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Abstract

Incorporating the Simplicity First Methodology into a Machine

Learning Genetic Algorithm

Steven M. Winikoff

The classical genetic algorithm provides a powerful yet domain-independent tool
for concept learning. However, in general, learning systems based on the genetic
algorithm generally do not perform as well as symbolic learning algorithms.

Robert Holte’s symbolic learning algorithm 1R demonstrated that simple rules can
perform well in non-trivial learning problems, and inspired an approach to machine
learning which Holte termed “simplicity first research methodology™.

A system called ELGAR is proposed, constructed and evaluated in order to in-
vestigate the properties of concept learning using the genetic algorithm. A hybrid
algorithm is then developed and implemented which integrates the genetic algorithm
in ELGAR with the “simplicity first” approach, resulting in a concept learning system
that outperforms both 1R and the purely genetic version of ELGAR.
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Chapter 1

Introduction

1.1 Machine Learning

Machine learning is the study of computer systems which can learn. Although learn-
ing is more commonly considered to be a characteristic only of intelligent life, in
practice there is strong motivation to create systems which can monitor the results of
their current activity, and use this information to improve their future performance.
There are many potential uses for this type of ability, including basic control systems
(e.g. an automatic transmission that can customize its shift patterns to the habits of
a particular driver), user interface design (e.g. an electronic mail reader which can
learn how to rank messages in order of relevance based on the user’s prior reading
habits), and knowledge acquisition [Giarratano94] (i.e. the ability to learn if-then

rules, based on sources such as medical or legal case history files).

1.1.1 The Machine Learning Problem

Just as there are many types of learning in general, there are many different definitions
of and approaches to the task of machine learning. The manner in which the learning
problem is defined will naturally influence the manner in which it is solved; thus
a multiplicity of different learning programs exist, specialized for different types of
learning tasks. Section 1.1.2 presents a broad categorization of general approaches
to machine learning, and Section 1.2 describes a number of specific machine learning

implementations.



1.1.2 General Approaches to Machine Learning

Micheline Kamber [Kamber91, pp. 33-50] describes a taxonomy of machine learning

techniques, of which the following are the major categories:

'0!

rote learning, in which no inferencing is performed, and all new information is

directly usable by the system

learning by deduction, a process of specialization which essentially consists of

combining existing facts and rules to generate new facts or rules

learning by induction, in which general rules or concepts are drawn from existing,

more specific facts or rules

learning by analogy, where the learning system attempts to deal with new situ-

ations by recourse to existing knowledge of similar ones

ezplanation-based learning, in which generalization' is performed from a single
instance, often with the aid of a teacher and substantial background knowledge

of the domain being studied

hybrid learning, which combines two or more of the above techniques in one

system

Much recent research in machine learning is concerned with concept learning,
which in general concerns the last four of the above approaches. In addition to
the discussion in Section 1.1.3, two good overviews of this topic may be found in

[Thornton92] and [Shavlik90].

1.1.3 Concept Learning

The term concept learning refers to learning a concept from a set of instances

whose classification with respect to the target concept are known e priori. This can

range from concepts which are relatively simple, such as ‘red’, ‘chair’ or ‘conditions

under which it is safe to cross the street’, to concepts which are quite complex indeed,

IThroughout this thesis, bold type is used to denote terms which are defined in the glossary
(Appendix A).



such as ‘conditions under which a patient recovering from surgery for breast cancer
will not have the cancer recur’.

The goal of a system which performs concept learning is to create a representation
of the newly learned concept which would be capable of classifying heretofore unseen
instances, called recall instances, and correctly determining whether or not they
belong to the actual concept which was to be learned. Each instance consists of
a number of observations, typically referred to as features or attributes, which

describe various characteristics of the object to which they refer.

1.1.3.1 A Concept Learning Example

As an example, consider Table 1, which presents data from [Clark90], listing obser-
vations regarding a number of animals, some of which are known to be lions. Given
these eight training instances, a concept learner would attempt to formulate a rep-
resentation of the concept LION.?2 Typically this would be expressed in the form of
classification rules, using the attributes Furry?, Age and Size,? although other formu-

lations are also used (see Section 1.2 for some examples).

Specimen | Furry? | Age Size Classification
Number
1 yes old large lion
2| yes young | medium lion
3| yes |young| large lion
4 no young | large not lion
51 yes old small not lion
6| yes young | small not lion
7 no young | small not lion
8 no old large not lion

Table 1: Training instances for the concept LION

A major part of the concept learning problem is finding the best such formulation
for any given concept. Even if the nature of the representation is specified (e.g. rules),
there may still be many possible solutions (e.g. different sets of rules with potentially

different classification behaviour).

2Throughout this thesis, concept names are printed in SMALL CAPS.
3Throughout this thesis, attribute names are printed in sans-serif type.

3



For example, one set of rules which could be obtained from the training set in
Table 1 is

Rule Set 1.1

IF (Furry = yes) AND (Size = medium) THEN lion
ELSE IF (Furry = yes) AND (Size = large) THEN lion
ELSE not lion

This rule set correctly classifies all of the eight training instances. However, so

does the following:

Rule Set 1.2

IF (Size = medium) THEN lion
ELSE IF (Furry = yes) AND (Size = large) THEN lion
ELSE not lion

Rule Sets 1.1 and 1.2 behave identically with respect to the training set, but
they differ in the predictions they make concerning unseen recall instances. For
example, consider an animal which is old, not furry, and of medium size: according
to Rule Set 1.1, this animal would not be considered a lion; according to Rule Set 1.2,
it would be a lion. Of course, there is no guarantee that such an animal really is a
lion; thus, until one is encountered, and its classification established by other means,
it is not possible to determine even in principle which of these two rule sets is the
more accurate representation of the concept LION.

It is particularly important to note that a rule set may fail to classify recall
instances correctly even when it correctly classifies all of the training instances. Intu-
itively, this is likely to occur if the training set is insufficiently representative (whether
by virtue of being too small, or because the instances it contains are fundamentally
different from those observed in the real world), although the quality of the rule set
which was induced is also a factor. As an example of the latter, consider the following

rule set:



Rule Set 1.3

IF (Furry = yes) AND (Age = old)

ELSE IF (Furry = yes) AND (Age = young)
ELSE IF (Furry = yes) AND (Age = young)
ELSE IF (Furry = no) AND (Age = young)
ELSE IF (Furry = yes) AND (Age = old)

ELSE IF (Furry = yes) AND (Age = young)
ELSE IF (Furry = no) AND (Age = young) (Size = small) THEN not lion
ELSE IF (Furry = no) AND (Age = old) (Size = large) THEN not lion
ELSE not lion

(Size = large) THEN lion
(Size = medium) THEN lion
(Size = large) THEN lion
(Size = large) THEN not lion
(Size = small) THEN not lion
(Size = small) THEN not lion

EEEEEEEE

Although this rule set does indeed classify all of the training instances correctly,
it is unlikely to be useful for classifying recall instances. This particular behaviour is
an example of overfitting, i.e. relying on details which are specific to the training
set and unlikely to be useful in general.

The lion example also illustrates that not all attributes present in the training
set are necessarily useful. In this particular case, Rule Sets 1.1 and 1.2 make no use
of the Age attribute. This example is small enough to make it intuitively clear that
this is a reasonable omission, since no mammal yet discovered changes its species as
it grows older. However, in learning domains with many attributes, it is often quite
difficult to determine which attributes are relevant.

Furthermore, it may happen that some attributes or pairs of attributes are not
independent of each other. Consider Age and Size in the lion example; granted that
age is not a characteristic which is likely be helpful in determining an animal’s species,
but even if it were, age and size are generally positively correlated in most mammals.

As a result, attribute selection is an important facet of concept learning, both
in designing the data collection in the first place, and in filtering out irrelevant or
unhelpful attributes during the actual learning process. While progress has been
reported in this area (e.g. [Vafaie92, Vafaie94, Holmes95]), as yet there is no known
method which guarantees that only the optimal set of attributes will be selected.

1.1.3.2 Rule Set Structure

The language in which potential concept representations are expressed has a signifi-
cant effect on the manner in which a given concept learning program will function. In

particular, this will determine the set of concept representations which the program

5



is capable of forming (and, by extension, those of which it is incapable) [Mitcheli80].
In fact, this is one form of bias, which in general is the term used to denote the
tendency of a learning program to prefer certain hypotheses over others [Shavlik90,
pp- 45-56].

One commonly used representation language is that of rules in disjunctive nor-
mal form, or DNF [Shavlik90, pp. 48-49]. In this form, the left-hand side (an-
tecedent) of a single rule consists of a number of conjuncts, each of the form
(attribute = value), all joined by the logical AND (A) operator; a rule set consists
of some number of these rules, which themselves are all implicitly joined by the logical

OR (V) operator. For example:

Rule Set 1.4
IF (Size = medium) THEN lion
IF (Furry = yes) AND (Size = large) THEN lion

Rule Set 1.4 is equivalent to Rule Set 1.2, under the closed world assumption
[Giarratano94, p. 168] which excludes anything not explicitly included. Specifically,
any animal which satisfies either of the two rules is considered to be classified as a
lion by the rule set as a whole (since the two rules are implicitly ORed together),
while any animal which satisfies neither rule is implicitly classified as not a lion.

Henceforth, rules of this type will be displayed in logic form, as in the following
example, which is equivalent to Rule Set 1.4:

Rule Set 1.5

(Size = medium) — lion
(Furry = yes) A (Size = large) — lion

When the number of conjuncts in each rule is limited, as is often the case in concept
representation (i.e. at most one conjunct per attribute), the resulting variation is
termed k-DNF, where ‘k’ denotes that the number of conjuncts may not exceed a
particular constant value [Shavlik90, pp. 48—49]. When the k-DNF format is used for
concept learning, typically the value of k will be the number of attributes.

1.1.3.3 Concept Learning Evaluation

A commonly used measure of the quality of a rule set obtained via concept learning

is its error rate with respect to recall instances [Thornton92, p. 10]. Typically

6



the total set of classified instances available to the experimenter will be partitioned
into a training set used for learning, and a recall set used for evaluation. A rule
set’s error rate is then the percentage of recall instances which it classifies incorrectly.
The complement of a rule set’s error rate is its classification accuracy, i.e. the

percentage of recall instances which it classifies correctly.

1.2 Specific Approaches to Concept Learning

Broadly speaking, concept learning can be attempted by empirical or analytical
means. The following examples represent some of the more widely studied tech-
niques. This section will present only a brief overview; details of selected algorithms

will be provided in Chapter 3.

1.2.1 Empirical Methods
1.2.1.1 Decision Trees

According to [Shavlik90, p. 46],

A decision tree is a tree in which the nodes contain tests (e.g. of patient
attributes) and the leaves indicate to which class to assign (e.g. healthy*

or diseased).

Decision trees are used for classification, by following a path from the root to a
terminal node. Each complete path to a terminal node behaves like a single classifi-
cation rule, allowing a correspondence to be drawn between decision trees and rule

sets. For example, a decision tree corresponding to Rule Set 1.2 is shown in Figure 1.

1.2.1.1.1 C4

C4 [Quinlan86, Quinlan87, Quinlan90, Quinlan93, Quinlan96] is a system based in
part upon ID3 [Quinlan79], which generates decision trees from a set of training

instances.
Like the decision tree data structure itself, C4’s algorithm for building trees is
recursive. At any given node, C4 will first determine whether all training instances

“Throughout this thesis, attribute value names are printed in typewriter-style type.
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Size?
small 4 large
not lion lion Furry?
yes no
lion not lion

Figure 1: Decision tree corresponding to Rule Set 1.2

which the node describes share the same classification; if they do, that node will be
a terminal node for that classification. Otherwise, an information theoretic measure
which [Quinlan90] terms the gain ratio criterion will be used to determine which
attribute to evaluate next. A more detailed description of this algorithm will be
presented in Section 3.1. C4 generally performs very well, and in fact is widely

regarded as a benchmark for concept learning systems.

1.2.1.1.2 IDA

Like C4, IDA [Tu92] is a decision tree generator based upon ID3 [Quinlan79]. IDA
differs from ID3 and C4 in the criteria it uses to select the order in which attributes
will be evaluated.

Attribute evaluation ordering is one of the principal problems in decision tree gen-
eration, since the same data set may lead to very different trees simply by examining
the same attributes in a different order. For example, consider Figure 1, which eval-
uates the Size attribute first, followed, where necessary, by the Furry? attribute; had
this tree evaluated Furry? first, the result would have corresponded to Rule Set 1.1
rather than Rule Set 1.2.

IDA’s attribute ordering is based upon the divergence measure, for which Tu and
Chung [Tu92] cite [Kullback59] and [Marill63], rather than C4’s gain ratio.

Tu and Chung [Tu92] compare IDA to ID3 rather than to C4, and report that

IDA is generally superior to ID3 for problems with small or medium sample sizes, and

8



for problems with dependent attributes (e.g. attributes such as Age and Size in the
lion example, which may be correlated to some degree). When “data can be easily
partitioned into more subgroups earlier” [Tu92], typically in large data sets, IDA
tends to lose the advantage inherent in its use of the divergence measure, resulting in

performance inferior to that of ID3.

1.2.1.2 Rule Induction

Rule induction systems are not characterized by a particular data structure as are de-
cision tree generators; rather they tend to produce symbolic rules directly. Michalski’s
AQ family of algorithms are a typical example of this type of learner.

1.2.1.2.1 AQ15-TT

A distinguishing characteristic of AQL5-TT [Michalski90] is that it divides a concept
description into two components: a base concept representation, or BCR, and an
inferential concept interpretation, or ICI. Intuitively, the BCR is intended to capture
the general case of the given concept, while the ICI describes exceptions or special
cases. For this reason, the “‘T'T’ portion of the algorithm’s name is an acronym for
‘two-tiered’, while the ‘AQ’ portion derives from the fact that the BCR is built using
AQ15, a recent member of a family of similar algorithms by Michalski [Michalski83].

The basic AQ algorithm attempts to learn a concept by explicitly creating rules
that cover as many positive instances (:.e. instances which do belong to the given
concept) as possible, without covering negative ones (i.e. those which do not belong
to the concept), where an instance is said to be covered by a rule if it satisfies the
conditions in the rule’s antecedent. For each positive instance not already covered
(which initially will be all positive instances available), the algorithm will select a
single positive instance to start with (termed the seed by Michalski).

For each seed instance, rules are generated by starting with the most general rule
set possible, namely ‘TRUE — C’, where C is the concept to be learned. This rule set
is then specialized so as not to cover any negative instances.

The specialization process operates on each existing rule in turn. For each at-
tribute in an existing rule, a new rule is generated with a set of values for the given
attribute that deliberately excludes each negative instance as it is encountered. The

original rule is then replaced by the subset of newly generated rules which continues

9



to cover the seed instance. Specialization continues until as few negative instances as
possible remain covered.

This straightforward approach works well in some domains, but in others it may
happen that the specialization process is unable to progress far enough to produce a
sufficiently accurate concept description; it is for this reason that Michalski developed
the idea of the two-tiered representation, allowing AQ to describe the general case

without needing to capture all possible exceptions.

1.2.1.3 Nearest Neighbour

The idea behind the nearest neighbour technique is that ob jects with similar classifi-
cation will tend to be ‘close’ to each other in instance space. The precise definition of
‘distance’ in non-numerical domains is one of the key research questions in this area.

Given a method for measuring distance, a previously unseen instance can be clas-

sified by assuming the classification of whichever known instance is closest to it.

1.2.1.3.1 PEBLS

The PEBLS algorithm [Cost93] uses a distance measure based upon the Value Dif-
ference Metric, which Cost and Salzberg [Cost93] attribute to Stanfill and Waltz
[Stanfill86]. However, their Modified Value Difference Metric or MVDM differs from
the Stanfill-Waltz VDM in several minor ways, the most important of which being
that it is symmetric. The MVDM distance between a pair of instances X and Y is
defined as follows:

m
A(X,Y) =wxwy Z 8(zj,y;)"
Jj=1
The terms wx and wy are weights assigned to the two instances, m is the number
of attributes recorded in each instance, and z; and y; are the values for attribute
J in X and Y respectively; r is an arbitrary exponent, usually set to 2 [Cost93, p.
63]. Finally, §(z;,y;) is the distance between the two specific values for attribute 7,

computed according to the formula:

n

(Vi,Va) =)

=1

Cu _Cu
C1 Cz
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Here, n is the number of classes (typically n = 2 for concept learning problems,
where the two classes are positive and negative, i.e. the members and the non-
members of the concept being learned). Cj; is the number of instances classified as
class ¢ which contain value V] for the given attribute, and C; is the total number of
instances in all classes which contain V;; V2, C;, and C; are analogous.

In other words, the distance between two instances is a weighted sum of the
distance between their values for every attribute. The distance between two values for
a given attribute is based upon the absolute difference between the relative frequencies
of occurrence of the two values; this difference is computed for every possible class,
and the results are added together to constitute the total distance.

Weights for stored instances (i.e. those already known to the system) are taken
to be the ratio of the number of all uses of the given instance to the number of
correct uses of that instance, where a stored instance is said to be used when it is
found to be the closest possible match to the recall instance being evaluated. Stored
instances which give rise to correct recall classifications will therefore have a weight
approximating one, while those which do not will have weights with greater positive
values. When a new training instance is stored, it is given the same weight as the
neighbour (stored) instance which it matched.

In [Cost93], PEBLS is reported to be approximately as accurate as ID3 and neural
networks (see Section 1.2.1.5) in most domains, and superior in some. It appears to
be particularly robust when training set sizes are small, and has a tendency to handle

exceptions well.

1.2.1.4 The Genetic Algorithm

The genetic algorithm [Goldberg89] was originally designed as a method for solv-
ing search and optimization problems, particularly those for which a mathematical
model is unavailable or too difficult to solve. The approach was inspired by biological
genetics, although it is not claimed to be an accurate model of any biological process.

In general terms, the algorithm begins with a set of guesses at the eventual so-
lution. This set is typically referred to as the population, and may be initialized
randomly if no better information is initially available.

The members of the population are evaluated according to some problem-specific

criterion. The ‘best’ members are combined in some way to yield new members, which
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then replace the original ones. The cycle of evaluation, combination and replacement
continues until some arbitrary termination criterion is reached, at which time it will
usually be the case that the final set of members is substantially ‘better’ than the
original ones.

The genetic algorithm and its application to concept learning will be presented in

greater detail in Chapter 4.

1.2.1.4.1 GABIL

Concept learning may be viewed as an optimization problem, namely that of finding
the best possible concept description from among all those which can be expressed in
a particular representation language.

GABIL [De Jong93] is a concept learning program based upon this idea, using a
modified version of the genetic algorithm, which generally achieves results comparable
to those of C4. Details of this algorithm will be presented in Section 4.4.2.

1.2.1.5 Neural Networks

According to [Caudill92, p. 3], a neural network

consists of a number of very simple and highly interconnected processors
called neurodes, which are the analogs of the biological neural cells, or
neurons, in the brain. The neurodes are connected by a large number
of weighted links, over which signals can pass. Each neurode typically
receives many signals over its incoming connections; some of these incom-
ing signals may arise from other neurodes, and others may come from
the outside world — a photon striking a photoreceptor, for example, or
an input signal pattern presented to the network by the designer. The
neurode usually has many of these incoming signal connections; however,
1t never produces more than a single outgoing signal. That output signal
transmits over the neurode’s outgoing connection (corresponding to the
biological axon of a neuron), which usually splits into a very large number
of smaller connections, each of which terminates at a different destina-
tion. Each of these branches of the single outgoing connection transmits

the same signal; the signal is not split or divided among them in any way.
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Most of these outgoing branches terminate at the incoming connection
of some other neurode in the network; others may terminate outside the

network and generate control or response patterns.

Essentially a neural network is a kind of classifier system, which maps an arbitrary
pattern to a specific classification. If such a network is suitably organized, it can
function in much the same way as a rule set or decision tree. In this case, one can
think of the network as representing a learned concept, where the learning is expressed

as the set of weights on the various connections between neurodes.

Neural networks are easy to use once designed; the training process can be very
computationally expensive, and designing the correct network topology for a specific

learning task is not by any means a solved problem. [Caudill92]

1.2.1.5.1 KBANN

One criticism often applied to neural networks is that, while they are capable of mod-
elling concepts, the representation they use does not lend itself to easy interpretation;
in particular, the network might pronounce that a given instance does or does not
belong to a particular concept, but it would not be able to explain why or why not.

Towell and Shavlik [Towell90] have addressed this criticism by defining a class of
neural networks which they refer to as knowledge-based. A knowledge-based neural
network is one in which the network topology is based upon an existing set of rules;
in particular, KBANN [Towell90] provides a method which allows any arbitrary rule
set to be translated deterministically into an equivalent neural network [Towell90].

Once such a network has been created, it can be trained in the usual way. The
resulting network, which in general will be a more successful classifier than it was
before it was trained, may then be translated back into symbolic rules [Towell93].
This three-step process (translate, train, and translate back) allows existing rules to
be improved by means of the network, without requiring the experimenter to define

the network manually.
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1.2.2 Analytical Methods
1.2.2.1 Explanation-Based Learning

In explanation-based learning, a single instance is presented in detail to the learning
algorithm. This instance is then used by the system in order to generalize an existing
domain theory, and the generalized version is abstracted in such a way as to allow it

to be applied to new, i.e. recall, problems.

1.2.2.1.1 Physics 101

Physics 101 [Shavlik86] is a typical example of an explanation-based learner. In
this particular case, the problem domain is Newtonian mechanics, and the system is
provided with background knowledge, including a representation of Newton’s laws,
and the ability to perform “many of the mathematical manipulations expected of a
college freshman” [Shavlik86, p. 307].

In operation, Physics 101 is presented with a problem. If it can solve the problem
using its current knowledge base, it does so; otherwise, it asks the user for a solution.
If a solution is given to it, it will verify that solution, requesting additional details
if individual steps in the solution cannot be understood. Next it will explain the

solution, generalize the result, and update its knowledge base accordingly.

1.3 Outline

The remainder of this thesis is organized as follows:

e Chapter 2 lists the data sets used for testing different concept learning systems,

including their origin and a description of the attributes they contain.

e Chapter 3 discusses some existing learning programs, including a detailed de-
scription of their algorithms and their results on the data sets presented in
Chapter 2.

e Chapter 4 describes the genetic algorithm, discusses how it has been applied
to machine learning both in general and in particular, and then presents the
ELGAR genetic learning system, which was developed for this thesis.
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e Chapter 5 describes the extension of ELGAR into a hybrid algorithm that
incorporates the “simplicity first” concept proposed in [Holte93].

e Chapter 6 summarizes the results obtained with the genetic and hybrid versions
of ELGAR, and proposes some potential directions for further research.

o Appendix A is a glossary of terms introduced in this document.

Appendix B is a verbatim transcript of a single multi-pass run of Hybrid EL-
GAR.
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Chapter 2

Data Sets

Of the five data sets used for experimentation, the first four described below come from
the UCI Repository of Machine Learning Databases and Domain Theories [Merz9§],
which is a collection of databases for machine learning maintained by the University
of California at Irvine.

The fifth data set was provided by the Ludwig Breast Cancer Study Group, an
international organization headquartered in Bern, Switzerland [Group89, Cavalli88].
This particular data set contains the results obtained in a clinical trial performed
between November 1981 and December 1985. For reasons of medical confidentiality,
the Ludwig data are available only with the permission of the Ludwig Breast Cancer
Study Group, and must be obtained from them directly.

Two of the five data sets contain artificial data, while the remaining three are all

drawn from real-world medical data dealing with breast cancer.

2.1 Mushroom Data

This data set was donated to the UCI Repository by Jeffrey Schlimmer [Schlimmer87],

and is described as follows in [Merz97]:

This data set includes descriptions of hypothetical samples corresponding
to 23 species of gilled mushrooms in the Agaricus and Lepiota Family
(pp- 500-525). Each species is identified as definitely edible, definitely
poisonous, or of unknown edibility and not recommended. This latter

class was combined with the poisonous one. The Guide clearly states that
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there is no simple rule for determining the edibility of a mushroom; no
rule like “leaflets three, let it be” for Poisonous Oak and Ivy.

For purposes of this work, instances of edible mushrooms were considered positive,
while those of inedible mushrooms were considered to be negative.

The data set contains a total of 8,124 instances, of which every second instance was
used for recall, and the remaining ones used for training. This results in a training set
containing 2,125 positive and 1,937 negative instances; the recall set contains 2,083
positive and 1,979 negative instances.

In addition to its classification, each instance includes the 22 attributes shown in
Table 2, all of which are discrete. A total of 2,480 instances are missing values for
the stalk-root attribute.

The baseline accuracy of a training or recall set is the classification accuracy
which one would expect to obtain just by guessing. In particular, this is the accuracy
achieved by guessing that any arbitrary instance in the set will belong to whichever
class (i.e. positive or negative) is more common in the set, and is computed by dividing
the total number of instances in the set by the number of instances which actually
do belong to the more common class. This figure represents the minimum acceptable
classification accuracy for any learning algorithm.

In the case of the Mushrooms data set, the training and recall sets both contain
a majority of positive instances. The training set contains 4,062 instances, of which
2,125 are positive and 1,937 are negative; since there are more positive instances than

negative ones, the resulting baseline accuracy is
2,125 = 4,062 = 0.523, i.e. 52.3%
Similarly, the baseline accuracy for the recall set is

2,083 = 4,062 = 0.513, i.e. 51.3%

2.2 Data for the MONK’s Problems

The MONK’s Problems are a set of three artificial problem domains, which were cre-
ated specifically for the purpose of comparing a number of different machine learning
algorithms [Thrun91].
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Attribute Possible Values of the Attribute
cap-shape bell, conical, convex, flat, knobbed, sunken
cap-surface fibrous, grooves, scaly, smooth
cap-color brown, buff, cinnamon, gray, green,
pink, purple, red, white, yellow
bruises? bruises, no
odor almond, anise, creosote, fishy, foul,

gill-attachment
gill-spacing
gill-size
gill-color

stalk-shape

stalk-root
stalk-surface-above-ring
stalk-surface-below-ring
stalk-color-above-ring
stalk-color-below-ring
veil-type

veil-color

ring-number

ring-type

spore-print-color

population
habitat

musty, none, pungent, spicy

attached, descending, free, notched

close, crowded, distant

broad, narrow

black, brown, buff, chocolate, gray, green,

orange, pink, purple, red, white, yellow

enlarging, tapering

bulbous, club, cup, equal, rhizomorphs, rooted, missing
fibrous, scaly, silky, smooth

fibrous, scaly, silky, smooth

brown, buff, cinnamon, gray, orange, pink, red, white, yellow
brown, buff, cinnamon, gray, orange, pink, red, white, yellow
partial, universal

brown, orange, white, yellow

none, one, two

cobwebby, evanescent, flaring, large,

none, pendant, sheathing, zone

black, brown, buff, chocolate, green,

orange, purple, white, yellow

abundant, clustered, numerous, scattered, several, solitary
grasses, leaves, meadows, paths, urban, waste, woods

Table 2: Attributes in the Mushrooms data set
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All three problems are defined in terms of the same six discrete attributes, as listed
in Table 3. No values are missing, but in problem M3, described in Section 2.2.3, 5%
of all training instances are deliberately given the wrong classification value, in order
to test how various algorithms perform when confronted with noise in the training
set [Merz93].

Attribute | Possible Values
of the Attribute
al 1,2,3
a2 1,2,3
a3 1,2
ad 1,2, 3
a5 1,2,3,4
ab 1,2

Table 3: Attributes in the MONK’s Problems data set

The attributes used in the MONK’s Problems support a total of 432 instances
(obtained by multiplying together the number of possible values for each attribute,
t.e. 3 x3 x2x3 x4 x2). Each individual problem uses its own set of randomly chosen
instances for training, and uses all 432 instances for recall. These three training sets
are not disjoint; each was created independently by selecting instances at random from
the full collection of 432 possible instances, and thus some elements are common to

all three sets.

2.2.1 Problem M;

The concept to be learned in the first MONK’s Problem [Merz93], expressed by
Rule Set 2.1, is intended to be easily learned by symbolic learning algorithms [Thrun91,

p- 2]

Rule Set 2.1
(a1 = a2) — member
(a5 = 1) — member

Note that this rule set requires a representation language capable of dealing with
comparisons between attribute values. If the language in use is limited to comparisons
of attribute values with literal values, then these rules must be rewritten as shown in
Rule Set 2.2.
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Rule Set 2.2
(a1 = 1) A (a2 = 1) — member

(a1
(a1

(a5 = 1) — member

2) A (a2 = 2) — member
3) A (a2 = 3) - member

The training set for this problem contains 124 instances, chosen at random by
Thrun et al [Thrun9l, p. 2] from the universe of 432 possible instances. All 432

instances are used for recall. The baseline accuracy is exactly 50% for both the

training and recall sets.

2.2.2 Problem M,

The target concept for the second MONK’s Problem can be stated as “exactly two
of the six attributes have their first value” [Thrun91, p. 2].

This concept is deliberately designed to be difficult to learn by algorithms which
use disjunctive normal form as a representation language. That this intention succeeds
is demonstrated by Rule Set 2.3, which in fact expresses this concept in DNF.

Rule Set 2.3

(a1t =1) A@2=1) A (a3 # 1) A (a4 # 1) A (a5 # 1) A (a6 # 1) — member
(a1 =1) A (@2 #1) A(a3=1) A (a4 # 1) A (a6 # 1) A (a6 # 1) — member
(at =1) A (@2 # 1) A (a3 #1) A (a4 =1) A (a5 # 1) A (a6 # 1) — member
(a1 = 1) A (@2 #1) A (a3 # 1) A (a4 # 1) A (a6 = 1) A (a6 # 1) — member
(a1 =1) A (A2 #1) A (a3 # 1) A (a4 # 1) A (a5 # 1) A (a6 = 1) — member
(a1t # 1) A (a2=1) A(a3=1) A (a4 # 1) A (a6 # 1) A (a6 # 1) — member
(a1t #1) A (a2=1) A (a3 # 1) A (a4 =1) A (a5 # 1) A (a8 # 1) — member
(at #F1) A (a2=1) A (a3 #1) A (a4 # 1) A (a6 = 1) A (26 # 1) — member
(@t # 1) A (@=1)A (@3 #1) A(ad #1) A (a6 # 1) A (a6 = 1) — member
(a1 # 1) A (@2 #1) A (a3=1) A (ad=1) A (a5 # 1) A (a6 # 1) — member
(a1 #1) A (@2 #F 1) A(a3=1) A (ad¢ # 1) A (a6 =1) A (a6 # 1) — member
(a1l #F1) A @@ #F1)A(@3=1) A (a4 # 1) A (a5 # 1) A (a6 = 1) — member
(@t #1) A (@2 # 1) A (a3 #1) A (ad=1) A (a6 =1) A (a6 # 1) — member
(a1l #F 1) A @@ F1)A (@B #1)A(ad=1) A (a6 £ 1) A (a6 = 1) — member
(a1 1) A @2 #1)A (@3 #1) A(ad #1) A (a5 =1) A (a8 = 1) — member

The training set for this problem contains 169 instances, chosen at random by
Thrun et al [Thrun9l, p. 2] from the universe of 432 possible instances. All 432
instances are used for recall. The baseline accuracy is 62.1% (105 negative instances)

for the training set, and 67.1% (290 negative instances) for the recall set.
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2.2.3 Problem M;

The target concept for the third MONK’s Problem [Merz93], expressed by Rule Set 2.4,
is not particularly difficult to learn. However, 5% of the instances in the training set
are deliberately misclassified [Thrun91, p. 2].

Rule Set 2.4
(a4 = 1) A (a5 = 3) — member
(a2 # 3) A (a5 # 4) — member

The training set for this problem contains 122 instances, chosen at random by
Thrun et al [Thrun9l, p. 2] from the universe of 432 possible instances. All 432
instances are used for recall. The baseline accuracy is 50.8% (62 negative instances)

for the training set, and 52.8% (228 positive instances) for the recall set.

2.3 Ljubljana Breast Cancer Data

This data set was provided by Dr. Matjaz Zwitter and Dr. Milan Soklic of the Uni-
versity Medical Centre, Institute of Oncology, Ljubljana, Yugoslavia. It was added
to the UCI Repository in 1988 by Ming Tan and Jeffrey Schlimmer [Merz95].

This particular data set has been studied by many researchers, including Michalski
[Michalski86], De Jong et al [De Jong93] and Holte [Holte93], among others.

Apart from the classification attribute, each instance contains the nine attributes
listed in Table 4. Although [Merz95] reports that some attributes are continuous, in
fact the data file available from the UCI Repository contains only discrete attributes.
There are eight instances in which the value for attribute node-caps is missing, and
one instance in which the value for attribute breast-quad is missing.

The data set contains a total of 286 instances, of which 201 are positive (classified
as no-recurrence-events, i.e. that cancer did not recur for this patient), and 85
are negative (classified as recurrence-events).

As distributed, the data set is sorted such that all positive events are listed consec-
utively, followed by all negative events. For testing, instances were sorted randomly,
then split such that every third instance was included in the recall set, with the

remaining instances used for training.
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Attribute Possible Values of the Attribute

age 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80-89, 90-99
menopause | 1t40, ge40, premeno

tumor-size | 0-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34,

35-39, 40-44, 45-49, 50-54, 55-59

inv-nodes 0-2, 3-5, 6-8, 9-11, 12-14, 15-17, 18-20,

21-23, 24-26, 27-29, 30-32, 33-35, 36-39

node-caps yes, no

deg-malig 1,2,3

breast left, right
breast-quad | left-up, left-low, right-up, right-low, central
irradiat yes, no

Table 4: Attributes in the Ljubljana Breast Cancer data set

The resulting training set contains 131 positive and 60 negative instances, for
a baseline accuracy of 68.6%. The recall set contains 70 positive and 25 negative

instances, for a baseline accuracy of 73.7%.

2.4 Wisconsin Breast Cancer Data

This data set was provided by Dr. William H. Wolberg of the University of Wisconsin
Hospitals, Madison [Wolberg90]. It was donated to the UCI Repository in 1992 by
Olvi Mangasarian [Merz92}.

Apart from the classification attribute, and an identification number which is
ignored for learning purposes, each instance contains the nine attributes listed in

Table 5. There are 16 instances in which the value for attribute Bare Nuclei is missing.

Attribute Possible Values of the Attribute
Clump Thickness 1,2,3,4,5,6,7,8,9, 10
Uniformity of Cell Size 1,2,3,4,5,6,7,8,9, 10
Uniformity of Cell Shape | 1,2,3,4,5,6,7,8,9,10
Marginal Adhesion 1,2,3,4,5,6,7,8,9,10
Single Epithelial Cell Size | 1, 2, 3, 4, 5,6, 7,8, 9, 10
Bare Nuclei 1,2,3,4,5,6,7,8,9, 10
Bland Chromatin 1,2,3,4,5,6,7,8,9, 10
Normal Nucleoli 1,2,3,4,5,6,7,8,9, 10
Mitoses 1,2,3,4,5,6,7,8,9, 10

Table 5: Attributes in the Wisconsin Breast Cancer data set
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This data set has grown over time, as new clinical cases have been reported and
added as new instances. The version used for this thesis contains a total of 699
instances, and has not been updated since 1992.

Instances are classified as benign (coded by the value 2, and interpreted as posi-
tive) or malignant (coded by the value 4, and interpreted as negative).

The training set contains 227 positive and 123 negative instances, for a baseline
accuracy of 64.9%. The recall set contains 231 positive and 118 negative instances,

for a baseline accuracy of 66.2%.

2.5 Ludwig Breast Cancer Study, Trial V

Trial V is the fifth in a series of clinical trials performed by the Ludwig Breast Cancer
Study Group, an international organization headquartered in Bern, Switzerland. This
particular trial occurred between November 1981 and December 1985, with a goal
of studying the effect of “perioperative and conventionally timed chemotherapy in
operable breast cancer” [Cavalli88, p. 466]. Specifically, the study’s aim was to
determine whether the time at which chemotherapy is applied is significant in averting
relapses of the cancer.

The version of the data set supplied by the Ludwig group was last updated in
September 1993, and includes followup observations of all patients up to that point.

Four types of attributes are recorded:

1. Administrative attributes are not used in learning; these are items such as the
patient identification number and date of entry into the trial. Quite apart from
the fact that these attributes are easily recognized as being irrelevant, their use

would cause overfitting to occur.

2. Output attributes record the outcome of each case, and as such are useful for
formulating potential concepts to be learned. However, they are not suitable for
use in training, since they include the specific information to be learned (e.g. the
date when the cancer first recurred, which should not be made available to a

program attempting to learn whether the cancer will in fact recur).

3. Derived attributes have values which are computed from the value of one or

more other attributes. Attributes of this kind are often redundant and unlikely
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to be useful for learning (e.g. the original data set includes both the measured
size of the excised tumour, and the physician’s classification of its size; either
would be useful by itself, but having both provides little, if any, additional

information).

4. Input attributes are those which do not fall into any of the above three cate-
gories. In particular, they represent information available to the physician at
the time a patient undergoes treatment (including surgery and other therapy
as deemed necessary). Examples of attributes of this kind include the patient’s
age, tumour size, or the elapsed time between surgery and the first application

of chemotherapy.

The goal in learning from this data set is to be able to predict the outcome of a
previously unseen case, based only upon the input attributes collected for that case,
with respect to one or more output attributes. For the work reported in this thesis,
the particular output attribute which was used is simply whether or not the cancer
recurred during the followup period. Instances in which a relapse occurred were
deemed to be positive, and those in which it did not were deemed to be negative.

The data set contains 2,504 instances, each consisting of the 44 attributes f01 to
f44, as shown in Table 6. In the table, the term continuous is used to denote an
attribute with a numeric value that has no specific bound in at least one direction
(i.e. an attribute with a value that may be unboundedly large or unboundedly small,
or perhaps both). For some learning algorithms, including GABIL (see Section 4.4.2)
and ELGAR (see Section 4.4.3), such attributes must be converted to a set of discrete
values.

The following attributes in Trial V are derived from others [Kamber94|:

e Attribute f15 is derived from f14 according to the rule

f15= 0, if fl4=0
1, if fl14>0

o Attribute f18 is derived from f19 according to the rule

0, if0< f19<9
f18=4 1, if f19>10
2, if f19 = —1
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e Attribute f20 is derived from 21 according to the rule

0, f0<f21<9
f20={1, if f21>10
2, if f21 = —1

e Attribute f23 is derived from f22 according to the rule

g { b if £22 <20
2. if £22 > 20

In order to prepare the data for use in machine learning, two corrections were

applied to the file supplied by the Ludwig group:

¢ In the instance with f01 (case number) equal to 1,090, the value of f07 (overall
survival time, measured in days) was less than the value of f09 (disease-free
survival time, measured in days). Clearly this must have been a recording
error, so the value of f07 was made equal to the value of f09.

e Some instances had negative values for 24 (the number of hours after mastec-
tomy at which perioperative chemotherapy was applied). The specification for
this attribute states that it must be a non-negative integer, with a value of 999
indicating cases in which perioperative chemotherapy was not applied. Thus,

all such negative values were changed to 999.

Attribute f02 (patient group) is interpreted as shown in Table 7, encoding three
different kinds of information simultaneously [Kamber94]: the patient’s nodal status,
menopausal status, and treatment type (where CONCT refers to conventionally timed
chemotherapy, PECT refers to perioperative chemotherapy;, i.e. chemotherapy applied
immediately following surgery, PECT+CONCT refers to both types of chemotherapy,
and NO RX refers to patients who did not receive chemotherapy at all). However,
two of these items are already present in the data set, in other attributes (specifically
nodal status, in f14, and menopausal status, in f16). Thus, repeating this information
in f02 is redundant, which makes the learning task more difficult. As a result, a new
attribute f45 was created to represent the treatment type afforded each patient, as

shown in Table 8.
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Number | Attribute ~ Type | Possible Values of the Attribute
fo1 Case Number admin | continuous
f02 Patient Group input { 1,2,3,4,5,6,7,8,9, 10
f03 Month of Entry Into Study | admin | 1,2,3,4,5,6,7,8,9, 10 11, 12
fo4 Day of Entry Into Study admin | 1 - 31 inclusive
105 Year of Entry Into Study admin | 81, 82, 83, 84, 85
f06 Clinic input | 14, 15, 16, 17, 20, 22, 23, 24, 25, 26,
27, 31, 32, 33, 34, 35, 36, 37, 38
fo7 Overall Survival Time output | continuous
fos Alive or Dead output | 0, 1
f09 Disease-Free Survival Time | output | continuous
f10 Failure output | 0, 1
fil Relapse-Free Survival output | 0, 1
f12 Site of First Failure output | 0,1,2,3,4,5,6,7,8,9
f13 Site of Worst Failure output { 0,1,2,3,4,5,6,7,8,9
f14 Nodes input | continuous
f15 Nodal Status derived | 0, 1
f16 Menopause input | 0, 1,2
f17 Age input | continuous
f18 ER Status derived | 0, 1, 2
f19 ER Value input | continuous
20 PR Status derived { 0, 1, 2
21 PR Value input | continuous
22 Tumour Size input | continuous
f23 Tumour Size Classification | derived | 1, 2
f24 MxPeri input | continuous
25 Days to Systemic Failure output | continuous
26 Systemic Failure output | 0,1
f27 Leucovorin input | 0,1
28 Pathology Tumour Size input { continuous
29 Pathology Evaluated input { 0,1
30 Pathology Grade input 1 0,1,2,3
31 Vessel Invasion input | 0,1,2,3
132 Nodes Sectioned input | continuous
33 Serial Section Done input | 0, 1
34 Change to Node Positive input | 0,1
35 Multicentric input | 0, 1
36 Histology input [ 0,1,2,3,4,5,6,7
37 Invasive Ductal Subgroup input { 0,1,2,3,4,5,6,7,8
£38 Special Features Subgroup input {0,1,2,3,4,5,6,7,8,9
£39 Medullary Tumour input | 0,1
40 CerbB2 Status input { 0, 1,2
f41 H.Pomatia input { 0, 1,2
f42 Amenorrhea Evaluability input {0,1,2,3,4
f43 Amenorrhea cbt input { 0,1,2,3
f44 Amenorrhea rec input { 0,1,2,3,9

Table 6: Attributes in the Ludwig Trial V data set
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f02 Value | Nodes Menopause | Treatment
negative | pre-menopausal | PECT

negative | pre-menopausal | NO RX
negative | post-menopausal | PECT

negative | post-menopausal | NO RX
positive | pre-menopausal | PECT

positive | pre-menopausal | PECT+CONCT
positive | pre-menopausal | CONCT
positive | post-menopausal | PECT

positive | post-menopausal | PECT4+CONCT
positive | post-menopausal | CONCT

S5 ©00 0w~

Table 7: Interpretation of the Ludwig Trial V ‘Patient Group’ attribute, f02

Treatment (Input) | (Output)
Type f02 Values | f45 Value
PECT . 1,3,58 1
NO RX 2,4 2
PECT+CONCT 6,9 3
CONCT 7, 10 4

Table 8: Definition of the Ludwig Trial V ‘Treatment Type’ attribute, f45

Finally, the full data set was divided into two smaller subsets as described in
Sections 2.5.1 and 2.5.2. The first of these is intended to provide a smaller version of
the problem for experimentation, and contains attributes believed to be particularly

relevant; the second subset all but the output and administrative attributes.

2.5.1 The 17-Attribute Subset

This version of Trial V includes 17 attributes, selected by Montreal medical expert
Jennifer Scott, as shown in Table 9.

Instances were deemed positive if fl1=1, and negative if f11=0; thus, the concept
to be learned was that the cancer would eventually recur.

The 2,504 instances were divided such that every second instance was used for
recall, with the remaining ones included in the training set.

The training set thus obtained contains 661 negative and 591 positive instances,
for a baseline accuracy of 52.8%. The recall set contains 671 negative and 581 positive

instances, for a baseline accuracy of 53.6%.
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Number | Attribute Type | Possible Values of the Attribute
f45 Treatment derived | 1, 2,3, 4
f14 Nodes input | 0, 1-2, 3-4, >4
f16 Menopause input | 0, 1,2
f17 Age input | <31, 31-40, 4145, 46-50, 51-55, 56-60, >60
f19 ER Value input | -1, 0-9, >9
f21 PR Value input | -1, 0-9, >9
22 Tumour Size input | <21, >20
24 MxPeri input | <13, 13-24, 25-36, 37-48, >48
f27 Leucovorin input 1 0,1
30 Pathology Grade input | 0,1,2,3
f31 Vessel Invasion input | 0,1,2,3
£35 Multicentric input | 0, 1
£36 Histology input | 0,1,2,3,4,5,6,7
£39 Medullary Tumour input | 0, 1
f40 CerbB2 Status input | 0, 1, 2
f43 Amenorrhea cbt input | 0,1,2,3
f44 Amenorrhea rec input {0,1,2,3,9

o

Table 9: Attributes in the Ludwig Trial V 17-attribute subset

2.5.2 The 31-Attribute Subset

This version includes all input and derived attributes except f23 (tumour size classifi-
cation), and is intended to test the capacity of a learning algorithm to determine and
use the most relevant attributes available, in the presence of a large pool of potentially
irrelevant attributes. The specific set of attributes included is shown in Table 10.

The reason why f23 was excluded from this subset is that, after f22 (tumour
size) is converted from continuous to discrete form, f22 and 23 are identical, at least
theoretically. In practice, however, 22 is guaranteed to be converted correctly, since
the conversion is done electronically, while f23 was created manually and therefore
may contain transcription errors. In contrast, each of the other derived attributes
is encoded in a manner which is different from the attribute upon which it is based,
thereby retaining the potential to provide different information.

This data set includes the same set of instances in the training and recall sets as
those used in the 17-attribute version (see Section 2.5.1), and therefore has the same

baseline accuracy for each set.
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Number | Attribute Type | Possible Values of the Attribute

f02 Patient Group input | 1,2,3,4,5,6,7,8,9,10

fo6 Clinic input | 14, 15, 16, 17, 20, 22, 23, 24, 25, 26,
27, 31, 32, 33, 34, 35, 36, 37, 38

f14 Nodes input | 0, 1-2, 3-4, >4

f15 Nodal Status derived | 0, 1

f16 Menopause input [ 0, 1,2

fi7 Age input | <31, 31-40, 41-45, 46-50,
51-55, 56-60, >60

f18 ER Status derived | 0, 1, 2

f19 ER Value input | -1, 0-9, >9

20 PR Status derived | 0, 1, 2

f21 PR Value input | -1, 0-9, >9

f22 Tumour Size input | <21, >20

f24 MxPeri input | <13, 13-24, 25-36, 37-48, >48

f27 Leucovorin input { 0, 1

f28 Pathology Tumour Size input | <21, >20

f29 Pathology Evaluated input | 0, 1

30 Pathology Grade input { 0,1,2,3

31 Vessel Invasion input { 0,1,2,3

32 Nodes Sectioned input | 0, 1-5, 6-10, 11-15, 16-20, 21-25,
26-30, 31-35, 36-40, 41-45, >45

£33 Serial Section Done input { 0, 1

£34 Change to Node Positive input | 0, 1

35 Multicentric input | 0, 1

£36 Histology input | 0,1,2,3,4,5,6, 7

37 Invasive Ductal Subgroup input | 0,1,2,3,4,5,6,7,8

£38 Special Features Subgroup input [ 0,1,2,3,4,5,6,7,8,9

£39 Medullary Tumour input (0, 1

f40 CerbB2 Status input | 0, 1, 2

f41 H.Pomatia input | 0,1, 2

f42 Amenorrhea Evaluability input {1 0,1, 2, 3,4

f43 Amenorrhea cbt input | 0,1,2,3

f44 Amenorrhea rec input | 0,1, 2,3,9

f45 Treatment derived { 1, 2, 3, 4

Table 10: Attributes in the Ludwig Trial V 31-attribute subset
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2.6 Side-by-Side Comparison

Table 11 compares the characteristics of all the data sets used, in their final form

(in particular, after all continuous attributes have been converted to discrete values,

where appropriate).

Data Set Train | Recall Train Recall # Attr.

Name Size Size | Baseline | Baseline | # Attr. | Values | # Missing
Mushrooms | 4,062 | 4,062 52.3% 51.3% 22 125 2,480
MONK’s 1 124 432 50.0% 50.0% 6 17 0
MONK’s2 | 169 | 432[ () 62.1% | (-) 67.1% 6 17 0
MONK’s 3 122 432 | (-) 58.8% 52.8% 6 17 0
Ljubljana 191 95 68.6% 73.7% 9 51 9
Wisconsin 350 349 64.9% 66.2% 9 90 16
Trial V/17 | 1,251 | 1,251 | (-) 52.8% | (-) 53.6% 17 63 880
Trial V/31 | 1,251 | 1,251 | (-) 52.8% | (-) 53.6% 31 146 880

Table 11: Comparative overview of all data sets
The columns in Table 11 are interpreted as follows:

e The ‘Train Size’ and ‘Recall Size’ columns list the number of instances in the

training and recall sets, respectively.

e The ‘Train Baseline’ and ‘Recall Baseline’ columns show the baseline accuracy
of the training and recall sets, respectively. In all cases, the baseline outcome is
positive unless indicated otherwise by the symbol ‘(-)’ preceding the accuracy
figure.

e The ‘# Attr.” column contains the number of attributes in this data set, as
used for learning. Output and administrative attributes are not included in
this value.

o The ‘# Attr. Values’ column lists the total number of possible values for all
attributes for the given data set, which is a finite number since all attributes
are discrete. This value affects the run time of algorithms such as GABIL
(Section 4.4.2) and ELGAR (Section 4.4.3), since it determines the number of
bits needed to represent a single rule, and by extension the number of bits

needed to encode a rule set.
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e The ‘# Missing’ column displays the total number of attribute values in the
given data set which are missing or otherwise unknown. Different learning
algorithms compensate for missing values in different ways; in general, however,

the greater the number of missing values, the more difficult learning will be.
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Chapter 3

Selected Symbolic Algorithms

3.1 C4

3.1.1 Background

C4 [Quinlan86, Quinlan87, Quinlan90, Quinlan93, Quinlan96] is a decision tree gener-
ator based in part upon ID3 [Quinlan79]. This particular program is one of the most
widely respected and cited concept learning programs available, and is commonly

used as a benchmark for new concept learning systems.

3.1.2 The C4 Algorithm
3.1.2.1 Outline

The main algorithm for C4, is shown in Figure 2. This material is drawn from
[Quinlan90, p. 144] and [Quinlan93, pp. 17-18]. Quoted text in this figure is taken
from [Quinlan90].
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1. Build a decision tree:

(a) Initialize the working set, which is a subset containing approximately 10% of all
instances from the training set.

(b) Create a tree based on the instances in the working set:

i. Let k be the number of classes to be learned, denoted C;,C, ...,Ck; let T
be a set of training instances.

ii. If T contains one or more instances which all belong to a single class Cj,
then the decision tree is a leaf identifying class C;.
Else if T is an empty set, the decision tree is a leaf determined from infor-
mation other than T (e.g. the class identified by the baseline rule for the
data set, or the most frequent class at the parent of the current node).
Else (T contains members of at least two different classes):

A. Choose a test, based on a single attribute, that has one or more mu-
tually exclusive outcomes O,, O3, ..., Oy; the attribute to use is the one
with the maximum value for the gain ratio criterion.

B. Partition T into subsets T},7T3, ..., T, where T; contains all the in-
stances in T that have outcome O; of the chosen test. The decision
tree for T consists of a decision node identifying the test, and a single
branch for each outcome O;.

C. Apply step (ii) recursively to each subset T}, such that the i** branch
from T leads to the subtree constructed from T;.

(c) Test the tree using all training instances which are not members of the working
set.

(d) I any instances are misclassified, add at least half of the misclassified instances
to the working set.

(e) Repeat steps (a) - (d) until no improvement is possible.
2. Prune (i.e. simplify) the tree:

(a) For each subtree:
i. Form a pessimistic estimate of the subtree’s error rate on recall (i.e. previ-
ously unseen) instances.
ii. Estimate the error rate which would occur if this subtree were replaced by
a leaf node.

iii. If the difference between the two estimates is sufficiently small, replace the
subtree by a leaf node.

3. Repeat steps 1 - 2 “several times”, and select the “most promising” pruned tree.

Figure 2: Top-level pseudocode for C4

34



3.1.2.2 The Gain Ratio Criterion

At any non-leaf node in a decision tree, C4 must select an attribute on which to base
a test for that node (see step (1)(a)(ii)(A) in Figure 2). Unless otherwise specified
by the user, C4 will make this choice by maximizing a statistic called the gain ratio
criterion, which is defined as follows [Quinlan93, pp. 20-24], [Quinlan96, pp. 78-79]:

Let T be a set of training instances.

Let k be the number of distinct classes of which the elements in T are members,

and let these classes be denoted C;,C,,...,Ck.
Let T; be the subset of instances in T which are members of class j.
For any arbitrary set S, let |S| denote the cardinality of S.

Let p(T, j) be the proportion of instances in T which belong to class C;, which
expresses the probability that a randomly selected instance in T belongs to Cj.
By definition,

) T;
p(T,j) = %

The entropy of a set S, denoted Info(S), is defined as
k
Info(S)=—3_ f(S,5)
Jj=1

where
p(S,7) x logy(p(S, 7)), ifp(S,7) >0
0, if p(S,7) =0

[Quinlan96] refers to this quantity as “the residual uncertainty about the class

f(8.5) = {

to which a case in S belongs” (note that Quinlan uses the term ‘case’ to denote

an instance).

The information gain due to a test involving an attribute A with n unique
values is defined as

ITA.'I

ITI x Info(TAi)

Gain(T, A) = Info(T) — Zn:

=1

where Ty, is the subset of instances in T which have value i for attribute A.
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e The “potential information obtained by partitioning a set of cases” [Quinlan96]
with respect to attribute A is denoted Split(T, A) and defined as

Split(T, 4) = — 3 '[T;i' « log (l%l[)

=1

e The gain ratio criterion for attribute A is then defined as

Gain(T, A)

Gain_Ratio(T, A) = Split(T, A)

3.1.3 C4 and the Lion Example

The following is intended to illustrate how C4 constructs a decision tree, using the
‘lion example’ from Section 1.1.3.1. The training instances for this data set are shown

in Table 1.

3.1.3.1 Cardinality and Proportions of the Training Set

The first step is to compute the cardinality and proportions for the training set as a
whole:

T = 8

p(T,lion) 3/8

p(T,not lion) = 5/8

3.1.3.2 Cardinality and Proportions per Attribute

Next, similar computations are done for the portions of the training set corresponding

to every possible value of every attribute.
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Furry?:

|[Tyesl

[T

P(Tyes, lion)

P(Tho, lion)
Age:

[ Total

lTyouu!I [

?(T 514, lion)

P(Tyoung, lion)
Size:

[Temaul

| Tmedium|

| Ttargel

?(Tsmaut, lion)

P(Trmedium , Lion)

P(Ttarge, lion)

3/5,
0/3,

1/3,
2/5,

0/3,
1/1,
2/4,

P(Tyes, not lion)
P(Tno, not lion)

P(To14, 0ot lion)
P(Tyoung, not lion)

P(Tsmaut, not lion)
P(Tmedium , not lion)
P(Tlarge, DOt lion)

3.1.3.3 Entropy for the Entire Training Set

The entropy for the training set as a whole is

Info(T)

f(T,lion) + f(T,not lion)

—(p(T, lion) - log, p(T, lion) +
p(T, not lion) - log, p(T', not lion))
—(3/8 - log2(3/8) +5/8 - log2(5/8)

0.95443
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3.1.3.4 Entropy per Attribute Value

The entropy for each attribute value is

Info(Tyes) = f(Tyes,lion) + f(Tyes,not lion)
= —(3/5-1logx(3/5) +2/5 - log2(2/5))
= 0.97095

Info(Tn,) = f(Tro,lion) + f(Tno,not lion)
= —(043/3-log2(3/3))
= 0

Info(Tyd) = f(Tota,lion) + f(T,14, not lion)
= —(1/3-log,(1/3) +2/3 - log2(2/3))
= 0.91830

Info(Tyoung) = f(Tyoung;lion) + f(Tyoung,not lion)
—(2/5 - log2(2/5) +3/5 - logz(3/5))
= 0.97095

Info(TsmaII) = f(T:malla HOD) + f(Tsmalh not Iion)
= —(0+3/3-log:(3/3))
=0

I nf O(Tmedium) = f (Tmedium7 lion) + f (Tmcdiums not lion)

= —(1/1-log(1/1) +0)
= 0
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Info(Tiarge) = Jf(Tiarge,lion) + f(Tiarge, not lion)

= —(2/4-log2(2/4) + 2/4 - log2(2/4))
=1

3.1.3.5 Information Gain per Attribute

The information gain for each attribute is

Gain(T, Furry?)

Gain(T, Age)

Gain(T, Size)

tnfo(?) ~ (2l - 1 o) + Ll - pmpotac)
= 0.95443 — (5/8 - 0.97095 + 3/8 - 0)
= 0.34759
tnso(?) - (22 fo(Ta) + Dol - InfolTns)

= 0.95443 — (3/8 - 0.91830 + 5/8 - 0.97095)

= 0.00322
Tsma
Info(T) — ( | l Tlul - Info(Tumant) +
[Tmedium‘ A
[Tl Info(Tmedtum) +
lnargel i
T Info(Tiarge))

= 0.95443 — (3/8-0+1/8-0+4/8-1)
= 0.45443
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3.1.3.6 Split Information per Attribute

The split information for each attribute is

- — ITyes l IT!ICS l [Tﬂol ITnol
Split(T, Furry?) = —(= 7] 2( T )+ T -lo 2( T ))
= —(5/8 -log,(5/8) +3/8 - log,(3/8))
= 0.95443
. _ ITold I ITold [ [T;oungl . ITyoung[
Split(T, Age) = (ITI (ITI )+ 7] log, (_ITI ))
= —(3/8 -log,(3/8) + 5/8 - log,(5/8))
= 0.95443
. - _ lTsmalll [Tsmalll ITmediumI . ITmediuml
Split(T, Stze) = (T gZ( 7] )* T ‘°g‘~’( 7] )
[T‘largel IT'ICH’QC I
AT "%( | )’
= —(3/8-log,(3/8) +1/8- log,(1/8) + 4/8 - log,(4/8))
= 1.40564

3.1.3.7 Gain Ratio per Attribute

Finally, the gain ratio for each attribute is

. . Gain(T, Furry?)

) =

Gain_Ratio(T, Furry?) Split(T, Furry?)
= 0.34759/0.95443
= 0.36419

(T,
Gain_Ratio(T, Age) = CS;:;::ET ::Eglz;

= 0.00322/0.95443
= 0.00337
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Gain(T, Size)
Split(T, Size)
= 0.45443/1.40564

= 0.32329

Gain_Ratio(T, Size)

The attribute with the largest gain ratio is Furry?, which means that Furry? would
be selected for the root node in the tree. Once this is done, there are now two subtrees
to construct: one for the case where Furry? has the value no, and one where it has
the value yes. The former case involves training instances 4, 7 and 8, all of which
are not lions; this causes that branch of the tree to contain a terminal node with the
label not lion. The latter case involves training instances 1, 2, 3, 5 and 6, some of
which are lions (1, 2 and 3) and some of which are not (5 and 6). The partial tree at
this point is as shown in Figure 3. The tree building procedure would then be invoked
recursively with training instances 1, 2, 3, 5 and 6, considering only the remaining

attributes Age and Size.

Furry?
no yes
not lion lion not lion
4, 7,8 1,2,3 5,6

Figure 3: Partial decision tree produced by C4 for the lion example

Let T’ denote the reduced training set containing instances 1, 2, 3, 5 and 6. Then

the gain ratio computations in this phase are as follows:
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v

|
ot

(T, lion) = 3/5
p(T,)/not lion) = 2/5
| 7ol = 2
T gun| = 3
p(T4,lion) = 1/2,
P(Tyoung-lion) = 2/3,
ITs,malI I = 2
lTrzzedium I = 1
Thrge = 2
P(Tsmeuslion) = 0/2,
p(Thcdium- lion) = 1/1,
P(T,rge; lion) = 2/2,
Info(T')
Info(T,,)
Info(T,,ung)

(T4, not lion) = 1/2
P(Typung-mot lion) = 1/3
p(Ts,mall’ not liOIl) = 2/2
p(T:nedium , ot HOD) = 0/1
P(Tl,pmot lion) = 0/2

f(T',lion) + f(T’,not lion)
—(3/5 - log2(3/5) + 2/5 - log2(2/5)
0.97095

f( o,lda HOD) + f( ;ldv not lion)
—(1/2 - log2(1/2) +1/2 - logz(1/2))
1

J (T pung-lion) + f(T,,,,, DOt lion)

—(2/3 - log2(2/3) +1/3 - log2(1/3))
0.91830
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Info(Tonan) = f(Tymauslion) + f(Typau,not lion)
= —(0+2/2-log2(2/2))

= 0
I nf O(Tr:tedfum) = f ( medium ? hon) + f ( medium? not lion)
= —(1/1-logz(1/1) +0)
= 0
Info(Tl’argc) = f( l,argea liOIl) + f(I’l'arge7 not lion)

= —(2/2-log2(2/2) +0)
= 0

14
o A fo(Typung))

Gain(T", Age) = Info(T") ~ (L2l Info(Te) + 2

17|
= 0.97095 — (2/5 - 1 + 3/5 - 0.91830)

= 0.01997

Gain(T',Size) = Info(T') — ([ emaul ~Info(Teman) +

7|
I edlxuml Info(Tr'nedium) +
IT"|
| Tharge] Info(Th))
|T,| large
= 0.97095 — (2/5-0+1/5-0+2/5-0)
= 0.97095
. ’ T o oun oun,
spiT ge) =~ g, () 1 Eiml s, ([l
= —(2/5 -log,(2/5) + 3/5 - logy(3/5))
= 0.97095
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Split(T’, Size) = ([Tmalll log, (l a[l[)+

(7| 7|
[T ediuml (T' di l)
me tum lo edium +
T R
l (4 Tl
Ia.ryel large
-lo
T % ( [T’ ))
= —(2/5-logy(2/5) +1/5 - log,(1/5) + 2/5 - log,(2/5))
= 1.52193
. . _ Gamn(T, Age)
Gain_Ratio(T, Age) = Split(T, Age)
= 0.01997/0.97095
= 0.02057

Goin_Ratio(T, 5ie) = SomL:Siz)

= 0.97095/1.52193
= 0.63797

Thus, the next attribute to be selected would be Size. The branch for large leads
to a leaf node labelled lion (based on training instances 1 and 3), the branch for
medium leads to a node labelled lion (based on training instance 2), and the branch
for small leads to a node labelled not lion (based on training instances 5 and 6).

The resulting tree is as shown in Figure 4, and corresponds to Rule Set 1.1; it
differs from the tree shown in Figure 1 in that the order of evaluation of attributes is
inverted (although, like the tree in Figure 1, the Age attribute is not used).

3.2 1R

3.2.1 Background

IR is an atypical rule induction program. In particular, it was designed more to
prove a point than to be the most accurate learning program possible. The chief
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Furry?
no yes
not lion Size?
small 4 large
not lion lion lion

Figure 4: Decision tree produced by C4 for the lion example

characteristic of 1R is that, by design, it only creates one-rules, which are rules
that evaluate one single attribute. Holte’s [Holte93, p. 67] point in doing this was
to demonstrate that such simple rules perform surprisingly well for many data sets
which are commonly studied in machine learning, a fact which he attributes to the

nature of the data sets involved.

3.2.2 The 1R Algorithm

The 1R algorithm as described in [Holte93, p. 77] is shown verbatim in Figure 5. Note
that Holte uses the term “examples” to denote instances, and the term “nominal” to

describe attributes with discrete values.

3.2.3 1R and the Lion Example

The following is intended to illustrate the working of the 1R algorithm, using the ‘lion
example’ from Section 1.1.3.1. In this example, there are two classes to be learned
(namely LION and NOT LION), three attributes which are already discrete, and a total
of eight possible values.

3.2.3.1 Step 1: Build the COUNT Array

Given the instances shown in Table 1, the COUNT array acquires the values shown

in Table 12. The ‘Count’ column in this table shows the number of instances which
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1. In the training set, count the number of examples in class C having the value V for
attribute A: store this information in a 3-D array, COUNT[C,V,A].

2. The default class is the one having the most examples in the training set. The
accuracy of the default class is the number of training examples in the default class
divided by the total number of training examples.

3. FOR EACH NUMERICAL ATTRIBUTE, A, create a nominal version of A by defin-
ing a finite number of intervals of values. These intervals become the “values” of the
nominal version of A. For example, if A’s numerical values are partitioned into three
intervals, the nominal version of A will have three values “interval 17, “interval 2” and
“interval 3”. COUNT[C,V,A] reflects this transformation: COUNT[C,“interval I" A]
is the sum of COUNT[C,V,A] for all V in interval L.

Definitions:

e Class C is optimal for attribute A, value V, if it maximizes COUNT|[C,V,A].

e Class C is optimal for attribute A, interval I, if it maximizes
COUNT[C,“interval I”,A].

Values are partitioned into intervals so that every interval satisfies the following con-
straints:

(2) there is at least one class that is “optimal” for more than SMALL of the values
in the interval (this constraint does not apply to the rightmost interval); and

(b) if V[I] is the smallest value for attribute A in the training set that is larger than
the values in interval I, then there is no class C that is optimal both for V([I]

and for interval I.
4. FOR EACH ATTRIBUTE, A, (use the nominal version of numerical attributes):

(a) construct a hypothesis involving attribute A by selecting, for each value V of A
(and also for “missing”), an optimal class for V (if several classes are optimal
for V, choose among them randomly); and

(b) add the constructed hypothesis to a set call HYPOTHESES, which will ulti-
mately contain one hypothesis for each attribute

5. 1R: choose the rule from the set HYPOTHESES having the highest accuracy on the
training set (if there are several “best” rules, choose among them at random).
1R*: choose all the rules from HYPOTHESES having an accuracy on the training
set greater than the accuracy of the default class.

Figure 5: The 1R Algorithm, reproduced from [Holte93, p. 77]
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belong to the given class and have the given value for the given attribute; the numbers
in parentheses following each count are the specimen numbers from Table 1 for those

instances which contribute toward that count.

Class Value | Attribute | Count
lion yes Furry? |3 (1,2, 3)
lion no Furry? [0
lion old Age 1(1)
lion young Age 2(2,3)
lion small Size 0
lion | medium Size 1(2)
lion large Size 2(1,3)

not lion yes Furry? |2 (5, 6)
not lion no Furry? [3(4,7,8)
not lion old Age 2(5,8)
not lion | young Age 3(4,6,7)
not lion | small Size 3(56,7)
not lion | medium Size 0

not lion | large Size 2 (4, 8)

Table 12: Values of COUNT[C,V,A] for the lion example

3.2.3.2 Step 2: Find the Default Class

Of the eight training instances in Table 1, three are members of the class lion!, and five
are members of not lion. Thus, the default class is not lion, since it is the more common.
The accuracy of the default class, which by definition is the baseline accuracy of the
data set, is 5 + 8 = 0.625.

3.2.3.3 Step 3: Convert Continuous Attributes to Discrete Form

The ‘lion example’ has no continuous attributes, so this step does not apply.

3.2.3.4 Step 4: Construct Hypotheses

1R constructs one hypothesis for each attribute, basing each on the values in the
COUNT array, as shown in Table 12. For each attribute, the COUNT entries are

consulted in order to determine the class which is most common for each value of the

L Throughout this thesis, class names are printed in sans-serif type.
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attribute, and this is the class assigned for that value in the hypothesis which will be
built.
For example, consider the Furry? attribute, for which there are two values, yes

and no. The relevant entries from the COUNT array are

COUNT[lion, yes, Furry?] =
COUNT[not lion, yes, Furry?] =
COUNT[lion, no, Furry?] =
COUNT [not lion, no, Furry?] =

W o N W

For the value yes, instances which belong to the class lion outnumber those which

belong to the class not lion; for the value no, the reverse is true. As a result, the

hypothesis for Furry? is

(Furry = yes) — lion
(Furry = no) — not lion

The Age and Size attributes are treated similarly, based on the values in Table 12.
The resulting hypotheses for all three attributes are as shown in Table 13.

Value | Attribute | Hypothesis
yes Furry? | (Furry = yes) — lion
no Furry? | (Furry = no) — not lion
old Age (Age = old) — not lion
young Age (Age = young) — not lion
small Size (Size = small) — not lion
medium Size (Size = medium) — lion
large Size (Size = large) — lion (random)

Table 13: 1R hypotheses for the ‘lion example’

Note that the training instances for which attribute Size has the value large are
evenly split between the lion and not lion classes. Thus, 1R is unable to discriminate
between the two classes for this particular value of this particular attribute, and so
a class is selected at random. The lion class is the one shown in Table 13, but in

practice it could just as well have been not lion.
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3.2.3.5 Step 5: Choose a Hypothesis

The final output of the 1R algorithm will be a single hypothesis chosen from among
those constructed in the previous step. Specifically, 1R will select the hypothesis with
the greatest classification accuracy with respect to the training set.

The accuracy of each hypothesis is computed by counting the number of training
instances which it classifies correctly, and dividing this result by the total number
of training instances. For example, the hypothesis for the Furry? attribute classifies
an instance as a lion if and only if it has the value yes for Furry?. According to
Table 1, training instances 5 and 6 are not lions, but both have the value yes for the
Furry? attribute; thus, these two instances are classified incorrectly by this hypothesis.
The remaining six instances are classified correctly, leading to an accuracy figure of
6 + 8 = 75%. Similarly, the classification accuracy of the hypotheses for the Age and
Size attributes can be computed by inspecting the training instances and comparing
their actual classification with that predicted by each hypothesis.

The resulting accuracy figures are shown in Table 14. The ‘Accuracy’ column
lists the number of training instances classified correctly by each hypothesis, and the
‘Training Instances’ column shows the specimen numbers of the instances which are

classified correctly.

Training
Hypothesis Accuracy Instances
(Furry = yes) — lion
(Furry = no) > notlion |6/8=75% |1,2,3,4,7,8
(Age = old) — not lion
(Age = young) — not lion | 5/8 =62.5% | 4, 5,6, 7, 8
(Size = small) — not lion
(Size = medium) — lion

(Size = large) — lion 6/8 = 75% 1,2,3,5,6,7

Table 14: 1R hypothesis accuracy

The greatest observed accuracy is 75%, but there are two hypotheses with this
accuracy figure. As a result, 1R will choose randomly between them. The final result
of the 1R algorithm for the lion example would be Rule Set 3.1 or Rule Set 3.2,

depending on the outcome of the random selection.

49



Rule Set 3.1
(Furry = yes) — lion
(Furry = no) — not lion

Rule Set 3.2
small) — not lion

(Size
(Size = medium) — lion

(Size = large) -3 lion

Note that 1R is less accurate than the rules in Rule Set 1.1; this is not unexpected,
given that 1R makes no claim to produce the most accurate rules possible. However,
1R does guarantee that the rules it produces will be simple, and these rules tend to

be almost as accurate as more complex rules derived by more intricate means.

3.2.4 “Simplicity First”

While one-rules will almost always not yield the best performance possible with re-
spect to any given data set, the fact that they can come as close as they do led Holte
to suggest a concept that he calls “simplicity first research methodology™. If the
machine learning problem is considered as a search through the space of all possible
candidate rule sets (an idea which will be discussed in greater detail in Chapter 4),
then typical concept learning programs attempt to search the entire space. Holte
points out that this may not be necessary, and in fact may be counterproductive
[Holte93, p. 75]:

Complex hypotheses need not be considered for datasets in which most
examples can be classified correctly on the basis of 1 or 2 attributes.
An alternative, “simplicity first” methodology begins with the opposite
premise: a learning system should search in a relatively small space con-
taining only simple hypotheses. Because the space is small, navigating
in it is not a major problem. In this methodology, progress occurs as re-
searchers invent ways to expand the search space to include slightly more

complex hypotheses that rectify specific deficiencies.

Essentially Holte is advocating a method that begins with the simplest useful ap-
proximation of a concept, and which adds complexity only when necessary to improve
accuracy. This idea will be explored more fully in Chapter 5.
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3.3 Results

Table 15 lists classification accuracy results obtained using C4 and 1R, with respect
to the recall set for the data sets described in Chapter 2. All tests were performed

using the training and recall sets described in Chapter 2.

Data Set Baseline Recall
Accuracy | Classification
Accuracy
C4 1R
Ljubljana 73.7% | 76.8% | 72.6%

MONK’s 1 50.0% | 75.9% | 75.0%
MONK’s 2 67.1% | 65.1% | 67.1%
MONK’s 3 52.8% | 97.2% | 80.6%
Mushrooms 51.3% | 100.0% | 98.4%
Trial V/17 53.6% | 65.0% | 64.3%
Trial V/31 53.6% | 61.7% | 64.3%
Wisconsin 66.2% | 93.7% | 92.3%

Table 15: C4 and 1R results

Note that the MONK’s 2 and Ljubljana breast cancer data sets share the char-
acteristic that the baseline accuracy of the training set is substantially lower than
that of the recall set, as shown in Table 11; moreover, these are the only data sets
studied for which this is true. This suggests that the training set for each problem is
less representative of the recall set than is the case for the other six data sets, and in
turn is most likely the reason why neither C4 nor 1R exceeds the baseline accuracy
for MONK’s 2, and why 1R does not reach the baseline accuracy for the Ljubljana

breast cancer data.

3.4 Symbolic Learning Conclusions

From Table 15, we see that C4 clearly has difficulty with the deliberately awkward
MONK’s 1 and MONK’s 2 data sets, but otherwise performs very well. The data sets
studied here do, however, exhibit the properties described in [Holte93] which allow
1R to perform nearly as well as C4. In fact, 1R actually performs better than C4 in
two of the eight data sets, and is within two percentage points of C4 on all but two

of the remaining six data sets.
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However, results for both programs for all three MONK’s problems are disappoint-
ing compared to those published for other programs in [Thrun91], which suggests a
motive for further exploration. Neither program does very well with the Ljubljana or
Ludwig Trial V data sets, but this is likely to be due to the nature of the data rather

than the programs in question.
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Chapter 4
Genetic Learning

The term genetic learning is used to describe machine learning techniques based
upon the genetic algorithm. The classical genetic algorithm was not designed for this
particular use, having been developed as a method for solving search and optimization
problems, particularly in search spaces for which a mathematical model is either
unavailable or too difficult to solve analytically [Goldberg89, Beasley93, Whitley93].

However, concept learning can be recast in the form of a search problem (e.g.
[De Jong93]), which permits the genetic algorithm to be used. Since the resulting
search space is almost always both large and not well mapped (i.e. little is known
about it a priori), it tends to be a good candidate for the genetic algorithm.

4.1 History of the Genetic Algorithm

Original development of the genetic algorithm is generally attributed to [Holland75],
although Holland himself cites previous work in game theory going back as far as
1947. Holland began with the observation that many diverse fields depend on what
he termed “adaptive processes”, which occur both in ‘natural’ (e.g. biology and psy-
chology) and ‘artificial’ fields of study (e.g. computational mathematics, economics
and control problems). His goal was to “set up a mathematical framework which
makes it possible to extract and generalize critical factors of the biological processes”
[Holland75, p. v]. Holland’s efforts culminated in a rigorous theoretical framework,
which has been built upon by researchers such as De Jong (e.g. [De Jong75]) and
Goldberg (e.g. [Goldberg89]), among others. )
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Although the classical form of the genetic algorithm was designed to solve search
and optimization problems [Holland75], the scope of its application has broadened
considerably over time. More recently, successful applications of the genetic algorithm
to the problem of machine learning have been contributed by researchers such as
Wilson [Wilson87], Bonelli et al [Bonelli90], McCallum and Spackman [McCallum90],
Janikow [Janikow91l], Michalewicz [Michalewicz92], Vafaie [Vafaie92, Vafaie94],
De Jong et al [De Jong93] and Opitz and Shavlik [Opitz97].

Some current research topics involving the genetic algorithm itself, as opposed to

applications or hybridizations of the basic technique, include:

e how best to represent and encode a given problem (e.g. [De Jong97, Spears98,
Kazadi98, Tuson98, Patton98, Giguere9s])

e finding isomorphisms or other relationships between the genetic algorithm and

non-genetic approaches (e.g. [Vose98a, Vose98b])

e how to obtain the maximum benefit from parallel computing architectures
(e.g. [Canti-Paz97b, Canti-Paz97a])

4.2 The Classical Genetic Algorithm

The genetic algorithm is not claimed to be an accurate model of any biological process.
Nevertheless, its design was inspired by the process of biological evolution, in the sense
that an initial population of candidate solutions to a problem can be improved by
the simultaneous application of recombination techniques (i.e. the creation of a new
candidate solution by combining information from two or more existing ones) and

selection pressure.

4.2.1 Introduction
The classical algorithm is as shown in Figure 6. The end result of this process will

be a final collection of candidate solutions, which in most cases will contain members

that are significantly better than the ones generated initially.
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1. Create an initial collection of candidate solutions. This is often, but not always,
done randomly.

Evaluate each candidate.
Randomly select some number of the ‘best’ candidate solutions.

Combine the selected candidates in some way.

vk

Repeat steps 2 - 4 until some arbitrary termination criterion is reached.

Figure 6: An informal description of the classical genetic algorithm

As an illustration, Figure 7 shows a hypothetical search space with an initial
collection of randomly generated candidate solutions; Figure 8 shows how those can-
didates can converge toward the various optima in the search space (i.e. the various
peaks in the curve), among them the global optimum. The curve shown in these
figures does not represent any particular function; it is merely an arbitrary landscape
in which the goal is to find the highest point. The difference between the two figures
shows the evolution of the candidate solutions, which initially are placed at randomly
chosen locations, but which ultimately tend to cluster near the individual peaks.

Figures 7 and 8 are an idealized representation of the process of genetic search,
in which a large number of candidates are placed randomly into the search space, and
then converge toward several local optima simultaneously; the point is to show how
this process differs from traditional hill climbing algorithms (e.g. neural networks or
simulated annealing [Caudill92]), which search only in the neighbourhood of a single
point, and thus are more vulnerable to becoming trapped in the vicinity of a local
optimum.

There is no guarantee that the optimal solution will be found (of course, it is
important to realize that, in some problem domains, there may be no guarantee
that an optimal solution even exists); however, in practice the algorithm will usually
converge to a solution that is very nearly optimal. In particular, by maintaining a
population rather than relying upon a single candidate solution at any given moment,
the genetic algorithm is significantly less vulnerable to becoming lost in the vicinity of
a local optimum than more traditional hill climbing methods such as neural networks
[Goldberg89, Michalewicz92].
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Figure 7: A sample search space, with some random guesses

Figure 8: Sample search space with improved guesses
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Before formalizing the above description, some terminology must be introduced:
e A single candidate solution is called an individual.
e A collection of individuals is called a population.

A specific population at a given point in time is called a generation. Gener-

ations succeed each other as the individuals in the population at a particular

time are replaced by new ones at the next cycle of the algorithm.
e The process of choosing individuals to combine is called selection.

e The combination process itself is called reproduction. This is composed of
individual steps, using operators such as mutation and crossover, which are

described in detail below.

e A fitness function is used to evaluate each individual as a potential solution.

The resulting measurement is termed the individual’s fitness.

Given this vocabulary, the classical genetic algorithm can be stated as shown in
Figure 9 [De Jong93, p. 168]:

1. Let timet = 0.

W

Initialize population P(t).

Compute fitness for each individual in P(t).

Lett =t + 1.

Select new population P(t) from individuals in P(t-1).
Apply crossover operator to individuals in P(t).

Apply mutation operator to individuals in P(t).

®» N S o oh o

Repeat steps 3 - 7 until some arbitrary termination criterion is reached.

Figure 9: The classical genetic algorithm

In practice the crossover and mutation operators are not applied deterministically,
but instead each has a specific probability of application. This allows some individuals

to pass unmodified from one generation to the next.
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In order to apply the genetic algorithm to a particular search or optimization
problem, the problem must first be described in a manner such that an individual will
represent a potential solution, and a fitness function (i.e. a function which evaluates
the quality of a given candidate solution) must be provided. These two areas are the
only parts of the algorithm which are problem-specific [Goldberg89, Whitley93].

The classical genetic algorithm is designed to operate on individuals encoded as
fixed-length bit strings, although more recent work (e.g. [Janikow91, Michalewicz92])
has been done using other encodings. Goldberg [Goldberg89, p. 15] provides an
example in which the goal is to maximize the function f(z) = z2 over the interval
0 < z < 31. In this case, the solution will be an integer in the range from 0 to 31,
giving rise to the natural encoding of allowing a five-digit binary string to represent
its own integer value. In more challenging problem domains, the task of finding a
suitable binary representation may not be straightforward; nevertheless the choice of
representation will have a significant effect on the quality of the solutions which the
genetic algorithm will be able to find [Goldberg89].

The fitness function’s purpose is to influence the number of times a given individual
will be selected for reproduction. As such, it must be based upon the individual’s
quality as a potential solution. In Goldberg’s z2 example, the obvious choice is the
specific function being optimized, namely f(z) = z? itself. Of course, in the more
general case, the genetic algorithm is needed most in those problem domains for which
a mathematical function describing the domain does not exist. In cases of this kind,
the user must find a function which will approximate the desired result as closely as
possible, while simultaneously being as easy as possible to compute, since the function

will be invoked a significant number of times.

4.2.2 Selection

The selection step builds a mating pool of individuals chosen from the current gen-
eration, as an intermediate step toward building the next generation. The individuals
in this pool must be chosen randomly, but nevertheless the choice must be biased in
favour of more highly fit individuals {Goldberg89].

The earliest genetic algorithms used proportionate reproduction [Goldberg91], in
which an individual’s probability of being selected is directly proportional to its fit-
ness. Another common method is binary tournament selection, in which two
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individuals are chosen at random, and the one with the greater fitness enters the
mating pool. A variation on this method assigns a small probability that the indi-
vidual with the lesser fitness will be selected instead.

Analysis of binary tournament selection finds that it performs similarly to other
methods, but with lower computational complexity [Goldberg91, p. 90].

4.2.3 Mutation

The mutation operator inverts a randomly selected bit in an individual. For example,
if an individual is represented by the bit string 10011, the mutation operator might
invert the second bit from the right, changing the string to 10001.

The purpose of mutation is to introduce new strings into the population. However,
mutation is usually employed with a very low probability; a typically used value is
0.001 (e.g. [Goldberg89, De Jong93]).

4.2.4 Crossover

The crossover operator requires two individuals as input (typically called parents),
and produces two new individuals as output (typically called offspring or children).
In the simplest version, a position within the bit string is selected at random, and all
bits on one side of the chosen position are exchanged between the two individuals.

For example, consider the following two parent individuals:

11111
00000

If bit position two (counting from the left, beginning at position zero) is selected

as the crossover site, the result of this particular crossover would be

1110

0001

Variations on this operator include two-point crossover, in which two positions are
selected and everything between them exchanged, and uniform crossover, in which
every bit position in the string is exchanged with probability 0.5. Finally, Eshelman
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introduced a variation on uniform crossover in which exactly half of the bit posi-
tions that differ in the two parents are exchanged between them [Eshelman9l]; this
variation was independently reported by Pawlowsky shortly thereafter [Pawlowsky92,
Pawlowsky95]. The crossover operator is commonly applied with a probability of 0.6
(e.g. [Goldberg89, De Jong93]).

4.2.5 A Sample Run

The following is intended to illustrate the working of the classical genetic algorithm,
given Goldberg’s example of maximizing f(z) = z? over the interval 0 < z < 31.
The problem is encoded such that a five-digit binary string represents its own integer
value, with the fitness function being f(z) = 2.

Individual | Bits | Integer | Fitness
Value
1 01001 9 81
2 01100 12 144
3 11010 26 676
4 01011 11 121
5 01111 15 225
6 00101 5 25

Table 16: Initial population for the z? example

Following the steps shown in Section 4.2.1, we begin by setting time t to zero.
Next, we choose an initial population at random. For the sake of illustration, assume
that the resulting population is as shown in Table 16. The fitness values shown in
this table are computed by first converting the randomly initialized bit string to its
own value as an integer, and then applying the fitness function z? to that integer.

We now increment t to one, and apply a selection method. Since our population
size is six, we must choose six individuals to form the basis of the new generation.
Using binary tournament selection as an example, we begin by generating twelve
random numbers in the closed interval [1,6]. For the sake of discussion, assume
that the random sequence in question is {2,3,6,2,1,4,6,1,5,3,4,5}. The six pairs
resulting from this sequence, and the pool of selected individuals they generate, are

shown in Table 17.
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First Competitor | Second Competitor | Tournament
Number | Fitness | Number | Fitness Winner

2 144 3 676 3

6 25 2 144 2

1 81 4 121 4

6 25 1 81 1

5 225 3 676 3

4 121 5 225 5

Table 17: Initial selection for the z? example

At this point the weakest individual, number six, has already been eliminated. For
notational convenience, the individuals in the mating pool will now be renumbered

as shown in Table 18.

Original | New Bits | Integer | Fitness

Number | Number Value
3 1 11010 26 676
2 2 01100 12 144
4 3 01011 11 121
1 4 01001 9 81
3 5 11010 26 676
5 6 01111 15 225

Table 18: Mating pool at time ¢ = 1 for the z2 example

The next step is to apply the crossover operator, which works on a pair of indi-
viduals at a time. The pairs in question are chosen randomly from the mating pool,
and are passed on unchanged with probability 0.4 (or, in other words, crossover is
applied with probability 0.6). For the sake of discussion, assume that the random
sequence used to select the next six individuals (i.e. three pairs of individuals) is
{1,3,5,6,4,4}. The one-point crossover operator will then be applied as shown in
Table 19.

Pair First Parent Second Parent | Cross | Apply? | First | Second
Number | Number | Bits | Number | Bits | Site Child | Child
1 1 11010 3 01011 1 yes 11011 | 01010

2 5 11010 6 01111 3 no 11010 | 01111

3 4 01001 4 01001 | 2 yes 01001 | 01001

Table 19: Crossover applied at time t = 1 for the z2? example

61




Remarks concerning Table 19:

e The ‘Cross Site’ column shows the bit position immediately to the left of the
point where the parent individuals will be cut, with bit positions numbered

from the left starting at zero.

e The ‘Apply?’ column indicates whether the crossover operator is actually ap-
plied to the pair of individuals in question. This will depend on the operator’s
probability of application, and on a random number generated specifically to
resolve this question. The values shown in the table are arbitrarily chosen for

purposes of illustration.

e Note that the third pair involves the same parent individual twice. By definition
any crossover operator applied to such a pair will be a null operation, resulting
in the children being identical to their parents. This follows from the fact
that crossover merely exchanges information between two individuals, but never
creates any new information. In practice, allowing this situation to occur has the

effect of slightly diminishing the operator’s effective probability of application.

Once the crossover operator has been applied to all pairs of parents, the resulting
offspring replace their parents in the mating pool. At this point the pool will be as

shown in Table 20.

Number | Original | New | New | Fitness

Bits Bits | Value
11010 | 11011 27 729
01100 | 01100 12 144
01011 | 01010 10 100
01001 | 01001 9 81
11010 | 11010 26 676
01111 | 01111 15 225

SO W N -

Table 20: Mating pool after crossover at time ¢ = 1 for the z*? example
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The mutation operator would next be applied to all parents in the mating pool.
However, its typically low probability of application will usually result in no changes
being made. Assuming that that would be the case in this situation, we end up with
the mating pool as shown in Table 20 being the final contents of generation number
one (where the initial population is denoted as generation number zero).

The algorithm will continue in this fashion for as many generations as possible
until the termination criterion is reached. Typical criteria include some combination

of the following:

e a predetermined number of generations
e a predetermined number of seconds of CPU time

e a lack of improvement over a specific number of consecutive generations (where
improvement is typically measured as an increase in the average fitness over all

members of the population)

e observation of an individual with a fitness value which exceeds a predetermined
threshold

It is interesting to note that the single new generation created in this example
resulted in a significant increase in average fitness. Specifically, the average fitness of

the original population was
(81 + 144 + 676 + 121 + 225 + 25) +6 = 212
while the average fitness of generation one is
(729 + 144 + 100 + 81 + 676 + 225) 6 = 325.833

However, the best individual found in generation one (in particular, individual
number one, with a bit pattern of 11011 and a corresponding value of 27) is only
slightly better than the best individual in the initial population (individual number
three, which has a bit pattern of 11010 and a value of 26).
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As new generations are created, the population will tend to converge as more and
more individuals in it tend to become copies or near copies of the most fit individual
found thus far [Goldberg89]. If this phenomenon occurs too soon, the result is termed
premature convergence, and it will typically be the case that the best solution
found is only a local optimum. If premature convergence can be avoided, however,
then the algorithm will usually converge to a solution which is close to the global
optimum [Goldberg89]. In particular, with binary tournament selection, the expected
number of generations until convergence occurs is proportional to logn, where n is
the population size {Goldberg94, p. 4].

Typical implementations of the genetic algorithm provide several operating pa-
rameters which can be adjusted, such as the population size, application probabilities
for crossover and mutation, type of crossover to be used, selection method to be used,
and the nature of the termination criterion. However, the primary influence on the
success of the genetic algorithm in any particular problem domain is the correct choice

of encoding and fitness function [Goldberg89].

4.2.6 Justification

It may appear counter-intuitive that a process which relies to so great an extent
on randomness can actually achieve results in a reliable fashion. However, the
genetic algorithm does indeed have a sound theoretical basis, established initially
by [Holland75], and developed and explained in [Goldberg89, Beasley93, Whitley93]
among other sources.

Informally, the power of the genetic algorithm derives from its use of both mutation
and recombination [Goldberg98]; the former explores new areas of the search space,
while the latter exploits knowledge already gained. This combination of exploration
and exploitation is necessary in order for the search to be effective, particularly when
the search space is large, multimodal and noisy [Goldberg89, Louis93].

Sections 4.2.6.1 and 4.2.6.2 present a summary of the groundwork elaborated in
[Holland75] and [Goldberg89].
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4.2.6.1 The Schema Theorem

In [Holland75], the term schema (plural ‘schemata’) is introduced to refer to a tem-
plate that describes potential values for an individual. For binary-valued individuals,
schemata are composed of the values 0, 1, and *, which denotes that a given bit posi-
tion in the individual is free to assume either of the values 0 or 1 (informally referred
to as a don’t care symbol). For example, for individuals consisting of five-bit binary
strings, the schema 1##*%0 would describe any individual which begins with a one and
ends with a zero; similarly, the schema 01#1* would describe only the individuals
01010, 01011, 01110 and 01111.

Schemata have two properties of particular interest:

e The order of a schema S, denoted by 0(S), is the number of fixed positions in

the schema (i.e. the number of positions not containing the * symbol).

e The defining length of schema S, denoted by §(S5), is the distance between
the first and last fixed positions in S.

For example, if S is 0**1#%, then 0(S) = 2 and 6(S) = 3 (since the first fixed
position is 0 and the last fixed position is 3). Similarly, if S is **1#*, then o(S) =1
and §(S) = 0.

Since schemata are defined over an alphabet containing three symbols, there exist
3L possible schemata of length L. Moreover, any individual of length L is described
by a total of 2L of these schemata (since, for every possible bit position, a given
schema may contain either * or the bit which actually occurs at that position in the
given individual). It follows that a population of size n is described by a minimum
of 2L schemata (if all individuals in it are identical) and a maximum of n - 2L. Of
course, some of these schema are ‘better’ than others, in the sense that they describe
individuals which are more highly fit.

As the selection and recombination processes take place during the operation of
the genetic algorithm, schemata in each generation are modified and, to a greater or
lesser extent, replaced in the next generation. If the new schemata tend to be more
fit than the ones they replace, then the average fitness of the population will increase
over time.

In fact, this is exactly what happens. Schemata of higher fitness increase, and

those of lower fitness decrease in quantity in succeeding generations; not only does
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this process occur, it does so at an exponential rate. The cornerstone of genetic
algorithm theory is a result which is formally stated and proven in [Holland75], and
which Goldberg [Goldberg89, p. 33] paraphrases as follows:

Short, low-order, above-average schemata receive exponentially increas-
ing trials in subsequent generations. This conclusion is important, so
important that we give it a special name: the Schema Theorem, or the

Fundamental Theorem of Genetic Algorithms.

The consequence of the Schema Theorem is that, despite the randomness inherent
in its implementation, the genetic algorithm does indeed proceed in a deterministic
fashion from its initial state to one which is more highly fit. Moreover, the manner
in which it does so takes advantage of the fact that many schemata are sampled

simultaneously, an effect which [Holland75] terms “intrinsic parallelism”.

4.2.6.2 The Building Block Hypothesis

Schemata which have a short defining length, low order and above-average fitness
are termed building blocks. The Building Block Hypothesis suggests that “short,
low-order, and highly fit schemata are sampled, recombined and resampled to form
strings of potentially higher fitness” [Goldberg89, p.41].

This view of the actual mechanism by which improvement occurs across genera-
tions in the genetic algorithm provides insight into why not all potential encodings of
a given problem will achieve equal results. In particular, every effort should be made
to allow the optimal solution to be represented by schemata of short defining length,
in order to allow the Building Block Hypothesis to apply to the maximum possible
extent.

The importance of building blocks having a short defining length is that this
makes them less vulnerable to being disrupted by the process of recombination. As
the defining length of the schema which describes the optimal solution increases, it
becomes less likely to be created by crossover or mutation, and more likely to be

broken up if it does occur.
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4.3 General Application of the Genetic Algorithm
to Machine Learning

The key to applying the genetic algorithm to the problem of concept learning is to
find a way to cast concept learning in the form of a search problem. In general terms,
one way to do this is to consider concept learning as a search through the space of all
possible concept descriptions for the one which most accurately classifies the available
training instances.

As with any application of the genetic algorithm, the first step is to decide what an
individual will represent, and how it will be encoded. Broadly speaking, if concepts
are to be formulated as rule sets, then two representations are possible. The first is
to consider each individual to be a single rule, in which case the entire population
constitutes the rule set which will define the concept; the second is to consider each
individual to be a complete rule set in itself. The former method has come to be
known as “the Michigan approach”, after work done by Holland and his students at
the University of Michigan; the latter has come to be known as “the Pittsburgh ap-
proach”, after work done by De Jong and his students at the University of Pittsburgh
[De Jong90, pp. 625-628], [Michalewicz92, pp. 217-223]. Examples of rule sets in
these two formats are presented in Sections 4.4.2.1.3 and 4.4.2.1.4, respectively.

The Michigan approach was motivated by an attempt to model human cognition
[De Jong90, p. 627], and typically involves an elaborate model called a classifier
system [Goldberg89], of which the genetic algorithm is only a part. The BOOLE and
NEWBOOLE systems [Wilson87, Bonelli90] are well-known examples of this type.
Although these and other systems have achieved some success [Goldberg89], De Jong
argues that the classifier approach involves unnecessary complexity, and that as a
result the Pittsburgh approach is “the more obvious and ‘natural’ way to proceed”
[De Jong90, p- 625].
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4.3.1 Individuals vs. Rules

When machine learning is performed using the genetic algorithm, the members of the
population can be viewed on two distinct levels. From the point of view of the genetic
search itself, each population member is nothing but a string of bits with arbitrary
values; from the point of view of the learning process, each population member is
either a single rule (in the Michigan format) or a complete rule set (in the Pittsburgh
format).

The only component of the genetic algorithm that depends on the interpretation
of each bit string is the fitness function, which in the case of machine learning must
somehow evaluate each rule or rule set. It may also be possible to define additional
genetic operators which would be specific to the task of machine learning; these would
likewise need to be capable of interpreting bit strings as rules or as rule sets. However,
all other operational aspects of genetic search are confined to the manipulation of
bit strings as bits, without regard to any meaning which may be assigned to them
externally.

To reflect this duality, in the descriptions which follow, the term ’individual’ will
be used when referring to the bit string itself, and the term ’rule’ or ’rule set’, as

appropriate, will be used when referring to the interpretation of the bit string.

4.4 Specific Applications of the Genetic Algorithm

to Machine Learning

This section describes three specific implementations of genetic learning.

4.4.1 McCallum and Spackman’s Algorithm

Unlike most learning programs based upon the Michigan approach, the unnamed
implementation described in [McCallum90] does not involve a classifier system. In-
stead, this particular program is noteworthy both for the method it uses to construct
a rule set from the members of its population, and for a novel means of increasing

the exploration rate of its genetic search.
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4.4.1.1 Example Sharing

The primary difficulty of the Michigan approach is that, by nature, the population
of rules would normally converge toward a single rule which correctly classifies the
greatest number of training instances; however, many concepts cannot be expressed
properly with only one rule. Thus, the classical genetic algorithm must be modified
so that it will produce as many rules as might be required.

In general, a technique called niche formation [Goldberg89, p. 187] is used in
genetic algorithms when the search space contains multiple peaks, i.e. multiple local
optima, and the goal is to find all of these peaks rather than concentrating only on
the highest one. Typically this is done by modifying the fitness function applied
to individuals in such a way as to make the result proportional to the number of
individuals in each (arbitrarily defined) ‘neighbourhood’. A common niche formation
technique is called payoff sharing, which involves dividing the absolute fitness value
of each individual in a given neighbourhood by the number of individuals in that
neighbourhood.

McCallum and Spackman perform niche formation by means of a modification of
payoff sharing which they call “example sharing”. The idea is that every training
instance has a finite payoff value which is shared among those rules which cover that
instance; intuitively, one can “think of each example as having only a finite amount
of payoff to give, and this finite payoff being shared equally among its recipients”
[McCallum90, p. 150]. The payoff value is used in the definition of the fitness function,

as follows:
e Every positive training instance e carries a total payoff value V. = 1.0.

e Every negative training instance e carries a total payoff value V, = —1.0 - s,
where s is a user-supplied constant with a default value of 1.0; the greater the
value of s, the more specific the resulting rules will be.

¢ The payoff value which an individual rule 7 receives from a training instance e
is denoted P,., and defined as

0, if1i doesn’t cover e
Pl'c = Ve .
= if i covers e

where ¢, is the number of rules which cover instance e.
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e The total payoff which a rule receives from all instances in training set T that

it covers is then
t(x) = Z P,
esT
e The fitness function is defined as

[t +1, @) =0
fe) "{ e, ift(i) <0

The effect of this fitness function is to divide the population into portions which
converge, simultaneously and independently, toward different, cooperating rules. The
resulting rules cover disjoint subsets of the training set, and their union forms the

newly learned concept.

4.4.1.2 Overpopulation

One difficulty with the classical genetic algorithm is the requirement of assigning
probabilities to the application of the crossover and mutation operators; the optimal
values for a particular problem domain are often not known in advance, yet an inap-
propriate choice might slow convergence, or cause premature convergence to a local
optimum.

This problem can be avoided using a mechanism that McCallum and Spackman
term overpopulation, which can be expressed as a modified version of the classical

genetic algorithm, as shown in Figure 10.

70



1. Let timet = 0.

o

Initialize population P(t).
Copy all individuals from P(t) to temporary holding pool T.

bl

Apply crossover operator to all individuals currently in T, with probability 1.0,
appending the newly created individuals to T.

5. Apply mutation operator to all individuals currently in T, with probability 1/n
(where n is the number of bits in each individual), appending the newly created
individuals to T.

6. Compute fitness for each individual in T.
7. Let t =t + 1.

8. Select new population P(t) from individuals in T (refer to Section 4.2.2 for a
discussion of how this may be done).

9. Repeat steps 3 - 8 until some arbitrary termination criterion is reached.

Figure 10: The genetic algorithm with overpopulation

In other words, the temporary holding pool includes all unmodified members of
the current generation. Crossover is applied with probability 1.0, and the children
added to the temporary holding pool. Mutation is then applied with probability 1/n
(where n is the number of bits in each individual), both to the original members of
the current generation and to the children created by the crossover operator.

The temporary holding pool thus doubles at each step, resulting in a total size of
p - 2", where p is the number of individuals in the population and n is the number of
operators applied (typically n = 2, namely crossover and mutation, as in the case of
[McCallum90]; however, the method can be applied with additional operators in the
general case). However, the next generation is formed by selecting only p individuals
from the temporary holding pool.

In addition to avoiding the problem of having to select operator probabilities,
overpopulation increases the rate of exploration of the genetic search. The method
increases the number of individuals which must be evaluated in each generation, but
decreases the number of generations required to converge to a solution [McCallum90,
p. 151}.
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Overpopulation appears not to be widely used by other researchers, although the
“Elitist Selection” method in Eshelman’s CHC algorithm [Eshelman91] is similar.

4.4.2 GABIL

A challenge faced by genetic learners which represent concepts in the form of rule
sets is the fact that not all rule sets contain, or should contain, the same number of
rules. Some concepts can be adequately represented by a single rule, while others
may require dozens or hundreds of rules to be represented accurately.

The Michigan approach generally deals with this issue by some form of niche for-
mation, as in [McCallum90]. The Pittsburgh approach, however, encodes an entire
rule set in each individual, which implies either that all rule sets must contain an iden-
tical number of rules, or that the genetic algorithm must be extended to function in
the case where individuals contain bit strings of variable length. GABIL (“Genetic Al-
gorithm Batch Incremental Learner”) [De Jong93] is an example of a concept-learning

program which combines the Pittsburgh approach with variable-length bit strings.

4.4.2.1 Representation Format

GABIL represents concepts as rules which are almost but not quite in k-DNF form
(Section 1.1.3.2). In particular, each rule contains one conjunct for each training
attribute, and each conjunct specifies one or more values for the given attribute
which a member of the target concept may contain.

For example, suppose the concept WIDGET is described by Rule Set 4.1, obtained

from the attributes shown in Table 21.

Attribute | Possible Values of the Attribute
size small, medium, large
colour | red, orange, yellow, green, blue
shape | circle, square

Table 21: Attributes which describe objects that might be widgets
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Rule Set 4.1
(size = medium) — widget
(colour = yellow) A (shape = circle) — widget
(colour = red V green) A (shape = square) -+ widget
(size = large) A (colour = orange V green) N (shape = square) — widget

The difference between this format and k-DNF is that conjuncts are permitted to
contain more than one value for the given attribute (e.g. colour = red V green);
this is called internal disjunction, and [De Jong93, p. 164] cites [Michalski83] as
justification for using it.

As with Rule Set 1.5, any instance which satisfies any one of the rules in Rule Set 4.1
is considered to be a member of the target concept, while any instance which satisfies

none of the rules in the rule set is considered not to belong to the concept.

4.4.2.1.1 Attributes

GABIL only deals with discrete attributes, and thus it represents an attribute as a
string of bits, with one bit for every possible value it may assume. Within the string,
bits set to one denote values for the given attribute which are permitted in instances
which are members of the target concept, and bits set to zero denote values for the
attribute which are not permitted. For example, the colour attribute of Table 21 has
five possible values, and so is represented by five bits; Table 22 shows some sample
bit strings and their interpretations.

Note that according to this convention, a bit string in which all bits are set to
one corresponds to an attribute for which any value is acceptable. Intuitively, this is
tantamount to dismissing that attribute as being irrelevant, such as the Age attribute
in the ‘lion example’ of Section 1.1.3.1. The opposite extreme is a string in which all

bits are zero; a rule containing such a string can never be satisfied by any instance.
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Attribute
Bit String | Interpretation

10000 red

11000 red or orange

01110 orange or yellow or green

00001 blue

11111 any value at all

00000 no value is acceptable

Table 22: Sample bit strings for the colour attribute

4.4.2.1.2 Rules

A rule is represented by the concatenation of the conjuncts (i.e. attributes) it con-
tains. For example, the rule

(size = large) A (colour = orange V green) A (shape = square) — widget

would be represented by the bit string
001 01010 01

(the spaces in the bit string, which mark attribute boundaries, are shown for clarity
but are not actually part of the format).

Note that the right-hand side (consequent) of the rule is not included in this rep-
resentation. This is possible because GABIL only attempts to learn a single concept
at a time [De Jong93, p. 166], which means that all rules necessarily have the same
consequent (i.e. membership in the target concept); thus, the consequent is inferred

but does not need to be represented explicitly.

4.4.2.1.3 Rule Sets

A rule set is represented as the concatenation of one or more rules. Thus, since each
individual in GABIL’s population is a complete rule set, the number of bits in the
representation of a rule set is not fixed. However, there are limits on the extent to
which the length can vary, since any bit string must contain an integral multiple of
the number of bits required to represent a single rule, and the length of a rule is in

fact constant for any given data set.
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The rules in a rule set are not interpreted in any particular order; an instance
which satisfies any one rule satisfies the rule set as a whole, regardless of which rule
it might be or of whether it might satisfy more than one rule.

As an example, recall Rule Set 4.1, reproduced here for convenience:

Rule Set 4.1
(size = medium) — widget
(colour = yellow) A (shape = circle) — widget
(colour = red V green) A (shape = square) — widget
(size = large) A (colour = orange V green) A (shape = square) — widget

GABIL’s representation of this rule set would be as follows:
010 11111 11 e 111 00100 10 e 111 10010 01 e 001 01010 O1

The spaces marking attribute boundaries and bullets (‘¢’) marking rule boundaries

are shown only for visual clarity, and are not part of the format.

4.4.2.1.4 The Michigan Approach

As an aside, at this point the distinction between the Pittsburgh and Michigan ap-
proaches can be made clear by example. Specifically, since the Michigan approach
considers each individual in the population to be a single rule, a learning system

based on it would encode the above rule set as

010 11111 11
111 00100 10
111 10010 01
001 01010 01

where each 10-bit string is an independent individual, and represents a single rule. Of
course, a population composed in this way will also contain other rules which may be
less relevant, but which nevertheless would be included in the final concept description
unless a method is found to detect and remove them. The difficulty in doing so may

be one reason why the Pittsburgh approach is favoured by some researchers.
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4.4.2.2 Coping With Variable-Length Bit Strings

The classical genetic algorithm is defined for individuals with bit strings of con-
stant length. However, the only part of the algorithm which is actually sensitive to
variations in bit string length is the crossover operator; the selection and mutation
steps function identically with variable-length bit strings as they do with fixed-length
strings.

GABIL uses a modified version of two-point crossover. In the standard implemen-
tation of two-point crossover, two points are chosen at random, and the bits between
those points are exchanged between two individuals. When the individuals in ques-
tion are not guaranteed to be the same length, it might happen that one or both
of the selected points may not exist in the shorter of the two individuals. GABIL
handles this by guaranteeing that the crossover points in the two individuals “match
up semantically” [De Jong93, p. 166], i.e. that the corresponding crossover points
occupy the same position relative to a rule boundary. As an example, consider the

following two rule sets:

111 11111 11 e 111 11111 11 e 111 11111 11 e 111 11111 11
000 00000 00 e 000 00000 0O

Each rule contains ten bits, with four rules in the first rule set and two in the second.
Suppose for the sake of discussion that the randomly chosen crossover points in the
first rule set are 5 and 36, so that bits in the inclusive range 6 — 35 will be exchanged.
Since bits are numbered from zero, starting at the left end of the string, this means

that the range of bits to be exchanged from the first rule set is as follows:
111 111311 11 e 1131 11111 11 e 111 11111 11 e 1131 11111 11

Position 5 exists in the second rule set, but 36 does not, meaning that a point con-
gruent to it must be found. Since position 36 follows the sixth bit of a rule, and rules
are ten bits long, congruent positions include 6, 16, 26 and 36; of these, only 6 and
16 are available in this particular case. If 16 is selected from these two at random,

then the ranges of bits to be exchanged in both rule sets are as follows:

111 11111 11 e 111 13111 11 e 111 11111 11 e 111 11111 11
000 00000 00 e 000 00000 00
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The result of this particular crossover would then be

111 11111 11 e 111 11100 00 e 000 00011 11
000 00011 11 e 1131 11111 11 e 1131 11100 00

This example illustrates a number of points:

¢ The number of rules in each rule set has changed, but the total number of
rules in both rule sets is conserved. The latter point will always be true, but
the former depends on the particular crossover points which are chosen; it can
certainly happen that both offspring will have the same length as their parents.

e By forcing the crossover points in both rule sets to be congruent with respect
to rule boundaries, both offspring are guaranteed to contain a bit string of
appropriate length, i.e. an integral multiple of the number of bits per rule.

o Either crossover point may occur in the middle of an attribute. When this
happens, each child receives a new string for the attribute in question; this is
not only allowable but desirable, since it provides the only means other than

mutation by which new attribute strings may be generated.

Finally, note that in two-point crossover, the bit string is considered to be circular.
For example, given the same two rule sets, suppose that the cross points are 15 and
36 in the first rule set, and 15 and 6 in the second. The range of bits to be exchanged
from the second rule set would then be bits number 16 — 19 and 0 - 5 inclusive.

111 11111 11 e 111 111311 11 e 111 11111 11 e 111 11111 11
000_00000 00 e 000 00000 00

The resulting offspring would be

111 11111 11 e 111 11100 00 e 000 00011 11
111 11100 00 e 000 00011 11 e 111 11111 11
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4.4.2.3 Genetic Operators for Learning

The classical genetic algorithm makes no use of domain knowledge even if it is avail-
able; this is the trade-off it makes in exchange for being applicable to any domain that
can be represented in an appropriate form [Goldberg89]. However, there is no reason
why the algorithm might not be modified to improve its performance in a particular
domain, such as machine learning.

One way to extend the algorithm is to define new operators, specialized for a
particular task. GABIL in fact defines two such operators, which the authors term
adding alternative and dropping condition. Both of these are based on operators of
the same name reported in [Michalski83].

4.4.2.3.1 The Adding Alternative Operator

The adding alternative operator generalizes a rule by adding an internal disjunct. For

example, consider a rule such as
(colour = orange V green) A (shape = square) — widget

The adding alternative operator would add a new acceptable value for one of the
attributes, potentially resulting in

(colour = red V orange V green) A (shape = square) — widget
or

orange V green) A (shape = circle V square) — widget

(colour

As used in GABIL, the disjunct to be added is chosen at random. The operator is
implemented as an asymmetric variation of ordinary mutation, which has a probability
of 0.75 that a zero bit will be inverted to a one, but only a 0.25 probability that a
one bit will be inverted to a zero [De Jong93, p. 176]. Note that this is employed
in addition to rather than instead of standard mutation, but with ten times the
probability of application (0.01 vs. 0.001).

4.4.2.3.2 The Dropping Condition Operator

The dropping condition operator generalizes a rule by removing a conjunct entirely
if it appears to be almost irrelevant. As implemented in GABIL, this applies to any
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attribute string in a rule which has more than half of its bits already set to one, in
which case the remaining zero bits are changed to one, thus effectively removing any

reference to that attribute in the given rule. As an example, consider the rule
(colour = red V orange V green) A (shape = square) — widget
This would be represented by the bit string
111 11010 01

In this case, only the colour attribute has more than half its bits set to one. It would
thus be changed to all ones, resulting in a bit string of

111 11111 01
which translates back to
(shape = square) — widget

The adding alternative operator is similar to mutation in that its effect is essentially
random. In contrast, if the dropping condition operator applies at all (subject to a
probability of 0.6, identical to that of crossover), its effect will be deterministic —
rather than inverting a single bit at random, it will always change all zero bits to one

within a given attribute.

4.4.2.3.3 Incorporating New Operators into the Algorithm
The order in which the operators are invoked in GABIL is

1. crossover

2. mutation

3. adding alternative

4. dropping condition

Control flow in GABIL differs from that of the classical genetic algorithm (Sec-
tion 4.2.1) only in that two extra steps are added.
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4.4.2.3.4 Interaction Between Operators

The adding alternative and dropping condition operators are not mutually indepen-
dent. In particular, the adding alternative operator is capable of adding enough
internal disjuncts to make an attribute suitable for removal by dropping condition.
The question of whether or not this should be allowed to occur, along with the
question of how to set the most effective possible probability of application for each
operator, motivated one of GABIL’s more interesting features, which is described in
Section 4.4.2.4.

4.4.2.4 Self-Adaptation

As described in Section 4.2.5, most implementations of the genetic algorithm offer
a number of adjustable parameters which affect how the search will be performed;
this holds true of genetic learning applications as well. Often even an experienced
user may find it difficult to select appropriate values for these parameters without a
great deal of trial and error, and as a result attempts have been made to modify the
genetic algorithm to adapt itself automatically [Grefenstette86, Schaffer87, Davis89,
Janikow91], a process known as self-adaptation.

In GABIL, the parameters which are handled in this way are the application
probabilities of the two new learning-specific operators, adding alternative and drop-
ping condition. Specifically, two control bits are added to every individual in the
population, one for each of the two operators. These bits act as “added Boolean pre-
conditions for the operators” [De Jong93, p. 180]. For example, when an individual
is selected from the mating pool for application of the adding alternative operator,
the control bit for that operator is evaluated. If it is set to one, then the operator will
be applied in the usual way subject to its normal probability; if it is set to zero, then
the operator will not be applied (i.e. the individual will be passed on unchanged)
regardless of its probability. The dropping condition operator is handled similarly.

What makes this scheme adaptive is that the control bits are subject to manipu-
lation by selection, crossover and mutation, although not by the adding alternative or
dropping condition operators themselves. Thus, while searching for the best possible
rule set, GABIL simultaneously attempts to determine for itself whether to apply its
learning-specific operators to any given rule set. This provides a means by which the

algorithm dynamically adjusts its bias (Section 1.1.3.2).
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4.4.2.5 Fitness

The fitness function used in GABIL is the square of the percentage of training in-
stances which are correctly classified by an individual rule set. This choice encodes
a bias in favour of rule sets which are accurate, while deliberately not attempting to
influence the length or complexity of the learned concept. The stated reason for squar-
ing the accuracy is to provide “a bias toward correctly classifying all the examples

while providing a non-linear differential reward for imperfect rule sets” [De Jong93,
p. 167].

4.4.2.6 Test Results

In [De Jong93], results were published for five different versions of GABIL:

e the original version, without either of the two new operators (adding alternative

and dropping condition)
e with adding alternative but without dropping condition
e with dropping condition but without adding alternative
e with both new operators, but without self-adaptation
e with both new operators, using self-adaptation

De Jong et al tested all five variants of the algorithm using the Ljubljana breast
cancer data set (Section 2.3), with results as shown in Table 23. The column labelled
‘Accuracy’ lists the classification accuracy reported in [De Jong93] for the Ljubljana
data set. Note, however, that due to the use of an instance presentation method
that [De Jong93] terms batch-incremental mode, the entire data set was used both for
training and for recall [De Jong93, p. 168], as opposed to the split into training and
recall sets described in Section 2.3 and used for all other tests reported in this thesis.

The baseline accuracy for the complete Ljubljana data set is 70.3% (based on
a total of 286 instances, of which 201 are positive). Thus, only GABIL+D and
GABIL+AD were able to exceed the baseline accuracy for this data set. It is in-
teresting to note that the adaptive version (i.e. Adaptive GABIL) did not perform
as well as the version in which both operators were applied without self-adaptation
(i.e. GABIL+AD); the authors hypothesize that this is due to the relatively small
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Algorithm Variant Accuracy
GABIL (original) 68.7%
GABIL+A (with adding alternative) 69.1%
GABIL+D (with dropping condition) 71.5%
GABIL+AD (with both new operators) 72.0%
Adaptive GABIL 70.3%

Table 23: Classification accuracy for GABIL on the Ljubljana data set

population size used in that experiment, and propose to adapt population size as well

as operator selection in future versions [De Jong93, pp. 181-182].

[De Jong93] also reports on a series of experiments using a series of artificial
concepts. In this series, Adaptive GABIL produced the best result among the five
algorithm variants, GABIL+D was second best, and GABIL+AD was third. The fact
that GABIL+AD performs less well than both GABIL+D and the adaptive version on
the artificial concepts “shows the danger of indiscriminately including multiple fixed
biases, which can interfere with each other, producing lower performance” [De Jong93,
p. 181]; in other words, new learning-specific operators should not be introduced
indiscriminately, without considering the effect they might have on other operators,
or without some means of mitigating such side effects as do occur. This is the reason
why self-adaptation was added to GABIL [De Jong93, pp. 178-179], although self-
adaptation is not the only means by which this effect might be handled (e.g. see
Section 4.4.3.3.4).

4.4.3 The Proposed ELGAR Algorithm

ELGAR (‘Evolutionary Learning by Genetic AlgoRithm’) is a genetic learning sys-
tem which was written to evaluate the effectiveness of different genetic learning tech-
niques. The resulting algorithm was then combined with ideas from Holte’s 1R clas-
sifier [Holte93], in order to create a hybrid algorithm with which to evaluate the
ideas proposed in this thesis. The genetic component of the system (i.e. ELGAR)
will be described here, while the hybrid system (called ‘Hybrid ELGAR’ in order to
distinguish it from the original) will be presented in Chapter 5.
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4.4.3.1 Data Representation in ELGAR

ELGAR represents rule sets in the same format as that of GABIL (see Section 4.4.2.1),
and thus, like GABIL, is an example of the Pittsburgh approach to genetic learning.
The only respect in which ELGAR’s representation format differs from GABIL’s is
that ELGAR does not perform self-adaptation (see Section 4.4.3.3.4), and thus does

not require or use control bits.

4.4.3.2 Operators

ELGAR currently implements the operators listed in Table 24. The user may choose

to apply any subset of these operators in any given run of the program.

Operator Type Name Reference Type

one-point crossover crossl [Goldberg89] binary
two-point crossover cross2 [Goldberg89] binary
uniform crossover crossU [Goldberg89] binary
modified uniform crossover | crossMU | [Eshelman91] binary
rule crossover crossR [Michalewicz92] | binary
mutation mutation | [Goldberg89] unary
adding alternative addalt [De Jong93] unary
dropping condition dropcond | [De Jong93] unary
generalization/specialization | genspec | [Michalewicz92] | unary

Table 24: Operators implemented in ELGAR

4.4.3.2.1 One-point and Two-point Crossover

These operators are described in Section 4.2.4. Since ELGAR follows GABIL’s
variable-length data representation, it also borrows GABIL’s implementation of two-
point crossover [De Jong93] (see Section 4.4.2.2), and extends one-point crossover in
exactly the same fashion: crossover points are randomly selected in the longer of the
two parent individuals, and forced to be congruent with respect to rule boundaries in

the shorter parent.

4.4.3.2.2 Uniform Crossover

This operator is described in Section 4.2.4. In ELGAR, uniform exchange of bits

occurs only in those bit positions which exist in both parents; the remaining portion
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of the longer parent is simply copied to the longer child. Note that this implies that
uniform crossover will always create children with the same lengths as their parents.

As an example, consider the following two rule sets:

111 11111 11 e 111 11111 11
000 00000 00

Each rule contains ten bits, with two rules in the first rule set and one in the second.

Uniform crossover might produce the following offspring

010 01000 10 e 111 11111 11
101 10111 01

4.4.3.2.3 Modified Uniform Crossover

This operator is described in Section 4.2.4. The implementation in ELGAR, like that
of uniform crossover, considers only those bit positions which are common to both
parents, and copies the remaining portion of the longer parent to the longer child.
Among those bit positions which exist in both parents, those which differ in value
between the two parents are exchanged between the two children such that each child

receives half the differing bits from each parent. For example, given the two rule sets

111 11111 11 e 111 11111 11
000 01111 00

the resulting children might be
100 11111 01 e 111 11111 11
011 01111 10

4.4.3.2.4 Rule Crossover

This operator is a variation of uniform crossover which creates two children by ran-
domly exchanging entire rules from the two parents. This is inspired by the “RuleEx-
change” operator used in GIL [Janikow91] and described in [Michalewicz92, p. 225].

For example, given the two rule sets

111 11111 11 o 111 11111 11 e 111 11111 11 e 111 11111 11
000 00000 00 e 000 00000 00 e 000 00000 00 e 000 00000 00
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the resulting children might be

111 11111 11 e 000 00000 00 e 111 11111 11 e 000 00000 00
000 00000 00 e 111 11111 11 e 000 00000 00 e 111 11111 11

Note that rule crossover will never create any new rules; it will only exchange rules
between rule sets. For this reason, it should be used in conjunction with at least one

other form of crossover.

4.4.3.2.5 Mutation

This operator is described in Section 4.2.3. The mutation operator in ELGAR always
flips exactly one randomly chosen bit in every parent individual. This is a varia-
tion on the mutation operator defined for use with overpopulation by McCallum and
Spackman, which applies with a probability of 1/n, where n is the number of bits per
individual [McCallum90]. While this is substantially greater than the usual proba-
bility used for mutation (commonly 0.001, according to [Goldberg89]), nevertheless
it retains the possibility for a given mutation to be ineffective, which is redundant in
the context of overpopulation. Thus, ELGAR guarantees that a mutated version of
every parent individual will be added to the temporary holding pool to be considered

for selection for the next generation.

4.4.3.2.6 Adding Alternative

This operator is implemented as in [De Jong93] (see Section 4.4.2.3.1), with the differ-
ence that it will never change a bit value from one to zero. The reason for this decision
is that zero-to-one mutations are already handled by the regular mutation operator,

and the mandate of adding alternative is to generalize rather than specialize.

4.4.3.2.7 Dropping Condition

This operator is implemented exactly as in [De Jong93] (see Section 4.4.2.3.2).

4.4.3.2.8 Generalization/Specialization

The genspec operator is effectively a combination of the “NewPEvent” and “NewN-
Event” operators used in GIL [Janikow91] and described in [Michalewicz92, pp. 225—
227]. Given a rule set and an instance whick is not correctly classified by that rule
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set, genspec will modify the rule set so as to classify the instance correctly. As used
in ELGAR, genspec always operates on the lowest-numbered instance in the training
set which is misclassified by the rule set.

In the case of an uncovered positive instance, genspec will add a rule which covers
that one instance explicitly. For example, consider the following rule set, using the

WIDGET concept and attributes described in Table 21:

(colour = red V orange V green) A (shape = square) — widget

(colour = blue ) A (shape = square) — widget
This would be represented by the bit string
111 11010 01 e 111 00001 01

Suppose that an instance describing an object which is small, green and circular is

found to be a widget; in that case, the result of genspec would be
111 11010 01 e 111 00001 O1 e 100 00010 10

or

(colour = red V orange V green) A (shape = square) — widget

(colour = blue ) A (shape = square) — widget

(size = small) A (colour = green) A (shape = circle) — widget

A covered negative instance is handled by randomly selecting an attribute value
required by that instance, and removing that value from all rules in the rule set. For

example, given the rule set

(colour = red V orange V green) A (shape = square) — widget
yellow V blue ) A (shape = square) — widget

(colour

(colour = orange V green ) A (shape = circle) — widget

or
111 11010 01 o 111 00101 01 e 111 01010 10

suppose we find an orange, square object which is not actually a widget. In this
case genspec will randomly select an attribute; for the sake of illustration, suppose
that the colour attribute is chosen. Then the attribute value to be removed would be
orange, and the resulting child individual would be
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111 10010 01 e 111 00101 01 e 111 00010 10
or

red V green) A (shape = square) — widget

(colour
(colour = yellow V blue ) A (shape = square) — widget
(colour = green ) A (shape = circle) — widget

Note that the given attribute value must be removed from all rules in the rule set in
order for the result to be effective.

The implementation of NewNEvent in GIL [Janikow91] is considerably more so-
phisticated, in that it will take much more care to ensure that the resulting child will
cover exactly the same set of instances that it did before, with the sole exception
of the negative instance which is known to be covered incorrectly. However, this is
accomplished by adding new rules, the number of which will depend on how many
rules in the rule set cover the negative instance, and how many attributes in each
such rule have more than one bit set to one. In practice, this tends to cause offspring
to grow to a length which makes them awkward to manipulate. This is why the GIL
implementation is not used in ELGAR.

One potential weakness of combining both NewPEvent and NewNEvent into a
single operator is that it might be possible for the combined operator to cause a given
rule set to oscillate between two forms. For example, suppose a rule set R does not
cover a positive training instance T;. The genspec operator would generalize R to
make it cover T, creating a new rule set R'. Suppose that R’ now covers a negative
training instance T, which had not been covered by R. It may now happen that rule
set R”, created by applying genspec to specialize R’, will not cover T2, but will also
no longer cover T,. In practice there are two reasons why this is unlikely to be a

problem, however:

e In the generalization case as described above, a rule set such as R’ is created
by adding a specific rule to the parent rule set (i.e. R in the above example).
The new rule in question is explicitly constructed to match the specific positive
instance which had not previously been covered. Consider the instances which
will be covered by R’ but not covered by R; clearly these will be identical to the
original training instance T, except possibly for the classification value. Thus,

the only way in which R’ can cover a negative instance not covered by R is if
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the negative instance is otherwise identical to positive instance T; — but this

can only happen if the training set is inconsistent.

Unless both versions of a given rule set (e.g. R and R’, or R’ and R") are equally
fit, only the fitter of the two is likely to be retained in the next generation. This
won’t stop the second version from being created, but at least it won’t waste
space in the next generation for a rule set which is known to be no better than

one which existed in a previous generation.

4.4.3.3 A Modified Genetic Algorithm

ELGAR offers the user a choice between two versions of overpopulation: the original
as defined by McCallum and Spackman[McCallum90], or a modified version which

sacrifices some exploratory power in favour of reduced memory and CPU consump-

tion.

The main processing loop in ELGAR is thus similar to that of McCallum and

Spackman’s approach (Section 4.4.1.2) — in fact, it will be identical if the McCal-
lum and Spackman version of overpopulation is used, and if the only two operators
applied are crossover and mutation. The main loop in ELGAR with the McCallum

and Spackman version of overpopulation is as shown in Figure 11.

Ll

()]

No

Let time t = 0.
Initialize population P(t).
Copy all individuals from P(t) to temporary holding pool T.

For every available operator which the user has chosen to apply:

(a2) Apply the operator to all individuals currently in T, with probability 1.0,
appending the newly created individuals to T.

(b) Compute fitness for all individuals just added to T.

Lett =t + 1.
Select new population P(t) from individuals in T.

Repeat steps 3 - 6 until a user-selected termination criterion is reached.

Figure 11: The main loop in ELGAR with ‘real’ overpopulation
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4.4.3.3.1 Termination Criteria

If a rule set is found which correctly classifies all available training instances, EL-
GAR’s genetic search will automatically terminate at the end of the generation which
produced that rule set. Otherwise, the user may opt to test for any or all of the
following criteria, causing ELGAR’s genetic search to terminate as soon as the first

selected condition occurs.

e a user-specified maximum number of generations

e convergence, which is defined in ELGAR as the situation in which the average
fitness of the current generation reaches 98% (an arbitrarily chosen value) of
the fitness of the most highly fit individual seen to date; the assumption is that

continuing the search past this point would be unproductive

e stagnation, which is defined in ELGAR as a lack of improvement over a user-
specified number of consecutive generations (where ‘improvement’ is defined as

any increase in the fitness of the most highly fit individual seen to date)

The convergence criterion is intended to monitor the condition that the popula-
tion has become dominated by a single highly fit individual. When this happens,
continuing exploitation via crossover is unlikely to be helpful, since a great majority
of individuals are either identical or highly similar to each other. At that point, only
mutation remains as a viable means of generating new individuals, and this process
is sufficiently slow that, for all intents and purposes, the search is no longer effective.

The stagnation criterion is a pragmatic means of ending a search which no longer
appears to be productive. The number of generations of tolerance can be selected by

the user; a value of zero causes ELGAR to ignore this criterion altogether.

4.4.3.3.2 Modified Overpopulation

Due to the memory requirements imposed by the McCallum and Spackman version
of overpopulation, particularly when many operators are used, ELGAR includes a
modified form of overpopulation in which operators are not applied to the newly
created individuals in the temporary holding pool, but only to the original members
of the current generation. The algorithm for this is as shown in Figure 12:
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1. Let time t = 0.

2. Initialize population P(t).
3. Copy all individuals from P(t) to temporary holding pool T.
4. For every available operator which the user has chosen to apply:
(a2) Apply the operator to all members of P(t), with probability 1.0, appending
the newly created individuals to T.
(b) Compute fitness for all individuals just added to T.
5 Lett =t + 1.
6. Select new population P(t) from individuals in T.
7. Repeat steps 3 - 6 until a user-selected termination criterion is reached.

Figure 12: The main loop in ELGAR with modified overpopulation

If p is the number of individuals in the population and n is the number of op-
erators applied, then ‘real’ overpopulation as defined by McCallum and Spackman
would create a temporary holding pool containing a total of p - 2" individuals (see
Section 4.4.1.2). In contrast, the number of individuals created by the modified form
of overpopulation is only p- (n +1).

This has been shown experimentally (see Section 4.5.2) to provide enough explo-
ration to be useful, while still requiring significantly less memory and less processing

time than the McCallum and Spackman version of overpopulation.

4.4.3.3.3 Overpopulation vs. Operator Application Probabilities

When either form of overpopulation is used, the original members of any given gen-
eration are included without modification in the temporary holding pool, along with
their offspring as generated by whichever operators are applied. As a result, the
concept of operator application probability has no meaning (or, alternatively, all op-
erators are always applied with a probability of 1.0), since there is no longer any
reason why it might be useful for an operator not to replace a parent individual by

its offspring.
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Justification for this policy is based on the original concept behind overpopulation,
as enunciated by McCallum and Spackman [McCallum90, p. 151]:

Intuitively one can imagine a situation where the birthrate far exceeds
the sustaining support of the environment, and individuals are dying off
not from old age, but from competition with each other — thus, we say

over-population.

Thus, all parents and all of their offspring are allowed to compete amongst them-
selves simultaneously in every generation, and the problem of the probability with

which to apply any given operator never arises.

4.4.3.3.4 Overpopulation vs. Self-Adaptation

The same argument which justifies the unimportance of operator application probabil-
ities also applies to self-adaptation of operator applicability. While the self-adaptation
method in GABIL (see Section 4.4.2.4) is both powerful and elegant, the use of over-

population renders it redundant.

4.4.3.4 Selection Method

ELGAR uses binary tournament selection, with a small probability of allowing the
individual with lower fitness to be the tournament winner. The probability value used
for this purpose decreases over time, in a sequence of ten equal-sized steps beginning
at 0.3 and ending at 0.05. The particular value used at any given moment is selected
based on how close the current generation is to the maximum allowable number of

generations, according to the equation
step number = min(|10 x (generation number + generation limit) |, 10)

The reason for using tournament selection is that it is much simpler computation-
ally than most other methods and has the advantage of not requiring fitness values to
be scaled [Goldberg89], while simultaneously performing as well as other commonly
used techniques [Miller95], [Goldberg91, p. 90].

The reason for starting with a high probability of reversing the tournament re-

sult, and then decreasing this probability over time, is to Increase selection pressure
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over time. Specifically, in the early stages of the search there will be a relatively large
number of diverse individuals in the population, with a correspondingly greater likeli-
hood that an individual of lower fitness might actually be more useful simply because
it is different and might therefore contain a building block that would be usefully
combined with those in more highly fit individuals. However, when the population
has begun to converge, the more likely it becomes that fitness really will correlate
with actual worth, and thus it becomes less desirable to risk losing a more highly fit

individual in favour of one which is less fit.

4.4.3.5 Fitness Criteria

Fitness in ELGAR consists of a base value computed by a specific fitness function,

with optional bonuses or penalties applied according to criteria selectable by the user.

4.4.3.5.1 Fitness Functions

A number of different fitness functions were evaluated during the development of
ELGAR. The one currently used is based on that of GABIL, namely the square of
the percentage of training instances correctly classified. However, all of the functions

listed in Table 25 have been tried, with results as described in Section 4.5.2.

Fitness Function Reference
p° [De Jong93]
p

10-p

7

eP

1 — Laplace Error [Quinlan95]
completeness - (1 — consistency) | [Zhang94]

Table 25: Fitness functions tested in ELGAR

In Table 25, the value p refers to the percentage of training instances correctly

classified by the given rule set. A rule set’s Laplace error [Quinlan95] is computed as

e+k—1

L(n,e) = oy

where k is the number of classes to be learned, n is the number of training instances

covered by the rule set, and e is the number of false positives, t.e. negative instances
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which are covered by the rule set. When k = 2, as is the case with ELGAR (in
which the two classes are member of the target concept and non-member of the target
concept), Laplace error reduces to

e+2—-1 e+l

Ln,e) = n+2  n+2

Note that genetic search implicitly maximizes fitness, but the Laplace error must be
minimized in order to produce the best possible concept description; this is why the
Laplace error is subtracted from 1.0.

Similarly, completeness is defined as the percentage of positive instances which
are correctly classified, and consistency (which, in this context, should perhaps have
been termed ‘inconsistency’ instead) is the percentage of false positives [Zhang94, pp.
442-443]. The goal is to maximize completeness while simultaneously minimizing the
percentage of false positives, which is why the fitness function involving these terms
is written as shown in Table 25.

The reason for testing functions such as p, 10 - p, p* and e? was to see how they
compare to the p? function used in GABIL. As shown in Section 4.5.2, ELGAR
produces identical results using any of these functions, given that all other operating
parameters are unchanged. In hindsight this is not surprising, due to the influence
of binary tournament selection. This selection scheme relies only on the direction
of the inequality between two fitness values, rather than on the magnitude of their
difference; for example, a tournament involving fitness values of 0.001 and 0.001001
would produce the same outcome as one involving values of 1,000,000 and 100. It
seems likely that, had other selection schemes been used instead, this result may well

have been different.

4.4.3.5.2 Fitness Tuning

In addition to the basic fitness computation, the user may choose to influence ELGAR

by applying either or both of the following:

e a bonus equal to ten times the amount by which a rule set’s accuracy exceeds

the baseline accuracy of the training set

e a penalty equal to 0.001 multiplied by the number of rules in the rule set
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The first of these items is intended to reward rule sets which perform better than
random guessing, while the second is intended to break ties in favour of shorter rule
sets. Note that the fitness value will never be negative under any circumstances, with

values that would otherwise be negative being replaced by zero.

4.5 Experimental Results

4.5.1 GABIL

The only data set among those considered here for which [De Jong93] reports an ex-
perimental result is the Ljubljana breast cancer data, for which GABIL+AD obtained
a classification accuracy of 72.0% (see Table 23).

4.5.2 ELGAR

Twenty experiments were conducted using ELGAR. All runs were performed on a
166 Mhz Intel Pentium system with 32 megabytes of memory, running the Slackware
3.2 distribution of Linux with kernel 2.0.30. ELGAR is written in ANSI C, and was
compiled with gcc version 2.7.2.

In order to minimize the effects of the randomness involved in genetic search,
every experiment performed five complete genetic searches, each in a separate pass,
using a single continuous sequence of random numbers generated by the Linux im-
plementation of the random() function from the standard C library. All experiments
used exactly the same sequence, obtained by seeding the random() function.

Table 26 describes the parameters used for each experiment, other than the num-
ber of passes which was held constant at five in all cases. Columns in this table are

interpreted as follows:

e ‘Exp.’ is the experiment number.
e ‘Pop.’ is the population size.

e The ‘Max. Gen.’ column contains two values for each experiment. The first
value is the maximum number of generations per pass which will be permitted

under any circumstances. The second value is the stagnation lLimit, i.e. the
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maximum permitted number of generations in which no improvement occurs
(see Section 4.4.3.3.1).

‘Fitness’ describes the fitness function used. These functions are described in
greater detail in Section 4.4.3.5.1. The term ‘adjusted’ indicates that both the
penalty and the bonus described in Section 4.4.3.5.2 were applied.

‘Overpop.’ indicates which form of overpopulation is used; the term ‘origi-
nal’ denotes the version described in [McCallum90], while the term ‘modified’

denotes the version described in Section 4.4.3.3.2.

‘Missing’ describes the manner in which missing or unknown attribute values in
instances are handled. Here, ‘always’ indicates that an attribute with a missing
value is always deemed to satisfy the requirements for that attribute in any
rule set; ‘never’ means that an attribute with a missing value always fails to
satisfy the requirements for that attribute in any rule set; ‘discard’ means that
all training instances containing unknown values will be ignored entirely, and
‘extra’ indicates that unknown values will be handled by considering unknown
to be yet another potential value for the given attribute.

‘Con.’ indicates whether or not convergence is evaluated as a potential termi-

nation condition, as described in Section 4.4.3.3.1.

‘Operators’ lists the operators which were activated during each experiment.
See Table 24 for a list of operator names, and Section 4.4.3.2 for a description

of each operator.
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Exp. | Pop. | Max. Gen. | Fitness Overpop.- | Missing | Con. | Operators
1 100 | 600 / 300 | p? adjusted modified | always | yes cross2, mutation
2| 100{ 600/ 300 | p*adjusted modified | always | no cross2, mutation
311000 | 600/ 300 | p? adjusted modified | always | no cross2, mutation
4| 100 | 1200/ 1200 | p? adjusted modified | always | no cross2, mutation
5| 100 | 600/ 300 | p? adjusted original | always | no cross2, mutation
6| 100| 600/300 |p? modified | always | no cross2, mutation
71 100| 600/300 |p modified | always | no cross2, mutation
8| 100| 600/300 | 10-p modified | always | no cross2, mutation
9| 100| 600/300 {p° modified | always | no cross2, mutation
10| 100 | 600/ 300 | e modified | always | no cross2, mutation
11| 100| 600/300 | 1—L(n,e€) modified | always | no cross2, mutation
12| 100| 600/ 300 | comp-(1~—cons) | modified | always | no cross2, mutation
13 100 | 600/ 300 | p? adjusted modified | never no cross2, mutation
14 | 100 | 600/ 300 | p? adjusted modified | discard | no cross2, mutation
15| 100 | 600/ 300 | p® adjusted modified | extra no cross2, mutation
16 | 100 | 600 /300 | p?adjusted modified | always | no crossl, mutation
17| 100 | 600/ 300 | p® adjusted modified { always | no crossU, mutation
18 | 100 | 600/ 300 | p? adjusted modified | always | no crossMU,
mutation
19| 100 | 600/ 300 | p? adjusted modified | always | no cross2, addalt,
dropcond,
genspec,
mutation
20 100 | 600 / 300 | p? adjusted original always | yes cross2, addalt,
dropcond,
genspec,
mutation

Table 26: ELGAR experiment descriptions

The intentions behind these experiments were as follows:

Experiment 1 is intended to establish the behaviour of ELGAR’s genetic mode

with the most commonly used parameters.

Experiment 2 demonstrates the effect of the convergence test as a termination

criterion.

Experiments 3 and 4, respectively, test the effects of a larger than usual popu-

lation and a greater than usual limit on the number of generations evaluated.

Experiment 5 compares the effects of the original and modified forms of over-

population.
Experiments 6 through 12 demonstrate the effects of different fitness functions.
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Experiments 13 through 15 demonstrate the effects of different methods of han-
dling unknown attribute values.

Experiments 16 through 19 show the effects of different operators.

Experiment 20 evaluates the effect of the convergence test when a greater num-

ber of operators are in use.

The results of the twenty experiments are summarized in Tables 27 - 34. Columns in

these tables are interpreted as follows:

‘Exp.’ is the experiment number.

‘Fit.’ is the average over all passes of the fitness of the best observed individual
from each pass. Note that, in the experiments described here, every run included

five passes.
‘CPU’ is the average CPU time consumed per pass, in seconds.
‘Gen.’ is the average number of generations per pass.

‘Avg. Train’ is the average over all passes of the classification accuracy of the
best observed individual from each pass, measured against the training set.
This is shown both as a percentage of all training instances, and (under the
subheading ‘#’) as the actual number of training instances predicted correctly,

as compared to the number of instances in the entire training set.

‘Max Train’ is the classification accuracy of the best individual observed during
the entire run, as measured against the training set. This is shown both as a

percentage and as the actual number of training instances predicted correctly.

The ‘Avg. Recall’ and ‘Max Recall’ columns refer to the same individuals as
those described by ‘Avg. Train’ and ‘Max Train’, and provide similar informa-
tion. However, it is important to note that the values in these two columns do
not necessarily reflect the best observed performance relative to the recall set;
instead they describe the performance against the recall set of those individuals
which performed best against the training set — a distinction which is subtle,
but important. In order for the learning process to be fair, the recall set was

not made available to the learner until after the training phase was complete.
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Exp. | Fit. | CPU | Gen. Avg. Train Max. Train | Avg. Recall | Max. Recall
% # % # % # % #
1.607 | 158 74 [785 | 150/191 | 82.7 | 158 | 70.3 | 67/95 | 76.8 73
2411 | 1388 | 568 | 854 | 163/191 | 87.4 | 167 | 70.7 | 67/95 | 75.8 72
2.902 | 1336.9 | 505 | 89.6 | 171/191 | 91.1 | 174 | 69.7 | 66/95 | 73.7 70
2.083 | 238.9 | 1200 | 82.6 | 158/191 | 85.3 | 163 | 70.3 | 67/95 | 73.7 70
2047 | 1498 | 514 [ 823 157/191 | 85.9 | 164 [ 74.1 | 70/95 [ 77.9 74
0.729 | 1476 | 542 | 85.3 | 163/191 | 88.0 | 168 | 69.1 | 66/95 | 75.8 72
0.853 | 147.1 | 542 | 85.3 | 163/191 | 88.0 | 168 | 69.1 | 66/95 | 75.8 72
8.534 | 147.3 | 542 | 85.3 | 163/191 | 88.0 | 168 | 69.1 | 66/95 | 75.8 72
0622 | 1473 | 542 [ 85.3 | 163/191 | 88.0 | 168 | 69.1 | 66/95 | 75.8 72
10 | 2.348 | 1474 | 542 | 853 | 163/191 | 88.0 | 168 | 69.1 | 66/95 | 75.8 72
11 [ 0.984 | 1314 | 552 |64.3 | 123/191 | 77.5 | 148 | 41.3 | 39/95 | 45.3 43
12 { 0.799 | 147.5 | 591 | 83.8 | 160/191 | 88.0 | 168 | 72.2 | 69/95 | 76.8 73
13 [ 2205 | 104.3 | 541 | 83.7 | 160/191 | 86.9 | 166 | 674 | 64/95 | 12.6 69
14 | 2202 | 100.8 | 541 | 84.3 | 157/186 | 87.6 | 163 | 69.2 | 63/91 | 74.7 68
15 | 2.228 | 1105 510 | 83.9 [ 160/191 | 86.4 | 165 | 72.6 | 69/95 | 76.8 73
16 | 2.120 | 111.5| 514 | 82.9 | 158/191 | 87.4 | 167 | 70.3 | 67/95 | 76.8 73
17 [ 2172 | 110.5| 498 | 834 | 159/191 | 91.1 | 174 | 69.1 | 66/95 | 73.7 70 |
18 [ 2.033 | 115.7 | 553 | 82.2 | 157/191 | 87.4 | 167 | 69.5 | 66/95 | 74.7 71
19 | 2.605 | 401.9| 600 { 87.1 | 166/191 | 89.0 | 170 | 71.2 | 68/95 | 73.7 70
20 | 2.594 | 6382.1 ; 591 | 87.2 | 167/191 | 90.1 | 172 | 65.7 | 62/95 | 70.5 67
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Table 27: ELGAR experimental results for the Ljubljana Breast Cancer Data Set

Fit. | CPU | Gen. | Avg. Train | Max. Train | Avg. Recall | Max. Recall

Exp

% # % | # % # % #
1| 4.808 6.3 40 [ 90.0 | 112/124 | 100.0 | 124 | 80.1 | 346/432 | 99.1 | 428
215784 | 232 165 | 98.2 | 122/124 | 100.0 | 124 | 95.7 | 414/432 | 100.0 | 432
315994 65.3 49 | 100.0 | 124/124 | 100.0 | 124 | 100.0 | 432/432 | 100.0 | 432
41599 | 42.2 ] 310 100.0 | 124/124 | 100.0 | 124 | 98.5 | 426/432 | 100.0 | 432
55784 | 26.5 156 | 98.2 | 122/124 | 100.0 | 124 | 96.4 | 416/432 | 100.0 | 432
6 | 0.966 16.2 124 | 98.2 | 122/124 | 100.0 ; 124 | 96.3 | 416/432 | 100.0 | 432
7 | 0.982 16.2 124 | 98.2 | 122/124 | 100.0 | 124 | 96.3 | 416/432 | 100.0 | 432
8 | 9.823 16.2 124 | 98.21122/124 1 1000 | 124 | 96.3 | 416/432 | 100.0 | 432
910951 16.3 124 ] 98.2 | 122/124 1 100.0 | 124 | 96.3 | 416/432 | 100.0 | 432

10 [ 2672 16.2 | 124 ] 98.2 | 122/124 | 100.0 | 124 | 96.3 | 416/432 | 100.0 | 432
11 1 0.982 | 34.4 | 287 | 94.2 | 117/124 | 100.0 | 124 | 93.6 | 404/432 | 100.0 | 432
12 1 0.970 | 33.7| 226 | 98.2 | 122/124 | 100.0 | 124 | 95.4 | 412/432 | 100.0 | 432

13 15.784 [ 23.1| 165 98.2 | 122/124 | 100.0 | 124 | 95.7 | 414/432 | 100.0 | 432
14 [ 5.784 [ 23.0| 165 98.2 | 122/124 | 100.0 | 124 | 95.7 | 414/432 | 100.0 | 432
15 | 5.400 { 448 | 370 | 95.0 | 118/124 | 100.0 | 124 | 89.3 | 386/432 | 100.0 | 432
16 | 5.573 | 22.0 ] 204 | 96.5| 120/124 | 100.0 | 124 | 93.1 | 402/432 | 100.0 | 432

17 [ 5.781 | 230 164 ] 98.2 ] 122/124 | 100.0 | 124 | 95.6 | 413/432 | 100.0 | 432
18 | 5.362 | 46.1 | 410 | 94.7 | 117/124 | 100.0 | 124 | 89.2 | 385/432 | 100.0 | 432
19 | 5.981 | 33.3 94 | 100.0 | 124/124 | 100.0 | 124 | 89.8 | 388/432 | 93.5 | 404
20 | 4.789 | 502.2 | 403 | 89.8 [ 111/124 | 91.1 | 113 | 81.7 | 353/432 ;| 83.3 | 360

Table 28: ELGAR experimental results for the MONK’s Problem 1 Data Set
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Exp. | Fit. | CPU | Gen. Avg. Train Max. Train | Avg. Recall | Max. Recall
% # %] #1 % #] % #

12492 | 134 72[80.6|136/169 | 84.6 | 143 | 72.1 | 311/432 | 73.6 | 318
212616 | 852 446 | 81.7 | 138/169 | 88.8 | 150 | 73.4 | 317/432 | 77.8 | 336
313250 | 896.8| 393 | 87.1|147/169 | 89.3 | 151 | 77.0 | 333/432 | 81.5 | 352
42616 | 217.7 | 1200 | 81.7 | 138/169 | 85.2 | 144 | 71.0 | 307/432 | 755 | 326
5| 2.823 | 126.2 | 408 | 834 | 141/169 | 87.0 | 147 | 70.7 | 306/432 | 73.6 | 318
6 | 0.717 | 1086 | 496 | 84.6 | 143/169 | 88.8 | 150 | 73.9 | 319/432 | 77.8 | 336
7]0.846 | 108.5 | 496 | 84.6 | 143/169 | 88.8 | 150 | 73.9 | 319/432 | 77.8 | 336
8 [8462| 108.7| 496 | 84.6 | 143/169 | 88.8 | 150 | 73.9 | 319/432 [ 77.8 | 336
9] 0.608 | 1089 | 496 | 84.6 | 143/169 | 888 | 150 | 73.9 | 319/432 | 77.8 | 336
10 | 2.331 | 108.8 | 496 | 84.6 | 143/169 | 88.8 | 150 | 73.9 | 319/432 | 778 | 336
110969 97.0| 482|808 | 137/169 | 88.2 | 149 | 74.8 | 323/432 | 81.5 | 352
12 {0.692 | 156.5| 547 | 83.7 | 141/169 | 929 | 157 | 71.7 | 310/432 | 78.7| 340
132616 | 84.3| 446 | 81.7 | 138/169 | 888 | 150 | 73.4 | 317/432 | 77.8 | 336
14 { 2616 | 83.9 | 446 | 81.7 | 138/169 | 88.8 | 150 | 73.4 | 317/432 | 77.8 | 336
15 [ 2411 739 | 420|799 | 135/169 | 84.6 | 143 | 70.9 | 306/432 | 71.3 | 308
16 [ 2288 | 59.3 | 362 | 78.8 | 133/169 | 85.8 | 145 | 67.5 | 292/432 | 71.3 | 308
17 | 2507 | 74.7 | 394 | 80.7 | 136/169 | 89.3 | 151 | 71.2 | 307/432 | 76.6 | 331
18 | 2.645 | 86.6 | 431 | 81.9 | 138/169 | 91.1 | 154 | 72.0 | 311/432 | 76.4 | 330
19 | 4643 | 7952 | 411 | 99.2 | 168/169 | 100.0 | 169 | 79.0 | 341/432 | 81.5 | 352
20 | 4.283 | 1127.8 | 581 ] 96.1 | 162/169 | 98.8 | 167 | 78.0 | 337/432 | 845 | 365

Table 29: ELGAR experimental results for the MONK’s Problem 2 Data Set

Exp. | Fit. CPU | Gen. Avg. Train Max. Train Avg. Recall Max. Recall
% # % # % # % #

1 5.190 26 20 {939 [ 115/122 | 94.3 | 115 | 97.0 | 419/432 | 97.2 | 420
21 5.309 27.7 | 352 (949 ] 116/122 | 959 | 117 | 97.3 | 420/432 | 97.5 | 421
35464 | 365.1 | 352 496.2|117/122} 97.5 | 119 | 95.3 | 412/432 | 96.3 | 416
45425 | 116.8 | 1200 | 95.9 { 117/122 | 95.9 | 117 | 96.5 | 417/432 | 97.5| 421
5 | 5.425 52.1 | 348 ( 95.9 | 117/122 §y 95.9 | 117 | 95.9 | 414/432 | 96.3 | 416
6 | 0.920 37.3 | 3571959 | 117/122 | 95.9 | 117 | 96.6 | 417/432 | 97.7 422
71 0.959 373 | 3571959 | 117/122 | 95.9 | 117 | 96.6 | 417/432 | 97.7 | 422
8 | 9.590 374 | 357 (959 | 117/122 ) 95.9 | 117 | 96.6 | 417/432 | 97.7| 422
9 | 0.882 37.3 | 357|959 | 117/122 | 959 | 117 | 96.6 | 417/432 | 97.7 | 422
10 | 2.609 374 | 3571959 | 117/122 | 95.9 | 117 | 96.6 | 417/432 | 97.7 | 422
11 | 0.982 714 | 518 ( 949 | 116/122 | 98.4 | 120 | 88.3 | 382/432 | 94.0 | 406
12 | 0.923 444 | 340|959 | 117/122 | 95.9 | 117 | 96.8 | 418/432 | 98.1 | 424
13 | 5.309 274 | 352|949 | 116/122 | 959 | 117 | 97.3 | 420/432 | 97.5 | 421
14 | 5.309 273 | 352|949 |116/122 | 959 | 117 | 97.3 | 420/432 | 97.5 | 421
15 | 5.425 45.8 | 443 | 959 | 117/122 | 95.9 | 117 | 96.7 | 418/432 | 97.2 | 420
16 | 5.425 336 | 374}959 | 117/122 | 95.9 | 117 | 96.2 | 416/432 | 97.2 | 420
17 | 5.346 46.3 | 390 1952 ] 116/122 | 95.9 | 117 | 97.4 | 421/432 | 100.0 { 432
18 | 5.309 26.2 | 351|949 | 116/122 | 959 | 117 | 96.9 { 418/432 | 97.2 | 420
19 | 5.824 | 185.0 | 348 | 99.3 | 121/122 | 100.0 |{ 122 | 88.2 | 381/432 | 91.0| 393
20 { 5.519 ] 1409.4 | 464 | 96.7 | 118/122 | 98.4 | 120 | 95.6 | 410/432 | 100.0 | 432

Table 30: ELGAR experimental results for the MONK’s Problem 3 Data Set
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Exp. | Fit. | CPU | Gen. Avg. Train Max. Train | Avg. Recall | Max. Recall

% Fl %] #] %] #| %] #|
110.226 5.7 1{47.7 | 1937/4062 | 47.7 | 1937 | 48.7 | 1979 | 48.7 | 1979
212432 (11844 | 414 | 68.5 | 2783/4062 | 99.8 | 4053 | 69.1 | 2808 | 99.8 [ 4052

Table 31: ELGAR experimental results for the Mushrooms Data Set

Exp. | Fit. [ CPU | Gen. Avg. Train Max. Train Avg. Recall Max. Recall
% #| %] #| %[ #| % #
11176 | 514 45 [60.8 | 762/1252 | 66.5 | 832 | 59.5 | 145/1252 | 64.2 804
2 | 1970 | 626.7| 487 | 67.9 | 850/1252 | 69.2 | 867 | 63.6 | 797/1252 | 64.8 811

Table 32: ELGAR experimental results for the Ludwig Trial V 17-Attribute Data Set

Exp. | Fit. | CPU | Gen. Avg. Train Max. Train Avg. Recall Max. Recall
% #| % #| %] #] % #
1| 0.278 1.7 1[528[661/1252 | 52.8 | 661 | 53.6 | 671/1252 | 53.6 671
2102781674 301|528} 661/1252 | 52.8 | 661 | 53.6 | 671/1252 | 53.6 671

Table 33: ELGAR experimental results for the Ludwig Trial V 31-Attribute Data Set

Exp. | Fit. CPU | Gen. Avg. Train Max. Train | Avg. Recall Max. Recall
% # % # % # % #
3.923 144 38 | 95.1 | 333/350 | 96.6 | 338 | 91.5 | 319/349 | 95.7 334
4455 | 2075 | 575 | 99.5 | 348/350 | 100.0 [ 350 | 94.6 | 330/349 | 954 333
4.503 | 11366 | 302 | 99.9 | 350/350 | 100.0 | 350 | 94.7 | 330/349 { 96.6 337
4484 | 358.6 | 1115 | 99.8 | 349/350 | 100.0 { 350 | 94.6 | 330/349 | 95.4 333
4449 | 2758 | 523 | 99.5 | 348/350 { 100.0 | 350 | 93.7 | 327/349 | 94.0 328
0995 | 175.1| 478 | 99.8 | 349/350 | 100.0 | 350 | 94.4 | 329/349 | 96.8 338
0998 | 174.8| 478 | 99.8 | 349/350 | 100.0 | 350 | 94.4 | 329/349 | 96.8 338
9977 | 1749 | 478 | 99.8 | 349/350 | 100.0 | 350 | 94.4 | 329/349 | 96.8 338
0.993 | 174.7 | 478 | 99.8°| 349/350 | 100.0 | 350 | 94.4 | 329/349 | 96.8 338
10 | 2.712 | 175.1| 478 | 99.8 | 349/350 | 100.0 | 350 | 94.4 | 329/349 | 96.8 338
11 | 0.996 | 2148 | 528 | 99.3 | 348/350 | 99.7 | 349 | 93.6 | 327/349 | 95.1 332
12 10992 | 2485 | 600 | 99.5 | 348/350 | 99.7 | 349 | 94.2 | 329/349 | 95.7 334
134326 | 1894 574 | 98.5 | 345/350 | 98.6 | 345 | 92.4 | 323/349 | 93.1 325
14 | 4448 | 221.8| 595 | 99.3 | 343/345 | 99.7 | 344 | 93.0 | 314/338 | 95.9 324
15 | 4.387 | 221.6| 570 | 99.0 | 346/350 | 99.1 | 347 | 94.1 | 328/349 | 94.8 331
16 | 4436 | 190.2 { 552 | 99.4 | 348/350 | 100.0 350 | 93.4 | 326/349 | 94.6 330
17 | 4407 [ 1952 | 506 | 99.1 | 347/350 | 99.7 | 349 | 93.9 | 328/349 | 96.3 336
18 | 4380 | 1723 | 541 | 98.9 | 346/350 | 99.4 | 348 | 93.6 | 327/349 | 95.1 332
19 | 4.488 | 1182 71 | 100.0 | 350/350 | 100.0 { 350 | 91.5 | 319/349 | 93.1 325
20 | 4487 | 397.3 46 | 100.0 | 350/350 | 100.0 | 350 | 92.2 | 322/349 | 93.7 327

OI100 =3 O Ui O D =

Table 34: ELGAR experimental results for the Wisconsin Breast Cancer Data Set
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Table 35 lists the best result obtained for each data set using ELGAR, along with
results for C4 (as determined directly by experiment). For each ELGAR result, the
number of the experiment or experiments in which that result was obtained is shown
as well. The ‘Baseline’ column indicates the baseline accuracy for the recall set in

each case.
Data Set | Baseline Results Exp.
C4 |ELGAR
Ljubljana 73.7% | 768% | 77.9% 5
MONK’s 1 50.0% { 75.9% | 100.0% | 2-18
MONK’s 2 67.1% | 65.1% 84.5% 20
MONK’s 3 52.8% | 97.2% | 100.0% | 17 -20
Mushrooms 51.3% | 100.0% 99.8% 2
Trial V/17 53.6% | 65.0% 64.8% 2
Trial V/31 53.6% | 61.7% 53.6% 1,2
Wisconsin 66.2% | 93.7% 96.8% | 6-10

Table 35: ELGAR compared with C4 on recall sets

4.6 Conclusions from Experiments with ELGAR

ELGAR’s results suggest a number of conclusions, chief among which are:

e The genetic algorithm is surprisingly resistant to perturbation by means of
altered operating parameters. The twenty experiments performed here involve
a number of widely different conditions, but the results of those experiments
are remarkably similar, which suggests that the potential benefit to be gained
from minor changes to the model is limited; it would appear that significant
improvement would require a more fundamental change, such as a different data

representation, or a combination of genetic search with other learning methods.

o Although the difference between experimental outcomes is small, it is not nonex-
istent; however, there is no single experimental design (i.e. no single set of
operating parameter values) which is consistently superior for all data sets.

The lack of any case in which experiment 3 was superior suggests that enlarging
the population is not necessarily useful; likewise, the lack of any case in which
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experiment 4 was superior suggests that increasing the maximum generation
limit is unlikely to help.

However, other techniques which increase exploration at the expense of CPU
time, such as those employed in experiments 2 (not checking for convergence)
and 20 (using the original McCallum and Spackman version of overpopulation
[McCallum90] in conjunction with a greater number of operators) appear to be

fruitful in some learning domains.

Due to the use of tournament selection, the specific choice of fitness function
appears to play a relatively small role in ELGAR. Different functions of the per-
centage of correctly classified training instances, as exemplified by experiments
6 - 10, appear to have no influence whatsoever. Laplace error and completeness
vs. consistency, as tested in experiments 11 and 12, do exhibit slightly different
behaviour, but not enough of a difference to prevent being overshadowed by the

effects of other parameters.

Adjustments made to the fitness function, as described in Section 4.4.3.5.2, do
appear to make a difference for the better. Evidence for this conjecture arises
from the fact that experiments 2 and 6 are identical except for these fitness
adjustments, and experiment 2 consistently outperforms experiment 6, except
in the atypical results obtained for the Wisconsin breast cancer data set; here,
the unadjusted fitness function clearly provides better performance, although it
is not clear why this should be so.

It is interesting to compare ELGAR’s genetic search to that of GABIL. This
cannot be done directly, since the only results available for GABIL are for the
Ljubljana data set and were obtained using the entire data set for both training
and recall [De Jong93, p. 168]. However, what can be compared is the degree
of improvement with respect to the baseline accuracy of the recall set used in

each case.
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For GABIL, the baseline accuracy of the entire data set is 70.3%, and the
best reported result is 72.0% (see Section 4.4.2.6), which represents an absolute

improvement of
72.0% — 70.3% = 1.7%

and a relative improvement of
(72.0% — 70.3%) = 70.3% = 2.4%

For ELGAR, the baseline accuracy of the recall set is 73.7%, and the best result
obtained was 77.9% (see Table 35). This represents an absolute improvement
of

77.9% — 73.7% = 4.2%

and a relative improvement of

(77.9% — 73.7%) + 73.7% = 5.7%

This is certainly not conclusive, but it does suggest that overpopulation might be
a more successful technique than the within-problem self-adaptation exhibited
by GABIL.

ELGAR is generally competitive with C4, outperforming it in five of eight data
sets. ELGAR does particularly well compared to C4 on the MONK’s problems,
but does particularly poorly on both versions of the Ludwig Trial V data set.

Other than the fitness function, the single item which most influences genetic
search is the data representation format. This would appear to be an interest-
ing area for further study, particularly because the format used in GABIL and
inherited by ELGAR appears vulnerable to epistasis, the condition in which
bits that are closely related (in the sense that they are part of the same building
block) are widely separated physically within a bit string; this condition causes
building blocks to have long defining lengths, making them vulnerable to dis-
ruption. By allowing attributes to occur in arbitrary order in the bit string for
each rule set, GABIL and ELGAR run the risk that some attributes may be
closely related and yet be located in widely separated areas of the bit string.

For example, consider a modified version of the lion example from Section 1.1.3.1,

as shown in Table 36.
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Furry? | Age Tail | Name | Size Class
yes old long Leo large lion
yes | young | short Jane | medium | lion
yes | young | long Spot large lion
no young | medium | Fido large | not lion
yes old long | Rover | small | not lion
yes | young | short | Spike | small | not lion
no young tiny | Pinky | small { not lion
no old huge | TRex | large | not lion

Table 36: A modified training set for the concept LION

The Tail and Name attributes are clearly not relevant, and have been added
only to illustrate a point. The number of bits required to represent a rule would
change from seven for the original lion example (two bits for Furry?, plus two
for Age and three for Size) to a total of twenty (the original seven, plus five for
Tail and eight for Name). An example of a concept description for this modified

training set might be

(Furry = yes) A (Size = medium V large) — lion
or

10 11 11111 11111111 011

Suppose that this is actually the correct description for the LION concept, and

that the most accurate rule set currently in the population is
10 11 11011 11110111 011

Consider what will happen when one-point or two-point crossover is applied to
this individual. Almost any possible choice of crossover point or points would

cause the current values of the Furry? and Size features to be lost.

This problem occurs because the bits which are actually part of the solution
(in this case bit positions 0, 1, 17, 18 and 19) are separated by a number of bit
positions which describe irrelevant features (in this case the gap between bits 1
and 17). In the general case, this effect will occur in any situation in which bit

positions that are related in terms of the solution are far apart from each other.

In contrast, suppose the attributes were reordered as shown in Table 37.
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Furry? Size Age Tail Name | Class
yes large old long Leo lion

yes | medium | young | short Jane lion
yes large | young | long Spot lion
no large | young | medium | Fido | not lion
yes small old long | Rover | not lion

yes small | young | short | Spike | not lion
no small | young tiny Pinky | not lion
no large old huge | TRex | not lion

Table 37: A modified and reordered training set for the concept LION

In this representation, the same rule

(Furry = yes) A (Size = medium V large) — lion
is now encoded as

10 011 11 11111 11111111

Here the relevant bit positions are all adjacent. The difference between this sit-

uation and the previous one is best illustrated by the following pair of schemata:

10 #* #*xkxx xxkxksxx 011

10 011 ** %*%%%x *kkkkkkk

Clearly the second schema offers far more possibilities for crossover cut points

that would not cause disruption.

One possible way of dealing with this problem in general is to reorder attributes
according to some measure of relevance, in the hope that this will bring relevant
bits together. See Section 5.1.3.2 for an elaboration of this point. Another alter-
native would be to attempt to create a completely different data representation
in which the order of attributes would not be an issue; however, the problem
with this idea is that it is not at all clear what such a representation format

might be.

105



106



Chapter 5

Hybrid ELGAR

Given that there is room for ELGAR’s performance to improve, one potential means
of doing so is to combine genetic search with one or more other techniques. Some

approaches already taken by other researchers include:

e using genetic search to select attributes to be used by a different learning algo-
rithm (e.g. [Vafaie92, Vafaie94])

e using genetic search to determine neural network topology (e.g. [Opitz97])

e integration of genetic learning with Michalski’s AQ algorithm (e.g. [Bala94])

A simpler approach is to combine genetic learning with ideas inspired by Holte’s

1R classifier [Holte93]; this is the approach discussed in Section 5.1.

5.1 Integration of ELGAR and 1R

Holte’s recommended “simplicity first” approach to learning (see Section 3.2.4) would
create a concept description by beginning with the simplest description possible, and
adding whatever complexity might be required to capture knowledge that would oth-
erwise be missed. In contrast, genetic learning searches through the entire space of
possible concept descriptions which can be expressed using the available data repre-
sentation format. These two approaches are quite dissimilar, for which reason a means
of combining them is not obvious; however, their very dissimilarity would appear to

make them good candidates to work together.
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5.1.1 Attribute Subsets

A natural approach to the integration of “simplicity first” into genetic learning is to
confine learning to a single attribute (which 1R already does, of course), then expand
by considering subsets of two attributes, then three, adding an attribute at a time
until an appropriate level of accuracy is reached. This idea is a natural outgrowth of
the 2R extension of 1R described in [Nevill-Manning95].

Although this approach is tempting, it is impractical because it requires too much
computation. For example, the Ludwig Trial V 31-attribute data set contains 31
attributes; even if the attribute subset is limited to a cardinality of ten, this still

requires the investigation of a total of

10

2310; = 75, 973, 188

=1
subsets, each one subject to its own genetic search. Considering that results should
ideally be available within the experimenter’s lifetime, this might not be a useful
strategy.

5.1.1.1 Bounded Attribute Subsets

Given that exploration of all possible attribute subsets is not practical, the next
approach is to require that every subset under investigation must contain the single
attribute which leads to the best available one-rule for the given data set. This does
indeed reduce the number of subsets to be evaluated, but not by enough of a margin;
for example, in the Ludwig Trial V 31-attribute data set, there would still be a total
of
9
31+ 30C: = 22,964,117
i=1

attribute subsets of cardinality ten or less to consider. This number is derived from
the fact that the individual attributes must still be evaluated to determine which one
is best (the initial term of the sum), and then the remaining zero to nine elements of
each set must be selected from the remaining attributes. This represents a significant
reduction with respect to the original number of subsets, but clearly not to a sufficient

extent.
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5.1.1.2 Incremental Attribute Subsets

The next approach is to construct subsets one attribute at a time, adding only the
attribute which contributes the greatest gain. Informally this can be stated as follows;
a more formal statement of this algorithm is shown in Figure 13.

e Begin by evaluating one-rules involving each attribute, and determine which
attribute leads to the best possible rule; call this attribute F1.

e Evaluate two-rules (rules containing exactly two attributes) involving F1 paired
with every remaining attribute; let F2 be the attribute which, with F1, gives
the best possible rule set.

e Evaluate three-rules involving F1 and F2, letting F3 be the attribute which

completes the best-performing triple.

e Continue as above until all attributes have been evaluated or until the desired

level of accuracy has been reached.

This version reduces the number of subsets which must be evaluated to

N  N-(N+1
):,=__(2L)

=1
For ten attributes, this reduces to

10-11

) 55

(specifically, ten subsets of cardinality 1, nine subsets of cardinality 2, down to only
one subset of cardinality 10). This number is low enough to be achievable, but even
so in practice this technique requires much more CPU time than a pure genetic search
(for example, one run using the 17-attribute version of the Ludwig Trial V data set
ran for a total of 37,278.8 seconds); unfortunately, it does not yield a comparable
increase in accuracy. While it may be simple conceptually, it proves to be far from

simple computationally.
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1. Initialize attribute_count to zero, and best_attribute._subset to the empty
set.

2. Increment attribute_count.
3. Set attribute_subset to the current value of best_attribute_subset.

4. For every attribute A which is not currently a member of attribute_subset:

(a) Add A to attribute_subset.
(b) Evaluate attribute_subset, as follows:

i. Compute N = number of bits required to represent a single rule using
the attributes in attribute_subset.
ii. If N < threshold then
Exhaustively build and test all possible rules
using the attributes in attribute._subset.

else
Use genetic search to find the best possible rules

using the attributes in attribute_subset.

(c) If the rules developed for this attribute_subset perform better
than those for the current best_attribute_subset, then replace
best_attribute_subset by attribute_subset.

(d) Remove A from attribute_subset.

5. Repeat steps 2 - 4 until (attribute_count = total attributes) or 100% training
accuracy Is achieved.

Figure 13: Incremental algorithm for constructing and evaluating subsets
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Another drawback of this method is that it risks overlooking combinations of
attributes which together perform better than either one alone. For example, suppose
that attributes Al, A2 and A3 in some arbitrary data set produce one-rules with
accuracies of 70%, 20% and 30% respectively; despite the relatively poor accuracy
obtained using either A2 or A3 alone, in theory it could happen that the combination
of A2 and A3 together might yield a rule set which would be more accurate than any

involving Al. For these two reasons, this line of investigation was abandoned.

5.1.2 One-Rules as Seeds

There is nothing in the definition of the classical genetic algorithm which requires
the initial population to contain only randomly generated individuals; instead, it is
perfectly acceptable to seed the initial population with known candidate solutions,
Jjust as a lake might be stocked to guarantee a supply of fish. Of course, most of the
time no good candidates will be known @ priori. This train of thought suggests the
simplest possible integration of 1R with genetic learning, and the one which ultimately
proved to be most fruitful: in particular, evaluate all possible one-rules, and add the
best one-rule for each attribute to the initial population for the genetic search.

In Hybrid ELGAR, each one-rule is represented in its natural form, which is a rule
in which all bits are set to one other than those which correspond to the attribute for
which the one-rule is defined. For example, using the WIDGET concept and attributes
from Table 21, suppose that the best one-rule for the colour attribute is

(colour = red V green) — widget
This rule would be added to Hybrid ELGAR’s initial population, represented as:
111 10010 11

Thus the size and shape attributes are not used in this rule . Variations which were

tested and which proved not to be useful include:

e changing approximately half of the bits for unused attributes to zero (e.g. a
representation of 011 10010 01 for the above rule)

e changing approximately one third of the bits for unused attributes to zero (e.g. a
representation of 110 10010 11 for the above rule)
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keeping all bits for all unused attributes set to one, but also adding a second
copy of each rule with approximately one third of the unused attribute bits set
to zero (e.g. a representation of 111 10010 11 \bullet 110 10010 11 for the
above rule)

seed rule sets composed of the one-rule for a given attribute, plus a random
number of randomly chosen one-rules involving other attributes, with an en-
forced lack of duplication among the rules in a given rule set; for example,

given the above rule, suppose that the best one-rule for size is
(size = medium V large) — widget
or
011 11111 11
and that the best one-rule for shape is
(shape = circle) — widget
or
111 11111 10
Then a sample seed individual for the colour attribute might look like

111 10010 11
011 11111 11

or

(colour = red V green) — widget
(size = medium V large) — widget

seed rules in which most unused attributes are represented by all one bits, but a
random number of randomly chosen attributes are represented by the bit string
for that attribute, taken from the best one-rule involving that attribute; for

example, if the best one-rule for size is
(size = small V large) — widget

112



then the one-rule for the colour attribute might include that rule, becoming
101 10010 11

Since the population size (100 unless otherwise specified by the user) is usually
much larger than the number of attributes in most data sets, and given that only
one rule will be seeded per attribute, most of the time the initial population will still
include a number of randomly generated rule sets. However, those will almost always
be much less fit than the best available one-rules, causing the genetic search to be
biased in favour of the portion of the search space which contains those one-rules.
Thus, this method is reasonably close to the spirit of Holte’s concept of “simplicity
first”.

5.1.3 One-Rules and Attribute Ranking

The one-rules generated by 1R implicitly define a ranking of the available attributes,
in descending order of classification accuracy on the training set. This information

can be used in at least two different ways.

5.1.3.1 Attribute Filtering

The topic of attribute selection was touched upon in Section 1.1.3.1, in which it was
mentioned that the correct choice of attributes can influence the quality of learning
in a given domain. The term attribute filtering refers to removing attributes from
a domain once they are determined not to be useful, a practice which, if successful,
allows the learning process to concentrate on the presumably relevant attributes that
remain.

The ranking defined by 1R can be used for attribute filtering, as originally pro-
posed in [Holmes95]. As performed in Hybrid ELGAR, attribute filtering specifically
refers to removing from the data set any attribute for which the best available one-
rule has a classification accuracy on the training set which is less than the training
set’s baseline accuracy. Note that if the best one-rules for all attributes are below
baseline, none will be removed; this fairly obvious special case would otherwise make

learning impossible.
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5.1.3.2 Attribute Reordering

As discussed in Section 4.2.6.2, the success of genetic search depends directly on
the quality and defining length of the best available building blocks; the longer the
defining length of a building block, the less likely it is to be created by recombination,
and the more likely it is to be broken up. This has a direct consequence on the design
of the data representation for genetic learning, in the sense that bits in the bit string
which are likely to be related to each other should be located as close to each other
as possible.

Until a data representation scheme significantly better than that of GABIL is
designed, Pittsburgh-style genetic learners are limited in their ability to adhere to
this principle, since their only degree of freedom is the ordering of attributes within
the rule (see Section 4.6 for an example). While the problem of finding the optimal
attribute order is as yet unsolved, one obvious candidate is to order attributes based
on their 1R ranking, which is at least an approximation of their relevance. This does
not guarantee anything, but it would appear to increase the likelihood that building
block defining length will be minimized, to an extent proportional to the correlation
between 1R ranking and the actual relevance of each attribute. Thus, Hybrid ELGAR
allows the user to choose whether to sort all attributes into descending order of 1R

ranking.

5.1.4 One-Rules as a Partition of the Training Set

Like any rule, the best one-rule returned by 1R partitions the training set into those
instances which it classifies correctly, and those which it does not. Typically the for-
mer subset is much larger than the latter, which in light of [Holte93] should probably
not be surprising. Thus, the task of learning how to classify the comparatively few
training instances which the best one-rule misclassifies is likely to be much easier
than learning to classify the entire training set. This suggests the approach shown in

Figure 14.
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1. Build all one-rules, and find the one-rule with the highest classification accuracy
over the entire training set. If this rule classifies the entire training set correctly,
stop.

2. Use the best one-rule from step 1 to classify all training instances. Mark as
solved all training instances which are classified correctly.

3. Train the genetic learner on only those training instances which are not marked
solved.

Figure 14: Learning in a partitioned training set

This procedure will end with a partition of the training set (i.e. two disjoint subsets
whose union is the original set), such that one subset contains instances which are all
classified correctly by the best one-rule, and the other contains instances of which all

(or at least many) are classified correctly by a genetically learned rule set.

Of course, this leaves open the question of how to deal with recall instances; when
a previously unseen instance is encountered, into which subset should it be added?
Clearly what is needed at this point is a meta-rule set which would distinguish between
the two subsets — i.e. a rule set with which to decide whether a given recall instance
should be classified by the best one-rule found, or by the genetically learned rule set.

The term meta-rule is used in order to make it clear that the purpose of these rules
is to decide which ordinary rules should be applied to the classification of each recall
instance. The format of a meta-rule is no different than the format of any other rule,
in that a meta-rule includes conditions based on attribute values, and an outcome
which classifies an instance; the difference between a meta-rule and an ordinary rule is
the type of classification produced, since a meta-rule classifies an instance according
to which rule or rules to apply, while ordinary rules classify an instance as a member

or non-member of the concept to be learned.

Thus, the next step is to begin a new genetic search, over all training instances,
in order to find the appropriate meta-rules. In some sense, one learning problem
has been replaced by a new one, which may be either easier or more difficult to
solve. Experimental results (see Section 5.2) suggest that, in most domains, the
meta-rule search and the original learning problem appear to be of an equivalent
level of difficulty.
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The meta-rule approach complicates the problem of evaluating fitness; in partic-

ular, under what circumstances is an instance considered to be covered by a rule set?

As implemented in Hybrid ELGAR, this determination is made as follows:

1.

2.

3.

If the instance is covered by the meta-rules, it belongs to the subset which is
evaluated by the best one-rule. Thus, if it is covered by both the meta-rules

and the best one-rule, then it is considered covered overall.

Otherwise, if the instance is not covered by the meta-rules, but is covered by the

rule set from the original genetic search, then it is considered covered overall.

Otherwise the instance is considered not to be covered overall.

5.2 Experimental Results

Experiments with Hybrid ELGAR were done on the same machine as those done using
ELGAR (Section 4.5.2). Table 38 describes the parameters used for each experiment,

other than the following which were constant in all cases:

A total of five passes were performed.
The population size was 100.
The maximum number of generations was 600.

The maximum number of generations without improvement (stagnation limit)
was 300.

The fitness function was p?, adjusted by applying both the penalty and the
bonus described in Section 4.4.3.5.2 (except in experiment 22, the only one in
which the fitness penalty and bonus were not applied).

Unknown attribute values in instances were always deemed to satisfy the re-

quirements for that attribute in any rule set.
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Exp. | Overpop. | Convergence | Filtering | Sorting | Meta-Rules | Operators

21 | modified no no no no cross2, mutation

22 | modified no no no no cross2, mutation

23 | modified no no yes no cross2, mutation

24 | modified no yes no no cross2, mutation

25 | modified no yes yes no cross2, mutation

26 | modified yes yes no no cross2, mutation

27 | modified yes yes yes no cross2, mutation

28 | original no yes no no cross2, addalt,
dropcond, genspec,
mutation

29 | original yes yes no no cross2, addalt,
dropcond, genspec,
mutation

30 | modified no yes no yes cross2, mutation

Table 38: Hybrid ELGAR experiment descriptions

Columns in Table 38 are interpreted as follows:

e ‘Exp.’ is the experiment number, which begins at 21 because experiments 1 —
20 were performed with ELGAR, as described in Section 4.5.2.

e ‘Overpop.’ indicates which form of overpopulation is used; the term °‘origi-
nal’ denotes the version described in [McCallum90], while the term ‘modified’

denotes the version described in Section 4.4.3.3.2.

¢ ‘Convergence’ indicates whether or not convergence is evaluated as a potential

termination condition, as described in Section 4.4.3.3.1.

¢ ‘Filtering’ indicates whether or not attribute filtering was performed, as de-
scribed in Section 5.1.3.1.

e ‘Sorting’ indicates whether or not attribute reordering was performed, as de-
scribed in Section 5.1.3.2.

e ‘Meta-Rules’ indicates whether or not the search was performed in meta-rule

mode, as described in Section 5.1.4.

e ‘Operators’ lists the operators which were activated during each experiment.
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The intentions behind these experiments were as follows:

e Experiment 21 is intended to establish the behaviour of Hybrid ELGAR with

none of the experimental features enabled.

e Experiment 22 is similar to experiment 21, except that the usual fitness penalty
and bonus are not applied; this is the only experiment in this series for which

that is true.

e Experiment 23 investigates the effect of attribute reordering without attribute

filtering.

e Experiment 24 demonstrates the eflect of attribute filtering without attribute

reordering.
e Experiment 25 combines both attribute filtering and attribute reordering.

e Experiment 26 and 27 are similar to experiments 24 and 23, respectively, but

with convergence testing enabled.

e Experiments 28 and 29 include the original McCallum and Spackman version of
overpopulation [McCallum90] along with a greater number of operators; apart

from this, they are similar to experiments 24 and 26 respectively.

e Experiment 30 explores the effect of partitioning the training set via meta-rule

mode.

The results of the ten experiments are summarized in Tables 39 - 46. Columns in

these tables are interpreted as follows:
e ‘Exp.’ is the experiment number.

e ‘Fit.’ is the average over all passes of the fitness of the best observed individual

from each pass. Note that, in the experiments described here, every run included

five passes.
e ‘CPU’ is the average CPU time consumed per pass, in seconds.
e ‘Gen.’ is the average number of generations per pass.
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‘Avg. Train’ is the average over all passes of the classification accuracy of the
best observed individual from each pass, measured against the training set.
This is shown both as a percentage of all training instances, and (under the
subheading ‘#’) as the actual number of training instances predicted correctly,

as compared to the number of instances in the entire training set.

e ‘Max Train’ is the classification accuracy of the best individual observed during

the entire run, as measured against the training set. This is shown both as a

percentage and as the actual number of training instances predicted correctly.

e The ‘Avg. Recall’ and ‘Max Recall’ columns refer to the same individuals as

those described by ‘Avg. Train’ and ‘Max Train’, and provide similar informa-
tion. However, it is important to note that the values in these two columns do
not necessarily reflect the best observed performance relative to the recall set;
instead they describe the performance against the recall set of those individuals
which performed best against the training set — a distinction which is subtle,
but important. In order for the learning process to be fair, the recall set was

not made available to the learner until after the training phase was complete.

Exp. | Fit. | CPU | Gen. Avg. Train Max. Train | Avg. Recall | Max. Recall

% # %] #| % #| % #
21 |1297| 587 | 391 [ 758 | 145/191 | 82.7 | 158 | 74.7 | 711/95 | 76.8 73 |
22 |0605| 69.7| 406 | 77.6 | 148/191 | 83.2 | 159 | 70.3 | 67/95 | 73.7 70
93 | 1.140| 48.1| 355 | 74.5 | 142/191| 785 | 150 | 74.7 | 71/95 | 76.8 73
24 |1536| 55.0| 409 | 77.9 | 149/191 | 785 | 150 | 79.4 | 75/95 | 82.1 78
95 | 1536 | 55.1| 409 | 77.9|149/191| 78.5| 150 | 79.4 | 75/95 | 82.1 78

26 (1474 3.9 23| 77.4]148/191 | 78.0 | 149 | 79.4 | 75/95 | 80.0 76
27 | 1474 3.9 23 | 77.4 | 148/191 | 78.0 | 149 | 79.4 | 75/95 | 80.0 76
28 [1.392|4846 | 312 | 766 | 146/191 | 77.5 | 148 | 79.4 | 75/95 | 80.0 76
29 |1.392|507.0| 312 | 76.6 | 146/191 | 77.5 | 148 | 79.4 | 75/95 | 80.0 76
30 | 4.140 0.2 5 | 100.0 55/55 | 100.0 | 55 | 76.6 | 73/95 | 77.9 74

Table 39: Hybrid ELGAR experimental results for the Ljubljana Breast Cancer Data

Set
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Exp. | Fit. | CPU | Gen. Avg. Train Max. Train Avg. Recall | Max. Recall
% # ! #|] % # % #
21 15.114| 33.6| 331 | 92.6 [ 115/124 | 100.0 | 124 | 88.3 | 382/432 | 100.0 | 432
22 1 0907 29.0 | 248 | 95.2 | 118/124 | 100.0 | 124 | 90.5 | 391/432 | 100.0 | 432
23 | 5668 | 33.5| 291 | 97.3 | 121/124 | 100.0 | 124 | 94.4 | 408/432 | 100.0 | 432
24 15114 33.6] 331 | 926 | 115/124 | 100.0 | 124 | 88.3 | 382/432 | 100.0 | 432
25 15668 | 336 | 291 | 97.3 ] 121/124 | 100.0 { 124 | 94.4 | 408/432 | 100.0 | 432
26 | 4.428 5.8 57 | 86.8 |108/124 | 91.1 | 113 | 76.4 | 330/432 | 83.3| 360
27 | 4.222 7.5 92 | 85.0]105/124 | 92.7| 115 | 73.9 | 319/432 | 83.3| 360
28 | 46375052 | 419 | 88.5|110/124 | 91.1 | 113 | 80.0 | 346/432 { 83.3 | 360
29 | 4637 (508.2 | 419 | 885 | 110/124 | 91.1 | 113 | 80.0 | 346/432 | 83.3 | 360
30 | 5.999 0.1 2 1| 100.0 33/33 1 100.0 { 33 | 89.8 | 388/432 | 89.8 | 388

Table 40: Hybrid ELGAR experimental results for the MONK’s Problem 1 Data Set

Exp. | Fit. CPU | Gen. Avg. Train Max. Train Avg. Recall Max. Recall
% # % | # % # % #
21 | 2.685 796 | 434 | 822 139/169 | 87.6 | 148 | 74.2 | 321/432 | 775 335
22 10.713 94.7 | 446 | 84.4 | 143/169 | 91.1 | 154 [ 73.4 | 317/432 | 76.9 332
23 | 2.685 80.5| 434 | 82.2|139/169 | 876 | 148 | 74.2 | 321/432 | 77.5 335
24 | 2.685 796 | 434 | 8221 139/169 | 87.6 | 148 | 74.2 | 321/432 | 77.5 335
25 | 2.685 80.0 | 434 | 82.2 | 139/169 | 87.6 | 148 | 74.2 | 321/432 | 77.5 335
26 | 2.588 239 141 | 814 138/169 | 852 [ 144 | 73.2 | 316/432 | 76.9 332
27 | 2.588 23.8 141 | 81.4 | 138/169 | 85.2 ] 144 | 73.2 | 316/432 | 76.9 332
28 | 4491 17279 | 586 | 97.9 | 165/169 | 98.8 | 167 | 78.1 | 338/432 | 79.4 343
29 | 4491 | 17236 | 586 | 979 | 165/169 | 98.8 { 167 | 78.1 | 338/432 | 79.4 343
30 | 4.784 0.5 7 | 100.0 64/64 | 1000 | 64 | 72.0 | 311/432 | 72.0 311

Table 41: Hybrid ELGAR experimental results for the MONK’s Problem 2 Data Set

Exp. | Fit. | CPU | Gen. Avg. Train | Max. Train | Avg. Recall | Max. Recall
% # %| #| % # % | #
21 |5368| 30.0| 375 | 954 | 116/122 | 959 | 117 | 96.5 | 417/432 | 97.2 | 420
22 | 0923 36.6| 382 96.1 | 117/122 | 96.7 | 118 | 94.6 | 409/432 | 97.2 | 420
23 |5367| 265| 344 | 954 | 116/122 ] 959 | 117 | 96.7 | 418/432 | 972 | 420
24 |5368| 30.0| 375 | 954 | 116/122 | 959 | 117 | 96.5 | 417/432 | 97.2 | 420
25 15367 | 26.2| 344 | 954 | 116/122| 959 | 117 | 96.7 | 418/432 | 97.2 | 420
26 | 5.270 6.2 88 | 94.6 [ 115/122| 959 | 117 | 97.8 | 422/432 | 100.0 | 432
27 | 5.211 5.8 | 82| 94.1|115/122 | 95.1| 116 | 97.7 | 422/432 | 99.5 | 430
28 | 5501 | 1024.3 | 454 | 96.6 | 118/122 | 99.2 | 121 | 95.1 | 411/432 | 97.2| 420
29 |5.501 | 997.3 | 454 | 96.6 | 118/122 | 99.2 | 121 | 95.1 | 4117432 | 97.2 | 420
30 | 5.916 0.1 311000 | 27/27{1000| 27| 98.8 | 427/432 | 100.0 | 432

Table 42: Hybrid ELGAR experimental results for the MONK’s Problem 3 Data Set
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Exp. | Fit. | CPU | Gen. Avg. Train Max. Train | Avg. Recall | Max. Recall
% # % # % # % #
21 |5.741 | 1299.7 | 324 [ 99.8 | 4053/4062 | 99.8 | 4053 | 99.8 | 4052 | 99.8 | 4052
23 | 5.741 | 1558.0 | 430 | 99.8 | 4053/4062 | 99.8 | 4053 | 99.8 | 4052 | 99.8 | 4052
24 | 5741 | 12014 | 325 | 99.8 | 4053/4062 | 99.8 | 4053 | 99.8 | 4052 | 99.8 | 4052
26 |5.737| 58.0 15 | 99.7 | 4052/4062 | 99.8 | 4053 | 99.7 | 4051 | 99.8 | 4052
27 | 5.567 | 101.6 30| 98.3 | 3994/4062 | 99.8 | 4052 | 98.4 | 3998 | 99.7 | 4050
30 | 5.768 0.1 1| 100.0 56/56 | 100.0 | 56 | 99.8 | 4052 | 99.8 | 4052

Table 43: Hybrid ELGAR experimental results for the Mushrooms Data Set

Exp. | Fit. | CPU | Gen. Avg. Train Max. Train Avg. Recall Max. Recall
% # % # % # % #
21 | 1.806 | 2373 | 306 | 66.5 | 832/1252 | 66.5 | 832 | 64.2 | 804/1252 | 64.3 805
23 | 1.861]251.2| 316 | 66.9 | 838/1252 | 68.8 | 862 | 64.4 | 806/1252 | 64.9 813
24 11954 [364.2| 373 | 67.8]848/1252 | T71.7 | 898 | 64.4 | 806/1252 | 64.9 812
26 | 1.807 | 132 15| 66.5 | 832/1252 | 66.7 | 835 | 64.1 | 803/1252 | 64.3 805
27 11920 21.8 24| 675 | 845/1252 | 68.9 | 863 | 64.6 | 809/1252 | 65.5 820
30 | 5.719 34 10 | 100.0 | 421/421 | 100.0 | 421 | 64.4 | 806/1252 | 64.4 806

Table 44: Hybrid ELGAR experimental results for the Ludwig Trial V 17-Attribute
Data Set

Exp. | Fit. | CPU | Gen. Avg. Train Max. Train Avg. Recall Max. Recall

% | # %] #| %] #| % #
21 118433369 323 | 668 | 836/1252 | 66.8 | 836 | 63.9 | 800/1252 | 64.3 805
23 1842 365.2 | 342 | 66.8 | 836/1252 | 66.8 | 836 | 63.8 | 799/1252 | 64.3 805
24 (18342694 | 318 | 66.7| 835/1252 | 66.7 | 835 | 63.9 | 801/1252 | 64.3 805
26 | 1.825| 14.4 14 | 66.6 | 834/1252 | 66.7 | 835 | 64.1 | 802/1252 | 64.3 805
27 | 1.826 | 27.6 28 | 66.6 | 834/1252 | 66.7 | 835 | 64.0 | 802/1252 | 64.3 805
30 | 5.719 5.5 13 | 100.0 | 421/421 | 100.0 | 421 | 64.1 | 802/1252 | 64.3 805

Table 45: Hybrid ELGAR experimental results for the Ludwig Trial V 31-Attribute
Data Set

Exp. | Fit. | CPU | Gen. Avg. Train Max. Train Avg. Recall | Max. Recall
% # % # % # % #
21 | 4328 81.8| 374 | 98.5|345/350 | 986 | 345 | 95.1 | 332/349 | 96.0 335
22 10969 ( 95.6 | 427 | 98.5 | 345/350 | 98.6 | 345 | 94.7 | 331/349 | 96.0 335
23 4376 | 795 | 355 | 98.9 | 346/350 | 100.0 |{ 350 | 93.4 | 326/349 | 95.1 332
24 14328 | 819 | 374 | 98.5| 345/350 | 98.6 | 345 | 95.1 | 332/349 | 96.0 335
25 14376 | 786 355 | 98.9 | 346/350 | 100.0 | 350 | 934 | 326/349 | 95.1 332
26 | 4.212 5.3 21| 975 | 341/350 | 98.0 | 343 | 94.2 | 329/349 | 94.8 331
27 | 4.164 4.0 16 | 97.1 | 340/350 | 97.4 | 341 | 91.8 | 320/349 | 93.4 326
28 {4503 | 220.1 36 | 100.0 | 350/350 | 100.0 | 350 | 92.8 | 324/349 | 93.7 327
29 14410} 916 18 | 99.2 | 347/350 | 100.0 | 350 | 94.3 | 329/349 | 95.4 333
30 | 4513 0.6 24 | 100.0 24/24 | 100.0 | 24 ]| 92.1 | 322/349 | 92.8 324

Table 46: Hybrid ELGAR experimental results for the Wisconsin Breast Cancer Data
Set
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Table 47 lists the best result obtained for each data set using Hybrid ELGAR,
along with results for the best one-rule found, and the best result obtained from EL-
GAR. For result from ELGAR and Hybrid ELGAR, the number of the experiment(s)
which produced it is also shown. The ‘Baseline’ column indicates the baseline accu-

racy for the recall set in each case.

Data Set Baseline Results

Genetic Hybrid

ELGAR | Exp. | One-Rule | ELGAR Exp. C4
Ljubljana 73.7% 77.9% 5 72.6% 82.1% 24-25] 76.8%
MONK’s 1 50.0% | 100.0% | 2-18 75.0% | 100.0% 21-25| 75.9%
MONK’s 2 67.1% 84.5% 20 67.1% 79.4% 28,29 | 65.1%
MONK’s 3 52.8% | 100.0% | 17 - 20 80.6% | 100.0% 26,30 | 97.2%
Mushrooms 51.3% 99.8% 2 98.4% 99.8% | 21 - 26, 30 | 100.0%
Trial V/17 53.6% 64.8% 2 64.3% 65.3% 27| 65.0%
Trial V/31 53.6% 53.6% 1,2 64.3% 64.3% all | 61.7%
Wisconsin 66.2% 96.8% | 6- 10 92.3% 96.0% | 21,22,24 | 93.7%

Table 47: Hybrid ELGAR results compared with one-rule, ELGAR and C4

5.3 Conclusions from Hybrid ELGAR

Comparison of the results from Hybrid ELGAR with those of ELGAR suggests the

following:

e In all but two data sets, Hybrid ELGAR performs as well as or better than
ELGAR. The degree of improvement is greatest in the case of the 31-attribute
version of the Ludwig Trial V data set, somewhat less for the Ljubljana breast

cancer data set, and very small in the remaining cases.

o Surprisingly, Hybrid ELGAR performs worse than ELGAR in the MONK'’S 2
and Wisconsin breast cancer data sets. Analysis of the detailed output from

these data sets suggests different causes in each case.

— The best possible one-rule for the MONK’s 2 problem turns out to be the

baseline rule for the data set, namely

TRUE — not member
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This rule necessarily contains zero bits corresponding to all possible values
of one attribute (in this case, the first attribute, al), and is sufficient to

cause the search to find a local minimum.

— The Wisconsin breast cancer data set has the property that, for every
attribute, there is a one-rule which has much greater accuracy than the
baseline for the data set. The best one-rule overall, in fact, has an accuracy
of 92.3% for the recall set, and 93.1% for the training set. This is enough
to lead the hybrid to 97% training accuracy or better in every pass of every
run. Unfortunately, in general this high training accuracy appears to be
achieved at the expense of accuracy on the recall set, a symptom which is
typical either of overfitting or of oversearching (defined in [Quinlan95]
as “the discovery by extensive search of a theory that is not necessarily

overcomplex but whose apparent accuracy is also misleading™).

o As with ELGAR, no one experimental design is consistently superior for all
data sets. However, the following results appear to hold:

— Attribute filtering is useful. As evidence, experiment 24 performs as well

as or better than experiment 21 in all data sets.

— Attribute reordering appears to be useful, although not in all cases. In
particular, experiment 23 performs as well as or better than experiment
21 in seven of eight data sets (the exception being the Wisconsin breast
cancer data set); likewise, experiments 25 and 24 compare in a similar

manner.

— Like the proverbial tale of the young child learning to spell the word ‘ba-
nana’, the difficulty with genetic search, either alone or as part of the
hybrid algorithm, is knowing wheﬁ to stop. This is demonstrated by the
comparison of experiments 24 and 26, which differ only in that experiment
26 tests for convergence as a termination criterion.

In all but the MONK’s 3 data set, experiment 24 required significantly
more CPU time, but gave better performance. In the case of MONK’s 3,

experiment 26 terminated earlier than experiment 24 due to the conver-

gence test, and as a result avoided the oversearching problem that caused
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experiment 24 to perform better on the training set but worse on the recall

set.

— In ELGAR, the original McCallum and Spackman version of overpopula-
tion [McCallum90] appeared to be more useful than the modified version,
particularly in combination with a richer set of operators. Hybrid ELGAR
appears to reduce the magnitude of this effect, as shown by the fact that
experiments 28 and 29 outperform the other experiments on only one data
set (specifically, MONK’s 2).

e The results of experiment 30 suggest that meta-rule mode searches are mod-
erately successful, but not outstandingly so. This experiment is in the middle
of the pack in terms of recall set accuracy on six of the eight data sets, while
tied for the lead on MONK’s 3 and dead last on the MONK’s 2 and Wisconsin
breast cancer data sets. Note that the apparently dramatic reduction in CPU
time required by this experiment is misleading, since the average CPU time
shown only considers the time spent learning those training instances which
were not covered by the best one-rule found. The actual time required for this

run was similar to that of the other experiments.

e Overall, Hybrid ELGAR is even more competitive with C4 than ELGAR, out-
performing it in seven of eight data sets. Again, Hybrid ELGAR does par-
ticularly well compared with C4 on the MONK’s problems, but this time its
performance on both versions of the Ludwig Trial V data set exceeds that of

C4, albeit by a thin margin.

e [Holte93, p. 67] makes this comment concerning the Ljubljana breast cancer
data set (which Holte denotes as “BC”"):

For example, on two datasets (BC, HE), few learning systems have
succeeded in finding rules of any kind whose accuracy exceeds the

baseline accuracy by more than 2 percentage points.

Considering that Hybrid ELGAR achieves 82.1% accuracy compared to the
73.7% baseline accuracy for this data set, this comment, along with the statistics

on which it was based, are particularly interesting.
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e The data representation format remains an issue, but the results of the ex-
periments involving attribute reordering suggest either that epistasis (i.e. the
condition in which physically separate bits have mutually dependent opt'uiml
values; see Section 4.6) is simply is not a serious problem in the domains inves-
tigated here, or else that reordering attributes is not an effective technique to

combat it.
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Chapter 6

Conclusions and Future Directions

6.1 Concluding Remarks

The experimental results obtained with Hybrid ELGAR strongly suggest that the
hybrid “simplicity first” genetic learning paradigm is a viable approach to concept
learning, and that it performs better than ELGAR or Holte’s 1R classifier [Holte93]
alone. Room for improvement definitely exists, a topic which will be developed in
Section 6.2; nevertheless the existing algorithm already exhibits performance which,
for seven of eight data sets studied, equals or exceeds that of C4, itself widely held
to be a benchmark for concept learning quality.

6.2 Suggestions for Further Research

Many promising directions exist for extending the work performed in this thesis. The

following list includes some of the more interesting ones.

e A central issue in the design of any concept learner is the concept description
language it will use. Hybrid ELGAR expresses concepts in the modified k-DNF
language used by GABIL, a dialect which is well suited to conversion to bit
string form for use with genetic search. However, there are concepts which are
difficult to express this way; typically these involve situations where the value

of one attribute depends on that of another.
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For example, the MONK’s Problems are deliberately designed to be difficult to
represent in DNF, in which rules such as

(a1 = a2) — member

(where al and a2 are both attribute names) cannot be expressed directly; the
number of rules required to represent them causes an increase in the length of
highly fit individuals, which makes them much more difficult to create, and eas-
ier to lose via recombination (a consequence of the Building Block Hypothesis).
A more powerful concept description language would therefore seem likely to im-
prove Hybrid ELGAR’s performance, assuming it could be properly translated

into a form suitable for genetic search.

A key issue in any genetic learning system is that of data representation. The
Pittsburgh-style representation format adopted in Hybrid ELGAR works rea-
sonably well, but suffers from the drawback that it is impossible to predict a
priori whether the order of attributes within each rule might lead to epistasis.
Hybrid ELGAR’s approach of reordering attributes according to their 1R rank-
ing appears to give better performance in some data sets and worse performance
in others, which suggests that attribute ordering is not a general solution, or
else that 1R ranking order is not necessarily optimal. It is not at all obvious
how to design a data representation in which attribute ordering would become

irrelevant, but it seems likely that such a design would be highly desirable.

Genetic search tends to be remarkably robust in the face of minor changes to
the algorithm itself, which suggests that tuning the genetic search component
in Hybrid ELGAR is unlikely to be helpful. However, there is certainly scope
to develop better learning-related genetic operators. Janikow has successfully
explored this direction [Janikow91], and more of his ideas might well be helpful
for Hybrid ELGAR.

Genetic search is particularly sensitive to the tradeoff between CPU time and
solution quality. A better understanding of the nature of the CPU time vs.
classification accuracy graph would give the user much greater control over
Hybrid ELGAR’s behaviour. While a theoretical model of this graph would
likely be very difficult to create, an approximation might be possible in the

form of a more accurate test for convergence. The test currently used in Hybrid
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ELGAR, which compares the average fitness of the current generation to that of
the most fit individual found to date, certainly has the property of limiting the
CPU time spent in genetic search; however, in practice it occasionally causes the
search to terminate too early. One possible test which might be more accurate,
albeit more time-consuming itself, would be to compare the members of the
current generation on a bit-by-bit basis, considering a given bit position to
have converged if the same value is found in that position in more than some
threshold percentage of the population; in this model, the population would be
considered to have converged when a predetermined percentage of bit positions

had converged.

The most computationally expensive component of genetic search is the fitness
function, which involves evaluating every candidate rule set against every train-
ing instance; this is proportional both to the population size and to the size
of the training set. Any technique which could reduce the number of function
evaluations without losing accuracy would therefore be helpful. This question
requires a theoretical framework; practical techniques such as caching the re-
sults of previous evaluations are unhelpful due to the large number of them
involved — this has been tried, and in one experiment involving the Ludwig
Trial V 17-attribute subset, the amount of memory used by that variant of EL-
GAR exceeded the per-process virtual memory limit of 1024 megabytes on a
DEC AlphaServer 2100 5/250.

Genetic search generally tends to be good at finding the neighbourhood of the
global optimum, but does not guarantee to find the optimum itself. Other
hill-climbing methods, such as neural networks, generally exhibit the reverse
behaviour, in that they can almost always find the global optimum from a posi-
tion somewhere in its neighbourhood, but their locality of reference often makes
it difficult for them to locate that neighbourhood in the first place. Given these
complementary characteristics, it seems natural to perform a genetic search for
a limited number of generations, and then use the best rule set found to design
an appropriate neural network, in the manner of KBANN [Towell90, Towell93].
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e Due to the influence of GABIL, Hybrid ELGAR is designed around the Pitts-
burgh approach to genetic learning. It would be interesting to learn how it
would perform using a Michigan-style population along with McCallum and
Spackman’s “example sharing” technique [McCallum90].

e Finally, one strength of the genetic algorithm is that it does not require domain
knowledge. However, if there happens to be domain knowledge available, it
might be interesting to modify the fitness function to take it into account; for
example, incentives might be given to rule sets which are consistent with an
existing domain theory, and/or penalties applied to rule sets which are incon-

sistent with it.
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Appendix A

Glossary

Note that terms in SMALL CAPS are cross-references to other entries within this

glossary.

1-rule see ONE-RULE

antecedent the left-hand side of a rule; e.g. in ‘a A b — c’, the antecedent is

‘a A b’

attribute an observable characteristic of an INSTANCE which is used in classification;
e.g. if the CONCEPT to be learned is LION, then some possible attributes are
age, size, skin type, and colour; an attribute has two or more potential VALUES;

attributes are also referred to as features

baseline accuracy the CLASSIFICATION ACCURACY of the default rule in a TRAIN-
ING SET or RECALL SET, i.e. the classification accuracy obtained by guessing
that all INSTANCES in the set are members of the set’s most common class

bias the tendency of a learning program to prefer certain potential CONCEPT de-
scriptions over others; this will be influenced by the language in which concept
descriptions are expressed, as well as the specific method by which the program

attempts to learn

binary tournament selection a method of SELECTION used with the GENETIC
ALGORITHM, in which two INDIVIDUALS are chosen at random from the POPU-
LATION, and the one with the greater FITNESS is added to the MATING POOL
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building blocks SCHEMATA which have a short DEFINING LENGTH, low ORDER and

above-average FITNESS

children see OFFSPRING

classification accuracy the percentage of RECALL INSTANCES which are correctly
classified by a candidate CONCEPT description

concept (i) the goal of the learning process, i.e. a specific idea to be learned
(ii) a specific rule set, decision tree or other formulation created by a learning

program as a candidate to represent the actual concept to be learned

concept learning the process of creating the best possible representation of a CON-

CEPT based on a set of TRAINING INSTANCES

conjunct one of the terms in a conjunction; e.g. the ANTECEDENT of the rule
‘(a=1x) A (b =y) — ¢’ contains two conjuncts, namely ‘(a = x)’ and

3 (b = y) ¥
consequent the right-hand side of a rule; e.g. in ‘a A b — ¢, the consequent is ‘¢’

continuous adjective which describes an ATTRIBUTE that may assume any numeri-
cal value in a specific, possibly unbounded range, as opposed to being restricted
to one of a finite set of predetermined names or numbers (e.g. an attribute tem-
perature, the value of which can be any real number greater than or equal to
-273); an attribute which is not continuous is said to be DISCRETE or NOMINAL

convergence a GENETIC SEARCH is said to have converged when a majority of the
POPULATION are copies or near copies of the most highly fit INDIVIDUAL in the
population; at this point further improvement becomes unlikely, because most
CROSSOVER operations will produce OFFSPRING identical to their PARENTS

convergence, premature see PREMATURE CONVERGENCE

cover a rule is said to cover an INSTANCE if the rule’s ANTECEDENT becomes a true
statement when the ATTRIBUTE values from the instance are substituted into it;
e.g. the rule ‘(size = large) A (colour = red V blue) — widget’ would
cover an instance which is large and red, but not one which is small and red

or one which is large and green
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crossover a GENETIC OPERATOR which creates two OFFSPRING by copying comple-
mentary portions of the bit strings from each of two PARENTS

defining length (of a schema) the distance between the first and last fixed bit
positions in a SCHEMA

discrete adjective which describes an ATTRIBUTE that has a restricted, enumerated
set of possible VALUES, as opposed to being free to assume any numerical value
in a specific range (e.g. an attribute colour, the value of which must be red,
green, yellow or blue); the term NOMINAL is occasionally used as a synonym;
an attribute which is not discrete is said to be CONTINUOUS

disjunctive normal form a format in which a logical formula is written as a dis-
junction of conjunctions, e.g.
A=t AB=u)V(C=vAD=wAE=x) V(F=yAG=2)
when the number of CONJUNCTS per conjunction must not exceed an arbitrary

constant, the resulting form is called k-DNF
DNF see DISIUNCTIVE NORMAL FORM

epistasis a condition that can occur in GENETIC SEARCH, in which bits that are
closely related (in the sense that they are part of the same BUILDING BLOCK)
are widely separated physically within a bit string; this condition causes building
blocks to have long DEFINING LENGTHS, making them vulnerable to disruption

error rate the percentage of RECALL INSTANCES classified incorrectly by a candidate
CONCEPT (e.g. a rule set or decision tree)

example see INSTANCE

feature see ATTRIBUTE

fitness an arbitrary measurement of the worth of a given INDIVIDUAL as a candidate

solution in GENETIC SEARCH

fitness function a function which computes the FITNESS of an INDIVIDUAL during
GENETIC SEARCH; the quality of the solution found by the search will depend on
how accurately the fitness function represents the actual worth of an arbitrary
individual
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generalization the process of changing a rule to make it more general, i.e. to allow

it to COVER a greater number of INSTANCES

generation a specific POPULATION at a particular moment in time during a GENETIC

SEARCH; each generation is succeeded by a new one at each iteration of the main

loop of the search process

genetic algorithm an algorithm designed by John H. Holland [Holland75] to solve
search and optimization problems by means of the simultaneous application of

RECOMBINATION techniques and selection pressure

genetic operators operations such as CROSSOVER or MUTATION, which map one
or more INDIVIDUALS onto one or more new individuals, and which are used
during the RECOMBINATION step of the GENETIC ALGORITHM

genetic search any search process based on the GENETIC ALGORITHM

individual a single candidate solution in GENETIC SEARCH, typically one of many
in the POPULATION

instance an object which may or may not belong to the CONCEPT being learned;
typically a learning algorithm is presented with a TRAINING SET containing
instances which are correctly classified, from which it will attempt to learn the

concept; instances are also referred to as ezamples

internal disjunction a disjunction of VALUES within a CONJUNCT; e.g. in the rule
‘(a=x) A(b=y V z) - c’, theterm“(a = x)’is a normal conjunct, but

‘(b = y V 2)’ contains the internal disjunction ‘y V 2’
k-DNF see DISJUNCTIVE NORMAL FORM

mating pool the collection of INDIVIDUALS chosen by the SELECTION step of a GE-
NETIC ALGORITHM, from which PARENTS are randomly drawn to be used as
input to the CROSSOVER and MUTATION operators

mutation a GENETIC OPERATOR which creates one OFFSPRING by randomly invert-
ing a bit from a PARENT individual
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negative instance an INSTANCE which is not a member of the CONCEPT being

learned
noise the presence of incorrectly classified INSTANCES in a TRAINING SET
nominal see DISCRETE

offspring one or more INDIVIDUALS created by applying a GENETIC OPERATOR
(e.g- CROSSOVER or MUTATION) to one or more existing PARENT individuals

one-rule a rule which is limited to tests involving only one ATTRIBUTE; a one-rule

corresponds to a decision tree containing only one non-leaf node
operators see GENETIC OPERATORS

order (of a schema) the number of fixed bit positions in a SCHEMA, i.e. the number

of positions which do not contain the * symbol

overfitting the creation of a CONCEPT description which relies on the details of
specific TRAINING INSTANCES to such an extent that it exhibits poor CLASSI-
FICATION ACCURACY on RECALL INSTANCES

oversearching a term coined by J. Ross Quinlan [Quinlan95] to describe “the dis-
covery by extensive search of a theory that is not necessarily overcomplex but

whose apparent accuracy is also misleading”

parents INDIVIDUALS supplied as input to a GENETIC OPERATOR (€e.g. CROSSOVER
or MUTATION) in order to create one or more new individuals, which are termed

OFFSPRING

population the collection of candidate solutions maintained by a GENETIC ALGO-
RITHM; the members of a population are called INDIVIDUALS

positive instance an INSTANCE which is a member of the CONCEPT being learned

prediction accuracy see CLASSIFICATION ACCURACY
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premature convergence the state when GENETIC SEARCH has CONVERGED too
quickly; this is usually caused by the presence of an INDIVIDUAL which is not
in the neighbourhood of the global optimum, but which nevertheless has suffi-
ciently high FITNESS to dominate the POPULATION; when this occurs, the result
of the search will usually be a local optimum rather than the global optimum

recall instance an INSTANCE which is to be classified after the learning process
has terminated; if the correct classification for a recall instance is known, that
instance can be used to evaluate the quality of the learned CONCEPT description

recall set a set of correctly classified RECALL INSTANCES used for the purpose of
evaluating the quality of a learned CONCEPT description

recombination the process of applying any genetic OPERATOR which creates OFF-
SPRING by combining characteristics from two or more PARENTS; CROSSOVER
is a typical operator of this kind; this is in contrast to genetic operators which
create a single CHILD from only one parent, of which MUTATION is a typical

example

reproduction the step in the GENETIC ALGORITHM in which INDIVIDUALS in the
MATING POOL are combined using GENETIC OPERATORS in order to create the
OFFSPRING which will comprise the next GENERATION

schema (plural SCHEMATA) a template which describes potential values for an INDI-
VIDUAL, by specifying the permissible value or values for every position in the
individual’s bit string

search space the set of all possible candidates which may be examined in a search;
for CONCEPT LEARNING, the search space includes all possible CONCEPT de-

scriptions

selection the step in the GENETIC ALGORITHM in which INDIVIDUALS are chosen,
based on their FITNESS, for inclusion in the MATING POOL

self-adaptation a process by which a machine learning system can learn to adjust

its own behaviour at the same time that it attempts to learn a CONCEPT
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specialization the process of changing a rule to make it less general, i.e. to allow it
to COVER a smaller number of INSTANCES

training instance an INSTANCE which has a known classification, provided as input
to a CONCEPT LEARNING system

training set a set of TRAINING INSTANCES

values observations recorded for a given ATTRIBUTE in a given INSTANCE; e.g. for
an attribute ‘size’, potential values might be ‘small’, ‘medium’ and ‘large’; note
that the specific values available for any given attribute depend on the design
of the data set, which is usually decided at the time that data collection occurs
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Appendix B

Hybrid ELGAR Output

As an illustration, the following is the complete output (verbatim except for line
breaks to allow it to fit on the page) from experiment number 27 with Hybrid ELGAR,

using the 17-attribute version of the Ludwig Trial V breast cancer data set.

ELGAR: Evolutionary Learning by Genetic AlgoRithm

Operating Parameters

population size = 100

memory usage = 1 byte per bit

generation limit = 600

stagnation limit = 300

number of attributes = 17

bits per rule = 63

baseline accuracy = 62.79563% (training instances)
63.59425% (recall instances)

baseline rule = if TRUE then negative
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- penalties WILL be imposed based on the number of rules per individual
— rewards WILL be given to individuals which exceed baseline accuracy
- "real" overpopulation will NOT be used

— instances with unknown values will ALWAYS be accepted

— pure genetic mode will NOT be used

- convergence tests WILL be performed

— attributes worse than baseline accuracy WILL be filtered out

- attributes WILL be sorted according to 1-rule ’usefulness’

- meta-rule mode will NOT be used

Instances

— 2504 instances found (1252 train, 1252 recall)

Operator List

name applicable?
crossi NO
cross2 YES
crossU NO
crossMU NO
crossR NO
mutation YES
addalt NO
dropcond NO
genspec NO
Start Time

Start of run = Sun Dec 6 14:31:11 1998
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Exhaustive Search for 1-Rules

Sun

Sun

Sun

Sun

Sun

Sun

Sun
Sun

Sun
Sun

Sun

Sun

Sun

Sun

Sun

Sun

Sun

Sun

Sun

Sun

Sun
Sun

Sun

Sun

Dec

Dec

Dec

Dec

Dec

Dec

Dec
Dec

Dec

Dec

Dec

Dec

Dec
Dec

Dec
Dec

Dec
Dec

Dec
Dec

Dec
Dec

Dec
Dec

14:31:12
14:31:12

14:31:12
14:31:12

14:31:12
14:31:12

14:31:12
14:31:12

14:31:12
14:31:12

14:31:12
14:31:12

14:31:12
14:31:12

14:31:12
14:31:12

14:31:12
14:31:12

14:31:12
14:31:12

14:31:12
14:31:12

14:31:12
14:31:12

1998:
1998:

1998:
1998:

1998:
1998:

1998:
1998:

1998:
1998:

1998:
1998:

1998:
1998:

1998:
1998:

1998:
1998:

1998:
1998:

1998:
1998:

1998:
1998:

examining attribute
best accuracy found

examining attribute
best accuracy found

examining attribute
best accuracy found

examining attribute
best accuracy found

examining attribute
best accuracy found

examining attribute
best accuracy found

examining attribute
best accuracy found

examining attribute
best accuracy found

examining attribute
best accuracy found

examining attribute
best accuracy found

examining attribute
best accuracy found

examining attribute
best accuracy found

151

Treatment (4 bits)

57.90735% (725/1262

Nodes (4 bits)

66.37380% (831/1262

Menopause (3 bits)

52.79663% (661/1262

Age (7 bits)

55.43131% (694/1252

ER Value (3 bits)

§2.79553% (661/1252

PR Value (3 bits)

§2.79553% (661/1252

Tumour Size (2 bits)

56.70927% (710/1262

BxPeri (5 bits)

49.44090% (619/1252

Leucovorin (2 bits)

52.79553% (661/1252

Path Grade (4 bits)

55.83067% (699/1252

correct)

correct)

correct)

correct)

correct)

correct)

correct)

correct)

correct)

correct)

Vessel Invasion (4 bits)

59.82428% (749/1262

Multicentric (2 bits)

66.83067% (699/1252

correct)

correct)



Sun Dec 6
Sur Dec €

Sun Dec

Sun Dec 6

Sun Dec 6

Sun Dec 6

Sun Dec 6

Sun Dec 6

Sun Dec 6
Sun Dec 6

Best i-rule

14:31:12
14:31:12

6 14:31:12

14:31:12

14:31:12
14:31:12

14:31:12
14:31:12

14:31:12
14:31:12

found

- attribut

- CPU time

- fitness

- accuracy

e

1998:
1998:

1998:
1998:

1998:
1998:

1998:
1998:

1998:
1998:

Nodes

examining attribute Histology (8 bits)
best accuracy found = §55.03196% (689/1262 correct)

examining attribute Medullary tumour (2 bits)
best accuracy found = 53.99361% (676/1252 correct)

examining attribute CerbB2 Status (3 bits)
best accuracy found = §3.11502% (665/1252 correct)

examining attribute Amenorrhea cbt (3 bits)
best accuracy found = 52.79553% (661/1252 correct)

examining attribute Amenorrhea rec (4 bits)
best accuracy found = §53.35463), (668/1252 correct)

= 0.18000 seconds

1.79838

66.37380% (831/1252 training instances correct)

= 64.29713% (805/1252 recall instances correct)

- unpruned rules

1111 0011 111 111131131 1131 111 11 11111 11 1111 11121 11 11111111 11 1131 111 1111

- pruned rules

- o

1111 0011 111 1111111 111 111 11 11111 11 1111 1111 11 21111111 11 111 111 1111

==> (Nodes=3-4 OR Nodes=>4)
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— confusion matrix:
classified

positive negative

positive 233 348

actual:
negative 99 5§72

- instances which were classified incorrectly:

1254, 1286, 1266, 1269, 1271, 1272, 1273, 1274, 1276,
1278, 1279, 1281, 1282, 1284, 1287, 1288, 1290, 1291,
1292, 1293, 1296, 1296, 1297, 1299, 1301, 1310, 1313,
1315, 1319, 1321, 1324, 1327, 1331, 1334, 1336, 1337,
1340, 1342, 1343, 1344, 1348, 1354, 1372, 1375, 1382,
1385, 1386, 1387, 1389, 1393, 13¢5, 1398, 1399, 1400,
1403, 1411, 1415, 1416, 1420, 1421, 1423, 1424, 1425,
1428, 1429, 1434, 1439, 1440, 1445, 1448, 1453, 1454,
1465, 1467, 1471, 1475, 1478, 1485, 1487, 1503, 1506,
1507, 1512, 1513, 1514, 1518, 1520, 1521, 1525, 1527,
1532, 1538, 1551, 1554, 1585, 1556, 1557, 1858, 1559,
1560, 1561, 1566, 1667, 1568, 1584, 1586, 1588, 1590,
1591, 1892, 1696, 1597, 1698, 1599, 1600, 1601, 1602,
1604, 1606, 1610, 1615, 1621, 1622, 1624, 1626, 1636,
1637, 1641, 1642, 1645, 1652, 1653, 1658, 1659, 1660,
1667, 1671, 1673, 1676, 1684, 1685, 1686, 1690, 1694,
1699, 1704, 1708, 1709, 1710, 1712, 1714, 1715, 1716,
1720, 1721, 1722, 1724, 1731, 1737, 1738, 1740, 1744,
1746, 1748, 1752, 1763, 1754, 1787, 1759, 1761, 1763,
1765, 17e8, 1770, 1772, 1773, 1775, 1778, 1782, 1786,
1795, 1796, 1802, 1804, 1805, 1810, 1811, 1813, 1814,
1815, 1818, 1819, 1827, 1830, 1831, 1833, 1834, 1839,
1844, 1845, 1846, 1848, 1861, 1852, 1853, 1867, 1858,
1859, 1867, 1870, 1871, 1872, 1876, 1880, 1882, 1886,
1892, 1893, 1894, 1898, 1899, 1900, 1809, 1912, 1914,
1915, 1918, 1819, 1920, 1921, 1924, 1926, 1927, 1930,
1933, 1934, 1936, 1937, 1939, 1941, 1942, 1945, 1946,
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1949, 1951, 1983,
1979, 1982, 1983,
2017, 2018, 2020,
2028, 2030, 2031,
2045, 2047, 20852,
2067, 2068, 2069,
2090, 2091, 2092,
2117, 2118, 2119,
2146, 2149, 2151,
2174, 2175, 2176,
2189, 2190, 2191,
2215, 2216, 2220,
2242, 2244, 2249,
2269, 2273, 2274,
2300, 2302, 2304,
2322, 2327, 2334,
2352, 2353, 2384,
2379, 2380, 2381,
2400, 2402, 2407,
2421, 2423, 2426,
2441, 2442, 2444,
2454, 2457, 2460,
2481, 2483, 2487,

19585,
1999,
2021,
2034,
2083,
2071,
2093,
2123,
2157,
2177,
2192,
2222,
2250,
2282,
2305,
2335,
2355,
2382,
2408,
2427,
2445,
2465,
2491,

1961, 1963, 1968, 1972,
2000, 2002, 2006, 2015,
2023, 2024, 2025, 2026,
2038, 2039, 2041, 2042,
2064, 2057, 2058, 2061,
2079, 2081, 2083, 2088,
2098, 2102, 2104, 2106,
2127, 2130, 2132, 2138,
2163, 2166, 2167, 2168,
2179, 2181, 2182, 2184,
2194, 2196, 2207, 2208,
2223, 2224, 2230, 2238,
2251, 2254, 2257, 2261,
2283, 2290, 2296, 2297,
2307, 2313, 2314, 2318,
2339, 2342, 2346, 2350,
2361, 2362, 2365, 2374,
2383, 2390, 2394, 2395,
2413, 2414, 2416, 2417,
2428, 2434, 2435, 2437,
2446, 2449, 2450, 2452,
2467, 2468, 2470, 2478,
2499, 2501

Removing attributes which perform less well than baseline

- removing attribute Amenorrhea cbt (3 bits)

- removing attribute Leucovorin (2 bits)

- removing attribute MxPeri (5 bits)

- removing attribute PR Value (3 bits)
- removing attribute ER Value (3 bits)

- removing attribute Menopause (3 bits)
— rebuilding i-rules for 44-bit rule format
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1973,
2016,
2027,
2043,
2066,
2089,
2108,
2143,
2171,
2187,
2213,
2241,
2268,
2299,
2321,
2351,
2378,
2399,
2418,
2440,
24863,
2480,



Sorting attributes in reverse order by performance

- new attribute order:

0) Nodes

i) Vessel Invasion
2) Treatment

3) Tumour Size

4) Path Grade

5) Multicentric

6) Age

7) Histology

8) Medullary tumour
9) Amenorrhea rec
10) CerbB2 Status

- - D D - - - - - - - - - - > - -~

START OF PASS NUMBER 1 OF § at Sun Dec 6 14:31:12 1998

Genetic Search Results

»x*** REACHED CONVERGENCE LIMIT:

- generation number 14 at Sun Dec 6 14:31:50 1998
- best fitness to date = 1.805

- accuracy = 66.454% (832/1252 correct)
~ correct = 264 positive, 568 negative
- incorrect = 327 positive, 93 negative
— average fitness = 1.771

- convergence factor = 0.981

- last improvement generation #14

END OF PASS 1 at Sun Dec 6 14:31:50 1998 after 14 total generations

155



CPU usage for this pass = 12.730 seconds

Best individual found (at generation 14)

- fitness = 1.80542

- accuracy = 66.45367% (832/1252 training instances correct)
= 64.05751% (802/1252 recall instances correct)

- length = 88 bits = 2 rules at 44 bits/rule

- unpruned rules

0011 1111 1111 11 1111 11 113131111 1111311131 11 1111 112
0111 1101 0110 11 1111 01 0011111 01001101 11 1111 111

~ pruned rules

0011 1111 1111 $1 1111 11 1111111 131111111 11 1111 111

==> (Nodes=3-4 OR Nodes=>4%)

0111 1101 0110 11 1111 01 0011111 01001101 11 1111 111

==> Nodes<>0 AND Vessel Invasion<>2 AND
(Treatment=NGC RX OR Treatment=PECT+CONCT) AND Multicentric=1 AND
(Age=41-45 OR Age=46-50 OR Age=51-55 OR Age=56-60 OR Age=>60) AND
(Histology=1 OR Histology=4 OR Histology=5 OR Histology=7)

- confusion matrix:
classified

positive negative
positive 233 348

actual:
negative 102 569
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- instances which were classified incorrectly:

1254,
1278,
1292,
1315,
1340,
1385,
1403,
1428,
1465,
1507,
1632,
1860,
1591,
1604,
1637,
1667,
1699,
1720,
1744,
1763,
1786,
1814,
1839,
1858,
1886,
1914,
1930,
1946,
1973,
2016,
2027,
2043,
2066,
2089,
2108,
2143,
2168,

12856,
1279,
1293,
1319,
1342,
1386,
14114,
1429,
1467,
15612,
1538,
1561,
1592,
1606,
1641,
1671,
1704,
1721,
1746,
1765,
1795,
18185,
1844,
1859,
1892,
1915,
1933,
1949,
1979,
2017,
2028,
2045,
2087,
2090,
2117,
2146,
2171,

1266,
1281,
1295,
1321,
1343,
1387,
1415,
1434,
1471,
1613,
15851,
1666,
1596,
1610,
1642,
1673,
1708,
1722,
1748,
1768,
1796,
1818,
1845,
1867,
1893,
1918,
1934,
1961,
1982,
2018,
2030,
2047,
2068,
2091,
2118,
2149,
2174,

1269,
1282,
1296,
1324,
1344,
1389,
1416,
1439,
1475,
1514,
1554,
1567,
1597,
1615,
1645,
1676,
1709,
1724,
1782,
1770,
1802,
1819,
1846,
1870,
1894,
1919,
1936,
1983,
1983,
2020,
2031,
2082,
2069,
2092,
2119,
2151,
2175,

1271,
1284,
1297,
1327,
1348,
1393,
1420,
1440,
1478,
1618,
1556,
1568,
1598,
1621,
1652,
1684,
1710,
1731,
1783,
1772,
1804,
1827,
1848,
1871,
1898,
1920,
1937,
1956,
1999,
2021,
2034,
20863,
2071,
2093,
2123,
2187,
2176,
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1272,
1287,
1299,
1331,
1364,
1395,
1421,
1445,
1486,
1520,
1556,
1584,
1599,
1622,
1653,
1685,
1712,
1734,
1754,
1773,
1806,
1830,
1861,
1872,
1899,
1921,
1939,
1961,
2000,
2023,
2038,
2054,
2079,
2098,
2127,
2163,
2177,

1273,
1288,
1301,
1334,
1372,
1398,
1423,
1448,
1497,
1521,
1857,
1586,
1600,
1624,
1658,
1686,
1714,
1737,
1757,
1778,
1810,
1831,
1852,
1876,
1900,
1924,
1941,
1963,
2002,
2024,
2039,
2087,
2081,
2102,
2130,
2165,
2179,

1274,
1290,
1310,
1336,
1378,
1399,
1424,
1453,
1503,
1528,
1588,
1588,
1601,
1626,
1659,
1690,
17185,
1738,
1759,
1778,
1811,
1833,
1883,
1880,
1909,
1926,
1942,
1968,
20086,
2025,
2041,
2088,
2083,
2104,
2132,
2166,
2181,

1276,
1291,
1313,
1337,
1382,
1400,
1425,
1454,
1506,
1827,
1559,
1590,
1602,
1636,
1660,
1694,
1716,
1740,
1761,
1782,
1813,
1834,
1857,
1882,
1912,
1927,
1945,
1972,
2015,
2026,
2042,
2061,
2088,
2106,
2138,
2167,
2182,



2184, 2187, 2189, 2190, 2191, 2192, 2194, 2196, 2207,
2208, 2213, 2218, 2216, 2220, 2222, 2223, 2224, 2230,
2238, 2241, 2242, 2244, 2249, 2250, 2251, 2254, 2257,
2261, 2268, 2269, 2273, 2274, 2282, 2283, 2290, 2296,
2297, 2299, 2300, 2302, 2304, 2305, 2307, 2313, 2314,
2316, 2318, 2321, 2322, 2327, 2334, 2335, 2339, 2342,
2346, 2350, 2351, 2362, 2353, 2354, 2355, 2361, 2362,
2365, 2374, 2378, 2379, 2380, 2381, 2382, 2383, 2390,
2394, 2395, 2399, 2400, 2402, 2407, 2408, 2413, 2414,
2416, 2417, 2418, 2421, 2423, 2426, 2427, 2428, 2434,
2435, 2437, 2440, 2441, 2442, 2444, 2445, 2446, 2449,
2450, 2452, 2453, 2454, 2457, 2460, 2465, 2467, 2468,
2470, 2478, 2480, 2481, 2483, 2487, 2491, 2499, 2501

Lt R R L T 2 T T T T L D i T T T i T T T T T N

START OF PASS NUMBER 2 OF § at Sun Dec 6 14:31:50 1998

Genetic Search Results

#**x% REACHED CONVERGENCE LIMIT:

— generation number 28 at Sun Dec 6 14:33:11 1998
2.004
68.211% (854/1252 correct)

~ best fitness to date

- accuracy =

- correct = 305 positive, 6549 negative
= incorrect = 286 positive, 112 negative
- average fitness = 1.97¢

- convergence factor = 0.986

= last improvement generation #23

END OF PASS 2 at Sun Dec 6 14:33:11 1998 after 28 total generations

CPU usage for this pass = 26.600 seconds
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Best individual found (at generation 23)

- fitness = 2.00381

- accuracy = 68.21086% (854/1252 training instances correct)
= 65.17572% (816/1252 recall instances correct)

- length = 132 bits = 3 rules at 44 bits/rule

- unpruned rules

0011 1111 1111 11 1111 21 11121111 11121111 11 1111 111
1001 1110 0001 10 0000 00 1000010 00011111 11 0110 001
0100 1111 1100 11 1111 11 1101101 12111101 11 1111 111

- pruned rules

0011 1111 1111 11 1111 11 1111111 111121111 11 1111 111

==> (Nodes=3-4 OR Nodes=>4)

0100 1111 1100 1t 1111 11 1101101 11111101 11 1111 111

==> Nodes=1-2 AND (Treatment=PECT OR Treatment=NO RX) AND
(Age=<31 OR Age=31-40 OR Age=46-50 OR Age=51-56 OR Age=>60) AND
Histology<>6

- confusion matrix:
classified

positive negative
positive 270 311

actual:
negative 1285 546
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-~ instances which were classified incorrectly:

1254,
1276,
1202,
1310,
1334,
1385,
1395,
1421,
1448,
1497,
1521,
1857,
1586,
1599,
1622,
1657,
1685,
1714,
1740,
1763,
1782,
1814,
1844,
1859,
1886,
1912,
1934,
1963,
1983,
2018,
2030,
2047,
2069,
2085,
2123,
2157,
2182,
2208,

1256,
1278,
1293,
1312,
1336,
1372,
1398,
1423,
1453,
1503,
1525,
1859,
1588,
1600,
1626,
1658,
1686,
1715,
1744,
17es,
1786,
1815,
1845,
1866,
1887,
1914,
1937,
198§,
1991,
2020,
2031,
2052,
2071,
2098,
2127,
2163,
2184,
2213,

1263,
1281,
1295,
1313,
1337,
1375,
1399,
1424,
1454,
1506,
1527,
1560,
1589,
1601,
1636,
1659,
1690,
1716,
1746,
1768,
1795,
1818,
1846,
1867,
1892,
1918,
1939,
1961,
1999,
2021,
2034,
2083,
2079,
2102,
2130,
2166,
2187,
2215,

1266, 1269,
1282, 1284,
1296, 1297,
1315, 1319,
1340, 1342,
1382, 1385,
1400, 1403,
1428, 1429,
1465, 1467,
1807, 1512,
1832, 1538,
1661, 15686,
1690, 1591,
1602, 1604,
1637, 1642,
1660, 1667,
1694, 1699,
1721, {722,
1748, 1752,
1768, 1770,
1796, 1804,
1819, 1827,
1848, 1851,
1870, 1871,
1893, 1894,
1919, 1920,
1941, 1942,
1963, 1968,
2002, 2006,
2023, 2024,
2038, 2039,
2054, 2067,
2083, 2088,
2104, 2106,
2132, 2138,
2167, 2168,
2189, 2190,
2216, 2218,

160

1271,
1287,
1298,
1321,
1343,
1386,
1411,
1434,
1471,
1513,
1651,
1567,
1692,
1606,
1644,
1671,
1708,
1724,
1753,
1772,
1805,
1830,
1852,
1872,
1898,
1924,
1945,
1972,
2012,
2025,
2041,
2058,
2090,
2108,
2143,
2174,
2101,
2220,

1272,
1288,
1299,
1324,
1344,
1389,
1415,
1437,
1475,
1514,
1554,
1668,
1596,
1610,
1645,
1673,
1709,
1731,
1764,
1773,
1810,
1831,
1863,
1876,
1899,
1927,
1946,
1973,
2015,
2026,
2042,
2065,
2091,
2117,
2146,
2175,
2194,
2222,

1273,
1280,
1301,
1327,
1348,
1390,
1416,
1440,
1476,
1618,
1865,
1876,
1597,
1615,
1652,
1676,
1710,
1737,
1787,
1775,
1811,
1834,
18567,
1880,
1800,
1930,
1949,
1979,
2016,
2027,
2043,
2087,
2092,
2118,
2149,
2176,
2196,
2223,

1274,
1291,
1303,
1331,
1354,
1393,
1420,
1445,
1485,
1520,
1556,
1584,
1598,
1621,
1653,
1684,
1712,
1738,
1759,
1778,
1813,
1839,
1858,
1882,
1909,
1933,
1951,
1982,
2017,
2028,
2045,
2068,
2093,
2119,
2151,
2179,
2203,
2224,



2227, 2230, 2238, 2241, 2242, 2244, 2249, 2250, 2281,
2254, 2257, 2261, 2268, 2269, 2273, 2274, 2282, 2285,
2296, 2297, 2299, 2300, 2302, 2304, 2305, 2308, 2313,
2318, 2321, 2322, 2327, 2334, 2335, 2339, 2342, 2346,
2351, 2352, 2353, 2354, 2355, 2361, 2362, 2365, 2374,
2375, 2378, 2379, 2380, 2381, 2382, 2383, 2390, 2395,
2399, 2400, 2402, 2407, 2408, 2413, 2414, 2416, 2417,
2418, 2421, 2423, 2425, 2426, 2428, 2434, 2435, 2437,
2441, 2442, 2444, 2445, 2446, 2449, 2452, 2454, 2457,
2460, 2465, 2467, 2468, 2470, 2478, 2480, 2481, 2483,
2487, 2491, 2499, 2501

. - - - - - - - - " - - - - - -

START OF PASS NUMBER 3 OF § at Sun Dec 6 14:33:11 1998

Genetic Search Results

#+«+* REACHED CONVERGENCE LIMIT:

- generation number 23 at Sun Dec 6 14:34:11 1998

— best fitness to date = 1.905

- accuracy = 67.332% (843/1252 correct)
- correct = 281 positive, 562 Legative
- incorrect = 310 positive, 99 negative
- average fitness = 1.867

-~ convergence factor = 0.980

- last improvement generation #16

END OF PASS 3 at Sun Dec 6 14:34:11 1998 after 23 total generations

CPU usage for this pass = 20.120 seconds
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Best individual found (at generation 16)

- fitness = 1.90504

- accuracy = 67.33227% (843/1252 training instances correct)
= 65.49521% (820/1252 recall instances correct)

- length = 88 bits = 2 rules at 44 bits/rule

- unpruned rules

0011 1111 1111 11 1111 11 21111111 11111111 11 1111 111
0111 0011 1110 O1 0001 11 0101111 11111111 11 1111 112

-~ pruned rules

0011 1111 1111 11 11131 11 1111111 1313111111 11 1111 111

==> (Nodes=3-4 OR Nodes=>4)

0111 0011 1110 01 0001 11 0101111 11111111 11 1111 111

==> Nodes<>0 AND (Vessel Invasion=2 OR Vessel Invasion=3) AND
Treatment<>CONCT AND Tumour Size=>20 AND Path Grade=3 AND
(Age=31-40 OR Age=46-50 OR Age=51-556 OR Age=56-60 OR Age=>60)

- confusion matrix:
classified

positive negative
positive 255 326

actual:
negative 106 665
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— instances which were classified incorrectly:

1254,
1278,
1292,
1318,
1340,
1385,
1403,
1428,
1465,
1503,
1525,
1566,
1596,
1610,

1645,

1684,
1712,
1738,
1759,
1778,
1813,
1839,
1888,
1886,
1915,
1931,
1946,
1973,
2016,
2027,
2043,
2067,
2091,
2119,
2163,
2178,
2194,
2223,

1256,
1279,
1293,
1319,
1342,
1386,
i411,
1429,
1466,
1506,
16827,
1567,
1697,
1615,
1663,
1685,
1714,
1740,
17e1,
1778,
1814,
1844,
1859,
1892,
1918,
1933,
1949,
1979,
2017,
2028,
2045,
2068,
2092,
2123,
2166,
2179,
2196,
2224,

1266,
1281,
1296,
1321,
1343,
1387,
1415,
1434,
1467,
1507,
1538,
1568,
1598,
1621,
1688,
1686,
1715,
1744,
1763,
1782,
18165,
1845,
1867,
1893,
1919,
1934,
1981,
1982,
2018,
2030,
2047,
2069,
2093,
2127,
2187,
2181,
2207,
2230,

1269,
1282,
1296,
1324,
1344,
1389,
1416,
1439,
1471,
1512,
15661,
1584,
1599,
1622,
1659,
1690,
1716,
1746,
1765,
1786,
1818,
1846,
187¢,
1894,
1920,
1936,
1953,
1983,
2020,
2031,
2082,
2079,
2098,
2130,
2168,
2182,
2208,
2238,

1271,
1284,
1297,
1327,
1348,
1393,
1420,
1440,
1475,
1513,
1554,
1586,
1600,
1626,
1660,
1699,
1720,
1748,
1768,
1795,
1819,
1848,
1871,
1898,
1921,
1937,
19565,
1991,
2021,
2034,
2063,
2081,
2102,
2132,
2171,
2184,
2213,
2241,

163

1272,
1287,
1299,
1331,
1354,
1395,
1421,
1445,
1478,
1514,
1566,
1588,
1601,
1636,
1667,
1704,
1722,
1752,
1769,
1796,
1827,
1861,
1872,
1899,
1924,
1939,
1961,
2000,
2023,
2038,
2054,
2083,
2104,
2143,
2174,
2187,
2215,
2242,

1273,
1288,
1301,
1334,
1372,
1398,
1423,
1448,
1485,
1518,
1857,
1690,
1602,
1637,
1671,
1708,
1724,
1763,
1770,
18065,
1830,
1852,
1876,
1900,
1926,
1941,
1963,
2002,
2024,
2039,
2057,
2088,
21086,
2146,
2175,
2189,
22186,
2244,

1274,
1290,
1310,
1338,
1378,
1399,
1424,
1453,
1487,
1520,
1859,
1691,
1604,
1641,
1673,
1709,
1731,
1754,
1772,
1810,
1831,
18853,
1880,
1909,
1927,
1942,
1968,
2006,
2025,
2041,
2088,
2089,
2108,
2151,
2176,
2190,
2220,
2249,

1278,
1291,
1313,
1337,
1382,
1400,
1425,
1454,
1497,
1521,
1661,
1692,
1606,
1642,
1676,
1710,
1737,
1767,
1773,
1811,
1834,
1857,
1882,
1912,
1930,
1945,
1972,
2015,
2026,
2042,
2066,
2090,
2118,
2157,
2177,
2191,
2222,
2250,



2251, 2254, 2257, 2261, 2268, 2269, 2273, 2274, 2282,
2283, 2296, 2297, 2299, 2300, 2302, 2304, 2305, 2307,
2313, 2318, 2321, 2322, 2327, 2334, 2335, 2339, 2346,
2350, 2351, 2352, 2353, 2354, 2355, 2361, 2362, 2365,
2374, 2378, 2379, 2380, 2381, 2382, 2383, 2390, 2394,
2395, 2399, 2400, 2402, 2407, 2408, 2413, 2414, 2416,
2417, 2418, 2421, 2423, 2425, 2426, 2427, 2428, 2434,
2435, 2437, 2440, 2441, 2442, 2444, 2445, 2446, 2449,
2450, 2452, 2453, 2454, 2457, 2460, 2465, 2467, 2468,
2470, 2478, 2480, 2481, 2483, 2487, 2491, 2499, 2501

- - - - - - - - - - - - - - - - - - - - - - - -

START OF PASS NUMBER 4 OF 5 at Sun Dec 6 14:34:11 1998

Genetic Search Results

#*»x* REACHED CONVERGENCE LIMIT:

-~ generation number 18 at Sun Dec 6 14:34:57 1998
1.797
66.374% (831/1252 correct)

- best fitness to date

- accuracy =
- correct = 262 positive, G569 negative
- incorrect = 329 positive, 92 negative
- average fitness = 1.765
- convergence factor = 0.982

~ last improvement generation #0

END OF PASS 4 at Sun Dec 6 14:34:57 1998 after 18 total generations

CPU usage for this pass = 156.090 seconds
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Best individual found (at generation 0)

- fitness =

- accuracy

- length

1.79738

66.37380% (831/1252 training instances correct)
64.29713% (805/1252 recall instances correct)

44 bits = 1 rule at 44 bits/rule

- unpruned rules

0011 1111 1111 11 11131 11 11111311 21111121 11 1111 111

- pruned rules

0011 1111 1111 11 1111 11 1111111 11113211 11 1111 111
==> (Nodes=3-4 OR Nodes=>4)

— confusion matrix:

actual:

classified

B —————

positive negative

positive 233 348

negative 99 572

— instances which were classified incorrectly:

1254,
1278,
1292,
1315,
1340,
1385,

1256, 1266, 1269, 1271, 1272, 1273, 1274, 1276,
1279, 1281, 1282, 1284, 1287, 1288, 1290, 1291,
1293, 1295, 1296, 1297, 1299, 1301, 1310, 1313,
1319, 1321, 1324, 1327, 1331, 1334, 1336, 1337,
1342, 1343, 1344, 1348, 1354, 1372, 1375, 1382,
1386, 1387, 1389, 1393, 1395, 1398, 1399, 1400,
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1403,
1428,
1465,
1507,
1832,
15860,
1691,
1604,
1637,
1667,
1699,
1720,
1746,
1765,
1795,
1815,
1844,
1859,
1892,
1915,
1933,
1949,
1979,
2017,
2028,
2045,
2067,
2090,
2117,
2146,
2174,
2189,
2218,
2242,
2269,
2300,
2322,
2352,
2379,
2400,

1411,
1429,
1467,
1512,
1838,
1561,
1592,
1606,
1641,
1671,
1704,
1721,
1748,
1768,
1796,
1818,
1845,
1867,
1893,
1918,
1934,
19851,
1982,
2018,
2030,
2047,
20€8,
2091,
2118,
2149,
2178,
2190,
2216,
2244,
2273,
2302,
2327,
2383,
2380,
2402,

1415,
1434,
1471,
1513,
1581,
1666,
1596,
1610,
1642,
1673,
1708,
1722,
1752,
1770,
1802,
1819,
1846,
1870,
1894,
1919,
1936,
1953,
1983,
2020,
2031,
2052,
2069,
2092,
2119,
2151,
2176,
2191,
2220,
2249,
2274,
2304,
2334,
2354,
2381,
2407,

1416,
1439,
1475,
1514,
1554,
1567,
1697,
1615,
1645,
1676,
1709,
1724,
1753,
1772,
1804,
1827,
1848,
1871,
1898,
1920,
1937,
1985,
1999,
2021,
2034,
2083,
2071,
2093,
2123,
2157,
2177,
2192,
2222,
2250,
2282,
2305,
2335,
2355,
2382,
2408,

1420,
1440,
1478,
1518,
1885,
1568,
1598,
1621,
1652,
1684,
1710,
1731,
1754,
1773,
1805,
1830,
1861,
1872,
1899,
1921,
1939,
1961,
2000,
2023,
2038,
2054,
2079,
2098,
2127,
2163,
2179,
2194,
2223,
2251,
2283,
2307,
2339,
2361,
2383,
2413,

166

1421,
1445,
1485,
1520,
1556,
1584,
1599,
1622,
1663,
1685,
1712,
1737,
1757,
177s,
1810,
1831,
1852,
1876,
1900,
1924,
1941,
1963,
2002,
2024,
2039,
2087,
2081,
2102,
2130,
2166,
2181,
2196,
2224,
2254,
2290,
2313,
2342,
2362,
2390,
2414,

1424,
1483,
1503,
1825,
1568,
1688,
1601,
1626,
1659,
1690,
1715,
1740,
1761,
1782,
1813,
1834,
1857,
1882,
1912,
1927,
1945,
1972,
2015,
2026,
2042,
2061,
2088,
2106,
2138,
2168,
2184,
2208,
2238,
2261,
2297,
2318,
2350,
2374,
2398,
2417,

1425,
1454,
1506,
1527,
15859,
1590,
1602,
1636,
1660,
1694,
1716,
1744,
1763,
1786,
1814,
1839,
185s8,
1886,
1914,
1930,
1946,
1973,
2016,
2027,
2043,
2066,
2089,
2108,
2143,
2171,
2187,
2213,
2241,
2268,
2299,
2321,
2351,
2378,
2399,
2418,



2421, 2423, 2426, 2427, 2428, 2434, 2435, 2437, 2440,
2441, 2442, 2444, 2445, 2446, 2449, 2460, 2452, 2453,
2454, 2457, 2460, 2465, 2467, 2468, 2470, 2478, 2480,
2481, 2483, 2487, 2491, 2499, 2501

- - - - - - - - " WA - -

START OF PASS NUMBER 5§ OF 5 at Sun Dec 6 14:34:57 1998

Genetic Search Results

s*xx*xx REACHED CONVERGENCE LIMIT:

- generation number 40 at Sun Dec 6 14:36:42 1998

— best fitness to date = 2.087

- accuracy = 68.930% (863/1252 correct)
- correct = 321 positive, 542 negative
-~ incorrect = 270 positive, 119 negative
- average fitness = 2.046

- convergence factor = 0.980

- last improvement generation #38

END OF PASS 5§ at Sun Dec 6 14:36:42 1998 after 40 total generations

CPU usage for this pass = 34.480 seconds

Best individual found (at generation 38)

- fitness = 2.086585

- accuracy = 68.92971% (863/1262 training instances correct)
= 64.21725% (804/1252 recall instances correct)

- length = 88 bits = 2 rules at 44 bits/rule
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- unpruned rules

0011 1111 1111 11 1011 11 0111111 2111131111 11 1111 111
0101 1111 1111 O1 1111 11 1111011 11131111 11 1101 111

- pruned rules
0011 1111 11121 11 1011 11 0111111 11111111 11 1111 111
==> (Nodes=3-4 OR Nodes=>4) AND Path Grade<>1 AND Age<><31
0101 1111 1111 01 1111 11 1111011 211111111 11 1101 11t
==> (Nodes=1-2 OR Nodes=>4) AND Tumour Size=>20 AND Age<>51-55 AND
Amenorrhea rec<>3

- confusion matrix:
classified

positive negative

positive 290 291
actual:
negative 1587 514

— instances which were classified incorrectly:

1254, 1256, 1258, 1260, 1262, 1263, 1266, 1267, 1269,
1271, 1272, 1273, 1274, 1276, 1278, 1281, 1282, 1284,
1287, 1288, 1290, 1291, 1292, 1293, 1295, 1297, 1298,
1299, 1301, 1303, 1310, 1313, 1315, 1319, 1327, 1331,
1334, 1336, 1340, 1342, 1343, 1344, 1347, 1350, 13852,
1355, 1375, 1379, 1382, 1385, 1386, 1387, 1390, 1395,
1397, 1398, 1399, 1400, 1403, 1406, 1411, 1415, 1416,
1417, 1420, 1421, 1424, 1425, 1428, 1429, 1434, 1437,
1439, 1440, 1445, 1448, 1453, 1454, 1465, 1467, 1471,
1475, 1478, 1484, 1485, 1492, 1493, 1497, 1503, 1506,
1507, 1512, 1513, 1514, 1618, 1520, 1825, 1527, 1537,
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1538,
1561,
1591,
1606,
1627,
1658,
1684,
1708,
1731,
1787,
1773,
1805,
1827,
1851,
1875,
1895,
1927,
1946,
1973,
2012,
2025,
2041,
2065,
2092,
2119,
21861,
2176,
2190,
2216,
2247,
2268,
2299,
23is,
2355,
2394,
2418,
2441,
2454,
2478,

1545,
1564,
1892,
1608,
1636,
1659,
ie8s,
1709,
1732,
1759,
1778,
1809,
1830,
1852,
1876,
1899,
1930,
1948,
1979,
2015,
2026,
2042,
2067,
2093,
2123,
2157,
2176,
2191,
2220,
2248,
2269,
2300,
232%,
2361,
2395,
2421,
2442,
2457,
2479,

1547,
1566,
1596,
1610,
1637,
1660,
1688,
1710,
1737,
1761,
1782,
1810,
1831,
1863,
1880,
1900,
1933,
1949,
1982,
2016,
2028,
2045,
2068,
2095,
2127,
2163,
2177,
2192,
2222,
2249,
2273,
2302,
2322,
2365,
2399,
2423,
2444,
2460,
2481,

18861,
1567,
1597,
1613,
1639,
1663,
1690,
1712,
1738,
1762,
1786,
1811,
1833,
18567,
1886,
1909,
1934,
1961,
1983,
2017,
2029,
2047,
2069,
2099,
2130,
2165,
2178,
2194,
2223,
2250,
2274,
2304,
2335,
2374,
2400,
2424,
2445,
2462,
2483,

1554,
15678,
1588,
1615,
1640,
1667,
1694,
1718,
1744,
1763,
1793,
1813,
1834,
1859,
1887,
1912,
1937,
1953,
1991,
2018,
2030,
2062,
2071,
2101,
2132,
2166,
2179,
2199,
2224,
2251,
2282,
2305,
2339,
2378,
2402,
2426,
2446,
2465,
2487,
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1555,
1584,
1699,
1616,
1641,
1669,
1698,
1716,
1746,
1765,
1795,
1814,
1839,
1866,
1890,
1914,
1939,
1955,
1993,
2020,
2031,
2053,
2079,
2102,
2133,
2167,
2181,
2203,
2230,
2254,
2285,
2307,
2346,
2380,
2407,
2429,
2449,
2468,
2491,

1586,
1586,
1600,
1621,
1642,
1671,
1699,
1722,
1748,
1768,
1796,
18185,
1844,
1867,
1892,
1918,
1941,
1961,
1996,
2021,
2034,
2064,
2083,
2104,
2143,
2171,
2184,
2207,
2241,
2257,
2291,
2313,
2351,
2382,
2413,
2434,
2450,
2470,
2499

1557,
1588,
1602,
1622,
1645,
1673,
1704,
1724,
1763,
1770,
1802,
1818,
1846,
1871,
1893,
1919,
1942,
1968,
2002,
2023,
2038,
2057,
2088,
2106,
2146,
2173,
2187,
2208,
2242,
2261,
2296,
2316,
2383,
2383,
2414,
2437,
2451,
2474,

1589,
1596,
1604,
1626,
1653,
1676,
1707,
1729,
1756,
1772,
1804,
1819,
1848,
1872,
1894,
1921,
1945,
1972,
2010,
2024,
2039,
2058,
2091,
2108,
2150,
2174,
2189,
2213,
2244,
2265,
2297,
2317,
2354,
2390,
2417,
2440,
2452,
2475,



|

END OF RUN at Sun Dec 6 14:36:42 1998

Total CPU usage

Voting Results from All Passes

- accuracy on recall instances

— recall instances considered unclassifiable

- confusion matrix:
classified

-

positive

positive 290 291

actual:
514

negative 187

f

109.730 seconds

= 64.217252% (804/1252)

= 0 of 1252

negative

- instances which were classified incorrectly:

1262,
1276,
1292,
1313,
1343,
1385,
1403,
14285,
1483,
1492,
1518,
1564,

1254,
1271,
1287,
1299,
1334,
1355,
1397,
1417,
1439,
1475,
1807,
1538,

12586,
1272,
1288,
1301,
1336,
1375,
1398,
1420,
1440,
1478,
1512,
1545,

1268,
1273,
1290,
1303,
1340,
1379,
1399,
1421,
1445,
1484,
1613,
1647,

1260,
1274,
1291,
1310,
1342,
1382,
1400,
1424,
1448,
1485,
1514,
1661,

170

1263,
1278,
1293,
1315,
1344,
1386,
14086,
1428,
14564,
1493,
1520,
1655,

1267,
1282,
1297,
1327,
1380,
1390,
1415,
1434,
1467,
1503,
1627,
1557,

1266,
1281,
1295,
1319,
1347,
1387,
1411,
1429,
1465,
1497,
1626,
1666,

1269,
1284,
1298,
1331,
13562,
1395,
1416,
1437,
1471,
1506,
1837,
1559,



1561,
1591,
1606,
1627,
1658,
1684,
1708,
1731,
1757,
1773,
1805,
1827,
1851,
1875,
1895,
1927,
1946,
1973,
2012,
2025,
2041,
2065,
2092,
2119,
2151,
2175,
2190,
2216,
2247,
2268,
2299,
2318,
23565,
2394,
2418,
2441,
2454,
2478,

1564,
1592,
1608,
1636,
1689,
1685,
1709,
1732,
1759,
1778,
1809,
1830,
1852,
1876,
1899,
1930,
1948,
1979,
20185,
2026,
2042,
2067,
2093,
2123,
2157,
2176,
2191,
2220,
2248,
2269,
2300,
2321,
2361,
2395,
2421,
2442,
2457,
2479,

1566,
1596,
1610,
1637,
1660,
ie88,
1710,
1737,
1761,
1782,
1810,
1831,
1853,
1880,
1900,
1933,
1949,
1982,
2016,
2028,
2045,
2068,
2095,
2127,
2163,
2177,
2192,
2222,
2249,
2273,
2302,
2322,
2365,
2399,
2423,
2444,
2460,
2481,

1567,
1597,
1613,
1639,
1663,
1690,
1712,
1738,
1762,
1786,
1811,
1833,
1857,
1886,
1909,
1934,
1961,
1983,
2017,
2029,
2047,
2069,
2099,
2130,
2165,
2178,
2194,
2223,
2250,
2274,
2304,
2335,
2374,
2400,
2424,
2445,
2462,
2483,

1578,
1598,
1615,
1640,
1667,
1694,
171s,
1744,
1763,
1793,
1813,
1834,
1859,
1887,
1912,
1937,
1953,
1991,
2018,
2030,
2052,
2071,
2101,
2132,
2166,
2179,
2199,
2224,
2261,
2282,
2305,
2339,
2378,
2402,
2426,
2446,
2465,
2487,

171

1684,
1599,
1616,
1641,
1669,
1698,
1716,
1746,
17685,
1795,
1814,
1839,
1866,
1890,
1914,

" 1939,

195§,
1993,
2020,
2031,
2053,
2079,
2102,
2133,
2167,
2181,
2203,
2230,
22564,
2285,
2307,
2346,
2380,
2407,
2429,
2449,
2468,
2491,

1586,
1600,
1621,
1642,
1671,
1699,
1722,
1748,
1768,
1796,
1815,
1844,
1867,
1892,
1918,
1941,
1961,
1996,
2021,
2034,
2054,
2083,
2104,
2143,
2171,
2184,
2207,
2241,
2257,
2291,
2313,
2351,
2382,
2413,
2434,
2450,
2470,
2499

1688, 1590,
1602, 1604,
1622, 1626,
1645, 1653,
1673, 1676,
1704, 1707,
1724, 1729,
1763, 1756,
1770, 1772,
1802, 1804,
1818, 1819,
1846, 1848,
1871, 1872,
1893, 18%4,
1919, 1921,
1942, 1945,
1968, 1972,
2002, 2010,
2023, 2024,
2038, 2039,
2057, 2088,
2088, 2091,
2106, 2108,
2146, 2150,
2173, 2174,
2187, 2189,
2208, 2213,
2242, 2244,
2261, 22685,
2296, 2297,
2316, 2317,
2363, 2354,
2383, 2390,
2414, 2417,
2437, 2440,
2451, 2452,
2474, 2475,



Per-pass statistics

1.91964

— average fitness

- average accuracy = 67.46006 (845/1252)
= 64.64857 (809/1252)

- average CPU time = 21.80400

average generation count = 24
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