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ABSTRACT

Application of Sensitivity Analysis
' to
Parameter Changes
in
Nonlinear Hydraulic Control Systems

Said Farahat

-In  this thesi‘s. tlhe sensitivity .a'nalysis is applied to =a
novel electrohydraulic servovaive which s a nonlinear
system. This system sensitivity study diffe;'s from previous
studies by considering the dynamic behaviour and nonlinearity
of the system performance. Four different sensitivity
enalysis methods are compared to each other by studying the
sensitivity of- the actuator pisten Qelocity of above
servovalve with respect to ejghteen parameters. All t-he
methods show that the area of the actuator piston is the most
sensitive parameter and the static friction 1is the

insensitive parameter.

By using the best method among the above mentioned methods,
the sensitivity of the state variables of the sample system
(other than the velocity of the actuator piston) have been

studied. Tt is shown that the sensitivity of the actuator

.piston velocity and the opening area of the servovalve in onse

hand and pressures of the “either sides of the actuator piston

4
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in  the other ihand are almost similar. Also these pressures
are very sensitive to the orifice opening, aithough two 6ther

state variables almost are not sensitive to this parameter.

Heving studied the system sensitivity with nominal velue of

/

the " parameters, the most five sensitive parameters (K, M, »

:

AN

A, Cq» Vin} have been chosen  for iocating

insensitive system. For this purpose one of. thése 'parameters
hes . been— changed &t e time and the system sensitivities

behaviour with respect to different parameters have been«
. ~ N

evaluated. Siudy of these behaviours. shows that most of them

are almost linear except for the system sensitivity with

respect ' to the paremeter Mass (total mass in motion)

according to the parameter A, (area of the actuator piston)
13 ’ ) :

changes. This behaviour increases dramatically by decreasing

the parameter A, and it seems it will become unstable by

decreasing - more than SO7%.
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CHAPTER 1!

Introduction

1.1 Historical Reviev}

3
1.1.1 Control Systems ’ .

-,
~

Before Werld War 1II, the design of control _systems was
primarily an art. During and after the war, consider-ali:ie
effort was expended on the design .of c?osed-loop .feedb.ack
control systems, and negative feedback was used to improve.
performance and accura‘cy. The first theoretical tools. used
were b;':\sed upo.n the work of Bod;- and Nyquist. In particular,
concepts such as frequency response, band\vidth,‘ gain (in
decibels).’" and phase 'margin were nsed to design
servomechanisms in the .frequency domain in. a umore or less

trial-and error fashion. This was, in a sense, the beginning

of modern . automatic-control engineering.

The the'ory ‘of servomechanisma developed rapidly from the
end of the war to the beginning of the fifties, Time-domsin

criteria, such as rise time, settling time, and peak



overshoot ratio, were commonly used; and the‘ introduction of
the *root-locus* method by Evans in 1948 provided both. a
bridge between the time- and frequency-domain methods and a
;lgnificani new design tool. During this period, the prlmary_
concern of tr}e control! engineer was the design of linear

A

servomechanisms. Slight nonlinearities in the plant and in
the power-amplifying elements could be tolerated since the
use—of negative feedback made the system response relatively

insensitive to variations and disturbances.

v,
» .
L - ~

The competitive era of rapid tec.hnological change and
- aerospace exploration which began around mid-century
generated stringent accuracy and cost requirements as well as
an ihte;'est in nonlinear control systems, particularly relay
(bistable} control systems. This 1is not surprising, since
the relay is an exceedingly simple and rugged power
‘amplifier. Two approaches, namely, the "descrlbing-
functiqn" and ,"phasé-space methods™, were /used to meet _tpe
new design challenge. The déscrlblng-function method enabled
the engineer to examine the stability of a closed-loop
nonlinear system from a frequency-’doxf:ain point of view, while
the phase-space method enabled the engineer ‘o design

nonlinear contro! systems in the time domain.



© 1.1.2 Sensitivity '

-

[
———

Sensitivity considerations have long been of concern in
connectio.n with dynamic syétems. Th‘é‘study of the Influence
of the coefficlents of differential equation on its solution
started with the érigins of differential eq;.latig;l. How'ever,

for a long period of time, those considerations were merely

of mathematical interest [22].

This situation has changed be._é.ical!y with the development
_of the highly —sophisticated methods of _irjodern cecntrol! theory
and their appl!_cations by engineers. Historically,
sensjtivity considera—tio‘ns have provided - a fundamental
motivation for -the wuse of feedback and " are largely
're3ponsible' for its deve'lopm'ent into what is called modern

control theory, Iimplying the principles of. optimization and

adaptation.

Therefore. it is quite natural that the basic concepts in
this area were already given in the fundamental literature on
feedback control systems forty years ago. Bode [5] was the
first to establish -the significance of sensiti_vity' in the
design of the feedback control systems. He hes’ introduced a
proper sensitivity definition on the basis of the frequency

-domain.



In its s;.:bsequent developn;ent it =eemed that automatic
control theory should include the study of sensitivity as an
essential compqnen;. However, with few exceptions, the
sensitivity problem was not even discussed In thé academic.
texts on ‘automratic contr;l in the fo.llowingr decade. It was
mainly the problem of accuracy {In network-analyzers and
analog computers that gave new l_mpulsés to the theory of
sensitivity during the fifties [43). - Many basic methods- were
also Qorked ouf in connection with the design of electronic
networks {6,9]. . Toward the end c.af this period the. jdeas of
Bode were’ rediscovered . in control engineering ;with tr;e
appearance of adaptive. systems, more precisely, ss a reaction
to their appearance. Horowitz [27] has developed the mt;.thodls
of frequency domain to a8 high extent and has applied them
with great success to desig::a of . low sensitivity conventional

feedback control. systems {see also Horowitz [28]).

Beginning in the period 1958-1960, the number of
publications devoted to- sensitivity considerations in the
time domain rose conslde_rnbly due to the development of state
space methods Iin qdntrol engineering and the availability of
the digitel computer. This also gave rise to a new interest
in the general sensitivity probiem in automatic control
systems with an overwhelming number of papef‘s [32,45] and

even some book publications [12,62,63). Iun particular,: the



essential contributions of l{okotovié and co-\vorkers
. [33.34], Perkins and Cruz [15,47-50] and Kreindler [35-37]

should, be mentioned in this connection.

__.In 1963 Dorato [19] called ettention to the probiem of
parameter sensitivity of the performance index of op"th_na!
control systems. . In the ,sequel..m'any papers were published
c!arifsling' certain unexpected problems e:ﬁerging from this

definition of sensitivity {46,55,._58.57,68]. Excellent

-

reviews of the significant publications of that period. are

given.in Kokotovic and ’Rutma‘n {32] and Nuguyen Thuong Ngo

[45].

—

1.1.3 Optimality

Optix;lization--finding the best way to do things--is
obvicusiy of interest in the practical worid of production,
trade, and politics, where small changes in efficiency can
spell the difference between success or disaster for any
enterprise, be it neighborhood store, mammoth industrial
complex, or governing politizal party. 'l'c-)day as always many:
impo;'tant decisions are made simply. by describing the system
under study as preciself and quantitatively’ as p.c;sslble.

selecting som2 measure of system effectiveness, and then
I4
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"seeking the sta_t:.- of the A/system‘which gives the most
desifable value omiterion. Since description and
understanding of systems is the . traditionai ’task of the
engineers,  economists, and othér applied sclenti':-.ts. hence
optimal control is one of the most active research areas of
modern technology. It is sapplied in a variety of fields,
such as a'erosp.ace. chemical industry, -nuc-lear,\‘reactors.
transportation eand many'others. A considerable number of
textbooks and monographs covering this subjeét,has appeared
during the past ten yelars. ‘One of the “major practical
proble‘ms in this field is the numerical solution of optimal

control problems. Numerous techniques f-or‘ solving this -type

"of problems have been devcloped recently.

Over a span of almost two cenfturies, the only mathematical
methods known for handling optimization problems were the
classical differential and wvariational calculus.' With. the
rise of “operation research™ since the Second World War,
there has been rénewe& interest in optimization methods for
dealing with problems not solvable by classical me_thods.-
Durinﬂl the years following war a powerful techniques for

solving finite dimensional optimization problems was

.develdped; namely, mathematical programming. Initially it

was applied mainly in operations research problems. Only

during the past nine years some effort was done in appiying
4
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) /
mathematical programing 1echnique§fffin numerical! solutions of
optimel control problems. It was demonstrated in many
practical cases that a numerical Qolution. utilizing
maethematical programing, was optained where other methods
failed. @ The material cover.ing the work -in applying
mathematical programing to optlm'al contrel problems |s

scattered in wvarious jburnals. theses and reports.

-~ .
During the past ten years a great deal of research activity

has been witnessed in the  field of optimal control. {ss a
result, numerous . papers and a number of books
[5.6,10,1_1,13;141 have -been published on the subject “5f
optim‘iza'tion fechniques. The quantitative design of control
systems is no longer.a trial-and error effort but rather =a
precise science (involving applied ma—thematics and high-speed
computers. During the early stage of development, control-
system studies were cheracterized by such tools as Qtability,
analysis, frequ'ency response, root locus, phase plane, and
describing function. These methods, ’though widely known and
of practical use, can be applied only to non-stringent deSién

problems invoiving sinéle-varlable systems, time-invariant

systems, and systems with unconstrained variables.

With the advent of the spsce age, the control ‘engineer {s

faced with the _challenge of designing a great variety of

7 s .



systems having stringent requirements. Common interests have
also begn found in the design -of social 'systems.. nuclear
reuctor. systems, and transportation systemﬁ, which require =a
cone;i'derable degree of sophistication in contro! theory and
technology. Some of the more rigid conditions =and
requirements v.;hlch characterize these modern systems are
multiple input-output, constraints on state and lnpﬁt
variables, stochastic systems, unknown or time-varying
parameters, large-scale systems, and time-delay systems.

N

Minimum-time con-trol laws (in terms of switch curves and
surfaces] were obtained for a variety of second- and third-
order systems in the early fifties. Proofs of optimality
were‘more or less 'heuristic and geometric in nature.
However, the i{dea of determining an optimum system with
respect to a specific performance measure, the. response time,

was very appealing: in addition, the preéise formulation of

the problem attracted the interest of the mathematician.

\
The -time-optimal control problem was extensively studied

by meathematicians in United.State‘s and the Soviet Union. In
the peri'od from 1953-. to""1957, Bellmen, Gamkrcll;lzm
Krasovskil, and LaSalle developed '~ the basic theory of
minimum-time problems and presented results -concerning the

existence, uniqueness, and general properties of the time-



z *
oﬁ“timal control. The recognition that control problems were

essentially problem‘s in the calcrzlus of varjetions soon

followed.

1.2 Survey of Previous Works

1.2.1 Sensitivity -

—

'The sensitivity of a dynamic system to variations o; its
parameters is one of the basic aspects in “the of dynamic
systems. The question of pa_rfgmeter sensitivity parti_cularly
~ erises in the fields ,of engineering where mathematical models
sre used for the purposes of analysis and synthesis [22]. In-
order to be a=able to give n.unique formulation of the
" mathematical problem, the methematical model {is usually
assumed to be known exactly. This assumption is strictly
speaking, unrealistic since there s always -2 certain
discrepency between the actual sfstem and its mathematical .
model. This §s due to the following reasons : _ ~*

(1) A recl system cannot be identified exactly because of

the restricted accuracy oi the meﬁsuf!ng devices.
(2) A theoretical concept cannot be implemented exactly

becaus_e’ of manufacturing tolerances.

S



(3) The behaviour of any real sysxe-m changes with time in
an often unpredictable viay caused by enviromr-uental.

- material property, or operational influences.
(4) Mathematica]\ models are pften simplified or idealized
" intentionally in order to simplify the mathematical

problem or to make it solvable at &ll,

For these reasons the results of mathematical S);ntheses
need not necessarlly be practiceble. They may even. be very
-\'poc_)r. e.g., if there are considerable parameter deviations
between the real system and the mathematical model and the
solution i3 very sensitive to the parameters. Therefore, it
should be part of the solution to a practical problem to know
the parameter sensitivity Jprior to its _implementation or to

reduce the asensitivity systematically {f this turns out to be

necessary.

This is of particular Importance if optimization procedures
are involved, since it is in the nature of optimization to
extremjze a certain performance index for the special set of

parameters. Furthermore, there are many other problems where

sensitivity considerations are either wuseful or mandatory.

Some examples are the application of gradient methods,
adaptive and self-learning systems, the design of ({nsensitive

and suboptimal control system, the determination of allowed

10



tolerance in the design of networks, the calculation of
optimal {input signals for parameter identification,- enalog

and digital simulation of dynamic systems, and so forth.

-Thé easential {ideas of sensitivity hitherto published <can
be traced back to =a few principles .and basic concepts of a
genera! theory, called‘ sensitivity -theory [22]. This ’theory
can be seen as parallel to the signal theory already well
'deveioped for dynamic systems. Thus, sensitivity theory can
be interpreted as & section of a general system theory,
taking into account pararﬁeter variation as inputs instead of
signals. It is the major objective of this section to take
the initistive in s;tting up and introducing such 2 general
sensitivity theory, which can also be applied’to fields other

than technical ones such as economics or social sciences.

As in the case of =signal theory, it is useful to ﬁubdivide
sensitivity theo}y into. vt\x'ro categories: sensitivity analysis
and syﬁt’hésis.. Sensitivity analys‘is provides the basic.
methods to study the sensitivity of a system to parameter
variations. On the other hand, sensitivity synthesis is
defi:ied as the design of dynamic system, especially feedback
systems, with due regard to sensitivity specifications, say,

to obtain minimal or (in some cases) maximal sensitivity to

parameter . variations. o )
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In ordes to outline the sensitivity analysis In more
detail, recail that, in general, the dynamics ‘of a sysierh can

be represented by a2 single block (Fig. 1.1}, -which will, for

short,

ult) ;{n
=1 SYSTEM ——>

Fig. 1.1 General representation of a dynamic system.

be called the system. From a mathematical point of view what
we call a system is the explicitly or implicitly given

relationship between the input signal u(t} and the output

———

signal x(t). In general, uft) and x(t) can be vectors. The
character of this relationship |is cdmmonly called the
structure of the system. For example, the structure of the

system may be characterized by [22]):
N :

‘-the order of differential or difference equation,
-linearity or nonlinearity,

—the order of the numerator and denominator of a rational
transfer function,

-the rationality or irrationality of transfer function.

PR ¥y VT ALY



The quantitative p‘\raperties of the system are characterized

H ) .
by the system parameters. Typical parameters eare

-initial conditions,
- -time-invariant or time-variant coefficients,

-natural fr.cqﬁencles. pulse frequencies,
-'sampling periods, sampling instants,
-puise width or magnitude,

~dead times {or time delays).

Dynamic processes in a system, say, the change of the state’

or the output varléble with time, can be caused (Fig. 1.2)

by :

.{1) the influence of inpu:t signals, -

(2} the chenge of parameters.

=11 Peramelet
A
T cﬂChongcs :
wultl yi)
SYSTEM |=———>

i 2 - Input Signals

’Fig. 1.2 Quantities affecting the dynamics of a system.

)

har

assuming that the rela}ionship is

/

the input signa},

13



qualitatively and quantitatively unchanged. This is the

subject matter of conventional system_theorﬁ.u

While studying the influence of parameters, the dynamics of
the system are considered as a function of changes In the
parameters (or of the structure of thle system, because the
change‘lo'f system parameters can also change the saystem
structure). The depehdence of the system dynamics. on the

AV

parameters i3 called asensitivity. Strictly, psarameter

sensitivity can’be defined as follows [22]:

Definition : parameter sensitivity 1Is the effect of
. parameter changes on the dynamics of a
-7system. the time response, the ’state, the
transfer function.' or =any other quantity

characterizing the system dynamics.

-

With regard to the mathematical treatment of the
sensitivity problem, it is useful to distinguish between two

types of parameter deviations:

—

{1) errors and tolerances of the underlying mathematical
mocel (those parameter changes that are  time-
invariant), and also’ varying {quasti~-constant)

parameters; and
r

14



(2) changes in the parameters’ with time.

Parameter changes of the first category can be ceused by :

-tolerances of meanufacturing (When realizing a system)
--measurement errors {when identifying a system), '
-approximations up the mathematical model,

-seasoning of elements (erosion, abrasion, wear, etc.).

~

Parameter changes of the second catsgory can be caused oy :

-seasoning of elements (erosion, abrasion, wear, etc.),

-changes in environmental conditions (temperature, humidity, '
gravitation, etc.)

-changes in operetion conditions (load changes, change of
inertia by fuel consumption, influence ofnonlinearities, etc.)

Either of the two categories of parameter changes ' requires

its own methods of treatment.

Paramete-r changes “of both ceategories appear in any
engineering system. . Thus, sensitivity analysis can’ be

reng
regarded, along with signa! analysis, as & necessary tool in

the treatment of engineering systems.

15



1.2.2 Optimization theory

When an :lndividual is conﬁ:’onted with a problem. he must
progress through an alternating sequence of evaluations and
decisions. Greber [25] lists six cardinal steps on which

evaluations and decisions are made in the solution of

engineering problems, namely,

1. Recognition of need.

2. Formulation of the problem. "

3. Resolving the problem into concepts that suggest a
solution.
4. Finding elements for the solution.

5. Synthesizing the solution.

6. Simplifying and optimising the solution.

The order in which these steps are followed can differ
considerably from one problem to anosther. Insight gained at
any éiven step may be employed to mcdify conclusions of oiher
- steps : We should visualize a set of feedba.ck aths which
allow transition from 'any step to any .preceding-step in
accordance’ with the dictates of a glven. problem. For
éxample. the step  of "synthesizing the solutl'or;" or the

4

"formulation of the problem™ may be modified or sugmented by

i16

EWE METFEEAESIS SO F

*

[¥ P WERAT A SV S0 7 o PR LI



~

-~

considerations associated .with “simplifying and optimising

-
N

the solutions.”

Problems are generally associated with physical things:
without a thorough understanding of the physical. principles
upon which & given problem solution depends, the application
of optimization principles i{s of dublous value. There Es no
substitute for knowledge of physical principles and devices,
nor 1is there any substitute for an inventive idea. The |ideal
role that obtimization‘plays-—-in the solution of problems is
evidenced in the following statement: After constraints that
must be satisfieci_by the problem solution are defined.'either
directly or Indirectly, &ll significant forms of solution
which satisfy the con*.;.traints should be conceived;: and from
the generally Iinfinite number of such solut!ohs. the one or
ones which are best under some criteria of goodness should b';.
extracted by using optimization principles. As wit.h most
ideals of optimization are not easily achieved: the
identification of =all significant forms of solﬁtion to a
given problem can be accomplished in ‘special cases only, end
limitations on time ava.ilable. to produce the solution to a

given problem are always 'p;i'esent.r‘ Thus, the good designer or

manager does the best—that he can, all .factors considered.

17
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Problems which involve the oper‘ag;n or the design .of.
systems are gen‘erally of the type' to which optimization
principles can be beneficially =applied. Moreover, problems
of analysis_‘ can be viewed as optimization problems, albeit
trivial or]es; for example, if a linear clrcg‘it is given with
specified wvoltage and current sources and specified _lni'tial
conditions, the problem of finding the current distribution
in the circuit as & function of time admits to a unique
solution, and "we could say in such cases that the unique

solution is the optimal solution. -

——
N

&
o
£ o

&
Whenever we use “best™ or "optimum ~ to describe a system,

the immediate question to be asked is, "Best with respect to
-what criteria :and subject to what, limitations;r“' Givep a
specific mea.e.ure of performance and a specific set o.f
consiraint;, we can designate a system as optimum (with
respect to the performance .measul:e- and the constraints) If it
"performs*™ as well- as, if not better than, any other system
which satisfies the constraints. The term suboptimum is used
to describe any sy;stem which is not Optimufn (with respect to
the given performance measure and constraints). Specific
uses of the term suboptimum:* vary. It can be used in
reference to systems which .are not optimum because of

paremeter variations, or in reference to systems which are

not optimum because they are designed to satisfy additional

18-
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_constraints, or in reference to any system which is to be

compared to a reference optimum one.

Great advances have b-een made in optimization theory singe
1940. ‘For"‘example. almost all of the materiel in this
section has been developed since that time. In the _wox"dsl of
Athans [3], "At the present time, the field of optimization
has reached a certain state of maturity, and it is regardgd
as one of the. aree;s of most fervent research.” The one
fact-or that has influenced this rapid growth of optimization
theory more t-han any other has been the. parallel develoﬁmcnt
of computer eqtﬂprpent with which opth@tion theory can be
applled to broad classes of problenis, In the remeinder of
this' section, we é&xamine the general nature of problems that

are treated andv those aspects of optimization that prevall

F

throughout different literatures.
performance measure

To design or plan something so that It is best in some
sense, {s to  use optimization. The. sense in '.which the
something (e.g., @ s.ystem) is best, or is to be best‘, is a
very pertinent factor. Then term performance measure |s used
here to dendte that which is to be maximized or minimized (to

be extr_em!zed]. Other terms are used in this regard, e.g.,

19



-'objective function, performance index, performance criterion,

-

cost function, \return- function, se&nd figure of merit.

~

Constraints

Any relationship thét_ must be satisfied s =a constraint.
Constraints are classified either as- equality constraints or
as inequality .constraints. Arguments of constralnt
relationships are related in some well-defined fash;on to
arguments of corresponding performance measures. Thus, if a

~

particular performance measure depends on parameters and
functions to "be selected for the optimum, theﬁ— associated
constraints depend, either'( directly or indirectly, on at
least some of the same parameters .and functions. Censtralnts

limit the set of solutions from which an optimal solution is

to be found. i

Constraint also 'arise from the operatihg em:rironment of
physical systems: for example, & physical system must c;perate
Satisfactorily over some specified range of temperatures and
must be abl.q to withstand™ some degree of vibrational stress.
An importan‘t aspect of optifniz_ation is ‘the sensitivity of
system performance with respect to environmental chenges or
uncertainties in the parameters and factors that c_haracterlze

the syste;n. Thus, we -'n_zay-wi:h. to include certain constraints

20



in., a design for the sole purpose of obtaining an assured

degree of iInsensitivity in the system.

Optimization problems

~

It is easy to,categorize_ optimization problems according ‘to
mathematical characteristics, as is done in this section, but
it should ?be clé'arly understood that eny problem asso.ciated
with a physical system generally fits into one of ‘several
classes, depending on the assumptions and approximations that
are made in mathematical characterizations of the systen': and
its sociated performance measure. We often form a given
system model so that a convenient type of analysis is
parﬂcular!y appropriate: we shoyld always go- back to the
actual system (or to a more realistic model) to check results.
obtealined. | Moreover, even if the mathematical structure of a
problem is precisely defined, the solution of the problem is
generally ap’proachable by wuse of several different
optimization techniques, each of' which has relative
advantages. ‘As graphically i{llustrated by-M‘;l!g"an (44],

therefore, we should not tie ;a given problem foi‘ﬁ: too rigidly

to a single optimization technique. Simila;‘ly we /shoyld not
artificially limit a given approach to

particular problem type.

21



Approaches to solation

A classical approach to solution of optimization problems

is the fcllowing [S1}):

(1} find necessary conditions that the optimum must
satisfy by using differential properties of certain
o‘ptimal solutions;

(2) solve the equations that constitute the necessaty
conditions to obtain candidates for the: optimum; -

= (3) test the candidates for the optimum by using nece.‘s<§ary

and sufficient condition tests,

Optimization procedures that ©parallel the preceding
approach are generally réfereed to as indirect methods of
s-olution: indirect only in‘lthe sense -that optimal solutions
are determined primarily oﬁ the ©basis of differential
properties of the functions or functional involved. in
contrast, direct method.sl of sojution reguire’ use of thg
performance measure andl the const_raint.eqﬁations of a given
problem,- and systematic recursive methods are employed to
obtain an optimal solution. - It is not =always possible, nor
s it necessary, to c'learly distinguish between direct and

indirect methods; a comprehensive optimization procedure may

beneficially employ both.
I's -
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Geometrical interpretations of problems often afford
insight Into methods. of solution. Solutions and solution

techniques may be considered in terms of a multidimensional
euclidean space (E" or E, are sometimes used to denote en
n dimensional eu;:lidean space). The curren-t___t_!;i_a_l___p‘gint and
pertinent information concerning the current .and p,r'eceding
trial points represent the state of the solution in a
multidimensional spa;ce. and this state information |In
conjunction with the equations that gévern the solution
sche;ne is wused to determine the next trial polnt-_\‘the.
sequential search ”technims are of - this type.
Geometrically, most constraint relationships define allowable
regions in euclidean space. The performance measure and the
constraints associated with linear programming theory are
particularly well suited for geometrical . interpretations: the
region in which & general linear programming sclution is lie
is a convex hyper-polyhedron (a nyper-polyhedron is a
polyhedron in a euclidean space of more fhan three
dimensions). lIt is shown [51) that an optimal solution to
general linear:l programming problem is always associated with

one (or more) of the a.vertices of a convex hyper-polyhedron.

v

Geometrical! “insight is also of velue in the solution of
some problems. We may view the column matrix %(t) as a state

vector in an n-dimensional! euclidean space called state
4

~
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space, and t‘he control matrix 4d(t) as a vector in an r-
dimensional euclidean space. ' Each trajeétory ih control
space gives rise to 'a trajectory in state space. With
“‘automatic feedback control, the opposite is partially true:
State information at any given instant of time .influences the
control applied at that inst-ant of time or time at a slightly
later instant. These geometrical interpretations facilitate

the development of necessary conditions for the op'tlmum.

N

Constréint relationships are taken ’into account in
optimization procedures in many wa‘ys, but one way that
prevails through m‘ajor classes " of problems is that of
performance weighting which is closely associated with
Lagrange multipliers orn the one hand and with penalty
E;:)efficients on the_.. other. Reasons that we might wish to
we‘ight several ‘fact'ors of i.nterest in a performance measure
is that‘performance measure is not nec;séarily a single
entity. As a very limited example of the relationship of
this weightiﬁé process to the wuse of Lagrang multipliers and

penclty coefficients, consider the minimization of the

performance measure &, :

@y = o lapar) « h @ (ape)) (1.1)

N~
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Where h is a positive weighting factor, and both ¢, = ¢_(a,c;) and
¢, = tp’(al,azJ are bounded real-valued functions.. It is assumed
that a minimum of both ¢, and ®, is desired, but because of

their mutual dependence on «; and «, a trade-off must be

effected. If h approaches zero, the minimum of &, approaches
. . -

the minimum of ¢, but if h ii".. allowed to be arbitrarily

large, the minimum "of &,/h approaches the minimum of ¢,

As a modification of the above conditions, suppose that ®,
’ ~

is required to be & constant c,. But suppose that we proceed

to minimize &, of equation 1.1, with h not specified In

L]

advence, and find the minimum $;(h) .of &, In terms of h, and
e

also find the corresponding values aj(h) end a3(h) of ¢, and

ﬁ -
@ IF h cen be evaluated so that ¢[af(h)a3(h)] equals ¢,

the desired result is obtained (a rigorous development of
this fact is given in [511). - ‘In this case, h is called a
'Légrkange multiplier, after the famous mathematician Joseph

Louis Lpagrange (1736-1813) who introduced this approach.
T'F/" ' ’ -
‘ ’ .
Alternatively, suppose ¢, |is required "~ to equal ¢, as

before, but suppose t p 13 minimized, rather than

where &, ‘is a penalized performance measure and is

| —

®qn
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expressed by

& = o fajey) + hle (aya)-c,)? | (1.2)

If h {s assigned a very large value, values of @ and a,
that give ¢, * ¢, generally result in_.an inordinately large

value of @,: that is, the performance measure is harshly

penalized when the <constraint s vioclated (much), and

therefore those values of @ and a, which vyield- the

minimum of ép also yleld (within a- controliable., degree of

~

accuracy) the constrained minimum of q::&(cl,az).

One of the advantages of the so-called indirect methods is
that closed form . solution are obtainable for certain forms of
problems. But for sufficiently complex p‘roﬁblems, all
feasible approathes to solution, including th;\indirect
=pproaches, require the - u;'.e of hign-speed,-general;purpose
computers :during some pl';ase of the solution. Thé direct
methods are specificallyw‘suited . to computer approache's to
solution, and, as with any numerical solution scheme, scéiing
of wvariables and the appropriate introduction of new
vari.ables (for example, a linear trans-form.aﬂon of wvariables)

may sigrificantly influence the accuracy of the solution ard

the time required to obtain the solution. 4 .
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The dynamic programming approach to solution is based on
Bellmans principle of optimality, This principle applles to
systems for which a2 concept of state can be inferred and

-

ordered sequen.ce of stages of solution exists; at each stage.
of the solut-ion, a -decision is. méde _which_naffects the present -
and subsequent stages of solution; For such problems, the
principle of optimality is embo;:}ied in the. following
T Statement: whatever the initial staie and initial decisions
are, the decisions -applied at remaining stages of solution
ﬂust" be optimum, with respect to the stete resulting from\ the

initial decision, if the overall decision process, is to be

potentially optimum. : .

Finally, for special <classes of ©problems, inequality
relationships can’ be used to deduce opiimal solution. This
is especiall;’ true of ,those problems associated with linear

dynamic systems for which pérfonrganée is measured in terms of

an appropriate norm on abstract Hilbert or Banach spaces.

-

s

Linear Programming - -

The linear ir “linear programming™ indicates that only
linear equations are involved. The piogramming iIn “linear
programming® indicates thai wvarious variéble_?“nare to be

programmed -programmed in the sense of being scheduled or/—\

N
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selected- to optimize a linear performance measure. In the
usual linear programming problem [12] the performance measure
is a specified Iinear . algebraic equation, and other linear
algebraic equations act as consiraints on the optimization
process. The ‘simplex technique [S1) is an efficient method
for solving linear programming pro‘blems which are of a
general form. Certain mo&iﬁcation of the simplex technique
are particularly well-suited for digital computer 'solution,

and routines for these are commonly available at digital

computer centers, S

~

The original form of the simplex algorithm lwas deveioped by
~Gt:orgt': B. Dan.tzi_g in 1947 and was formally published in 1851
[18]. Many variations of the original technique have been
dcve'lo;:ed since, but it |is si{gnificant that .the original

simplex algorithm is still the best procedure for the

r

solution "of 'the general lineer programmi—_nﬂ&—pmb_l_e_m when

manual computations are used [2].

,‘\

Dual Problems®

F

»

Another approach to solution of optimization problems
invoives the concept of dual problems. For each problem oi
linear prégramming. for exampfe, there exists a well-defined

dual ' problem. the solutions of t'he dual and ‘primal

— 28 | \ \/
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(original) problems are reiated in a definite wa”y. and the is
easier to solve in given case should be solved to obtain

solution to both problems. .

If a problem has dual, the pro’l;lcm is posed in terms of, t-he
same types of wvariables as the original (primal} problem, but
with - the roles of certain variables being. interchanged. Thu:,
for electrical duals, current is the dual of volt'age and vice
versa; for mechanicai duals, force Is the dual of velocity
ax;zd vice versa. The solution of & dual problem is relati:d in
some well-defined way to the prime! probiem: ar;d in certain
cages the solution of the dual problem is easier to obtain.

It is for this reason, primarily, that dual problems eare

considerem '
- : *

&

The*existe.nce of duals for linear programming\ problems was
first proposed by Vor‘t: Neumann in 1947 [65). g\Much'm’ the
initial work on duality ;roperties can be traced to Gale,
Kuhn, and Tucker [23). Of the known dual problems of linear
programming, one of fundamental imporiance is the symmetric

dual problem from which other useful dual problems- can be

developed.

‘ -
& )

29



=

Search Techniques and Nonlinear ?rogramming

-

T_he. primary problem considered for the ﬁx‘éthods which a;e
introduced in - this sec‘l':ion is that of finding the extrema of
a performance measure which s a‘ noniinear real-valued
function of n parameters. The function may be: given
analytically or it may be determined experimentally; noise
and experimentzl error may "or may not be associated with the
function; the funcfion may = or may not exhibit
discontinuities: and constraint equatidns may exist which

~

Himit the argumenfs ?f the performance measure. In the
. o« .
latter case, the problem is called the nonlinear programming

problem, in analogy with the naming of linear programing.

Search techniques: are E‘all.ed direct methods of solving
problems -of th'e typt_: pesed in the preceding paragreph. This
is in contras!t to indirect methods, ones based solely om
differential ﬁ/foperties that.certaln cla\s{ses of functions
exhibit at points of extrema. The set of search techniques
may be subdivided in many ways: discrete search ‘versus
continuous search: non-sequential 3earch x;ersus sequential
search; local! search .versus globae]l search; search with
quadratic E:anveréence versus search without quadrat'ic

convergence; and.'so‘ forth, Specific methods which fall

within any one of theée categories have merit fof certain

j -
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problems. Given a particular cptimization problem, =a
searcher’s prime concern fs .to 'utilizc a8 search technique
which not only solves the problem, but also ‘'solves it
efficiently; we might say that a searcher seeks the -search

-

technique which is “optimum” for his optimization problem.

The efficlency of a glven .search 'technique is affected. by
certain global and local properties of functions. For
functions of one variable , Newton-Raphson [51,66)] e&nd Cubic-
Convergent [5i{] searches are more appropriateiy used on
analytically given functions while Quadratic-Conver\éent
[53,69], Fibonacci [31,51]1 and Golden‘Section [51] searches
, may be more useful when data are obtained experimentaily.
The importance of efficient one-dimensjonal search is
heightened by the fact ?hat many n-dimensional search

techniques incorporate a sequence of one-dimensional search

in n-dimensional space TS5I].

Non-sequential search methods (e.g., Random [7] and
Factorjal [5i] sgarches] are generally inefficient, but are
useful undex-"important spﬁecial conditions. Univariate- (one
variable at a time) search [51.] and relaxation search [59]
techniques m)e. “often convenient when data are obtained
experlment.ally. but these t_echniqueg do not provide rapid
'converg"-ence tfs‘ the optimum of most ang‘!ytic‘_ given
functions.  Basic gradient methods [16)¢ are perhaps the best-

: 31\ )
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known search techniques; c9ntinuous -éradient search {Sl]' can

LS

be programmed on general-purpose analog computers; best-step
steepest ascent [38] is a stepping-stone to the '-more
efficient accelerat)o.q-step search [21) and Newton search
[51] is a generalization of ;he one—dimensia;.mal Newton-
Raphson search technique.  The method 'af paralie]l. tangents
[21,52] and_‘ conjugate-direction search tec.hniques [4.53,659]
are bése& in part on the gradient cdncept. and exhibit ti‘ne
desirable property of qu;dratic convergence. That the

Gradient and Conjugate method® have proved to be highly

efficient is shown by an overall comparison at ([51). .

The “If’__“ application of gradient search was .given by
Cauchy, 1847: h-e outlined a procedure for solving a set of
simultaneous algebraic equation.s by using search techniques
[51]. Thi's'proceciure is incorporated (Chapter 3 of this
thesis) in tf_le ﬁenalty-function method of sqiving the general
nonlinear programing problem. Onc.e a performance measure is
augmented by & 'pénalty function, any of the known search

o
methods may be used in obtaining the optimum.

1.3 Scope of the Research Work: .

The Scope gf' this thesis i{s to ~apply the sensitivity

analysis to a sample nonlinear system whlctg is a novel

-
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electrohydraulic servovalve. . This system sensitivity study
differs from previous studies by considering the dynamie™

be%.aviour and nonlinearity of the system performance. R

—

-

The thesls divided into se\;en chapters, in the [first
chapter, historical dévelopmeﬁt of sensitivity and 'opt.imality
and their applications are briefly described. Also in this
chapter, the previous works that have been done on different
aspects of the sensitivity and optimality analysis are

reviewed.

L

.In the second chapter, theory of the sensitivity functions..
according to the definition which has been used all 'over this
thesis, has been introduced. Then four different methods for
sensitivity - analysis have been developed. These methods are
Vilenius Method, Revised Vilenius Method. Indivldu-al
Characteristics Method and Entirety-Index Method respectively.

All these methods, but first one, has been introduced in thia

thesis for the first time.

In the' third  chapter after introducing the objectlve
function for o;timizafion_'rnettio;is the theory of the basic
Gradient methods {5 explained in general, -and Steepest Ascent
(Descent] in particuiar. These methods are considered both as

!
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continuous and as discrete methods. Thén double sensitivity

functions (¥,) are developed. Using these functions .the k

double sensitivity matrices which will be used for locating
insensitive system, can be built up. At the end of this
chapier by using the sensitivity functions, the sensitivity

of the performance index {s analyzed.

In the fourth chapter at the begin-nlng. 'fnathematical model
of the sample system is analyzed. Then the simulation of the
system state variables are developed. And it is shown how to
produce the proper initial wvalues for this simulation: by
usingtrelatlon- between the steﬁdy state value of the
different state variables. | At the end of the chapter, the
stabllity of the system considering the time delay of the
direction contreol valve s analyzed. In addition the

dependence of the saturation values of the system’s state

variables on the fluid flow saturation is discussed.

- -

In the fifth chapter, &t the beginning, the necessary
matrix (3f/3%) and vectors (a?,/aaj) for ‘sensitivity analysis

have . been deh’ved. Then using these matrix' and vectors four
different sensitivity a’ﬁglysis methods are =@applied to
actuatof piston velocity of. the sample- system. Using the
last me‘thod. tlQ: -sensitivity of the /state variables of thes”

sampie system, other than fhe velocity of the actuator,

pis ton.;ff'::‘.,gre studied.

>~ ‘,.;:".. ’
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At the end of this chapter the effects of the time delay of
the direction control valve are discussed. And it {s shown
how the effects of this special parameter can be studied by

graphical methods by plotting the performance of the system

with and without time delay.

iy

In the sixth chapter a combinational optimization "method
which could overcome the difficulties of the szstem. is

introduced. Then the five most important parameters (K,

Mass, A, Cq and Vi) are chosen to s;tudy the behaviour of the
system sensitivity. For this purpose each of these

parameters are changed in the range of =507 at a time.

After studying these sensitivity behaviour plots, different
combination of these state wvariables sensitivity are
considered. According to the study of all these sénsitivity
behaviours, at the end of this chapter a general ciéslgn

procedure is discussed.

The seventh chapter gives the highlights of the resegrch

work and some suggestions for the future work.
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LHAPTER 2

Sensitivity Analysis

2.1 Introduction ..

" Dynamic systems can be characterized In several ways: in
the time domain, in the fr'equency domain, or in terms of =a
performance indeX. There ls:evidentxy‘an adequate numbe\r of
ways to define tr;e ser}sltlvity function of a dynamic system.
The definition that f{s actually used depends on the form of
the mathematicel model as well as on the purpo.s.e of
consideration. For example, if the system |is r'epresented- by
a transfer function, the sensit—lvity will be defined on the
basis of the paraméter-induced change of the transfer
function; whereas in case of a state space repres‘entaﬂtlon.
the patural basis of the sensitivity definition will be the-

parameter-induced change of the trajectory.

Thus, the sensitivi}ys functions can be classified into the

following three categories [22]:

(1) aensltlviiy functions in the time domain,
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(2) sensitivfty functions ' in the frequency or z-domain,

(3) performarice-index sensitivity.

In Reference [22] the most important representatives of
each category are introduced and discusased. Besides_ these
sensitivity functions there are so-cailed sensltf\;ity
measures that are defined on the entirety of the sensitivity

functions and, j.herefore. allow for & global characterizetion

of the s-e-nsitivity by a single umber, These entirety

measures are used &8s &n index in ¢ ethod of section 2.6.

“~

The oldest definition of a sensitivity function was given
by Bode [5]. This de.finition is based on the transfer
function and was restricted to infinitesimal param.eter_
deviations. In the sequel, Horo;:ritz [27) gave a different
interpretation of Bode's sensitivity function and also used
it with great success for.the design of control systems in
the frequency domain [26,28]. Perkins andVCruz [48] extended
Bode‘;s sensitivity function in different direction'sl, alsc
establishinfg its significance for time domain

considerations,

In connection with simuiations on network analyzers ~and

analog computers, the output sensitivity functions were
t

introduced in 1ihe fifties mainly by Bykhovskiy [10] and
Miller and Murray [43]). In the eariy sixties this definition

4
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was extendedw to the state space‘. resulting in the so-cailed
trajectory sensitivity function [15,54,62]. The discussion.
of the merit of the ti:pe domain sensitivity lf".mctions has not
yet come to an end [26]. H_owevcr. there s no do_ubt that
they play an important role in 't'h'tla comparison of open- and
closed-loop systems as well as in the design of optimal,

controls. In 1963 Dorato {19) introduced the so-called

' -

performance-index sensitivity.

Besides the sensitivity functions mentioned above there are
variocus  special sensitivity definitions, such as “the
sensitivity of the overshoot in the @time or frequency domain,
the eigenvelue (pole or zero) sensitivity, and so on.
Definitions su.ch.as these may be very helpful in the
characterization of the sensitivlty‘ of a system (n a certealn

aspect such as its relative stability.

2.2 Basic Theory

Nonlinearities in the system models of eleciro-h;;iraulic
control servos complicate the application of the sensitivity
anslysis. " The basis for the first' order sensitivity modeis
that can be applied to alectro-t;ydraulic position control

sepsot-can be intrcduced as follow [64] :
x = f(X, G, & . (2.1)
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-

where the n-dimensional state vector

=]

is the imensional” input vecior

is the p-dimensional parameter vector

o]}

t

It is assumed that unique soiutions of (2.1) exist for all

initial conditions and for ail wvalues of 4. Furthermore, ’
it is assumed that f is continuously twice differentiable

with respect to X and a.

Denote the nominal solution of wequation (2.1) :

X,(1) - a(t, @) - (2.2)

where 'c'in is the nominal valuel of a.

Denote the vector sensitivity functions
X, 8% .
"'[aaj) i=1...p (2.3)
n

Assuming that 4 is indépendent of & and differentiating

equation (2.1) particlly with .respect to «; we obtain the

_sensitivity equations In the form
=y .3_?_] Y af .
i [ai R & =l ...p (2.4)
' n

1- Subscript n referring to nominal values J_/
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_ where (af/ai)n is the Jacobian matrix evaluated on the nominal

solution.

— . "

The Initial conditions, for (2.3) are : -
- aﬁc_ . ‘
Ap = [E] | ‘ ] 1...p (2.5}

where X5 = &(tg, &) is the ipnitial condition of (2.1).

i

The sensitiv_ity{ eqL:ations of (2.4) are linear differential
equations with time—.varying coefficients, There will be.
n(p+1) equations (n state wvariable equations and nxp sénsi-—
tivity equations) to be-sc'i'ived to produce the system states
and -the sensit?vity- functions. These equations can be solved
using a computer ,simUIétlon. The b{ock diagram of the
procedure in Fig. 2.1 s the [irst order sensitivity model of
the system. . |

In the system mo"dels of electro-hydraulic control Servos

the function f is continuous everywhere. On the other hand,

in" the corner of some nonlinearity its fi_rsi: derivative s

discontinuous. Between these discontinuitg points [ {s
continuously 4dsige differentiable with respect to X and . So
in the int'ermediate areas the sensitivity equations can be
defined in the form of (2.4). In" solving the wvector

sensitivity functions one has to change the form of the state

- ’
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Flg. 2.1 Sensitivity model of a system with continuously

twice differentiable state function T with/Taspect to X and &.
(Reproduced - from Ref.

Conirol logic changing

slructure of equationa . s ¢ &
according. to system . X U,
nonlinesritles, s 1,00) - oft,. b{:]

I T

s
[ I l._—-——.-——.——._.—_—.._ .ee

S S SO i
r = 1%, [
! t
! : ._l |
i : S |
11 P . !
E- it (59. ;-_( a“‘J.. ! i3 | (gl ’-‘:'[‘6;%] e - (gg) ‘p,(se&c)
1. a7, - ax, "ot az, "
Al. - ( o) J’ Lz - ( o ]- ),: - [;?:]n

D ,
l , N g

Fig. 2.2 Sensitivity model of a system with special type

nonlinearities. Between the <corner points of these

nonlinéarities the state function § is sasdumed tc be

continuously ,twice differentiable with respect to X and @&.
(Reproduced from Ref. [64])
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function ‘and sensitivity equations as one moves frdm cne area
to anot.;ier. On the other hand, in the new are;a the initial
conditions of the altered gquations are replaéed by the final.
c::;nditions of the previous area. In the computer simulation
this is done simply by the control logice, which .recognises
the " area iIn which we operate during the soiuti;n. and in
moving from one are'a to_ another the structure of the state
fuﬁction and sensitivity , equations is chang-ed automatically
to represent the conditions in the new area. So the initial
conditions of the equations in the new area are automaticéliy
given the wvalues of the final conditions in the previous
area. The sensitivity model of this case is shown in
Fig. 2.2, In this mode! the parameter influence on tﬁe

t
d .
discontinuity of the first derivative is not ‘taken into

4

consideratiofs.

¥. - .
In addition to the sensitivity functions, the complete

-

differential wvariation &% of the nominal solution (2.2],

which 1s :

P

s%(t) = B, &) - a(t, & (2.6)

\] ‘
/ -

has to be known, and is due to the parameter variation :

—
L]

8@ =& - & (2.7)

’

n -
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Using Taylor’s theorem, equation {(2.6) may be written. :

.

—

5K = g-’:i) 5& + higher order terms (2.8)
a n
where  (3x/3x), is the nxp matrix of the .
sensitivity functions.  The vector sensitivity functions are

the columns of the sensitivity matrix. | "Once the vector
sensitivity functions have been known, according to equation
{2.8), the first order approximation of the wvariation éx can

be calculated. ’ {

2.3 Vilerius Method

This method was introduced by Professor M.J. Vilenius [64]
and has been applied to an electro-hydraulic position control
servo. The main idea -In this method is that, once one knows
the size of the parameter variation ©&a, one is able to
calculate the size of the variati-o;'n of. the nominal step
response of x; by only taking into account the [first order

terms In equation (2.'8J as follows :

-’

P " .
5%, = > Asa i=1n (2.9)
=



~ With equation (2.9) we are able to calculate the 'size of

any influence of parameter varistion on the step response of
T - . .

x, at every time Iinstant. To simplify the comparison between
- ‘ .
‘the different parameters equation 2.9 can be scaled with the

steady state value x;, and consider only the maximum values of

&x,/x,, and aiso change one parameter at a time. Thus the

equation for comparisons will be _as follows :

\
~
J
ox, kl'r.ua::&xj
x - X - (2-1 0]
iz max" iz

By means of simulstion studies it has been found {64] that
the I[first ordzr sensitivity model is still very accurate when
the.variatlons in the parameter vector a« are 10 percent. By
comparls';m. \Deniels, Lee and Pal {17] noticed th\at first
order sensitivity func‘flions glve satisfﬁctory results up to
20 percent parameier ‘variations, So, if one is looklr;g at the
influence.s of .l pércent parameter <changes, hé can be sure

that the f{irst order sensitivity model gives results accurate

enough for comparisons. Giving 1 percent éhange for the

44

4



—

parameters (aaj - 0.01 am] and taking the maximum value;ﬁh{lmu

according? to simulation programs, the maximum variations -
~

Ga,lxislmuj can be computed by equation 2.‘10.

2.4 Revised Vilenjus Method

This method is the same as the first method except that

instead. of computing :

6xt
Xis
hY

fd

where x,, is the steady state step size, one should

calculate

L on(t)

. X
instantaneously, and then capt.ure the maximum value. This
gives a better iIndex of comparison. Note that : L
-
- P J
J=

then, o -

8x,(t) PN l e
T‘-ﬁ— --'jg-l ETON a, (2.11)




%

Consequently, it is sufficient to compute

’

M) _

%0 j=11%top

J -
A(t) .
EZON J=1top

end then .capture the maximum in each case. The only problem
which remains yet, is the calculation of &x,(t)/x,(t) when x,(t) » 0.0.
To overcome this problem we can consider only the case where R ’

Xy > Ex;.. where £ can be 0 < E < 1.0.

2.5 Individual Characteristics Method

As it wes mentioned In the first two methods, they -choose

only }v} at one instant of -time, which i{s maximum in one or the

other way. This Al not only does not have information about
other (nstants of time , but also its (nformation at that
special point. of time= is a combination of different
cha;racterlstics of the syst.em pérformance changes (e.g.

amplitude, frequency, ... changes).
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To make these problems more ciear, they &re presented in

Fig. 2.3. It Is eassumed that curves ‘a' and ‘b*, are system

performances before and  after change of parameter q,,

respectively. Amplitude differences between the two curves

at different points of times show the A{Gu, values.  As {t

can be seen at point °‘C* this value tk{&up {s equal to =zero.
" But it does not mean that the parameter change has no effect
on the system performance, rather it means that different
charaéteristlcs changes of the system performance neutrslize
effects of each other at that point of time: Hence it will
be better to study individual chéracterist_ic_;-- of thc’ ‘system

performance separately.

" 'c X
XI N ’ ) s ‘
. / , <
A/ S
/ \‘ 7/ \ -
/ / \ P
I * \ I' \ e /'
: \ / N\ _~/ N
! \y
.[ ) N\ = -
S a
(] also, -
. ! .
II ca a: X; before change of @
/ o b‘: Xj after change of &j

~
Pt

t

Flig. 2.3. Asa, the difference of two performances ampfitudes.
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2.5.1- Graphic'al Aazlysis

In the Individual Characteristics Method, it is- tried to
analyze different characteristics changes of state variables
_{ndividually. - For this purposé,- it is triled to extract these
characteris;tics changes from differences between state
variable ‘a' and 'b" in Fig. 2.3. 6ne way of extracting the
in’diQiduail characteristics is the graphical method, where the

curve ‘b’ can be derived directly by changing parameter‘ ¢y by

'y

@ known amount. - Then normalizing the effects of all\_state\

variable -chardcteristics changes except one, by normalizing,

. the curves with respect to. those characteristics.

e
‘Some_ of :chéractﬁqzistics_' such as ovegrshoot or decrement
depend on 'amplit_.,udéi .thange of state wvariables. Hence, first.

of all, the rfeal" amplitude change will be extracted. ‘The

~

real . amplitude cliange means the amplitude change between two

'correspopdi_ng points- on curves (such as the first maximal,

[
Py -

_whlch"’can te located by normalizing steady state and
frequency changes. To normalize state variables with respect
to the steady state value, we can simply divide state

variable during all periods of times by the §teady state

value of that  state variable. Thea the steady state value of

all state wvariables \will be equal to unity and the value of
o ’

the state variables amplitudes at the points of time other

. - | 48



e

than the steady state' time will increasa or decrease wWithw
respect to the original steady state values of that\-} state
variable.

Because of the frequency <change of state-variable the
corresponding points on two different state variables (’a’
and 'b’) does not occur at the same time. Hence, it will
make it difficult to reco\gnlze two coiresponding points on
curves ‘a’ and ‘b’ Therefore'. by "normalizing the ~Erequen‘cy

-of two different state wvariables, it will be tried to obtain

each pair of corresponding points on ‘a* and ‘b’ (such as

-
-

peak points) in one wverticai line which represent one instant
of time. Normalizing the frequency of ‘the state variables,
means to change a pair of curves wi\th different frequencies
(Fig. 2.4 a) to another <pair'of curves with the same
frequency (Fig. 2.4 b}, by expanding and shiftiﬁg one of the
curves in order to bring together the crossing points of

curves with common steady state lineJ

X A . A
“*1 ,f\ AN xI N N
/ \
. v + (Y
]
\\ /
\ Nl
*
® t : >
wt . wt
a-Before Normalization b-After Normalization

Fig. 2.4. Frequency Normalization
, . .

w4
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Applying this . frequency normalization to nonlinear system
state wvariables (such as tlhe applied‘ system in Chépter 43,
shows that it is not able to put all the corresponding points
of two different state variables on the same vertical line.
That means, for exam.ple. thé corresponding‘ maximum/ and
minimum points on two different state wvariables after
frequency normalization occur at different normalized time
yel., Hence difficulty of locating corresponding points with
reépect to each other still exists.

-

Another problem in this graphical method occurs when\)\ji is

calculated using the difference between state variables a

and °b’. This will cause a large error on J\{. It c¢an be
shown that this error is large, because the difference
between.the iwo state wvariable acceording to one percent
change of parameter is wusually less than one percent 6t‘ th_e
cutput wvalue at that instant of time. If o'ne. can expect one
percent error of numerical calculations of state wvariable
then this ersror surpasses; the difference between state

variables, consequently surpasses the individual

characteristic wvalues.

But this problem can be overcome by calculating 2\'}

analytically using Eg. (2.4) and getting new state variable

‘* by adding k{&cj to the original state wvariable ‘a* at

se :



each instant of time, instead of 'calculating it (state
variable ‘b*) wusing Eq. (2.4) again, considering parameter

change 60:1.

2.5.2 Anaiytical Expressions _..

In an analytical method some mathematical expressions -have
to be determined. These expressions .give the individual
_ characteristics change of the state variable of the system.
Then it is possible to calculate these characteristics r(e.g.

N

Tr.' time rise) changes by one run of simulation program

during the calculation of the sensitivity functions (i").

Actually it is Impossible to derive simple expressidns
similar to ‘the sensitivity functions expression {2.4) for the

sensitivity of performance characteristics (such as ﬁa'r,/aaj).

Because thegze kinds bf performance c¢haracteristics can only
be derived from special points such as haxlma or cr;:sslng
points of state variable curve with steady state line. | These
special. points on new state wvariable ‘b° (as {t was mentioned
before) depend on new performance characteristics. There :is
ne direct relation bew'reen these special points on state
-vafiable b and their cori‘espond}ing ‘polnts on the original
state variable ‘a’. Therefore a special ansalytical method

will be investigated.

St



First the performance of interested <characteristics

introduced : .

X,, = Steady state valuu

T, = . Rise Time

P - Pelrcentage Overshoot
.Ff Ce Frequenc;; )

B, = Decrement

where , according to Fig. 2.5, they are defined as below

Xeg = Xyg
.rr = tl ~
P, = 100a/x;; '
F, = 2n/(t,-t,)
B, = b/a
A
Xj
X ........

L.
-

t - t | t

1 4 .
Fig. 2.5 Individuel Characteristics of Performance
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D. (decrement) is introduced instead of T, (settling Time)

because 3T./3a; is not continuous over the time. This can be

- {llustrated by uvsing Fig. 2.6 where by changing @y in such a
N ‘ _ : &2
direction which decreases the amplitude of performance, the

settling time value jumps from T, to T,,.

~
-

Tsz Ts: t
Fig. 2.6. Biscontinuity of Settling Time Sensitivity

Now to calculate these flve characteristics of the system

performance, first of all we need to calculate the X, = x,, and

r

by using the coordinates of four points 1 to 4 on the curve,

we can calculate qther characteristics (T,, Pge.edo

S3
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To calculate X, - the equations which represent the "relation

between state variables of the system during steady state can

be derived, by modifying the mathematical model of that

system.

derived in section 4.3.

. These equations for our sample system will be .

Having X, to calculate t,, t,, x;, 'X;; some expressions have

to be developed. For

dx,

T 0.0

Xy and Xq

att-tzort:_,

because points 2 and 3 are local maximum and minimum points.

And,

-

x': -~ x{ - k‘l&cl

where, .

x) \5- X,/ g‘fter change of

(/\) -

2 - X before change of
then,

dx? dx? o o e

at " Tdt - * gt O% = XY v AjSayt -

- 54
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»

where x{ is x;, before changing any parameter'an'd x'} is x4

-

after changing -paramete'r iR

then, o

%)+ AJ)sg, = 0.0 A=lep & t»tyorty (213)

From (2.13), t; and t5 car)(‘calculated. consequently x;,; and

Xy3 c¢an be determined too.

To calculate t;, and t,, it Is possible only by looking for a
peint with x, = x;.. .X;, can be calculated in the beginning of

the simulation program by means of steady state equations for

all the state wvariables with respect to dxiﬂ.g{nt parameters.

Actually In numerical methods we do not have exactly the
coordinates of these points {points 1 to 4). So one has to
calculate their coordinates by linear interpretation, using
coordinates of two poin;s one just before a.nd one just after

them. _ -
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2.6 Entirety-Index Method

As 1t was noticed, the different methods for the
sensitivity eanalysis (methods 1~3) have various advantages
and disadvantages. The 'first method . (Vilenius Method,
capturing meximum sensitivity w.ith ‘respect to~ steady state
value of state variable), and the -second method (Revised one,
considering sensitivity functions instantaneously and
capturing- the maximum sensitivity function value with resi;ect
to state wveariable &t same instant of time), do.not have all
the properties of sénsitivlty functions. On the tontrary.
Individuel Characteristics Method gives most of the system
performance properties sensitivity (such as time rise,
overshoot,...), but it makes {t difficult to use directly
these results for some apecial purposes such as system
optimization, and insensitivity., Then a simgle method which

~-has all or most of the system performhnce characteristics
sensitivity has to be introduced. Actually what we mea_ﬁ by
simple and Informative method is an index (Entirety-Index;
Ig) 'which makes the numerical caiculiation as simple as
possible; and improverpent of those system performance

characteristics . sensitivity will decrease this index (for

purposnﬁf locating. insensitive system).

t

I4
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For this purpo‘se instead of czpturing maximum value of

sensitivities, such as the first and the second methods, we

can integrate N{Go;j. abéolute or square value, dver some period
of time (0:T,). If one wants to includ;e the eff:ct of ‘the
su(ady state value difference of the. state variable in' this
integration, one should continue the integration _somewhat

- L4
through the steady state portion, e.g. T, = T,, where T, lIs

settling time. The integral of l)\{sajl simply represent the

area between two state variable of the system (Fig. 2.7). So

~

“absolute value of )\jéu is considered in this
- 199

method. This< integral can be calculated numericully- by

considering two different cases as shown in Fig. 2.8.

Refer to Fig. 2.8 b in this case the sensitivity function

becomes =zero> and there are two different sign of sensitivity

function in either side of this point (A - 0).  The AL

-

equation !n this case shows that the area of two triangles
are calculated separately~ and then the result is the sum of

these areas. ,\'If ‘the W,\crossing point is called ' x, and
N

corresponding time t,, Al for thi. case can be derive
N

as 1

Al = Area of triangle :cj,x‘,’xc + Area of triangle x{'xf'xc

~

-

alp = [IMsajiit -t oMy, Bajitt, -t ]/ 2 (2.14)

VEY
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1

Xi X{:X- after Otj change

o s,
|

o
Xi : Xi before Otj change

L= {"W(t)fser, It

Y

Fig. 2.7 Entirety-Index of state varlable

and since the two triangles are similar then
\

t-t,  Isal )
tia-te l)\{ﬂ&zjl IJ\J,,,II

Because )\J!/J\{,,fo then :

!
tet, A

t, .-t
I+1"*¢ )\{ﬂ

This can be rewritten as : ¢



’

N

[

and, | ' ti~te = ;Tt+_lj(t1+:'tx)

R | —

F

Al
3 .

- -

S

By substituting these equations in Equ. (2.14):

2 2 :
Blg=|(N oM, Jser /=N e, -t )72 : (2.15)

In the next chapter (Chap. 3), it will be shown that how

this index can be used for purpose of Igcating optimal or

insensitive system. Also for wusing this—Entirety dex in
optimization methods (Chap¥er 6), we have to normalize it.
That means to  divide Ig(i,j} by X xT..

-
where X, = stecady state value of state wvariable X

Ty = seltling time of state wvariable X,

ti tl+l
J .1 _.' ]212 (J_] -+.)/2
bLl.= U\lﬂ\l,l)&aj f‘tl+1 t,)/2, BI-=i(N] +Aj, )6&_‘/).1 Aoy ftiﬂ )
a- AL,/A 2 0.0 b-AL /A < 0.0

Fig. 2.8. Steps of Entirety-Index Integral
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f
2.7 Summary

In this chepter theory of the sensitivity functions,
according to the definition which is used all over this

.thesis. has been introduced. Theﬁ four different methods for
sensitivity anarysis have been developed. These methods are
Vilenius Method, Revised Vllenius‘ Method, Individual
Characteristics Method and Entirety-Index Method respectively.

" All these methods, but first one, has been introduced in\this‘

thesjs for the first time. by
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. CHAPTER 3 .
Optimality Analysis

3.1 Irtroduction CT—

The use olf optimization téchniques is of fundamental
importance in system design: 'it is necessitated by the
practical | ‘fact that .the system desisﬁ which -ia the best in
some specified senses is the one which sells, all other
thlngs-belng‘ equal. Granted, 'in cer?ialn 1nstancgs the optimal
design is obvious, e.g., the greater the wvalue of a certain-
parameter &. the better the system performance, but this s
a trivial case. In many inﬁtances. constraints are imposed
on the perameters of tl:e system, and the treatment of these

constraints requires the application of more sophisticated

optimization = techniques.’

e

It 1Is interesting to note that nature {tself generally
takes an optimai course. For example, in a ciassic work by
James Clerk Maxwell [41], it {is noted that the current
distribution in - a resistor-source r2twork s the gne | which,
in addition to satisfying Kirchhoff's iaws, results |In

minimum of energy disslpatlon..
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To apply optimization methods to a system, one needs an
objective function. So we consider some performance measure

© as an objective function :
¢ = olx, apnxy)

where e=¢(q, oam,-..,0,) is a . known real-valued
furiction of the arguments q. aj,...,Q,. The set

{a),0;5,...0,3 of real arguments of ¢ is denoted by

& L For operational purposes, It 1is often convenienE to
view @ as an ‘'nxl column matrix with entries «. Unless

otherwise restricted, & may . assume any value {n n-
dimensional Euclidean space E™. Wbﬂl\é‘t is equal to 2.- for
example, '@ assumes values in the oninary two-dimensional

space of analytic geometry,

4

“O{e of the principal probiems of optimal design is to
determine the particular values of « [;zaiues of the entries
of &) which result in the attainment of local maxima and

local minima of the performance measure & in a subset Ry

of n—cfimensigpal Euclidean space [51}.

»

i- a notation has been used as an argument of function to
fit our sensitivity models definition.
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3.2 Gradient Methods

As it was r_nentioned:. inIICh‘_apter 1 there are different kinds
of optimization methods for different kinds of systems. In
the following paragraphs the Eheox;y of basic Gradient methods
is explained in ge:{eral. and ti;e Steepest A_scent [Descent] in

particular.

3.2.1 Common Features

~

Common to all gradient search techniques is the use of the

gradlent V¢ = & = [30/3¢, 38/3q, ... 3¢/3x,]". In the case }hat

¢(3) is determined experimentall{ or numerically, a
discrete approximation to the gradient is used: and also it

is possible to use st-atisticai proz_edures to estimate the

gradient g from experimentally obtrined data ([S51).

"2
-

All gradient methods are governed, at least in “part, by the

following equation :

—k+} =k _ - . :
. a & | a H 31&,:&,‘ 3.1)

ia

in which &* is the “old~ value of &, &**! is the "new" value
- - S . &
of & g = Vo is the gradient of ¢ in column-vector .form. H/"
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is an nxn matrix, and a {s a real number. Gradient

methods differ in the way which H and a . are selected at

-

For example, if H is taken to be the matrix which contains

al]l zero entries, except for a single 1 in the ith ro_v}-on the

mein diegonal, and If a {s taken to be 1/[8%/3&?). then

equation-/B.l/reduces “to
a%ﬂ - Cff ._ a;/aai ~
3 :
d“¢/day L-&"

a""l-u} for j » i

and the result is Southwell's relaxation search [51i}.

Because the gradient of (&) is gen;:rally affggted by =8
change in scale of any given a;, it is not 'surprising that
the rate of convergénce of basic gradient methods depends. on
the scale used [16]. Another drawback of basic gradient
methods {s that they are reiatively inefficient when ridges
or' ravines are salient. Extensions ‘pf the basic gradient
methods alleviate these fauits to a great .extent, as s

evidenced in ([16].

64



P 4

3.2.2 Contix,uous Steepest Ascent [Descent]

~

Cauchy fl;-st introduced the concept of the steepest descent
.‘in 1847 to be used for ‘solving® simultaneous equations. The
key . idea suppbrting continuous steepest ascent is that a
maximum 'is sought by alwayé proceeding in the -directijon. which
yields the greatest rate of- increase of oo(gq). It is as

a blindfolded men who strives to reach the top of a hill by

always ¢limbing the steepest slope.

To use the method, the f{ollowing question must be 'resolved.

Giye_n' an initial starting point &° = [a af ... ang, in what

direction in ‘the n-dimensional Euclideaen' space of the «;’s

from @ = &° does ¢(&) tend to increase the most? It is shown

in the next few paragraphs that the gradient direction g(&°)
yields the greatest incremental increase of ¢(&) for a fixed

incremental distance lmoved from & = &°. The- derivation
* follows ihat_ of Kelley [30].
Let the fixed incremental distance moved from J& - &° be

denoted by €. By Pythagoras’ theorem,

€2 - (8ap)? + (6aD? + ... + (502 - (3.2)

~ 65 -



e

" ‘denote

-

&' = [af + 5af af + 8af

_-.fiu + 5&°

i

'the value of & c¢btajned by an incremental

-

g + Sagl”
(3.3)

In seeking a maximum of ¢{a) by steepest ascent search, the

ob_jei'.t is to maximize o(8° + 8@°) by appropriate selection of

\,'»the
are ‘constrained by equation 3.2.

multiplier

Sad’s. Recell,

—

technique ([51]

function ¢, is defined by :

‘and

.

the necessary condition for
3¢ .-
. - =0
. 9bay _
. 3 o
—a:—i + 2h8af = 0
o .l 53;0*5&0
all §. Hence,.
-1 _3¢(@) |*
saf - 3k ———I
3 2 aa,”
: h oy | o.az0
66
- - .t

however,

is a'pplicable

. _
0, = o(a° + 85 « hjzl (6af)?

that the

-

Thus, the Lagrange

the _eugmgnted

(3.4}

a- maximum of ¢_ is

-

(3.5)

(3.8}




wh’l_ch in matrix form Iis

63° = Zivela® + 6a% = 3la(a® . 5a%) ) 9

The Lagrange multiplier h is evaluated by using the result
, e

given by 3.7 in equation 3.2

n o
1 - -
e? - an? Z[aQJJ - #8(0: + 5a%)7g(&° » &%)
&=6%+83°

G

from which it follows that : .

> - [§(@° + 87 Tg@E" + 83 V%

!

-

This result {s used to eliminate -1/(2h) from equation (3.8} :

53° = ega° « 6a°WIEE° ~ 6a9TE@E° » 8672 (3.9)

1f the incremental distance € {s sufficiently smell, then

so also is each 8a;: and E(&° + 8&°) can be simply replaced by

5(&°). Also note that the denominator of the right-hand

member of} 3.9 §s a positive number, except at stationary

® &

&.
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St

peints in which It equals to zero. It is convenient to lump

this term with €, i.e., to form a new lincrement :

a7 = e/(B(E@9) (@2

and rather than view Ar as a function of &°, Ar is

held fixed by assigning an appropriate value of -tﬁe increment

e for each wvelue of &. In other words € & AT[g(E®)TgE&*NV?
where AT is constant.- The net res'ult is that
N
6“"&:&" = Ar[awaa,]&:&n i=1,2,..,0 - (3.10)
or in column-vector foer :
'S‘_;
.. 8&°7 = ATE(E®) (3.11)

-
for steepest ascent search.¥er
b 3

L3

Up to this point, Ar and € have been assumed to be small
i . _f’ .

-

increments, small enough so thal ve(&° + 8&°) = ve(g®). If

a7, and therefore ©&6a,, is allowed &o approach Or,

N

" equations 3.10 and 3._11 will -reduce to a set of first-order:

differential - equation :

da, 3¢ . ;
_d? - E- il l ‘2'..'r[ (3- 1 2)

T \
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A

It is conceivable that one migh:‘ unknowingly s.tart the
solution of 3.12, witl'; ir.ﬁtial conditions at la relative
.minimum' or at a saddle point of ¢(&). In such a case,
all ., 3¢/3a, are (initially =zero, ard theoretically
the r;earch would not begiri. In practice, however, noise in
the system |is 'sufficient to deviate ihe solution "from either
a minimum or a saddle point: and once away, the .solution
diverges from these unstable -equilibrium points. In fact,
Zellnick et al. [70] found. it difficult t.o. determine the

character of functions in the vicinity of saddle points

because their search techniques lead them abruptly away.

3.2.3 Discrete Steepest Ascent {Descent]

ascent search is obtained

A discrete version of steepest
- —

from equation 3.11, namely,

{3.13)

which is reaMto correspond in form to gradient search

in general; equation 3., as follows

@ - g v arIgl. (3.14)
-4 14 .
’ ' L]

’ .
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=0

. In this special case, the matrix H of equation 3.1 equals
the identity matrix I, the nonzero entries of wﬁich_ are

‘ °
“ones” on the major diagonal, and & of equation 3.1 equals -AT

The step size A7 remains to be.determined. ‘Note ‘vﬁ:t by

replacing @ In ¢(&) \;lth G* + ATE(GY), the fungtion [el&} « aTR(EX)]
is ‘a function of the parameter A7 only, \i.e., the function
Is in a ;)arametric form. There are an _unlimited number of
ways in which A7 can be ﬁel_ected. all of which correspohd

tci/some form of one-dimensional search (Section 6-3, [51]).

Lapldus et al. [38] compare six of these, each btjft/\slightly

S~
. -
different, by applying them to a common problem.
- Because of the computations involved in evaluating the

gradient of ¢(a) at a given point, it is usually advantageous to
- f“r-..

make the most of each' gradient computation before making
. ~
another; that 1is, to search in the direction of tthradient

until 3¢[d® + A7TE(G¥)1/3AT = 0O for some AT. This approach is
' \:\__/.: -
" ‘referred to in the Illterature [8] as the method of optimum

stee'pest ascent, __,E“ unfortunate designation In that - quite
often improvements in eificiency, can be made-'by incorporating

additional \\features, as is done in Section 6-7 of [51]. In

&

‘\ .'-7?. | \’ﬁ



/
<

this work, therefore, the phrase “best-step steepest ascent™

is used in place of "optimum steepest ascent.”

L3

Figure 3.1 depicts a search conducted by best-step steepest.
ascent when & = [a, a,). Note that if a different sclle i‘?

employed for the ¢« coordinate, es in ngure 3.2, the ﬁ

number of jterations s changed considerably. Hence, the

cscaling is clearly evident.

desirability of proper

Fig. 3.2. Example of best-step steepest ascent search
with proper scaling.

=
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3.3 Double Sensitivity

1;1 Chapter 2, different r-netho}is and indices for sensitivity
analysis of system are defined. In order to reach ihe least
. se_nsitivé ‘system we hqave to .flr..now how a sensitivity index
changes with respect to each parameter change. Therefore the
sensitivity of sensitivity functions which are called Double
'sénsitivity Functions' (¥,) are required. They—will be
describ.ed with more details. In Chapter 2 the sehsitivity

functions are introduced as

=J ax o
- ()

L n -

S

and,

then,

and the double sensltivity function can be introduced as ,:"

- =) - 2= . .
- IN” a3k .
G- - (3.15)
& aqk da,dary

.
1
i

then provided that & Is independent off t,
. : 3 .

vz 3\

Pr-a AN

T 7 oy .
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s . af 3
/ﬁ& ( ])\ (aa“]]
5 . [P ex 2% []azi‘azfai__%_
)3 ag? 9oy T 3Ky dJaday | In3ay oy actyddy

. 8% o
NS |
/ ~
— 82" ~
Y
Jk 80:.1801:,L
glves
27 27 = 2%
v = i..i. il a°t -l §.§ - 3a*f -k a 7
Ty T (aiz ) ]A 2L MY Tt axaa, Moo duday (3.16)

Dimension of ail the elements of Eq. 3.16 has been ginen in
App. 1L To use these double sensitivity functions %n order

to reach. the . least sensitive system. Double Sensitivity Index

-

will be introduced in {he remaining of -his section.
- . .

-

\

-Fig 3.3 shows h{Gaj as a . function of time, before (‘a’) and

rd

after ('b) parameter @, change. The hnorizental axis which

-
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»
13

b: N8Q, after s, change

18X, 80,

upper part

¥

lower part

Section A
{rater to Fig. 3.4)

a: N8Q, before sq,change.
‘ T
Tp (k) = J‘U‘yUkSaJBakdt

Fig 3.2 Double Sensitivity Index
N

represents k{&aj equal to =zero, can be assumed as old -state
variable of system before changing any parameter. § Hence ‘the
area between cﬁ?rve ‘a’ and this axis will be Entirety-Index
which has introduced in Section 2.6. Changing parameter
«, affects on this ared or gnti.rety-lndex. This change of
area will be callgd double sensitivity index w—hich ¢an be
callculated using ?jk functions (App- _II].
v

Because of 'using the absolute‘ value (not square value) in
t@z inteér_ation of the sensitiv\i.&y Index‘(IE). it is easijer
to calculate the double sensitgity .index . (I4) from
?jk.. But, because th: effect ‘of Y on  the
sensitivity index at- each instant of time depends on the sign

:’ -
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of v, and ?\{,._‘ we. -<annot simply integrate the

fm"'-dunh?g‘ ~all the time period. Then the integration

Tl Y

of positive - N's and negative A°'s should be <calculated
separately. Still, we have %ﬂother problem when the.two

sensitivity functions (before and after ¢, change) <cross

each other (yUk-OJ or one of them becomes Zero

between two adjacent steps. This problem can be solved by‘
dividing different <cases of the problem in different

categories. There are sixteen different cases which are

Y

considered in the [ollowing par'agraphs.
\/"'"V

Fig 3.4 enlarged one of the calculation staps, and

. .
illustrated different terms which have been used in wvarious

Alsa,

Sectlicon A
ol Fig, 3.3

By (ty)

0 e f :
t, .t t
L,: ?\{(L‘)SQ, .
3 L,: J\{(t,)sa,

1. I(L])sul‘*‘b’”k(t )S(!,S(!t *
Gt Ai(,)80, + ¥ ()80, 50,

Fig. 3.4 Numerical calculation of double sensitivity index.
" ]
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- . N -
categories explanations> Each category has- been labeied bv a

*

code ‘which-is. calted "I This code is a four digit binary

integer (b;bybgb,). Each bit of this code represents the

position cf one of the calculation area corner (rectangular

*

L,G,G,Lo, rig. 3.4). ' These relations have been shown in
. Teble 3.k. . b, equals to one means {th. corner is in upper
*®

part and b, equais to zero means ith corner is in Jlower

'p art.
E
) { | corner | b, Mathematical Description
07 . [h{(tz)aajvy”k[tz]aajéak §<0 \
1 Gy
X 1 [ Mtosapy, , (t6esa, |20
R
J -
o 0 [r k1(t2)§qj+yijk(t2]6ajqu }<0
i 2 G, - .
] -
1 [ Mepeaey, (5 be, |20
1 o [ Mt2)50, ] <0
.3 L, A
> 1 [ Mt ]20 4
0 I ?\{(tI)Bcrj ]co
4 Ly |
1 [ Mtse, | 20 - .
7

Table 3.1 I code bits (b,) description.
. 9
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Fig. 3.5
each

calculation of

shows
categories.

each step

one sample

of

different

possibilities

of

Also Fig. 3.6 gives expressions for

in different

categories.

Gz G1' G, |
BENE - | T e
L G .
I, 1V 2 | 1, ‘\\l 2
2
8= O IB— 1 IB"—'B IB=3
=] | 10 L
e e "
G2 GI ' V NG L1 :
IB=4 IB=5 IB=6 IB=7
Lll\ L, Gz Gy Gy
c Lz I\/I LIN Lim Gz
' GII/ \JLz w Gz ~
G, L L,
I5=8 I5=9 Ip=10 Ig=11
G, : G '
L o G, | & !
-, ' Lz Ll 7 Lz L1 L ‘
' 2
GII\JGZ 'GIV-' T NG, :
IB=12 ! 'IB= 13 IB= 14- IB= 15
r\"‘"" —
Fig. 3.5 One sample from each category. o
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ABSTRACT

Applicétion of Sensitivit-y Angslysis
' to

_ Parameter Chenges
- . ' in

Nonlinear Hydraulic Control Systems

Said Farahat

-

In this thesis, the sensitivity analysis is applied to =
novel electrohydraulic servovalve - which s a nonlinear
¥

system. This system sensitivity study diffe;-s from previous

studies by considering the- dynamic behaviour and nonlinearity

of. the system p-erfor—mance. Four different sensitivity
anélysis methods- are compared to each other by studying the
«sensitivity of- the actuator piston \;relocity of above
servovalve with .rgspect to eighteen parameters. All the
methods show‘tﬁat the area of the actuator piston is the most
sensitive perameter and the static friction is the

insensitive parameter.

By using - the best_ ml;thod among the above mentioned met.h'ods.
the- sens;‘itivity -of thé state vafiables of the sample system
(other than the wvelocity of the actuator piston) have been
studied. 't is shown that the.r sensitivity of the actuator
.j:istori velocity and the opening area of the.-servov_alue in one
hand and pressure;-.! of the “either sides of t'pe' actuator piston

4
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in " the otée-r' inand are almost similar. Also these pressures

are very sensitive to the orifice opening, aithough two 'bj,her

state variables almo=t are not sensitive to this parameter.

‘Hav-lng studied the system sensitivity with nominal vealue of
the ~ parameters, the most five sens_igive parameters (Ka, 1‘;1.
A, €y Vi) have been chosen for locating
insensi{tive system. For ‘th!s purpose one of the‘se parameters

has . been— changed at a time and the system sensitivities .

-,
L

behaviour- with respect to different parameters have been-
. ~

evaludted. Study of these behaviours shows that most of them

are elmost linear except f?r‘the .-system sensitivity with

respect - to the paremeter- Mass (total mass in motion)

according to the parameter Ay {area- of the actuator piston)
‘ LY * .
changes. This behaviour increases dramatically by decreasing

the parameter A,, and it seems it will become unstable by

decreasing - more than 50%.
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