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ABSTRACT

Applications of a Three-Body Potential Model and Crystal Field Calculations to the
Simulation of Eu**, EP’" and Yb** Environments in PbO-SiO; glass.

Tania Peres
Concordia University, 1999

An investigation of the local environment of rare-earth doped lead silicate
glasses, using molecular dynamics simulation techniques and crystal-field theory, is
presented. The primary focus of the research was to develop a more realistic potential
model to better describe the environment surrounding the rare-earth ion. The
configurations generated from the MD simulations were used in a point-charge crystal-
field model, using C; symmetry, to generate the emission spectra of the rare-earth ions.
By refining both the aforementioned methods, we have developed a model that can
isolate the individual geometrical RE’~ environments and calculate the individual
emission spectra corresponding to each of the different geometrical arrangements. This in
turn has allowed us to obtain a more complete description of the local structure of the
RE’" ion with respect to the overall emission spectrum.

Molecular dynamics techniques were employed to simulate undoped and rare-
earth doped lead silicate glasses, using both two- and three-body potential models.
Structural features of the simulations of undoped PbO-SiO; glass were found to be in
excellent agreement with published experimental results, and the three-body potential

model produced a marked improvement over the two-body potential model. The
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simulations using the three-body potential showed the presence of two networks in the
glass; a silicate network and a lead network.

In order to obtain a better description of the effect of the lead ions in silicate
glasses, a concentration study on undoped lead silicate glass was perfo;med, At low
modifier concentrations (22 mol% PbO) the lead ion was found to behave as a typical
modifier. As the concentration of PbO was increased to 70 mol%, the lead ions behaved
more as network formers, and an increase in PbO coordination was observed due to the
lead ions sharing neighbouring oxygens. The presence of lead rich regions predominated
in the glass and the two networks (silicon and lead) were found to be connected via edge-
sharing oxygens.

Simulations of the Eu’"-lead silicate glass, using the three-body potential model,
showed that the Eu’” ions were found primarily in the lead network, with only a modest
presence in the silicate network, showing that the two cations (Pb*", Eu®") share similar
environments. The average coordination number of Eu’™ was found to be 6.5.
Furthermore, two main geometrical arrangements were found to exist for Eu’” a six-
coordinated distorted octahedral and a seven-coordinated distorted pentagonal bipyramid.

Since the spectroscopic properties of the dopant ions are dependent on the local
environment, an in depth investigation on first coordination sphere of three different rare-
earth ions (Eu’"-, Er' - and Yb’") doped in lead silicate was performed using the three-
body potential model. Although the differences in ionic radii, interionic distance and
average coordination number between the three rare-earths was quite small, the three-
body potential model successfully reproduced these differences in the bulk structural

features, and the results were found to be in excellent agreement with experimental data.
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In order to study the clustering of erbium ions, and to examine the possibility of
intercluster and cluster-to-cluster energy transfer, a concentration study on the Er’*-doped
lead silicate glass was performed. Erbium-erbium clustering was observed at
concentrations as low as 2.0% Er’”. An increase in the concentration of Er** in the glass
caused an increase in Er-O coordination. This effect is due to an increased amount of

erbium-erbium clustering, which resulted in the erbium ions sharing oxygens within the

same coordination sphere (3.24).

A successful validation of the simulated structural model of the PbO-SiO,:RE**
glass was performed through a comparison between the room-temperature emission
spectra of the experimental glass and the calculated emission spectra of the simulated
glass. The simulated spectra were obtained using a point-charge crystal-field model, with
a C; symmetry for the RE'" environment. The splitting of the J manifolds, and the
corresponding transition probabilities of the simulated RE*™ ions were also calculated.

Simulations of Hy12—>"I152 and the *S32—*I1512 and *I13,—°L;5, transitions in the
Er’” ion were found to be in moderate agreement with the corresponding room
temperature experimental spectrum. The simulation of the *Do—’F; (J=0-4) transitions in
the Eu’” ion spectra were found to be in good agreement with the experimental emission
spectrum. The most important results in our simulations of the Eu’™ emission spectrum is
that we were able, with confidence, to separate and simulate the emission spectra of a

rare-earth ion based on the specific geometrical arrangements of the local environments.
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1.0 INTRODUCTION

Glass has a very long and interesting history, yet information on its structure still
remains the subject of continuing controversy. Before the advent of chemistry and
physics, the glass-making technique was considered a proprietary craft and trade secrets,
developed on an alchemical basis, were heavily guarded [1]. Moreover, Assyrian
cuneiform tablets, dating to approximately sixth century BC, reveal recipes for glass
composition which do not differ greatly from some of the glasses commonly used
today [1].

The origins of the lead crystal industry in the Western world are largely due to
the work of George Ravenscroft in 1675 [2]. Prior to this date, the glassmaking center
was located in Italy where glass was produced using soda-lime compositions for both
utilitarian and luxury purposes. Carried by the [Italian craftsmen, the traditions of
glassmaking spread throughout Europe in the 16th and 17th centuries. The Venetian
tradition was established in England in 1575 and continued for almost a century through
the Puritan period and into the Restoration in 1660 [2]. At this time in England, a very
important change occurred in the outlook of glass production which eventually led to the
development of English lead crystal, variations of which are still used in fine glassware to
this day.

These new lead glasses were called flint glasses and had unusual clarity for glass
of that time period. Ravenscroft used English flints, a very hard and pure form of quartz,
as a supply of silica. The use of flint pebbles, which are low in iron, were in part

responsible for the added clarity. The flint glasses were not only of greater brilliance but



could be readily decorated by cutting, since they were considerably easier to grind and
polish than existing soda-lime-silica glasses.[2]

Improvement in lead crystal in the 20th century has not been so much a change
in the basic glass formulation, but rather is due to significant improvements in the purity of
raw materials, refractories and melting furnaces. Consequently, these improvements have
resulted in the degree of perfection found in modern lead crystal glasses such as Steuben
art glass.

The structural properties of glass are still, however, quite controversial. One of
the main reasons for the continuing debate is due to the nature of the material. Glass
possesses a degree of atomic disorder characteristic of liquids, however, the atoms
maintain permanent positions with respect to the location of their neighbours, which is
characteristic of solids [3]. As a result, methods such as neutron and X-ray diffraction or
EXAFS (Extended X-ray Absorption Fine Structure), which are commonly used to
analyse crystalline solids and molecular groups, are only able to predict average structural
characteristics in glasses. It was therefore necessary to search for a new technique that
would yield the exact ordering by means of a statistical description through the
distribution of interionic distances [4].

With the application of atomistic level simulation techniques such as Molecular
dynamics (MD) and Monte-Carlo (MC), unambiguous analysis of local features around
individual atoms is possible. These techniques can also calculate average structural,
- thermodynamic and transport properties of a given material. If the average structural
features observed in the simulations are identical to those observed experimentally, then
specific structures which create those averages can be explicitly obtained by the simulation

rather than just inferred from the data.



In this thesis, molecular dynamic simulations were used in order to investigate
the structure of undoped and trivalent rare-earth doped lead silicate glasses. The glasses
under investigation belong to the oxide family of glasses which are also termed covalently
bonded glasses which contain oxygen as the anion and the number of ligands present
depends on the radius ratio of the cation-oxygen ion. In addition, the luminescent
properties of the doped trivalent rare-earth ions are studied using a variety of other

computer techniques.

1.1 THE STRUCTURE OF GLASSES
1.1.1. Definition of a Glass

Glasses are amorphous materials which may be defined as non-crystalline solids
obtained by freezing super cooled liquids [5], yet they still possess the mechanical
properties (elasticity and strength) which are used to characterize solids. There is a large
percentage of materials, including metals, which may be produced in the amorphous state,
however, the absence of crystalline structure does not qualify them to be classified as
glasses. A rigid amorphous solid is called a glass, if upon heating, it turns into a liquid in a
reversible fashion [3,6]. Moreover, although the glassy state is intrinsically a2 non-
equilibrium configuration, it is also required to be stable against crystallization over a long
period of time.

A more qua'mtitative description of a glass may be given in terms of the glass
transition temperature, Tg, which is independent of composition and is commonly
associated with the liquid viscosity, n, of the system [1]. Specifically, Tg is the point at
which the attainment of equilibrium is no longer possible with continual cooling and this

corresponds to a value for n of 1013 poise. Although the atoms or molecules of a liquid

3



are able to undergo relatively large displacements, their displacements in a glass are
restricted to thermal vibrations around an average fixed position. In fact, a glass is
commonly described as a liquid which has been frozen in place [7].

From the basic definition of an amorphous material, a glass can therefore be
described as lacking any symmetry, periodicity and long range order. The structure of
glasses is a disordered network characterized mainly by the coordinations of network
formers (such as B, Si, Ge, As and P) by anions (such as O and F) and these units are
linked together at the corners creating short-range order {8]. Hence, to completely define
the structure, it would be necessary to specify the coordinates and thermal parameters for
every atom present in the glass; which is not possible for any real sample. As a result,
several hypotheses, with certain variations and amplifications, have been developed about
the structure of glass and the conditions for its formation. It is therefore important to

review some of the more traditional models describing glass structure.

1.1.2.  Structural theories and models
1.1.2.1. The Random Network Theory

The random network theory was first introduced by Zachariasen [9] and
subsequently modified by Warren [10] to describe the structure of conventional oxide
glasses. The basis of this network hypothesis, however, was developed from the earlier
work of Goldschmidt [11] in the mid 1920’s.

Zachariasen [9] postulated that the atoms in a glass are linked together by

interatomic forces and the interatomic distances are essentially the same as those in the
corresponding crystals. Moreover, if the free energy of the glass is to be comparable to

that of the crystal, the oxygen polyhedra in the glass and crystal must be similar.
4



Extended three dimensional networks are formed in glasses but unlike crystals, they are
linked together randomly to form a non-periodic structure which lacks long range order.
In order to obtain a random network relatively free of distortion, Zachariasen [9] derived a

set of criteria governing glass formation which are as follows:

() The oxygen atoms are linked to no more than two glass (network) forming
cations.

2) The number of oxygens (coordination number) around a glass forming cation
should be four or less.

3) " The oxygen polyhedra should share corners, not edges or faces.

@) The polyhedra are linked together by at least three comers in a three-
dimensional network.

These conditions are fulfilled by the oxides of type R,Os, RO-, and R;Os, where R=B, Si,
P, Ge and As. It is also important to note that a glass can still be formed if one of the
above criteria is not met, however, it would be energetically less favorable than one for
which all the criteria are satisfied. Zachariasen’s theory proved to be an accurate
prediction of glass formation and has withstood the test of time becoming the basis for the
continuous random network (CRN) theory.

Warren et al. [12], calculated X-ray diffraction patterns for silica (SiO.) based
on the CRN theory and their calculations were in excellent agreement with interference
curves obtained experimentally. The authors later extended the theories of Zernike and
Prins [13] by applying a Fourier analysis proposed by Debye and Menke [14] to the X-ray
interference patterns for amorphous silica in order to calculate radial &istn'bution
functions. They were also able to calculate average coordination numbers and
bondlengths of the ions present by using a crystalline counterpart as a model for the base

structure. The X-ray analysis, however, could only provide average structural information
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for distances less than 7 A from the center of an ion. Nonetheless, Warren’s work
supported the basic premise of the Zachariasen’s theory and the CRN model is still used

today to describe the structure of vitreous silica.

1.1.2.2. The Crystallite Theory

The early crystallite theory proposed by Lebedev [15], envisioned glass as an
assembly of very small crystals, called crystallites with sharp external boundaries. Due to
the interpretation of X-ray data, early researchers, such as Randall et al. [16] supported
the early crystallite theory. By using photographic techniques to study X-ray diffraction
patterns of oxide glasses, it was noted that the diffuse halos, characteristic of vitreous
materials, were coincident with prominent Bragg peaks, or groups of Bragg peaks, in the
powder diffraction patterns of related crystalline materials [7].

Valenkov and Porai-Koshits [17] further expanded on Lebedev’s ideas and
developed a modified theory in which these discrete crystallites were not found in simple
glasses. More specifically, the modern crystallite theory postulates that there are spatial
fluctuations in the degree of intermediate range order within the vitreous network such
that the more highly ordered regions (the crystallites), where the atomic arrangement
approaches those in the related crystalline materials, are interconnected by regions with a
lower degree of order [17].

In a vitreous network such as SiO,, it is inherent that there will be fluctuations in
the degree of local order. Hence the essential difference between the modem crystallite
theory and the random network theories is in the magnitude of these fluctuations,
particularly within the range of 1-20 A and in the frequency that local regions exhibit

crystalline structure. Moreover, in both theories, a continuous three-dimensional network
6



for simple oxide glass is formed. Figure 1.1.2.2.1. shows a schematic representation of for
a pure glass forming oxide, A,O;s, according to the random network theory, the modern

crystallite theory. The corresponding crystalline material is also illustrated.

Figure 1.1.2.2.1. A schematic representation of vitreous A;O; based on the modern
crystallite theory (top left) and the random network theory (top right) and the
corresponding crystalline material (below) (A20;) [7].
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1.1.2.3. The Structon and Vitron Theories

In order to obtain a better understanding of the structure of glass, Huggins [18]
developed‘ the structon theory, which analyses density based on the composition of a glass.
Huggins [18] plotted measured density values, obtained by other researchers, versus
composition and found that breaks occurred in the curves for certain compositions. These
breaks were attributed to structons (structural elements) in the glass structure and these
structural units are atoms/ions with their respective coordination. [8]. For example, for
vitreous silica, the only atoms present are Si and O which are coordinated with 40 and
2Si, respectively thus these two structons are designated Si (40) and O (2Si). Ifa
modifier, such as sodium (Na;0), is introduced into vitreous silica, the following structons
are assumed: Na (60), O (2Si, Na) and O (Si, 3Na). The relative proportions of the
individual structons change with glass composition and can be calculated. The usefulness
of this theory is questionable and tends to be regarded more as a hypothesis. Nonetheless,
this hypothesis proposes a method for the nomenclature of structural units which aids in
understanding properties based on composition.

The fundamental idea behind Tilton’s vitron theory [19] is that the
tetrahedron(such as SiO,) is the basic ‘building block’ of a glass. In crystals, the
tetrahedron form six-membered rings while in glasses five-membered rings are found. Ina
glass, these rings form regular pentagonal dodecahedra from the- tetrahedra which are
called vitrons [19]. Tilton affirms that further growth of these “building blocks’ is possible
only with the distortion of the closest five membered rings, such that the individual
components are linked together across irregular regions. A symmetry of five in crystals is
impossible and this is said to be the cause of glass formation with SiO3. Although Tilton

succeeded in calculating the density of vitreous silica on the basis of this perception, his
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structure proposal has neither been proven for SiO glass nor is it transferable to other
glasses. This model does, however, deserve recognition for its fundamental idea which
has been employed by Robinson [20], who assumed a model based on pentagonal

dodecahedra in order to explain the structure of vitreous silica.

1.1.3.  The structure of silicate glass

In pure vitreous SiO3, all of the oxygen (0%") ions represent bridges between
two neighbouring Si4* ions, and are called bridging oxygens. The incorporation of an
alkali or alkaline-earth metal into SiO; breaks these bridges and as a result, neighbouring
Si4* ions are formed which contain singly bonded O2- ions such that no direct bonding
among the silicon ions occurs. These oxygens are known as non-bridging oxygens.
Silicate glasses are therefore, comprised of a disordered three-dimensional silicate network
which is randomly modified by the presence of the alkali or alkaline earth metals. The limit
of formation of these glasses is reached when every SiOj4 tetrahedral unit is shared only at
three corners. For example, in the case of lead (R=Pb), the limit of formation would be
reached at the composition RO=2Si0;. As the concentration of RO increases to the
composition RO=Si05, the three dimensional network continues to break down into
infinitely long chains. Since the connection of the tetrahedra is not perfectly uniform, the
chains will also be crosslinked among one another. At even higher alkali concentrations,
the chains continue to break down, until at the composition 2RO-SiO2, isolated
tetrahedra, which no longer have any connection across Si-O-Si bridges, are present.

The basis of glass formation is therefore, the network formed by the SiO4

tetrahedron. The average Si-O interionic distance is 1.62 A and the average O-Si-O bond



angle is found to be 110° [21], which is indicative of the well defined short range order in
the glass. The Si-O-Si bond angle has a broad distribution ranging from 120° to 180° with
a maximum at 144°. The broad distribution for ¢si.0-si is due to the introduction of
randomness incurred by the typical disorder of corner-sharing tetrahedra [21].

The cations which form this network building polyhedron are called network
formers (such as Si, Ge, B, As, P), while the cations which break down the network are
called network modifiers (alkali and alkaline earth metals). This terminology is illustrated

in Figure 1.1.3.1. by a three-dimensional representation of PbO-SiO> glass.
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Figure 1.1.3.1. Computer graphics of a slice (xy) of the simulated PbO-Si0; glass. The
large red spheres represent the lead modifier ions while the small black spheres represent
the silicon ions (network formers), and the large blue-gray spheres represent the oxygen

ions.
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1.1.4. Lead insilicate glass

Lead containing glasses are used extensively in numerous industrial and
technological applications such as glass lasers, underwater optical communication devices,
and biomedical sensors. In addition to the more conventional industrial applications, low-
melting glasses and glass ceramics have also been widely used in the field- of electronic
technology as electron multipliers and micro-channel plates. [22]. This is due to the
specific properties of the lead ion (such as large polarizability, high non-linear index of
refraction and low coordination), which results in the ability to prepare stable glasses
containing a composition range up to 95 mol% PbO [23]. In contrast to other traditional
modifiers, lead has also been recognized for its glass forming capabilities, which are
attributed to the high polarizability of divalent lead. At PbO concentrations below 30
mol%, lead behaves as a classical modifier. However, at higher concentrations, PbO is
more of a network former displaying PbO3 and PbOj4 structural units. Moreover, the
presence of a high concentration of PbO in the random network can drastically influence
the spectroscopic behavior of the impurity ion, either by forcing the impurity ion to be
placed in an uncommon coordination geometry, and/or by affecting its transition
probabilities [24]. In recent years, high technology applications such as nuclear
scintillators and upconversion laser devices have demanded a greater understanding and
control over these and other structurally related optical properties. Rabinovich [25], in an
excellent review article, summarized the behavior of PbO in a variety of different glasses.
This next section will review some of the more relevant studies on lead silicate glass

pertaining to this thesis.
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1.1.4.1. Bulk characterization of lead silicate glass

One of the first researchers to take interest in lead silicate glasses was Bair [26].
Using X-ray diffraction, he studied binary glasses with the PbO concentration ranging
from 10-60 mol%. Bair used the trial and error method to interpret his results and
reported Pb-O and Pb-Si interionic distances of 2.5 A and 3.80 A, respectively, which
showed a good agreement between the observed and calculated distances. Depending on
the composition of the glass, the Pb-Pb interionic distance varied between 4.00A and
6.50A_ Bair concluded that the Pb-Pb distance was variable, and assumed that the
distribution of lead atoms was of the gas type and as a result it was impossible to
determine a lead-lead coordination number. He suggested that the structure of lead silicate
glass was identical to that of soda-silica glass [25,26] except that two sodium ions were
replaced by a lead ion. Thus, according to Bair, these glasses would consist of a
continuous, randomly oriented silicon-oxygen network with the lead behaving as a pure
modifier.

Krough-Moe [25,27] performed an X-ray diffraction study on Pb0-0.7Si02
which corresponds to a PbO composition of 58.8 mol%. Results for the Pb-O and O-O
interionic distances were in agreement with those obtained by Bair, however, the Pb-Pb
distance differed dramatically. The author reported a Pb-O interionic distance of 2.27 A,
which corresponds to a lead-oxygen coordination ranging between 6 and 10. Krough-
Moe reported a value of 3.90 A for the Pb-Pb interionic distance as well as a lead-lead
coordination of 6. In contrast to Bair [26], Krough-Moe[27] believed that the structure of
lead silicate glass with high lead content could not be described by the random network

theory but rather by an arrangement of disordered cubes with the lead ions in the corners.
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The edge length of the cube corresponds to the 3.90 A found for Pb-Pb and the shortest
Pb-O bond distance is 2.27 A. In addition, each cube could accommodate one SiO4
tetrahedral unit. According to this structural arrangement, a glass containing 60 moi%
PbO, approximately 30 mol% of the lead cubes would be empty, which Krough-Moe
attributed to the relatively large molar volume of 65.3 A for lead silicate glass.

Bagdyk’yants and Alekseev [25,28] examined a series of lead silicate glasses
with varying PbO concentration using electron diffraction techniques. The glasses studied
contained 20 to 60 mol% PbO. The authors report a Pb-Pb interionic distance of 4.2 A
and a lead-lead coordination of 9. In the case of glasses with low lead content, the lead
ions behave as classical modifiers and are randomly distributed throughout the glass in
between the three-dimensional silicate network, with each lead being connected via two
oxygens. Bagdyk’yants and Alekseev postulated that as the concentration of lead
increases, the lead oxygen coordination number increases to 6, as reported by Krough-
Moe [27], and the three dimensional silicate network begins to break down to a point
where it no longer exists.

A conclusive study by Brosset [25,29] showed that the position of the Pb-Pb
peak at 3.9 A is independent of the PbO content. This implies that the lead groups have a
definite structure with the possibility of covalent bonding between Pb-Pb at 3.9A. Similar
results for the Pb-Pb peak were also observed by Mydlar et al. [30].

Mydlar et al. [30] performed an X-ray diffraction study of 2PbO-SiOa,
PbO-SiO; and PbO+2SiO7 glasses. An important observation in their studies was that the
Pb-Pb peak at 3.8 A for both the PbO-SiO; and 2PbO-SiO; glasses was sharp, indicating

that the distribution of lead in these glasses cannot be completely random. With respect to
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the lead-lead coordination, they reported one closest neighbour at 3.6 A, two more leads
at 4.15 A and a fourth lead at 4.8 A. For PbO-SiO,, the Pb-O interionic distance was
found to be within a range of 2.15 A and 2.50 A, with the lead ion coordinated by 4
oxygens, the first two at 2.2 A and the other two oxygens at 2.53 A and 2.8 A
Furthermore, this distribution of distances is similar to that found in red PbO and
crystalline PbSiO3. A similar structure was reported for 2PbO+SiO; glass with the
primary lead-lead peak at 3.8 A as well as a lead-oxygen coordination of 8, with four
nearest neighbours, and four more distant neighbours, resembling yellow PbO, which also
has a lead-oxygen coordination of 8. The resemblance between the structures of vitreous
and crystalline lead silicates has also been shown by infrared [31] and NMR
spectroscopy [32].

Morikawa et al. [33] used X-ray diffraction analysis to investigate the structure
of 2PbO-SiO, glass. The authors report a Pb-O interionic distance of 2.35 A and a
coordination of 4 (the number of oxygens surrounding a lead ion). These values are in
good agreement with those reported for red PbO [33,34]. In contrast to Mydlar et
al.[30], Morikawa et al[33], believed that the atomic arrangement of red PbO is not a
suitable structural model for 2PbO-SiO5, due to the fact that chemical shifts of 207Pb
indicate that the lead ion in the glass is more ionic than the lead ion in red PbO. This point
has been the subject of controversy by several researchers [30,33,35-38] and in attempt to
clarify the contradiction, Montenero et al. [39] performed and EXAFS investigation on
lead ions in (PbO)x*SiO; glasses ranging in composition from 38.6 to 83.7 mol% PbO.
They found that no chemical shift in the Pb absorption edge was observed as the

concentration of PbO was increased to high lead silicate glasses, thus indicating that the
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nature of the chemical bonds does not change from the crystalline lead oxide to the glasses
of different compositions. Montenero et al. [39] also state that they found no significant
change of the average local structural parameters between red PbO and the glass.

Morikawa et al. [33], also report that most of the lead ions form covalent PbO4
pyramids and subsequently, dimeric or trimeric PbO4 pyramids form zigzag chains acting
as glass formers. They suggest that these zigzag PbO4 chains could be bridged by units
such as [Siy07]6- dimers, [Si3010]3" trimers, [Si4012]%- tetrameric rings, [SiO3]?- chains
and ionic PbOg octahedra.

Information on the degree of polymerization and distribution of low-molecular
weight silicate anions in binary lead silicate glasses was reported by Gétz et al. [37] using
organic derivitization/chromatographic techniques. Employing various chemical methods,
the authors quantified the type and percentage of silicate groupings present in a number of
lead silicate glasses. These techniques permit the separation and identification of silicate
anions in the range monomeric, [SiO4]%-, to the linear and branched hexameric anions,
[SigO19]14-. They have also reported a quantification of various classes of silicate anions,
namely, (i) polysilicate chains [SiO3]n2", (ii) two- and three dimensional silicate units, (iii)
phyllosilicates and (iv) higher molecular silicates. For PbO-SiO, glass, Gétz et al. [37]
report that approximately 85% of the silicate anions are in the form of phyllosilicates and
higher molecular silicates. The remaining 15% were attributed to unidentified low-
molecular anions. However, the authors ascribe a substantial error on the quantification of
any species present at concentrations lower than 30%. In addition, the authors suggested
that glasses containing low concentrations of PbO (increasing percentages of SiO2),
promotes the formation of higher polymerized silicate groupings, while glasses with high
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PbO content are characterized by the presence of few low-molecular weight silicate
anions. Similar results were reported by Imaoka et al. [35] using X-ray diffraction data
and the pair function method to analyse PbO+SiO> and 2PbO-SiO; glasses.

Yamada et al. [23] showed by neutron scattering techniques that the short range
order in the lead silicate (PbO)y*(SiO7)1-x glasses are well described by PbSiO3 and
Pb3Sip07 crystals but not by crystalline PbySiO4. The implication of this study is that for
glasses, the short range configuration can be accurately described by tetrahedral chains
containing isolated monomeric or doubie tetrahedra rather than with ring structures, which
would require middle range atomic order. The authors also state that it is the
polarizability of Pb2* which causes the asymmetric coordination of oxygen ions around
the lead ions, leading to the chain structure observed in the absence of the Si-O network.

In agreement with Yamada et al. [23], several subsequent studies [22,31,32,40]
using techniques such as XPS, NMR and IR spectroscopy have attributed the behavior of
lead in lead siicate glasses, of varying concentrations, to its polarizability. —The
polarizability of iead is concentration dependent and increases as the concentration of PbO
increases in the glass. This results in an increase in the covalency of Pb-O which accounts
for the fact that at higher concentrations, PbO is more of a network former displaying
polymeric chains of PbO3 and PbOj4 structural units. The presence of this secondary lead
network has also been observed computationally by Cormier et al. [41] in at detailed
molecular dynamics study of undoped and doped Yb3+-lead silicate glass.

The main conclusion derived from all of the above studies on lead silicate glasses
is that the interaction between lead ions is a very important structural factor. Moreover, at

high lead concentrations the three-dimensional silicate network is broken down and PbO
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becomes the main glass former. Consequently, the backbone network structure of the

glass consists of PbO4 pyramid polymeric chains connected together through SiOg4

tetrahedra.

1.2 IONIC DOPING

The absorption and/or emission of light by optically active materials is one of the
most ubiquitous phenomena in modern technology. In one way or another, such processes
are responsible for fluorescent lighting, cathode ray tubes, lasers, optical amplifiers and
photochromic sunglasses, to name just a few. The manner, in which the constituent
materials function, however, depends on subtle and often poorly understood factors at the
molecular and atomic level.

To obtain a clearer insight on the function of these constituent materials,
spectroscopists have examined the local structure of the optically active dopant ions (rare-
earths, transition metals). The focus of their work has been the study of the luminescence
of inorganic materials. Luminescence is the ability of a material to emit light when
properly excited. Thus, viewed in the most general sense, emission of light has been the
basis of all knowledge with respect to atomic and molecular structure since a great deal of
information regarding the structure of the material, the symmetry, the energy levels, the
role of defects and internal happenings such as energy transfer can be obtained. However,
due to the disordered nature of glass, detailed information on the atomic structure has
been difficult to acquire and only some effective averages over the distribution of different
physical environments has been obtained.

Research on the local structure of dopant ions in insulating élasses is of

particular interest because it aids i the interpretation of the optical properties of rare-
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earth ions in disordered systems. This is due to the fact that optical properties of a glass or
crystal can be drastically altered by the addition of small quantities of an ionic impurity.
Lead silicate glasses have been shown to possess interesting spectral properties
when acting as hosts for transition metals, lanthanide and actinide ions [24]. Lead glasses
continue to be studied extensively due to the fact that lead oxide is one of the primary

components of optical glasses.

1.2.1. Rare-earth ions as dopants

The term rare-earths or lanthanides are assigned to the fifteen elements, atomic
numbers 57 through 71 in the periodic table which represent the 4f-transition elements.
The 4f elements form the longest continuous series of chemically similar elements in the
periodic table. Starting with La(4f0) and continuing along the group to Lu(4f14) an
electron is successively added to the 4f shell until a total of 14 is reached.  The neutral
atoms have a ground state electronic configuration of a Xe core
(1522522953523 p63d104524p54d105525p6) with two or three outer electrons (6s2 or
5d16s2). The +3 oxidation state is the most common and in this case, all the 5d and 6s
electrons are removed and the 4f shell is left partially occupied with the ground state
configurations of the form [Xe]5s25p#4fn.

The luminescence of rare-earth ions in glass has been the subject of renewed
interest since, unlike other luminescence centers in glasses, their optical spectra consist of
a series of sharp lines, which closely resemble the corresponding free-ion spectra. In the
rare-earth ions, the electronic transitions occur among the inner, shielded 4f electrons, and

as a result, both the absorption and emission bands are relatively sharp and are not greatly
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influenced by their surroundings [3]. Therefore, large shifts in the emission bands are not
expected for glasses of varying compositions.

The spectral characteristics of rare-earth ions are strongly host dependent, and
the crystal-field splitting will vary from host to host, reflecting the different symmetries
and strengths of different local environments. Rare-earth ions enter into a glass as
network medifiers [1] and thus exhibit variations in coordination. Levin and Block [42]
deduced that the trivalent rare-earths may have coordination numbers of 6, 7, 8 and 9
depending on the ionic radii, which ranges across the group from 1.06 A and 0.85 A for
La™ to Lu”, respectively. The rare-earths of interest in this study are Eu”, Er and Yb
ions doped in lead silicate glass. Since the optical spectra of rare-earths are dependent on
the local environment of the ions, the following section will be devoted to reviewing
models, based on spectroscopic studies, to describe the structure of these and other

dopants in oxide and fluoride glasses.

1.2.1.1. Europium

The Eu’" ion has a relatively simple energy level structure with a non-degenerate
ground state ('Fo) and a non-degenerate emitting level (Do) which makes it an ideal
probe for crystal-field analysis for both crystalline and vitreous materials. Although a
europium doped glass is not a laser medium, the absorption and emission from the singlet
(J=0) levels of Eu3* facilitate the study of linewidths and positions without the
complications of overlapping lines [43]. These spectral features of europium provide a

stepping stone towards the analysis of other rare-earth ions in glass.
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In 1963, Kurkjian et al. [44] performed an extensive study of the effect of glass
composition on the luminescence of the Eu’" ion in various alkali and alkaline earth silicate
glasses. They studied glasses of ¢e series xNa20+(1-x)Si03: 1mol%Eu,03, where x=0.15
to 0.45. The authors observed a shift in the position of the SDg — 7F transition as the
concentration of sodium increased. This behavior is explained on the basis of the
increased interaction between europium and oxygen as a result of the breakdown of the
silicate network with increasing modifier content [3]. The authors adopted a model
whereby for a given glass composition, the Eu3* ion is in a network-modifying position
and is surrounded by seven oxygens, which are both bridging and non-bridging. As the
concentration of the network modifier increases, more non-bridging oxygens surround the
Eu3* ion, thus increasing the crystal-field strength due to an increase in the ionic character
of the Eu-O bond [45].

Gallagher et al. [46] measured the absorption and emission spectra of trivalent
europium in borate glasses. The behavior of Eu3* was found to be similar to that in
silicate glasses, however, the intensity of the absorption peak increases and the peak
broadens. The Eu-O interaction was found to be less in the borate glass than in the silicate
glasses, as indicated by the increase of the emission wavelength of the 5Dg -> 7Fo
transition. From a series of studies involving (i) a two-component berate glass containing
Nay0 or BaO and (ii) a complex borate glass containing equimolar amounts of NaO,
K20, Ca0, SrO and BaO as modifiers, the authors were able to draw conclusions
concerning the symmetry, non-uniformity and crystal-field of the europium sites. The
trends observed with the network modifiers indicated the presence of europium in clusters,

which implies that the europium is situated in sites of relatively high symmetry and
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uniformity. The authors reported a direct relationship between the structure and modifier
content whereby the structure tends to become disrupted with increasing modifier
concentrations of 10 to 20 mol%, thus decreasing the symmetry and uniformity. Higher
modifier concentrations of 30 to 35 mol%, resuited in an increase in the symmetry,
uniformity and bonding due to the formation of the maximum number of boron ions in
fourfold coordination. [46]. As the concentration of modifier increased and subsequently
the number of non-bridging oxygens, the Eu-O interaction was found to increase in the
same manner as in silicate glasses.

Rice and Deshazer [43,47] investigated the relationship between the absorption
and emission spectra of europium ions in a borosilicate glass and europium in monoclinic
gadolinium sesquioxide. The authors concluded that there is a great deal of similarity
between the optical properties of the rare-earth glasses and rare-earth sesquioxide crystals.
They postulated that Eu3* is found in two, and possibly three environments (sites) in the
glasses, which are synonymous to the three distinct sites for europium in the monoclinic
form of europium sesquioxide [47]. Another important point in their work was the
confirmation of temperature independent inhomogeneous broadening of the spectral lines.
Rice and Deshazer [43] attribute the inhomogeneous broadening to the heterogeneity of
the ion environment in glass. The heterogeneity of an ion environment can be described as
a distribution of different environments about an ‘average’ environment. Spectral studies
were performed on a neodynium doped glass [48] and similarities in the number of
possible sites and in the splitting pattern to neodynium sesquioxide were observed.

Brecher and Riseberg [49,50] using fluorescence line narrowing (FLN)

measurements, derived energy level assignments and crystal-field parameters for the Eu3*
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ion in a NaBaZn silicate glass. Employing even BKq values and by placing reasonable
physical constraints such as packing densities, the authors developed a geometric model
for the Eu3* ion in both a highly modified silicate glass and in a fluoroberyllate glass. The
model consists of eight oxygens, which are equidistant from the europium in a geometric
arrangement of an elongated Archimedean antiprism. The inclusion of a ninth oxygen
along the C; axis causes the structure to rearrange itself to accommodate the oxygen until
all nine oxygens are equidistant from one another. This process is continuous and is
described by a distortion parameter, which spans the limits set by the model. The crystal-
field parameters, using a point charge model, were calculated with respect to the distortion
parameter and compared to those derived from the measured splittings of the 7F| and 7F;
manifolds obtained from the FLN experiment.

Brawer and Weber [51-55], using molecular dynamics and Monte-Carlo
techniques, simulated Eu3+-doped fluroberyllate glasses. Both simple BeF, glass and
fluoroberyllate glasses with alkali and alkaline earth modifiers were analyzed. The
simulations were carried out using a Born-Mayer-Huggins potential model which takes
into account electrostatic interaction between atomic pairs. Results of the simulations
revealed that the Eu3* ions were coordinated by 6 and 7 F ions in BeF2 and between 8
and 9 for the fluoroberyllate glasses. The local environments of the europium ion were
found to have site to site variations and no local symmetry elements. In addition, simple

BeF; glass was found to have greater structural variations than the alkali-modified BeF>

glasses.
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Brawer and Weber [51] used a point charge model to examine the range and
distribution of energy-level splittings of the ground state energy level of the Eu3+ ion.
Their model used a calculation which employs only second order crystal-field parameters,
excluded J-mixing, treated only nearby ligands (within 2.75 A) and only the 7Fo and Fy
manifolds were considered. The range and distribution of the crystal-field energy levels
for Eu3* were in agreement with observations of both FLN and inhomogeneously-
broadened spectra.  Inhomogeneous linewidths and average energy splittings were
predicted to be smaller in alkali-modified glasses than in BeF,. The linewidth of the
dopant was found to increase with increasing field strength of the cation modifier. Brawer
and Weber [54] concluded that in order to predict the behavior of the average properties,
summation over many sites was necessary to predict small changes in spectral properties.

Hirao and Soga [56] used molecular dynamics (MD) simulations to generate
several Eu3*-doped sodium borate glasses and employed the point charge model used by
Weber and Brawer [51] to perform a crystal-field analysis of local environment of the
Eu3+ions. The primary aim of their study was to illustrate that with the appropriate pair
potentials, Weber and Brawer’s model could be applied to oxide glasses. The simulations
were performed using a modified Born-Mayer-Huggins potential for all the atomic pairs.
Results of the MD simulations revealed that the Eu3* ions had an average coordination
between 7.5 and 8.6 depending on the composition of the glass as well as large site to site
variations in the europium local environment.b In addition, a change in modifier
concentration resulted in large variations of the inhomogeneous linewidth, which the

authors attribute to the variation of the Eu-O and B-O interionic distances.
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Cormier et al. [45] published a series of articles [57-59] on europium doped
silicate and phosphate glasses. The authors employed molecular dynamics techniques to
simulate the local structure of Eu3* ions doped in amorphous silica (SiO2:Eu3*) and
sodium disilicate glass(Na0+2Si02:Eu3*). The corresponding optical absorption and
emission spectra were simulated using a point-charge crystal-field model. Results of the
MD simulation reveal a site to site variation in the local environments of the europium ion
for both glasses. The authors report that the Eu3* jons exist as quasimolecular complexes
and have an average Eu-O coordination of 4 for SiO2:Eu3* and 6 for Nay0+2SiO;:Eu3t.
Moreover, the local structure of the Eu3* ion was found to be more significantly
influenced by “bonding and energetic requirements than by the topology of the silicate
framework”[57 ]. In order to simulate the optical absorption and emission spectra of the
Eu3* ion, a full treatment, including J mixing, of the point-charge crystal-field method
developed for doped crystalline materials was used. This method resulted in simulated
spectra with correct energies and relafive intensities, and a good agreement was obtained
between the simulated and experimental spectra. An important development in their
research was that the authors found no distinguishable correlations between the excitation
energy and the coordination and average distances of the oxygen ligands surrounding the
simulated Eu3+ ions [57]. Cormier et al. [S7] concluded that the local environment of the
europium ion is a continuous distribution of local fields which satisfy the energetic
bonding requirements of the Eu3* ions.

Chaussedent et al. [60-62] are the only group of researchers to have studied the
hydration of Eu3* using molecular dynamics techniques. The absorption and emission

spectra were calculated using the point-charge crystal-field model employed by Cormier et
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al. [57]. The europium ions were introduced into solution by the dissolution of a
europium salt. The calculations were carried out using effective pair potentials to describe
all interactions, and no parameterization of the ions or water molecules was performed.
The Eu3* ions were found to have an average of 8 water molecules in the first
coordination shell arranged in a square antiprismatic geometry. Cormier et al. [S7], in
their simulation of the emission spectra of the Eu3* doped glasses, were unable to
properly reproduce the asymmetric peak shape of the electric dipole transitions. In order
to rectify this problem, Chaussedent et al. [62] employed C) symmetry in their calculations
instead of the Cpy symmetry used by Cormier et al. [57]. In addition, convolution of the
spectra was performed by assigning a Lorentizian band shape; in contrast to the Gaussian
band shape used by Cormier et al. [57]. The resulting spectra were in good agreement
with those obtained experimentally and showed significant improvement to those

generated by Cormier et al. [57] for Eu3* in the silicate glasses.

1.2.1.2. Erbium
Er3+ has a ground state configuration of [Xe]4f11 which is split by the Coulomb
and spin orbit interactions into a number of multiplets. According to Hund’s rule, the

ground state is 41157 and the excited states are as follows: M13/2,1172.972, 4]f"9/2,7/2,5/2,3/2,

4S3/2, 2H11/2,9/2 and so forth.

Numerous studies have been carried out on Er3* due to the fact that it exhibits
metastable intermediate levels which are readily accessible with red and near infrared
radiation [24]. Moreover, the 41}3/2—> 4I15/2 transition of Er3* jon at approximately 1.54
um is of particular interest because of its applicability to telecommunications.
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Renuka et al. [63] studied the optical properties of Er3* ions in lithium borate
glasses as well as performed a comparative energy level analysis of Er3* ion in various
glasses. The spectral characteristics of Er3*:lithium borate glasses closely resembled the
absorption of Er3* ions in other systems (such as garnets, aquo-ion and phosphates). A
slight variation, however, was reported in the relative positions and intensities of the bands
due to variations in glass compositions between borate and other glasses. The authors
also provide a detailed summary on the behavior of Er3* ions with respect to changing
environments. The electrostatic and spin-orbit interaction parameters were used to
calculate the relative magnitudes of interactions experienced by Er3* ions in various
environments. Renuka et al. [63] also found that no systematic decreasing or increasing
trends in the optical parameters were observed when the Er3*:glass network is modified
with alkaline earth ions with respect to either atomic weight and /or ionic radius of
alkaline earths.

Reisfeld et al. [64] measured the absorption and emission spectra of Tm3* and
Er3* in phosphate and borate glasses. Based on the inital studies by Rice and DeShazer
[43,47] and subsequently by Reisfeld et al. [65], for europium in borosilicate glass, it was
expected that a rare earth ion doped in a glass would occupy a symmetry site similar to
that occupied in the corresponding sesquioxide. The authors proposed a model for Tm3*
and Er3* in phosphate or borate glasses similar to that of Fournier and Bartram [66] for
Yb3* in glass. Each rare-earth ion would be coordinated by four MOy tetrahedra such
that each of the coordinating tetrahedra contributes two non-bridging oxygens to the rare-
earth ion. As a result, the eight-coordination of the rare earth ion by nonbridging oxygens
was preserved and the average point symmetry of Tm3+ and Er3* in the glasses would be
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C,. The inhomogeneous broadening due to the large number of sites was found to be
larger than the broadening due to crystal-field splitting.
| Robinson [67] using low temperature absorption or emission spectra postulated
that the principle environment in Er3*-doped alkali silicates is a sixfold distorted
polyhedron. In a subsequent paper [68], Robinson postulates, based on spectral evidence,
the existence of an additional three sites for Er3* in binary alkali silicate glasses. In
addition, models were proposed for two of the new sites based upon the spectral
characteristics and compositional dependence. A summary of the results are as follows:
Site A is the principal site and is present in all glasses regardless of the size of the alkali
ion. In this site the Er3* ion is sixfold coordinated in a near octahedral geometry. Site B
occurs only in Li and Na binary silicate glasses and appears to be sixfold coordinated with
Er3+ found at more than one edge of the SiO4 tetrahedra. In contrast to site A, this site is
sensitive to the size of the alkali ion and thus the spectrum associated with it does not
appear for the larger alkali ions. Site C is present only in the K, Rb, and Cs silicate
glasses. The identifiable peaks in the spectrum, with the exception of a band at 984 nm,
are in good agreement with those for Er3* in EryO3, which suggests that this site may be
similar to the C; site of Er3* in EryO3. Site D, was observed in K and Cs silicate glasses
and is not expected to appear in Rb glasses. This site is postulated to be a variation of the
B site whereby a smaller number of rare earth ions appear at the edges of the SiO4
tetrahedra, thus resulting in a spectrum more similar to that of the A site.
Wolf et al. [69] used a combination of X-ray diffraction studies and molecular
dynamics simulations to calculate crystal-field parameters for three different Na*-Er3* p”-

alumina glass compositions (26, 72 and 100% of Na™ were exchanged for Er3*ions). The
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authors postulated that Er3* behaves differently in the B”-alumina matrix than other rare-
earth ions studied. The behavior of Er3* was attributed to its smaller radius in comparison
to the other rare-earth ions studied as well as to the different Er3* distributions in the
conduction band. Analysis of the absorption spectrum of Na*-Er3* §”-alumina revealed
that the intensities of the peaks were found to be independent of the Er3* concentration
and the spectral widths were 20-50% smaller. This could be due to the fact that the two
Er3* sites were found to be alike and thus the ions experienced similar crystal-fields.
Using molecular dynamics, Wolf et al. [69] generated a number of configurations which
were subsequently used in the point charge model to calculate the crystal-field parameters
needed for the Judd Ofelt (JO) analysis of the optical spectra. The MD-based JO
parameters were determined for different concentrations and temperatures and found to be
in good agreement with experimentally obtained absorption intensities.

Employing EXAFS and photoluminescence techniques, Marcus and Polman [70]
presented a brief study on the local structure of Er3* ions doped or implanted in silicate
and sodium silicate glasses. Their interpretation of the EXAFS results, following a
qualitative study of model compounds, indicates that, in the sodium silicate sample, the

Er3* ions are surrounded by an average of 6.3 oxygens in the first coordination shell.

1.2.1.3. Ytterbium

Yb3* has a ground state configuration of [Xe]4fl3 with only one electron
missing from the complete 4f shell. The ground state level is 2F7/2, which splits into four
sublevels and a unique excited state level 2Fs/;, which splits into three sublevels, this
occurs when the ion is in a2 low symmetry environment (C2y or lower). Ytterbium is also
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an ideal probe due to its relatively uncomplicated spectra.

Barber [71], from low temperature spectra of Yb3* in quartz and sodium silicate
glass, concluded that the rare-earth ion was surrounded by eight coordinating oxygens.
The model was based on an arrangement of these eight oxygens atoms at the comers of a
perfect cube with a Yb-O distance of 2.30 A. The absorption spectra were found to show
the full splitting for each manifold, and a highly symmetrical rhombohedral deformation
was applied to the cube to lower its point symmetry from Op to D3. The crystal-field
parameters were calculated using a distortion parameter, which was used. to compute the
absorption and emission spectra from the calculated energy splittings.

Robinson and Fournier [72,73] showed from the low temperature absorption
and emission spectra of Yb3* in phosphate, silicate and germanate glasses that the
principal rare-earth site in these glasses is a sixfold coordination with near octahedral
symmetry. The authors proposed that the Yb3* ion is surrounded by three tetrahedra of
the glass former ion, with each tetrahedra comprised of two oxygens which are adjacent to
the Yb3*. In this case, there would be six nearest oxygen neighbours to the ytterbium,
thereby forming a site with D3 symmetry. This site could also be described “as octahedral
with a trigonal distortion caused by the necessity of displacing the tetrahedra in a radial

direction away from the central rare-earth ion to provide space for this ion” [73].

1.2.1.4. Other rare-earth models

Mockovciak et al. [74], compared oscillator strengths calculated using a point
charge model with values derived from the experimental absorption spectra of Nd3+-

doped silicate and borate glasses in an attempt to study the local environment of Nd3+.
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The models were chosen based on a neodynium sesquioxide and a neodynium ethylsulfate,
since the coordination of the rare earth ions in the glass is similar to that in the
corresponding crystalline compounds. Partial charges were used in order to reproduce
more effectively the effect of non-bonding oxygens and only first neighbour oxygens were
considered in the point charge model. However, in comparison to the experimental
spectra, the authors found discrepancies in the oscillator strengths up to several orders of
magnitude in their model, which they attributed to the presence of covalent bonding [74].

Lea et al. [75], tabulated numerical values of normalized eigenvectors and
eigenvalues for cubic symmetry with no J-mixing, using the operator equivalent matrix
elements tabulated by Stevens [76] and Elliott and Stevens [77]. The purpose of
generating these tables and diagrams was to provide a method, which predicts
spectroscopic energy level schemes and possible g-factors for rare-earth ions in cubic
coordination.

Wolf et al. [78] simulated the polarized absorption spectra of Nd3*-doped
Na*B”-alumina for five different neodynium concentrations. The crystal-field parameters
were calculated based on molecular dynamics simulations of the Nd3* doped glasses while
oscillator strengths and Judd-Ofelt parameters were calculated using a point charge model
at each time step in the simulation for each of the Nd3+ ions. The molecular dynamics
simulations were performed using a modified Born-Mayer-Huggins potential for all atomic
pairs. The simple point charge model yieldled good qualitative and quantitative
interpretations of the intensities of the absorption spectra for the Nd3*-doped glasses. The
authors attribute the success of their model to the following imposed criteria: (i) all

possible environments experienced by the Nd3* ions were taken into account, (ii) the
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thermal motion of the ions in the conduction plane was included in the calculation, and (1ii)

the Ewald summation method was employed in the calculation of the A¢ p parameters.

1.3 MOLECULAR DYNAMICS

One of the primary developments in both the physical and biological sciences
during the last ter: years has been the heightening ability of computer techniques to model
the behavior of matter at the atomic level [79]. The field of computer simulations is
developing towards an increasingly realistic and predictive description of complex
systems; which are facilitated both by advances in computational techniques and by the
continuing growth in computational power [79]. Significant advancements have been
reported in the fields of molecular biology [79,80], polymer science [79,81], the physical
chemistry of liquids [79,82], liquid crystals [79,83] and in the science of solid state
materials [79,84].

Molecular dynamics (MD) is a computer based technique used to simulate the
random constant motion of particles, at the microscopic level, from thermal excitation, and
thus is able to describe and analyse dynamic processes in materials. Although the
interionic forces used in the simulations are an oversimplification of the local quantum
mechanical interactions, the motions of the atoms and/or molecules can still provide

essential information of complex processes [85].

1.3.1. Interionic potentials - two versus three body interactions
Molecular dynamics simulations have shown that very simple pairwise additive
interaction potentials reproduce many of the important structural features observed

experimentally. Specifically, the short range repulsive part of the intermolecular potential
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is the predominant factor in determining the short-range and to some extent the long-range
order [86]. An effective method to test the results of a given pair potential, is to
gradually augment the sophistication of the pair potential, and investigate features in the
potential which give rise to specific observed effects. In most cases, simple spherical
molecules can account for most of the bulk features. The fact that real intermolecular
interactions are many-body interactions, exact agreement with experiment is often difficuit
to achieve and thus, a minimum of at least a three-body potential term is required to
provide a more realistic treatment of a given material.  Inclusions of many-body
interactions into the potential function for MD simulations are often too computationally
expensive. As a result, the pair potentials are often derived from experimental solid-state
properties for which analytical expressions have been cast in terms of two-body
potentials [86]. The pair potentials used in MD simulations are consequently termed
“effective pair potentials”, since only the average effects of many body forces are included.

Numerous simulations of oxide systems using two and three body intermolecular
potential models are available in the literature [87]. The following section will review
some of the more important studies relevant to this thesis, namely those which deal with
silica and silicate systems and focus on the advantages and disadvantages of the potential

model employed in the simulations.

1.3.1.1. Two-body potential models

Many new areas of investigation have evolved since the first reports of the MD
technique in 1957 [88]. The first MD simulation of liquid fluoroberyllate was carried out
by Rahman et al. [89] using a simple ionic model based on a spherical two-body Born-

Mayer-Huggins potential. The simulation was able to successfully reproduce certain
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structural features of vitreous BeF2. Namely, the structure of the simulated BeF> glass
consisted of BeF3 tetrahedra joined at the corners with fluctuating Be-F-Be angles.

The first molecular dynamics simulation on silica was the pioneering work of
Woodcock et al. [90]. Using a Bomn-Mayer-Huggins potential, the authors reported a
four coordinated structure for silicon. An initial concern was the fact that the Si-O
interaction is known to be covalent and employing an ionic potential was expected to
result in large discrepancies. The authors demonstrated, however, that a simple
electrostatic potential could accurately simulate a tetrahedral network structure.
Furthermore, pair distribution functions derived from the simulations were found to be in
good agreement with experimental X-ray diffraction data reported by Mozzi and
Warren [21].

Soules [91] reported the first simulation of silicate glasses. A modified Born-
Mayer Huggins two body potential was used in the simulations. The simulated glasses
lacked short range order and as a result the structures generated by the simulations did not
agree to a great extent with structural data obtained from experimental techniques.

Improvements on the simulated structure were made by Mitra et al. [92-94] by
using a two body model with Coulombic interactions and a power-law repulsion term.
The MD simulation parameters in the potential function were varied in order to obtain the
correct glass structure at room temperature. The authors found that based on the
potential energy function, the energy scale of the simulation was proportional to the
square of the charges and the simulation results could be scaled for changes in temperature
by varying the charges. The charges were chosen to yield a glass transition temperature
lying within the experimental range of 1200-1800K. The radial distribution functions for

the simulation were found to be in good agreement with experimental X-ray diffraction
34



data [21] with respect to peak position and coordination number but differences were

found in the peak heights.

The main criticism of the above two-body potential models is the fact that the
partial covalency present in the Si-O bond is not taken into account. As a result, more
complex potentials have been developed to represent three-body interactions and a

selected few are discussed in the next section.

1.3.1.2. Three-body potential models

It is well known that the partial covalency of the Si-O bonds introduces a bond
directionality, which is closely related to the short range order in the silica/silicate
structure.

Feuston et al. [95] introduced a three-body interaction term similar to that
developed by Stillinger and Weber [96]. The authors found that by forcing the O-Si-O
and Si-O-Si angle terms to 109.471°, the oxygen-oxygen pair distribution function was
significantly narrowed while the Si-O-Si bond angle distribution was slightly broadened
and shifted to smaller angles, in accordance with experimental results. As observed in the
structure of ice, oxygen exhibits a tendency toward tetrahedral coordination due to the
presence of the two electron lone pairs and to compensate for this, 8si.0si was set to
109.471° [95]. In addition, improvements to the short range order were reported by the
elimination of the O-Si-O bond angle peak at 105° which was attributed to five-
coordinated silicon ions.

Newell et al. [97] employed the three-body potential model developed by

Feuston et al. [95] to investigate the structure of a sodium trisilicate glass. The structure
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of the glass was analyzed and the results were compared to those found using two body
potentials as well as to experimental results found using X-ray diffraction, XPS, NMR and
EXAFS. The simulated glass showed vast improvements over the two body potential
models and reported bulk structural features, which were in excellent agreement with
experimental data. The overall structure closely resembled the modified network structure
of glass proposed experimentally, with the silicon tetrahedra forming the backbone
structure and sodium ions breaking up the network through the creation of nonbridging
oxygens. Since this potential was so successful in describing the structure of sodium
trisilicate, it was also used as the model to simulate the lead silicate glasses investigated in
this thesis.

Vashista et al. [98] used a combination two/three body potential to simulate the
crystalline forms of silica in the melt. The two-body contribution consisted of three
terms, steric repulsion due to ionic sizes, Coulombic interactions to account for charge
transfer and charge-dipole interaction to include the effect of electronic polarizability. The
three body covalent contributions included O-Si-O and Si-O-Si angle dependent
interactions, which are a function of the Si-O interionic distance. Bulk structural features
of the simulation were found to be in very good agreement with neutron diffraction and
NMR data.

The simulation of silicate glass was also performed by Vessel et al. [99] using a
combination two/three body potential model. The two-body contribution to the potential
consists of a long range Coulombic interactions while the Si-O short range interactions
were modelled using a four range Buckingham potential. The O-O short range
interactions were modelled using an ab initio potential derived by Pyper [99,100]. The

three body interactions between the O-Si-O and Si-O-Si triads are modelled using angle
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constraints of 109.28° and 144°, respectively. The structure obtained from the simulation
did not agree well with experimentally determined structural features of silica glass, but
rather appeared to have structural characteristics of high pressure silica glass. The authors
concluded that the potential would probably be very useful for high pressure studies of
vitreous silica.

Since it is impossible to discuss all of the available potential models and
simulations performed, the reader is referred to several excellent review articles [101,102]
in the literature which provide more detailed information on the simulations of silicates

and other systems.

14 STATEMENT OF THE PROBLEM

The driving force behind the work in this thesis was to be able to use computer
generated glasses to predict the optical spectra of rare-earth doped inorganic glasses. In
order to achieve this, a model, which accurately represents the structure of these glasses
and more importantly, the environment of the rare-earth ions, would have to be
developed.

The starting point of this research was to obtain a better understanding of the
structure of the undoped lead silicate glass using molecular dynamics simulations with a
two-body (2-body) potential model and a combination two- and three-body (2/3-body)
potential model. The parameters in the two-body potential model had been developed in a
previous study [41] and thus did not require any modifications. The simulated glasses
were compared to experimental EXAFS and XRD data of crystalline lead silicate in order
to parameterize the combination two- and three-body potential model. EXAFS provide

bond lengths and nearest neighbour coordination data, which can be used to alter the
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potential energy function used in the MD simulation such that an appropriate effective
potential can be generated. Bulk structural features of simulated glasses generated from
the 2-body and 2/3-body are compared to experimental XRD, Neutron and NMR data in
order to determine the validity of the potential function. Also a comparison between the
two and two/three body potential models was made in order to determine the appropriate
model for simulating lead silicate glasses.

A composition study was also performed on the undoped lead silicate glass.
Namely, glasses of 22/78mol% PbO-SiO;, 50/50mol% PbO-SiOz, and 70/30mol%
Pb0-Si0, were simulated using molecular dynamics techniques with a 2/3-body potential
model. There are several reasons for simulating lead silicate glasses of different
concentration. Firstly, information on the effect of PbO on the SiO2 network at varying
concentrations of PbO is provided. This is important since it may aid spectroscopists in
interpreting and predicting the optical properties of such glasses. Secondly, it has been
postulated that high lead glasses may possess spectral properties that may lead to an
increase in the absorption cross-section of the glass. The crystal structure of these lead
silicate glasses is known and some experimental data was availdble. A good agreement
between the real and simulated glasses would reinforce the validity of the potential model.

Once a clear description of the base glass was attained, three different rare-earth
doped glasses, PbO»SiO2:Eu3+, Pb0+Si0>:Er3*+ and PbO-SiO;: Yb3+ were simulated using
molecular dynamics and the 2/3 body potential model. The parameters for the rare-earth
ion were developed using, whenever possible, experimental EXAFS and XRD data. A
detailed investigation on the local environment of these rare-earth ions was performed. A

concentration study on the Er3* doped lead silicate glasses was also performed in order to
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investigate erbium-erbium clustering. It has been shown experimentally that high
concentrations of Er3* jons (10% Er3*) result in concentration quenching.

The trivalent rare-earth ions are attractive to probe the optical properties of
materials since the crystal-field splitting varies from host to host, thus reflecting the
different symmetries and strengths of the different local environments.

The Eu3* ion has a relatively simple energy level structure whereby both the
ground state(’Fg) and the excited state(’Dg) are non-degenerate and thus simpler to
analyze. Moreover, since there is no splitting of these levels due to the crystal-field, any
observed splitting or inhomogeneous broadening results from dissimilar Eu3* bonding
environments [103] making europium an ideal probe for crystal-field analysis for both
crystalline and vitreous materials.

Er3* is an ideal ion since it emits in the visible and absorbs in the near infrared
around 800 and 980 nm, both excellent diode-laser wavelengtl-ls. Er3* also lases at
1.55 um and substantial room-temperature upconversion from infrared to visible radiation
has been observed in lead silicate glasses [24].

The main reason for studying the Yb3* ion is the beneficial influence it has on
the upconversion efficiency in a Er3*/Yb3* co-doped lead silicate system. Moreover, Yb3*
has an excellent absorption co-efficient while Er3* has a good emission co-efficient thus
providing an ideal medium for investigating the energy transfer phenomenon.

In order to generate the electronic spectra of these glasses, a point-charge
crystal-field model was used to calculate the electronic energy levels and transition
probabilities. The experimental emission spectrum of the Eu*'- and Er’*’-doped lead

silicate glasses was also determined. Assuming a reasonable agreement exists between the
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spectral features of these simulated glasses and the real glasses, it can be concluded that
the simulated models are a valid representation of the real structure. This is a very
powerful tool since the simulated structure reveals information on the local environments
of these rare-earth ions. This allows for the direct study and isolation of individual
environments, which could be responsible for specific spectral features found in the

absorption and emission spectra of these rare-earth doped glasses.
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CHAPTER 2

20 MOLECULAR DYNAMICS
2.1 COMPUTATIONAL PROCEDURE

Molecular dynamics (MD) is a computer simulation technique that can be used
to model structural representations at the atomic level and calculate average structural,
thermodynamic and transport properties of a given glass. For a system containing N
particles, MD computations are accomplished by direct numerical integration of the
Newtonian equations of motion. A MD calculation begins with an initial arbitrary set of
positions and momenta for a small representative number of atoms and solves the
equations of motion such that the atomic trajectories are determined as a function of
time [104]. In general, simulations are conducted from picoseconds to nanosecond time
periods.

For a system of N particles in three dimensions, there are 3N coupled second
order partial differential equations that must be solved numerically by using finite
difference methods [85]. Since calculation speed is very important, the number of
available numerical algorithms is limited. Two methods most commonly used are the
Verlet algorithm and the Predictor-Corrector method, both of which calculate the
positions and velocities of the ensemble of particles at fixed time intervals.

The N ions are simulated within a box, the volume determined by the pre-
described densify, which contains periodic boundary conditions, hence eliminating surface
effects associated with very small systems. Each ion in the central box has images of itself
at all combinations of unit translations by the box along its edges. If during the course of a

MD simulation, an ion moves out of the central box, a corresponding image moves into
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the box at the opposite face [104]. There are no walls at the boundaries of the central box
nor any surface molecules. The purpose of creating such a box is simply to serve as a
convenient axis system for determining the coordinates of the N molecules [82].

The stability of the system is verified by performing runs of several thousand
timesteps and calculating the total energy fluctuation and the temperature variation. The
total energy is the sum of the kinetic energies of all the particles and the potential energies
calculated from the force function selected [85]. The temperature is calculated from the

kinetic gas theory as follows:

3 1 2
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The initial conditions are prescribed at high temperatures, in order to allow a rapid
equilibration of the initial system. Either a constant volume or a constant pressure is
assumed in cooling to the solid phase [85]. All MD simulations performed in this thesis
assume constant volume conditions, such that the Hamiltonian is the sum of the kinetic
energy and the potential energy of the system. The final temperature is reached by
lowering the temperature of the system in steps of a few hundred degrees Kelvin at a time
while adjusting the volume of the system to yield the desired density, then allowing the
system to thermodynamically equilibrite at each state. Thus, the sequence of
configurations generated during the MD simulation corresponds to a finite ensemble of
micro-resonance structures in terms of statistical thermodynamics. Since the positions and
velocities of all particles are known throughout the quench procedure, thermodynamic,

structural, transport and mechanical properties of the system may be calculated.
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2.2 INTERIONIC POTENTIAL MODELS
The predictive ability of a MD simulation is only as accurate as the applied
potential energy function. The following sections will review the potential models chosen

for the simulations performed in this thesis.

2.2.1. Two-body potential model

The two body interionic potential used in the present calculations was developed
by Mitra et al. [92-94] for silica and sodium silicate systems. The associated interionic
potential contains a steep repulsive part as well as a Coulombic attractive potential and

can be described by the following expression:
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The force law derived from the pairwise (two-body) ionic potential, which includes

Pauling repulsive term is found to be:
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where g; and g are the ionic charges, o; and o; are the ionic radii of the atoms / and j, rijis

the distance between atoms i and j, and 7 is a parameter representing the hardness of the
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repulsive part of the atomic pair interaction. The sign function retumns a value of +1 or -1
depending on the sign of the operand (giq;). The values for the charges, radii and n were
previously developed by Mitra et al. [93,94] for silica and sodium siﬁcgte- The
aforementioned potential was also used previously to investigate various oxide-base
glasses, both undoped and doped with trivalent rare-earth ions with much
success [45,57,105].

Over a certain separation distance, all force functions eventually become
negligible and thus only those particles within a specific range from each particle should be
considered [85]. The instantaneous force, for solving the Newtonian equatioas of motion,
was determined for each ion over the set of atomic neighbours within a sphere of 5.5 A
using a screened Coulombic force. The benefit of a truncated force function is that by
limiting the number of particles with which an atom interacts, the computational time is
greatly reduced. The length of 5.5 A is large enough to include neighbours of importance
(approximately 700 atoms) and small enough to avoid the formation of odd coordinated
defects. In order to ensure that there is no discontinuity at rc = 5.5 A, the force is

decreased monotomically by the following scaling factor:

F(r)=FG,) 1-[ﬂ)3 22.13.

rc

Once the instantaneous force on each atom / was computed, the computer updated the
configuration at each timestep (At = 1.0fs). The general objective of the simulation is to

maximize the yield of molecular dynamics in real time relative to that of machine time

44



within acceptable limits for conservation of energy and momentum. Whereas increasing At
would enhance the former, additional cycles in the algorithm would increase the
computational time per time increment. Verlet [106] noted that since the repulsive forces
between colliding molecules are steep, it was necessary to have a small value of At, and
therefore introduced a simple finite-difference formula for the second order derivative of
his algorithm.

The Verlet algorithm is one of the most popular methods for calculating particle
trajectories [85]. The algorithm uses a combination of Taylor series expansions to
calculate the position of the particle in terms of its two previous position according to the

following equation:
e+ m):zx(t)-x(tw){%’i@](m)ﬁo[(m)]‘ 2214,

The local truncation error varies as (At)4, and is third order although there is no third
order derivative term [107]. The velocity is commonly calculated for the middle of the

interval (at the half-step) as follows:
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The Verlet algorithm is simple and stable for moderately large time steps, and requires

only three vectors per particle.

2.2.2. Combination two- and three-body potential model

The MD calculations were performed using a three-body potential in order to
take into account the partial covalency of the Si-O and Pb-O bonds. The multibody
potential used was developed by Feuston et al. [95]. The two-body potential term, which
governs the interaction between ion pairs, consists of a modified form of the Born-Mayer-

Huggins (BMH) ionic potential and is of the form:
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where A;; is the short range coefficient for repulsion used to determine interionic distances,
B; and p;; are constants for the different ion pairs and are adjustable parameters, r;; is the
distance between ions i and j and Z is the formal ionic charge of the ions.

The three-body potential energy term is:

V3 (rq s rikﬁeijlc): [lx exp[ yi c + yi c) (cosejik—cosajlkr]

rg=ri Y= r:
if rjj <rf or rik <rf 2222a

and
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Vs (I'ij,rik,giﬂc)= 0, if rij = r,g Or rik= r? 2.222b.

where i is the central atom with covalent near neighbours j and kand 4, 7, r', and & are
constants and 6 is the angle subtended by r;; and r;x with the vertex at i. To allow for
differences in the local order of the bonding configurations under consideration, O-Si-O,
Si-O-Si, O-Pb-O and Pb-O-Pb, the following conditions must be met, Y. 2Y,, Yu*Yo and
[ #T ., [ 5#T . The three-body potential decreases the total binding energy of the system
whenever the bond angle 6;; differs from the preferred angle 9}. In order to impose a
tetrahedral geometry about the silicon ions, 8°, ., is set equal to the tetrahedral angle of
109.471° and cosf, ., = -1/3 [95]. In ice, oxygen has a tendency toward tetrahedral
coordination, due to the presence of its two electronic lone pairs. To account for this,

Feuston et al. [95] also set Ocswg, equal 109.471°. The differences in the three-body

interactions of the O-Si-O and Si-O-Si bonding contributions are attributed to the values

of Asi, Ao, Ys» Yor I 5; and r . Since the tendency toward tetrahedral coordination is much

lower for oxygen than for silicon in v-Si0,, Ao was defined to be much less than As;.

The interactions between Pb-O and RE-O were described by using an additional

12-8 Lennard-Jones pair potential interaction term:

2223.
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where € is the depth of the potential well between the two ions, oy is the ionic radius and
r is the separation between the two ions.

Integration of the Newtonian equations of motion for an N-particle ensemble
was accomplished by using a fifth order Nordsieck-Gear predictor corrector algorithm
with a timestep of 1.0fs. The Predictor-Corrector methods used a variety of higher order
derivatives to calculate the Taylor series approximations for the particle positions and their
derivatives. The particle positions and velocities are corrected by the use of corrector
expressions associated with the specific predictor chosen.

Nordsieck’s method [108] for Newton’s equation describes the integration of

five time derivatives of the position vector according to the following equations:

r(6)={d r,/dt)Ar) 2224a.
r2)=/2Xd* ro de ALY 2224b.
r()=/6)a’ro/dr’ N ALY 222 4c.
r)=0/24)a"* ro/ d* XAty 2224d.
rs@) = /1200’ ro/ dr’ XALY 2224,

The predicted values for the r, at some time (t+At) are obtained through a Taylor series

expansion:
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rolt + A=)+ 1)+ 1)+ 1O+ r,6) + 75() 22252

rilt + A)=p () + 27,0) + 3, () + 47,()+ 5p5()  222.5b.

ro(t + AD) =, () + 37,(t) + 6 1,(c) +1024() 2225¢.
73 (t + At) =p, (t)+ 4r4(t) +10 r,(t) 2225d.
rit+A)=p, )+ 5r() 2225e.
rs(t + A)=r4() 2225€

The displacement vectors are calculated according to the following relationship:

x(t)=[% f; f Atz-rz(t*'At)] 2226.

where 72 is the second derivative of the position vector r as described by the Taylor
expansion series [108]. The corrected values of r, are then evaluated using the following
corrector scheme, and the new displacement vectors are calculated using the six constants

(co-.¢5) described by Nordsieck.

rot +Ar)=po(t + At)+ ¢, 2227
ri@+Ar)=p(+ A1)+, 22.2.7b.
rs(t+A)=p,(t +A)+c, 222.7c.
ri@+An)=pt +A)+c, 222.7d.
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ri(t + At) =p 4(t + At) +cq 222 7e.

r?(t + At)": rs(t + At)"' Cs 2227

where c9=3/16, ¢1=251/360, c3=1, c3=11/18, c4=1/6 and c5=1/60.
It is important to note that these constants are only valid for fifth order methods. The
Predictor-Corrector method is more accurate than the Verlet algorithm, but usually

requires the storage of six or more vectors per particle.

23 DATA ANALYSIS METHODS
23.1. Pair and cumulative distribution functions

The pair distribution function (PDF), gij(r), is a measure of the local structure of
atomic pairs and is proportional to the probability of finding two atoms separated by a
distance, r + Ar. Since molecular dynamics simulations provide time-averaged positions of
individual atoms, the PDF can be calculated directly from the atomic trajectories according

to the following equation [107]:

()= ! d<N”(r)> 23.1.1

arpr’ dr

where Njj(r) is the number of atoms of type j inside a sphere of radius (r) around a
selected atom of type i, pj is the bulk density of the atoms of type j and d<Nj;(r)> is the

number of atom type j found in thin spherical shells of radii of (r) and (r+dr) around atom

type i. An average value of g;j(r) is ensured by performing the calculation over thousands
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of timesteps [9]-
The cumulative distribution function (CDF) is defined as the average number of
atoms of type j surrounding an atom of type i in a sphere of radius r and can be calculated

by integrating the PDF to a distance ro as follows:

Cij(r) =47 P, J;’ ° gi]_(r),.zdr 23.12.

2.3.2. Bond angle distribution function

The distribution of bond angles can be defined as follows:

L dir,0)

n.2 ﬂzsmﬂ dr,do

a,-,q»(r.-,-,e )= 2321

where aiij(rij,0) is the probability of finding a third ion k in a volume element
21c2sin9drijd9, rjj is the distance between atoms 1 and j and the angle, 6, between three

adjacent atoms, 7, j and £, can be defined by the following equation:

- -

- .r k3
COSB :M
e 4

rik

2322.

=

Y jk

where "ik and r are the directionality vectors between atom k and two of its neighbours i

and j [45]. Figure 2.3.2.1. is a schematic representation of the angle, ;.
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Figure 2.3.2.1. Angular arrangement of atoms i, k and j with directionality vectors
(i 304 T 145

2.3.3. Computer graphics

The computer graphics were generated using a software program, placenewest,
developed by the Interfacial Surface Science Laboratory at Rutgers University, NJ. The
software reads the atomic configurations saved throughout the MD simulation using
proper box lengths and periodic boundary conditions. The atom sizes and bond cutoff
distances are entered manually to the data file. This technique allows for the
representation of the glass structure as well as calculates distances, coordination and
bond-angles between atom pairs. The software is mouse driven thus for any given

configuration individual atoms or atom sets can be isolated and analyzed.
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CHAPTER 3

3.0 CRYSTAL-FIELD THEORY

The fundamental objectives of crystal-field theory are to determine the
modifications to the electronic properties of an optically active ion due to the presence of
a crystal-field. The crystal-field is considered to be external to the ion and possesses a
definite symmetry. Using group theory and the appropriate symmetry of the ion, it is
possible to predict the splitting of the energy levels and the eigenfunctions representing the
states.

The first theoretical considerations of the crystal-field theory were introduced by
Bethe [109] using a point charge model, and has since been expanded and refined to
include the effects of bonding and the presence of intrinsic excitations by the surrounding
medium [1]. In this section, the most pertinent aspects of the crystal-field theory
pertaining to the thesis will be reviewed and for a more in-depth investigation, the reader

is referred to various sources on the subject [110-112].

3.1 TlIE RARE-EARTH IONS

The rare-earth ions (RE) in solids are either divalent or trivalent and can have
partially filled 4f electron shells that are shielded from external fields by the 5s and 5p
electronic shells. The 4f electrons are only weakly perturbed by the surrounding ligands
and behave as inner electrons. As a result, the optical spectra of rare-earth ions doped in
solid state materials consist of a series of very sharp lines that closely resemble the free-ion
spectra. The nature of the wave function of the free ion, prior to its introduction into the

host material, is only known to some approximate extent [1]. In an ionic medium, the
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electrons occupy orbitals that are highly localized about the ions such that any electron can
still be associated with a particular ion, and each electron will still feel the repulsion from
the electrons of the other ions and an attraction to their nuclei. The degree of perturbation
produced on the optically active electrons by the static electric fields of these neighbouring
ions depends on the nature of the electrons themselves. The result of the perturbations is
the shifting of energy levels, removal of degeneracies and alteration of radiative transition
probabilities.

There are three main interactions that control the properties of the f-electrons of
a rare-earth ion doped in a solid, the electrostatic interaction between electrons, the spin-
orbit interaction and the crystal-field [110]. The inter-electronic Coulomb interaction
leads to an initial splitting of states and to the formation of LS terms (orbit and spin
angular momenta, respectively). Spin-orbit coupling causes the electronic terms to be
perturbed and the LS terms split further into J-multiplets. The multiplets are denoted using
the Russell-Saunders terminology, 25+1] . Thus, the matrix causes the free-ion electronic
levels to split into a series of multiplets, with the center of gravity of each of these
multiplets located within a few hundred wavenumbers of the free-ion levels.

Trivalent rare-earth ions have immense scientific appeal due to the fact that the
spectral characteristics of these ions are strongly host dependent [110], and the crystal-
field splitting will vary from host to host, reflecting the different symmetries and strengths
of different local environments. The rare-earth ions of interest in this study are trivalent

europium, erbium, which will be investigated in great detail, and trivalent ytterbium.
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3.1.1. Europium

Trivalent europium (atomic number 63) has a ground state electronic
configuration [Xeldf® (15°25°2p°35°3p"3d"4s’4p°4d"*5s*5p°4f") and is split by the
Coulomb and spin orbit interactions into a number of multiplets. Figure 3.1.1.1. shows the
energy level diagram of Eu®* with effects caused by the different Hamiltonians. As
mentioned previously, Eu** has a relatively simple energy level structure with a non-
degenerate ground state ("Fo) and a non-degenerate emitting level (°Do). The absorption
and emission from the singlet (J=0) levels of Eu’" facilitate the study of linewidths and
positions without the complications of overlapping lines [43], which makes it an ideal

probe for crystal-field analysis for both crystalline and vitreous materials.

3.1.2. Erbium

Atomic number 68 represents trivalent erbium which has a ground electron state
electronic configuration [Xel4/"' (15°25°2p°3523p"3d\°4s’4p°ad"°5s’5p°4f'").  Figure
3.1.2.1. shows the muitiplet structure of the Er’* ion split by Coulomb and spin-orbit
interactions. Er" is one of the most popular rare-earth ions since its laser oscillation at
1.55 um is utilized as a fiber amplifier in doped silica. Moreover, it exhibits three
fluorescences, blue, green and red, in the visible region as well as green-upconversion
emission at 0.5 um, which has been observed in oxide glasses by infrared III-V diode laser

pumping [113].

55



4f’sd L

*Ds

Dy

*Do

2.10* cm™

1F6

7F4 v
7F3
7F2
B A
: 10°cm™
\_---__v

Configuration Interelectronic Spin-orbit coupling Crystal-field
repulsion

Figure 3.1.1.1. Energy level diagram for the Eu’" ion.
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3.1.3. Ytterbium

The ground state electronic configuration of trivalent ytterbium, atomic number
70, is [Xeldf® (15°25%2p°353p%3d"4s4p"ad"5s*5p°4f°). The 4/° ground state
configuration of Yb** gives rise to *Fz (lowest level) and ’Fs., levels that are separated by

10 500 cm™ [66]. Figure 3.1.3.1. shows the J-levels that are split through interaction with

the crystal-field.

E /
AN

AN,

“Fm e v
W

AN '

AN v

Figure 3.1.3.1. Energy level diagram of the Yb** ion [66].
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3.2 THE FREE ION HAMILTONIAN
The Hamiltonian that describes the free ion states can be written as a sum of

various individual Hamiltonians as follows [110]:

2 N N 7»* 2 N 2 N
HF=-h—ZV,~2-Z———Z € + —€ ¢3Sk 32.1.
2m ;5 i=l ri i>j=1 Ir,- -r J'l i=1l

where N =1,...14 is the number of 4f electrons of mass m, Z*e is the screened electronic
charge, V; is the Laplacian operator relative to the i® electron, [r-r;] is the distance
between the electrons i and j and { is the spin-orbit coupling parameter.

In equation 3.2.1, the first term, Ho, represents the potential of a 4f electron due
to the presence of the nucleus and the inner electronic shells. In this approximation, the 4f
electrons are completely independent of one another and contributions involving electrons

in closed shells are neglected, thus Fb can also be expressed by the following equation:

N 2
Ho= Z-E—V,-z +U(;) 322.
i-1 2m

where N is the number of 4f electrons of mass m, 7 V; is the momentum of the i electron
and U(r;) is the spherical average potential energy function of the i electron in the field of
the nucleus and all other electrons. |

The second term in equation 3.2.1., Hz, along with Ho, represents the

Coulombic interaction with the nucleus. Excluding the 4f shell, all electronic shells are
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spherically symmetric and do not contribute significantly to the relative positions of the 4f
energy levels. The real charge of the nucleus is replaced by screened charge since the
interaction of the 4f electrons with the closed shells modifies only the magnitude of the
term and not its symmetry. The aforementioned two terms of the Hamiltonian are
spherically symmetrical and as a result do not remove any of the degeneracies within the
configuration of the 4f electrons [110].

The last two terms in equation 3.2.1. are responsible for the energy level
structure of the 4f electrons. The third term, Hc represents the mutual Coulombic
interaction of the 4f electrons that splits the energy level of the 4f electronic configuration
into a number of LS terms. The final term in equation 3.2.1. is the spin orbit coupling,
Hso. This interéction results with only J as a good quantuny number since it mixes levels
of different L and S [45,114,115]. The spin-orbit coupling parameter, { can therefore be

represented as a series of radial integrals as follows [110]:

‘=3 J:Ru( )~ L dU(r) 323.

2 2

where Ry (r) is the radial wavefunction of the 4f electrons and U(r) is the potential in
which the i electron is moving (see equation 3.2.2.).

In the case of the rare-earth ions, the Hcr and Hso are approximately equal in
magnitude and thus the two terms cannot be considered separately and a coupling
calculation is required. It is convenient to perform the calculation in a set of basis
functions, where the Coulomb and spin orbit Hamiltonian are diagonal. The basis function

used is the total angular momentum function, [JM; >, where the total momentum operator
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is given by:

J=L+§ 3.24.
The values of J are restricted to:
IL-S|<J <|L+S] 3.25.
and the matrix elements can be obtained using the following relation:
<J.M,L.S|Hecr+ Hsol -M,L,S,>= 68 1S s 3.2.6.

It is very difficult to obtain the true energies of the free-ion experimentally,
however, solutions to the free-ion Hamiltonian for the RE** ions have been reported based
on a theoretical analysis of the spectra of RE" in aqueous solutions. For the case of rare-
earth ion in solids, the positions of the electronic energy-level barycenters are insensitive
to the host material [116] and closely resemble those of the free-ion. Table 3.2.1a. and
Table 3.2.1.b. show the free-ion energy-level barycenters of Eu®* [117] and Er* [117],
respectively. These values will be used as the initial free-ion parameters for the crystal-

field calculation, which will be described in the following chapter.
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Table 3.2.1a.

Free-ion energy levels for the Eu®" ion

J-level Level (cm™)

"~ 'F, 0.0
Fy 381.0
F, 1049.5
F; 19119
', 2897.9
’Fs 3958.7
"Fs 5060.2
Do 17316.6
D, 190573
D 21529.8
Ds 24420.7
*Le 254063
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Table 3.2.1b.

Free-ion energy levels for the Er'”ion

J-level Level (cm™)
Lisr2 109.0
sz 6609.7
“Inn 10219.7
To 12380.7
*Fon 152452
*San 18461.7

’Hyin 19258.1
F 20421.9
Fsn 22074.4
S 22421.7
*Gor 24509.0

’Gun 26500.1

Kisn 27800.4
’G 27981.0
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3.3 CRYSTAL FIELD HAMILTONIAN

The simplest method used to calculate the crystal-field is a point-charge model
where the ions surrounding the rare-earth ion are described as point charges. This model
neglects both the finite spatial extent of the ligand charge density and the wavefunction
overlap of the optically active 4f electrons with the ligands [118]. Since the optical
transitions characteristic of the rare-earth ions doped in solids correspond mostly to intra
" transitions of predominately electric dipole character [119], and only the f electrons are
affected by the crystal-field, it is assumed that the crystal-field acts as a perturbation of the
free-ion energy levels. The total Hamiltonian of the rare-earth ion doped in a solid can
therefore be described as the sum of the free-ion Hamiltonian and the crystal-field

Hamiltonian:
H =Hr+Hcr 33.1

where Hy is the free ion Hamiltonian described in Section 3.2 and Hcr is the crystal-field
Hamiltonian.
The crystal-field Hamiltonian used to describe the interaction of the rare-earth

jons with the host matrix can be written in terms of spherical harmonics as follows:

Hcer=YX B;CY6.9) 33.2.

k.q

where the summation is over all electrons, k is the rank of the tensoral operator C, q is the

relevant component of that operator (-<q<k) and B/ is the expansion coefficient that
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contains all the radial information. The crystal-field parameter, B,", can be regarded as the
coefficients of expansion, which are determined empirically from the magnitude of the

splitting AE. B.*can also be written as By, and is equivalent to the following relation:

k
B, =—¢[1)p(R)C k_q;r;f,—ldf = Ay (r") 33.3.

where Ay, is the spatial integral of the charge distribution and is given by:

2 C i*Y;
Akq= 4e Zq,- kq(O' ¢)
TEo i

334

The angular Ci, (8; ¢) spherical tensors in equations 3.3.2.-3.3.4. are directly related to the

spherical harmonics Yiq (6; ) [120] by:

®) _ 4z
C¥(6.9) ——2k+1YZ(6',¢) 336.

The crystal-field parameter, Ay, can be obtained by using the atomic
configurations generated from the molecular dynamics simulations and by selecting the
appropriate ionic charges for each type of ion. Employing the three-parameter theory
proposed by Leavitt et al. [121], the crystal-field parameters, By, are related to the

crystal-field components according to the following relation:
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Big = P Arq 3.3.7.

The py are ion and host independent parameters defined by the following expression:
=(* > (A-g)/t 338.
Pk (I' HF ( g, k) T -3

where the < > parameters are the Hartree-Fock radial expectation values for the rare-
earth ion [122] and oi are linear shielding factors known as Sternheimer shielding
factors [123]. In order to account for the inadequacy of the bare Hartree-Fock
wavefunction and the expansion of the free-ion wavefunction, a scaling factor, t, was
included into equation 3.3.8. The value <, is approximately a linear function of the number
of 4f electrons in the rare-earth ions, T = 0.767 - 0.00896N, where N = number of
electrons in the 4f shell of a given rare-earth ion. [124]. Table 3.3.1. shows the py values

for Eu®* [125] and Er** [125].
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Table 3.3.1.
Values of pi parameters with k=2,4 and 6 for the Eu®" and Er*” ions used to convert

lattice sums Ay, to crystal-field parameters By,

o (A5
Eu®* Er”
P2 0.1666 0.1706
Ps 0.4836 0.4053
Ps 1.2503 0.9649

The By, crystal-field parameters are directly related to the point symmetry of the
local environment of the rare-earth ions. The relationship between the point-symmetry and
the non-vanishing By, parameters is shown in Table 3.3.2. In the case of the f electrons,
only the terms with k < 6 are nonzero and due to the odd parity components of the crystal
field, the odd k terms do not contribute to the matrix elements and are thus omitted in the
crystal-field Hamiltonian [119]. In other words only the terms with k =2, 4 or 6 provide
the matrix elements of Hcr and have effect in the calculation of the energy levels. The “site
symmetry” of the ions of interest (Eu’* and Er’") governs which terms are permitted in the
crystal field Hamiltonian and the number and type of crystal field energy levels that arise
from the (2J+1)-fold degenerate free ion levels. The crystal field calculations reported
herein were carried out using a C, point group symmetry for the rare-earth environment.

The reasons are discussed in Section 5.2 of this thesis.
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Table 3.3.2.

Independent non-vanishing By,* parameters for the 32 point-symmetry groups

Point Group Non-vanishing By, parameters
C, G All By, (B real)
C;
Cs B20,ReB2,B4o,B42,B4s,Bso,Be2,Bss,Bes
Ca
D,
Ca Bao,ReBx2, By, ReBy;,ReBys,Beo,ReBs2,ReBes,ReBes
D2y
C,
S4 B2o,Bao,ReBas,Beo,Bsa
Ca
D4, Cav
D24, Dan B20,Bew,ReBu.Beso,ReBess
Cs, S¢ B20,B,ReBu3,Beo,Bs3,Bes
Ds
Cs, B20,B4o,ReBa3,Bso,ReBss,ReBes
Dsq4
Cé, Csn
Cén, Ds B20,B40,Bso,ReBss
Cév, Dan
Den
T, To, Tn
O, On B4o,ReBs,Beo, ReBsa

*Note: With the exception of By, all the By, parameters are complex numbers.
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34 SELECTION RULES

The intensity of absorption or emission accompanying a transition is related to
the probability of the transition, such that the more probable transitions yield absorption or
emission of very high intensity [126]. The requirements of absorption of light by the
matrix can be described based on the selection rules [126]. Transitions that are possible
according to these rules are referred to as allowed transitions, while those which are not
possible, are referred to as forbidden transitions.

Optical transitions in trivalent rare-earth ions occur due to perturbations caused
by the interaction between the electrons in the 4f shell and the electromagnetic field. In
order for transitions to occur from one state to another, the presence of the
electromagnetic field is essential to produce coupling between different states. The
interaction Hamiltonian between the electrons and the radiation field is comprised of two
terms, the electric dipole interaction and the magnetic dipole interaction. In general, there
are two radiative processes that may occur when these electrons interact with the
electromagnetic field, absorption and emission.

The selection rules are determined based on group theory such that the
components of the electric and magnetic field vectors transform according to definite
representations of the point group of the local rare-earth environment. If a particular
transition is either allowed or forbidden depends upon whether the irreducible
representation of the final state is, or is not, contained in the product of the initial state
representation, and the representation of the appropriate component of the electric field, E
or the magnetic field, B [127]. Whether or not a radiative transition between two states is
allowed and, if allowed, how strong the transition is depends on the value of the following

matrix element.
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(b|ii-&la) 34.1.

where, fi- £ is the appropriate dipole operator between states a and b.

Laporte’s selection rule states that the only allowed transitions are those in
which the parity of the final state is different than the parity of the initial state, that is Al=
+1. Therefore, transitions should not be observed in rare-earth ions due to the fact that
fe>f transitions should be forbidden since, for both the initial and final states, 1 = 3. This,
however, is not the case as there is a relaxation of Laporte’s rule due to admixing of the
odd parity f-states with even-parity states, usually 5d or 5g configuration states or charge
transfer [106].

The selection rules on S and L are valid in the limit of Russell-Saunders
coupling, but since transitions are between linear combinations of Russell-Saunders states
they are not rigidly adhered to and S and L are no longer good quantum numbers [128].
The selection rules on J, however, are more rigorous and can only be broken by °J-

mixing’, which is a weak effect.

A set of selection rules can therefore be written for both electric and magnetic
dipole transitions [106,128].

The electric dipole operator is given by the following expression:

H, =) efj 342

where Zex;, Zey;, Zez;, transform like translations such that linear combinations of these

components may be obtained to from an irreducible tensor operator of the first
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order [129].

For electric dipole transitions of the 4f electrons, the following selection rules apply:
Al=+1 343.
AS=0
[AL| <6
|AJ] <6 unless J or J’ = 0, then [AJ[=2,4,6
[AM|=ptq

where p is determined by the particular point group symmetry.

For magnetic dipole interactions, the dipole operator is represented as follows:
—~ —h
M, =§,-:—2mc i+geSi) 3.44.

The selection rules for the magnetic dipole interactions are given by:

Al=0 345.
AS=0
AL =0

AT=0, +1 (not 0 & 0)
AM;= 0 (¢ polarization)
AM; = + 1 (rt polarization)

In the case of rare-earth ions, the valid rules are determined by the site
symmetry, however, due to the weak crystal field, the selection rules of the free ion are
still relevant. As previously mentioned, electric dipole transitions within a £ configuration
are allowed only due to environmental perturbation. Consequently, the selection rules are
determined strictly by the local field site-symmetry of the ion. For point groups of very
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low symmetry such as C;, C; or C,, all f<>f transitions are allowed, therefore the only
consideration is the relative magnitude of the contribution from each of the dipole

processes.

35 INTENSITY CALCULATIONS

The crystal-field model may also provide a calculation scheme for the transition
probabilities between levels perturbed by the crystal-field. According to Condon and
Shortley [130], the line strength, S.s, of a radiative transition is given by the square of the

following matrix elements:

Sa=[(b| P|a )|2 35.1.

where P is the appropriate electric or magnetic dipole operator (i -£).

Electric dipole intensity calculations were performed using the “full” Judd-Ofelt
theory. The Judd-Ofelt theory is useful in estimating the probability of the forced electric
dipole transitions of rare-earth ions in various environments. According to the Judd-Ofelt
theory, the electric dipole transitions between two states of 4f" configuration of rare-earth
ions, which are forbidden when the ions are free, become allowed in the crystal-field by
mixing into the 47" configuration another configuration having opposite parity. Judd [131]
postulated that the possible configurations to be mixed into 47" are those of the type 4f"
Inl' (n = 5, 1 # 3). Moreover, the matrix elements of the electric dipole operator are
calculated by considering the crystal-field as a first-order perturbation. This calculation is
simplified by setting the following four approximations [113]. First, the states of 4f"
configurations are taken as linear combinations of Russell-Saunders coupled states.
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Second, all Mj levels of the ground state are assumed to be equally populated. Third, the
energy of the states of the configurations mixed into 4/ configurations is assumed to be
much larger than that of 4/ configuration. Fourth, the local field approximation is

employed. The effective electric dipole operator used in the present calculations has been

proposed by Morrison et al. [132] and can be expressed as:
7 1)
PP =223t + )N, OOUO): 3.5.2.
k.t

where the sums run over the order values of k=1,3,5,7 and t=2,4,6. The value of
(A(k )U('))S) represents the coupling of the irreducible tensors A* and U, and Ni(t)

contains the Clebsch Gordon coefficients [132,133] and the radial matrix elements of Ry

The parameters for Ni(t) are defined as follows [132,133]:

1 ¢ k(31 1Y k 3
Nk(f)=t=§$2’ ”){3 I 3}(0 0 o)(o 0 O)R"(l) 353

Subsequently, calculation of the induced electric-dipole line strength, Sw >, can be
accomplished through the methods proposed by Krupke [134] and Leavitt and

Morrison {132].
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Within the electronic configuration 4f°, magnetic dipole transitions are parity
allowed, and the magnetic dipole line strength, S, can be obtained by means of the
proper dipole moment operator, which involves the total orbital and spin angular

momentum operators. The magnetic dipole operator is therefore given by:

h
"—-’--2—;;(L+ geS) 354.

where L and S are the total vibrational and spin angular momentum operators. It is
important to mention that J-mixing of the eigenstates is included in the calculation of both _
the electric and magnetic dipole line strengths.

In calculating the intensity of line-to-line transitions in the simulated emission

emiss

spectrum, the transition probability between the individual components @ and b, 4, >

was calculated as follows:
e = (2] | oo, i 355.
3h4r g 9

where n is the refractive index at the wavelength of the emitted or absorbed light, o is the
energy difference between the initial and the final states and Su® and Sy are the
electric and magnetic dipole line strengths, respectively. The individual components a and

b belong to the initial and final electronic manifolds of the electronic transition under

investigation.
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CHAPTER 4

4.0 EXPERIMENTAL METHODS
4.1 PREPARATION OF THE LABORATORY GLASSES

Three samples of RE3+ doped lead silicate glasses were prepared by Prof. Marco
Bettinelli, of the Sezione di Chimica, Istituto Policattedra, Facolta di Scienze MM. FF.
NN., Universita di Verona,Verona, Italy. The compositions of the Eu®, EP" and Yb*"
glasses expressed in mol% for a “50/50” sample are as follows respectively: (i) 48.5
PbO-50.5 SiO,-1 Eu,0s (i) 48.5 PbO- 50.5 SiO,1 Er,O; and (jii) 48.5 PbO- 50.5 SiO>'1
Yb,0s. Appropriate quantities of PbO, SiO; (both Carlo Erba RPE) and RE;C; (Janssen
Reagent Grade) were melted in platinum crucibles and quenched in a brass mould. The
samples were melted at 1000 °C for 4 hours and annealed at 250 °C for 12 hours. The

samples, having a thickness of about 3mm, were carefully polished for the optical

measurements. The nominal RE*>" concentration was 0.84 mol-L"! in the all of the 50/50

glass samples.

4.2 PREPARATION OF THE SIMULATED GLASSES
4.2.1.  Glasses simulated using the two-body potential model

The simulated glass was prepared using a MD program written in FORTRAN.
The original program was obtained from Dr. Thomas Soules of the General Electric
Company, Cleveland, Ohio. The program was extensively modified by Dr. Guy Cormier
[45] for the specific problem of generating and analyzing doped glasses. The
modifications included implementing Mitra’s potential, addition of a subroutine to
generate configurations at a given series of timesteps, removal of unnecessary parameters

which required extra computational time as well as the addition of output parameters
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which aided in the bulk structural analysis of the doped glasses.

The simulations were performed using the two-body potential model developed
by Mitra et al. [94] described in Section 2.2.1 of this thesis. The parameterization of the
potential was taken as determined from previous studies [45,57]. The parameters for
oxygen and silicon were determined by Mitra et al. [92-94], while those for lead were
determined by Cormier et al. [41]. The charges, radii and n were determined empirically
in order to reproduce the short-range order observed in the experimental glasses. The
potential was scaled in order to arrive at a simulated glass transition temperature within
the experimental range of 1200-1800K. Table 4.2.1.1. presents the ionic parameters, the

glass compositions and other relevant parameters used in the simulation.

Table 4.2.1.1.
Simulation parameters for PbO-SiO; glass

Element Ionic Radius, 6 (A) _ Ionic Charge (q) ___ Number of ions
0] 1.200 -1.136 3024
Si 0.237 2272 1008
Pb 0.990 1.136 1008
Hardness parameter, n: 10
Simulated density (g/cm3): 5.98
Oxygen molar volume (cm3/mol O2-): 15.80
Length of box side (A): 42.97

In order to perform an initial validation of the parameterization of the pair
potentials, the structural features of the simulated glass were verified to reproduce the

short range order of the parent crystalline compound, lead metasilicate [135].
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The initial set of coordinates for the atomic ensemble of the undoped glass was
derived from the unit cell of crystalline lead metasilicate, alamosite PbSiO3 [135]. This
initial atomic ensemble was melted by heating from 300K to 15000K in a total of 56000
timesteps of 1 fs (1X10-15 s). The subsequent quench procedure for the glass was as
follows. The melt was thermalized at 15000K for 50000 timesteps (500 ps). The
ensemble was then slowly cooled from 15000K, in five successive temperature steps to
7500, 5000, 2500, 1200, 600 and 300 K, each for 80000 timesteps for a total quench time
of 0.5 ns at a quench rate of 3X1013 K/s.

The simulations were carried out at constant volume for each temperature step.
The size of the box at 300K was adjusted to give the correct room temperature density for
Pb0+SiO; glass, which has been determined to be p = 5.98 g/cm3. The size of the box was
increased at higher temperature steps in order to simulate thermal expansion.

The simulation of the glass was performed using a Hewlett Packard
Workstation. The simulation takes an average of three weeks of “real” time per glass

depending upon the number of interactive users and the number of background processes.

4.2.2. Glasses simulated using the two and three-body potential model

The FORTRAN program used to carry out the MD simulations was obtained
from Professor S.H. Garofalini, at Rutgers University, NJ, USA. The multibody potential
used in the simulation was the same as that described in Section 2.2.2 of this thesis.

The initial set of coordinates for the atomic ensemble of the undoped lead

silicate glass, 50PbO*508i0; “50/50”, was derived from crystalline lead metasilicate,

alamosite (PbSiO3) [135]. To generate the undoped glasses of varying PbO
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concentrations, the initial configurations were obtained from the respective crystalline
structures, (PbSi;O4) for the 22Pb0-78Si07 “22/78” glass and lead silicate (Pb2SiO4) for
the 70Pb0+30Si0> “70/30” glass.

As a first approximation, EXAFS and XRD data were used to alter the potential
energy function, which is achieved by adjusting the atomic force pair interactions to yield
the proper interionic distances. Table 4.2.2.1. shows the atomic force parameters for the
ion-oxygen pairs of the undoped lead silicate glass. There were no adjustments made to
the previously determined parameters for $i02, which were developed by Soules [91] and
further modified by Feuston et al. [95], while for PbO the following procedure was
executed. A parameter search was performed by allowing the respective crystalline
compound to run with a given set of parameters at 300K. The radial distribution functions
(RDF) of the simulated structure was obtained and compared with experimental results.

In the case of the doped glasses, the RE3*-ion parameters were developed using
the aforementioned procedure on the crystalline structures, namely, Eu203, Er;03 and
Yb,03. To obtain the RE3*-doped lead silicate glasses, the alamosite crystal was doped
with 1.0% RE203. A concentration study was performed on the Er3*-doped lead silicate
glasses by doping the alamosite crystal with 0.2%, 2.0%, 5.2%, 11% and 24.8% Er3*
(Er203).

The two-body parameters used in the potential for the undoped glasses are listed
in Table 4.2.2.1a. and the three-body parameters in Table 4.2.2.1b. The BMH parameters
for the doped glasses are listed in Table 4.2.2.1c. and the LJ parameters in Table 4.2.2.1d.
The compositions for the Er’*-doped glasses are in Table 4.2.2.2. Both the doped and

undoped crystal structures were subjected to the following melt-quench sequence.
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The starting configuration was melted by heating the crystal from 300K to
8000K. The velocity was rescaled periodically during the simulation for the first 2000
time steps and the system was then allowed to run at constant energy for an additional
8000 steps. This step was performed in order to allow the system to reach internal
equilibrium and to ensure randomization of the initial configuration. The system was then
cooled to room temperature in seven successive temperature steps at 7000, 6000, 4000,
3000, 2000, 1000 and 300K. Throughout cooling, at each temperature step, the velocities
were rescaled for 20 ps and then continued at constant energy for another 80 ps. At 4000
and 3000K, however, the system was run for 200 ps with an equilibration period of 4000

time steps in order to allow for further structural relaxation. The total quench time of the

run was 1.2 ps for a quench rate equal to 6.5X104 K/s.
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Table 4.2.2.1a.

Simulation parameters for the undoped glasses

BMH pair potential parameters

Atomic pair A; stO" erg) BJ"I (x107 cm) Qi(xw" cm)
0-0 0.0725 0.234 0.290
$i-0  0.2962 0.234 0.290
Pb-O 0.4500 0.224 0.140
Si-Si 0.1877 0.234 0.290
Si-Pb 0.0550 0.260 0.290
Pb-Pb 0.1642 0.260 0.290
Compositional parameters
22/78* 50/50* 70/30*
No. of O ions 1152 1512 960
No. of Siions 504 504 224
No. of Pb ions 144 504 512
Density (g/cm’) 3.725 5.98 7.325

*Corresponding to 22Pb0-78Si0, S0PbO-50Si0; and 70PbO-30Si0;, respectively
Table 4.2.2.1b.

Three-body potential parameters

Bond angle i (A) Ai (x10! erg) Yi (A)
0-Si-0 2.6 03 20
Si-O-Si 3.0 19 28
O-Pb-O 3.0 24 238
Pb-O-Pb 2.8 20 3.0
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Table 4.2.2.1c.

Simulation parameters for the doped glasses

BMH pair potential parameters

Atomic pair A (x10° erg) By (<107 cm) pi (x10°* cm)
Eu-O 0.4500 0.193 0.150
Er-0 0.4500 0.208 0.150
Yb-O 0.4500 0.202 0.150
RE-Si 0.1000 0.260 0.290
RE-Pb 0.1642 0.260 0.290

RE-RE 0.1642 0.260 0.290

Compositional parameters for RE>*:PbO-SiO,

No. of O ions No. of Siions No. of Pb ions No. of RE ions
1512 504 474 20
Density (g/cm’) 5.98
Table 4.2.2.1d.

Parameters used in the Lennard-Jones potential

Atomic Pair g (x 10" erg) o; (x 10° A)
Pb-O 2375 2323
Eu-O 9.650 2.130
Er-O 6.650 2.020
Yb-O 6.550 2.130
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Table 4.2.2.2.
Compositional parameters for Er’ :PbO-SiO, glasses

Percentage of Er’” ion in the simulated glasses
No. of ions 0.2 20 5.2 11.0 248
O ions 1512 1512 1512 1512 1512
Si ions 504 504 504 504 504
Pb ions 501 474 429 354 204
Er ions 2 20 50 100 200
Density 5.98 g/cm’

The simulations of the glasses were performed using a Silicon Graphics R10000
INDIGO2 Workstation. The simulation takes an average of 12 days of “real” time per
glass depending upon the number of interactive users and the number of background

processes.

4.3 SPECTROSCOPY OF THE LABORATORY GLASS

The room temperature luminescence spectra were recorded in the visible and
NIR regions. Visible emission spectra were recorded by using a Jarrell-Ash 1-m Czerny—
Turner double monochromator. The visible emission signal was monitored by an RCA—
C31034-02 photomultiplier. The photomultiplier was thermoelectrically cooled so that its
background dark rate was below 2 counts/s. The photomultiplier signal was processed by
a preamplifier, model SR-440 (Stanford Research Systems). A two—channel gated
photon—counter, Model SR—400 (Stanford Research Systems) was used as the data
acquisition system. The signal was recorded under computer control using the Stanford

Research Systems’ SR—465 software data acquisition/analysis system. The near—infrared
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emission spectra were recorded in the region 900 nm -1.8 pm using a Jarrell-Ash 3/4-m
Czerny—Tumner single monochromator. The signal was detected by a liquid nitrogen—
cooled Northcoast EO-817P germanium detector connected to a computer—controlled
Stanford Research SR510 lock-in amplifier. All the reported spectra were corrected for

the response of the individual detectors.

4.4 SPECTROSCOPY OF THE SIMULATED GLASS

The calculation of the crystal-field parameters of the simulated glass and the
subsequent generation of the simulated emission spectra was performed using a series of
programs developed at the Harry Diamond Laboratories, Adelphi MD [136]. These
programs were modified by Dr. Guy Cormier to generate the absorption and emission
spectra of Eu**silicate and Eu**-sodium disilicate glasses. Further modifications were also
made by Dr. Stephane Chaussedent in order to generate the emission spectrum of the Eu’**
ion in aqueous solution. The program used for the generation of the RE*" emission
spectra in this thesis is a combination of the latter two modifications and the procedure is
outlined herein.

In order to correlate the energy levels with the structure and charge distribution
at each of the rare-earth sites, a principal axis transformation of each of the 200 RE’" ions
was performed. The transformation starts by placing a RE’" ion in the center of a
Cartesian coordinate system representing the glass configuration [45,137,138]. This
transformation will result in a diagonalization of the quadrupole moment tensor such that

all the second-order crystal field parameters vanish except for Az, and ReAz.
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Once all the glass configurations are aligned, the crystal-field parameters are
calculated using the positions of all ions with respect to the central RE*" ion and the
charges assigned to each ion type. The spherical tensors, Cyq are subsequently determined
using a recursive method that calculates the associated Legendre polynomials. The Cyq
parameters are then used to calculate the crystal-field components, Ayq according to
equation 3.3.4. The odd-k Ay crystal field components are used for the intensity
calculations, while the even-k Ay, are transformed into crystal-field parameters, By, using
the appropriate py values for the rare-earth ion of interest reported in Table 3.3.1. The
energy level splittings are then calculated using the even-k By, crystal-field parameters.
Moreover, transition probabilities, lifetimes and branching ratios for all excited states are
also calculated.

In order to generate a graphic representation of the simulated emission spectra,

the calculated energies are collated and sorted. A Lorenztian band shape is assigned to

each of the energies. The spectral envelope, = (0), is given by:

2
=(0)=2- Af >— Liab 44.1.
Nok=labg®+ 4(0' —O'k,ab)z

where the first sum is over all N, environments obtained from the MD simulations, the
second sum is over all possible transitions. Each of the energies have an amplitude, /i b,
and a full width at half maximum, @ The widths were chosen such that all the RE* ions
in the simulated glass effectively represent the macroscopic ensemble of doped ions found

in the experimental glass. The intensity (amplitude) is given by [57]:
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I k.ab = F Jl(ab) (ﬂk,ab > Ak,ab ) 442

where F; are scaling factors for each J multiplet and By ., are the radiative branching
ratios. The By are radiative branching ratios for line-to-line fluorescence transitions, and
are defined as the ratio of a specific radiative transition from an emitting state to a lower
energy state divided by the sum of all the radiative transitions initiated from the emitting

state of the k™ RE*" configuration as follows [57]:

miss
kab i

> AT
,a
ab

where a represents a given emitting state and b represents the lower energy states. The
A,f”Z’b‘ are the line-to-line radiative transition probabilities for the k™ configuration as

defined by equation 3.5.5., and the sum is over all the possible lower states. The sum of

all By is necessarily 1.
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CHAPTERSS

5.0 RESULTS AND DISCUSSION
5.1 STRUCTURAL ANALYSIS OF THE MD SIMULATED GLASS
5.1.1. Structure of undoped lead silicate glass

The general structure of the glasses was determined by calculating the pair
(PDF) and cumulative (CDF) distribution functions as well as bond angle distributions
(BAD). In addition, whenever possible a comparison to experimentally reported

structural features with those obtained through the MD simulations will be performed.

5.1.1.1. Comparison of the two- and three-body potential models

The starting point in structural investigations of glasses is to examine the atomic
structure of the crystalline stoichiometric counterpart. In the present case, the lead
metasilicate stoichiometry presents three polymorphs, with the mineral alamosite being the
stable phase [135]. The structure of alamosite (Figure 5.1.1.1.1) is comprised of zigzag
chains of SiO4 tetrahedra and screw chains of PbOp, polyhedra (n =3 or 4). The chains of
SiO4 tetrahedra are arranged in parallel layers, and the screw chains of PbOp polyhedra
are perpendicular to the silicate layer. The lead atoms in this crystal are found at the apex
of a PbO; trigonal or PbOy tetragonal pyramid. The three distinct lead atomic types
found in the alamosite unit cell have a coordination of 3, 4 and 4, respectively. Such a
coordination scheme is essentially due to the electronic structure of the divalent lead ion.
The combined orbitals on Pb leave a non-bonded electronic pair of sp hybrid orbitals.

Thus, the short Pb — O bond (fvond < 2.60A) is essentially covalent and the electronic lone

pair is directed out of the pyramid and occupies the place of the missing ligands.
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Figure 5.1.1.1.1. Projection of the structure of alamosite. Oxygens atoms are
represented by tetrahedron vertices, and Pb atoms by circles [135].



This structure explains the low coordination of divalent Pb. This immediate covalent
coordination shell has been defined by the presence of oxygen atoms within a 2.6A
distance from the lead atoms. Slightly beyond this distance, each of the three lead types
will have additional oxygens in their environments. This conclusion has been derived from
a calculation based on the crystallographic data of Boucher and Peacor [135], for the local
environments of the 16 atom types found in the unit cell, up to a distance of 6.5A.
Examining the oxygens found within the first lead — cation distance, the coordination
number increases substantially to 6, 6, and 8, respectively. In order to make a valid
comparison between the crystalline and amorphous structures, this extended first
coordination shell was found to be more representative of the local environment of the
lead ions.

Due to the extensive structural information present, analysis of the undoped lead
metasilicate glass will be separated into two main aspects, (i) the silicate backbone and (ii)
the environment of the lead atoms with respect to the silicate backbone. For simplicity,
the combination two/three-body potential model will be referred to as the three-body

potential model for the remainder of this section.

) The silicate backbone

The room temperature equilibrated pair distribution functions for the silicon-
oxygen pair from the two (dashed curve) and three-body (solid curve) glasses are
illustrated in Figures 5.1.1.1.2a., while the cumulative distributions for the two glasses are
shown in Figure 5.1.1.1.2b. The average Si-O interionic distance was found to be 1.60 A
with a full width half maximum (FWHM) of 0.13 A for the two-body glass and 1.62 A

with a FWHM of 0.08 A for the three-body glass.
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Figure 5.1.1.1.2a. Pair distribution functions of the 2-body (dashed) and 3-body (solid)
Si-O interionic pair for the undoped PbO-SiO; simulated glasses.
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Figure 5.1.1.1.2b. Cumulative distribution functions of the 2-body (dashed) and 3-body
(solid) Si-O interionic pair for the undoped PbO-SiO; simulated glasses.
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Extrapolation of the CDF curve at a cutoff radius of 2.1 A, indicated that for both
the two- and three-body glasses, each silicon is tetrahedrally coordinated by 4.00 oxygens.
Similar results for the silicate tetrahedra were observed experimentally by Mydlar et
al. [30] and Yamada et al. [23].

The three-body potential model resulted in a significant narrowing of the first Si-O
peak as seen by the reduction of the FWHM from 0.13 A in the two-body glass to 0.08 A
in the three-body glass. Moreover, the number of odd coordinated species decreased for
the glass modelled using the three-body potential as shown by the narrowing at the base of
the first peak in the three-body PDF (solid) in comparison to that of the two-body PDF
(dashed). The pair distribution functions return to a null value after the first peak
indicating that a clear distinction exists between the first and second coordination shell.
This is also observed in the cumulative distribution function (Figure 5.1.1.1.2b.) by the
plateau which extends from 1.8 to 2.5A. Further analysis of the Si-O connectivity
indicated that all the silicate tetrahedra are connected through their corners and not by
their edges or faces, which is characteristic of the high-energy arrangements. The well
defined short range order is illustrated further by the determination of the bond angle
distributions.

The O-Si-O bond angle distribution (Figure 5.1.1.1.3.) was found to be 109° with
a FWHM of 8.5° for the two-body model (dashed) and 109.7° with a FWHM of 6.0° for
the three-body model (solid). The O-Si-O bond angle distributions for both simulated
glasses were found to be in excellent agreement with experimental results (104-1 15°) and
the theoretical value (109.4°). The half-width of the O-Si-O angle distribution was
calculated to be approximately 7° [94], based on electron spin resonance (ESR) data,

confirming the improvement of the three-body model over the two-body model.
91



0.030 ~

0.025 |- 0012 -
------- 2-body
- 0010 | . i‘,. i
P EEE
» TR P
0020 |- ocos | ( §ap
=
.§ 0.0086 :
g 5
B 0015 - i
= 0.004 |- ¥
7 23
A
i i
o0m | HEE
0.010 - il i
0.000 Lo M Hfﬁ-f ;. [ PN B L EE_§§
0 120 130 140 15 160 170
- Si-O-Si angle (degrees)
0.005 |-
0.000 i ] . 1
80 140 160 180
O-S-0 angle (degrees)
Figure 5.1.1.1.3. The O-Si-O bond angle distributions for the two-body (dashed) and

three-body (solid) simulated lead silicate glass. Shown in the inset is the Si-O-Si bond
angle distributions for the two-body (dashed) and three-body (solid) simulated lead silicate

glass.
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The bond angle distribution functions are not only an indication of the basic units (SiOs
tetrahedra) which make up the silicate network but also allows the prediction of how these
units are connected to form a three dimensional network. The most noteworthy of these
angles is Si-O-Si, since it describes the connectivity of two SiO, tetrahedra. The average
Si-O-Si bond angle (Figure 5.1.1.1.3 -inset) was found to be 153° with a FWHM of 28.5°
and 154° with a FWHM of 14° for the two-body (dashed) and three-body (solid) simulated
glasses, respectively. Based on neutron diffraction experiments [139], the Si-O-Si angle
has a broad distribution between 120° to 180°, with the maximum extending from 144° to
156°. The broad distribution for dsi.o.si is due to the introduction of randomness incurred
by the typical disordered arrangement of corner-sharing tetrahedra [21].

The peak positions, peak widths and average coordination numbers for all
atomic pairs, generated by the two- and three-body potential models, are listed in Table
51.1.1.1. The O-O and Si-Si distribution functions for both the two- and three-body
glasses agreed well with reported experimental results [23,30,140]. The average interionic
distance for the oxygen-oxygen pair was found to be 2.60 A witha FWHM of 0.18 A and
263 A with a FWHM of 0.25 A for the two- and three-body glasses, respectively. The
average number of oxygen neighbours was found to be 4.03 for the two-body glass and
6.15 for the three-body glass, using a cutoff radius of 3.2 A for both glasses. The results
for the simulated glasses are in good agreement with neutron diffraction data obtained by
Johnston et al. [140] for the O-O interionic distance, however, the average coordination
number obtained for the two-body glass was found to be low. The 0-O PDF of the
three-body glass shows a small shoulder at 2.40 A, suggesting the possibility of edge-
sharing oxygens. This effect of edge-sharing has been reported previously in other

studies [141] and arises due to the addition of modifiers (such as lead) in the silicate
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network. In contrast, there is no shoulder present in the first 0-O peak of the PDF for the
two-body simulated glass, which could explain the narrower PDF peak and smaller
FWHM value. The first peak in the silicon-silicon PDFs returned to a null value indicating
a well-defined first coordination shell. The Si-Si interionic distance was found to be 3.10
A and 3.18 A with peak widths of 0.22 A and 0.16 A, for the two- and three-body glasses,
respectively. The average number of silicon neighbours was found to be 2.20 for the two-
body glass and 4.03 for the three-body glass (see Table 5.1.1.1.) Mozzi and Warren [21]
report a Si-Si interionic distance of 3.12 A, and an average coordination of approximately

4.0 nearest silicon neighbours.

Table 5.1.1.1.1.

Nearest neighbour distances and coordination numbers for undoped PbO-SiO2

Atomic Pair | First peak maxima (A) FWHM (A) Coordination* (N)
2-body 3-body 2-body 3-body 2-body 3-body

0-0 2.60 2.65 0.18 025 | 403G2) 615(32)

Si-O 1.60 1.62 0.13 0.08 4.00(2.1) 4.00(2.1)

Pb-O 2.40 2.43 041 019 | 578G.2) 5.72(3.2)

Si-Si 3.10 3.18 022 016 | 2203.5) 4.03(3.5)
Pb-Si 3.30 3.20

3.45 3.70 1.02 078 | 465(2) 321(42)

Pb-Pb 3.80 3.50 0.93 068 | 5.86(48) 898(4.8)

*Number in parentheses refers to the distance (in A) at which the average coordination
number was calculated.
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The short range environment of the silicon ions was analyzed by identifying the
different oxygen species present in the glass: bridging oxygens (BO), non-bridging
oxygens (NBO) and non-silicate anions (NSA). For the purpose of this discussion, a
bridging oxygen is bonded to two silicons, a non-bridging or non-bonding oxygen is
bonded to one silicon and one lead, and a non-silicate anion is not connected to the silicate
network.  Resuits from the simulated models are presented in Table 5.1.1.1.2. The
calculation is performed by counting the types of oxygens present within a Si-O

coordination sphere of 2.1A.

Table 5.1.1.1.2.

Types of oxygens (%) present within the first Si*" coordination shell

Simulated Glass BO (%) NBO (%) NSA (%)
Two-body 36.64 60.0 3.36
Three-body 50.33 3333 16.34

Hannon et al. [142] have devised a scheme for alkali silicate glasses of composition
Si0,x(M,0) to calculate the fraction of oxygens which are NBOs using the following
formula, fiso = 2x / (2 + x). Employing this formula to the simulated PbOSiO, glasses,
and using x=0.5 for a 50 mole percent PbO composition (x=1 for a 50mol% M0), the
fraction of NBO’s (fiso) was found to be 0.33 which is in excellent agreement with the
simulation results of the three-body glass (33.33%). Smets and Lommen [143] report a

value of 40.0 + 3.0% for the BO/ZO (ratio between the number of BO and the total
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number of oxygens) for a lead metasilicate glass studied using X-ray photoelectron
spectroscopy.

In order to shed some light on this discrepancy, the distribution of Q; species
was determined in order to identify the types of bonded silicons for each individual oxygen
atom. The Q; species describe the concentration of tetrahedra, Q, with i bridging species.
This labelling system was proposed by Lippmaa et al. [144] to characterize the silicon
environment in a wide range of silicate minerals. The bridging oxygens are in the range
from 0 to 4, where the Q, contains only non-bridging oxygens around an Si, and Q,
represents four bridging oxygen species and no non-bridging species. In general, there are
two types of distributions expected for silicate glasses, binary and statistical. In the case of
a binary distribution, there is a maximum of two Q species present for any given
composition. This type of distribution is believed to arise from the repulsion of NBO’s
which are randomly distributed in the glass. A statistical distribution is based upon
Zachariasen’s random network model [9], which implies that several different Q species
may be present in the glass. In a magic angle spinning NMR (MAS-NMR) experiment,
Dupree et al. [40] investigated the local environment of the #Si isotope of various
xPbO-(1-x)SiO, glasses. Analysis of the NMR spectra allowed the authors to suggest that
the local environment around silicon is dependent upon the concentration of lead ions in
the glass. In order to compare the results of the simulated glass to the experimental glass,
only the experimental 48 mol% lead silicate glass will be discussed (see Table 5.1.1.1.3.).
The Q; speciation for the two and three-body simulated glasses as well as the predicted

distributions calculated by Dupree et al. [40] are presented in Table 5.1.1.1.3.

96



Table 5.1.1.1.3.

Simulated and predicted Q; distribution for undoped PbO-SiO, glass

Qo Q Q: Qs Qs
Predicted distributions
Binary model (%) 845 154
Statistical model (%) 5 21 37 27 9
Simulated glass
Two body (%) 228 19.05 41.76 30.36 6.55
Three-body (%) 24 86 20.7 34.7 336

Dupree et al. [40] were not able to fit their results to either the binary or statistical model.
Using a four Gaussian fit, the authors obtained a skewed statistical distribution with
unexpectedly high Q, species. A calculation of the BO/ZO ratios for the experimental and
predicted results yields a value of 28.10 and 34.55%, respectively, for a glass composition
of 48 mol% PbO. The results presented in Table 5.1.1.1.3. show that the two-body
simulated glass is in good agreement with the predicted statistical Qi distribution, whereas
the three-body simulated glass does not agree with either of the predicted models but
shows a statistical distribution with predominately Qs and Q. species. It is important to

note that there is a substantial difference between the results derived from the experiments
of Dupree et al. [40] (BO/ZO =28%) and those by Smets and Lomman [143]
(BO/ZO =40%). Oddly enough, the simulated two-body glass agrees well with the
predicted Q; distributions of Dupree et al. [40] and the BO/ZO obtained by Smets and

Lomman [143]. Experimental data from an NMR experiment of lead silicate glass by
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Fujiu and Ogino [32] offers a plausible explanation for the above discrepancies as well as
for the results observed for the three-body simulated glass. The authors found that at
concentrations between 50-60 mol% PbO the three dimensional SiO, network remains
intact and the dominance of monosilicate tetrahedra, proposed by Zachariasen’s theory for
this composition range, are not found. This phenomenon is explained by assuming that a
certain number of PbO, groups, which at higher lead concentrations act as network
formers, are interconnected with SiO, tetrahedra. In accordance with the previous
assumption, the high percentage of Q; and Q, species found in the three-body simulated
model suggests the presence of two distinct networks in the glass. Due to the lack of a
multibody Pb-O interaction term, the two-body potential model is not as sensitive and thus
is not able to differentiate between the two networks. Smets and Lomman [143] also
report that at 50 mol% PbO, it was difficult to describe the glass using the proposed
models which calculate the BO/ZO ratio. They found that in glasses with less than 50
mol% PbO, the introduction of PbO results in the depolymerization of the silica network,
but any further addition of PbO has only a moderate effect on the stability of the
metasilicate network. At PbO concentrations greater than 50 mol%, the number of BO
oxygens decreases more rapidly as a function of concentration, indicating that the
metasilicate rings and chains are not stable at high lead contents.

In to order quantify the aforementioned results further, the oxygen atoms
bonded to individual silicons atoms were examined with respect to the lead network (that

is, at lead-oxygen cutoff distance of 2.8 A) and the results are given in Table 5.1.1.1.4.
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Table 5.1.1.1.4.

Percent speciation of oxygen in the first Si*" coordination shell
with respect to the lead network

Simulated Glass npy=0 npy=1 npy=2 Npy=3 np=4 nps=3 npy>5

Two-body 46.67 18.08 27.56 7.62 0.07 0.00 0.00

Three-body 61.57 15.79 11.54 10.33 0.74 0.03 0.00

of lead neighbours in the two body glass, while 62% was calculated for the three-body
glass. The high percentage of np=0 in the three-body simulated glass confirms the
presence of two distinct regions in the glass, a lead-rich region and a silicon rich region.
The two-body glass also shows a relatively high percentage of np=0, but a significant
percentage of ny=2 is also present indicating that approximately 28% of the oxygens
bonded to silicons have two lead neighbours. This result is in good agreement with the
predominance of Q, species and implies that in the two-body simulated giass the lead ions
are interconnected with the SiO4 tetrahedral chains acting as typical modifiers, and do not
appear to be forming the secondary network observed in the three-body simulated glass.
Since the above calculation involves the examination of the oxygens bonded to silicon
ions, it is expected that results for np=O will be in good agreement with the number of
BO oxygens reported in Table 5.1.1.1.2. Any discrepancies that exist between the two sets
of values are accounted for by the larger cutoff distance used (2.8 A versus 2.1 A) in the
latter calculations. Figure 5.1.1.1.4a. illustrates the presence of the two distinct networks
in the three-body simulated glass. Figure 5.1.1.1.4b. shows the lead ions interconnected

within the silicate network acting as typical modifier ions.
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Figure 5.1.1.1.4a. Computer graphics of a slice (xy) of the two distinct networks in the
three-body simulated lead silicate glass. The red spheres represent the lead ions, the black

spheres represent the silicon ions, and blue-gray spheres represent the oxygen ions.
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Figure 5.1.1.1.4b. Computer graphics of a slice (xy) of the two-body simulated lead
silicate glass. The lead ions (red spheres) are behaving as typical cation modifiers. The

black spheres represent the silicon ions and the blue-gray spheres represent the oxygen
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A subsequent step in understanding and examining the environment of the silicon
ions in the glass is to calculate the distribution of ring sizes. A ring of size N contains N-
silicons (or N-tetrahedra). The oxygens, which connect the tetrahedra together in a ring,
are all bonding oxygens. The two-body simulated glass is dominated by the presence of
five-membered rings which is typical for glasses, whereas the three-body glass contains
five-, six- and seven-membered rings which are found in approximately equal proportion.
As shown by Rino et al. [145), in the larger rings, the peak position in the O-Si-O bond
angle distributions are very close to 109° indicating that the larger rings consist of nearly
perfect tetrahedra. The occurrence of larger ring structures in the three-body glass
. compared to the two-body glass is indicative of a longer range order. This is probably due
to the fact that in the two-body glass the lead ions behave more as traditional modifiers
and tend to depolymerizeithe silicate network to a greater extent. Moreover, it was found
that for the two-body glass, the silicate network was comprised of a large number of
chains connected to the five-membered rings. Less than 20% of the two-body glass and
30% of the three-body glass were comprised of small rings. Two-membered rings are
formed by edge-sharing tetrahedra and this will be discussed in greater detail with respect
to the lead network. The low WMe of three-membered rings in both of the simulated
glasses is to due the fact that the Si-O-Si bond angle (Figure 5.1.1.1.3 -inset) is strained
from the dihedral angle of 154° to 130° resulting in a less favorable structure. In contrast,
rings of four silicon ions induce little strain and are formed in significantly higher
proportion in both the two- and three-body simulated lead silicate glasses.

The present model for both the two- and three-body lead silicate glasses
provides a detailed quantification of the silicate backbone, which is in good agreement

with experimental data. ‘
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(®) The lead environment

Figure 5.1.1.1.5a. and Figure 5.1.1.1.5b. show the PDFs and CDFs for the lead-
oxygen atomic pair. The PDF and CDF for the two-body simulated glass are represented
by the dashed curves and those for the three-body simulated glass are represented by the
solid curves.

As reported in Table 5.1.1.1.1., the average Pb-O interionic distance for the
two-body glass was found to be 2.40 A with a FWHM of 041 A and 2.43 A with a
FWHM of 0.19 A for the three-body glass. These results are in good agreement with
experimental results obtained by pulse neutron scattering [23] and X-ray diffraction
data [30,35] for lead metasilicate glass.

The PDFs (Figure 5.1.1.15a) do not return to a null value after the first
maximum indicating that there is no clear distinction between the first and second
coordination shell. Inclusion of the three-body interaction term to the Pb-O pair has
resulted in a much narrower distribution of the first peak, as can be seen from the PDF
(solid curve) and the reduction of the FWHM (from 0.41 A in two-body to 0.19 A in the
three-body). At high lead-oxide concentrations the Pb>" ions partake in the glass-forming
network, which results in a much narrower distribution in the local environments of the
lead ions [25). The average coordination of lead, obtained by the extrapolation of the
CDF at a cutoff distance of 3.2 A for both the two and three body simulated glasses were
found to be 5.78 and 5.72, respectively. It is important to mention at this point in the
discussion, that the inclusion of a three-body term into the potential function optimizes the
interionic distances without altering the overall structure. This fact was illustrated
(Section 5.1.1.1 (a)) with respect to the Si-O interionic pair and has also been observed

for Pb-O.
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Figure 5.1.1.1.5a. Pair distribution functions of the 2-body (dashed) and 3-body (solid)
Pb-O interionic pair for the undoped PbO-SiO; simulated glasses.
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Figure 5.1.1.1.5b. Cumulative distribution functions of the 2-body (dashed) and 3-body
(solid) Pb-O interionic pair for the undoped PbO-SiO; simulated glasses.
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In comparison, results for both the two- and three-body of the simulated lead
silicate glasses agree well with the average structural values calculated for the alamosite
crystal [135]. The average coordination of Pb in alamosite is 3.67 at a cutoff radius of 2.8
A and 6.67 at a cutoff radius of 3.4 A The average interionic distance for the first
coordinating shell of four oxygens is 2.39 A with an additional two oxygens present at
3.19 A. Lottici et al. [146] performed EXAFS and Raman studies on a variety of lead
silicate glasses ((PbO)x-SiO2) and reported an average Pb-O coordination number of 3-4
in PbO-Si02. Any difference between the simulated and the experimental values is due to
the fact that there is no cle=- distinction between the first and second coordination shell
thus, the choice of a cutoff radius becomes somewhat ambiguous. The experimental data
referenced above, with the exception of the results reported by Imaoka et al. [35] were
fitted assuming a first coordination shell similar to that found for a PbO, tetragonal
pyramidal arrangement. In contrast, Imaoka et al. [35] assumed that for lead silicate glass
in the composition range of 50-66.6 mol% PbO only PbO, pyramidal structures existed
which are interconnected to silicate anions. Hence, there is an increase in the number of
oxygens surrounding individual lead ions. It is therefore important for both modelling and
experimental techniques to indicate the cutoff radius chosen and in the case of the latter,
the spatial extent of the fitting procedure used.

The Pb-Pb pair distribution functions were found to be broad and asymmetric
for both the two- and three-body simulated glasses. The Pb-Pb interionic distances were
3.80 A with a FWHM of 0.93 A and 3.50 A with a FWHM of 0.68 A, for the two- and
three-body simulated glasses, respectively (see Table 5.1.1.1.1). Average lead-lead

coordination numbers of 5.86 and 8.98 were found at a cutoff distance of 4.8 A for the
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two- and three-body simulated glasses, respectively. The values reported for the Pb-Pb
interionic distance, in both the two- and three-body simulated glasses, are in good
agreement with those reported by Mydlar et al. [30] who performed an X-ray diffraction
study of PbSiO3 glass. The authors fitted the experimental radial distribution function
with the relevant atomic pairs. For the first Pb-Pb interactions a total of three Gaussian
distributions were identified at 3.6A, 4.15A and 4.8A, which correspond to the
contribution of one, two; and one lead neighbours, respectively. Thus, a total of four lead
neighbours at an interionic bond distance of 4 8A was reported for the experimental
model. In the present MD model for the two-body glass a lead ion is surrounded by 5.86
lead neighbours at a distance of 4.8A, whereas the three-body model shows 8.98 nearest
lead neighbours at the same distance. The high lead-lead coordination in the three-body
simulated model is due to the lead-rich regions as a result of the secondary network made
up of the modifier lead cations linked by NBO atoms [30,147]. The asymmetry present in
the Pb—Pb first neighbour distribution, may be attributed to a differentiation between intra-
chain lead-lead interactions as opposed to inter-chain lead-lead interactions. Similar
behavior has been previously observed in the zinc-zinc PDF calculated from the simulated
model of a zinc trisilicate glass [141].

The Pb-Si first coordination peak was found to be at a maximum at 3.45 A
(FWHM=1.02 A) in the two-body model and 3.70 A (FWHM=0.78 A) for the three-body
model. A small shoulder is present on both peaks at 3.30 A and 3.20 A, for the two- and
three-body glasses, respectively. An average coordination number of 4.65 was calculated
for the two-body glass and 3.21 for the three-body glass at a cutoff radius of 4.2 A Ata
cutoff distance of 4.2 A, the average coordination number for the three lead sites in the

alamosite crystal is equal to 5.0. The results from the two-body glass are in good
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agreement with the crystal, while those for the three-body glass differ significantly. The
difference between the three-body simulated model and the crystal may be attributed to
the lead-rich and silicon-rich regions in the glass. These distinct regions would reduce the
number of silicons surrounding the lead ion in the first Pb-Si coordination shell.

In order to investigate further the secondary lead network, a bond angle

distribution analysis was performed to determine the connectivity of the lead units. Figure

Percent Distribution

Pb-OCoardination

Figure 5.1.1.1.6. Histogram of the percent coordination distribution for the Pb-O ionic
pair in the first coordination shell (cutoff radius = 3.2A) for the two-body (dashed) and
three-body (gray solid) simulated lead silicate glass.
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The O-Pb-O bond angle distribution for the two-body simulated glass has three distinct
peak at 55°, 87° and 127°. The three-body model also shows three distinct peaks at 57°,
90° and a broader less intense distribution at 135°. The major distribution for both the
two- and three-body simulated glasses occurs at approximately 90° and can be explained
by a sixfold coordinated octahedral type structure and the four coordinated species, which
are probably PbO, pyramidal structures. Imaoka et al. [35] have postulated, using X-ray
diffraction, that at PbO concentrations between 50-66.6 mol%, only PbO, pyramidal units
are present in PbO-SiO, glass. The bond angle distribution found at 127° and 135°, for
the two- and three-body glasses, respectively, may be related to the five coordinated lead
species (Figure 5.1.1.1.6.). The seven coordinated Pb species may have the following
structures: a pentagonal bipyramid, a capped octahedron or a capped trigonal prism. All
three of the above mentioned geometries would have bond angles in the range of the O-
Pb-O and Pb-O-Pb distributions and it is therefore difficult to ascertain exactly which
geometry is present. The Pb-O-Pb bond angle distribution for the two- and three-body
simulated glasses show two peaks, one at 87° and 92° and the other at 121° and 160°, for
the two-and three-body models, respectively. The major distribution for both glasses
occurs at the smaller angles (87° and 92°) and the difference in the two structures could
be due to the large percentage of five membered ring structures found in the two-body
glass which may account for the peak seen at 121°. The Pb-O-Pb distribution found for
the three-body model is typical of edge-sharing in glasses. In order to examine if edge
sharing is present in the simulated glass, the Pb-O-Pb-O and Si-O-Pb-O linkages were
calculated. As stated previously in the discussion of the oxygen-oxygen atomic pair, the

shortened O-O bond at 2.40A, in the three-body model, is an indication of edge-sharing in
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the glass. The first peak maxima in the Pb-Si and Pb-Pb pair distribution functions are
comprised of several local maxima and thus the lead ion can occupy a variety of
environments in the glass. Similar results were observed by Rosenthal et al. [141] in a
molecular dynamics study of amorphous zinc silicate. The only indication of edge-sharing
in the two-body simulated glass is the shoulder at 87° in the Pb-O-Pb bond angle
distribution, however, no further evidence in the glass structure was found to support this
possibility.

The ability of an ion to behave as a network former depends upon the degree of
covalency of the bond, the polarizability and the field strength of the ion. In order to
quantify the strength of a bond, Dietzel [148] introduced the calculation of the field
strength of an ion. Lead has a field strength in the range of 0.34-1.03 which classifies lead
as having the ability to act as both a network modifier (< 0.35) and a network former (1 to
2). Therefore, the partial covalency of the Pb-O bond and the calculated field strength
value of 1.03 enable the lead ions to participate in the glass forming network at high lead-
oxide concentrations. This result in conjunction with those discussed previously is
conclusive evidence for the existence of the secondary lead network postulated using the
three-body potential model.

Structural features of the simulations of undoped PbO-SiO, glass were found to
be in excellent agreement with published experimental results. Nearest neighbour distances
and average coordination numbers are in good agreement with those obtained from X-ray
and neutron diffraction and EXAFS studies. The silicon coordination was found to be 4.0
and the tetrahedral angle was sharpened in the three-body simulated model compared to
the two-body simulated model. It is clear from the PDF and bond-angle distribution

functions that the three-body potential increased the local order around the silicon ions by
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the well defined tetrahedral units, the improvements to the Si-O-Si bond angle
distributions and the lowering of bond defects. In addition, the three-body potential model
showed the presence of two networks, which has also been observed experimentally[149].
It can therefore be concluded that the simulated models are a good representation of the
structure of PbO-SiO, glass and that the three-body potential model produces a marked

improvement over the two-body potential model.

5.1.2. A compositional study of undoped lead silicate glass

The structure of lead silicate glass has been studied extensively using various
experimental techniques [23,30,35] as well by molecular dynamics, however, the results
remain inconclusive and contradictory. This is due to the fact that these glasses are stable
over a wide glass forming range with PbO composition ranging up to 95 moi% [23]. The
silicon-oxygen three-dimensional network is broken up by the addition of most alkali or
alkaline metal cations, which act as network modifiers. Lead is a network modifier yet it
has been recognized for its glass forming capabilities, which are attributed to the high
polarizability of divalent lead. At PbO concentrations below 30 mol%, lead behaves as a
classical modifier. However, at higher concentrations, PbO is more of a network former

displaying PbO, and PbO, structural units. Yamada et al. [23] state that it is the

polarizability of Pb~ which causes an asymmetric coordination of oxygen atoms around
the lead atoms, leading to the chain structure observed in lead glasses in the absence of the
Si-O network. The presence of a secondary lead network has been observed
experimentally [149] as well as computationally [41,147] (and this study), however, none

of the experimental investigations proposed an unequivocal description of the lead-based
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unit. This is in contrast to the traditional network-formers such as silicon, phosphorous or
boron, where all experimental investigations present definite results about the first-
coordinating shell and the immediate connectivity of the network-former structural unit.

In order to obtain a better description on the effect of the lead ion in silicate
glasses, we have employed the three-body potential model, which has been very successful
in describing the structure of lead silicate glass (50mol% PbO), to simulate glasses with
low and high lead-oxide comtent. Two glasses with the following composition,
0.22Pb0-0.78Si0; (22/78) and 0.70Pb0-0.30Si0; (70/30) were simulated using the three-
body potential model described in Section 2.2.2. of this thesis. The results are compared
to the aforementioned 0.50PbO-0.50SiO, (50/50) glass as well as to experimental data.

The structural parameters for the simulated glasses were derived obtained from
the radial distribution functions (RDF), the pair and cumulative distribution functions of
the individual atomic pairs as well as the bond angle distribution functions. Table 5.1.2.1.
lists the interionic distances and average coordination numbers for the three simulated

glasses.
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Table 5.1.2.1.

Interionic distances and coordination numbers
for the 22/78, 50/50 and 70/30 glasses

22Pb0-78S10, 50PbO-508i02 70PbO-308Si0;

Atomic | First peak Average* | First peak Average* | First peak  Average*
Pair maxima(A) Coord. (N) | maxima(d) Coord. (N) | maxima(A) Coord. (N)

0-0 2.63 6.3(3.2) 2.65 6.15(3.2) 2.60 728(3.2)
Si-O 1.63 3.99(2.1) 1.62 4.00(2.1) 1.62 4.132.1)
Pb-O 2.40 3.2(3.2) 2.43 5.72(3.2) 242 6.83(3.2)
Si-Si 3.22 4.45(3.2) 3.18 4.03(3.5) 3.14 52(3.5)
Pb-Si 3.24 3.20 3.22 5.32(4.2)

3.84 0.83(4.2) 3.70 3.21(4.2) 3.81

Pb-Pb 3.42 3.5(4.8) 3.50 8.98(4.8) 3.20 14.0(4.8)

*Number in parentheses refers to the cutoff distance (in A) at which the average
coordination has been calculated.

The RDFs for the three glasses shown in Figure 5.1.2.1. are indicative of the
well defined short-range order and the lack of long range order characteristic of glasses.
The three curves show a similar distribution for the first peak, which is representative of
the Si-O interionic pair. It is with respect to the second peak that the structural difference
between the three glasses becomes apparent. The RDF curves for the 50/50 and 70/30
glasses are similar to one another, which suggests a similarity in the arrangement of the
lead ions [35]. The difference and similarities in all three glasses will be discussed further

by analyzing the individual atomic pair and cumulative distribution functions.
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Figure 5.1.2.1. Radial distribution functions of the 22/78 (dotted), 50/50(solid) and

70/30 (dashed) lead silicate glasses.
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The Si-O interionic distance (Figure 5.1.2.2.) was found to be 1.63 A, 1.62 A
and 1.62 A for the 22/78, 50/50 and 70/30 simulated lead silicate glasses, respectively.
The average coordination number, at a cutoff distance of 2.1 A, was found to be 3.99 for
the 22/78 glass, 4.00 for the 50/50 glass and 4.13 for the 70/30 glass. The PDFs all return
to a null value indicating a clear distinction between the first and second coordination
shell. The fact that the interionic distance and average coordination numbers do not vary
significantly from one another suggests that the individual tetrahedral environments are
independent of PbO concentration. Similar results were observed experimentally by
Yamada et al. [23]. The increase (minor) in coordination of Si in the 70/30 glass
represents an increase in odd-coordinated silicon species (16%) [35].

The well-defined short range order of the silicate network is further exemplified
by the bond angle distributions. The O-Si-O bond angle was found to be 110°, 109.7° and
103.6° for the 22/78, 50/50 and 70/30 simulated glasses, respectively. The 22/78 and
50/50 glasses have a narrow distribution with a FWHM of 5.5° and 6.0°, respectively,
while the 70/30 glass has a broader distribution with a FWHM of 18°. In contrast to the
other two glasses, the O-Si-O bond angle distribution in the 70/30 glass has a shoulder at
approximately 90°, which is consistent with the greater percentage of odd coordinated
silicons (usually 5 and/or 6 coordinated) present in the high lead-oxide glass. The Si-O-Si
bond angle distribution has a range from 120° to 180° in both the 22/78 and 50/50 with an
average angle of 159° and 154°, respectively. The 70/30 glass was found to have a
significantly smaller bond angle in the range of 60° to 180° with an average angle at 96°.
The smaller angle in the 70/30 glass is attributed to the significant increase in lead-rich

regions surrounding the silicate network, compared to that of the 50/50 glass.
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Figure 5.1.2.2. Pair distribution functions for the Si-O interionic pair of the 22/78
(dotted), 50/50(solid) and 70/30 (dashed) lead silicate glasses.
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The average Pb-O interionic distance was found to be 2.40 A, 2.43 A and 2.45
A for the 22/78, 50/50 and 70/30 glasses, respectively (see Table 5.1.2.1.). At a cutoff
radius of 3.2 A, the average number of oxygen neighbours to lead was found to be 3.2 for
the 22/78 glass, 5.72 for the 50/50 glass and 6.83 for the 70/30 glass. There are various
experimental studies [23,35,39] which report average Pb coordination numbers of 3-4 in
lead silicate glasses, independent of the PbO concentration. The models all fit the
experimental data assuming a first coordination shell identical to that found for a PbOs
tetragonal pyramidal arrangement (corresponds to a cutoff distance of about 2.5 A). The
average Pb-O interionic distance was found to be 2.43 A and thus such a short cutoff
imposes certain constraints on the lead environment. In agreement, Mydlar et al. [30]
report that the lead ion is coordinated by two closer atoms at 2.2 A and two more oxygens
at both 2.53 A and 2.8 A for the lead metasilicate glass (50/50). This distribution is
similar to that found in the alamosite (see Section 5.1.1. for a detailed discussion). For
the 22/78 the structural parameters are in good agreement with those reported by Yamada
et al. [23] using neutron diffraction techniques. Morikawa et al. [33] calculated an average
coordination of 4.5 for 2PbO-SiO; (66 mol% PbQ). However, they stated that their model
underestimated the coordination and the distribution is probably similar to that found in
the corresponding crystal, that is, within a coordination sphere of 3.0 A the Pb ions are
coordinated by 4 to 6 oxygen neighbours. The average coordination number in the 70/30
glass was found to be slightly higher (6.83) than the value reported by Morikawa et
al. [33]. This increase in coordination may be due to the fact that the glass is separated
into lead-rich and silicon-rich regions at concentrations greater than 50 mol% PbO. This
would result in the lead ions sharing oxygens within the same coordination sphere (3.2 A).

The modifier/former effect of PbO for the three lead silicate glasses in this study are in
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agreement with the results reported by Wang et al. [22], however a substantial
discrepancy was found with respect to the Pb-O coordinations. In an XPS study of lead
silicate glasses of different compositions, the authors report that below 40 mol%, PbO
plays the role of a glass modifier and gradually transforms towards a glass former as the
concentration of PbO increases. The authors also state that at low PbO concentration the
Pb-O interaction is completely ionic, however, as the concentration increases to the level
where PbO acts more as former, the PbO interaction becomes more covalent. This
increase in covalency at high lead-oxide concentrations is attributed to the high
polarizability of divalent lead. Based on the aforementioned results, the authors postulate
that an increase in PbO concentration should result in a decrease in the PbO coordination.
At this point, no explanation can be offered for this discrepancy since the present potential
model does not take into account “directly” the effect of polarizability.

Montenero et al. [39] have also reported the occurrence of the secondary
network structure stating that “the compositional changes produce a different distribution
of chains, but the short-range order within the chains is preserved”. This point can be
illustrated further by examining the Pb-Pb environments. The Pb-Pb interionic distance
was found to be 3.42 A for the 22/78 glass, 3.50 A for the 50/50 glass and 3.20 A for the
70/30 glass (see Table 5.1.2.1.). The values reported here are in good agreement with the
results obtained by Mydlar et al. [30] for the PbO-SiO; glass and the 2PbO-SiO; glass.
The trends in the interionic distances can be explained !;y examining the distribution of the
lead ions in the glass. In the 22/78 glass, the lead ions are behaving as traditional modifiers
and thus are randomly distributed throughout the glass structure. As the concentration
increases, the lead ions begin to form the secondary structure and at high Pb concentration

(70 mol% PbO) the Pb-Pb interionic distance is shortened due to spatial constraints. The
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average lead-lead coordination number, at a cutoff radius of 4.8 A, was found to be 3.5,
8.98 and 14.4 for the 22/78, 50/50 and 70/30 simulated glasses (see Table 5.1.2.1). The
22/78 simulated glass is in good agreement with experimental data for an alkaline modifier
in silicate glass [23]. Similar results were reported for calcium silicate glasses [150]. At
low lead-oxide concentration, the behavior of lead ions is similar to that of the calcium
jons in silicate glasses [150]. In the case of the high lead-oxide glasses, the lead-lead
coordination is high and can only be explained by the presence of the lead-rich regions.

In order to examine further the environment of the lead ions, a speciation of the
oxygen types surrounding individual lead ions with respect to the silicate network (Table

5.1.2.2a) and the lead network (Table 5.1.2.2b) was performed.

Table 5.1.2.2a.

Percent speciation of oxygen in the first Pb?" coordination shell
with respect to the silicate network

Moi% PbO ns;=0 ns=1 =2 ns>2
(NSA) (NBO) B0) (Anomalies)
22 0.8 84.8 144 0.0
50 15.5 81.8 2.7 0.0
70 294 65.8 438 0.0
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Table 5.1.2.2b.

Percent speciation of oxygen in the first Si*” coordination shell

with respect to the lead network
Mol% PbO npy=0 npy=1 Nppy=2 npy=3 np=4 npy>4
22 83.9 9.8 6.0 03 0.0 0.0
50 61.6 15.8 11.5 103 0.7 0.1
70 242 241 20.0 13.1 12.2 6.4

Table 5.1.2.2a. shows that approximately 30% of oxygens bonded to lead are free of
silicon neighbours in the 70/30 glass, whereas only 1% was calculated for the 22/78 glass.
As the concentration of PbO increases, the presence of the two networks becomes more
evident. This can be quantified by the number of NBOs (ns=1) present in each of the
glasses. For the 22 mol% PbO, lead is behaving as a classical modifier and accordingly
shows the highest percentage of NBO species. The number of NBOs decreases with
increasing Pb concentration due to the formation of the secondary lead network. This
effect is most evident in the 70/30 glass where the increase in the lead rich regions resuits
in an increase in the connectivity between the lead and silicate networks thus decreasing
the number of NBOs. The connectivity between the two networks can be quantified
further by examining the environment of the silicons. Table 5.1.2.2b. shows that 84% of
oxygens bonded to silicons were found to be free of lead neighbours in the 22/78 glass,
decreasing to 62% in the 50/50 glass and to 24% in the 70/30 glass. The significant
presence of npy=4 and npy >4 species in the 70/30 glass indicates that the lead rich regions
are interconnected with the silicon rich regions via bridging oxygens. The connectivity via

bridging oxygens can be further exemplified from the Pb-Si pair distribution functions.
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The Pb-Si PDF for the 22/78, 50/50 and 70/30 lead silicate glasses are shown in
Figure 5.1.2.3. The Pb-Si interionic distances were found to be 3.84 A with a shoulder

present at 3.24A for t:2 22/78 glass, 3.70A with a shoulder present at 3.22A for the 50/50

glass and 3.21A with a shoulder present at 3.81 A for the 70/30 glass.

40 ~
------ 2278
—50/50
- == 70/30
N
N
>
30 |- ¥
=
hg
3
i
vy i
- i
= it3
. :
-E 20 | N E
] I
8 ' B
7] %
) H
& I I
' 1 l'
1
10 - : :}: .
it M
=z
u‘:‘::'
- [} 3
00 A -
20 30 40 5.0 6.0 7.0 8.0 9.0 100
Distance (Angstroms)

Figure 5.1.2.3. Pair distribution functions for the Pb-Si interionic pair of the 22/78
(dotted), 50/50(solid) and 70/30 (dashed) lead silicate glasses.
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Both the 22/78 and 50/50 lead silicate glasses have similar PDFs with the maximum
shifted to shorter distances in the 50/50 glass due the presence of the secondary lead
network. In the 22/78 glass, the lead ions are behaving as traditional modifiers and are
distributed throughout the silicate network, as indicated from the larger Pb-Si interionic
distance. In the case of the 70/30 lead silicate glass, the Pb-Si PDF is the mirror image of
the other two undoped glasses (22/78 and 50/50) with a first peak maximum at a
significant smaller distance (3.22 A). This decrease in the Pb-Si interionic distance is due
to the interconnectivity of the two networks via the bridging oxygens, which has also been
observed experimentally [30,33]. Information on the geometrical arrangement of these
connecting lead and silicate units can be inferred by examining the bond angle
distributions.

In the 22/78 glass, the Pb-O-Pb bond angle distribution shows a major peak at
approximately 90° with a shoulder at 114° in good agreement with the observed three and
four coordinated structural units present at low lead concentrations. The Pb-O-Si bond
angle distribution is indicative of corner-sharing oxygens between the two networks with a
broad distribution maximum at 135°. The shoulder at approximately 100° is
representative of a small degree of edge-sharing units. The distributions of these two
angles are to be expected if the lead ion is acting as a network modifier. In the 50/50
glass, the predominance of edge-sharing oxygens is more apparent. The Pb-O-Pb bond
angle distribution shows a maximum at approximately 88° with a small shoulder at 157°.
The smaller angle at 88° represents the connectivity of the secondary lead network via

edge-sharing oxygens while the shoulder at 157° is characteristic of corner-sharing units.

The Pb-O-Si bond angle distribution is broad and is comprised of two local maxima (98°
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and 122°), in good agreement with the range of bond angles found for edge-sharing.
Similar results were observed by Garofalini [141] in a molecular dynamics study of
amorphous zinc silicate. In the 70/30 glass, lead is behaving predominately as a network
former and in accordance with the Random Network Theory, the secondary lead network
is comprised mainly of corner-sharing oxygens. The Pb-O-Pb bond angle distribution
shows a major peak at 80° and a shoulder at 157°. The small angle at 80° is atypical for
corner-sharing units, however, is to be expected due to the spatial constraints imposed by
the increase in the lead rich regions of the glass. In contrast, the connectivity between the
silicate and lead network occurs via edge-sharing oxygens as shown by the maximum at
97° in the Pb-O-Si bond angle distribution.

In conclusion, from the concentration study performed on lead silicate glass it
was found that at low PbO concentrations, the lead ion behaves as a traditional modifier
with the lead ions distributed throughout the glass and low lead-oxygen coordination.
These results were found to be in good agreement with X-ray diffraction studies. As the
concentration of lead increases to 50 mol% PbO, the lead ion behaves as both a modifier
and a former with the formation of the two distinct networks; the silicate network and the
secondary lead network. In the 70/30 glass, the presence of lead rich regions predominates
in the glass and the two networks are connected via edge-sharing oxygens. The lead ion is
behaving as a network former and an increase in PbO coordination is observed since the

lead ions share neighbouring oxygens.
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5.1.3.  Structure of Eu’"-doped lead silicate glass

Lead containing glasses are extensively used in numerous industrial and
technological applications. Because of their high index of refraction, optical applications
of such materials have been widespread for several centuries. Recently, high technology
applications such as nuclear scintillators and up-conversion laser devices demand a greater
understanding and control over various structurally related optical properties. The
following section will present a simulated structural model of lead silicate glass, PbO-SiO,,
containing an optically active species at a typical dopant concentration. The dopant
present in the simulated glass is the trivalent lanthanide ion europium, Eu™. A glass
composition of 48%Pb0-51%Si0,-1%Eu,0; was simulated using the three-body potential
model described in Section 2.2.2. of this thesis. Due to the low number of europium ions
present in the 2% Eu®*-doped lead silicate glass (20 Eu’" ions), 10 different configurations
at 300K were generated in order to ensure statistical reproducibility. The study of this
ternary composition was motivated by the recent observation of substantial room-
temperature up-conversion from infrared to visible radiation in Er*" doped and Er’"/Yb*
co-doped PbSiO; glasses [24].

The general structure of the glass was determined by calculating the radial
distribution functions (RDF), the pair (PDF) and cumulative (CDF) distribution functions
as well as the bond angle distributions. The RDF for the 2.0% Eu*"-doped lead silicate
glass shown in Figure 5.1.3.1. is indicative of the well defined short-range order and lack
of long range order characteristic of glasses. The average first coordination shell
parameters (peak positions, peak widths, average coordination number of nearest
neighbours at given distances) of the atomic pairs found in the 2.0% Eu’*-doped lead

silicate glass are listed in Table 5.1.3.1.
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Figure 5.1.3.1. Radial distribution function for 2.0% Eu*"-doped lead silicate glass.
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Due to the extensive structural information available in the Eu’"-doped lead
silicate glasses, analysis of the general structure of the glass will be divided into two

categories: the silicate backbone, the environments of the lead and europium cations.

Q) The silicate backbone

A detailed analysis of the silicate backbone was performed in Sections 5.1.1 and
5.1.2. of this thesis and therefore, in this section, only the interionic distances and average
coordination numbers will be discussed to ascertain whether the dopant has any effect.

The average Si-O interatomic distance was found to be 1.62 A with a full width
at half maximum (FWHM) of 0.07 A_ Extrapolation of the CDF curve at the cutoff radius,
2.1 A, indicated that each silicon ion is tetrahedrally coordinated by 4.00 oxygen ions. The
O-Si-O tetrahedral bond angle was found to be 109.7° with a FWHM of 0.06°, which
aé&d well with experimental findings ranging from 104 -115° and the theoretical
calculation of 109.4°. The average Si-O-Si bond angle for the simulated glass was 150°
with a FWHM of 14°. The fact that there were very few over or undercoordinated
silicons or oxygens present in the simulated glass further justifies the existence of the high
degree of local order in the glass.

The 0-0 and Si-Si distribution functions agreed well with experimental findings.
The average interionic distance for the oxygen-oxygen pair was found to be 2.65 A with a
FWHM of 0.28 A and the average number of oxygen neighbours was found to be 5.5
(Table 5.1.3.1.). The peaks in the silicon-silicon PDF were sharp with the first peak
returning a to null value indicating a well defined first coordination shell. The Si-Si

interionic distance was determined to be 3.12 A, having a FWHM of 0.11 A (Table
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5.1.3.1.). Furthermore, the average number of silicon neighbours was found tobe 4.1 at a
cutoff distance of 3.4 A

The present model for the three-body Eu**-doped lead silicate glass is in good
agreement with experimental data [23,30,33] and provides an accurate description of the
silicate backbone.

Table 5.1.3.1.

Nearest neighbour distances and coordination numbers for 48% PbO-51%810>-1%Eu;0s

Atomic pair First peak maxima Width of first peak Average
r(A) FWHM (A) Coordination (N)*

0-0 265 0.28 5.00 (2.9)

Si-0 1.62 0.07 4.00(2.1)

Pb-O 2.45 0.14 5.63 (3.2)

Eu-O 2.40 0.07 6.31(3.2)

Si-Si 3.19 0.11 4.09 (3.4)

Si-Pb 3.2 3.00 (4.2)
3.7 0.7

Si-Eu 3.2 0.2 1.80 (4.2)
38 03

Pb-Pb 3.6 12 8.00 (4.6)

Pb-Eu 3.5 0.8 8.30 (4.6)

* Number in parentheses refer to distance (in A) at which the average coordination
number has been calculated.

(ii) The environment of the lead and europium cations

The next step in analyzing the glass is to examine the average first coordination
shell parameters of the remaining atomic pairs found in the europium doped glass. These
parameters, peak positions, peak widths and the average number of nearest-neighbours at )

a given distance, are presented in Table 5.1.3.1.
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Figure’s 5.1.3.2.-5.1.3.4. show the PDFs (denoted by ‘a’) and the CDFs
(denoted by b’) for the lead atomic pairs Pb-O, Pb-Pb, and Pb-Si (solid lines) and the

europium atomic pairs, Eu-O, Pb-Eu and Eu-Si (dashed lines).
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Figure 5.1.3.2a. Pair distribution functions of the Pb-O (solid) and Eu-O (dashed)

interionic pairs for the 2.0% Eu*":PbO-SiO; simulated glass.
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The PDFs were the first indication that the europium ions are found in a similar
environment to the lead ions and therefore the local environment of the two cations will be
discussed concurrently. As reported in Table 5.1.3.1., the average Pb-O interionic
distance was found to be 2.43 A for the first coordination shell with a peak width
(FWHM) of 0.14 A. This result is in good agreement with experimental results obtained
by pulsed neutron scattering {23] and X-ray diffraction data [30,35] for lead metasilicate
glass. The PDF (Figure 5.1.3.2a.) does not return to a null value after the first maximum
indicating that there is no clear distinction between the first and second coordination sheil.

The curve, however, is relatively sharp and this can be attributed to the strong
polarizability of both the Pb” and the O  ions. Recall, that at high lead-oxide

concentrations, the Pb" ions partake in the glass forming network [25]. The average
coordination of lead, obtained by extrapolation of the CDF at a cutoff radius of 3.2 Ais
5.63. In comparison, the simulated lead silicate glass parameters agree well with the
average structural values calculated for the alamosite crystal [135].

The Fu-O interionic distance was found to be 2.40 A with a peak width
(FWHM) of 0.07 A (Table 5.1.3.1.). The PDF shows a sharp first peak and returns to a
null value indicating there is good separation between the first and second coordination
shell. The sharp and narrow first peak indicates that the europium-oxygen local
environment is quite ordered. This is further illustrated in the CDF (Figure 5.1.3.2b. -
dashed line) where at a cutoff radius of 3.2 A, a flat distribution is obtained and each
europium ion is surrounded by an average of 6.5 oxygen neighbours. No experimental
data on europium-doped lead silicate glass was found, however, six coordinated

lanthanides in amorphous oxides have been previously reported [66,72,73].
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Figure 5.1.3.2b. Cumulative distribution functions of the Pb-O (solid) and Eu-O (dashed)
interionic pairs for the 2.0% Eu’*:PbO-SiO, simulated glass.
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Robinson, Fournier and Bartram wrote a series of articles [66,72,73] studying Yb**-doped
phosphate, silicate and germanate glasses, EC’* in alkali silicate glasses [67,68] and Nd*"-
doped in barium rubidium silicate glass [151]. They postulated from low-temperature
absorption and emission spectra of the lanthanide ions that the principal rare-earth

environment in these glasses is a distorted six-fold polyhedron. An EXAFS and
photoluminescence study of Er3+-doped silica and sodium silicate glass by Marcus and

Polman [70] showed that in the case of the sodium silicate sample, the Er3+ ions were
surrounded by an average of 6.3 oxygens in the first coordination shell. Furthermore, in
two previous molecular dynamics simulations studies of Eu’’-doped sodium silicate
[45,57] and Eu**-doped lead metaphosphate [105] glasses, Cormier et al. [57] postulated
that the Eu** ions were coordinated by 6 and 7 oxygens at a cutoff radius of 3.2 A.

The Pb-Pb and Eu-Pb pair distribution functions are broad and asymmetric
(Figure 5.1.3.3a). The Pb-Pb interionic distance was found to be 3.6 A with a peak width
(FWHM) of 1.2 A with an average coordination number of 8.0 evaluated at a cutoff
distance of 4.6 A. The values reported here for the Pb-Pb pairs are in good agreement
with the results obtained by Mydlar et al. [30] from an X-ray study of PbSiO, glass. The
Eu-Pb interionic distance was found to be 3.5 A with a peak width (FWHM) of 0.8 A and

an average coordination number of 8.3 (cutoff radius of 4.6 A).
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The Pb-Si and Eu-Si PDFs and CDFs are shown in Figure’s 5.1.3.4a. and

5.1.3.4b., respectively.
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Figure 5.1.3.4a. Pair distribution functions of the Pb-Si (solid) and Eu-Si (dashed)
interionic pairs for the 2.0% Eu’":PbO-SiO, simulated glass.
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The Pb-Si first coordination peak shows a maximum at 3.81A with a shoulder at
3.4 A with an overall FWHM of 1.59 A and an average coordination number of 3.25 at a
cutoff radius of 42 A. The results for the lead-silicon atomic pair differ slightly from
those found in alamosite [135]. At a cutoff distance of 4.2 A, the average coordination
number for the three lead sites in the crystal is equal to 5.0. The difference between the
coordination values for the crystal and the simulated glass may be attributed to the lead
rich and silicon rich regions in the glass. These distinct regions would reduce the number
of silicons surrounding the lead ion in the Pb-Si first coordination shell. Similarly, the
PDF of the Eu-Si pair (Figure 5.1.3.4a.) shows a peak having a maximum at 3.90 A with a
FWHM of 0.75 A and a shoulder present at 3.2 A. The average number of silicons
surrounding the europium ion at a cutoff distance of 4.2 A was determined to be 1.80.
The low Eu-Si coordination is not unexpected since the europium ions are located in the
lead rich regions of the glass thus a lower number of silicons would be present in the first

europium-silicon coordination shell.
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Further quantification that the europium ions are located in the lead rich region
of the glass can be obtained by examining the Pb-Eu and Si-Eu pair distribution functions.
As expected, the Pb-Eu PDF shows a much more pronounced first peak than the Si-Eu
PDF indicating that the europium ions are present in the same environment as the lead
ions, that is, in the lead rich regions of the glass.

In order to examine further the environment of the europium ions, a speciation
of the oxygen types surrounding individual europium ions was calculated with respect to
the silicate network (Table 5.1.3.2a.) and the lead network (Table 5.1.3.2b.). The results
presented in Table 5.1.3.2a. and 5.1.3.2b. confirm that the europium ions are distributed
within the lead network. We observe from Table 5.1.3.2a. that 72.0% of the oxygens in
the first Eu®* coordination shell are not connected to silicon ions and do not partake in the
silicon backbone and are associated with the secondary lead network. Furthermore, it can

be seen from Table 5.1.3.2b. that approximately 97% (sum of values forn, =1to n, =

5) of the europium ions have at least one lead neighbour within a distance of 2.8 A.

Table 5.1.3.2a.

Percent speciation of oxygen in the first Eu®>" coordination shell
with respect to the silicate network

ng; =0 ng; = ng =2 ng>2
(free) (NBO) (BO) (anomalies)
72.0 28.0 0.0 7 0.0
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Table 5.1.3.2b.

Percent speciation of oxygen in the first Eu®" coordination shell
with respect to the lead network

=0 N, =1 n, =2 Ny, =3 Ny, =4 Ny, =3
2.3 16.7 16.7 16.2 31.8 15.9

Figure 5.1.3.6. shows the distribution (in percent) of coordination for the Pb*
and Eu® ions in the respective first coordination shells. From Figure 5.1.3.6., it can be
seen that the Pb?" ions have principally 5 and 6 nearest neighbour oxygens with a smaller

number of 4 and 7 coordinated oxygens, whereas the Eu®* ions are coordinated mainly by

6 and 7 nearest neighbour oxygens.
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Figure 5.1.3.6. Histogram of the percent coordination distribution for the Pb-O (gray) and
Eu-O (dashed) ionic pairs in the first coordination shell (cutoff radius = 3.2A)
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To further investigate the secondary lead network, a bond angle distribution
analysis was performed to determine the connectivity of the lead units. The O-Pb-O bond
angle distribution has three distinct peaks at 57°, 90° and a broader less intense
distribution at 135°. The major distribution occurs at approximately 90° and can be
explained by a sixfold coordinated octahedral type structure and the four coordinated
species, which are most probably PbO, pyramidal structures. Imaoka et al. [35] have
postulated, using X-ray diffraction, that at PbO concentrations between 50-66.6 mol%,
only PbOs; pyramidal units are present in PbO-SiO, glass. The bond angle distribution
found at 135° may be related to the five coordinated lead species (Figure 5.1.3.6.). The
seven coordinated structure could be either a pentagonal bipyramid, a capped octahedron
or a capped trigonal prism. All three of the above mentioned geometries would have bond
angles in the range of the O-Pb-O and Pb-O-Pb distributions and it is therefore difficult to
ascertain exactly which geometry is present. The Pb-O-Pb bond angle distribution has two
peaks, one at 92° and another at 160°. This distribution is typical of edge-sharing in
glasses. In order to examine if edge sharing is present in the simulated glass, the Pb-O-Pb-
O and Si-O-Pb-O linkages were calculated. As previously stated in the discussion of the
oXygen-oxygen atomic pair, the shortened O-O bond at 2.40 A is an indication of edge-
sharing in the glass. The first peak maxima in the Pb-Si (Figure 5.1.3.4a.) and Pb-Pb
(Figure 5.1.3.3a.) pair distribution functions are comprised of several local maxima and
thus the lead ion can occupy a variety of sites in the glass. Figure 5.1.3.7. shows the types
of edge-sharing which may be found in the simulated glass. Similar results were observed

in a molecular dynamics study of amorphous zinc silicate [141].
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The Eu-O CDF (Figure 5.1.3.2b), is in good agreement with experimental
data [66,70], and shows a very well defined first coordination shell composed of six or
seven oxygen ions with the six coordinated environments being slightly predominant. X-
ray and neutron diffraction data are the most direct experimental techniques to identify
coordination numbers as well as the radial structure around a REs‘(rare-eanh) ion. These
techniques, however, do not reveal any information on the structure of the first
coordination shell or the symmetry of the coordination polyhedra.

In order to visualize directly the structure of the first hydration shell of several

rare-earth ions (Ndh, Sms., and Yb3+), Kowall et al. [152,153] generated plots based on

the configurations obtained from the MD simulations. The first hydration shells of all the
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configurations were accumulated in such a way that the oxygens are superposed to a
maximum degree. The authors used a general-purpose program called LSQS from the
GROMOS package [152], which provides the rotation matrix to superimpose two
identical molecules of different configurations. @ This method was also employed by
Chaussedent et al. [60] to describe the environment of the first hydration shell for a dilute

EuCl; aqueous solution. Calculations of the O-Eu-O and Eu-O-Eu angular distribution

functions suggest that there are two different geometric arrangements. In order to isolate
the different geometries, a method similar to that used by Chaussedent et al. [60] was
employed. After the identification and superposition of the ions, obtained from the ten
different configurations, it was found that the geometrical arrangements for the six
coordinated species is a distorted octahedron whereas the seven coordinated species show
a distorted pentagonal bipyramid geometry. This is shown in Figure 5.1.3.8a and
5.1.3.8b., respectively. For both geometries, large distributions around the mean positions
were observed, in contrast to what has been observed for Eu’** in aqueous solutions,
whereby the water molecules are arranged around the Eu’* ion according to the vertices of
a square antiprism with only small variations [60]. Despite the larger fluctuations
observed in the glass structure, only two geometrical arrangements are observed

The simulation of 2% Eu’*‘-doped lead silicate glass reproduced well bulk
structural features such as interionic distances and average coordination numbers observed
in X-ray, neutron and EXAFS studies. The simulation showed the presence of two
networks, a silicate and lead network. The Eu®" ions were found primarily in the lead
network, with only a modest presence in the silicate network, showing that the two

cations (Pb*", Eu*") share similar environments.
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Figure 5.1.3.8a. Geometrical arrangement of a distorted octahedron for the Eu®” ion in
2.0% Eu®*:Pb0-Si0, simulated glass.
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Figure 5.1.3.8b. Geometrical arrangement of a pentagonal bipyramid for the Eu* ion in
2.0% Eu®":PbO-SiO; simulated glass.
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The average coordination number of Eu’" was found to be 6.5 with two major geometrical

arrangements contributing to a distorted octahedron and a distorted pentagonal bipyramid.

5.1.4. A comparison of several rare-earth dopants

The change in coordination number from 9 to 6 across the lanthanide series has
been reported using both experimental [154,155] and simulation techniques [152,153].
Since the spectroscopic properties of the dopant ions are dependent on the local
environment, a study on first coordination sphere of three different rare-earths was
performed. Using the three-body potential model described in Section 2.2.2 of this thesis,
Eu*"-, Er"- and Yb”-_doped lead silicate glasses were simulated for a glass composition of
0.48Pb0-0.51Si0; -0.01RE,0s for each of the dopant ions. In order to ensure statistical
reproducibility, 200 different Eu®* configurations were generated at 300K. The general
structure of the doped glasses was determined by calculating the pair (PDF) and
cumulative (CDF) distribution functions and no significant differences were found to exist
between the glasses.

Figure 5.1.4.1. shows the PDFs for the Eu-O (solid), Er-O (dotted) and Yb-O
(dashed) interionic pairs. The Eu-O interionic distance was found to be 2.41A, the Er-O
and Yb-O were found to be 2.26 A and 2.25A, respectively. The interionic distances are in
good agreement with EXAFS [70] data as well as with the corresponding crystalline
counterparts, Eu;0; [156], Er.Os [156] and Yb20; [156]. The PDFs have a sharp first
peak and return to a null value indicating that the RE-O local environment is quite
ordered. The differences in the interionic distances can be attributed to the differences in
the ionic radii of the rare-earths. Europium has an ionic radius of 109 pm, erbium has a

radius of 103 pm and ytterbium a radius of 100 pm.
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Figure 5.1.4.1. Pair distribution functions of the Eu-O (solid), Er-O (dotted) and Yb-O
(dashed) interionic pairs for the 2.0% RE*"-PbO-SiO; simulated glasses.
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Figure 5.1.4.2. Cumulative distribution functions of the Eu-O (solid), Er-O (dotted) and
Yb-O (dashed) interionic pairs for the 2.0% RE>"-PbO-SiO simulated glasses.
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This slight decrease in ionic radii is due to the fact that across the series of rare-earths, the
increasing nuclear charge causes a contraction in the radius of the RE’" ion, this is the well
known Lanthanide Contraction. Although the difference in the radii is very small, it is
sufficiently significant that a change in the interionic distance was observed.

The CDFs for the Eu-O (solid), Er-O (dotted) and Yb-O (dashed) interionic
pairs are shown in Figure 5.14.2. The Eu®” ion was found to have an average of 6.5
nearest oxygen neighbours at a cutoff radius of 3.2 A. At the same cutoff radius, Er’” was
found to have an average of 6.2 oxygens while Yb®" shows an average of 5.93 nearest
oxygen neighbours. As expected, the difference in the average coordination number is not
significant and they are in good agreement with those observed experimentally [66,72,73].
However, it is the individual coordination numbers that contribute to the average
coordination, which becomes important in defining the local environments for each of the
rare-earth ions. Figure 5.1.4.3. shows a histogram of the ccordination number
distributions for Eu®*, Er" and Yb*". As discussed previously in Section 5.1.3. of this
thesis, the principal coordination numbers for the europium ions are six and seven. In the
case of erbium, 35% of the Er’” ions are six coordinated, 25% are seven coordinated
structures and 20% are five coordinated. The ytterbium ions are predominately six
coordinated (Figure 5.1.4.3.). However, there is a higher percentage of five coordinated
Yb** ions, which explains the decrease in average coordination number.

From the simulations of the different rare-earth ions it was possible to isolate the
different local environments specific to each of the dopants. This becomes important since
it is the local environments that influence the spectroscopic properties of the dopant ion.
Another substantial result of this study was the verification of the sensitivity of the three-

body potential model. Although the differences in ionic radii, interionic distance and
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average coordination number between the three rare-earths was quite small, the three-
body potential model successfully reproduced these differences in the bulk structural

features, and the results were found to be in excellent agreement with experimental

data [66,70,72,73].
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Figure 5.1.4.3. Histogram of the percent coordination distribution for the Eu-O (black)
and Er-O (light gray) and Yb-O (white) ionic pairs in the first coordination shell (cutoff’
radius = 3.2A)
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5.1.5. A study of erbium-erbium clustering in Er*-doped lead silicate glass

The main reason for studying the clustering of erbium ions is to examine the
possibility of intercluster and cluster-to-cluster energy transfer. Within a cluster it is
speculated that the rate of energy transfer will be greater than that from cluster-to-cluster.
It is important to note, however, that the rate of energy transfer is also dictated by the
other ions surrounding Er’*. Stauffer [157] defines a cluster as an ensemble of
environments connected to one another by a chain of unbroken nearest-neighbour links
from one occupied environment to a neighbouring environment. In the present study, the
erbium ions would represent the environments and the oxygen ions the links between these
environments. A detailed description of the rare-earth environment in lead silicate glass
has been discussed in Sections 5.1.3. and 5.1.4. of this thesis.

In order to examine erbium-erbium clustering, Er3+-doped lead silicate glasses of

different Er** concentrations, 0.2%, 2.0%, 5.2%, 11.0% and 24.8% were simulated. The
Er-O pair distribution functions for the 2.0% Er3+-doped glass (solid line) and the 24.8%
Er3+-doped glass (dotted line) are shown in Figure 5.1.5.1a., and the respective CDFs in
Figure 5.1.5.1b. The PDF of the 24.8% Er3+-doped glass (Figure 5.1.5.1a.) is not as sharp

as that for the 2.0% Er -doped glass (Figure 5.1.5.1a.). The broadening at the base of
the peak for the 24.8% Er** doped glass is indicative of the erbium ions sharing additional
oxygens. Further evidence of this is provided by the CDFs (Figure 5.1.5.1b.). The CDF of
the 2.0% Er3+-doped glass is less steep than that for the 24.8% Ery-doped glass. The
pair and cumulative distributions for the remaining concentrations follow the same trends

as the 2.0% and 24.8% Er3+-doped glasses, and the broadening of the peak increases with

A . 3+ .
an increase in Er concentration.
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Figure 5.1.5.1a. Pair distribution functions of the Er-O ionic pair for the simulated 2.0%
Er**:PbO-Si0; glass (solid line) and the 24.8% Er’":PbO-SiO; glass (dashed line).
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Figure 5.1.5.1b. Cumulative distribution functions of the Er-O ionic pair for the
simulated 2.0% Er*:PbO-SiO, glass (solid line) and the 24.8% Er’":PbO-SiO. glass
(dashed line).
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The average number of oxygens surrounding the erbium ions for the first coordination
shell for each of the aforementioned concentrations is reported in Table 5.1.5.1. An
increase in the concentration of Er in the glass causes an increase in Er-O coordination.
This increase in coordination may be due to an increased amount of erbium-erbium
clustering, which effectively allows the erbium ions to share oxygens in the same

coordination sphere (3.24).

Table 5.1.5.1.

Average Er coordination number for the erbium-oxygen first coordination
shell (3.2 A) for X% doped PbO-SiO, simulated glass.

Er Concentration (X%) Average Coordination number
0.2 6.0
20 6.2
52 6.5
11.0 6.6
24.8 6.8

Figure 5.1.5.2. shows that erbium-erbium clustering in the glass is observed at
concentrations as low as 2.0% Er. As expected, clustering is more prevalent in the

24.8% Er -doped lead silicate glass (Figure 5.1.5.3.).

In order to quantify the effect of clustering, the erbium ions were investigated by
using Stauffer’s [157] approach to percolation theory. Percolation theory is a
mathematical approach describing a large number of physical phenomena ranging from

forest fires to liquids passing through a porous medium.
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Figure 5.1.5.2. Computer graphics of a slice (xy) of the simulated 2.0% Er’*:PbO-SiC,
glass. The black spheres represent the erbium ions, the red spheres represent the lead
ions, the small green spheres represent the silicon ion, and the blue-gray spheres represent

the oxygen ions.
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Figure 5.1.5.3. Computer graphics of a slice (xy) of the simulated 24.8% Er’":PbO-SiO,
glass. The black spheres represent the erbium ions, the red spheres represent the lead
ions, the small green spheres represent the silicon ion, and the blue-gray spheres represent

the oxygen ions.
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In this study, the general ideas underlying the percolation theory are employed
to study the erbium-erbium clusters in the three-body 2.0% Er’"-doped lead silicate glass,
based on a critical interparticle distance, RCL (r.). Due to the low number of erbium ions
present in the 2.0% Eu*"-doped lead silicate glass (20 Er’" ions), the number of overall
ions in the glass was doubled to 5040 ions (results in 40 Er’* ions) and S different
configurations at 300K were generated in order to ensure statistical reproducibility. The
RCL- distance sets the boundaries of a cluster and any interactions between the erbium ions
outside of this distance are neglected [158].

If 40 erbium ions are randomly placed in a box of 45.53 A of side, the average
distance between the ions is 13.31A. For an ion to be contained in a cluster implies that
two ions are close together, therefore, 13.31A represents the closest distance between two
ions in a perfect lattice. The MD configurations of the erbium ions at 300K, generated
using the three-body potential model, was used as an input file for a FORTRAN program
designed to examine clustering by isolating ion clusters within a given configuration. The
ions are contained in a box of unit length centered at the origin. The classification
algorithm begins by sorting N number of ions into clusters, whereby a critical cluster
radius (r.) defines the boundaries of a given cluster, and then the number of ions within
each cluster is counted. More precisely, a cluster C (relative to r.) of ions, from the total
number of N ions of a system in a given configuration is defined as follows and C is a
cluster if and only if the following conditions are met [158]:

(1) fieCandrj<r.thenjeC

(2) IfAis any set satisfying (1), and ifiisinboth 4 and C, then4A " C=C
(where  indicates set intersection)
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The distance between particles i and j is denoted by rij. Condition (2) guarantees that a
cluster, C, is not comprised of two or more disjoint groups that are separated by a
distance greater than r.[158]. The critical cluster radius, r., is varied in order to determine
the distance at which all of the erbium ions are contained in one main cluster. The number
of clusters was counted for distances from 1A to 15A in increments of 0.25 A. Fora
given erbium ion in a specific cluster, the program verifies all cluster members (ions)
against all other possible members before proceeding to other clusters. The average
number of erbium ions clustered for the five configurations at varying r. distances, is
illustrated in Table 5.1.5.1.
Table 5.1.5.1.

The average number of Er*" ions clustered at varying RCL (r.) distances

Distance (Angstroms) Number of Er’” ions clustered
40 3.0
5.0 9.6
6.0 14.2
70 20.8
8.0 290
9.0 322
10.0 34.0
11.0 37.2
12.0 38.0
13.0 394
14.0 39.8
15.0 40.0
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Figure 5.1.5.1. shows the average number of erbium ions clustered versus all calculated
RCL (r.) distances for the five Er*" configurations.
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Figure 5.1.5.1. Graphical representation of the average critical cluster distance, rc
(dashed line) for five different configurations of 40 Er*" ions.
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In terms of a statistical correlation, it was expected that the critical cluster
distance of the glasses would be close to that of the perfect lattice (13.31 A). As seen by
the plateau in Figure 5.1.5.1., the erbium ions are contained in one main cluster at
approximately 13.35 A, in excellent agreement with the perfect lattice which predicted a
distance of 13.31A.

The aforementioned results illustrated the occurrence of clustering, but not the
evolution of clustering with respect to distance. Is the glass made up of a large number of
small clusters or a small number of large clusters? In order to quantify this concept, the
distribution of clusters was examined over five distances with identical intervals. (see
Table 5.1.5.2.). The range of distances was chosen to be in the center of the cluster
region such that the number of clusters is sufficiently large enough to yield a random
cluster size distribution. This range was chosen due to the fact that distances that are too
close to 4.0 A would result in the erbium ions having clusters of one and distances
approaching the critical cluster distance (13.35 A) would consist of erbium ions in very
large cluster groups. The number of cluster types for a given cluster group at specific
cluster distances is shown in Table 5.1.5.2.

The results in Table 5.1.5.2. indicate that the glasses are made up of a large
number of small clusters and not a small number of large clusters. These results are in
good agreement with the CDF (Figure 5.1.5.1b.) and the pictorial representation of the

2.0% Er*-doped lead silicate glass (Figure 5.1.5.2.).
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Table 5.1.5.2.
Average* Er'"-Er’” cluster patterns for the 2.0% Er’"-doped lead silicate glasses

Distance Average distribution of cluster types
(Ad) 1 2 3 4 5 6 7 8 9 10
50 28 3 1 - - - - - - -
6.0 26 4 2 - - - - - - -
7.0 18 5 4 - - - - - - -
8.0 10 3 4 3 - - - - - -
9.0 6 1 1 5 - - - 1 - -
10.0 3 1 1. 5 - - - - - 1

* Represents the results of the five simulated configurations

Stauffer [157] states that the percolation processes can either be ‘random’ or
‘correlated’. For the purpose of this study, correlation refers to the positioning of a given
erbium ion due to the influence of its neighbours. At present it is not possible to ascertain
whether or not correlation between ions exists in the glasses. This effect is very important
since the primary reason for examining the clustering of erbium ions was to investigate the
possibility of intercluster and cluster-to-cluster energy transfer, which becomes significant
due to the fact that the rate of energy transfer is speculated to greater within a cluster than
from cluster-to-cluster. In order to quantify these speculations, further studies such as

examining the spatial structure of the cluster distributions, would be required.

The concentration study of Er3+-doped lead silicate glass showed that erbium-
erbium clustering was observed at concentrations as low as 2.0% Er’". Moreover, it was

found that an increase in the concentration of E?* in the glass causes an increase in Er-O
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coordination, which may be due to the increased amount of erbium-erbium clustering
observed at the higher Er’" concentrations. Employing Stauffer’s [157] approach to
percolation theory the average critical cluster distance, for the 2.0% Er*‘-doped lead
silicate glass, was determined to be 13.35 A and it was found that the glass consists of a

large number of smaller erbium-erbium clusters and not a small number of large clusters.
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52 SPECTROSCOPY OF THE SIMULATED AND EXPERIMENTAL

RARE-EARTH DOPED LEAD SILICATE GLASSES

In this section of the thesis, the correlations between the local rare-earth
environment and the calculated emission spectra of Eu’" and Er'” doped in lead silicate
glass are examined. The emission spectra were generated using a point-charge crystal-
field model that includes J-mixing, which was originally developed for doped crystalline
materials [109]. This method was used previously by Cormier et al. [57,45] to generate
the absorption and emission spectra of Eu®:Na,0-2Si0, glass and with slight
modification, by Chaussedent et al. [61,62] to generate the emission spectrum of Eu®’ in
aqueous solution.

In summary, the general method can be described as follows. From the
configurations generated by the MD simulations, the crystal-field parameters are generated
since, by knowing the position and charge of each ion in the glass, the electrostatic
potential at the rare-earth site can be calculated. The crystal-field parameters are then used
to calculate the energy splitting of each J-manifold and the transition probabilities. Lastly,
the simulated emission spectra are obtained and compared with the corresponding
experimental spectra.

The crystal-field model used in this thesis is same as that used by Cormier et al.
[57] but with several important modifications, as suggested by the work of Chaussedent et
al. [61,62]. The computational model, as well as the necessary assumptions made, is

outlined in the following section.
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5.2.1.  The computational model
5.2.1.1. Point-charge crystal-field model

The three-body potential model uses the full ion charge and introduces
“covalency” in terms of bond directionality for the silicon-oxygen and lead-oxygen ion
pairs, interactions with the rare-earth ions were all electrostatic (ionic).

Contrary to the three-body potential model, the covalent interactions between
the f electrons of the RE* ion and host lattice were introduced in the crystal field
calculation by considering the effective charges of the ions instead of the formal charges.
Karayianis and Morrison [159] found that the introduction of partial charges had a
significant effect on the fitting of experimentally obtained energy levels. They stated that
the inclusion of partial charges in the crystal-field calculation reduces the magnitude of the
electrostatic interaction between ions and leads to a simulation of the effects of covalency.
It is important to note, however, that this does not involve the introduction of an actual
covalency term into the crystal-field calculation [45]. The effective charges, employed in

this thesis, were calculated using the following equation:

€’q;q
Vi (Ruay)=——2 52.1.11.
Ry
where,
dy BMH
_— =0 52.1.1.2.
R=Rpn
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The simulation of the Eu** and Er’~ emission spectra was performed with the following
effective charges: (i) oxygen -0.8788, (ii) silicon=1.9775, (iii) lead=0.6553 and (iv)

europium and erbium = 1.0717.

5.2.12.  Point symmetry of the RE*" ion

The disordered nature of glasses imposes that the lowest possible symmetry
should be employed, that is, the point symmetry of the rare-earth ion sites should be
regarded as C,. Calculations performed using C; symmetry are not restricted by the
selection rules and as a result, most researchers found that simple point-charge crystal-
field calculations became too time consuming.

Cormier et al. [57] successfully generated the absorption and emission spectra of
Eu’" in sodium disilicate glass using a C,, point group symmetry. Their reasons for
choosing a C, symmetry were the same as those initially proposed by Brecher and
Riseberg [49,50]. First, C,, symmetry is the highest symmetry for which the full splitting
of the F; and F; levels is accounted for (see Table 3.3.2.). In other words, although the
choice of a higher symmetry would reduce the calculation of contributing parameters, it
does not permit a complete calculation of all participating Stark sub-levels. Second, Cav
symmetry is a subgroup of almost all of the higher point symmetry, thus allowing for the
application of the descending symmetries technique [139,140]. Third, it was the lowest
symmetry for which simple crystal-field calculations could be performed without taxing
the workstations.

Although a considerable amount of information can still be obtained, it must be
noted that using a C,, point group symmetry is an approximation. As a result of this

approximation, there are several By, parameters with odd q that are considered to be zero
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and are thus neglected. In reality, however, these parameters are not zero and may
contribute significantly in the calculation of the energy levels. This effect is most notable
in the simulation of the *Dy—'F; transition in the Eu*"-doped sodium disilicate glass by
Cormier et al. [57]. Although the overall intensity of the simulated transition was
acceptable, the authors were unable to reproduce the observed intensity distribution of the
five Stark components of this transition.

In the simulation of the emission spectrum of Eu®" in aqueous solution,
Chaussedent et al. [61,62] used a C; point group symmetry, which involved the calculation
of twenty-seven By, and thirty-six 4y, parameters. The simulated spectrum was in better
agreement with the experimental spectrum, but the most important improvement was in
the simulation of the *Dy—»F; transition. In C, symmetry, the selection rules do not play
an important role, and the mixing of the states becomes more important with the effect
that the calculation of the intensities takes into account all of the radiative transitions
possible.

Due to the marked improvement in the simulated emission spectrum of Eu*>" by
Chaussedent et al. [61,62], a C, point group symmetry was also employed in this thesis for

the generation of the emission spectra of the Eu**- and Er** -doped lead silicate glasses.

5.2.1.3. Calculation of the crystal-field parameters

The fact that the By, parameters for values of k > 2 are completely convergent
would indicate that the crystal-field calculations could be limited to ion-ion interactions
within the first coordination sphere. However, there are two important parameters, Aq

and B4, which do not converge at the first coordination sphere distances [111].
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In order to rectify this problem, Cormier et al. [57] included all the ions in their
simulated ensemble since they found that B, parameters converged to a given value only
after 12 A. This approach proved to be effective since the total number of ions in each
configuration was 600, which could be contained within the limits of the distance cutoff.
However, they did not make any adjustments to the A4 parameters.

Chaussedent [62] introduced an correction function to take into account the error
incurred from the summation over all ions within the boundaries of the simulation box.
Their method involved a truncation of the electrostatic interaction potential after a certain
distance, r.. The electrostatic interaction potential was corrected by multiplying by a
function, Ar) which is equal to zero at distances r > r., such that value of r. was chosen to
be less than half the MD box length. The function, f{r), therefore, modified the potential
function for all interactions within the range of r=0tor=r..

In order to avoid complications due to long range interactions, the correction
function must be taken into account for the calculation of the Ay, parameters where k = 1

and 2 such that, the dipolar component of the crystal-field parameter is related to A,q as

follows:
E,=—2/eIm(4;) 52.13.1.
Ex=1/e 4y
and,
R;
E=-e3.q,—, whereE ;j=-Vy; 52.13.2
i ' Rj
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The correction factor f{r) is introduced into the electrostatic potential as follows:

f(r)

Vi=eq.——— 52133
J 7 Rj
such that,
E= Zeqf%S(R j) 52134
J J
where,
s(r)=r(r)- ri‘far(r—) 52.135.

Similarly to A, the second-order B,, parameters were also calculated by

including the tensoral elements of the quadrupole parameters with the correction function

as follows:
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2
e
Re(B,1)= ___p;
Im(B,,)= —e—pl 52.136.

/]
s (M) 1) 52107
J J J

where, 5qp is the Kronecker delta and £’= d*/dr’f (r).

Chaussedent [62] found that in using equation 5.2.1.3.6. to calculate the By
parameters, all the second-order terms converged. Moreover, by forcing the long-range
electrostatic interactions to approach zero at r = r, the long range screening effect due to
the charges is taken into account.

The correction function used in the calculations can be expressed by the following

Y (r)
S(r)= 1-2(;:) +(,._c) rere 523.18.
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Differentiating equation 5.2.3.1.5., the correction function is given as:

2 4
LAY LA I T L I
=1 3, \r.) 3\ s Fes 523.19.

0 rp. J

The intensity of an electric dipole allowed transition, such as the *Do—'F, transition in
Eu*", is dependent on the Ay, parameters, particularly the 4, The problems with the
intensities of the individual Stark component for the *D—F; transition in the simulated
model by Cormier et al. [57] could also be due to the lack of a correction term for the 4,4
parameters. Chaussedent [62] shows a better agreement with the experimental spectrum
for the same transition. Therefore, the crystal-field model in this thesis employed the

aforementioned correction factor in calculating the 4,4 and B;, parameters.

5.2.2. Thesimulated and experimental emission spectra of Eu®"

5.2.2.1. The emission spectrum

Figure 5.2.2.1.1. shows the experimental (solid line) and simulated (dashed line) emission
spectrum of the *De—>F; (J = 0,4) transitions for the 2.0% Eu*"-doped lead silicate glass.
The room temperature experimental emission spectrum was obtained by exciting at
514.5 nm, that is, directly into the *D,«Fo absorption band. Excitation at 514.5 nm
ensures that the full ensemble of Eu’* ions will be excited [45]. The simulated emission
spectrum is calculated from 10 different configurations at 300K, representing a total of

200 Eu®* ions.
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Figure 5.2.2.1.1. Comparison between the room temperature *Dy—>'F; (J=0,4) emission

spectra of experimental and simulated Eu’*-doped lead silicate glass.
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A good agreement exists with respect to the overall positions and energy level
splittings between the simulated and experimental spectra. In particular, the "Do—F,, 'F;
and F; transitions are qualitatively in very good agreement with the experimental
spectrum. The most noticeable improvement in the simulated spectrum occurs for the
*Do—F; transition. Recall, that in the simulations by Cormier et al. [57] the individual
intensities of the Stark components were in poor agreement with the experimental spectra.
Although there are still some slight differences between the simulated and experimental
spectra in the present model, it is not unexpected since it is more difficult to simulate
electric dipole transitions. Both Cormier et al. [57] and Chaussedent [62] attributed the
differences between the experimental and simulated spectra to be largely due to the fact
that the simulations are of a “static” spectrum, where the amorphous environment only
provides a static average electrostatic field. Dynamical processes, such as vibronic
coupling or energy transfer, which effect the laboratory glass, are absent in the simulated
spectrum. Kuroda et al. [162,163] stated that the presence of dynamic coupling and in
particular the inclusion of the polarizability is essential in the proper calculation of the
electric dipole intensity distribution of transitions which exhibit quadrupole-dipole
coupling mechanisms, such as the *Dy— F; transition.

The same effect is seen with respect to the other electric dipole transition,
*Dy—>'Fs. The position of this transition (simulated spectrum) is in good agreement with
the experimental spectrum, but the intensities are slightly different. The simulation,
however, was successful in reproducing the asymmetry found in this transition. This is
another improvement to the model by Cormier et al. [57], which did not simulate the

asymmetry present in the electric dipole transition. Moreover, introduction of the
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correction term for the A, parameters has resulted in a considerable improvement to both
of the electric dipole transitions, namely, the *Do—>'F2, 'F, transitions in the simulated
Eu’"-doped lead silicate glass.

In general, the °Do—F, transition is very sensitive to the local structure of the
rare-earth ion. The removal of the degeneracy of the levels in this transition is due entirely
to the B,, parameters. Thus, the corrections made to the B, parameters were successful,
since there is a good agreement between the simulated and experimental spectra.

In summary, the assumptions made in the crystal-field model resulted in a

simulated emission spectrum, which is in good agreement with the experimental spectrum.

5.2.2.2. Spectra-structure relationships

One of the primary goals of optical spectroscopists is to be able to infer
structural information from experimentally obtained spectra, while computational chemists
continually search for validation of their structural models. Coupling the strengths of both
fields of research, we have refined a tool that could shed a new light on the role of dopants
in optical materials.

The experimental emission spectrum represents the average contribution of all
the local environments of the rare-earth ion. In the Eu’"-doped lead silicate glass, the
europium ions were found to have an average coordination of 6.5 nearest neighbour
oxygens, with the major geometrical contributions being a distorted six-coordinated
octahedron and a distorted seven coordinated pentagonal bipyramid (see section 5.1.3.).
Figure 5.2.2.2.1. shows the simulated emission spectrum for Eu®* as well as the simulated
emission spectrum for the pure six-coordinated Eu®' ions (inset-top) and the simulated

emission spectrum for the pure seven-coordinated Eu®' ions (inset-bottom).
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Figure 5.2.2.2.1. Simulated emission spectra for Eu**-doped lead silicate glass. Inset

shows the simulated spectrum of six-coordinated Eu*>" (top) and the simulated spectrum of
seven-coordinated Eu®* (bottom).
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The simulated spectra of the six and seven coordinated Eu’” ions show a major
difference in the *Dy—'F; transition. This transition shows more spectral features for the
seven coordinated Eu®* jons. We postulate that for the seven coordinated species the
crystal-field is stronger, thus splitting the J levels to a greater extent.

Comparison of the simulated and experimental emission spectra in the previous
section (5.2.2.1.) indicated that the MD simulation is an accurate description of the E .
doped lead silicate glass. The most important feature of Figure 5.2.2.2.1. is that we are
able, with confidence, to simulate the emission spectra of a rare-earth ion with respect to

the distinct structure of the local environments.

5.2.3. The simulated and experimental emission spectra of Er*

Figure 5.2.3.1. shows the experimental (solid) and simulated (dashed) emission
spectra for the 2Hy,—*I1s and the *S;,—*L1sy; transitions for the Er'*-doped lead silicate
glass. The room temperature experimental emission spectrum was excited at 488 nm.
The simulated emission spectrum represents 10 different configurations obtained from the
MD simulation at 300K, which represents 200 Er’* environments.

Overall, a fair agreement has been obtained between the experimental and
simulated emission spectra for EC". In the case of the *Hy12—*Iise transition (see Figure
5.2.3.1)), the position and energy splittings of the peak is quite good but the intensity is
too high. For the *S3»,—>*I,s, transition, the intensity and overall position of the peak are
quite good, but the energy splitting is not accurate. Due to the increased number of energy
levels in the Er** ion, the emission spectrum is much more difficult to simulate than that of

Eu®. However, there are additional factors that contribute to the complexity of the Er’*
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spectrum. Experimentally, non-radiative processes such as multiphonon relaxation or
energy transfer are operative from the Hyy,; and “Ss;, energy levels [24]. As previously
mentioned, the simulated spectrum is a “static” spectrum and any dynamical processes
which effect the experimental spectrum will be absent from the simulated spectrum. In
order to obtain a better representation of the Er*" spectrum, the dynamics of the system
must be incorporated into the calculation.

Figure 5.2.3.2. shows the experimental (solid) and simulated (dashed) emission
spectra for the *Ijsp—>°Tys> transition (laser transition) for the Er'*-doped lead silicate
glass. The room temperature experimental emission spectrum was excited at 488 nm and
was autophased on the *“Iis, transition in order to maximize the 1.5um band. The
simulated emission spectrum is a contribution of 10 different configurations obtained from
the MD simulation at 300K, representing 200 Er’** environments.

The simulated model fails to accurately reproduce the *I;3o—*Iis, transition. As shown in
Figure 5.2.3.2., the overall intensity of the “I;;>—>*I1s transition is adequate, however, we
were unable to reproduce the intensity distribution of the Stark components. In an
upconversion study of Er**-doped lead silicate glass, Capobianco et al. [24] propose an
upconversion mechanism due to the sequential absorption of photons from the metastable
*Ii32 state to explain their experimental results. Therefore, due to the lack of a dynamical
contribution, the present simulated model is unable to represent the occurrence of such

processes as upconversion.
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Figure 5.2.3.1. Comparison between the room temperature *H;12—>'I1s and *S3,—*Iis»
emission spectra of experimental and simulated Er**-doped lead silicate glass.
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Figure 5.2.3.2. Comparison between the room temperature *I;32—*I1s» emission spectra
of experimental and simulated Er**-doped lead silicate glass.
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In order to resolve such discrepancies in the Er transitions, a more
sophisticated crystal-field model is required to account for the dynamical process present
in the glass. Although still in the developmental phase, the model proposed to examine
clustering and energy transfer between erbium ions (see section 5.1.5.) should provide the
necessary information on the dynamical processes occurring within the 2.0% Er**-doped

lead silicate glass.
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CHAPTER6
6.0 THE WRAP UP: CONCLUSIONS AND FUTURE WORK
6.1 CONCLUSIONS

Optical spectroscopic methods have been commonly employed to investigate the
local structure of rare-earth ions doped in inorganic materials in an attempt to better
understand the influence of the matrix on the luminescence of the rare-earth ions.
However, these methods only provide average structural information and a more detailed
description of the local environment of the rare-earth ions is necessary. The use of
computational techniques, such as molecular dynamics, provides information at the
microscopic level, and has been used extensively in recent years to investigate the local
structure of doped inorganic glasses. Moreover, coupled with a point-charge crystal-field
model, the MD technique has proved to be a very powerful tool in the simulation of the
optical spectra of rare-earth ions doped in inorganic glasses.

In this thesis, we have focused our attention on developing a more realistic
potential model to better describe the environment surrounding the rare-earth ion. The
configurations generated from the MD simulations were used in a point-charge crystal-
field model, as described by C; symmetry, to generate the emission spectra of the rare-
earth ions. By refining both the aforementioned methods, we have developed a model that
can isolate the individual geometrical RE** environments and calculate the individual
emission spectra corresponding to each of the different geometrical arrangements. This in
turn has allowed us to obtain a more complete description of the local structure of the

RE*" ion with respect to the overall emission spectrum.
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Molecular dynamics techniques were employed to simulate undoped and rare-
earth doped lead silicate glasses. The importance of simulating lead silicate glasses stems
from the fact that high concentrations of PbO in the random network can drastically
influence the spectroscopic behavior of the rare-earth ion, either by forcing the rare-earth
ion into an uncommon coordination geometry, and/or by affecting its transition
probabilities [24]. Moreover, in recent years, high technology applications such as nuclear
scintillators and upconversion laser devices have demanded a greater understanding and
control over these and other structurally related optical properties.

The first goal of this thesis was to examine the structure of undoped lead silicate
glass using both a two-body and a three-body potential model. The two-body model used
an electrostatic Born-Mayer Huggins (BMH) potential, while the three-body model was
comprised of a modified two-body BMH potential and an additional three-body bonding
term, to account for the partial covaleécy present in the Si-O and Pb-O ionic pairs.
Structural features of the simulations of undoped PbO-SiO; glass were found to be in
excellent agreement with published experimental results. Nearest neighbour distances and
average coordination numbers were in good agreement with those obtained from X-ray
and neutron diffraction and EXAFS studies. The primary results from the study can be
summarized as follows:

@) The average silicon coordination was found to be 4.0 in both the two-

and three-body simulated glasses.

(i) The tetrahedral angle at ~110° was sharper using the three-body model

in comparison to the two-body simulated model.

(iii) From the pair and bond-angle distribution functions, it is evident that

the three-body potential increased the local order around the silicon
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@iv)

ions. This can be seen by the well-defined tetrahedral units, the
improvements to the Si-O-Si bond angle distributions and the lowering
of bond defects.

In the three-body potential model the lead behaved as network formers
which can been seen by the presence of the two distinct networks, a
silicon rich region and a lead rich region; an effect which has also been
observed experimentally. In contrast, in the two-body potential model

the lead ions acted as typical network modifiers.

It can therefore be concluded that the simulated models are a good representation of the

structure of undoped PbO-SiO, glass and that the three-body potential model produced a

marked improvement over the two-body potential model.

In order to obtain a better description of the effect of the lead ion in silicate

glasses, the subsequent step in our analysis of the undoped lead silicate glass was to

simulate glasses with low and high lead-oxide content. The three-body potential model

was used since it was very successful in describing the structure of lead silicate glass

(50mol% PbO). The following observations were made concerning the role of the lead ion

at different PbO concentrations in lead silicate glass:

@

(i)

It was found that at low PbO concentrations (22 mol% PbO), the lead
ion behaved as a traditional modifier, with the lead ions distributed
throughout the glass and low lead-oxygen coordination.

At 50 mol% PbO, the lead ion was found to behave as both a modifier
and a former and the glass displayed two distinct networks; the silicate

network and the secondary lead network.
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(i)

In the high lead glass (70 mol% PbO), the lead ion behaved as a
network former and an increase in PbO coordination was observed due
to the lead ions sharing neighbouring oxygens. The presence of lead
rich regions predominated in the glass-and the two networks (silicon

and lead) were connected via edge-sharing oxygens.

The structural features of the three simulated glasses were found to be in good agreement

with experimental results.

Once a good description of the undoped glass was obtained, we proceeded to

examine the local environment of the rare-earth ions in lead silicate glass. A 2.0% Eu’'-

doped lead silicate glass was simulated using the three-body potential. The simulation of

Eu’®*-doped glass reproduced well bulk structural features such as interionic distances and

average coordination numbers which were in good agreement with X-ray, neutron and

EXAFS results. Moreover, as reported for the undoped glasses, the Eu®"-doped glass also

showed the presence of the two networks, the silicate network and the lead network.

The results of the simulation are summarized as follows:

®

(i)
(iii)

The Eu’* ions were found primarily in the lead network, with only a
modest presence in thé silicate network, showing that the two cations
(Pb*, Eu®") share similar environments.
The average coordination number of Eu®* was found to be 6.5
Using a general-purpose program to superimpose the identical
molecules of different configurations, it was found that two main
geometrical arrangements exist for the Eu®’ ion: a six-coordinated
distorted octahedral and a seven-coordinated distorted pentagonal
bipyramid.
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Since the spectroscopic properties of the dopant ions are dependent on the local
environment, we performed an in depth investigation on first coordination sphere of three
different rare-earth ions. Using the three-body potential model, Eu**-, Er’"- and Yb*'-
doped lead silicate glasses were simulated. The conclusions are:

) The average coordination of the rare-earth ions was found to be 6.5

for Eu™, 6.2 for E**, and 5.93 for Yb*".

(ii) From the simulations of the different rare-earth ions, the individual
local environments specific to each of the dopants were isolated which
is important due to the influence of the local environments on the
spectroscopic properties of the dopant ions.

(1ii) Tlustrated the sensitivity of the three-body potential model to simulate
small differences found in the rare-earth ions.

Although the differences in ionic radii, interionic distance and average coordination
number between the three rare-earths was quite small, the three-body potential model
successfully reproduced these differences in the bulk structural features, and the results
were found to be in excellent agreement with experimental data.

We decided to perform a concentration study on the Er**-doped lead silicate
glass in order to study the clustering of erbium ions, and to examine the possibility of
intercluster and cluster-to-cluster energy transfer. This study was motivated by the recent
observation of substantial room-temperature up-conversion from infrared to visible
radiation in Er** doped and Er**/Yb*" co-doped PbSiO; glasses [24]. In order to examine
erbium-erbium clustering, glasses of the following Er** concentrations, 0.2%, 2.0%, 5.2%,
11.0% and 24.8% were simulated. In order to quantify the effect of clustering, the erbium

ions were investigated using Stauffer’s [157] approach to percolation theory.
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The following can be concluded from our study:

@) Erbium-erbium clustering was observed at concentrations as low as
20%Er”.
(ii) An increase in the concentration of Er’" in the glass caused an increase

in Er-O coordination. This effect is due to an increased amount of
erbium-erbium clustering, which resulted in the erbium ions sharing
oxygens within the same coordination sphere (3.2A).
(iii) Employing Stauffer’s [157] approach to percolation theory the average
critical cluster distance, for the 2.0% Er’-doped lead silicate glass,
was determined to be 13.35 A

G(v) The 2.0% Er**-doped lead silicate glass was found to consist of a large
number of smaller erbium-erbium clusters and not a small number of
large clusters.

A successful validation of the simulated structural model of the PbO-SiO:RE*
glass was performed through a comparison between the room-temperature emission
spectra of the experimental glass and the calculated emission spectra of the simulated
glass. The simulated spectra were obtained using a point-charge crystal-field model, with
a C, symmetry for the RE*" environment. The splitting of the J manifolds, and the
corresponding transition probabilities of the simulated RE*" jons were also calculated.

The simulation of the *Do—>'F; (J=0-4) transitions in the Eu’" ion spectra were
found to be in good agreement with the experimental emission spectrum. The most
noticeable improvement introduced using our model was the simulation of the *Do—'F2

transition. Prior simulations by other researchers, resulted in a poor agreement with the
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experimental spectra for the SDo—'F, transition. We attribute this improvement to the
addition of a correction factor, which was used to calculate the 4, and B, parameters, in
our crystal-field model.

The most important conclusion in our simulations of the Eu’" emission spectrum is
that we were able, with confidence, to separate and simulate the emission spectra of a
rare-earth ion based on the specific geometrical arrangements of the local environments.

Simulations of *Hyyz—>*Tis» and the *S;,—*T1s, transitions in the Er’* ion were
found to be in moderate agreement with the corresponding room temperature
experimental spectrum. Similarly, simulation of the ‘Iis»—'Tis transition in Er'" was
found to be in poor agreement with the experimental room temperature emission
spectrum. We attribute these discrepancies to the fact that there are many dynamical
processes, such as upconversion and energy transfer, which are occurring in the Er'-
doped lead silicate glass that influence the experimental spectrum. We were unable to
simulate these processes due to the constraints of our present model. As a result, further

work and a more sophisticated model is required.

6.2. FUTURE WORK

In this thesis, an in depth investigation on the structure and optical properties of
rare-earth ions doped in lead silicate glasses was performed using computer simulation
techniques. The goal was to provide a detailed structural analysis of the local environment
of the rare-earth ion using a three-body potential model and to calculate the corresponding
emission spectrum. Any future work, would involve the improvement of both the

methods used: the first is with respect to the potential function used in the molecular
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dynamics simulation and the second is in the point-charge crystal-field method used to

generate the spectra.

@

(i)

(iii)

(i)

Specifically, the following points should be considered in greater detail:
To improve the computational procedure, further parameterization of the
potential parameters is required. One of the primary structural characteristics in
lead silicate glass is the polarizability of the lead ions. The present three-body
potential model, used in this thesis, takes into account the partial covalency of
the lead ions but does account for the polarizability. There are two methods that
can be employed to include polarizability in a potential model. The first would be
to introduce a polarizability term directly into the potential function. This has
been done very successfully in simulations of water [164,165], but does result in
more intense computational calculations. However, with the advent of
technology, faster computers are becoming more and more available, and
computing power is not as large an obstacle as it was in the past. The second
option would be to include a floating charge for the lead ion, which would
represent the electronic distribution of charge. This method is much more
difficult, but would provide a more realistic interpretation.
Improvements to the three-body potential parameters could be made using ab
intio methods, such as Hartree-Fock calculations on small clusters of ions.
Using the angular overlap model would improve the covalent term in the crystal-
field model.

A more in depth study of the clustering of the rare-earth ions should also be
performed. The main reason for studying the clustering of erbium ions is to

examine the possibility of intercluster and cluster-to-cluster energy transfer. In
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™)

order to do this, dynamical processes should be included into the calculation of
the simulated spectra. One suggestion could be the inclusion an ion-ion coupling
term in the perturbation Hamiltonian. Moreover, non-radiative transitions due
to single and multiphonon processes, which effect the rate of energy transfer,
could also be calculated by including an ion-lattice coupling term into the
perturbation Hamiltonian.

Once an accurate model, which accounts for dynamical processes, has been
developed, we will be in a position to simulate the upconversion process. The

calculations will entail the simulation of co-doped Er’*/Yb*"-lead silicate glasses.
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