - 7 R et SR S

100 e e L

090 - -| ——- -~] S e

0.80

0.70 i

0.60

0.50

040 |- ——0tf - - - -~

0.30 - e - SEER & -

0.20 - -

0.10 —ft - - -

0.00

load - Bpms x 103
0.00 0.20 0.40 0.60 0.80 1.00 1.20

Figure 44: ux14 - saturation curve - global

222

A.15 wux15

Table ux15.log - log summary (at sender)

Date: 98.09.10 | Start: 21:18:07 | End: 21:34:31 | Duration: 16 min | Mode: Unicast

Synopsis: Using SandiaXTP-1.5.1 Unmodified, SELECT_FLOOR = 50 ms
MAXANTICIPATION = 0 ms, Harmonization Burst/Rate = No, WS=51200

Commands:
mmetric -t 132.205.45.24 -S -g -f -p 1472 -b 1440 -C 1440 -a 1048576 -0 250 -W 51200 -c 10..
mmetric -r -S -g -p 1472 -b 1440 -J 1440 -0 250 -w 51200 -j 10..

Sender: orchid | Receiver(s): forest 132.205.45.24

Table ux15.xy - xy data summary (at sender)

9.453 | 14.197 | 16.909 | 23.286 | 28.756 | 28.764 | 28.790 | 28.790 | 28.748
10 15 20 25 30 35 30 75 100
28.813 [28.973 [29.394 [30.261 | 30.200 | 30.243 | 30.476 | 32.419 | 32.232 |
125 150 200 250 300 350 400 500 600
31.712 169.382 [71.259 [70.417 | 65.618 | 88.079 | 77.283
700 800 900 1000 1100 1200 1250

ux1$ - saturation curve - global

throughput - Bpms x 103
1.30 ‘ - Ux1sxy
120 - - RO S J S S R e
110 —— o - T T .
1.00 -} - v« rrrrr ’”i e
090 —}—— IR "
0.80 -
0.70 ;
0.60
0.50 ;
040 |- - R .
0.30 - {- - . e -
020 f—--—n- - e T -
0.10 - - R e
-
0.00 —-Il
load - Bpms x 103
0.00 0.20 0.40 0.60 0.80 1.00 1.20

Figure 45: ux15 - saturation curve - global

223

A.16 uxlé

Table ux16.log - log summary (at sender)
Date: 98.09.17 | Start: 23:07:46 | End: 23:17:57 | Duration: 10 min | Mode: Unicast
Synopsis: Using SandiaXTP-1.5.1 Modified, SELECT_FLOOR = 10 ms
MAXANTICIPATION = 0 ms, Harmonization Burst/Rate = No
Commands:
mmetric -t 132.205.45.24 -S -g -f -p 1472 -b 28800 -C 1440 -a 1048576 -0 250 -W 102400 -¢ 10..
mmetric -r -S -g -p 1472 -b 28800 -J 1440 -0 250 -w 102400 -j 10..
Sender: orchid | Receiver(s): forest 132.205.45.24

Table ux16.xy - xy data summary (at sender)
9.586 14.397 | 18.004 | 23.973 | 28.800 | 29.094 | 47.898 | 71.619 | 71.958
10 15 20 25 30 35 50 75 100

72.949 | 141.318 | 143.542 | 144.392 | 140.390 | 146.429 | 130.534 | 135.056 | 146.001
125 150 200 250 300 350 400 500 600

146.449 | 151.946 | 153.054 | 154.863 | 148.755 | 152.343 | 133.849
700 800 900 1000 1100 1200 1250

ux16 - saturation curve - giobal
throughput - Bpms x 103
1.30 . ¢ uxl&xy

T e e e P EE— S— e

0.60

0.50 f

i
0.40 R ST T e SRR IECSEC S S
030 | -t o b ol

020 - . N e -

: ' load - Bpms x 103
0.00 0.20 0.40 0.60 0.80 1.00 1.20

Figure 46: ux16 - saturation curve - global

224

A.17

uxl?

Table ux17.log - log summary (at sender)

Date: 98.09.17 | Start: 23:38:07 | End: 23:48:12 | Duration: 10 min | Mode: Unicast

Synopsis: Using SandiaXTP-1.5.1 Modified, SELECT.FLOOR = 0 ms
MAXANTICIPATION = (0 ms, Harmonization Burst/Rate = No

Commands:
mmetric -t 132.205.45.24 -S -g -f -p 1472 -b 28800 -C 1440 -a 1048576 -0 250 -W 102400 -c 10..
mmetric -r -S -g -p 1472 -b 28800 -J 1440 -0 250 -w 102400 -j 10..

Sender: orchid | Receiver(s): forest 132.205.45.24

Table ux17.xy - xy data summary (at sender)

9.598 14.402 | 18.003 | 23.995 | 28.771 | 28.855 | 47.917 | 71.512 | 67.045
10 15 20 25 30 35 50 75 100
72.365 | 143.641 | 143.818 | 145.011 | 145.980 | 136.979 |{ 118.456 | 147.438 | 146.880
125 150 200 250 300 350 400 500 600
149.157 | 190.304 | 179.428 | 182.266 | 157.799 | 198.707 | 200.034
700 800 900 1000 1100 1200 1250
ux17 - saturation curve - giobal

throughput - Bpms x 103

1.30 uxl7.xy

120 - | = — o peem e e e 4 e el

!

R R at e B R it SRCIEIEEY SR

0.90 R e el SR

0.80

0.70

0.60

0.50

040 | — SRR - -

030 - — - - S ——

0.20 : /___/*\.—-\,/._.

0.10 - 1 I

0.00

0.00

0.20 0.40 0.60 0.80 1.00 1.20

Figure 47: ux17 - saturation curve - global

225

load - Bpms x 103

A.18 uxl18

Table ux18.log - log summary (at sender)

Date: 98.09.18 | Start: 15:42:44 | End: 15:53:45 | Duration: 11 min | Mode: Unicast

MAXANTICIPATION = 5 ms, Harmonization Burst/Rate = No

Synopsis: Using SandiaXTP-1.5.1 Modified, SELECT_FLOOR = 50 ms

Commands:

mmetric -r -S -g -p 1472 -b 1440 -J 1440 -0 250 -w 102400 -j 10..

mmetric -t 132.205.45.28 -S -g -f -p 1472 -b 1440 -C 1440 -a 1048576 -o 250 -W 102400 -c 10..

Sender: orchid | Receiver(s): dahlia 132.205.45.28

Table ux18.xy - xy data summary (at sender)

9.595 14.382 18.064 24.008 28.756 28.643

28.786

28.754 28.832

10 15 20 25 30 35

50

75 100

28.856 28.840 32.852 1434.440 | 1535.250 | 1648.704

1677.722

1620.674 | 1716.164

125 150 200 250 300 350

400

500 600

1528.536 | 1504.413 | 1082.122 | 1385.173 | 1574.438 | 1504.413

1659.139

700 800 900 1000 1100 1200

1250

ux18 - saturation curve - global

throughput - Bpms x 103

uxi8.xy

1.80

170 —- f-—— e ke e ! I

1.50
1.40 - —tJ- - f-
130 - = - F —-

160 Yt
' / N

[S,

1.20

110 o —-— ==t

100 -} -~ —ofefom e o b

0.90

0.80

0.70
0.60 - _— - - o AR - i e S e

0.50

0.40

0.30 N - - . S e - v e — .

0-20 - P T . N - ———

0.10
0.00 —p&F————2

0.00 0.20 0.40 0.60 0.80 1.00

1.20

Figure 48: ux18 - saturation curve - global

226

load - Bpms x 103

A19 ux19

Table ux19.log - log summary (at sender)

Date: 98.09.17 | Start: 22:51:20 | End: 22:59:56 | Duration: 08 min | Mode: Unicast

Synopsis: Using SandiaXTP-1.5.1 Modified, SELECT_.FLOOR = 10 ms
MAXANTICIPATION = 5 ms, Harmonization Burst/Rate = No

Commands:
mmetric -t 132.205.45.61 -S -g -f -p 1472 -b 1440 -C 1440 -a 1048576 -o 250 -W 102400 -c 10..
mmetric -r -S -g -p 1472 -b 1440 -J 1440 -0 250 -w 102400 -j 10..

Sender: dahlia | Receiver(s): orchid 132.205.45.61

Table ux19.xy - xy data summary (at sender)

9.603 14.406 18.024 24 012 28.808 33.288 47.985 71.855 71.963
10 15 20 25 30 35 50 75 100
117.501 143.209 | 144.372 | 989.223 | 1245.340 | 1101.445 | 1045.440 | 1278.751 | 1203.876
125 150 200 250 300 350 400 500 600
1240.918 | 1360.021 | 1242.389 | 1126.290 | 1280.313 | 1093.406 | 1041.287
700 800 900 1000 1100 1200 1250
ux19 - saturation curve - global
throughput - Bpms x 103
Wx19.xy

1.40 ;

1.30 : A

1.20 A " ' \ /\

l.lo e — = .. R »\ . -—-1—-—-——”—- -L—-- —-—>£ J— v_\ e ——

. ;' \

100 - | - e - e b -

0.90 I ‘

0.80 I

0.70

060 - | / —— - - -

0.50

0.40

0.30

0.20 - . -

0.10 - e e

0.00 :

’ load - Bpms x 103
0.00 0.20 0.40 0.60 0.80 1.00 1.20

Figure 49: ux19 - saturation curve - global

227

A.20 ux20

Table ux20.log - log summary (at sender)
Date: 98.09.18 | Start: 00:09:01 | End: 00:17:26 | Duration: 08 min | Mode: Unicast
Synopsis: Using SandiaXTP-1.5.1 Modified, SELECT_FLOOR = 0 ms
MAXANTICIPATION = 5 ms, Harmonization Burst/Rate = Yes (burst=rate*1000*0.1)
Commands:
mmetric -t 132.205.45.28 -S -g -[-p 1472 -b 1440 -C 1000.. -a 1048576 -0 250 -W 102400 -¢ 10..
mmetric -r -S -g -p 1472 -b 1440 -J 1000.. -0 250 -w 102400 -j 10..
Sender: orchid | Receiver(s): dahlia 132.205.45.28

Table ux20.xy - xy data summary (at sender)

10.005 | 14.984 | 20.012 | 24.880 29.956 34.955 50.412 74.743 | 100.737
10 15 20 25 30 35 50 75 100
125.759 | 151.748 | 201.688 | 255.439 | 307.500 | 359.101 | 401.907 | 518.071 | 610.347
125 150 200 250 300 350 400 500 600
734.297 | 802.277 | 934.560 | 1021.009 | 1138.519 | 1242.389 | 1283.447

700 800 900 1000 1100 1200 1250

ux20 - saturation curve - global
throughput - Bpms x 103

1.00 —fp————fim o

0.90 — == - - pe—ee

0.80

0.70 —f-——- - e

0.60

0.50

0.40

0.30
020 | // - S

0.10
0.00 ‘T[.
load - Bpms x 103

0.00 0.20 0.40 0.60 0.80 1.00 1.20

Figure 50: ux20 - saturation curve - global

228

A.21 mx01

Table mx01.log - log summary (at sender)

Date: 98.09.11 | Start: 10:46:02 | End: 11:01:52 [Duration: 15 min | Mode: Multicast

Synopsis: Using SandiaXTP-1.5.1 Unmodified, SELECT.FLOOR = 50 ms
MAXANTICIPATION = 0 ms, Harmonization Burst/Rate = No

Commands:

mmetric -T 239.159.100.40 -S -g -f -p 1472 -b 1440 -C 1440 -a 1048576 -o 250

mmetric -R 239.159.100.40 -S -g -p 1472 -b 1440 -J 1440 -0 250 -w 102400 -j 10..

-0 127 -W 102400 -c l0..

Sender: orchid | Receiver(s): 239.159.100.40 (daffodil)

Table mx01.xy - xy data summary (at sender)

9496 § 14.315 | 13.872 | 23.831 | 28.601 | 28.495 | 28.609 | 28.625 | 28.674
10 |15 20 |2 30 35 50 75| 100
[[28.744 | 28.845 | 28.705 | 29.357 | 29.765 | 29.569 | 29.220 | 31.292 | 37.766
125 150 200 250 300 350 400 500 600
32.597 | 147.251 | 126.167 | 167.853 | 164.354 | 210.515 | 198.069
700 800 900 1000 1100 1200 1250
mx01 - saturation curve - global
throughput - Bpms x 103
1.30 , ‘mx0Txy”
1.20 —f— ————— ———~——— - |~ R
1.10 ——f— - L — - —T_- ~;» SRS R q—
100 ~—fv e o - - e S - ——
0.90 —}—-- -] - 1 - - O
0.80 ;
0.70
0.60
0.50
0.40 -~ - S - -
030 - - e -
0.20 —— - - - _——
0.10 - |- - - - -—
0.00 —-*("
load - Bpms x 103
0.00

0.20

0.40

0.60

0.80

1.00 1.20

Figure 51: mx01 - saturation curve - global

229

A.22 mx02

Table mx02.log - log summary (at sender)
Date: 98.09.11 [Start: 13:07:12 | End: 13:22:51 | Duration: 15 min | Mode: Multicast
Synopsis: Using SandiaXTP-1.5.1 Unmodified, SELECT_FLOOR = 50 ms
MAXANTICIPATION = 0 ms, Harmonization Burst/Rate = No
Commands:
mmetric -T 239.159.100.40 -S -g -f -p 1472 -b 1440 -C 1440 -a 1048576 -0 250
-0 127 -W 102400 -c 10..
mmetric -R 239.159.100.40 -S -g -p 1472 -b 1440 -J 1440 -0 250 -w 102400 -j 10..
Sender: orchid | Receiver(s): 239.159.100.40 (dahlia)

Table mx02.xy - xy data summary (at sender)
9.526 | 14.286 | 14.505 | 23.725 | 28.511 | 28.574 | 28.558 | 28.600 [28.559

10 15 20 25 30 35 50 75 100
28.680 | 28.683 | 28.864 | 29.138 | 29.597 | 29.597 | 29.891 | 37.483 | 46.670
125 150 200 250 300 350 400 500 600
33.460 | 144.831 | 156.925 | 128.031 | 128.691 | 163.917 | 171.785

700 800 900 1000 1100 1200 1250

mx02 - saturation curve - global
throughput - Bpms x 103
1.30 = ; mx0Z.xy

120 - p— e e = e

0.60 J

0.50 . -+
0.40 —f—- oo o o | JUC ORISR S S
030 —--- - S . ——— ‘ 18 S SR
020 — - ——- - .
0.10 - -[-- - -

0.00 —'Q ,
load - Bpms x 103

0.00 0.20 0.40 0.60 0.80 1.00 1.20

Figure 52: mx02 - saturation curve - global

230

A.23 mx03

Table mx03.log - log summary (at sender)
Date: 98.09.11 | Start: 21:59:23 | End: 22:19:00 | Duration: 20 min | Mode: Multicast
Synopsis: Using SandiaXTP-1.5.1 Unmodified, SELECT_FLOOR = 50 ms
MAXANTICIPATION = 0 ms, Harmonization Burst/Rate = No
Commands:
mmetric -T 239.159.100.40 -S -g -f -p 1472 -b 1440 -C 1440 -a 1048576 -o 250
-0 127 -W 102400 -¢ 10..
mmetric -R 239.159.100.40 -S -g -p 1472 -b 1440 -J 1440 -0 250 -w 102400 -j 10..
Sender: orchid | Receiver(s): 239.159.100.40 (dahlia/sunset)

Table mx03.xy - xy data summary (at sender)
9.536 [14.341 [16.971 | 23.897 | 28.643 | 27.589 | 28.234 | 28.627 | 28.565
10 15 20 |25 30 35 50 75 100 |
[27.867 | 28.643 | 28.628 | 28.785 | 29.186 | 29.170 | 29.398 | 29.910 | 29.831
125 150 | 200 250 | 300 350 400 | 500 600
30.210 | 90.488 | 104.910 | 82.383 | 94.885 | 79.036 | 65.832

700 800 900 1000 | 1100 | 1200 | 1250

mxO03 - saturation curve - global

throughput - Bpms x 103
1.30 mx03.xy

120 - S SRR T — IR By
1.10 el e e - C e e e e s e — e
100 - - -t I B e

090 - -~ - : iR P SR

0.80

0.70

0.60

0.50
0.40 O - = - e e . - - —— e B T
030 —| - T S E

0.20 Oy SR . - - - _L PR S

0.10 ro- - - - - - - !/——‘_A‘ S —
0.00 —ff ‘
' load - Bpms x 103
0.00 0.

.20 0.40 0.60 0.80 1.00 1.20

Figure 53: mx03 - saturation curve - global

231

A.24 mx04

Table mx04.log - log summary (at sender)
Date: 98.09.11 | Start: 15:15 | End: 15:57 | Duration: 42 min. | Mode: Multicast
Synopsis: Using SandiaXTP-1.5.1 Unmodified, SELECT_-FLOOR = 50ms,
MAXANTICIPATION = 0 ms, Harmonization Burst/Rate = No
Commands:
mmetric -T 239.159.100.40 -S -g -f -p 1472 -b 1440 -C 1440 -a 1048576 -0 250

-0 127 -W 102400 -¢ 10..

mmetric -R 239.159.100.40 -S -g -p 1472 -b 1440 -J 1440 -0 250 -w 102400 -j 10..
Sender: orchid | Receiver(s): 239.159.100.40 (dahlia/sunset/daflodil)

Table mx04.xy - xy data summary (at sender)

9.504 | 14.261 | 14.959 | 23.728 | 28.404 | 28.504 | 28.599 | 28.585 | 28.579
10 15 20 25 30 35 50 75 100 ‘
28.382 | 28.682 | 28.880 | 29.588 | 29.706 | 29.901 | 29.673 | 31.419 | 32.256 |
125 150 200 250 300 350 400 500 600

32.245 [79.971 | 116.366 | 107.205 | 102.250 | 96.947 | 80.191
700 800 900 1000 1100 1200 | 1250

mx04 - saturation curve - giobal
throughput - Bpms
12000 -+ - — = - - bbb L oo . ‘mxOdxy

115.00 a
110.00 [\
) N |

o000 —| L [T T TS J-
95.00 [

85.00 — 7 4 1L\

80.00 - - - -~ - - R —}

7500 -f- - - o - o

70.00

65.00 f

60.00
5500 - |--- - - - SR £ -/—~—~~ S S

50.00
/

45.00
4000 -} Skl A SRR RPN (R
3500 - |- : I R SR ST o4
3000 | ; - - - -

25.00
20.00
15.00
1000 - § - S S I R SIS NRS

5.00 — Toad - Bpms x 105
0.00 0.20 0.40 0.60 0.80 1.00 1.20

Figure 54: mx04 - saturation curve - global

232

A.25 mx05

Table mx05.log - log summary (at sender)

Date: 98.09.11 | Start: 16:33 | End: 17:09 | Duration: 36 min. | Mode: Multicast

Synopsis: Using SandiaXTP-1.5.1 Modified, SELECT.FLOOR = 50 ms,
MAXANTICIPATION = 10 ms, Harmonization Burst/Rate = No

mmetric -T 239.159.100.40 -S -g -f -p 1472 -b 1440 -C 1440 -a 1048576 -o 250
-0 127 -W 102400 -c 10..

mmetric -R 239.159.100.40 -S -g -p 1472 -b 1440 -J 1440 -0 250 -w 102400 -j 10..

Sender: orchid | Receiver(s): 239.159.100.40 (dahlia/sunset/daffodil)

Table mx05.xy - xy data summary (at sender)

9.593 14.261 | 18.735 | 23.918 | 28.580 | 28.434 | 28.534 | 28.549 | 30.150
10 15 20 25 30 35 50 75 100
89.676 | 129.470 | 7.354 224.342 | 27.994 | 242.670 | 261.751 | 176.677 | 144.771
125 150 200 250 300 350 400 500 600
141.834 | 287.675 | 144.452 | 241.942 | 231.066 | 257.762 | 266.069
700 800 900 1000 1100 1200 1250
mx0S - saturation curve - global
throughput - Bpms x 103
1.30 . mx05.xy
1.20 - - - i S S
110 —F ——— - - —f— e - —
100 - |- el e e el
090 —-}— e e S e e e
0.80 i
0.70 l
0.60
0.50
0.40 --|- - : -
0.30 -
020 - |- - —
o0 C s - -
0.00 '
) load - Bpms x 103
0.00 0.20 0.40 0.60 0.80 1.00 1.20

Figure 55: mx05 - saturation curve - global

233

A.26 mx06

Table mx06.log - log summary (at sender)

Date: 98.09.24 | Start: 17:44:53 | End: 18:01:32 | Duration: 17 min | Mode: Multicast

Synopsis: Using SandiaXTP-1.5.1 Modified, SELECT.FLOOR = 0 ms
MAXANTICIPATION = 5 ms, Harmonization Burst/Rate = Yes (burst=rate*1000*0.1)

Commands:
mmetric -T 239.159.100.40 -S -g -f -p 1472 -b 1440 -C 1000.. -a 1048576 -0 250

-0 127 -W 102400 -c 10..
mmetric -R 239.159.100.40 -S -g -p 1472 -b 1440 -J 1000.. -0 250 -w 102400 -j 10..

Sender: orchid | Receiver(s): 239.159.100.40 (dahlia/sunset /daffodil)

Table mx06.xy - xy data summary (at sender)

9.921 | 14.963 | 19.939 | 24.900 | 29.703 | 33.917 | 49.529 | 74.531 | 98.310
10 5 |20 25 30 35 50 75 100
113.741 | 143.739 | 191.626 | 193.179 | 202.859 | 181.635 | 208.630 | 232.862 | 186.746 |
125 150 200 250 300 350 400 500 600
203.884 | 145.717 | 195.886 | 237.988 | 185.130 | 223.291 | 173.261
700 800 900 1000 1100 1200 1250

mx06 - saturation curve - global
throughput - Bpms x 103

mx00.xy

1.30

1.20 ~—-

1.10

1.00

0.90 -—

U [_

0.80

0.70 - --

0.60

0.50

0.40

0.30

0.20 -

_

0.10

0.00

0.00

0.20 0.40 0.60 0.80 1.00

Figure 56: mx06 - saturation curve - global

234

load - Bpms x 103

B Review of recent studies at the HSP Lab

B.1 Work by Marie A. Wallace

Marie A. Wallace submitted her Major Report entitled Error Control in XTP over
the Internet in December 1996. Marie conducted unicast experiments and used the
Sandia XTP implementation of XTP written by Dr. Tim Strayer. The problem space
that Marie investigated can be summarized as follows:

o What is the sequence of events when an error occurs (dammaged or lost packet)?
How far out of synchronization do the sending and the receiving sides get?

e To successfully complete a synchronization handshake, the sending side must
receive an echo from the receiving side within a fixed period of time (say T). Is
this requirement too strong? Could we accept a late reply from the receiver?

Given this problem space, we could summarize the results of Marie's experiments as
follows:

o Synchronization handshake: As shown in Figure 57 (a), Marie succeeded to
expose a rather vicious scenario that was contributing to erode the performance
of XTP. Let’s outline this bad scenario as follows (please refer to Figure 57 (a)
for the nomenclature):

l. sending side emits an SREQ packet with sync=0, and starts a timer for T
duration at time t0;

2. T times out and sending side issues another SREQ packet now with sync=1,
and starts again a timer for T duration at time t1;

3. echo from receiving side reaches the sending side at time tr (t1<tr<t2);
as per the definition of the protocol, this echo was not accepted by the
sending side;

4. again, T would time out at the sending side at time t2, sender would
issue another SREQ packet with sync=2, and start another timer of larger
duration 2T at time t2; now, it is likely that the echo will reach the sending
side within the 2T duration, but still two attemps are lost.

Marie demonstrated that this bad scenario was mainly the consequence of an
underestimated round trip time (RTT - default at 50ms). This RTT had been
derived from experiments done in a closed LAN environment. The 50 ms value
was simply too low when XTP was being used in a WAN environment, such as
the Internet where delays are much higher. Marie also came to the conclusion
that late echos from the sender could also be accepted, up to a ...limit. With
reference to Figure 57 (a), the first echo received at time tr could have been
accepted, thereby completing the synchronization handshake at this point.

235

XTP |8K MTI1I XTP SK MTI1I

| ‘ | l R
P < 64K uDP < 64K
P ﬁ_aU;P . IP reassembly ?
glnentatlon r [I ?l? l [l
I——I—E‘:Tm:nFt P m—l Eth?met

| 0 0O O
E physical
({3

lost pack

Figure 57: Marie’s findings

o MTU sizes: The maximum transmission unit (MTU) is another area where
Marie's experiments have benefited. Initially, the default XTP MTU size was
fixed at 8192 (8K) bytes at the Transport level. When it reached the IP Network
layer, with Ethernet being a very common technology with MTU sizes of 1500
bytes, it meant that one XTP packet could be split in up to 6x1.5K Ethernet
packets. As can can be observed in Figure 57 (b), the Ethernet packets would
be reassembled again at the receiving end by [P at the network level. Given the
lossy behavior of the Internet, the chances that one of those Ethernet packets
would be missing were non negligible. If this occurred, then some IP reassembly
timer would fire, which would result in retransmitting the whole XTP packet
(i.e. all 6 Ethernet packets even if five of them had reached destination). The
consequence of Marie’s findings was to adapt XTP MTU size to the underlying
MTYU sizes so that segmentation would be reduced as much as possible. Let us
mention that a MTU size of 8192 bytes would create no difficulty on an ATM
network, where loss rate is extremely low.

B.2 Work by Torsten Auerbach

Torsten Auerbach submitted his report [AUE] entitled Using Error Status Infor-
mation in the Xpress Transport Protocol in March 1997. Torsten conducted
unicast experiments between Concordia University in Montréal and his home Univer-
sity in Karlsrhuhe, Germany, using the SandiaXTP [SUG] implementation of XTP
4.0 written by Dr Tim Strayer. The research work was done in part concurrently, but
can be considered logically posterior to Marie’s work. In fact, although indirectly,
Torsten addresses some of the problems that Marie exposed. The problem space that
Torsten explored can be summarized as follows:

236

say: sender recejver
spans(1] =b-a tse SRE
spans(2] = d-c Yo) 2
Spans , = spans{1] + spans[2] ATx
Spans =f-e tseq, — V¥
rseq a b cd
— 0 — — 1
ATy
e f
L T Yy -
1 1 1 ECNTL

Figure 58: Torsten’s rates computations

e How can we dynamically adjust the data transfer rate to best suit the capacities
of the underlying medium when XTP is used to transfer large files in the Internet
environment (i.e. in a WAN environment)?

e Given the prolonged synchronizing handshake problem exposed by Marie, and
the role played by a too low RTT, what mechnisms could we use to dynamically
adjust the RTT for a particular communication association?

o Ifthe default MTU size is too large (at 8K bytes) when using XTP in an Internet
environment, how could we dynamically optimize the MTU size for a particular
communication association?

Given this problem space, the results of Torsten’s work can be summarized as follows:

Rate Control Algorithm: This part of Torsten work addresses the data rate trans-
fer adjustment problem. As a result of his experiments, Torsten devised many versions
of his algorithm to adjust the send rate within an ongoing communication associa-
tion. Here, we are only interested with the one that he declares the The fifth and
last version of the algorithm (see [AUE]), which we shall thereafter refer to as
the fifth algorithm. Before discussing the fifth algorithm itself, let’s lay down some
preliminaries (please, refer to Figure 58 for the following discussion).
Terminology:

bitrate (bits/sec) ~optimized send rate for next round, taking into con-
sideration the predicted send and receive rates, and their variance.

error (0..1) -computed error rate

237

E (0..1) —predicted error rate

rate (bytes/msec) —same as bitrate, but in bytes/msec.
rate_r (bytes/msec) -computed current receive rate
RATE_R (bytes/msec) -predicted receive rate

rate_s (bytes/msec) -computed current send rate
RATE.S (bytes/msec) -predicted send rate

RV _E -variance of the error rate

RV_R -variance of the receive rate

RV_S -variance of the send rate

Computing current send rate (rate_s):

e rate is computed by taking into consideration the amount of data sent, including
retransmitted packets, within a short interval of time (AT in ms-milliseconds);

o the time interval (AT} - difference between 2 timestamps) extends between the
sending of two consecutive SREQ packets at the sending end;

¢ more precisely, the amount of data sent during the time interval is computed
as:
dataen: = tseqy — tseqo (bytes) (1)
e then, the current send rate is computed as:

tseqy — tseqo
AT,

rates = (bytes/ms) (2)

Computing current receive rate (rate_r):
e uses error status information in received ECNTL packets;

e rate is computed by taking into consideration the amount of data received within
a short time interval (AT,);

e the time interval (AT, - difference between 2 timestamps) extends between the
arrival of two expected ECNTL packets at the sending end;

¢ more precisely, the amount of data received is computed as:

datareceived = (rseqy — rseqo) + (Spans, — Spansg) (3)

e then, the current receive rate is computed as:

(rsequ — rseqo) + (Spans; — Spansg)

AT, (bytes/ms) (4)

rater =

238

Computing current error rate (error):

e the current error rate is deduced from the current amount of sent and received
data, as follows:

DATA:ent - DATAreceiue

DATA. (0..1) (5)

error =

The fifth algorithm: (refer to Figure 58)
Here follows a high level view of Torsten’s fifth algorithm:
o every now and then, do the following:
o sending side issues a SREQ packet, and takes a timestamp;

o sometime later, sending side issues another SREQ packet,
and takes a timestamp;

o upon reception of the 1st ECNTL packet (matching 1st SREQ),
sending side take a timestamp and do as the FIRST OPTIMIZATON
PHASE of the algorithm to update send rate as follows:

if ((error >= 0) && (error <= 1)) {
if (rate > (10 * minrate))
outrate = (word32)((1-error) * (double)rate);
else
outrate = (word32)((1.4 - error) * (double)rate);
E = error;
if (outrate < minrate)
rate = tspec.tsl.outrate = minrate;
else
rate = tspec.tsl.outrate = Word32)outrate;
} else { // Don’t change rate
RATE_R = rate * 8000; //Predicted receive rate

}

0 upon reception of the 2nd ECNTL packet (matching 2nd SREQ),
sending side takes a timestamp and proceeds with the SECOND
OPTIMIZATION PHASE of the algorithm to update send rate as

follows:
RATE_R = RATE_R + (rate_r - RATE_R) / 2; //Predicted send rate
E=E+ (error - E) / 2; //Predicted error rate

239

RV_R = RV_R + (abs(rate_r - RATE_R) - RV_R) / 4; //Variance: receive rate

if ((diff = error - E) < 0) // abs(error - E)
diff = diff * (-1);

RV_E = RV_E + (diff - RV_E) / 2; //Variance: error rate
e_rate = E + RV_E / 2;

if ((quot = 2 * e_rate) < 0.5)
quot = 0.5;

if (quot > 2)
quot = 2; // 7?7

bitrate = (word32) ((double) ((RATE.R + 2 * RV_R)) / quot);

if (bitrate <= (minbitrate = minrate * 8000)) {
rate = tspec.tsl.outrate = minrate;
RATE_R = minbitrate;
} else {
rate = tspec.tsl.outrate = bitrate / 8000;
}

Comments on the fifth algorithm:

To make the data send rate adjustment, the new optimized send rate is derived by
taking into consideration, inter alia, predicted send, receive and error rates for the
next round. In turn, the predicted rates are established by taking into considera-
tion the recent history (calculated rates) and the past history (the previous predicted
rate). For instance, in RATE_R = RATE_R + (rater — RATE_R)/2;, the first
RHS component of the equation RATE_R is the past history component, and (rate_r-
RATER)/2 s the recent history component. Half the difference between the previous
predicted rate and and the calculated rate is added to or substracted from the pre-
vious predicted rate (if RATE.R was 100, and rater = 80, then new predicted rate
RATE.R = 90). For a more complete discussion of this type of method, as applied to
CPU scheduling, see Appendix E, under the entry Shortest-Job-First Scheduling.

B.3 Work by Deric Sullivan

[Note October 1998: The core of this text was written in the Fall of 1997, i.e., before
the work of analysis of the structure of SandiaXTP and of its rate control mechanisms
presented respectively in Chapters 5 and 6. Consequently, this text has been greatly
reduced to focus mainly on the impacts on throughput of varying the window size

240

(i.e.. the size of the shared memory send and receive areas).

Regarding the rate control aspect, Deric conducted his experiments using the Inter-
net environment with unmodified SandiaXTP and the SELECT_FLOOR effect was
at work. Accordingly, the saturation curves should display a taper off plateau at
throughput=28.8 Bpms (1440/50=28.8). As shown on Figure 61, for the upper three
saturation curves (WS=51200, 102400, 512000), there is indeed a taper off plateau
at throughput=28 Bpms approximately. Given that few low range rate values were
used, this plateau is not well mappped on the curves.

The end parts of these three curves are however different from the ones presented in
Section A for a LAN environment; now there is a sharp throughput downfall which
did not occur on Figure 31 for ux0l for instance. This behavior could confirm the
anticipated saturation phenomenon when using the Internet environment.

The study of Deric’s report has also been a source of information for selecting the user
level cormmand line arguments, the particular window size (102400), and the range of
data rate values used for conducting the rate control experiments presented in this
report.

Deric Sullivan submitted his report [SUL] entitled XTP PROJECT FOR COMP490
in May 1977. Deric conducted unicast file transfer experiments between Concordia
University in Montreal and Karlsrhuhe University in Germany, using the SandiaXTP
[SUG] implementation of XTP 4.0 written by Dr. Tim Strayer. The scenario of the
experiments done by Deric can be summarized as follows:

e for rate = 10, 25, 50, 100, 500, 1000, 5000, 10000 bytes per millisecond (Bpms)
o for window size = 1440, 5120, 10240, 51200, 102400, 512000 bytes
e care for Round Trip Time (RTT) (0.5s)
o care for XTP PDU size (1472 bytes)
¢ do reliable 1IMB file transfer
e measure average data transfer time in ms (from the transmitter viewpoint)

Each file transfer can be considered as an independent session. Parameters, such as
rate, window size, RTT and XTP PDU size are set at the beginning for the whole file
transfer session.

RTT and XTP PDU size values

As a result of Marie’s work, Deric was aware of the XTP packet fragmentation (default
XTP PDU size of 8192 bytes get fragmented into 6x1526 bytes Ethernet packets),

241

Table 16: Sample of original Deric’s data for rate=10

%packet loss | Rate Initial Round | Send/Receive | At At At Average
11 pings (unknown | Trip time Window size | run 1 run 2 run 3 time
(%) units) (ms) (bytes) (ms) (ms) (ms) (ms)

10 1440 #DIV/0!
0and 0 10 316 and 329 | 5120 173155 | 174935 | 178039 | 175376
0and 0 10 349 and 352 | 10240 163662 | 159593 | 159759 | 161005
0 and 0(1) 10 315 and 332 | 51200 141045 | 142112 | 143137 | 142098
O0and 0 10 340 and 361 | 102400 139627 | 152041 | 141367 | 144345
0and 0 10 324 and 324 | 512000 141054 | 140561 | 141101 [140905
0and 0 10 ~tested 1048576 ~tested | ~tested | ~tested | ~tested
(1) 100 pings packets (ping -S -n 129.13.3.120 1472 100)
Source: XTP PROJECT FOR COMP490 by Deric Sullivan, May 1997 pl4

and the prolonged synchronizing handshake (low default RT'T) problems. Deric used
a modified version of the network utility program called ping to find the path MTU,
and then derive the XTP PDU size so as to avoid XTP packet fragmentation at the
IP network layer. Program ping was also used to get an initial experimental value for
the round trip time (RTT), which could be dynamically adjusted later by the XTP
protocol itself. Command line arguments are then used to convey the values found
with ping to the XTP daemon (such as -p 1472 for the PDU size, and -0 336 for the
initial RTT).

Data gathered and analysis

Deric’s data are presented in a series of eight tables, one for each rate value used
for the tests. For instance, for rate=10, Table 16 shows a listing of the average data
transfer times for all six window sizes. For the analysis part, Deric summarizes the
data as follows ([SUL, p28]):

® [t is seen that a rate of 10 is not strongly affected by the different window sizes.;

o The higher rates (5000 and 10000) start to eztbit strange patterns. They do not
follow the same smooth curves that the middle rates show.

o The rates 25, 50, 100, and 500 ezibit the behavior that would be ezpected with
a theoretical rate control and flow control protocol.

o All round trip times lay between 300 and 399 milliseconds.

e All of the packet loss was between 0 and 10 percent.

The reasons that led Deric devise his experiments along a window-size axis are not ex-
pressed, as well as why he chase the particular discrete values and ranges for window-
sizes and data rates, varying respectively from 1440 to 512000 bytes, and from 10 to

242

1048576 bytes file to transfer - 728 SDUs

data(1440-SDU) I SDU - 1440 I Application
XTP(1472) [h(32)] data(1440) | Transport
UDP(1480) [h(8)[data(1472)] Transport
[P(1500) [h(20)f data(1480) | Network
Ethernet(]526) | header(22) | data(1500) - path MTU | trailer(4) | Data link

Figure 59: Data encapsulation for unicast experiments

10000 bytes per milliseconds (Bpms). The work of analysis and interpretation of the
data produced could be further explored. In the following paragraphs, we venture
some speculative observations.

Main parameters of the experiments (WS & data rate)

Questions of window size are generally considered within the realm of flow control.
The goal of flow control is to prevent a fast sender from swamping a slow receiver
with more data that it can handle. This goal is achieved by restricting the quantity of
data sent to a limit not exceeding the residual buffer space available at the reception
point. The receiver issues acknowledgements regularly to free up more buffer space.

Flow control and rate control are however related in the sense that both techniques
are aimed at regulating the exchange of data between the sender and the receiver.
Flow control regulates the sender through some sort of overdraft credit; rate con-
trol further regulates the sender by imposing time constraints on the consumption
of those credits. Flow control is normally considered an end-to-end activity, whereas
rate control is more considered to be path activity aimed at preventing congestion
(called congestion avoidance) both along the intervening network (routers and data
links) and also at the receiving end. It is now quite evident that both flow control
and rate control may have impacts on throughput. Flow control may force the sender
to stop and wait for acknowledgements from the receiver, with possible impacts on
total file transfer time and throughput. Rate control will certainly impact on total
transfer time by varying the amount of data “put on the wire” in a unit of time. It is
therefore reasonable to have considered both aspects (rate and flow control) for these
unicast file transfer experiments.

At this point, we introduce some differences in the terminology used in Deric’s report and

243

in this report. As per our interpretation of the unicast experiments, the term “window size”
used in Deric’s report corresponds to the term “send and receive (S/R) buffer size” (i.e.,
the shared memory area) in the context of the XTP protacol. From now on, we will use
the more precise technical term “S/R buffer size” for our purpose, and the term “window
size” with its usual meaning in the context of the sliding window protocol, i.e., as defining
a subset of {rames for the purpose of flow control.

Regarding the range of window size values and the inter-value gaps, we distinguish
no particular predefined pattern, except the expectation that it should reveal the
impacts on throughput. The default SandiaXTP default buffer size is 32768 bytes.
Regarding the particular data rate values used for the unicast experiments, we detect
no particular predefined scheme underlying the choice of the particular values. The
goal was likely to trigger the underlying medium with a broad range of values so as to
detect the extremes of behavior. To develop a sense of proportions, Figure 60 presents
a bar diagram of the various data rates values used. At the top of Figure 60, the
Ethernet 10 BASE-T nominal capacity (at 1250 Bpms or 10Mbps) is shown as a thick
horizontal bar, and thus serves as the measuring stick against which we can compare
the values used. On top of each vertical rectangle, we indicate the actual data rate
values, both with the Bpms unit and as a percentage of the Ethernet nominal capacity.

Figure 60 clearly suggest a categorization of the values in two clusters: low and high
data rates. Low data rates values range from 10 to 100 Bpms, or from 1% to 8%
of Ethernet nominal capacity. High values range from 500 to 10000 Bpms, or from
40% to 800% of Ethernet nominal capacity. Given these percentages, one can already
suspect that some data rates are "out of range” (such as 5000 and 10000), and the
implications are further developed in the following paragraphs.

Significance of Deric’s work

The outlook of present report is to correlate the offered load (sender) and the through-
put. Because it suits better the saturation curve outlook, Deric’s data have been
reformated along a window-size-first/rate-second approach, with consistent units
at both ends of the communication association (here in bytes/millisecond - Bpms).
The recalculated data are presented in Table 17 for all window sizes. Correspond-
ing to the data presented in Table 17, Figure 61 shows the saturation curves for all
window sizes, ignoring the data rates of 5000 and 10000 Bpms. The speculative ob-
servations that follow relate to these reformulated data.

244

data rate 800%

10000
400%
5000
Ethernet 10 BASE-T 1250 BEms = 10 000 000 bas | I ’ ’
80%
1000

Bpms - bytes per millisecond
bps - bits per second

Transform: Bpms 22X bps

Bpms bps % Eth
10 80 000 0.8
25 200 000 2

50 400 000 4 40%

100 800 000 8 500
500 4 000 000 40
1000 8000 000 80

1250 10000 000 100
5000 40 000 000 400
10 000 80 000 000 800

4% ?(()%(’J
0.8% 2% 5o°
25
10 =

Figure 60: Unicast data rate range of values

First, we abstract some very high level observations regarding the shapes of the curves,
focusing on mega trends from curve to curve, and also within curves. Analysis of the
changes from curve to curve should reveal the impacts of varying the window size,
and analysis of the changes within curves should reveal the impacts of varying the
offered load (i.e., the rate specified to XTP at the sender side).

Regarding the evolutionary changes of shape from curve to curve, one can observe a
clear progression from a flat, undifferentiated curve shown in Figure 61 for WS=1440
bytes, to more vertical, better and better differentiated shapes that resemble the
model Internet saturation curve discussed at the beginning of the report (see Figure
2). As the vertical axis represents the throughput, a more differentiated curve in-
dicates more throughput responsiveness to changes in offered load. At least for the
first part of the curves (say including points rate=10, 25, and 50 Bpms), it is as if an
increase in window size was definitely resulting in an increased throughput, though

245

Table 17: Recalculation of Deric’s data for unicast saturatjon curves
Data rate
(Bpms): 10 25 50 100 500 1000 5000 10000
WS=1440 time(ms): - 301700 | 308245 | 270069 | 265137 | 260101 | 267950 | -
tput(Bpms): | - 3.47 3.40 3.88 3.95 4.03 3.91 -
WS=5120 time(ms): 175376 | 115870 | 110582 | 117388 | 107423 | 98638 | 127143 | 133162
tput(Bpms): | 5.97 9.04 9.48 8.93 9.76 10.63 | 8.24 7.87
WS=10240 | time(ms): 161005 | 74523 | 68349 | 80712 | 66709 | 72845 | 71209 | 73547
tput(Bpms): | 6.51 14.07] 15.34 1299 | 15.71 14.39 14.72 | 14.25
WS=51200 | time(ms): 142098 | 54443 | 43617 | 43253 | 36841 | 113203 | 186994 | 161122
tput(Bpms): | 7.37 1926 | 2404 | 2424 | 28468 | 9.26 5.60 6.50
WS=102400 | time(ms): 144345 | 48522 | 40810 [45639 | 37411 | 98690 | 90493 | 84982
tput(Bpms): | 7.26 21.61 | 2569 | 2297 | 28.03 | 10.62 11.58 | 12.33
WS=512000 | time(ms): 140905 | 45499 | 38251 | 45161 | 36199 | 60242 | 99380 | 80185
tput{(Bpms): | 7.44 23.04 | 2741 | 23.21 | 28.96 | 17.40 10.55 13.07
Source: XTP PROJECT FOR COMP490 by Deric Sullivan, May 1997
WS = Window Size in bytes.
tput = throughput in Bpms; derived from time needed to receive the data & amount of data.
Ex: 1048576 / 140905 = 7.44 Bpms
Unicast saturation curves (Deric)
throughput - Bpms
30.00 deridddxy
_a Ferd 203y
R e I 3 el - - WeFi62d6xy "™
e o R N AerS12607xy ~ "
26.00 —|=R\ - - L2 NS T © B 2400y T
24.00 - l'lr—‘.\;::;‘;:‘ﬂ’—’— et I _ G512000.xy
22.00 }r‘,L ‘\ M
20.00 . ‘\‘\\ =
\\\ ~ .
18.00 *:‘\ <
16.00 . R S \-\!\\»
1000 [N et I e
6 .._,--’ \\‘\\
12.00 E R T T p—— N
10.00 S WS —— — ”‘"\
8.00 —§L
6.00
4.00 ——
load - Bpms x 103
0.00 0.20 0.40 0.60 0.80 1.00

Figure 61: Unicast saturation curve for all window sizes

246

in a quickly diminishing fashion.

As the curves shown on Figure 61 are well differentiated for WS=51200, WS=102400,
and WS=512000, we use them collectively to depict the changes occuring within a
curve. For all three curves, there is a steep rise at the beginning of the curves, repre-
sented by the three first points (rate=10, 25, and 50). Then follows a relatively flat,
or slightly down sloping portion from points for rate=50 to 100. Follows a slight rise
again from points rate=100 to rate=500. Then, we have a dramatic fall in throughput
from point rate=500 to point rate=1000. Beyond point rate=1000, the curves (not
shown on Figure 61) are relatively flat or undifferentiated.

What do all those changes mean? To help formulate further and more detailed obser-
vations about the experimental data underlying the curves, we use a thematic/questioning
approach. Such thematic questions consist of: (1) Why is the curve shown on Figure

61 for WS=1440 so flat or undifferentiated?; (2) Why are the end parts of all curves

so undifferentiated?; (3) What are the impacts of varying the window size, and what
appears to be the optimal window size (particular to those experimemts, of course)?
Those issues are further discussed in the following paragraphs.

Why is the curve for WS=1440 so flat or undifferentiated

Short answer: because the window size is triviallly too small (in effect producing a
stop-and-wait mode of exchange), given the PDU size and the long distance nature
of the WAN link used.

The window size is 1440 bytes, and the PDU size used is 1472 bytes (see [SUL, p26]).
With reference to textbooks on Data Communications and Computer Networks, such
as [TAN, p239], this scenario corresponds to a window size of unity (WS=1), and
implies a stop-and-wait protocol; sender sends one packet and waits for an acknowl-
edgement from the receiver. As per the theory, the performance of the stop-and-wait
protocol is very low; most of the time is spent waiting for acknowledgements.

As throughput is a derived quantity computed from the total time needed to effect
the transfer of a file, and so much time is spent waiting, this would explain why we
get such a low throughput. Furthermore, as only one packet is sent at a time, and it
needs only one hardware packet, it is sent at the hardware rate. Increasing the XTP
rate has no effect (more than one second will elapse before sending the next one any-
way), and this explains why the throughput remains relatively constant, producing a
flat curve.

(2) Why are the end parts of the curves so flat /undifferentiated?

247

Table 18: Unicast Time duration VS Window Size at point rate=50 Bpms

WS time time
bytes | ms s
1440 308245 | 308
5120 110582 | 110
10240 | 68349 | 68
51200 | 43617 |44
102400 | 40810 | 41
512000 | 38251 | 38

Source: Table 17

Short answer: because, due to hardware limitations, offered loads (rates) of 1000Bpms
and above are in effect all equivalent, thereby yielding approximately an equivalent
throughput.

(3) What are the impacts of varying the window size, and what appears
to be the optimum window size (at least for the particular link used)?

Short answer: From WS=>52100 bytes (probably the optimum), the impact on through-
put of increasing the window size is slight.

In his discussion about the performance of Sliding Window Protocols, [TAN, p242
ff] clearly shows that channel utilization increases with the window size (...up to a
point). He goes on with such statement as: “If window size is large enough, then
the sender can just keep going at full speed because the acknowkedgments get back
before the sender’s window fills up.” or “If window size is at least one larger than
the number of frames that fit on the cable, transmission can go continuously”. The
context of those statements is for relatively short cable lengths, i.e., for cable length
of 1 to 5 frames, and for full occupancy of the channel.

Even if Tanenbaum is discussing about gain in global channel utilization, and for short
length LANS, one can observe an equivalent general upwards trend in the throughput
with increasing window sizes, for the present long distance unicast experiments, as
shown on Figure 61.

From now on, the focus of the discussion will not be so much about the existence of
such upward trends, as confirmed by our interpertation of the unicast experiments,
but rather about the pecularities of the changes and the lessons that can be infered
for further experiments. The facet that we develop is more of an economical nature;
equating increase in window size as being a higher demand on a scarce resource (a

248

Table 19: Unicast window size - throughput incremental analysis

Ref | WS WS | MEM incremental cost | throughput incremental benefits
Tab. | byte # bytes Bpms

17 1440 1 base case base case

17 | 5120 |3 (1) | add 3680 (2) each add 1000B —= +1.24Bpms (3)
17 10240 | 6 add 5120 each add 1000B —= +0.74Bpms

17 | 51200 | 34 add 40960 each add 1000B —= +0.12Bpms

17 102400 | 69 add 51200 each add 1000B —= +0.02Bpms

17 | 512000 | 347 | add 409600 each add 1000B —= +0.002Bpms

Examples of calculations:
(1) Window Size: 5120/1500 = [3.47] = 3 (Ref: [TAN, p242|)
(2) Main MEMory incremental portion: 5120 — 1440 = 3680
(3) Incremental benefits:

prev = (3.47 + 3.40 + 3.88/3) = 3.58

cur = (5.97 + 9.04 + 9.48/3) = 8.16

imnprovement = cur — prev/3.68 = 1.24

0+ A throughput 3t point C (ratem50) - Bpens
B time duntion 1o receive 1048576 bytes - *10s
3
01® gensom
A Yy
S12002404) (10240 255)
1 Q2400,41
P N B ... T
50000 0 b i) 9 100000
window size - bytes

Figure 62: Unicast window size - throughput gain curve at point C (rate=50)

249

(12000.12)

10000 .1} » 0 50000 60 10 8 % 100000

Figure 63: Unicast window size - throughput Diminishing Return curve

cost in terms of host main memory space, and also in contributed experimental com-
plexity), and an increased in throughput as being a benefit in terms of reduced total
duration time to transfer a large file. As the relation is far from being linear, the
crucial questions becomes: is is worth complicating further experiments with many
window sizes; and if not, what window size(s) could we select? The result of this
economically minded analysis is presented in Tables 18 and 19, and in their corre-
sponding “diminishing return” curves shown in Figure 62 and Figure 63. Here follows
some observations based on the data and the curves.

First, let us discuss the curves shown in Figure 62; where curve A is built from point
rate=50 only of the six unicast saturation curves, and curve B is built from data
presented in Table 18. Point rate=50 was selected because of its key importance,
representing the practical end of gain in throughput. For instance, to show the rela-
tionship between curve A shown on Figure 62 and the six unicast saturation curves,
one should realize that the leftmost point of curve A (1440,3.4) corresponds to point
rate=50 of the unicast curve shown on Figure 61 for WS=1440, next point of curve
A (5120,9.48) corresponds to point rate=50 for WS=5120, and so on.

The purpose of curve A is to diplay the exact “diminishing return” nature of the gain
in throughput VS increase in window size, from a commitment of system resources
point of view. One can observe a steep gain in throughput for window size varying
from 1440 to 51200. Thereafter, the shape of curve A is almost flat and the gains
in throughput are very small despite massive incremental investments in window size

250

(or amount of main memory devoted to buffering packets).

The purpose of curve B is to expose the exact "diminishing return” nature of the gain
in total transfer time VS increase in window size, from a user point of view. As derived
from Table 18, a 900% increase in buffer space (51200 to 512000) yields only a 14%
(44 to 38s) reduction in total transfer time. Psychologically, given the long distance of
the link (over 5 000 000 m), and the large file size (LMB), a waiting time of 44 seconds
instead of 38 seconds should not be much of an inconvenience for the experimenter
as well as for the user. The result is that the window size, for the time being at least,
does not appear to be a sensible enough factor to invest much more investigation time.

Table 19 and its corresponding Figure 63 present results of a similar cost-benefits
analysis, but using incremental concepts, and taking into consideration the first three
points (rate=10, 25, and 50) of every unicast saturation curve. As this other analysis
confirm the analysis done for point rate=10 only, no further comments are made here.

To conclude this part of the analysis, it would appear that a window size of 51200
bytes is the optimum in the sense that commitment of system resources are small,
and impact on throughput is small, at least from the aspect of further file transfer
experiments on the same link.

Lessons for further experiments?
The core value of Deric’s experiments probably consist of indicating areas require

further investigation. Globally, the list of parameters for further unicast experiments
using the Internet environment is follows:

WS: 51200, 102400 bytes
Offered load: 10, 15, 20, 25, 30, 35, 50, 75, 100, 125 Bpms

251

C Programming and tools used for the experiments

C.1 Sandia source files modified

Table 20 shows a listing of the Sandia source files modified for conducting the experi-
ments with the modified version of the daemon. The directory paths where these files
are available are also indicated. As explained in Chapter 6, all changes introduced in
the code are flagged with the keyword //-=-icici-~--.

Table 20: List of Sandia files modified

MTL SandiaXTP

header files* C++ implem. files* | header files® C++ implem. files®

MTLtypes.h mtldaemon.C XTPcontext.h XTPcontext_gen.C

context_.manager.h | udp.delserv.C XTPcontext.manager.h | XTPcontext.manager.C

mtldaemon.h XTPdaemon.h XTPcontext.recv.C

XTPtypes.h XTPcontext_send.C

XTPdaemon.C
XTPpacket.C
xtpd.C

L. /mnt/jwa/jwal/grad/harveyl/pkg/sxtp/mtl-1.5.1/include/

2. /mnt/jua/jwal/grad/harveyl/pkg/sxtp/mtl-1.5.1/8rc/

J. /mnt/jwa/jwal/grad/harveyl/pkg/sxtp/SandiakTP-1.5.1/include/

4. /mnt/jwa/jwal/grad/harveyl/pkg/sxtp/SandiaXTP-1.5.1/src/

C.2 Client programs used for testing (C++ source code)

As explained in Section 7.5, the C++ source code used to compile program mmetric
is included in files mmetric.C, mbulk.C and mcommon.h. Here follows the directory
path where these files can be found:

/mnt/jwa/jwal/grad/harveyl/experiments/withSXTP/src/

C.3 Perl utility programs

Table 21 shows a summary of the Perl utility programs developed for conducting the
experiments. The directory path where these files are available is also indicated.

C.4 Udip - a unicast/multicast testing program

Udip is a “small” testing program developed at the Concordia University HSP Lab.
for experimenting with data communications in a UNIX environment. Through com-
mand line arguments, udip can be customized to behave as sender or receiver (but
not both - udip is not duplex), and the unicast as well as the multicast modes of

252

Table 21: List of Perl utility programs
Name Functionality
play! Ex: play -ur to start the receiver for a unicast experiment unit
covering all send rates. See Table 7
configPlay' | To configure program play; interactively calls for the settable
parameters.
playm! To conduct multicast experiments. See Table 8
xtractXY' | To format the xy file for xgraph. See Table 7
xtabLOG' | To format the log summaries. See Table ux0l.log
xtabXY! To format the data summaries. See Table ux01.xy
1. /mnt/jwa/jwal/grad/harveyl/bin/

communication are supported. udip is non-reliable and presently uses solely UDP as
its underlying data delivery service (DDS), which allows it to run without superuser
permission. Eventually, udip may offer the choice to use raw [P as the underlying
DDS.

The networking socket interface is used. For multicasting, udip relies on [P multicast,
which implies an Operating System supporting [P multicast, such as Sun Solaris2.5
that was used as its development testbed. Eventually, udip is meant to run on other
UNIX platforms, such as Linux. udip has a class design loosely based on the Sandi-
aXTP implementation of the Xpress Transport Protocol (XTP) and is implemented
in C++.

The source code and the documentation can be obtained from the following directory
paths:

/mnt/jwa/jval/grad/harveyl/pkg/udp/udip/doc/

/mnt/jwa/jwal/grad/harveyl/pkg/udp/udip/include/
/mnt/jwa/jwal/grad/harveyl/pkg/udp/udip/src/

253

D SandiaXTP class description dictionary

The Class Dictionary is incomplete, and may be inaccurate. It was prepared progres-
sively as an aid to help synthesizing the MTL and SandiaXTP source code, and no
attempt was made update its accuracy as understanding of the software kept evolving.

This Class Description Dictionary covers all the classes shown on the global “Sandi-
aXTP Class Diagram”, though at a very greatly varying depth of coverage. The ordering
principle used for presenting the classes is the alphabetical/dictionary arrangement, with-
out consideration to the class inheritance relationships. For each class, a specific three-areas
class diagram is shown, with “as significant as possible” samples of the actual variables and
functions included in the header files. For each class, or grouping of related classes, a short
textual description explaining their role is supplied, and possibly some object diagram(s) to
illustrate a typical execution scenario.

The order of presentation of the classes is as follows (read horizontally):

buffer_manager = CNTLpacket context
context_manager dds_address del_serv
DATApacket DIAGpacket ECNTLpacket
event_queue FIRSTpacket ip-dds_address
ip_del_serv JCNTLpacket lib_manager
mtidaemon mtlif packet

packet _fifo packet_pool state_machine
TCNTLpacket timeout timer
udp_dds_address udp.del_serv user_request
XTPcontext XTPcontext_manager XTPdaemon
xtpif xtp_reg_msg XTPstate_machine
xtp_state_msg xtp_trans_msg

The BTEX source file for the class description dictionary is available at the following
directory path:

/mnt/jwa/jwal/grad/harveyl/report/appendix/sxtpClassDictionary.tex
The xfig source files are also available at the following directory path:
/mnt/jwa/jwal/grad/harveyl/report/appendix/sxtpClassDict/

Tables 22 and 23, and Figure 64 show the mapping of the class design to file organi-
zation and layout in the file system.

254

install directory

-

xtpd

(such as: /mnt/jwa/jwal/grad/barveyVpkg/sxtp/)
|
| | 1
include/ liv mth1.5.1/ SandiaXTP-1.5.1/
n[(l/ lel include/ lnIl-udd 1cl
buffer_mgr.h XTPaddressh libmtla buffer_mgrh buffer_mgr.C
— — libxtpa === =

see Tab. MTL sce TOMTL see TabSXTP

Figure 64: Software organization after installation

Table 22: MTL class/file organization

Class header file implementation file
buffer_manager buffer_manager.h | buffer_manager.C (19302)
context context.h context.C (7279)
context_manager | context.manager.h | context_manager.C (13559)
dds.address dds_address.h none
del_srv del srv.h none
event_queue event_queue.h event_queue.C (8390)
ip-dds_address ip-dds_address.h none
ip-del_srv ipdel.srv.h ip-del_srv.C (13537)
lib_manager mtlif.h none
mtldaemon mtldaemon.h mtldaemon.C (44109)
mtlif mtlif.h mtlif.C (16477 bytes)
packet packet.h packet.C (18304)
packet_fifo packet_fifo.h packet_fifo.C (3159)
packet_pool packet_pool.h packet_pool.C (6536)
state_machine state.machine.h none
timeout timer_aides.h none
timer timer_aides.h none
udp_dds_address | udp.dds.address.h | none
udp_del_srv udp_del_srv.h udp._del_srv.C (14582)
user_request user_request none
MTLtypes.h
intr_handlers.h intr_handlers.C (4189)
mtlconf.h
mtlsignal.h mtlsignal.C (2663)
prototypes.h
word64.h

255

XTPcontexth XTPcontext_gen.C

see Tab.SXTP

Table 23: SandiaXTP subclass/file organization

Subclass header file implementation file
CNTLpacket
DATApacket
DIAGpacket
ECNTLpacket XTPpacket.h XTPpacket.C (31952)
FIRSTpacket
JCNTLpacket
TCNTLpacket
XTPcontext_gen.C (74698)
XTPcontext XTPcontext.h XTPcontext.recv.C (71535)
XTPcontext_send.C (72148)
XTPcontext_manager | XTPcontext.manager.h | XTPcontext.manager.C (62307)
XTPdaemon XTPdaemon.h XTPdaemon.C (27133)
xtpif xtpif.h xtpif.C (31365)
xtp.reg.msg XTPuser_request.h none
XTPstate_machine XTPstate_machine.h XTPstate_machine.C (6737)
xtp.state_msg XTPuser_request.h none

xtp_trans.msg

XTPuser_request.h none

xtpd.C (3790) (driver program)

XTPaddress.h

XTPdiag.msg.h

XTPtraffic.h

XTPtypes.h

xtpdreset.C (2461)

xtpdrm.C (2624)

xtpds.C (4256)

256

E Keywords summary

Bpms (bytes per millisecond)

See Data rate units

Data rate units (bytes per millisecond - Bpms)

The data rate is a measure of the number of bits transferred per unit of time. In
the literature, the data rate is expressed in bits per second (bps) (Ex: 10 Mbps
for Ethernet 10 BASE-T; or 1.544 Mbps for Bell System T1 carrier). However,
[XTP40, p66] specifies the data rate in bytes per second. The SandiaXTP imple-
mentation of XTP expresses the data rate in bytes per millisecond (abbreviated
to Bpms), which is also the unit used in this report. For convenience, a table
of conversion for many of the data rates used follows:

units Data rate values

Bpms: | 10 25 50 100 500 1250 4 250

bps: 80 000 | 200 000 { 400 GO0 | 800 000 | 4 000 000 | 10 000 000 | 34 000 000
Mbps: | 0.08 0.2 0.4 0.8 4 10! 34

1. Ethernet 10 BASE-T nominal data rate - 10 Mbps
Transform: B/ms "2% bps

HSP Lab High Speed Protocols Laboratory Department of Computer Science, Con-

cordia University, Montreal, Dr. J.W. Atwood (Director)

The mission of the High Speed Protocols Laboratory (HSPL) consists in the
specification, validation, testing, and performance evaluation of high speed
data communication protocols. The specification and validation aspects are
being investigated using formal descriptions methodologies such as Estelle, LO-
TOS, Valira, and Promela. The performance evaluation aspect is being inves-
tigated using simulation techniques, automatically-produced implementations
(using Estelle), and hand-produced implementations (in C and C++).

The primary focus of activity since 1987 has been the Xpress Transport Protocol
(XTP), a new transport level protocol designed for high-speed environments
(100 Mb/s). XTP offers many innovating features such as multicasting and
quality of service (QOS). With the publication of XTP 4.0 in March 1995, the
multicasting functionality was considerably improved.

MBONE What is the MBONE? (excerpt from

http://www.mediadesign.co.at/newmedia/more/mbone-faq.html)

257

The MBONE is an outgrowth of the first two [ETF “audiocast” experiments
in which live audio and video were multicast from the [ETF meeting site to
destinations around the world. The idea is to construct a semi-permanent IP
multicast testbed to carry the IETF transmissions and support continued ex-
perimentation between meetings. This is a cooperative, volunteer effort.

The MBONE is a virtual network. It is layered on top of portions of the physical
Internet to support routing of IP multicast packets since that function has not
yet been integrated into many production routers. The network is composed
of islands that can directly support IP multicast (e.g., multicast LANs such
as Ethernet), linked by virtual point-to-point links called “tunnels”. The tun-
nel endpoints are typically workstation-class machines having operating system
support for [P muiticast and running the “mrouted” multicast routing daemon.
See also: ftp.isi.edu:mbone/faq.txt by Steve Casner, casner@isi.edu, 22-Dec-94

MTU Maximum Transmission Unit

The component handed over to the Data Link layer (i.e., a composite of the XTP
packet plus the UDP and IP headers) is considered as “data” to encapsulate
within a Data Link packet. The MTU is the upper limit on the number of bytes
of data that the data link layer can encapsulate. Beyond this limit, I[P performs
fragmentation into many fragments. The path MTU is the smallest MTU of
any data link between end points (as this path may vary, the path MTU may
also vary). As per [SUL, pll], the experimental path MTU found was 1500
bytes. This value corresponds to the maximum data field size of an Ethernet
frame (IEEE 802.3), as shown in [SHAY, p330]. Including the Ethernet header
and footer (max 26 bytes), the full size of a data link layer packet is thus 1526
bytes. See also PDU and SDU entries.

PDU Protocol Data Unit
PDU is another name for “packet”. More precisely, for this report, we are

referring to the XTP/Transport layer packet (or TPDU). In [SUL, pll], the
XTP PDU size used is derived to prevent fragmentation by Ip as follows:

XTP PDU size = path MTU - (UDP header + IP header) = 1472 bytes

where:

path MTU = 1500 bytes;
UDP header = 8 bytes ;
IP header = 20 bytes

If the size of one XTP packet is 1472 bytes, including a 32 byte fixed size header,
then the data portion is 1440 bytes (see SDU for more details).

258

rseq see also [XTP40, p26]

-receive sequence number field- The rsegq field holds the sequence number of the
next in-sequence byte expected on this data stream, so it is one greater than
the highest contiguously received data byte.

SDU Service Data Unit

As per [TAN, p21], “The SDU is the information passed across the network to
the peer entity and then up to layer N + 1. The control information is needed to
help the lower layer do its job, but is not part of the data itself”. Here follows a
diagram explaining the semantics of the SDU for the rate control experiments.
The SDU corresponds to the -b (i.e., user buffer size) command line option of
a client program such as mmetric.

1048576 bytes file to transfer - 728 SDUs

data(1440-SDU) [SDU - 1440 | Application
XTP(PDU-1472) h(32) data(1440) | Transport
UDP(1480) (h(8)] data(1472) | Transport
IP(1500) h(20) data(1480) | Network

Ethernet(1526) lheader(22) data(1500) - path MTU [trailer(4)] Data link

Shortest-Job-First Scheduling see also [SG, p139]

The following is an excerpt of Silberschatz & Galvin book: The next CPU
busrt is generally predicted as an exponential average of the measured lengths
of previous CPU bursts. Let ¢, be the length of the nth CPU burst, and let
Tat: be our predicted value for the next CPU burst. Then, for o, (0 € a < 1),
define

Tat1 = aty + (1 — a)7,.

This formula defines an ezponential average. The value of ¢, contains our most
recent information; 7, stores the past history. The parameter a controls the
relative weight of recent and past history in our prediction. If @ = 0, then
Ta+! = Ta, and recent history has no effect (current conditions are assumed to
be transient); if & = 1, then 7,4, = t,, and only the most recent CPU burst
matters (history is assumed to be old and irrelevant). More commonly, o = 1/2,
so recent history and past history are equally weighted.

259

tseq see also [AUE, pl9]

-highest actually sent sequence number (context parameter tseq)- again an in-
sequence byte number.

Variance The variance of n observations z;, z,,...,z, measures esentially the av-
erage of their squared deviations from their mean, 7, and it is defined by the

formula g
2 _ 2?:1 (l‘i - Z)
gl= st 2
n—1

260

References

[AMZ] J. William Atwood, Anne Moreau, Yaolin Zhang. A Service Interface for a
Parametric Transport Protocol ©1995 (an unpublished article)

[AUE] Torsten Auerbach. Using Error Status Information in the Xpress Transport
Protocol to Improve Performance — A report in the Department of Computer
Sience. Concordia University, March 1997

[BOG] David R. Boggs, Jeffrey C. Mogul & Christopher A. Kent. Measured Capacity
of an Ethernet: Myths and Reality. in ACM SIGCOMM’95, pp124-137

[FALCOT] Pierre Falcot, Traffic analysis with XTP in unicast environment, Final
Studies Project Report, Concordia University, May 25, 1998

[MTL] Sandia National Laboratories. Meta-Transport Library User’s Guide - Meta-
Transport Library, A Protocol Base Class Library, Release 1.4, Published by:
Infrastructure and Networking Research, Sandia National Laboratories, P.O.
Box 969 Mailstop 9011, Livermore, California 94551-0969

[SDW] W. Timothy Strayer, Bert J. Dempsey, Alfred C. Weaver XTP: The Xpress
Transfer Protocol - ©1992 by Addison-Wesley Publishing Company, Inc.

[SG] Abraham Silberschatz & Peter B. Galvin Operating System Concepts - (©1994
by Addison-Wesley

[SHAY] William A. Shay Understanding Data Communications and Networks (©)1995
by PWS Publishing Company

[STEV1] W. Richard Stevens. TCP/IP lllustrated, Volume I - The Protocols. (€)1994
by Addison-Wesley

[STEV2] W. Richard Stevens. UNIX Network Programming ©1990 by Prentice Hall
PTR

[SUG] Sandia National Laboratories. SandiaXTP User’s Guide - SandiaXTP An
Object-Oriented Implementation of XTP 4.0 Derived from the Meta-Transport
Library, Release 1.4, Published by: Infrastructure and Networking Research,
Sandia National Laboratories, P.0. Box 969 Mailstop 9011, Livermore, Cali-
fornia 94551-0969

[SUL] Deric Sullivan. XTP Project - A report for COMP 490. Concordia University,
May 1997

[TAN] Andrew S. Tanenbaum. Computer Networks - Second edition ©)1989 by PTR
Prentice-Hall, Inc.

261

[VANJ] Van Jacobson. Congestion Avoidance and Control — in 1988 ACM 0-89791-
279-9/88/008/0314, p314-329

[WAL] Marie A. Wallace Error Control in XTP over the Internet — A Major Report in
The Department of Computer Science. Concordia University, December 1997

(XTP40] XTP Forum Xpress Transport Protocol Specification — XTP Revision 4.0
March 1995, Published by the XTP Forum, 1394 Greenworth Place, Santa
Barbara, CA 93108, USA

262

Index

Algorithm, rate control, 102
Bombardment effect, 161
Bombardment phenomenon, 160
Bpms, 257

Changes to the rate control algorithm, 120
check_timers() negative, 125

Class description dictionary, 254
Command line arguments, 150
credit, 106

Data encapsulation, 259

Data transfer scenario, 153
Encapsulation, 259

Event Trace diagrams, 55

Extended Finite State Machine, 103
Harmonization, 163, 164

HSP Lab, 257

Interpretation of results, 166

Linked list of timers, 125, 205

Machine characteristics, 156
MAXANTICIPATION effect, 172
MAXANTICIPATION margin, 123, 206
MAXANTICIPATION plateau, 172
mbulk.C, 252

mcommon.h, 252

mmetric.C 252

Multicast, 20

Multicast model, 42, 43

Naming scheme, 141

O.M.T - Object Modeling Notation, 52
Optimized multicast experiment, 202, 228
Optimized unicast experiment, 202, 234
Parameterized protocol, 18

PDU - Protocol Data Unit, 259
Protocol implementation strategies, 48
Protocol stacks, 29

Rate control, 22

Rate control algorithm, 102

Rate control with SandiaXTP, 94
RTIMER evolution, 159

SandiaXTP global architecture, 57, 58
SandiaXTP Object Model, 62, 72, 75
Saturation curves, 5

select() timeout precision, 200

263

SELECT_FLOOR effect, 159, 163, 167
SELECT_FLOOR plateau, 167
SELECT.FLOOR threshold, 124
shortest, 105

Structure of SandiaXTP, 51

Synopsis of experiments, 157
timeout, 105

Topology, 139

Unicast model, 36, 35

XTP project, 16, 15

