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ABSTRACT

A Hierarchical Model-Based Reasoning Approach for Fault Diagnosis in Multi-

Platform Space Systems

Amitabh Barua, Ph.D.

Concordia University, 2010

Health monitoring and fault diagnosis in traditional single spacecraft missions

are mostly accomplished by human operators on ground through around-the-clock

monitoring and trend analysis on huge amount of telemetry data. Future multi-

platform space missions, commonly known as the formation flight missions, will uti-

lize multiple inexpensive spacecraft in formation by distributing the functionalities

of a single platform among the miniature inexpensive platforms. Current space-

craft diagnosis practices do not scale up well for multiple space platforms due to

an increasing need to make the long-duration missions cost-effective by limiting the

size of the operations team which will be large if traditional diagnosis is employed.

An ideal solution to this problem is to incorporate an autonomous fault detection,

isolation, and recovery (FDIR) mechanism. However, the effectiveness of spacecraft

autonomy is yet to be demonstrated and due to the existence of perceived risks,

it is often desired that the expert human operators be involved in the spacecraft

operations and diagnosis processes i.e., the autonomous spacecraft actions be un-

derstandable by the human operators on ground so that intervention may be made,

if necessary.

To address the above problems and requirements, in this research a system-

atic and transparent fault diagnosis methodology for ground-based operations of

multi-platform space systems is developed. First, novel hierarchical fault diagnosis

concepts and framework are developed. Within this framework, a multi-platform

iii



space system is decomposed hierarchically into multiple levels. The decomposition

is driven by the need for supporting the development of the components/subsystems

of the overall system by a number of design teams and performing integration at the

end. A multi-platform system is considered to be a set of interacting components

where components at different levels correspond to formation, system, sub-system,

etc. depending on the location of the node in the hierarchy. Two directed graph

based fault diagnosis models are developed namely, fuzzy rule based hierarchical

fault diagnosis model (HFDM), and Bayesian networks (BN)-based component de-

pendency model (CDM).

In HFDM, fault diagnosis of different components in the formation flight is

investigated. Fuzzy rules are developed for fault diagnosis at different levels in the

hierarchy by taking into account the uncertainties in the fault manifestations in a

given component. In this model, the component interactions are quantified without

taking the uncertainties in the component health state dependencies into account.

Next, a component dependency model (CDM) based on Bayesian networks (BN)

models is developed in order to take the uncertainties in component dependencies

into account. A novel methodology for identifying CDM parameters is proposed.

Fault evidences are introduced to the CDM when the fault modes of a component

are observed via fuzzy rule activations. Advantages and limitations associated with

the proposed HFDM and the CDM are also discussed. Finally, the verification

and validation (V&V) of the hierarchical diagnosis models are investigated via a

sensitivity analysis approach.

It should be noted that the proposed methodology and the fault diagnosis

strategies and algorithms that are developed in this research are generic in a sense

that they can be applied to any hierarchically decomposable complex systems. How-

ever, the system and domain specific knowledge they require, especially for model-

ing component dependencies, are mostly available in the aerospace industry where
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extensive system design and integration-related analysis are common due to high

system building cost and failure risks involved.
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Chapter 1

Introduction

In this chapter, first a brief introduction to the general problem domain of this thesis

is provided and the research motivations are presented. Next, the general problem

statement and a literature review are presented. Finally, the contributions of the

thesis are outlined.

1.1 Spacecraft Formation Flying

Multi-platform space systems and missions, also known as spacecraft formation fly-

ing (FF) or formation flight, is an emerging area in the Earth observation (EO) as

well as space science and exploration domains. The conventional space missions uti-

lize large, expensive spacecraft platforms. In contrast, the formation flying missions

utilize multiple inexpensive spacecraft in formation by distributing the functional-

ities of a single platform among the miniature inexpensive platforms for achieving

new capabilities in sensing objects and phenomenon in space, gathering scientific

information, and sharing information among space vehicles and ground [1]. From

system’s point of view, the advantages of utilizing clusters of spacecraft, i.e., multi-

ple platforms in place of an expensive single platform, are the increased robustness,

flexibility, and fault tolerance, among others. However, the primary motivations for
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(a) Earth observing system (EOS) [2]. (b) Terrestrial planet finder (TPF) [3].

Figure 1.1: Multi-platform space missions for Earth observation and space explo-
ration.

formation flying come from the fact that this revolutionary concept will provide the

space research community with new capabilities in sensing objects and phenomenon

in space, gathering scientific information, sharing information among space vehicles

and ground [1]. Based on the type of science activities that are to be performed,

multi-platform missions can be grouped into two categories:

1. Formations for Earth Observation and Planetary Exploration [2,4]: This type

of multi-platform space systems are known as planetary environment orbit

(PEO) formations. In this type of formation flying missions, specialized probes

are deployed with explicitly separate science objectives. The typical mission

goals here are to achieve synergy of observations, synthesis of apertures for

higher spacial resolution, and signal space coverage. Observation synergy in-

volves multiple missions and multiple platforms where each platform carries

specialized payloads. For example, the Earth observing system (EOS) [2]

has five coordinated spacecraft as shown in Figure 1.1(a). CloudSat has a

millimeter-wave radar to observe clouds and precipitation, and Calipso has a

polarization-sensitive instrument for observing vertical profiles of aerosols and

clouds. Each mission was designed around separate objectives, but combining

signals enables answering questions such as the relationships between aerosols
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and precipitation. Recently, formation flying missions for interferometric syn-

thetic aperture radar (InSAR) applications have been proposed [5, 6]. For

improved coverage over large areas, multiple Earth orbiting satellites are de-

ployed [7–9]. However, in such missions each spacecraft is operated/controlled

as an isolated entity and precise formation coordination and control are not

required. Consequently, they are identified as “constellations” as opposed to

“formations”.

2. Formations for Space Science and Exploration [3, 10–12]: This type of multi-

platform space systems are known as deep space (DS) formations. In this

type of missions, the idea is to build (or simulate) a large virtual telescope,

typically kilometer wide, with a number of spatially separated spacecraft each

carrying instruments for imaging remote objects in deep space. The formation

pattern/geometry of the formation varies depending on the mission; however,

each spacecraft is coordinated (in terms of position, attitude, and payload

operations) with all the other members in the formation to maintain the de-

sired formation pattern. The objective is to isolate signals that may be only

milli-arcsec apart in the celestial space. Figure 1.1(b) provides an illustration

of the Terrestrial Planet Finder (TPF) formation which requires very precise

pointing.

It is worthwhile to mention that at present, the space community is at the

initial stage in exploring the full potential of spacecraft formation flight. Some

of the planned precision formation flight missions require new technologies that

are not utilized in conventional spacecraft. In order to transform this vision into

reality, active research is being performed in the areas of sensors and actuators

development; inter-spacecraft communications; spacecraft guidance, navigation, and

control (GNC); fault detection, isolation, and recovery (FDIR); computing and data

management; and tools and test-beds development [13].
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In this thesis, particular attention is paid on the problem of fault diagnosis in

spacecraft formation flying.

1.2 Fault Diagnosis

Fault diagnosis is commonly referred to as the problem of detection, isolation, iden-

tification, or classification of faults or anomalies in the system under consideration.

The overall goal of health monitoring and fault diagnosis is to detect fault(s) at

early stages and to identify the location/sources of malfunction so that appropriate

recovery/reconfiguration actions can be taken before the fault(s) causes a failure.

Fault diagnosis is a part of a general problem area that is commonly known as

Diagnostics, Prognostics and Health Management (DPHM). In this thesis, by the

term “fault detection” we imply a binary decision-making about the existence of

fault(s) in the system. We consider the identification/determination of the loca-

tion/type/source(s) of fault in the system as “fault diagnosis” (FD). In this thesis,

we use the terms “fault diagnosis” and “fault isolation” interchangeably.

Integrated Vehicle Health Management (IVHM) [14–18] refers to the integra-

tion of techniques and technologies to provide a health management system for a

vehicle or fleet of vehicles. Although the requirements are unique to a specific type

of vehicle, health management has become increasingly important to automotive,

commercial and military aircraft, rotorcraft, unmanned and manned vehicles, space-

craft, and satellites. In the space and commercial aviation sectors, the concept of

IVHM is used to describe the automation of activities that are performed onboard

as well as offboard by the ground support teams and maintenance personnel. Fault

diagnosis is the part of an IVHM system which aims to identify the root causes of

faults and performance degradations.

Figure 1.2 shows the IVHM elements for a fleet of satellites where depending
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on the desired level of onboard autonomy, diagnostic functionalities are distributed

between the space and the ground segments. Within the offboard elements, a data

warehouse and a ground-based reasoner (GBR) support post-processing that include

health monitoring and fault diagnosis. Note that for a feet of aircraft, it would be

necessary to add an additional “maintenance” element which has very limited scope

in the cases of satellites.

Figure 1.2: Onboard and offboard IVHM elements (adopted from [14]).

Within an IVHM framework, diagnosis of various components and subsys-

tems are carried out by employing different types of reasoning algorithms. It is

well-known within the Artificial Intelligence (AI) community that the diagnostic

reasoning methods [19] are commonly classified into three main categories, namely

(1) Case-Based Reasoning (CBR), (2) Rule-Based Reasoning (RBR), and (3) Model-

Based Reasoning (MBR). Other approaches are mainly pure data-driven that include

machine-learning (ML) and Neural Network (NN)-based strategies. The MBR ap-

proach includes graph-based models such as logical causal graph models as well as

Bayesian network (BN) models. One of the fault diagnosis approaches developed

in this thesis is a model-based reasoning method that utilizes a Bayesian network

model which has been identified here as the Component Dependency Model (CDM).
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As an alternative to the above-mentioned AI-based fault diagnosis methods, model-

based fault detection and isolation (FDI) methods [20] are extensively developed

and utilized by the control community. Model-based FDI methods are primarily

based on precise mathematical models of the system under consideration. Based

on the above discussion, fault diagnosis techniques can be broadly classified into

two categories: (1) model-based fault detection and isolation (FDI) methods, and (2)

artificial intelligence (AI)-based or intelligent model-based fault diagnosis methods.

In model-based fault detection and isolation (FDI) methods, understanding of

the system from the first principles is utilized. Fault detection is performed based on

residual generation and detection decisions are made by examining if the residual(s)

has (have) exceed some pre-defined thresholds. For fault diagnosis, structured resid-

uals; i.e., a set of residuals that are sensitive to a subset of faults are utilized. An

incidence table is usually generated which is essentially a binary matrix with rows

associated with residuals and columns associated with faults. This table provides

a summary of which residual is sensitive to which fault. Usually, only single faults

are considered in order to limit the size of this table. The fault diagnosis problem is

reduced to finding a theoretical fault signature similar to the practical/actual one.

On the other hand, artificial intelligence (AI)-based fault diagnosis methods

utilize “intelligent models” and expert human knowledge and do not require explicit

mathematical models. Some of these techniques utilize numerical data while others

utilize symbolic data and knowledge. Diagnosis is performed based on the knowl-

edge and observations of much a system/component behavior is deviated from the

nominal. As mentioned above, different types of computationally intelligent models

and schemes such as case-based reasoning (CBR), rule-based reasoning (RBR), and

model-based reasoning (MBR) are utilized depending on the depth of the available

knowledge. Empirical and heuristic information as well as the experience of human

experts are encoded as associative knowledge in the reasoning schemes.
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Spacecraft Fault Diagnosis: There exist a variety of fault diagnosis techniques

in the literature which are reviewed in Section 1.5. However, when it comes to the

problem of spacecraft fault diagnosis and health monitoring, diagnostic procedures

are largely dependent on human experts. Although there has been extensive re-

search on model-based fault detection and isolation (FDI) methods in recent years,

model accuracy and model-building cost are the main limitations in transferring

these technologies to industries which have a more detailed information and experi-

ence with various components and subsystems. Furthermore, precise mathematical

models of spacecraft systems and system components are often difficult to obtain

and there are uncertainties in modeling due to incomplete understanding of the

system or system component behaviors, unmodeled environmental effects, etc.

In the operations of Earth-orbiting satellites, typically large amount of teleme-

try data are utilized by the expert human operators located at ground stations [21].

In such cases, in the event of an anomaly, manually finding the cause and making

recovery-related decisions often become a very challenging and a difficult task, if not

impossible, due to the presence of a large amount of telemetry data downloaded.

This approach of spacecraft diagnosis does not scale well for multiple space platform

missions due to an increasing need to make the long-duration missions cost-effective

by limiting the size of the operations team. Therefore, ideally the spacecraft should

achieve the mission goals by autonomously carrying out fault diagnosis and recov-

ery tasks. The need for spacecraft autonomy has been extensively discussed in

the literature, and onboard planning, execution, diagnosis and recovery have been

demonstrated in a deep space mission [22–25]. A framework that facilitates reduc-

ing the operational cost at the ground station for the NASA’s Deep Space Network

is available in [26]. However, in the operation of the Earth-orbiting satellites the

implementation of such onboard autonomous diagnosis and recovery functions and

capabilities has not yet become a common practice due to cost considerations and
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perceived risks. Consequently, it is often desired that expert human operators be

involved in the spacecraft operations and diagnosis processes [27]. The need for effi-

cient utilization of the telemetry data by employing machine learning and rule-based

reasoning have been pointed out in [21] in order to enhance diagnostic performance

and assist the less-experienced personnel in performing monitoring and diagnosis

tasks.

Based on the above observations, it is therefore necessary to develop a system-

atic diagnosis approach for multi-platform missions in order to respond to anoma-

lies within shortest possible time specially when critical health and safety issues are

involved. The effectiveness of such a scheme is to be first demonstrated via imple-

mentation and validation as part of a ground segment automation tool (this will

help limit the size of the operations team) and may be transferred on-board after a

thorough feasibility analysis.

1.3 Related Work and Motivations

From the discussions on spacecraft formation flying and spacecraft fault diagnosis

in Sections 1.1, and 1.2 respectively, it is important to note that there is a need and

desire for the expert human operators’ involvement in the spacecraft operations and

diagnosis processes. In other words, spacecraft actions should be understandable

by the human operators at ground so that intervention may be made, if necessary.

Automated fault detection and diagnosis approaches often do not have good explana-

tion facility to point out the source(s) of detected anomalies. This is another reason

why simple and easily understandable threshold or limit checks are still preferred

in satellite fault diagnosis despite the availability of much sophisticated techniques

in the literature. In the remaining part of this section the works that are related to

this thesis as well as the thesis motivation are discussed.
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Related Work: A hierarchical Fault Detection, Isolation and Recovery (FDIR)

concept for a single satellite system was presented in [28] in order to streamline

and manage FDIR designs of multiple teams across a large number of spacecraft

subsystems during various project phases. However, the authors in [28] present

the concept mainly from the FDIR task management perspective without providing

details on the systematic development of frameworks and methodologies. In [29],

the authors describe the application of a model-based reasoning methodology to

the health management for an Advanced Arresting Gear (AAG) system. In this

work, diagnosing root causes from known symptoms is achieved by tracing upstream

along the causal pathways from the symptoms to the faults. Impact prediction of

root causes is performed by propagating downstream from causes to effects. The

approach relies on quantitative behavioral models to detect incipient problems by

simulating expected behavior and comparing against observed data. Discrepancies

between predicted and observed behaviors trigger diagnosis based on qualitative

fault models. These fault models capture expert diagnostic reasoning and help to

isolate root causes as well as predict future impacts.

A generic hierarchical fault diagnosis approach similar to the work in this thesis

is available in [19]; however, the properties of their hierarchical structure are much

restrictive for applications to complex systems with multiple interactive subsystems.

The purpose of the 3-level hierarchical fuzzy system model that is proposed in [30] is

to model a given system with rules that are “tuned” hierarchically in 3 stages/levels.

Therefore, the hierarchical decomposition goal in [30] is completely different from

that of in this thesis.

The applicability of hierarchical fault diagnosis methodologies that are based

on the discrete-event systems theory is available in [31]. The method in [31] is

restricted to systems that are characterized by discrete events, and does not take into

account uncertainties in the diagnosis model. A systems analysis method known as
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the fault propagation analysis (FPA) is available in [32] that facilitates a systematic

design of fault tolerant control systems by identifying all possible faults in various

components and their effects on the system. The method requires an in-depth

knowledge of the components interactions and serves mostly as an analysis tool for

early design modifications as opposed to a tool for operational fault diagnosis which

is the primary focus of this thesis. Furthermore, unlike the proposed method in this

thesis, FPA does not address uncertainties in the fault manifestations at different

components of the FPA model.

Rule-based reasoning have been extensively used in various applications [30,

33–41] including fault diagnosis. For example, in [37] the authors showed the ef-

fectiveness of a fuzzy logic-based fault isolation scheme on jet engines by utilizing

typical gas path parameters. The author in [38] proposed an extended neuro-fuzzy

scheme for online machinery condition monitoring and applied it on an experimen-

tal setup of a gearbox driven by a d.c. motor in order to classify different gear

conditions. The authors in [39] proposed a rule-based diagnosis method for space-

craft that applies two different data mining techniques namely, time-series pattern

clustering and association rule mining to spacecraft telemetry data.

As mentioned above, the need for efficient utilization of spacecraft telemetry

data by employing machine learning and rule-based reasoning has been identified

in the literature recently. The author in [40] has pointed out that when the system

or the application domain is very large and complex, an entirely rule-based repre-

sentation and associated inference leads to a large and inefficient knowledge base,

causing a poor quality in diagnosis. The author in [40] has reported a method of data

analysis intended for autonomous real-time fault detection and characterization in

spacecraft by utilizing both rule-bases and causal system model without providing

much details on how the models are developed and integrated.

The schemes in [37–39] appear to be suitable for the fault diagnosis of a small
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set of actuators that are operated in isolation. However, there is no information

available on how to utilize or employ such scheme systematically in the presence

of a number of interacting components or subsystems. Eventhough a number of

research on dynamic neural networks [42–46] and machine learning techniques [43,

47] have been related to the fault diagnosis of subsystem components, they do

not provide details on how the methodologies can be applied in the presence of a

large number of interactive components and subsystems. Furthermore, on-board

design and implementation of model-based FDI methods that include parameter

estimation, robust observers and filter design techniques [20, 48–51] may be cost-

prohibitive for a large number of subsystems and their components even if sufficiently

accurate mathematical models are available.

The methodology for quantifying the parameters of the Bayesian networks

(BN) that is developed in this thesis is the result of and is being motivated by

the inapplicability of the existing methods (for example, the ones in [52,53]) to the

system under consideration. The method available in [52] utilizes domain-dependent

constraints that are not relevant to the problem investigated in this thesis. The

method that is available in [53] is also not applicable because it was developed for

ranked nodes whose states are expressed on an ordinal scale which is mapped to

a continuous, monotonically ordered, bounded numerical scale. Note that several

belief or evidence propagation methods in BN are available in the literature [54,

55], and the methods require that the BN parameters of the nodes be specified

numerically. The focus in this thesis has been on the BN-based fault diagnosis

model development (structure and parameters) as opposed to the development of a

belief propagation method.

As mentioned above, although the need for spacecraft autonomy is extensively

investigated in a deep space mission of NASA, in the operation of the Earth-orbiting

satellites the implementation of such onboard autonomous diagnosis functions have
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yet to become a common practice due to cost considerations and perceived risks.

Motivation: As mentioned in Section 1.2, fault diagnosis is considered to be an

integral part of an IVHM system which aims to identify the root cause of faults and

performance degradations. For complex systems such as satellites, it is often the

case that different design and development teams are involved in developing diag-

nostic algorithms for various components and subsystems. When these algorithms

are employed independently and in isolation for diagnosing a specific component or

subsystem, correlating faults that are identified at separate locations will lead to

difficulties in assessing the overall system health. Therefore, a decision support sys-

tem should be developed that would provide the ground personnel with an ability to

perform diagnostic reasoning coherently. The above observations on the limitations

of the existing fault diagnosis schemes are consistent with the problems and generic

fault diagnosis requirements that were encountered during the course of the indus-

trial research and development work reported in [43] which utilized many years of

actual satellite telemetry data.

The focus of this thesis is to develop a methodology for ground station-based

diagnosis of complex multi-vehicle systems, such as the formation flight of satellites,

where telemetry data is available and access to precise mathematical models of the

system under consideration is limited. Since it is desired that the diagnosis model

would provide decision support to human experts, it is reasonable to decompose the

overall system into simpler subcomponents, and to develop a fault diagnosis model

to relate the faults that are occurring at the subcomponents. The systematic design

of such fault diagnosis scheme for satellite formations has not been investigated so

far.
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The above needs and limitations of the existing work have motivated the re-

search that is pursued in this thesis. In this thesis, we develop a novel hierarchi-

cal fault diagnosis framework and methodology which allows systematic diagnos-

tic reasoning across large number of spacecraft components or subsystems. The

general idea is to decompose a complex system hierarchically into simpler mod-

ules/components, and to develop fault diagnosis models that allow the representa-

tion of module/component dependencies.

1.4 General Problem Statement

The overall research objectives are to design, develop and verify/validate fault di-

agnosis framework and methodologies that would enhance the level of autonomy

that is achievable in ground stations, and to determine the advantages as well as

limitations of the proposed approach. The problem to be addressed in this research

can be formally stated as follows:

General Problem Statement

Design, implement and verify/validate a novel hierarchical fault diagnosis (HFD)

scheme that is applicable for fault diagnosis in multi-platform space systems and

enjoys the following properties:

• Transparent and tractable diagnostic reasoning process that is understandable

by expert humans, and allows integration of FD designs performed separately

by a number of design teams,

• Robust against modeling uncertainty with capability for diagnostic decision

making under uncertainty, and

• Flexible for incorporating domain experts’ qualitative and imprecise knowl-

edge.
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Objectives and Scope

In order to address the problem stated above, the following approach is proposed.

Specifically, in order to achieve tractability of the diagnostic reasoning and integra-

tion of FD designs, it is necessary to decompose the complex system (formation

flying system) into different levels of abstraction. Therefore, the first task is to

develop concepts and framework for hierarchical fault diagnosis.

Once the framework is developed, the next task is to model the fault be-

haviors of individual components of the system at different levels in the hierarchy.

Appropriate modeling schemes are to be selected that would provide transparency

in reasoning and robustness against modeling uncertainty. The selected modeling

scheme should also allow flexility for incorporation of qualitative knowledge of the

domain experts.

Next, it will be necessary to relate the fault modes/behaviors of different

components and their manifestations at different levels of the proposed hierarchical

framework. Therefore, it is necessary that appropriate dependency modeling of fault

behaviors be performed that would allow incorporation of imprecise knowledge and

diagnostic decision making under uncertainty. In summary, the following major

tasks are proposed:

• Development of novel hierarchical fault diagnosis concepts and framework that

would allow transparent and tractable diagnostic reasoning.

• Modeling of component fault modes and their interactions by utilizing appro-

priate modeling schemes that would make it possible to satisfy the require-

ments of the general problem stated above.

• Design and development of hierarchical fault diagnosis algorithms and strate-

gies by utilizing the above-mentioned models.

• Verification and validation of the proposed fault diagnosis scheme.
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• Identification of the advantages and the limitations of the developed fault

diagnosis strategies.

In the above generic problem statement, the term “uncertainty” refers to the

unclear fault manifestations in signals that are used for diagnosis as well as the

misidentification of faults that is quantified typically in a standard performance

matrix such as a confusion matrix [56,57]. Therefore, the term “robustness” against

modeling uncertainty refers to an algorithm’s capability to identify faults by using

such unclear fault manifestations, and to utilize uncertainty information that is

available in confusion matrices. Furthermore, the V&V of the proposed schemes that

is investigated in the thesis (in Chapter 7) provides some insights about whether

the proposed scheme would break down due to some given changes in the level of

uncertainty which is considered in design.

As the fault diagnosis problem under consideration is related to ground-based

satellite health monitoring and fault diagnosis, the proposed schemes would not

be subjected to a stringent constraint on computational resources as it would be

typically the case for an on-board fault diagnosis scheme. Furthermore, the emphasis

of this thesis is not on a belief propagation algorithm development (as discussed in

detail in Section 6.2), and a standard belief propagation algorithm is used in the

thesis to demonstrate the effectiveness of the proposed model. The computational

complexity and the scalability of such standard belief propagation algorithms [54,55]

are well-known, and are not investigated in this thesis.

In a well recognized recent work on the standardization of DPHM techniques,

as appears in [56], fault isolation or classification accuracy of 95% within a major

component for flight critical use is recommended. Therefore, in this thesis an overall

fault identification accuracy across various components in the hierarchy is considered

to be acceptable when it is close to 95%. Such fault identification or classification

accuracy has been used as a measure of performance throughout this thesis, and
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further investigation of the optimality of the proposed fault diagnosis schemes has

been considered to be beyond the scope of this thesis.

Finally, the investigation on the V&V of the proposed schemes is mostly related

to the verification of some generic fault diagnosis requirements as opposed to the

validation of the proposed schemes with real satellite formation flight data in a real

operational environment.

Main Assumptions

1. The formation control is based on Leader-follower approach.

2. Efficient fault detection mechanisms (binary decision making mechanism about

the existence of fault(s)) are available that invoke or trigger the proposed fault

diagnosis scheme.

The first assumption is related to the simplicity of the formation control archi-

tecture under consideration. This assumption has significant impact on the forma-

tion level (defined formally in Section 4.1) fault diagnosis rules that are proposed in

Chapter 5. However, as long as the health states and their dependencies are defined

in the same way as that in Chapter 6, the Bayesian network-based fault diagnosis

model that is developed in this thesis would be still applicable to other formation

control architectures. The second assumption simply states that the proposed fault

diagnosis is invoked or initiated when deemed necessary by the user.

1.5 Literature Review

As mentioned in Section 1.2, fault diagnosis techniques for continuous-time as well

as discrete-time systems can be broadly classified into two categories depending on

the types of models they utilize for diagnosis: (1) model-based fault detection and

isolation (FDI) methods, and (2) artificial intelligence (AI)-based fault diagnosis
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methods or intelligent model-based fault diagnosis methods. The literature review

presented below is primarily on the artificial intelligence (AI)-based methods since

these approaches are the main focus of this research. However, for the sake of

completeness, some widely used model-based fault detection and isolation (FDI)

methods are also briefly reviewed.

Model-based fault detection and isolation (FDI) methods are mainly inves-

tigated within the FDI/control community. The methods [20] include parity rela-

tion approaches, parameter estimation approaches, and observer or filter-based ap-

proaches. The main idea behind parity relation approaches [58–60] is to check the

consistency of mathematical relations between (a subset of) outputs and inputs. The

parity space is the space of residuals namely, parity vectors. The overall objective of

this approach is to construct a parity space for the system model under considera-

tion and to analyze its elements for FDI. Fault detection and isolation via parameter

estimation [61, 62] relies on the principle that possible faults in the monitored sys-

tem are associated with specific parameters and states of the mathematical model

of the system. Process parameters that are not directly measurable requires on-line

parameter estimation and these parameters are utilized in the FDI. The main idea

behind observer or filter-based methods [63–65] is to estimate the states of the sys-

tem by using either Luenberger observer(s) or Kalman filters. A popular approach

is to use a bank of estimators (Kalman filters or observers) where each estimator

is designed for a specific fault hypothesis. Recent applications of the model-based

diagnosis in spacecraft subsystem/component FDI are found in [48,51,66,67].

The authors in [68] present a hybrid framework for fault diagnosis of complex

systems that are modeled by hybrid automata where they model a residual generator

by a discrete-event system (DES). The hybrid diagnosis approach is employed to

investigate faults in the fuel supply system and the nozzle actuator of a single-spool

turbojet engine. The authors in [69] discuss a hierarchical model-based approach
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to Integrated Systems Health Management (ISHM) that combines fault detection,

isolation and identification, fault-adaptive control, and prognosis into a common

framework. They demonstrate the approach on a fluid loop of a secondary sodium

cooling loop of a nuclear reactor system.

Model-based FDI methods are very good candidates, especially for fault de-

tection, when the system behavior can be sufficiently approximated by a mathe-

matical model. Note that in this case fault detection can be performed with a

model of healthy system model (without explicit fault models). When it comes to

the problem of diagnosis (the problem of localizing a fault, determining its type,

etc.), residuals that are sensitive to a particular (set of) known faults are evalu-

ated in order to determine what fault has occurred in the system. Therefore, as

pointed out in [20], for residual evaluation/classification, model-based diagnosis ap-

proaches commonly utilize either classification techniques (statistical, geometrical,

neural network-based, fuzzy clustering, etc.) or inference methods (fault symptom

trees, if-then rules, probabilistic/fuzzy reasoning, etc.).

Artificial intelligence (AI)-based fault diagnosis methods do not require ex-

plicit mathematical models of the system; however, they utilize data and domain

knowledge related to the system. As indicated in Section 1.2, AI-based diagnostic

reasoning methods [19] are commonly classified into three main categories, namely

(1) Case-Based Reasoning (CBR), (2) Rule-Based Reasoning (RBR), and (3) Model-

Based Reasoning (MBR). Other approaches are mainly pure data-driven that include

machine-learning (ML) and Neural Network (NN)-based strategies. The MBR ap-

proach includes graph-based models such as logical causal graph models as well as

the Bayesian network (BN) models.

Different types of AI-based fault diagnosis methods are utilized depending

on the depth of the available knowledge. When the system behavior is poorly

understood, and mathematical models and/or diagnostic rules are difficult to derive,
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CBR is employed. RBR is performed when it is possible for the domain experts to

derive rules for diagnosis. When deep understanding of the system behavior and its

component interactions are possible, and rich domain knowledge is available, MBR

is employed for diagnosis. Purely data driven approaches such as neural network-

based models are also utilized for diagnosis. In the subsequent paragraphs, these

artificial intelligence-based techniques are reviewed.

The authors in [70] explored the use of case-based reasoning (CBR) as a tech-

nique for encoding fault management experience of the satellite operators at NASA

for confronting similar anomalous situations in future. The Fault Information Ex-

traction and Investigation Tool (FIXIT), which was implemented in the proof-of-

concept form, utilized spacecraft anomaly reports to generate cases and catego-

rized anomalies according to three levels of abstraction for performing search in the

database. The authors in [71] presented a hybrid CBR architecture for integrated

fault diagnosis and health maintenance of fleet of defense aviation vehicles by utiliz-

ing both textual information from maintenance records as well as sensor data. The

CBR scheme in [72] was applied to fault diagnosis in spacecraft thermal subsystem

by utilizing both actual and synthetic data. Simple time-domain feature extrac-

tion and time-series distance computations were utilizes for case construction and

retrieval. In [73], the authors identified some confidence measures in the CBR for

classification of shutdown events in order to perform effective maintenance, repair,

and possible design improvements of aircraft engines. CBR has also been applied

to process operation support systems [74], dynamic model of a chiller system [75],

online machine fault diagnosis [76], and automotive fault diagnosis [77]. The au-

thor in [78] developed a knowledge-based architecture for integrated condition based

maintenance of fleet vehicles by utilizing dynamic case-based reasoning (DCBR).

Diagnostic expert systems that utilize rule-based reasoning have been exten-

sively used for diagnosis in various applications. The authors in [39] proposed a
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rule-based diagnosis method for spacecraft that applies two different data mining

techniques namely, time-series pattern clustering and association rule mining to

spacecraft telemetry data. When the system or application domain is very large

and complex, an entirely rule-based representation and associated inference leads to

a large and inefficient knowledge base, causing a poor quality in diagnosis. In such

cases, the system is decomposed hierarchically into smaller modules and rule-bases,

built for each module, are connected via a causal system model. For example, in [40]

the authors describe briefly the architecture, application, and operating theory of

BEAM (Beacon-based Exception Analysis for Multimissions) which is an end-to-end

method of data analysis intended for real-time fault detection and characterization

in spacecraft by utilizing both rule-bases and causal system model. Also, in [79] the

authors discussed an architecture that allowed concurrent and cooperative process-

ing of multiple expert systems in a hierarchical organization for real-time monitoring

of spacecraft.

Fuzzy models, where the system/component behavior is represented as fuzzy

if-then rules, are well-known for their robustness against modeling uncertainty. The

authors in [80] presented a fuzzy rule-based approach for diagnosing aircraft engines

where the rule base is derived by using heuristics extracted from designed exper-

iments and flight data representing component performance changes due to field

service degradation. In [37] and [81], the authors presented a fuzzy rule-based ap-

proach for aircraft engine fault isolation by utilizing gas path parameters. In [82],

the authors described an expert system for gas turbine condition monitoring in

which rule-based diagnostic reasoning is performed with causal graphs as well as

model-based diagnosis. In [83], the authors proposed an extension to failure mode

effects and criticality analysis (FMECA) for satellite fault diagnosis by utilizing

fuzzy sets and causal relational methods. The authors in [84] presented a fuzzy

reasoning method that allows to take various types of uncertainty between faults
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and observed symptoms into account. In [85], they discussed a set of practical issues

related to fault isolation in large scale industrial systems by using fuzzy reasoning

methods. Applications of fuzzy rule-based reasoning are also found in fault isola-

tion in analog circuits [86], fault diagnosis in transformers [87], fault diagnosis in

benchmark actuator system [88], and diagnosis in robotic assembly lines [89].

Data driven approaches such as decision/diagnostic trees, and neural networks

have been utilized for fault diagnosis when the model of the system or compo-

nent under consideration is not available. In [90], the authors proposed a decision

tree-based fault diagnosis scheme in which decision trees are constructed by utiliz-

ing simplified model of the process and machine-learning. The effectiveness of the

scheme was demonstrated through an experimental setup of a tank-valve system.

In [91], the authors proposed a fault diagnosis scheme in order to classify different

states of a rotating machine by using decision trees and showed that by utilizing

principal component analysis (PCA), faster tree synthesis can be achieved without

compromising significant classification accuracy. However, the trees do not provide

user-understandable explanation facility that is necessary in fault-cause identifica-

tion and the authors pointed out that their approach had scalability issues.

In [21], the author described how data driven software tools have been applied

to the NASA mission control operations and discussed plans for future mission

control system health monitoring software systems. The authors in [92] used decision

trees to detect and isolate simulated leaks in a rocket engine where high-fidelity

simulated engine data was used to train a decision tree for fault detection and fault

isolation.

The authors in [47] presented a machine learning-based automatic diagnos-

tic tree synthesis approach in order to determine the cause of actuator faults in a

satellite in terms of a set of events. However, the trees do not represent causal de-

pendency among the events. This approach is inspired by fault-trees [93, 94] which
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are primarily reliability analysis models that are widely used as a failure investi-

gation tool in aerospace industries. Generation or synthesis of fault-trees requires

very good understanding and design-phase knowledge of the system, and even the

software-assisted fault-tree synthesis is not time-effective for complex systems [95].

Consequently, the application of fault-tree analysis is more common in reliability

analysis, failure investigations (when the system operation has come to a halt), and

design verifications as compared to the operational fault diagnosis. The authors

in [95] proposed a method for converting fault-trees (reliability analysis models) to

decision trees (diagnostic models), denoted as the diagnostic decision trees (DDT),

which allows time-effective fault diagnosis in space systems. This scheme depends

on the availability of fault-trees for different parts of the system and ignores human

operators’ expertise/knowledge. The authors in [96] proposed an automatic health

monitoring method for spacecraft which adaptively predicts the upper and the lower

limits of each sensor measurement in the telemetry data by using a machine learning

technique known as the regression tree learning.

The authors in [42, 44, 45] have utilized neural networks for fault diagnosis in

the actuators of satellites. However, one of the main limitations of neural networks

is that their diagnostic decision making process is not transparent or understandable

to human experts. In order to overcome this limitation, neuro-fuzzy schemes are

proposed for diagnosis in different applications such as d.c. motor [97], two-link

rigid planar manipulator [98], etc. In [99], a computer-assisted FDI scheme based

on a fuzzy qualitative simulation algorithm was used for fault detection purposes,

coupled with a hierarchical structure of fuzzy neural networks that was used to

perform the fault isolation task. The FDI scheme was applied to a benchmark

actuator system. In [43], the authors integrated a dynamic neural network method

and automatic diagnostic tree/fault tree synthesis method for fault diagnosis in the

attitude control subsystem (ACS) of a satellite by utilizing actual telemetry data.
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Through this integration, it has been possible to both detect faults and identify

fault-causes in the ACS.

Model-based reasoning (MBR) is based on the deep knowledge of the struc-

ture and behavior of the system. In his classical paper [100] on MBR, the author

presented a “constraint suspension” approach for diagnosis of digital electronic cir-

cuits. The overall strategy is based on progressive relaxation of the underlying

assumptions about the correct functioning of devices that are made systematically

and utilized in diagnosis. Logical causal graph-based models are also utilized in

model-based reasoning. For example, the authors in [101] presented a multi-level

diagnostic reasoning procedure based on causal models (AND/OR causal graphs).

This method is developed based on sound logic without taking any uncertainty into

account. In [102], authors presented an adaptive fuzzy inference causal graph ap-

proach for fault detection and isolation of field devices including sensors, actuators,

and controllers in nuclear power plants. In this approach, nuclear plant systems are

represented as a causal graph consisting of individual process variables that are con-

nected with adaptive fuzzy inference system models. The authors in [103] presented

a distributed, model-based, qualitative fault-diagnosis approach for formation of

mobile robots. This approach is based on a bond-graph modeling framework that

can deal with multiple sensor types and isolate process, sensor, and actuator faults.

The authors in [104] developed a fast sensor fault diagnosis approach for component

failures in large scale systems. Their approach is based on a precise and integrated

statistical modeling of the fault isolation and sensor error processes where the prob-

abilities of missed detection and of false alarms are not known a priori and must be

estimated online.

Bayesian networks (BN) are used for uncertain causal dependency modeling

and fault diagnosis in different applications. In [105], the authors identified BN as

the most suitable computational method for spacecraft FDIR because of its ability
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to process uncertain information about dependencies among system components,

observation about the status of the components, effects of different alarms, etc.

In [106], the authors proposed a Bayesian network-based probabilistic reasoning

and statistical learning method for fault diagnosis in spacecraft thrusters by utiliz-

ing telemetry data. In [107], the authors utilized influence diagrams (generalized

Bayesian networks) for fault diagnosis and decision making about corrective actions

in gas turbine applications.

The authors in [108] pointed out that without systematic Bayesian network

model construction techniques, BNs may never become widely used in practical di-

agnostic systems. They discussed systematic Bayesian network model construction

by decomposing the overall problem into subproblems and representing the subprob-

lems with simplest Bayesian networks. In [109], they proposed a large layered BN

structure as a decision support tool for locomotive systems. In [110], the authors

presented a novel form of layered dynamic Bayesian network model for the prognosis

of electromechanical and electronic subsystems in aviation.

The authors in [111] present an uncertainty management approach for diag-

nostics and prognostics algorithms. In their approach, a Relevance Vector Machine

(RVM), which is a Bayesian treatment of the Support Vector Machine (SVM), is

used for model identification; while a Particle Filter (PF) framework uses the learnt

model, statistical estimates of noise and anticipated operational conditions to pro-

vide estimates of the remaining useful life (RUL) in the form of a probability density

function (PDF). The authors in [112] designed a hierarchical hybrid Bayesian net-

work structure for information integration for security applications. In this struc-

ture, BNs are adopted in the top (decision) layer to address global assessment and

hidden Markov models (HMM) functions in the bottom (observation) layer to report

processed evidence to the BN. In [113], the authors presented a hierarchical system

architecture for managing accountability in a service oriented architectures (SOA).
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They identified root cause of service delivery failure by utilizing Bayesian network

reasoning.

In [114], the authors described the “remote agent flight experiment” in which

an AI-based diagnostic system namely, Livingstone that consists of a mode identifi-

cation (MI) component was designed to perform fault diagnosis. Spacecraft compo-

nents’ states were modeled as a set of discrete component modes rather than a set

of low-level sensor readings. Inferred mode changes were reported to a central exe-

cution system for diagnosis and recovery. In [115], authors presented a distributed

real-time model-based diagnosis (DRMD) system that combines rule-based reason-

ing with model-based diagnosis. DRMD utilizes Livingstone’s modeling language,

called model-based programming language (MPL) and finds the most likely mode

with a much simple algorithm as compared to that in the Livingstone which al-

lows DRMD to deliver hard real-time performance. DRMD was tested on a space

interferometer test-bed.

The authors in [116] discussed the issues related to the implementation of AI-

based FDIR for onboard autonomy that have been identified in the SMART-FDIR

project, an ESA research study. In [117], the author proposed a methodology and

framework for incorporation of FDIR in on-board software (OBSW) of ESA satel-

lites. In [118], the author proposed formulation of spacecraft health management

by defining six generalized health management decisions and developed a method

for modeling spacecraft component dependencies. In [28], the authors presented a

hierarchical FDIR framework for spacecraft systems in order to implement system-

atic FDIR scheme within the project development. The framework is based on the

experiences from different ESA projects.

Benchmarking and standardization of diagnostic and prognostic algorithms

have been investigated by several authors recently. The authors in [119] described

a formal framework that was developed for benchmarking of diagnostic algorithms.
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The diagnosed system is the Advanced Diagnostics and Prognostics Testbed (ADAPT),

a real-world electrical power system (EPS). In [120], the author introduces several

new evaluation metrics tailored for prognostics and show that the tailored metrics

can effectively evaluate various algorithms as compared to other conventional met-

rics. The recommended practice in [56] investigated metrics that may be useful

in evaluating vibration-based diagnostic algorithms as health monitors in vehicle

health and usage management systems.

1.6 Contributions of the Thesis

In this thesis, a hierarchical fault diagnosis framework that allows transparent di-

agnostic reasoning is proposed. Within the proposed framework, the main contri-

butions of the thesis are as follows:

1. Designed and developed a fuzzy rule-based hierarchical fault diagnosis scheme:

(a) Formalized the proposed fault diagnosis with a hierarchical fault diagnosis

model (HFDM).

(b) Developed fuzzy rules for fault diagnosis in different levels in the hierar-

chy.

(c) Proposed a hierarchical fault diagnosis algorithm for identifying the faulty

components in the system.

2. Designed and developed a Bayesian network-based hierarchical fault diagnosis

scheme:

(a) Formalized the proposed fault diagnosis with a Bayesian network-based

component dependency model (CDM).

(b) Developed a novel Bayesian network structure, and an approach for

health state definition and mapping in the CDM.
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(c) Developed a novel methodology for determining CDM parameters from

confusion matrix data.

3. Evaluated the performances of proposed component fault diagnosis schemes,

and performed the V&V of the proposed hierarchical fault diagnosis model.

(a) Proposed and developed a sensitivity analysis-based CDM verification

approach.

(b) Demonstrated the verification of the CDM that is implemented in this

thesis.

In addition, the advantages and the limitations of the developed fault diagnosis

schemes in items 1 and 2 above have been identified.

1.7 Organization of the Thesis

The organization of the remaining parts of this thesis is as follows: In Chapter 2,

the background information that are utilized in this thesis are briefly reviewed. In

Chapter 3, the modeling of a formation flight system and formation flight synthetic

data generation are discussed. In Chapter 4, the proposed hierarchical framework

for satellites formation flight fault diagnosis is discussed in detail. In Chapter 5,

the proposed hierarchical fault diagnosis framework is formalized and a fuzzy rule-

based fault diagnosis methodology within the proposed framework is presented. In

Chapter 6, a Bayesian network-based fault diagnosis methodology is investigated

and developed. In Chapter 7, the verification and validation of the above fault

diagnosis schemes are investigated. Finally, conclusions and future work are stated

in Chapter 8.
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1.8 Summary

In this chapter, the state-of-the-art on multi-platform space missions namely, space-

craft formation flying missions, spacecraft fault diagnosis and spacecraft autonomy

are discussed. The problem of multi-platform space systems fault diagnosis, which

is the focus of this research, is discussed and motivations for pursuing this research

are outlined. Next, the thesis contributions are summarized, and the organization

of the thesis is presented. Finally, an extensive literature review on fault diagno-

sis methodologies, with an emphasis on the artificial intelligence (AI)-based fault

diagnosis methods is presented.
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Chapter 2

Fault Diagnosis using Fuzzy

Rule-Based Reasoning and

Bayesian Model-Based Reasoning

In this chapter the methodologies that are necessary for this research are briefly

reviewed and discussed.

2.1 Fuzzy Rule-Based Fault Diagnosis

In this section, a brief review of fuzzy reasoning-based fault isolation is discussed

based on the formulation available in [19, 84, 85]. For fault isolation in physical

systems, relationships among observed symptoms and faults is necessary. Symp-

toms are the manifestation of faults available diagnostic signals (measured from the

process or calculated). Therefore, symptoms are obtained by monitoring some pre-

identified diagnostic signals that are of one of the following types [19]: (1) residuals

generated based on system models, (2) binary or multi-valued signals resulted from

residual classification/quantification, (3) statistical parameters (features) describing

signal properties, and (4) process states and/or variables (measured or calculated).
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Let F = {fk : k = 1, ......K} be a finite set of K faults under considera-

tion and S = {sj : j = 1, ......J} be a finite set of J available diagnostic signals.

Each diagnostic signal sj ∈ S can then have a set of possible values Mj where,

Mj = {mj,a,mj,b...mj,z}, called the domain of sj, is a fuzzy set with fuzzy/lingustic

variables mj,a,mj,b...etc.. Note that the number of variables in Mj for each sj need

not necessarily be the same. In practice, usually two- or three-valued signals are

considered for simplicity; for example, Mj = {mj,a,mj,b,mj,c} for a three-valued

diagnostic signal sj ∈ S. Consequently, for each value mj, a membership function

µ(mj) ∈ (0, 1) is determined which essentially represents the degree of truth that

the value of sj is mj.

A mapping S × F →M is defined which assigns to each pair 〈sj, fk〉 a subset

of the values Mj,k ⊂ Mj. Note that Mj,k are the possible values (considered as

manifestations) of sj when fault fk occurs. A fault signature model (FSM), with

matrix representation M(fk) is constructed in which the k-th column of M is called

the signature of the fault fk:

M =


M1,1 ... M1,K

... Mj,k ...

MJ,1 ... MJ,K

 (2.1)

Note that the k-th column of M represents a complex signature that may consist

of multiple elementary signatures (refer to [19,84] for detail). Relationships among

faults and symptoms are expressed in the form of if-then rules such as:

If (s1 ∈M1,k) and... (sj ∈Mj,k) ...and (sJ ∈MJ,k) then (fk) (2.2)

Complex premise fulfillment factor is determined as follows:

µ(sj ∈Mj,k) = µ(sj ∈ mj,1)⊕ µ(sj ∈ mj,2)......⊕ µ(sj ∈ mj,n) (2.3)
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for n-valued evaluation of sj. The symbol ⊕ represents fuzzy sum operator, for

example, s-norm operators such as MAX or drastic sum (refer to [121] for further

detail on the operator). The activation level for the rule for k-th fault is given by:

µ(fk) = µ(s1 ∈M1,k)⊗ ...(sj ∈Mj,k)⊗ ...(sJ ∈MJ,k) (2.4)

where the symbol ⊗ represents fuzzy conjunction operator, for example, t-norm

operators such as MIN or PROD (refer to [19, 121] for further detail on the opera-

tors). Diagnosis is formulated on the basis of rule activation level. Identified faults

usually have rule activation level higher that some pre-defined fixed threshold value

H, which is available from expert knowledge and/or through observation of nomi-

nal activation due to the presence of noise and disturbances acting on the system

according to:

Fisolated = {fk : µ(fk) > H} (2.5)

2.2 Bayesian Model-Based Reasoning

A brief background study on Bayesian networks is provided in Sections 2.2.1 and

2.2.3. The reviews in the subsequent sections are based on [54], [122], and [55].

2.2.1 Probabilistic Reasoning using Bayesian Networks

Bayesian inference is based on the “degree of belief” interpretation of probability

as opposed to classical statistical inference which is based on a long-run frequency

interpretation of probability. The heart of Bayesian techniques lies in the celebrated

inversion formula:

P (X|e) =
P (e|X)P (X)

P (e)
(2.6)
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which states that the belief about a hypothesis X upon obtaining evidence e can

be computed by multiplying previous belief P (X) by the likelihood P (e|X) that

e will materialize if X is true. P (X|e) is called the posterior probability, and

P (X) is the prior probability. The denominator is merely a normalizing constant

P (e) = P (e|X)P (X) + P (e|¬X)P (¬X), which can be computed by requiring that

P (X|e) and P (¬X|e) sum to unity. Equation (2.6) is regarded as a normative rule

for updating beliefs in response to evidence.

A Bayesian network (BN) consists of the following: A set of variables and a

set of directed edges between variables; where each variable has a finite set of mu-

tually exclusive states, are characterized so that the variables together with the di-

rected edges form a directed acyclic graph (DAG). To each variable Xi, with parents

U1, U2, ..., Un there is a attached conditional probability distribution P (Xi|U1, ..., Un).

For a BN over X = {X1, ..., Xn}, the joint probability distribution P (X) is the prod-

uct of all conditional probabilities specified in BN:

P (X) =
∏
i

P (Xi|pa(Xi)) (2.7)

where, pa(Xi) is the parent set of Xi.

Let BN be a Bayesian network over the universe of variables U , and let ai,

where i = 1, 2, ..., n, be a state of A ∈ U and bj, where j = 1, 2, ...,m, be a state of

B ∈ U . The probability of observing joint outcomes is expressed by joint probability.

The joint probability table P (A,B) consists of n.m numbers and is represented in

an n × m table. From a joint probability table P (A,B), the probability P (A) is

calculated as follows:

P (ai) =
m∑
1

P (ai, bj) (2.8)

This calculation is called marginalization, and we say that the variable B is

marginalized out of P (A,B), thus resulting in P (A). The widely used notation
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is as follows:

P (A) =
∑
B

P (A,B)

Probability Potentials

Multiplication and marginalization of tables are possible. The tables needs not be

(conditional) probabilities, and they are generally called potentials. A potential φ is

a real-valued function over a domain of finite variables X :

φ : sp(X )→ R

where sp(X ) is the span of X . The domain of a potential is denoted by dom(φ). For

example, the domain of the potential φ(A,B|C) is dom(P (A,B|C)) = {A,B,C}.

Two potentials can be multiplied, and he multiplication has several properties

that include dom(φ1, φ2) = dom(φ1) ∪ dom(φ2) in addition to commutative law,

associative law, and distributive law, existence of unit potential properties (refer

to [55] for details).

The marginalization can be generalized to potentials so that
∑

A φ is a poten-

tial over dom(φ)\{A}. Marginalization is commutative:

∑
A

∑
B

φ =
∑
B

∑
A

φ

2.2.2 Belief Updating in Bayesian Networks

In this section belief/information propagation and belief updating in Bayesian net-

works are reviewed. Various information propagation methods that are available in

the literature are discussed in [55] (in Chapter 4). In the subsequent paragraphs,

belief updating in causal poly-tree type Bayesian networks is reviewed.

Belief Updating by Unidirectional Information Propagation

In a simple tree structured network with two nodes and one link, X → Y , the
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directed link is quantified by a conditional probability distribution or a fixed condi-

tional probability matrix MY |X in the discrete case:

MY |X , P (Y |X) =


P (y1|x1) ... P (yN |x1)

... P (yn|xm) ...

P (y1|xM) ... P (yN |xM)

 (2.9)

If an evidence e− = {Y = y} is observed, then from Baye’s rule, the belief distribu-

tion of X is given by:

BEL(X) , P (X|e−) = αP (X)λ(X) (2.10)

where, α = [P (e−)]−1 is a normalizing constant, P (X) is the prior probability of

X, and λ(X) is the likelihood vector or diagnostic support contributed by the child

which corresponds to the y’s column of the link matrix MY |X , namely:

λ(X) = P (e−|X) = P (Y = y|X) = MY |X (2.11)

If Y is not observed directly but supported by an indirect observation e− = {Z = y}

in a chain X → Y → Z, then

λ(X) = P (e−|X) =
∑
y

P (e−|Y,X) =
∑
y

P (e−|Y )P (Y |X)

= MY |Xλ(Y )

(2.12)

Belief Updating by Bidirectional Information Propagation

Let a chain be e+ → T → U → X → Y → Z → e− as shown in Figure 2.1; where

e+ and e− are the evidences connected to X through its parent U and child Y ,

respectively. The impacts of e+ and e− on X are expressed in two separate vectors

π(X) = P (X|e+) and λ(X) = P (e−|X); where, λ(X) is called the diagnostic support

contributed by child (as above), and π(X) is called the causal support contributed by
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Figure 2.1: Belief calculation using bidirectional message passing (adopted from
[55]).

parent, where

BEL(X) , P (X|e−, e+) = αP (e−|X, e+)P (X|e+)

= αP (e−|X)P (X|e+) = αλ(X)π(X)

(2.13)

which is identical to Equation (2.10) with π(X) replacing the prior probability P (X).

Conditioning π(X) = P (X|e+) on the parent variable U we obtain:

π(X) = P (X|e+) =
∑
u

P (X|U, e+)P (U |e+) =
∑
u

P (X|U)π(U)

= π(U)MX|U

(2.14)

Therefore, from Equations (2.12, 2.13, 2.14) it is observed that in order to compute

belief distribution BEL(X), a node requires π(U) of its parent and λ(X) of its child.

Figure 2.2: A fragment of a poly-tree (adopted from [55]).

Now, consider a fragment of a poly-tree (the tree is singly connected namely, no
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more than one path exists between any two nodes, as shown in Figure 2.2) consisting

of a node X, the set of all X’s parents, U = {U1, U2, ..., Un}, and the set of all X’s

children Y = {Y1, Y2, ..., Ym}. Let e be the total evidence obtained, e−X be the

evidence connected to X through its children Y, and e+
X be the evidence connected

to X through its parents U. Moreover, e−X and e+
X are further decomposed into

e−X = {e−XY1
, e−XY2

, ..., e−XYm} and e+
X = {e+

U1X
, e+

U2X
, ..., e+

UnX
}, respectively.

Incoming information to X are: λYj(X) : j = 1, 2, ...,m and πX(Ui) : i =

1, 2, ..., n. Outgoing information from X are: λX(Ui) : i = 1, 2, ..., n and πY j(X)

: j = 1, 2, ...,m. Stored information is the fixed conditional probability matrix

P (X|U1, U2, ..., Un) that relates X to its immediate parents. Utilizing the incoming

information, at X, λ(X) and π(X) are computed so that the belief distribution

BEL(X) can be obtained according to:

λ(X) , P (e−X |X) = P (e−XY1
, ..., e−XYm |X) = P (e−XY1

|X)...P (e−XYm|X)

=
m∏
j=1

λYj(X)
(2.15)

π(X) , P (X|e+
X) =

∑
U1,...,Un

P (X|U1, ..., Un)P (U1|e+
U1X

)...P (U1|e+
UnX

)

=
∑

U1,...,Un

P (X|U1, ..., Un)πX(U1)...πX(Un)

=
∑

U1,...,Un

P (X|U)
n∏
i=1

πX(Ui)

(2.16)

The outgoing information from X are computed as follows:

λX(Ui) = β
∑
X

λ(X)
∑
Uk:k 6=i

P (X|U1, ..., Un)
∏
k 6=i

πX(Uk) (2.17)
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πYj(X) = α
∏
k 6=j

λYk(X)π(X) (2.18)

2.2.3 Sensitivity Analysis

Let BN be a Bayesian network with evidence e. Assume that there is a single

hypothesis variable H, and let a particular state h of H be in focus of interest. Let t

be a set of parameters of the BN (a parameter is an entry in a conditional probability

table (CPT)). One is interested to know how P (h|e) varies with t. Therefore, the

probabilities must be expressed as the functions of the parameters which is discussed

next for a binary variable.

Let X be a binary variable, and let π be a configuration of X’s parents pa(X).

Then t = P (X = x|π) is a parameter (an entry in a CPT), but consequently P (X =

x̄|π) = 1 − t co-varies with t. If X has more that two states, proportional scaling

is assumed, that is the remaining probabilities are scaled by the same factor. If X

has n states, and x1 is a parameterized state, it is assumed that P (X|π) = (t, (1−

t)x2, ..., (1− t)xn), where
∑
xi = 1. It is possible to deal with several parameters in

the same distribution. If, for example, the first two states are parameterized, one

would require P (X|π) = (t, s, (1− t− s)x3, ..., (1− t− s)xn). Then, s does not scale

when t is changed. The following assumes proportional scaling, and at most one

parameter per distribution.

Theorem 2.2.1 (P (e) as a function of a parameter [55]). Let BN be a Bayesian

network over the universe of variables U . Let t be a parameter and let e be evidence

entered in BN . Then assuming proportional scaling, we have P (e)(t) = αt + β;

where α and β are real numbers.

Let t = (t1, ..., tm) be a set of parameters, and let pol(t) be a polynomial over

t. The polynomial pol(t) is said to be multilinear if all exponents in the expression

are of degree at most 1. If so, it has a term for each subset of t.
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Corollary 2.2.1 (P (e)(t) is multilinear [55]). Let BN be a Bayesian network over

the universe of variables U . Let t be a set of parameters for different distributions

and let e be evidence entered to BN . Then assuming proportional scaling, P (e)(t)

is a multilinear polynomial over t.

Corollary 2.2.2 (P (h|e)(t) is a fraction of multilinear polynomials [55]).

Let BN be a Bayesian network over the universe of variables U . Let t be a set of

parameters for different distributions and let x be a state of X ∈ U and let e be

evidence. Then P (h|e)(t) is a fraction of two multilinear polynomials over t.

For a parameter t, Corollary 2.2.2 yields that P (h|e) has the form

P (h|e) =
αt+ β

at+ b
=
P (h, e)

P (e)
(2.19)

2.3 Summary

In this chapter, background information that are necessary for this research are

provided. The topics include fuzzy rule-based fault diagnosis, and probabilistic

reasoning using Bayesian networks.
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Chapter 3

Modeling of Multi-Platform Space

System and Synthetic Data

Generation

In this thesis synthetic formation flight data has been utilized in order to demon-

strate the effectiveness of the fault diagnosis schemes that are developed and to

evaluate the performances of the fault diagnosis schemes. Note that utilization of

synthetic formation flying system data has been necessary due to the unavailabil-

ity of actual telemetry data from multi-platform or formation flight space missions

which are still mostly in the planning and design stages. First, description of the

data generation model is provided in the subsequent paragraphs and sections.

A satellite consists of a number of interacting subsystems. In this thesis,

the focus is only on some selected subsystems. Primarily, faults that are related

to the attitude control subsystem (ACS) actuators are investigated; specifically

the reaction wheel actuators. For this purpose, sufficiently accurate ACSs with a

“Leader-Follower” formation control architecture with high-fidelity subsystem com-

ponents/actuator models have been implemented. In addition, a simplified satellite
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electrical power subsystem (EPS) model has been utilized. The following are the

characteristics and assumptions that are associated with the implemented leader-

follower formation flight simulation model:

• Attitude control is not coupled with orbital control, and the satellites’ reference

attitude (desired attitude manoeuvres) as well as the external disturbances are

computed and specified based on the following assumptions:

– The leader is in a Keplerian orbit, orbit type: LEO, altitude 550 km

(refer to Section 3.1 for details)

– The followers follow an elliptical orbit around the leader, and maintain

the same attitude with respect to the leader (refer to Sections 3.1 and

3.2 for details)

• Attitude controllers are designed for each axis based on PID control laws (refer

to Section 3.2.1)

• A high fidelity reaction wheel actuator [123] model is implemented that in-

cludes motor driver/torque control mechanism, motor disturbances such as

cogging and ripple torques, Coulomb and viscous friction, torque noise that

results due to lubricant dynamics, and EMF torque limiting (refer to Section

3.2.2)

• Ideal attitude sensor dynamics is assumed

• Worst-case environmental disturbances are assumed: cyclic magnetic torque

and constant gravity gradient and aerodynamic torque are applied (refer to

Section 3.2.3)

• Virtual test bed (VTB) [124,125] simulation is used to generate EPS data
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– VTB includes a solar array illumination model, a solar array model, a

controller or simplified power distribution and control unit (PDCU), a

battery model, and a voltage regulator

– EPS data is generated by setting the assumed orbital characteristics as

mentioned above

• Pre-generated EPS data is fed to ACS which implies that the EPS behavior

impacts the ACS but the converse is not true (refer to Section 3.3 for details)

In the subsequent sections, the ACS and the EPS models that are utilized for

synthetic fault data generation are discussed in some detail.

3.1 System and Mission Parameter Selection

The primary interest of this research is on the faults that are related to the ACS and

the EPS of satellites in a formation flight. The orbital control subsystem (OCS),

in general, has significant impact on the ACS of a satellite. However, for faults

at steady state conditions, it is reasonable to assume that the two subsystems are

decoupled. Furthermore, in order to generate reference attitude states for individual

satellites in the formation, it is necessary to know the orbital parameters (desired

orbit altitude, orbit inclination, etc.) as well as the desired formation geometry

or the desired relative position of the satellites in the formation even though one

assumes that spacecraft orbital dynamics is decoupled from its attitude dynamics.

Furthermore, orbit characteristics play a significant role in determining worst-case

attitude disturbance toques. In this research planetary environment orbit (PEO)

formations are considered. PEO formations for scientific observation synergy as

well as interferometric synthetic aperture radar (InSAR) applications often require

to maintain fixed formation configuration/pattern [5, 6, 126]. In the case of circular

orbits with inter-spacecraft separation distances less than 1 km, it is possible to
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derive a closed form relative motion equations known as the Clohessy-Whiltshire

or the Hill’s equations [127]. Assuming that the Leader satellite is in a Keplerian

orbit, the “special class of periodic solution” of Hill’s equation provide orbits for each

follower relative to the Leader [128]. Based on the information available in [6, 129],

it is reasonable to assume a Sun-synchronous Low Earth Orbit (LEO) with 550 km

altitude (orbital period: 95 min (approx.)); i.e., the orbital specification in terms

of the six classical orbital elements [130] for the leader satellite is as follows: semi-

major axis, a = 6928 km; eccentricity, e = 0 (circular orbit); time of perigee passage,

tp = 0 s; right ascension longitude of the ascending node Ω = 0 degrees; inclination

of the orbit plane, i = 97.5 degrees; and argument of perigee, ω = 0 degree. It is

Figure 3.1: Orbits of the satellites in formation based on the special solution of the
Hill’s equation and its projection on ground (adopted from [128,131]).

further assumed that the follower satellites’ desired orbits are specified by utilizing

the solutions of Hill’s equations (as available in [128]) and the followers circle the

Leader satellite in an elliptical orbit such that the projection of this ellipse on the

ground (area covered on the ground) has a circular shape with a desired radius of
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800 m as shown in Figure 3.1. For case study, a formation of 5 (five) satellites is

considered where a dotted arrow in Figure 3.1 from satellite-j to satellite-i indicates

that attitude of satellite-i can be obtained with respect to satellite-j. Though it is

possible to employ big satellites (with approx. 1000 kg mass) in formation-flying

mission, tight formation flying (inter-satellite distance less than 1 km) of small

satellites is considered in this thesis. Therefore, based on the information available

in [132], mass of each satellite has been selected as 100 kg with principal moment

of inertia [Ixx, Iyy, Izz] = [5, 5, 4] kg-m2. It is assumed, for the sake of simplicity and

without loss of generality, that all the satellites in the formation have identical mass

and inertia.

3.2 Attitude Control Subsystem (ACS)

In general, in this research a formation of satellites with a single leader and n

followers is considered. Three coordinate frames are used, namely: (1) a reference

frame F0 is used as an inertial frame whose origin is at the center of the Earth,

(2) a reference frame FL embedded at the center of mass of the leader as a body

frame which rotates with the spacecraft and represents its orientation, and (3) a

local vertical local horizontal (LVLH) reference frame Fi attached to the orbit of

each satellite. The RAC-reference frame is used as a spacecraft-centered frame (as

opposed to the roll, pitch, yaw (RPY) frame) in which x, y, z coordinates correspond

to radial, along-track (direction of motion), and cross-track (perpendicular to orbit

plane) directions, respectively.

Attitude of a satellite can be represented in different ways with sets of variables

such as the Euler angles, direction cosine matrix (DCM), Euler parameters (some-

times called quaternion), etc. Euler angles consist of three successive rotation angles

(φ, θ, ψ) around the x, y, z axes of satellite’s body frame. The main advantage of
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the Euler angle representation is that it provides easy visualization of the rotations

and orientation of the satellite. Despite its advantages, the presence of singularities

at specific angles limits applicability of the Euler angle representation to small rota-

tions. For this reason, in this thesis, quaternion representation [133,134] is utilized

for spacecraft attitude. An angular displacement can be specified by the Euler pa-

rameters or unit quaternion q̄ = (~q, q0) which is defined as: ~q = [q1, q2, q3]T , ~a. sin φ
2

and the auxiliary parameter q0 , cos φ
2
. In this notation, ~a is a unit vector in the

direction of rotation with coordinate representation [a1, a2, a3]T , called eigenaxis,

and φ is the rotation angle about ~a. By definition, unit quaternion is subject to the

constraint that ~qT~q + q2
0 = 1. Note that a unit quaternion is not unique since q̄ and

−q̄ represent the same attitude. However, uniqueness can be achieved by restricting

φ to 0 ≤ φ ≤ π so that q0 ≥ 0.

Furthermore, given a vector ~v = [v1, v2, v3]T , the cross product operator is

denoted by:

~v× =


0 −v3 v2

v3 0 −v1

−v2 v1 0

 (3.1)

which represents the fact that ~v × ~ω = ~v×~ω. The product of two unit quaternion p̄

and q̄ is defined as:

p̄q̄ =

 q0~p+ p0~q + ~q × ~p

q0p0 − ~qT~p

 (3.2)

which is a unit quaternion as well. The conjugate of q̄ is defined as q? =
[
−~qT , q0

]T
.

The multiplicative identity quaternion is denoted by 1 = [0, 0, 0, 1]T , where, q̄?q̄ =

q̄q̄? = 1 and q̄1 = 1q̄ = q̄. If q̄d and q̄ represent desired and actual attitude

respectively, then the attitude error is given by q̄e = q̄d?q̄, which represents the

attitude of the actual frame F with respect to the desired frame F d. Finally, the
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rotational dynamics of a spacecraft relative to the inertial frame F0 are as follows:

~̇q = −1

2
~ω × ~q +

1

2
q0~ω

q̇0 = −1

2
~ω.~q (3.3)

J~̇ω = −~ω × (J~ω) + ~τ

where, ~ω = [ωx, ωy, ωz]
T represents the angular velocity of the satellite, ~q is the vector

and q0 is the scalar part of the quaternion, J is the inertia matrix and τ = [τx, τy, τz]
T

are the torques associated with the spacecraft.

3.2.1 Leader-Follower Formation Attitude Control

It is assumed in this thesis that the 5 (five) satellites in the formation under

the assumed mission scenario (as discussed in Section 3.1) would perform syn-

chronous/collaborative attitude maneuvers. Since the follower satellites circle around

the Leader at the orbital rate, in order to ensure contact or line-of-sight with the

followers, the leader rotates around the X axis at the same rate. In addition, it also

rotates around the Z axis for the Earth pointing. Now, according to the leader-

follower formation control architecture, the followers are required to maintain their

position as well as the attitude with respect to the leader. As mentioned in Section

3.1, a fixed formation configuration is assumed. Therefore, in this case the follow-

ers are required to maintain the same attitude as that of the leader relative to the

inertial frame F0.

For control and especially for diagnosis purpose, it is reasonable to utilize Eu-

ler angles. The reason for utilizing Euler angles is that attitude control performance

specifications are usually available in terms of error in the Euler angles and the

ground support personnel responsible for fault diagnosis are more comfortable deal-

ing with Euler angles. Since the spacecraft attitude dynamics is specified in inertial
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frame, PID controllers [135, 136] (with ±5V limit or saturation for the control sig-

nal) are implemented for each axis of the leader based on “errors in terms of Euler

angles” w.r.t. inertial frame obtained by performing the quaternion to Euler angle

transformation (as discussed in Section 3.2). Followers’ PID controllers (with ±5V

limit or saturation for the control signal) have been designed based on “errors in

term of the Euler angles” w.r.t. Leaders body-fixed frame obtained by performing

the quaternion to Euler angle transformations.

3.2.2 Subsystem Component Model

In the model for synthetic data generation, the high fidelity mathematical model

of the Ithaco Type-A reaction wheel that is available in [123] is utilized. As shown

with a simplified schematic diagram in Figure 3.2, the model consists of detailed

mathematical representation of a reaction wheel containing relationships to repre-

sent motor driver/torque control mechanism, motor disturbances such as cogging

and ripple torques, Coulomb and viscous friction, torque noise that results due to

lubricant dynamics, the “EMF torque limiting” phenomenon at high speed, safety

mechanism for limiting speed, and torque bias discontinuity. Detailed discussion on

the model and the reaction wheel parameter values are available in [123] and is not

presented here. Under fault-free conditions, the reaction wheel is capable of deliver-

ing a maximum of ±40mN-m torque in response to a ±5V torque command input

voltage and operates within the speed range of ±5100rpm. For this research, the

reaction wheel model has been modified to accommodate and support fault injection

capabilities.

Ideal dynamics for attitude sensors are assumed; i.e., signals from sun sensors,

horizon scanners, magnetometers, etc. have been assumed to be fed back to the

attitude controller without any error or time delay.
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Figure 3.2: A simplified schematic diagram of a reaction wheel (adopted from [123]).

3.2.3 Environmental Disturbance Models

Satellites in a LEO orbit are subjected to different types of environmental distur-

bance torques such as magnetic, gravity gradient, aerodynamic, and solar radiation.

The following disturbance models and parameters have been selected based on the

information that is available in [137] and the mission specifications presented in

Section 3.1.

Magnetic: The maximum magnetic torque that occurs in a polar orbit is given by:

Tmag = DB; where D is the residual dipole of the spacecraft and B is the Earth

magnetic field. B can be approximated as B = 2M
R3 ; where, M is the magnetic

moment of the Earth (M = 7.96 × 1015 tesla-m2) and R is the radius of the orbit

(in our case, R = 6928 × 103 m). Note that the magnetic torque is cyclic over

the spacecraft orbit (as selected in Section 3.1) with peak value at the poles and

half of the peak value at the equator. Consequently, the frequency of this cycle is

twice that of the orbit. In this thesis the following is assumed, i.e.: D = 0.8 A-m2

(ampere-turn-m2). Therefore, in this case, Tmag = 3.83× 10−5 N -m.
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Gravity Gradient: The maximum gravity torque is given by: Tgrg = 3µ
2R3 |Ixx −

Izz| sin(2θ); where µ is the Earth’s gravity constant (3.986 × 1014 m3/sec2), θ is

the maximum deviation of x-axis (radial direction) from local vertical in radians,

and Ixx and Izz are the spacecraft inertia as provided in Section 3.1. In this thesis

θ = 0.1 degree is assumed. Therefore, in this case, Tgrg = 6.28× 10−9 N -m.

Aerodynamic: The maximum aerodynamic torque is given by: Taero = F (cpa−cg);

where F is the force. F is approximated by F = 0.5ρCdAV
2; where cpa is the center

of aerodynamic pressure, cg is the center of gravity, ρ is the atmospheric density,

Cd is the drag coefficient (2 − 2.5), A is the surface area, and V is the spacecraft

velocity. In the selected 550 km orbit, V = 7585.2 m/s. In this thesis, the following

values are assumed: (cpa − cg) = 0.3 m, ρ = 1.04 × 10−13 kg/m3, Cd = 2.3, A = 1

m2. Therefore, in this case, Taero = 2.06× 10−6 N -m.

3.3 Electrical Power Subsystem (EPS) Model

A simplified satellite electrical power subsystem (EPS) model has been incorporated,

with the ACS model for each satellite. The EPS model [124], which is available

in [125] and is developed in the virtual test bed (VTB) environment [124, 138], has

been modified to incorporate fault injection capabilities and to ensure the supply of

desired bus voltage to the ACS reaction wheels. A functional diagram of the EPS

model of an individual satellite is shown in Figure 3.3, which consists of a solar array

illumination model, solar array model, the controller or simplified power distribution

and control unit (PDCU), a battery model, and a voltage regulator that delivers

regulated bus voltage to the load; i.e., in our case, the reaction wheels.

It is important to mention that in the numerical simulations of the ACS, the

pre-generated EPS bus voltage data that corresponds to the orbital characteristics

(altitude, inclination, eclipse period, etc.) of the satellites are utilized. Therefore,

48



Figure 3.3: Functional diagram of the electrical power subsystem (EPS) (adopted
from [124, 125]) depicting the locations of fault injections under the assumed EPS
fault scenarios.

the interaction between the ACS and EPS is of the leader-follower type in the sense

that any fault in the EPS may manifest in the ACS but the converse is not true.

Such simulation setup is justified by the fact that the target ACS fault severities do

not lead to excessively large deviations in the satellite attitude that may significantly

affect the Sun pointing of the solar arrays, and hence the performance of the EPS.

3.4 Typical Simulation Results

In this section some sample simulations of the formation flight model that is utilized

in this thesis are provided. Figure 3.4 shows the reference control signals to the ACS

in quaternion over a 2-orbit period. Figures 3.4(b), 3.4(c), and 3.4(d) show the Euler

angle representation of the reference signal where the angles corresponding to the X

and the Z axes consist of some discontinuities. Figure 3.5 shows the actual attitude

(in quaternion) of the leader satellite (Sat-1) and a follower satellite (Sat-3) relative

to the inertial frame over an 2-orbit period. As mentioned in Section 3.2.1, the

attitude control performance specifications are usually available in terms of error in

the Euler angles and the ground support personnel responsible for fault diagnosis

are more comfortable dealing with Euler angles.
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(a) The reference quaternion. (b) X-axis Euler angle representation of the ref-
erence.

(c) Y -axis Euler angle representation of the ref-
erence.

(d) Z-axis Euler angle representation of the ref-
erence.

Figure 3.4: Reference attitude of the leader (Sat-1) relative to the inertial frame
over 2-orbit period. In (a), the solid line represents q1, the dashed line represents q2,
the dotted line represents q3, and the dashed-dotted line represents the constraint
~qT~q + q2

0 = 1.

(a) Sat-1 attitude (b) Sat-3 attitude

Figure 3.5: Attitude (in quaternion) of the leader (Sat-1) and a follower (Sat-3)
relative to the inertial frame over 2-orbit period. The solid line represents q1, the
dashed line represents q2, the dotted line represents q3, and the dashed-dotted line
represents the constraint ~qT~q + q2

0 = 1.
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Figure 3.6 shows the attitude error (in Euler angles) of the leader (Sat-1) and

a follower (Sat-3) in the inertial frame over 2-orbit period in terms of Euler angles

with respect to the inertial frame F0. The implemented 3-axis active PID control

with reaction wheels provides RMS accuracy (1-sigma) [139] within 0.03 degree for

the leader and 0.06 degree for the followers near zero reaction wheel speed over

half-orbit period in steady state.

Figure 3.7 shows the relative attitude (in Euler angles) of a follower satellite

(Sat-3) with respect to the leader (Sat-1), as well as with respect to another follower

satellite (Sat-4) over a 2-orbit period. Note that in the simulated formation flight

system the leader maintains a pre-specified attitude with respect to the inertial

frame, and all the followers maintain the same attitude as that of the leader in the

leaders body-fixed frame. Consequently, the steady state relative attitude that is to

be maintained by the satellites are the same; i.e., [0, 0, 0]. Figures 3.8, 3.9, 3.10, and

3.11 show the reaction wheel (RW) actuator motor current, the motor torque, the

control (torque command voltage), and the wheel speed, respectively of the leader

(Sat-1) and a follower (Sat-3) over a 2-orbit period. Figure 3.12 shows some

selected Electrical Power Systems (EPS) variables of a follower (Sat-3). Similar

responses are observed for the leader as well as the other follower satellites in the

formation, and the responses are not shown here in order to avoid redundancy.

3.5 Fault Simulation and Synthetic Data Gener-

ation

In this thesis, faults are injected when the formation flight is in steady state condi-

tions (station-keeping mode) which implies that the orbital dynamics has negligible

impact on the ACS fault diagnosis. Within the ACS, two types of intermittent faults

are considered and are injected at the subsystem component (reaction wheel) level,
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(a) Sat-1, error in the X-axis. (b) Sat-3, error in the X-axis.

(c) Sat-1, error in the Y -axis. (d) Sat-3, error in the Y -axis.

(e) Sat-1, error in the Z-axis. (f) Sat-3, error in the Z-axis.

Figure 3.6: Attitude error (in Euler angles) of the leader (Sat-1) and a follower
(Sat-3) in the inertial frame over a 2-orbit period.
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(a) Sat-3 attitude (X-axis) relative to Sat-1. (b) Sat-3 attitude (X-axis) relative to Sat-4.

(c) Sat-3 attitude (Y -axis) relative to Sat-1. (d) Sat-3 attitude (Y -axis) relative to Sat-4.

(e) Sat-3 attitude (Z-axis) relative to Sat-1. (f) Sat-3 attitude (Z-axis) relative to Sat-4.

Figure 3.7: Relative attitude (in Euler angles) of one follower (Sat-3) with respect
to the leader (Sat-1), and with respect to another follower (Sat-4) over a 2-orbit
period.
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(a) Sat-1, Z-axis RW (b) Sat-3, Z-axis RW

Figure 3.8: Reaction wheel (RW) motor current of the leader (Sat-1) and a follower
(Sat-3) over a 2-orbit period.

(a) Sat-1, Z-axis RW (b) Sat-3, Z-axis RW

Figure 3.9: Reaction wheel (RW) motor torque of the leader (Sat-1) and a follower
(Sat-3) over a 2-orbit period.

(a) Sat-1, Z-axis RW (b) Sat-3, Z-axis RW

Figure 3.10: Reaction wheel (RW) control (torque command voltage) of the leader
(Sat-1) and a follower (Sat-3) over a 2-orbit period.
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(a) Sat-1, Z-axis RW (b) Sat-3, Z-axis RW

Figure 3.11: Reaction wheel (RW) speed of the leader (Sat-1) and a follower (Sat-3)
over a 2-orbit period.

(a) Bus voltage. (b) Battery voltage.

(c) Regulator output current. (d) Regulator output voltage.

Figure 3.12: Selected electrical power systems (EPS) variables of a follower (Sat-3)
under healthy condition.
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Figure 3.13: Changes of a component parameter k(t) under different types of faults
namely, abrupt permanent fault, abrupt intermittent fault, and non-abrupt inter-
mittent fault.

namely: (a) friction fault (increase in the viscous friction), and (b) reaction wheel

motor current fault (decrease in the motor gain). The reason behind considering

these two faults is that anomalies in reaction wheels often lead to ACS failure in

satellites [140]. The friction fault may occur due to the wear and tear of the wheel

bearing material over time or due to some problems in the lubricant flow. The motor

current fault may occur because of some electronic hardware malfunctions in the

motor driver unit (MDU) of the reaction wheel.

Each fault is injected with 3 (three) severity levels: gradually increasing from

the lowest to the maximum severity and then gradually decreasing before a complete

fault removal. Note that the faults are intermittent and non-abrupt in nature.

Figure 3.13 shows the changes in a component parameter, denoted by k(t), under

different types of faults, where after fault injection k(t) deviates from its nominal

value differently under each type of a fault.The fault injection locations in the ACS

reaction wheels are shown in Figure 3.2. For all the reaction wheel faults discussed

above the attitude accuracy decreases: the pointing accuracy measure (1-sigma)
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decreases beyond the assumed specification; i.e., 0.03 degree for the leader and 0.06

degree for the followers as mentioned in Section 3.2.1.

Figure 3.14 shows the Z-axis reaction wheel (RW) torque command voltages

(Ct), motor currents (Im) and wheel speeds (ωw) of a follower (Sat-3) in the presence

of a motor current fault and a friction fault that are injected in the Z-axis reaction

wheel of Sat-3 between t = 7500 s and t = 9810 s. Note that the nominal behaviors

are presented in Figures 3.8, 3.9, 3.10, and 3.11. Figure 3.15 shows the X and Y

axes reaction wheel (RW) torque command voltages (Ct), motor currents (Im) and

wheel speeds (ωw) of a follower (Sat-3) in the presence of a motor current fault

and a friction fault that are injected in the Z-axis reaction wheel of Sat-3 between

t = 7500 s and t = 9810 s. It is observed from this figure that the motor current

fault in the Z-axis RW does not manifest in the RWs in the X and Y axes. Similar

observation was made for the friction fault which is not shown here in order to avoid

redundancy.

Figure 3.16 shows the fault manifestations in the relative attitude (in Euler

angles) of one follower (Sat-3) with respect to the leader (Sat-1), and with respect

to another follower (Sat-4) when a motor current fault is injected between t = 7500

s and t = 9810 s in the Z-axis reaction wheel of Sat-3.

Within the EPS, two types of faults are considered at the subsystem level,

namely: (a) an intermittent bus voltage drop due to the voltage regulator malfunc-

tioning, and (b) an intermittent bus voltage drop due to anomaly in the battery.

Each fault is injected by introducing undesired resistances at the battery output

and voltage regulator output, respectively (fault injection locations are shown in

Figure 3.3) with 3 (three) severity levels: gradually increasing from the lowest to the

maximum severity and then gradually decreasing before a complete fault removal.

Therefore, the faults are intermittent and non-abrupt in nature. Note that although
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(a) Sat-3, Ct under current fault. (b) Sat-3, Ct under friction fault.

(c) Sat-3, Im under current fault. (d) Sat-3, Im under friction fault.

(e) Sat-3, ωw under current fault. (f) Sat-3, ωw under friction fault.

Figure 3.14: The Z-axis reaction wheel (RW) torque command voltages (Ct), motor
currents (Im) and wheel speeds (ωw) of a follower (Sat-3) in the presence of a motor
current fault and a friction fault in the Z-axis reaction wheel of Sat-3 (both faults
injected between t = 7500 s and t = 9810 s).
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(a) Sat-3, Ct of X-axis RW. (b) Sat-3, Ct of Y -axis RW.

(c) Sat-3, Im of X-axis RW. (d) Sat-3, Im of Y -axis RW.

(e) Sat-3, ωw of X-axis RW. (f) Sat-3, ωw of Y -axis RW.

Figure 3.15: The X and Y axes reaction wheel (RW) torque command voltages (Ct),
motor currents (Im) and wheel speeds (ωw) of a follower (Sat-3) in the presence of a
motor current fault in the Z-axis reaction wheel of Sat-3 (injected between t = 7500
s and t = 9810 s).
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(a) Sat-3 attitude (X-axis) relative to Sat-1. (b) Sat-3 attitude (X-axis) relative to Sat-4.

(c) Sat-3 attitude (Y -axis) relative to Sat-1. (d) Sat-3 attitude (Y -axis) relative to Sat-4.

(e) Sat-3 attitude (Z-axis) relative to Sat-1. (f) Sat-3 attitude (Z-axis) relative to Sat-4.

Figure 3.16: Relative attitude (in Euler angles) of one follower (Sat-3) with respect
to the leader (Sat-1), and with respect to another follower (Sat-4) in the presence
of a motor current fault in the Z-axis reaction wheel of Sat-3 (injected between
t = 7500 s and t = 9810 s).
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(a) Bus voltage. (b) Battery voltage.

(c) Regulator output current. (d) Regulator output voltage.

Figure 3.17: Selected electrical power subsystem (EPS) variables of a follower (Sat-
3) under a regulator fault (injected between t = 6500 s and t = 6860 s).

component level faults are being considered within the ACS, the faults correspond-

ing to the EPS are at the subsystem level due to the lack of detailed understanding

and a prior knowledge of the EPS components within the EPS. Consequently, the

EPS fault diagnosis is performed only up to the subsystem level (the different levels,

namely component, subsystem, system, and formation will be defined formally in

Section 4.1).

Figure 3.17 shows some selected electrical power subsystem (EPS) variables

of a follower (Sat-3) under a regulator fault that is injected between t = 6500 s and

t = 6860 s. Note that the fault causes the bus voltage to drop during the entire

fault injection period.

Figure 3.18 shows the same selected electrical power subsystem (EPS) variables

of a follower (Sat-3) under a battery fault that is injected between t = 6500 s and
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(a) Bus voltage. (b) Battery voltage.

(c) Regulator output current. (d) Regulator output voltage.

Figure 3.18: Selected electrical power subsystem (EPS) variables of a follower (Sat-
3) under a battery fault (injected between t = 6500 s and t = 6860 s).

t = 6860 s. Note that unlike the regulator fault, the battery fault does not cause

the bus voltage to drop during the entire fault injection period.

3.6 Summary

In this chapter, the model that was implemented in this thesis for generating syn-

thetic formation flight data is presented. Detailed descriptions of the two satellite

subsystems, namely the attitude control subsystem (ACS) and the electrical power

subsystem (EPS) are provided. Some typical simulation data for the two subsys-

tems as well as some relative attitude data of the satellites in a formation flight

are presented under both healthy and faulty conditions of the space platform. The
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utilization of synthetic formation flying system data was necessary due to the un-

availability of actual telemetry data from an actual and real operational formation

flight space mission.
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Chapter 4

Hierarchical Fault Diagnosis

Framework

In this chapter first a hierarchical fault diagnosis framework that is proposed in

this thesis for ground-based formation flight health monitoring and fault diagnosis

is presented. Next, a generic fault diagnosis model is discussed which is utilized

throughout the thesis.

4.1 Development of a Hierarchical Fault Diagno-

sis Framework

The proposed fault diagnosis strategy aims to perform diagnostic reasoning in com-

plex systems such as a “formation flight system” by decomposing its complex struc-

ture hierarchically into simpler modules or components. The decomposition is driven

by the need, from project management perspective, for supporting the development

of the components/subsystems of the overall system by a number of teams and per-

forming integration at the end. Though the proposed framework is generic in nature

and includes various spacecraft subsystems, in this thesis the discussion is mostly
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confined within the attitude and orbital control subsystem and electrical power sub-

system. Furthermore, the availability of some fault detection mechanisms at each

level in the hierarchy is assumed and the proposed framework is discussed mostly

from fault diagnosis or isolation perspective.

Figure 4.1 shows the proposed 4-layer hierarchical decomposition from the

perspective of the attitude and orbital control of the satellites in a formation flight.

In Figure 4.1, fault diagnosis at level 1 (subsystem component level) corresponds to

Figure 4.1: Proposed fault diagnosis framework for a multi-platform space system.

sensor and actuator fault diagnosis. Note that often it is not necessary to identify

fault causes beyond this level because recovery actions or redundancies are not

applied within these components. In the case of the attitude and orbital control

subsystem (AOCS), reaction wheels, thrusters, earth-sensors, star trackers, relative

position and attitude sensors, etc. are the components. It is important to note

that as pointed out in [141], the runtime contingencies in spacecraft are usually the

hardware/subsystem component failures (though it is also possible to have flaws in

planning, and to have unexpected outcomes in execution).

Fault diagnosis at level 2 (subsystem level) corresponds to different subsystems
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such as attitude, orbital, power, etc. Fault diagnosis is performed for different sub-

systems by utilizing the health state information available from different subsystem

components. However, strict partitioning of FDI for different subsystems may not be

possible in many cases because spacecraft operation is characterized by concurrent

activities across a relatively large number of different subsystems [141,142].

Level 3 (system level) diagnosis is performed by utilizing the health state infor-

mation available from different subsystems (for example, attitude control subsystem

(ACS), thermal subsystem, power subsystem, etc.), their interactions and expected

behaviors/behavior specifications. In level 4 (formation level) diagnosis, individual

spacecraft in the formation are considered as different “components” of the forma-

tion flying system. This level is unique to multi-platform missions. Therefore, at this

level fault detection refers to a decision making about the existence of an anomaly

in the formation components, i.e., in one or more satellites in the formation. The

objective of fault diagnosis or isolation is to identify particular spacecraft that are

faulty. Note that the system level diagnosis in a specific spacecraft does not consider

the existence of other spacecraft in the formation.

4.2 Level l Fault

First, we take into consideration that even if a fault is originated in a subsystem

component, the fault is assumed to have different levels of manifestations in the hier-

archy. In other words, for performing diagnosis at different levels, it is assumed that

fault symptoms/manifestations are available. As an example, consider the specific

fault of “increase in friction” in the pitch reaction wheel (subsystem component).

At the subsystem component level, one of the fault manifestations would be “high

current drawn by the wheel motor”. In the attitude control subsystem (ACS) level,
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one of its manifestations would be “deviation from expected pitch angle”. The sys-

tem level manifestations can be described in terms of deviations of the ACS behavior

specifications relative to other subsystems. Finally, at the formation level the most

important fault manifestations will be “deviation from expected relative attitude

with respect to other satellites”. This is because the main purpose of formation

flying is to form a virtual structure such as a telescope in space for which precision

control of the relative positions and attitudes of the satellites are a requirement.

Therefore, there is a need for identifying faults differently at various levels

in the hierarchy based on the “level of abstraction” at a particular level and the

manifestation of a fault at that particular level. On the other hand, in the case

of a system level anomaly that leads to a situation in which a wrong command is

sent to the actuator, the subsystem component, or even the subsystem, would follow

the “wrong” command without being aware of the anomaly. Based on the above

observations, the definition of an “level l fault” [143] is formally stated as follows:

Definition 4.2.1 (Level l Fault [143]). A fault occurring in a system that is

hierarchically decomposed into L levels is said to be an “level l fault” (l = 1, 2, ..., L)

and is denoted by fault f lk (k-th fault mode) if and only if its manifestations are

only observable in the fault signatures that belong to level l and in higher levels for

the fault severity level(s) under consideration.

In Definition 4.2.1, the term “observable” is not associated with the notion

of “observability” that is used in control theory. In this thesis, features that are

extracted from process states and/or variables are utilized as diagnostic signals. A

fault manifestation corresponding to a specific fault is considered to be some pre-

identified value(s) of a diagnostic signal that indicates the presence of that fault.

The fault signature is represented in the form of rule(s) that identifies all the fault

manifestations of interest for that specific fault (discussed in detail in Chapter 5).

Distinguishing faults at different levels based on the above definition would
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allow one to avoid cycles in a directed graph-based diagnostic reasoning model; i.e,

by utilizing the concept of different levels of fault one can develop an acyclic directed

graph model for diagnosis.

4.3 Generic Directed Graph Representation

The proposed hierarchical decomposition, shown in Figure 4.1, is represented with

a generic directed acyclic graph as shown in Figure 4.2. The entire system under

consideration is represented with a single node at the highest level that consists of

subcomponents located at the lower levels. A directed arc between two components

represents the influence of the health state of one component on that of another.

The p-th component at level l in the hierarchy is denoted as C l
p. For example, in the

Figure 4.2: Directed graph representation of the proposed hierarchical fault diagno-
sis.

case of a multi-platform space system, for l = 1, C1
p would correspond to a sensor

or an actuator whereas for l = L, CL
1 would correspond to the “satellite formation

component”. Let the set of all components located in two levels, namely l1 and l2,

in the proposed hierarchical organization be denoted as C l1
p and C l2

q , respectively;

where p = 1, 2, ..., Pl1 ; q = 1, 2, ..., Ql2 ; l1, l2 ∈ {1, 2, ..., L}; with L denoting the total

number of hierarchy levels. Therefore, when l1 = l2 = l, two different components
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located at the same level l are represented as C l
p and C l

q, assuming Pl = Ql as shown

in Figure 4.2. For any C l
p, the sets of components that are parents of C l

p are denoted

by pa(C l
p). A node C l

p is a leaf node if pa(C l
p) = ∅. Based on this generic directed

graph representation the problem of fault diagnosis is divided into two stages:

First, fault diagnosis schemes for identifying faults at different nodes of Fig-

ure 4.2 are developed. In Chapter 5, a hierarchical fault diagnosis model (HFDM)

is developed. In the proposed HFDM, fuzzy rule-based reasoning is employed to

identify the health states at different nodes, and a hierarchical diagnosis algorithm

is proposed for identifying the origin of the fault. Fuzzy rules are developed for

fault diagnosis at different levels in the hierarchy by taking into account the uncer-

tainties in the fault manifestations in a given component. However, in this model

the component interaction are quantified without taking the uncertainties in the

component health state dependencies into account. This may be realistic in many

practical situations. In the second stage, this limitation is overcome by developing

a component dependency model (CDM) which is discussed next in the subsequent

paragraph.

In Chapter 6, a Bayesian network-based component dependency model (CDM)

is developed. In the model, component dependencies are quantified by the condi-

tional probability distributions that are associated with the CDM nodes. Note

that at a given node fuzzy rule-based diagnosis is still applied although the CDM

is flexible to accommodate other fault diagnosis methodologies at different nodes.

Furthermore, although the development of the proposed methodology is based on

the health management of satellites formation flight, the methodology is generic

enough to be applicable to other systems or a fleet of systems that require health

monitoring decision support systems (DSS).
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4.4 Fault Propagation

When a fault is detected in a system, the objective of diagnosis is to identify its cause

or location. When diagnosis is not hierarchical and performed only for one specific

component or system, the standard way to evaluate performance is to construct a

confusion matrix and compute accuracy, misclassification rate, etc. The diagnosis

of a single component corresponds to the diagnosis at a node of the proposed di-

rected graph model shown in Figure 4.2. However, in hierarchical diagnosis fault

identifications at different nodes are required to be related in order to determine the

propagation and the node where the fault originated.

Now consider a general scenario where in the directed graph-based represen-

tation a faulty state of a node C l
p is detected and identified, and the node is located

at an intermediate level; i.e., 1 < l < L. If pa(C l
p) 6= ∅, the fault did not originate

at that node. Therefore, the objective of diagnosis translates to the identification

of the node where the fault originated. Furthermore, it is of interest to identify the

components that are affected by the fault. A fault propagation path identifies the

origin of a fault and all the components that are affected by the fault.

Let C l2
p2

be the node at an intermediate level l2 with some identified faulty

state X l2
p2

= x̄0. Let C l1
p1

be a leaf node (pa(C l1
p1

) = ∅) where the fault has originated.

Further, let π(C l2
p2

) and σ(C l2
p2

) denote the sets of predecessors and successors of node

C l2
p2

, respectively in the CDM (or HFDM). Therefore, C l1
p1
∈ π(C l2

p2
); where l2 > l1.

A candidate (possible) fault propagation path is defined as follows.

Definition 4.4.1 (Candidate Fault Propagation Path). A candidate fault

propagation path is a directed path that identifies all the affected components as-

sociated with a fault at a node C l2
p2

, and the i-th candidate fault propagation path

is denoted as pathi(C
l2
p2

) = C l1
p1
→ ...C l2−1

q1
→ C l2

p2
→ C l2+1

q2
→ ...C l3

p3
.

A path pathi is said to be a fully identified fault propagation path if and only
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if ∀C l
p ∈ pathi, faults have been identified. If faults are identified only at some of

the nodes in the pathi, the path is said to be a partially identified fault propagation

path. Note that the nodes in the path segment C l1
p1
→ ...C l2−1

q1
belong to π(C l2

p2
), and

the nodes in C l2+1
q2
→ ...C l3

p3
belong to σ(C l2

p2
). The set of all such candidate fault

propagation paths associated with the identified faulty state of C l2
p2

is denoted as

PATH(C l2
p2

).

4.5 Summary

In this chapter, a fault diagnosis framework for a multi-platform space system is

developed. The concept of level l fault is introduced and formally defined. Next,

a generic directed graph-based fault diagnosis model is presented which will be

utilized in the next two chapters of the thesis. Finally, the identification of the fault

propagation in a hierarchically decomposed system is discussed. In the next chapter,

fuzzy rule-based fault diagnosis is investigated for multi-platform space systems.
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Chapter 5

Fuzzy Rule-Based Fault Diagnosis

In this chapter fuzzy rule-based fault diagnosis is investigated at different levels of

the proposed hierarchical decomposition that was presented in Chapter 4.

5.1 Introduction

In Chapter 4, the proposed hierarchical framework for multi-platform space systems

and specifically for satellites formation flight fault diagnosis was discussed in de-

tail. The proposed hierarchical fault diagnosis was represented by a generic directed

graph model. In this chapter, the framework and the associated generic directed

graph model is formalized in terms of fuzzy rule-based reasoning. Fuzzy rule-based

reasoning is investigated because of its well-known ability for accommodating un-

certainties in fault symptoms, and performing diagnosis by utilizing rules that are

transparent to human operators or users. As discussed in Section 1.3, when the

system or the application domain is very large, rule-based representation of the en-

tire system leads to a large and inefficient knowledge base, causing a poor quality

in diagnosis. However, in this thesis we decompose the system under consideration

into multiple levels and components. Such decomposition allows the use of fuzzy

rule-based reasoning separately in the components of a large and complex system
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such as a formation flight system. The organization of this chapter is as follows: In

Section 5.2 the proposed hierarchical fault diagnosis framework is formalized and

a fuzzy rule-based fault diagnosis methodology within the proposed framework is

presented. In Section 5.3, the proposed scheme is demonstrated by using synthetic

data from the formation flight system model that was presented in Chapter 3. The

performance evaluation results are presented in Section 5.4, and advantages as well

as the limitations of the scheme are discussed in Section 5.5. Finally, the chapter is

summarized in Section 5.6.

5.2 Development of a Hierarchical Fault Diagno-

sis Model (HFDM)

This section is divided into five parts: In Section 5.2.1, the proposed hierarchical

structure is formally presented and the key terminologies and definitions that are

necessary for the proposed scheme are presented. The properties of the proposed

hierarchical structure are stated in Section 5.2.2. In Sections 5.2.3 and 5.2.4, fuzzy

rule-based fault diagnosis is investigated for independent and dependent components

(as defined in Section 5.2.1), respectively. A hierarchical fault diagnosis algorithm

is presented in Section 5.2.5.

5.2.1 HFDM Structure, Terminologies and Basic Definitions

The proposed hierarchical decomposition is represented with a generic directed

acyclic graph structure as shown in Figure 5.1 where the entire system under con-

sideration is represented with a single node at the highest level that consists of

subcomponents located at the lower levels. In this chapter, we identify this struc-

ture as a hierarchical fault diagnosis model (HFDM). We denote the p-th component

at level l in the hierarchy as C l
p. For example, in the case of a multi-platform space
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Figure 5.1: Directed graph representation of the proposed hierarchical fault diagno-
sis model (HFDM).

system, for l = 1, C1
p would correspond to a sensor or an actuator whereas for

l = L, CL
1 would correspond to the “satellite formation component”. Let the set

of all components located in two levels namely, l1 and l2, in the proposed hierar-

chical organization be denoted as C l1
p and C l2

q , respectively; where p = 1, 2, ..., Pl1 ;

q = 1, 2, ..., Ql2 ; l1, l2 ∈ {1, 2, ..., L}; with L denoting the total number of hierarchy

levels. Therefore, when l1 = l2 = l, two different components located at the same

level l are represented as C l
p and C l

q, assuming Pl = Ql as shown in Figure 5.1. For

any C l
p, the sets of components that are parents of C l

p (as represented in Figure 5.1)

are denoted by pa(C l
p).

For fault diagnosis/isolation of physical systems, relationships among observed

symptoms and faults are necessary. Symptoms are the manifestations of the faults

in the available diagnostic signals (measured from the process or analytically calcu-

lated). In other words, symptoms are obtained by monitoring some pre-identified

diagnostic signals that are of one of the following types [19]: (1) residuals that are

generated based on the system models, (2) binary or multi-valued signals that are

resulting from residual classification/quantification, (3) statistical parameters or fea-

tures that are describing signal properties, and (4) process states and/or variables

(measured or calculated).
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In this thesis, we utilize features that are extracted from process states and/or

variables as diagnostic signals. Furthermore, a fault manifestation corresponding

to a specific fault in this thesis is considered to be some pre-identified value(s) of

a diagnostic signal that indicates the presence of that fault. The fault signature

is represented in the form of rule(s) that identifies all the fault manifestations of

interest for that specific fault. A fault signature model of a component refers to a set

of rules that corresponds to all the faults that are to be identified in that component.

Diagnostic signals, fault manifestations, and fault signatures are formally specified

in Section 5.2.3.

The set of Pl components located at level l is denoted as C l. The compo-

nents, manifestable faults, diagnostic signals, fault manifestations, and fault signa-

ture models of the p-th component at level l are denoted by C l
p, F

l
p, S

l
p, M

l
p, and

FSM l
p, respectively; where p = 1, 2, ..., Pl. The fault signature model (FSM l

p) of

C l
p consists of fault signatures that correspond to both types of faults — the ones

that are originated at C l
p and the ones that are originated at some lower level but

manifested at C l
p. It should be noted here that if pa(C l

p) 6= ∅, a fault f lk ∈ F l
p and

its corresponding fault signature in FSM l
p may represent more than one fault that

originates at some lower levels which will be formally stated in Proposition 5.2.2 in

Section 5.2.4.

We distinguish the components within the proposed hierarchical decomposi-

tion according to the following definitions:

Definition 5.2.1 (Independent Component). For any given fault severity level

under consideration, a component C ll
p is independent of another component C l2

q ,

where l1 > l2, if a change in the diagnostic signal value(s) in C l2
q never manifests or

leads to a change in the diagnostic signal value(s) in C l1
p due to the presence of any

fault f l3k ; where l2 ≥ l3.

Definition 5.2.2 (Dependent Component). For any given fault severity level

75



under consideration, a component C l1
p is dependent on another component C l2

q ,

where l1 > l2, if a change in the diagnostic signal value(s) in C l2
q always manifests

or leads to a change in the diagnostic signal value(s) in C l1
p due to the presence of

some fault f l3k ; where l2 ≥ l3.

The set of all components on which C l
p is dependent is denoted as DEP (C l

p).

Definitions 5.2.1 and 5.2.2 imply that we represent the dependencies among the

different components within a particular level l at the next higher level l + 1. Note

that a component C l
p is dependent on itself; consequently, C l

p ∈ DEP (C l
p). The

following assumption regarding the component dependencies is now made explicit.

Assumption 5.2.1 (Component Dependency). Component dependencies are

not considered for diagnosis at a component C l
p with pa(C l

p) = ∅.

Note that according to Definitions 5.2.1 and 5.2.2, dependencies of components

and fault manifestations are directly related to each other. Furthermore, within an

independent component C l
p, it is useful to distinguish faults that are originated at

C l
p and those that are originated at some lower level but manifested at C l

p. We

decompose an independent component C l
p into two virtual subcomponents, namely

(1) independent subcomponent of C l
p which is denoted by D(C l

p), and (2) dependent

subcomponent of C l
p which is denoted by U(C l

p) as shown in Figure 5.2. The faults

that are originated at C l
p correspond to D(C l

p) and those that are originated at

lower level(s) but manifested at C l
p correspond to U(C l

p). Once a component C l
p

is decomposed into the subcomponents D(C l
p) and U(C l

p), the subcomponents are

treated as independent and dependent components, respectively. The dependencies

among components are represented by directed arcs as shown in Figures 5.1 and 5.2.

To represent dependencies, where C l1
p is dependent on C l2

q , we add arcs from C l2
q to

C l1
p and represent the arcs with an nK′ × nK link matrix Ll2,l1q,p where nK′ and nK

are the number of manifestable faults in C l2
q and C l1

p , respectively. Each element of
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Figure 5.2: Decomposition of a component into “independent subcomponent” and
“dependent subcomponent”.

the Ll2,l1q,p is denoted by Ll2,l1q,p (k′, k), where k′ = 1, 2, ..., K ′ and k = 1, 2, ..., K. In this

chapter, we assume that the dependencies are known with certainty. Consequently,

given that a fault f l2k′ ∈ C l2
q manifests in C l1

p and identified as f l1k ∈ C l1
p , then

Ll2,l1q,p (k′, k) = 1. If two components are not dependent given the faults f l2k′ and f l1k ,

then Ll2,l1q,p (k′, k) = 0.

It follows from Definition 4.2.1 and the above discussion that the signature of

an level l fault is not possible to be observed at lower levels, and the origin of an

level l fault is in one of the “independent subcomponents” D(C l
p). It is important to

note that in the graphical representation of Figure 5.2, pa(U) 6= ∅ and pa(D) = ∅,

and it is possible that a component C l
p where l > 1 does not have any “dependent

subcomponent”. In practical sense this is possible due to lack/unavailability of an

in-depth information about a subsystem or a component.

We propose to perform fault diagnosis at individual components in the hierar-

chical fault diagnosis model (HFDM) which are represented by nodes in Figures 5.1

and 5.2. We now formally define a fault diagnosis module (FDM) that corresponds

to a node or component C l
p as follows:

Definition 5.2.3 (FDM of a Component). A fault diagnosis module (FDM)

corresponding to a component C l
p is denoted by FDM(C l

p) = (Slp, F
l
id,p, R

l
p,K ,Olp,

Alp); where the diagnostic signals Slp are the inputs to the system, the identified

faults F l
id,p are the outputs of the system, and the system is characterized by a set of
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rules Rl
p,K that describe the relations among the K faults and their corresponding

symptoms, a set of operators Olp that are utilized to compute the rule activation

levels, and a set of assumptions Alp that are made during the rule synthesis.

As described in Section 5.2.3, the rules Rl
p,K are obtained from the correspond-

ing fault signature model FSM l
p.

5.2.2 Properties of the Proposed HFDM

In this section, the properties of the proposed hierarchical fault diagnosis model

(HFDM) that is presented in Section 5.2.1 are emphasized. We state the properties

of the model in terms of inputs, outputs and system properties of the FDMs (as

defined in Section 5.2.1). The considered properties are as follows:

1. At level l = 1, between any two independent components C1
p and C1

q we have:

a. S1
p ∩ S1

q = ∅

b. F 1
p ∩ F 1

q = ∅

c. R1
p,K ∩R1

q,K′ = ∅

2. At level l (L > l > 1), between any two components C l
p and C l

q we have:

a. Slp ∩ Slq = ∅

b. F l
p ∩ F l

q = ∅ if C l
p ∈ D(C l

p) or C l
q ∈ D(C l

q);

F l
p ∩ F l

q 6= ∅ if C l
p and C l

q are dependent, and ∃f l−ik ∈ C l−i
r | C l−i

r ∈

{DEP (C l
p) ∩DEP (C l

q)}; l − i ≥ 1

c. Rl
p,K ∩Rl

q,K′ = ∅

3. At the highest level l = L, only one component exist; i.e., CL
p ; p = P1 = 1.

4. At two different levels l1 and l2, where l1 > l2, between any two components

C l1
p and C l2

q the following relations hold:

78



a. Sl1p ∩ Sl2q = ∅

b. F l1
p ∩ F l2

q = ∅ if C l2
q /∈ DEP (C l1

p );

F l1
p ∩ F l2

q 6= ∅ if C l2
q ∈ DEP (C l1

p )

c. Rl1
p,K ∩R

l2
q,K′ = ∅

5. and finally we have Ll2,l1q,p (k′, k) ∈ [0, 1].

In the proposed HFDM, all the components C l
p with pa(C l

p) = ∅ are considered

to be the “atomic” in the sense that identification of the location of faults beyond

this level is not either deemed necessary or possible due to lack of the available

information. Consequently, all the subsystem components, i.e., the sensors and the

actuators are “atomic” components. Property-1 states that the diagnostic signals,

manifestable faults, and the rules in two different atomic components are different.

Note that the faults may be similar in two identical components (increase in friction

in two different reaction wheels) but they are treated as different faults from fault

localization perspective as their origins are different.

Property-2a states that the sets of diagnostic signals in two different compo-

nents located at an intermediate level (L > l > 1) in the hierarchy are different (this

is related to the fact that as mentioned above we represent the dependencies among

different components within a particular level l at the next higher level l+ 1). Con-

sequently, the corresponding rule sets are also different (Property-2c). However, as

Property-2b states, if both the components are dependent, sets of the manifestable

faults in the two components may not be completely different if there exist a fault

(originated at some lower level) that manifests in both the components.

Property-3 emphasizes that at the highest level, the entire system under con-

sideration is represented by a single component. Property-4 states that between two

different components located at two different levels, their properties are the same

as that Property-1 of the components that are located at level 1 if the components
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are not dependent on each other. Otherwise, there exist a fault (originated at the

component located at the lower level or some other component(s) located at an

even lower level) that manifests in both the components. Note that if (l1 − l2) = 1,

i.e., in case of the components in two adjacent levels, it is possible— though not

necessary— to have some diagnostic signals that are common to both C l1
p and C l2

q .

Finally, property-5 states that the inter-component fault dependencies are repre-

sented in the HFDM with absolute certainty while the uncertainties related to fault

manifestations are taken into account in each FDM.

Note that in the hierarchical fault diagnosis approach that was presented in

[19], the concept of “level l fault” was not considered in their formulation and the

approach is too restrictive in the sense that it allowed only Property-1 to be true for

any two given components in the hierarchy. Consequently, the overall applicability

of that structure is very limited in the presence of components with higher degree

of interactions.

5.2.3 Diagnosis of Faults in Independent Components at

Level l

The fault diagnosis methodology described below is intended for a single compo-

nent/subsystem C l
p (the p-th component at level l) with relatively small or man-

ageable number of diagnostic signals. Furthermore, the assumption of a single fault

(no simultaneous faults) is made which is reasonable if the component/subsystem

is monitored frequently. The problem of multiple faults will be addressed below in

Section 5.2.4 where the single fault assumption is not realistic; for example, in the

formation component at level L, faults may be present in more than one satellite at

any given time.

First, consider the components that are located at the lowest level (level 1)

in the hierarchy. The components C1
ps, at level 1, are independent according to
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Proposition 5.2.1 below.

Proposition 5.2.1 (Independence of Level 1 Components). Each component

C1
p located at level 1 is independent.

Proof. The proof directly follows from Definitions 5.2.1, 5.2.2, and Assumption 5.2.1

since in this case, pa(C1
p) = ∅, ∀p.

According to the properties that are stated in Section 5.2.2, the correspond-

ing sets of diagnostic signals S1
p are different from each other and the faults in one

component do not manifest in another component (this also implies that the compo-

nents’ health is monitored frequently enough and the FSMs are designed to identify

faults that are of low severity). For example, a fault occurring at the Y-axis reaction

wheel (subsystem component) in a 3-axes active attitude control subsystem would

manifest within its own diagnostic signals before affecting the performance along

the other two axes.

In the remaining part of this section, we identify the level with l instead of the

fixed value 1 because the methodology, in general, is applicable to any component at

a higher level as long as the component does not have any dependent subcomponents

as described above. Note that in the absence of a dependent subcomponent, the

properties of a component C l
p becomes identical to that of an independent component

that is located at level 1 (property 2.b in Section 5.2.2). Consider an independent

component at level l. Let F l
p be a finite set of K faults under consideration that

is associated with a component C l
p at level l: F l

p = {fk : k = 1, ..., K}. Also let

Slp = {Slp,j : j = 1, ..., J} be a finite collection of J sets of diagnostic signals. Each

Slp,j is obtained by extracting a feature from the available process states and/or

variables (measured or calculated).

Next, we propose to perform fuzzy rule-based diagnosis [121] by utilizing the

diagnostic signals defined above. In the general case, for a given fault f lk and N
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diagnostic signals sln, the objective is to synthesize fuzzy rule(s) in the following

form:

If (sl1 ∈M l
1.k) and (sl2 ∈M l

2,k) ... and (slN ∈M l
N,k) then f lk (5.1)

where M l
n,k is a (set of) value(s) of the n-th diagnostic signal (characterized by the

fuzzy membership function(s)) under the fault fk.

Therefore, for fuzzy rule-based reasoning, we assign finite number of possible

values to each of the above-mentioned diagnostic signal sp,j where each possible

value is characterized by a fuzzy membership function (MF). Consequently, each

diagnostic signal slp,j ∈ Slp can have a set of M possible values (M -valued fuzzy

quantization of a feature) represented by the set Vslp,j = {v1, v2, ..., vM}. Note that

the number of elements in Vslp,j that is associated with each slj need not necessarily

be the same. Each possible value corresponds to a fuzzy set that is characterized

by a membership function, namely µm(slp,j = vm) ∈ (0, 1).

Let M l
p,j,k denote the fault manifestation set (in terms of the diagnostic signal

slp,j) associated with the fault f lk ∈ F l
p. Therefore, M l

p,j,k consists of the “values” in

Vslp,j that indicate the presence of the fault f lk. Let M l
p denote the collection of all

possible fault manifestations; i.e., the values of all diagnostic signals under all the

faults that are being considered.

Relations between faults and symptoms are expressed in the form of if-then

rule sets Rl
p,K within which the rule rlp,k is represented as:

rlp,k ∈ Rl
p,K : If (slp,1 ∈M l

p,1,k) and (slp,2 ∈M l
p,2,k)

... and (slp,J ∈M l
p,J,k) then (f lk) (5.2)
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Premise fulfillment factor [84] is determined as follows:

µ(slp,j ∈M l
p,j,k) = µ1(slp,j = v1)⊕ ...⊕ µM(slp,j = vM) | vm ∈M l

p,j,k (5.3)

where the symbol⊕ represents the fuzzy sum operator, for example, s-norm operator

such as MAX or drastic sum [121]. The activation level for the rule corresponding

to the k-th fault is given by:

µ(f lk) = µ(slp,1 ∈M l
p,1,k)⊗ ...⊗ µ(slp,j ∈M l

p,j,k)⊗ ...⊗ µ(slp,J ∈M l
p,J,k) (5.4)

where the symbol ⊗ represents the fuzzy conjunction operator, for example, t-norm

operator such as MIN or PROD [19, 121]. The use of a pre-defined rule activation

threshold can be avoided by utilizing an “aggregation” operation to combine the

results of all the rule activations in the FDM. For example, if the well-known “max”

operator is used for aggregation, the fault with the maximum rule activation level

can be considered as the identified fault (the output of C l
p’s FDM as defined in

Definition 5.2.3) in the component C l
p as follows:

F l
id,p = {f lk : µ(f lk) = max

[
µ(f l1), ..., µ(f lK)

]
} (5.5)

Note that in addition to the rules that are associated with different faults, one

or more rules corresponding to the healthy conditions are possible to be included in

the FDM. Finally, note that for two identical components C l
p and C l

q at the same

level l, the sets of possible faults F l
p and F l

q, and the diagnostic signals Slp ∈ C l
p

and Slq ∈ C l
q will be similar. Therefore, the FDMs of the two components can be

constructed by following similar procedures which minimizes the design and devel-

opment efforts, and allows re-use of software codes with minimal changes in the

implementation stage.
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Fault Identifiability: Note that two faults f lk ∈ F l
p and f lk′ ∈ F l

p are always iden-

tifiable or distinguishable in a given FDM if Slp,j,k ∩ Slp,j,k′ = ∅; i.e., the faults are

diagnosed based on disjunctive sets of diagnostic signals that are sensitive to specific

faults.

However, when limited number of diagnostic signals are available from a com-

ponent (due to the hierarchical decomposition), in the most difficult case where

Slp,j,k = Slp,j,k′, the following condition is necessary for isolating or distinguishing

two faults in a FDM:

∃slp,j ∈ (Slp,j,k ∩ Slp,j,k′) : max
[
µm

vm∈Mp,j,k

∩ µm′

vm′∈Mp,j,k′

]
= ε (5.6)

where vm and vm′ ∈ Vslp,j and “max” determines the maximum possible degree of

membership of a diagnostic signal to the overlapping parts of µm and µm′. Note

that ε ∈ (0, 1) and as ε → 0, the degree of isolability becomes higher reaching

the maximum level of isolability at ε ≈ 0. It should be noted here that if slp,j is

associated with a complex premise (more than one value in Mp,j,k and/or Mp,j,k′)

in the signature of f lk and/or f lk′, the union of µs is to be taken into consideration

in (5.6) instead of µm and/or µm′, and the intersection is to be computed on the

union(s). Finally, for K faults in the FSM, each fault is distinguishable from all

other faults if (5.6) holds for any given pair of faults 〈f lk, f lk′〉 ∈ F l
p.

5.2.4 Diagnosis of Faults in Dependent Components at Level

l

The fault diagnosis methodology and the conditions for fault isolability presented in

Section 5.2.3 lead to simplicity in the fault isolation process. These are effective for
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a specific component or subsystem with few faults and diagnostic signals. The pro-

posed hierarchical framework allows us to utilize this methodology since we decom-

pose the overall complex formation flying system into different components so that

the problem of fault diagnosis in individual components becomes simpler. Further-

more, the assumption of single or non-simultaneous faults is reasonable especially

at the lower levels in the hierarchy because it is very unlikely that a single compo-

nent (such as an actuator) would develop two different faults at exactly the same

time. When we take into consideration faults occurring at two different components

(multiple faults within a subsystem or system or formation level), the effectiveness

of the methodology in Section 5.2.3 becomes dependent on the extent of interac-

tions between the two components as well as the fault severity which may result in

manifestations (of a fault occurring at one component) in a different component.

Identical components C l
p and C l

q at the same level with higher degree of in-

teractions require special attention. A particular case of one’s interest will be the

highest level L (the “formation” level) where the component consists of individual

satellites within the leader-follower type satellite under consideration. It is impor-

tant to note that one of the main objectives of the satellite formation flight is to

maintain some pre-specified relative attitude/orientations of the satellites in space

so that mission goals can be accomplished. When the interactions of the satellites

are characterized by the well-known leader-follower (LF), or the master-slave control

architecture (refer to Section 3.2.1 for a detailed description), the leader satellite is

commanded by the ground station to maintain some specific attitude with respect

to the Earth-fixed inertial frame, and the followers are commanded by the leader

to maintain some specific attitude with respect to it’s body-fixed reference frame.

Usually, there is no control feedback from the followers to the leader. Furthermore,

the sensors that utilize advanced technologies such as optical metrology are capable

of measuring relative attitude with high precision. Consequently, faults are expected
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to have clearer manifestations in relative measurements. From the fault diagnosis

perspective, when diagnostic signals correspond to the relative measurements, the

above type of control architecture implies that a fault in a follower satellite would

manifest in a set diagnostic signals that is related to the specific follower.

Based on the above discussion, in this thesis the diagnostic signals in dependent

components are the features extracted from the relative state measurements. The

faults that occur in spacecraft are mostly related to the subsystem components. In

the subsequent discussion, we consider a general problem of fault diagnosis where

the origins of faults f lk are at some low level l but have manifestations (denoted by

ML
j,k) at the highest level L. It should be clear that the primary fault diagnosis

objective at level L is to identify the formation component(s) (individual satellites)

that is/are faulty.

Let CL = {CL
p : p = 1, ..., P} denote a set of P components whose depen-

dencies and interactions are characterized by the well-known leader-follower (LF),

or the master-slave control architecture; where p = 1 corresponds to the single

leader in the set. We assume that P ≥ 3, where for P = 3 follower components

can obtain relative state measurements with respect to each other. Furthermore,

let SLpq = {SLpq,j : j = 1, ..., J} be a finite collection of J sets of diagnostic signals

at level L where each SLpq,j is obtained by extracting a useful feature from relative

state measurements; i.e., sLpq,j ∈ SLpq corresponds to the j-th diagnostic signal that

is obtained from a relative measurement of CL
p with respect to C l

q. Furthermore, let

the manifestation set of a fault f lk occurring at C l
p in terms of sLpq,j ∈ SLpq be denoted

by ML
pq,j,k. Manifestations corresponding to a healthy condition is represented by

ML
pq,j,0.

Assumption 5.2.2 (Uncertainty in the Diagnostic Signal Values).

Diagnostic signal values corresponding to the healthy and faulty relative state be-

havior are uncertain; i.e., adjacent fuzzy membership functions are overlapped.
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Assumption 5.2.2 implies that we are interested in realistic systems in which

uncertainty is dominant, and fault manifestations are not clear. Note that the

assumption has been made explicit because it is not always the case that the adjacent

fuzzy members are overlapped.

Proposition 5.2.2 (Non-unique Fault Signatures at Higher Levels).

With limited number of diagnostic signals at higher levels, multiple non-simultaneous

faults originated at different lower level components may have the same manifesta-

tion(s) at some higher level component.

Proof. Let a set of lower level components in the proposed HFDM be denoted

by C l
1, ..., C

l
Pl

, where l = 1, 2, ..., l + i − 1; and a higher level component be de-

noted by C l+i
q . According to the proposed hierarchical structure of HFDM, if

{C l
1, ..., C

l
p, ..., C

l
Pl
} ∈ DEP (C l+i

q ), there exist an (sequence of) arc(s) from each

C l
p to the component C l+i

q where the arcs represent dependencies in observed fault

signatures. Therefore, manifestations of faults originated at level l can be observed

in C l+i
q at level l+ i. Now, if the number of diagnostic signals in C l+i

q are fewer than

the number of components and the associated faults at level l, construction of an

FSM with rules that can uniquely identify each fault originated at level l will not

be feasible.

Proposition 5.2.3 (Faults in the Leader). If the diagnostic signals at level L

correspond only to the relative state information, the faulty component CL
1 , where

CL
1 is the leader component, cannot be identified at level L.

Proof. The proof is based on facts that are related to the structure of the proposed

HFDM as well as that of the leader-follower control configuration where the leader

acts as a “reference point”. In the proposed HFDM, interactions among the com-

ponents are represented by a single node at level L. In the presence of an incorrect

reference behavior, the followers simply follow the behavior and the relative states
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are maintained. Consequently, the diagnostic signal values vm remain healthy; i.e.,

vm ∈ML
pq,j,0, ∀p, q.

It should be noted that although the faults that originate in the leader compo-

nent are not identifiable at level L by utilizing only the relative state information,

they can be identified either at lower levels FDMs (according to Definition 4.2.1),

or by a human supervisor (can be considered as a supervisory diagnoser at level

L + 1) at ground station by checking if the leader conforms to the pre-determined

specifications.

We propose the following fuzzy inference rule for identifying the faulty follower

component in the formation by utilizing diagnostic signals corresponding to the level

L, namely

If (sLj

sLj ∈SLp1

∈ML
p1,j,k) and (sLj


sLj ∈SLpp∗

∈ML
pp∗,j,k)

and (sLj

sLj ∈SLp∗1

∈ML
p∗1,j,0) then {f lk} (5.7)

where p 6= 1 and p∗ corresponds to a single follower component that is an active

neighbor to CL
p . By “active neighbor to CL

p ” we imply a follower component with

respect to which the state measurements of CL
p are available. Note that the rule

in (5.7) utilizes diagnostic signals that correspond to multiple relative state mea-

surements, and helps restricting the undesired rule activations that would lead to

persistent false and/or missed fault identification (refer to Assumption 5.2.2). Fur-

thermore, the consequent part of the rule in equation (5.7) represents a set of faults

(the output of CL
p ’s FDM as defined in Definition 5.2.3) rather than a single fault

because at higher levels fault manifestations may be the same for a set of faults

originated at some lower level (according to Proposition 5.2.2). The activation level

of the rule in (5.7) is computed as that in (5.4).

The above methodology is applicable to any component whose subcomponents’
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interactions are characterized within a leader-follower (LF), or the master-slave con-

trol architecture at a given level l. We propose to utilize the methodology that is

presented in Section 5.2.3 along with the hierarchical fault diagnosis algorithm that

is presented below for fault diagnosis in the dependent subcomponents that are not

subjected to a master-slave type control configuration at a given level l.

Fault Identifiability: By fault identifiability or distinguishability at level L we refer

to the conditions under which faults in multiple satellites can be identified. It is

implicit in (5.7) that (a) the leader CL
1 is fault free, and (b) the follower CL

p∗ is fault

free. However, the assumption (a) can be relaxed for the rule in (5.7) if the following

condition is satisfied in presence of non-simultaneous faults f lk in CL
p and f lk′ in the

leader. In other words, in the presence of a fault f lk′ in the leader,

sLj

sLj ∈SLp1

/∈ML
p1,j,k ∀p, p 6= 1 (5.8)

The above condition ensures that leader’s faults are not manifested sufficiently in

the followers. Furthermore, assumption (b) above can be relaxed for the rule in

(5.7) if the following conditions are satisfied in presence of simultaneous faults f lk in

CL
p and f lk′ in CL

q (another follower), in other words,

CL
p /∈ q∗, CL

q /∈ p∗ and {CL
p , C

L
q } /∈ n∗ (5.9)

where p∗, q∗ and n∗ represent the active neighbors of CL
p , CL

q , and a given healthy

satellite, respectively.

5.2.5 Rule-Based Hierarchical Fault Diagnosis

In general, for all the components (both the dependent and the independent sub-

components) in the hierarchy, we propose to execute the following algorithm that
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is designated as the HierarchicalFD in the FDM (per the Definition 5.2.3). Note

that in the algorithm input, HFDM consists of information about the fault signature

models as well as the dependency information of all the components.

Algorithm: HierarchicalFD(HFDM,Detection alarm at C l
p)

Initialization: F l
id,p(C

l
p) = ∅ for all p and l

ComponentFD(HFDM, p, l)

{

1. Identify the fault f lk by following the procedure in Section 5.2.3 or Section

5.2.4 (if C l
p is a follower component).

2. If f lk ∈ D(C l
p), add f lk to F l

id,p(C
l
p) and STOP.

Else (f lk ∈ U(C l
p))

a. Add f lk to F l
id,p(C

l
p)

b. For all Ll−1,l
q,p (k′, k) = 1 and Ll,l+1

p,q (k, k′) = 1,

execute ComponentFD(HFDM, q, l − 1) and

ComponentFD(HFDM, q, l + 1) in order to identify faults f l−1
k′ and

f l+1
k′ , respectively.

End

}

Output: (1) Updated F l
id,p(C

l
p)s of the FDMs that execute the algorithm, and (2)

Fault propagation path(s) C l−i
p → C l

p → C l+1
p (refer to Section 4.4) that is/are con-

structed by taking into account all the components with F l
id,p(C

l
p) 6= ∅.

Note that the algorithm finds the origin of a fault by observing the fault signa-

tures in the top-down direction when it executes ComponentFD (HFDM, q, l−1)
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and stops when it observes a fault signature in an independent sub-component.

On the other hand, when it executes ComponentFD (HFDM, q, l + 1) in the

bottom-up direction, it finds the manifestation of the fault in higher levels in order

to determine the impact of the fault at higher levels.

Lemma 5.2.1 (Hierarchical Diagnosis).

When the proposed HFDM is known, the HierarchicalFD algorithm identifies the

origin of the non-simultaneous faults whose signature models are available.

Proof. Let C l
p be a component at level l; where L > l > 1, in which a fault detection

alarm is observed. According to the proposed HFDM, the origin of fault (fk) is at

level lo; where l ≥ lo (by Definition 4.2.1). Now, if the origin of the fault is at level

l, then f lk ∈ D(C l
p) (originated at an independent subcomponent) and the algorithm

stops after identifying f lk ∈ F l
id,p(C

l
p). Otherwise, ComponentFD(HFDM, q, l−1)

executes based on the fault signatures that are observed at C l
p and the dependency

information Ll−1,l
q,p . The process continues until a fault signature is observed at level

lo in an independent subcomponent.

It is important to note that an exceptional scenario is possible where a fault

is observed at higher level(s) but not observed at lower level(s) if the FDMs of the

lower level(s) components are not “complete” in terms of observable faults (assuming

dependency information is correct), which is contradictory to the basic definitions

and assumptions (refer to Definition 5.2.2, and the discussion on HFDM in Sections

5.2.1 and 5.2.2) of the proposed HFDM.

5.2.6 Specification of the Fuzzy Membership Functions

The fault diagnosis methodology presented in Sections 5.2.3 and 5.2.4 can be ex-

tended for faults with a range of severity if it is possible to construct manifestation

sets (M l
p,j,ks or M l

pq,j,ks) that correspond to a range of severity of fault f lk as opposed
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to a specific severity. This “target severity range” is decided based on a worst-case

analysis as well as by determining a minimum fault severity that is desired to be

isolated and/or have impact on the system performance.

We propose to perform fault diagnosis over some qualitative time-window; for

example by utilizing 1 orbit data and by invoking the proposed rule-based diagnosis

multiple times within this interval. The fault diagnosis methodology presented in

Sections 5.2.3 and 5.2.4 requires that each diagnostic signal (slp,j or slpq,j) be repre-

sented by an M -valued quantization using the fuzzy sets where each value vm (as

discussed in Section 5.2.3) is characterized by a membership function (MF) denoted

by µm. To avoid complete dependency on a human expert’s subjective judgement,

for each diagnostic signal we propose to generate a set of M Gaussian membership

functions whose total number M and the parameters (mean and standard deviations

of each MF) are specified as follows:

1. Decide the “universe of disclosure” over which µms are to be specified: the

target severity range (as discussed above) is determined for all the faults under

consideration and the range of slp,j (or slpq,j) is identified.

2. Specify µm, where m = 1 + ((M − 1)/2) is specified by obtaining its mean

(meannom) and standard deviations (σnom) by utilizing healthy data. Select M

to be a sufficiently large odd number so that the MFs (determined in Step-3)

are spanned over the entire universe of disclosure (as determined in Step-1)

equally toward both increasing and decreasing directions from meannom.

3. Construct µms for m = 1, 2, ...,M (m 6= 1 + ((M − 1)/2)) by specifying (M −

1)/2 Gaussian membership functions that are spanned over the universe of

disclosure (identified in Step-1) toward the increasing direction from meannom

that are δmean = ασnom apart; where α is a design parameter and σm = σnom.

For m = 1 and m = M , µm(x) = 1 for x ≤ mean1 and x ≥ meanM ,
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respectively. Specify the remaining (M−1)/2 Gaussian membership functions

toward the decreasing direction from meannom.

Figure 5.3: A set of Gaussian membership functions representing 13-valued quanti-
zation of the diagnostic signal s1

1 (“mean of motor current”).

Figure 5.3 shows a set of fuzzy membership functions corresponding to the diagnostic

signal “mean of motor current”, denoted by s1
1, with M = 13, meannom = 0.0840,

σnom = 0.0044 and δmean = 0.0132 (α = 3).

5.3 Demonstration of the Proposed Approach and

Fault Diagnosis Results

A 4-level hierarchical decomposition of the leader-follower formation flight of 5 satel-

lites, as described in Chapter 3, results in the HFDM that is shown in Figure 5.4

where “Sat-1” ... “Sat-5” represent the five satellites in the formation, and “RW-

X”, “RW-Y”, and “RW-Z” represent the reaction wheels (RW) in the X, Y , and Z

directions, respectively. At level 1 (identified as the “subsystem component level”),

each of the 15 RWs is denoted by C1
p ; where p = 1, ..., 15. At level 2 (identified

as the “subsystem level”), each of the 5 attitude control subsystems (ACS) node is

denoted by C2
p ; where p = 1, 3, 5, 7, 9. Furthermore, each of the 5 electrical power
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Figure 5.4: The HFDM that resulted from a 4-level hierarchical decomposition of
the formation flight of satellites as described in Chapter 3 (shown in Figure 3.1).

subsystem (EPS) node is denoted by C2
p ; where p = 2, 4, 6, 8, 10 at level 2. At level

3 (identified as the “system level”), each of the 5 satellites is denoted by C3
p ; where

p = 1, 2, ..., 5, and at level 4, the entire formation flying system is represented with

a single node C4
1 .

In the subsequent paragraphs, we demonstrate the proposed fuzzy rule-based

fault diagnosis (refer to Sections 5.2.3 and 5.2.4) for the following components of Fig-

ure 5.4, namely the 15 RWs (C1
1 , ..., C

1
15) at level 1, the five EPSs (C2

2 , C
2
4 , C

2
6 , C

2
8 , C

2
10)

at level 2, and the formation component (C4
1) at level 4. Note that the RWs and

EPSs are assumed to be the independent components since pa(C1
p) = ∅, ∀p and

pa(C2
p) = ∅, for p = 2, 4, 6, 8, 10. On the other hand, the formation component

C4
1 is a dependent component. First, we discuss the level 1 faults and the level 2

faults that are injected in the independent components — the RWs and the EPSs

— located at level 1 and level 2, respectively

Faults corresponding to each RW are denoted by F 1
p = f 1

k,p; where p = 1, ..., 15

and k = 1, 2. For k = 1, f 1
1,p represents a friction fault in the p-th RW, and for k = 2,

f 1
2,p represents a motor current fault in the p-th RW (fault modes are described in

Section 3.5). Faults corresponding to each EPS are denoted by F 2
p = f 1

k,p; where

p = 2, 4, 6, 8, 10; k = 1, 2, For k = 1, f 2
1,p represents a voltage regulation fault in the
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p-th EPS, and for k = 2, f 2
2,p represents a battery fault in the p-th EPS (fault modes

are described in Section 3.5). Note that the two EPS faults are level 2 faults.

Note that we have not considered any level 2 fault in the ACS. Consequently,

the faults corresponding to the five ACSs (C2
p , where p = 1, 3, 5, 7, 9) are as follows:

F 2
p =

⋃
q F

1
q with p = 1, 3, 5, 7, 9 and q identifying a RW within a particular ACS.

As an example, according to the HFDM schematic in Figure 5.4, for p = 1, the

corresponding qs are {1, 2, 3}; for p = 5, the corresponding qs are {7, 8, 9}, and so

on. Alternatively, the 6 faults (friction and motor current faults in 3 RWs) of level

1 can be identified as “RW-X fault”, “RW-Y fault” and “RW-Z fault” in the ACS

at level 2, if necessary. Furthermore, at this stage, we have not considered any level

l (l ≥ 3) fault. Consequently, the fault sets corresponding to the higher level (l ≥ 3)

components do not consist of any new fault.

Diagnosis of Faults in Independent Components at Level 1: For subsystem compo-

nent level fault diagnosis in each of the 15 RWs, diagnostic signals are obtained

by extracting features from the following RW measurements: (a) motor current,

(b) torque command voltage, and (c) wheel speed. Based on the earlier experience

with an actual attitude control subsystem telemetry data [43], we have extracted

ten features that include (over an invocation window of 512 seconds; approximately

11 invokes per orbit) mean, standard deviation, minimum value, peak value, energy,

and the first 5 components of the Fast Fourier Transform (FFT) energy spectrum.

Out of all the features it is found that it is possible to obtain manifestations of the

current fault as well as the friction fault within the target severity range (as indi-

cated in Section 5.2.6) with the following three diagnostic signals: (1) s1
p,1: mean

of motor current, (2) s1
p,2: mean of torque command voltage, and (3) s1

p,3: the first

component of the FFT of the wheel speed. The set of diagnostic signals that are

selected for rule-based reasoning is S1
p = {s1

p,1, s
1
p,2, s

1
p,3}; where p identifies a specific
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RW.

By following the procedure that is described in Section 5.2.3, we have assigned

a finite number of possible values to each diagnostic signal in S1
p by performing

an M -valued fuzzy quantization where M = 13 for s1
p,1 and s1

p,2, and M = 11

for s1
p,3. Therefore, the set of possible values of s1

p,1, s1
p,2, and s1

p,3 are: Vs1p,1 =

{v1, ..., v13}, Vs1p,2 = {v1, ..., v13}, and Vs1p,3 = {v1, ..., v11}, respectively. Note that

these possible values, as well as the value of M for each s1
p,j, are characterized

by Gaussian membership functions which are specified by following the procedure

outlined in Section 5.2.6. For the possible values µs of the three diagnostic signals

we have selected σm = 0044, 0.0232, 23.75, respectively; and δmean = 0.0132, 0.0696,

71.26, respectively (with α = 3 chosen for all the three signals).

Finally, the fuzzy rules r1
p,k (as in equation (5.2)) for the RWs corresponding

to the healthy RW condition as well as to the two faults under consideration are

determined. Note that in r1
p,k, p = 1, ..., 15 and k = 0, 1, 2 where p identifies a specific

RW, and k = 0, 1 and 2 represent the “healthy condition”, the friction fault, and the

motor current fault, respectively. Fault manifestation sets M1
p,j,k (with j = 1, 2, 3

representing the diagnostic signals s1
p,j) corresponding to the healthy as well as under

the two faults are determined as follows:

M1
p,1,0 = {v6, v7, v8}, vm ∈ Vs1p,1

M1
p,1,1 = {v8, v9, v10}, vm ∈ Vs1p,1

M1
p,1,2 = {v11, v12, v13}, vm ∈ Vs1p,1

M1
p,2,0 = {v6, v7, v8}, vm ∈ Vs1p,2

M1
p,2,1 = {v8, v9, v10}, vm ∈ Vs1p,2

M1
p,2,2 = {v11, v12, v13}, vm ∈ Vs1p,2

M1
p,3,0 = {v4, v5, v6}, vm ∈ Vs1p,3

M1
p,3,1 = {v7, v8, v9}, vm ∈ Vs1p,3

M1
p,3,2 = {v10, v11}, vm ∈ Vs1p,3
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The rule activations in each invoke are computed by using equation (5.4) and

the well-known max operator is used to “aggregate” the rule activation results in

order to generate a final diagnostic decision. Some sample rule activation results

are provided at the end of this section.

Diagnosis of Faults in Independent Components at Level 2: The demonstration is

similar to that of the RWs developed above expect for the diagnostic signals and

the faults under consideration. Consequently, we briefly describe the procedure

for the 5 EPSs at level 2. We have obtained the diagnostic signals by extracting

features from the following EPS measurements, namely (a) the bus voltage, and (b)

the regulator output current. We have extracted four features that include (over

the above-mentioned invocation window of 512 seconds) mean, standard deviation,

minimum value, and one selected component of the Fast Fourier Transform (FFT)

energy spectrum. The set of diagnostic signals that was selected for the rule-based

reasoning in EPSs is S2
p = {s2

p,1, s
2
p,2, s

2
p,3, s

2
p,4, s

2
p,5, s

2
p,6}; where s2

p,1, s2
p,2, and s2

p,3

are the mean, standard deviation, and the selected component of FFT of the bus

voltage, respectively. Similarly, s2
p,4, s2

p,5, and s2
p,6 are the corresponding features of

the regulator output current.

By following the procedure that is described in Section 5.2.3, we performed

an M -valued fuzzy quantization of the diagnostic signals in S2
p (p = 2, 4, 6, 8, 10).

As in the RWs case, the procedure that is outlined in Section 5.2.6 was followed to

determine M and the possible values of each s2
p,j; i.e., Vs2p,j = {v1, ..., vM} with j =

1, 2, ..., 6. The values of M are determined as follows: M = 17 for {s2
p,1, s

2
p,2, s

2
p,4, s

2
p,5}

and M = 19 for {s2
p,3, s

2
p,6}. Fault manifestation sets M2

p,j,k are identified (not shown

here) and the fuzzy rules r2
p,k (as in equation (5.2)) for the EPSs corresponding to

the healthy EPS condition as well as to the two faults under consideration are de-

termined. We have, p = 2, 4, 6, 8, 10 and k = 0, 1, 2 where p identifies a specific EPS,
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and k = 0, 1 and 2 represent the “healthy condition”, the voltage regulation fault

and the battery fault, respectively. As in the case of the RWs, the rule activations

in each invoke are computed for EPSs by using equation (5.4) and the well-known

max operator is used to “aggregate” the rule activations results in order to generate

a final diagnostic decision. Some sample rule activation results are provided at the

end of this section.

Diagnosis of Faults in the Dependent Component at Level 4: For component fault

diagnosis of the formation (C4
1), mean of the relative attitude measurements over an

invocation window is utilized as the diagnostic signal and the rule in equation (5.7)

is implemented for each follower satellite based on the formation configuration that

is shown in Figure 3.1. Since the main objective of the formation level diagnosis is

to identify the satellite(s) that is/are faulty, and since we have not considered any

level 4 fault (as indicated above), we represent all the faults that are originated at

lower levels with the finite set F 4
1 ={f2, ..., f5}, where f2,...,f5 stand for “satellite-2

fault”,...,“satellite-5 fault”, respectively (as explained in Section 5.2.4, the leader

satellite is assumed to be fault free). The diagnostic signals are the relative attitude

measurements. For example, the diagnostic signals s4
pq,j that are used in the rule for

“satellite-2 fault” are:

1. s4
21,1: mean of the relative roll angle of Sat-2 with respect to Sat-1 (leader)

2. s4
21,2: mean of the relative pitch angle of Sat-2 with respect to Sat-1

3. s4
21,3: mean of the relative yaw angle of Sat-2 with respect to Sat-1

4. s4
23,4: mean of the relative roll angle of Sat-2 with respect to Sat-3 (active

neighbor)

5. s4
23,5: mean of the relative pitch angle of Sat-2 with respect to Sat-3
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6. s4
23,6: mean of the relative yaw angle of Sat-2 with respect to Sat-3

7. s4
31,7: mean of the relative roll angle of Sat-3 with respect to Sat-1

8. s4
31,8: mean of the relative pitch angle of Sat-3 with respect to Sat-1

9. s4
31,9: mean of the relative yaw angle of Sat-3 with respect to Sat-1

For each diagnostic signal, an M = 13-valued fuzzy quantization is performed and

the fault manifestation sets M4
p1,j,k, M

4
pp∗,j,k, and M4

p∗1,j,0 of the rules in equation

(5.7) are determined. As an example, for “satellite-2 fault”, the fault manifes-

tation sets M4
21,k, M

4
23,j,k, and M4

31,j,0 correspond to the sets of diagnostic signals

{s4
21,1, s

4
21,2, s

4
21,3}, {s4

23,4, s
4
23,5, s

4
23,6}, and {s4

31,7, s
4
31,8, s

4
31,9}, respectively. Again, for

simplicity, fuzzy MIN and MAX [121] operators are used as t-norm operator (⊗)

and s-norm operator (⊕), respectively.

Sample Rule Activation Results: To demonstrate the proposed approach, we present

below a case where we have injected the two faults in the subsystem component level

simultaneously between t = 7500 s and t = 9810 s, namely (1) friction fault in the

Z-axis reaction wheel of Sat-3, and (2) motor current fault in the Z-axis reaction

wheel of Sat-5; within their “target severity range”. Note that although the faults

are simultaneous, they are injected at two different satellites. Therefore, this case is

consistent with the assumption of a single fault in subsystem components that was

made in Section 5.2.3.

First, we present some sample rule activation results of level 1 components.

Figure 5.5 shows the rule activations corresponding to the Sat-3 Z-axis reaction

wheel under friction fault (injected between t = 7500 s and t = 9810 s) where µ(f 1
1 )

and µ(f 1
2 ) represent rule activation levels for the friction fault (f 1

1 ) and the motor

current fault (f 1
2 ), respectively, and µ(H) represents the rule activation correspond-

ing to the healthy RW condition. It is important to note that, as indicated above,
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we extract features from data and perform fault diagnosis by using 512-second non-

overlapping time window (approximately 11 invocations per orbit). Consequently,

the width of each bar-graph in Figure 5.5 is 512 seconds. Similar rule activations

Figure 5.5: Rule activations in the Z-axis RW of Sat-3 under friction fault (the
width of each bar-graph is 512 seconds).

are observed for the simultaneously injected motor current fault (injected between

t = 7500 s and t = 9810 s) in the Sat-5 Z-axis reaction wheel as shown in Figure

5.6 with misidentification of faults (the friction fault is misidentified as the cur-

rent fault) during the fault transients (the overall performance of fault diagnosis is

quantified in the “performance evaluation” subsection provided in the subsequent

discussions below). The rules associated with the remaining 13 reaction wheels did

not (with a few exceptions which are discussed under “performance evaluation” in

the subsequent discussion) fire to sufficient degrees that would lead to a “faulty”

status after the “aggregation” (used for determining which rule has the maximum

activation) of the rule firing results.

Next, we present some sample formation level rule activation results; i.e.,

rule activations at a dependent component. Figures 5.7 and 5.8 show the formation

level rule activations under the above-mentioned simultaneous faults (injected at the

subsystem component level) in Sat-3 and Sat-5 where µ(F ) and µ(H) represent the
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Figure 5.6: Rule activations in the Z-axis RW of Sat-5 under motor current fault
(the width of each bar-graph is 512 seconds).

Figure 5.7: Rule activations that identify a “Sat-3 fault” (the width of each bar-
graph is 512 seconds).

rule activations corresponding to a faulty and a healthy condition for a given satellite

(formation component). The rule activations in Figures 5.7 and 5.8 demonstrate

high level manifestations of low level faults and emphasize the usefulness of the

“level l fault” concept.

Finally, we present some sample rule activation results for the independent

components at level 2. Figure 5.9 shows the rule activations corresponding to the

Sat-5 EPS under the battery fault (injected between t = 6500 s and t = 6860 s)

where µ(f 2
1 ) and µ(f 2

2 ) represent the rule activation levels for the voltage regulator

fault (f 2
1 ) and the battery fault (f 2

2 ), respectively, and µ(H) represents the rule

activation corresponding to a healthy EPS condition.
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Figure 5.8: Rule activations that identify a “Sat-5 fault” (the width of each bar-
graph is 512 seconds).

Figure 5.9: Rule activations in the EPS of Sat-5 under battery fault.

5.4 Performance Evaluation

In this section we evaluate the performance of the proposed fault diagnosis scheme

by utilizing confusion matrices. The terms “confusion matrix” and “detection ma-

trix”/“decision matrix” are sometimes used interchangeably in the literature. In

this thesis we distinguish between the two matrices. As defined in [56] and [57], a

detection matrix is square matrix of dimension 2 that is related to binary decision

making or fault detection. Such matrices directly show the “false positives” (false

alarms), “false negatives” (missed detection), etc. On the other hand a confusion

matrix is a typically square matrix of dimension n that is utilized to evaluate fault

identification or classification, where n is the number of health states. The healthy

or “no-fault” cases can also be included in the confusion matrix. In the subsequent
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Table 5.1: Confusion Matrix for the Subsystem Component Level
Identified → Healthy Friction Current Ambiguity

Actual ↓ Fault Fault

Healthy 169 3 0 0
Friction Fault 11 29 0 0
Current Fault 2 13 25 0

paragraphs we have added another extra column with the confusion matrices to ac-

commodate ambiguous cases. For comparing two fault identification algorithms on

a given data set, “kappa coefficients” [56,57] are computed from confusion matrices

which is a measure of an algorithm’s ability to correctly classify a fault and takes

into account the expected number of correct classifications occurring by chance. In

this thesis our focus is on fault diagnosis or identification, and we are not going to

compare the performances of two different algorithms on a given data set. Con-

sequently, in this section we use overall accuracy [144] that is computed from a

confusion matrix as a measure of performance.

It is important to note that in the subsequent paragraphs we construct 2× 2

dimensional “one-versus-all” decision matrices in order to compute overall accuracy

in fault identification. However, it should be clear that the information that these

“one-versus-all” decision matrices provide are very different from what is available

from a typical detection matrix or decision matrix that are used to evaluate fault

detection performance. This is because the decision matrices that we construct in

this thesis are “one-versus-all” as opposed to “healthy-versus-faulty”.

To quantify the performance of the proposed scheme confusion matrices are

constructed corresponding to the rule activation results in the highest (formation

level) and the lowest (subsystem component level) with unseen data. The data also

included some cases where the fault severities were lower than the “target severity

range” (as specified in Section 5.2.6).

Tables 5.1, 5.2 and 5.3 represent the confusion matrices corresponding to the
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Table 5.2: Confusion Matrix for the Subsystem Level
Identified → Healthy Regulator Battery Ambiguity

Actual ↓ Fault Fault

Healthy 224 0 0 0
Regulator Fault 0 32 0 0
Battery Fault 0 0 24 0

Table 5.3: Confusion Matrix for the Formation (Followers) Level
Identified → Sat-2 Sat-3 Sat-4 Sat-5 Healthy Ambiguity

Actual ↓ Fault Fault Fault Fault

Sat-2 Fault 11 0 0 0 0 1
Sat-3 Fault 0 39 0 0 11 3
Sat-4 Fault 0 0 11 0 0 1
Sat-5 Fault 0 0 0 17 0 1

Healthy 0 2 0 2 281 0

subsystem component, subsystem, and the formation levels, respectively where the

numbers correspond to the “number of invocation” over the above-mentioned 512

seconds time window. An “ambiguity” corresponds to a situation where two different

rules (one corresponding to a healthy status and the other corresponding to a faulty

status) have equal activation levels. In the subsystem component level, aggregated

rule firing results are utilized to construct Table 5.1. In the formation level, the

aggregation is performed within the individual satellite’s rule firing results. Table 5.4

shows the accuracy of the proposed scheme in the three levels under consideration.

The accuracies have been computed by following the procedure that is available

in [144]; i.e. first by decomposing the confusion matrices in Tables 5.1, 5.2, and 5.3

Table 5.4: Overall Fault Identification Accuracy
Formation Level 98.31%
Subsystem Level 100%

(Electrical Power Subsystem (EPS))

Subsystem Component Level 92.33%
(Reaction Wheels (RW))
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into n numbers (n = 3 for Tables 5.1 and 5.2, and n = 5 for Table 5.3) of “one-

versus-all” decision matrices and then summing the matrices to obtain a confusion

matrix that represents the overall classification accuracy which is described next.

Let Ccon denote an (N + 1) × (N + 1) confusion matrix that is associated

with N + 1 health states (the healthy state and the N number of faulty states) of a

component at level l in which the actual and the identified health states are along

the rows and the columns, respectively. To compute the accuracy in identifying the

n-th state, a 2×2 dimensional “one-versus-all” decision matrix Cn is constructed as

follows. Let ci,j denote the element in the i-th row and the j-th column of Ccon, and

c′i,j denote the element in the i-th row and the j-th column of Cn. The elements of the

Cn matrix are computed from c′2,2 =cn,n, c′2,1 =(
∑N

k=1 cn,k)−cn,n, c′1,2 =(
∑N

k=1 ck,n)−

cn,n, and c′1,1 =(sum(Ccon) − c′2,2−c′2,1−c′1,1). The accuracy of identifying the n-th

state at level l is now defined as an = trace(Cn)/sum(Cn). On the other hand, the

overall accuracy is computes as follows. First the sum of the n number of “one-

versus-all” decision matrices is computed as Cov =
∑n

i=1 Cn. Then the overall fault

identification accuracy at level l is defined as aov = trace(Cov)/sum(Cov).

It is observed in Tables 5.2 and 5.4 that fault identification accuracy at level

2 is 100% which may appear to be unrealistic. This high accuracy is due to the fact

that the controller or simplified power distribution and control unit (PDCU) of the

EPS is found to be very sensitive to the faults that are considered in this thesis.

Consequently, fault manifestations were much clearer as compared to those in the

subsystem component level or the formation level.

Comparing the formation level and the subsystem component level, the fault

identification accuracy in the formation level is found to be higher (98.31%) than

that of the subsystem component level (92.33%). The reason behind the higher fault

identification accuracy in the formation level is that in cases of low severity faults,

the formation level diagnosis is found to perform better than that of the subsystem
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component level. This is due to the fact that faults are found to have clearer

manifestations in relative measurements (as mentioned in Section 5.2.4) that are

used to generate diagnostic signals in the formation level. For example, Figure 5.10

shows the rule activations in the Z-axis RW of Sat-3 under low severity (outside the

target severity range as specified in Section 5.2.6) motor current fault that is injected

between t = 5800 s and t = 8110 s. It is observed that the rules corresponding to

both the friction fault and the motor current fault are activated in the subsystem

component level. Therefore, the exact source of the fault cannot be identified. To

investigate if these are false alarms, one can refer to Figure 5.11 which shows the

formation level rule activations in the Sat-3 during the above-mentioned low severity

motor current fault in the Z-axis RW of Sat-3. The rule activation is consistent and

clear which confirms the presence of a fault in Sat-3 even though the source of the

fault is not identified in the subsystem component level.

Figure 5.10: Rule activations in the Z-axis RW of Sat-3 under low severity motor
current fault (the width of each bar-graph is 512 seconds).

Note that around t = 6050 s, the healthy rule activation µ(H) in Figure 5.11

is much lower than the “Sat-3 fault” rule activation µ(F ).

Since the formation level diagnosis provides clearer identification of faults,

it can certainly be utilized as a supervisory diagnosis system for the formation
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Figure 5.11: Formation level rule activations in the Sat-3 under low severity motor
current fault injected at the Z-axis RW (the width of each bar-graph is 512 seconds).

flight which would prompt the operators to have closer look at the potential faulty

components to determine and investigate the source of a fault. This approach is

particularly useful when it is not possible to monitor a large number of low level

components continuously.

The purpose of the above performance evaluation has been to determine if the

proposed fuzzy rule based reasoning, combined with proposed directed graph-based

hierarchical decomposition of the system can achieve acceptable accuracy (close to

95%, as specified in Section 1.4). The results show that it is possible to achieve the

desired accuracy by using the proposed HFDM scheme. It is expected that other well

known fault diagnosis schemes may achieve similar accuracy in fault identification.

However, it is very likely that the other schemes would not address the fault diagnosis

problem (as stated in Section 1.4) that is investigated in this thesis. The performance

of the traditional ground-based satellite fault diagnosis that is performed via data

plotting, trend analysis and limit checking depends heavily on the operator’s level of

expertise, and there is no standard or universal procedure to perform such analysis.

Consequently, a performance comparison of proposed approach with respect to such

traditional approaches is not performed in the thesis.
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5.5 Advantages and Limitations

A discussion on the advantages and limitations of the proposed methodology is

provided below.

Advantages: The proposed hierarchical fault diagnosis model (HFDM) allows one

to decompose a complex system systematically in order to perform coherent fault

diagnosis. The proposed hierarchical diagnosis algorithm facilitates the identifica-

tion of the origin of a fault. Fault signatures are represented in the form of fuzzy

rules that are transparent and understandable by expert humans. Furthermore, the

proposed approach allows integration of fault diagnosis that are performed in var-

ious components within a system. The fault dependencies among the components

are specified with absolute certainty by using ones and zeros to indicate connectiv-

ity/dependency. This simplistic representation of dependencies with link matrices

Ll2,l1q,p helps us to avoid complicated and time demanding model construction. The

model allows the incorporation of domain experts’ qualitative and imprecise knowl-

edge in the structure of the model as well as in the fuzzy rules that are specified at

given node/component, if necessary.

Limitations: The main limitation of the proposed hierarchical fault diagnosis

model (HFDM) is that it is possible to specify the dependencies only with abso-

lute certainty by using ones and zeros to indicate connectivity/dependency. Such

representation of dependencies may be too simplistic in nature to capture the inter-

action among various components in the system. Another disadvantage is that once

a fault is identified at a component, it is necessary to investigate (as in the proposed

HierarchicalFD algorithm) rule activations in all the components that are connected

to the faulty component (as specified by the associated link matrix) — there is no

way to prioritize which components are more probable to be faulty except in cases

where a human expert’s expertise are available.
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5.6 Summary

A hierarchical fault diagnosis methodology that is based on fuzzy rule-based rea-

soning for satellite formation flight is developed within a novel hierarchical fault

diagnosis framework. Fuzzy reasoning-based fault diagnosis is investigated at dif-

ferent levels in the hierarchy for a leader-follower type formation flight of satellites.

Intermittent, non-abrupt faults in the attitude control subsystem (ACS) compo-

nents as well as in the electrical power subsystem (EPS) components with different

severity levels have been considered. Fuzzy rules are proposed for identifying faulty

components in the satellites formation flight and conditions for fault distinguisha-

bility are provided.

The proposed fault diagnosis methodology is demonstrated by utilizing syn-

thetic formation flight data of 5 satellites. The data has been generated via nu-

merical simulations of a satellite formation flight that consists of two subsystems —

attitude control subsystem and electrical power subsystem — for each satellite in

the formation. Performance evaluation results that correspond to different levels of

the hierarchy are also presented. For a given component, performance evaluation

was performed by generating a confusion matrix which is a well known and standard

procedure for such evaluation. The formation level fault diagnosis is found to be

more accurate than the subsystem component level. Consequently, formation level

fault diagnosis can be utilized as a supervisory diagnosis system for the formation

flight which would prompt the operators to have closer look at the potential faulty

components to determine the source of a fault, which is particularly useful when

it is not possible to employ continuous monitoring of a large number of low level

components. It should be noted there that the performances have not been evalu-

ated in terms of the identification of the fault propagation paths (refer to Section

4.4) because the component dependencies were specified with the link matrix Ll2,l1q,p

(refer to Section 5.2.1) which is simplistic in nature. Such performance evaluation
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is left for the next chapter where the dependencies are quantified in terms of con-

ditional probabilities. Finally, advantages and limitations of the proposed method

are discussed.
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Chapter 6

Bayesian Model-Based Fault

Diagnosis

In this chapter Bayesian network-based fault diagnosis is investigated at different

levels of the proposed hierarchical decomposition that was presented in Chapter 4.

6.1 Introduction

In Chapter 5, fuzzy rule-based fault diagnosis was investigated at different lev-

els of the proposed hierarchical decomposition that was presented in Chapter 4.

A hierarchical fault diagnosis model (HFDM) was developed. In this chapter a

Bayesian network-based fault diagnosis model namely, a component dependency

model (CDM) is investigated. It is important to recall from the discussions in

Chapter 1 that in the case of satellites that operate in near-Earth orbits, it has been

possible to manage and operate these systems through additional design margins

and extensive ground-based monitoring and control efforts. Fault diagnosis and

health monitoring in the Earth orbiting single spacecraft missions are mostly ac-

complished by human operators at ground through around-the-clock limit-checking

and trend analysis on large amount of telemetry data by utilizing software tools. As
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explained in chapter 1, this approach does not scale well for multiple space platform

missions, and at the same time, it is often desired that expert human operators be

involved in the spacecraft operations and diagnosis processes. Therefore, it is desired

that the diagnosis model would provide decision support to human experts, and it

is reasonable to investigate a Bayesian network (BN)-based (whose capability for

human-like reasoning under uncertainties are well-known) fault diagnosis model to

relate the faults that are occurring at various subcomponents. This is the rationale

behind developing a Bayesian network (BN) type model in the thesis. The proposed

Bayesian network-based diagnosis model is generic in the sense that it does not

impose any restrictions on the type of diagnosis algorithms that one may employ

at a given node of the model as long as its performance evaluation matrix (this is

discussed in Section 6.2.3 in detail) is available. In other words, in this chapter

we are basically generalizing the HFDM by replacing the link matrices Ll2,l1q,p (k′, k),

which were utilized to represent dependency, by some conditional probability tables

(CPT) that are commonly used in Bayesian models.

The organization of the remaining parts of this chapter is as follows: In Section

6.2, we start developing a generic BN-based CDM by discussing the scope of the

research of this chapter. Next, we discuss the purpose of our model, explain how the

health states are defined at different nodes, develop procedure for specifying model

parameters, and discuss how evidences are generated at different nodes. In Section

6.3, the proposed scheme is demonstrated by using synthetic data from the formation

flight system model that was presented in Chapter 3. The performance evaluation

results are presented in Section 6.4, and advantages as well as the limitations of the

scheme are discussed in Section 6.5. Finally, the chapter is summarized in Section

6.6.
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6.2 Development of a Component Dependency

Model (CDM)

It is well-known that elicitation of conditional probabilities for a given Bayesian

network-based model is the most difficult aspect of the model development. An

overview of the methods that are commonly employed for probability elicitation ex-

haustively from domain experts is available in [145]. The main drawback of these

methods is their biased assessments by experts although various methods for in-

terviewing experts have been developed in literature to reduce such biases. These

include probability-scale method [146], gamble-like method [147], and the probabil-

ity wheel method [148]. Other methods are available in [52] and [53].

The methodology that is presented in this chapter for quantifying the CDM

parameters is the result of and is being motivated by the inapplicability of the

existing methods (for example, the ones in [52,53]) to the system under consideration

in this thesis. Although noisy-OR [55] is a well established method, it applies only to

boolean nodes. The method available in [52] utilizes domain-dependent constraints

that are not relevant to our problem. The method that is available in [53] is also not

applicable because it was developed for ranked nodes whose states are expressed on

an ordinal scale which is mapped to a continuous, monotonically ordered, bounded

numerical scale. Note that several belief or evidence propagation methods in BN are

available in the literature [54,55], and the methods require that the BN parameters

of the nodes be specified numerically. Our focus in this chapter is on the BN-based

fault diagnosis model development (structure and parameters) as opposed to the

development of a belief propagation method.
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6.2.1 Objective of the Proposed Bayesian Network Model

First, it is important to describe the main objective of the proposed hierarchical fault

diagnosis and health monitoring approach in detail. We intend to utilize this scheme

as follows: when the faulty or healthy state of a node is observed by executing a

diagnosis algorithm, the evidence (refer to Section 6.2.4 for the specific approach

adopted in this thesis) is introduced to our proposed CDM by instantiating that

node. The evidence is then propagated in the CDM by utilizing a standard propa-

gation algorithm (such as the junction tree algorithm [54,55], recursive conditioning

algorithm [55], etc.). In the nodes that have updated health states corresponding

to the faulty states with high probabilities, diagnosis algorithms are executed to

confirm the hypotheses. When a fault evidence is determined at some intermediate

level in the hierarchy, the evidence is propagated downwards to identify the com-

ponent in which the fault has originated from. On the other hand, the evidence is

propagated upwards to identify components that are probably affected by the fault,

and to determine if higher level specifications are still possible to be accomplished

since the diagnosis algorithms at higher levels are usually based on certain rules that

check the system (or, system of system) level specifications.

It is possible to encounter situations where there is no identification of a faulty

state at a higher level, whereas a low level fault is actually identified at a lower level.

However, in such cases, it is worthwhile to propagate the evidence upwards in the

hierarchy to identify the high level components that are possibly impacted by the

identified fault. On the other hand, when the diagnosis at a higher level is accurate,

it is worthwhile to propagate the evidence downwards in the hierarchy to identify

the components where one should expect to observe fault manifestations eventhough

fault identification cannot be performed at the current instant.

It should be noted that there are certain cost that is associated with perform-

ing fault diagnosis at each node in terms of data processing, algorithm development,
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validation and performance evaluation. Furthermore, in case of having a large num-

ber of components, it is natural from the users’ resource considerations that the

number of nodes that are to be actively/round the clock monitored is as few as

possible. Consequently, it is possible that diagnosis algorithms are not employed

at some of the intermediate nodes but it is desired that the nodes be included in

the diagnosis model to determine which subsystem or system a faulty node at lower

levels belongs to. Such representation allows a systematic fault cause identification.

In subsequent sections, we will investigate a general case of an L level hier-

archical decomposition. Before proceeding to the next section it is important to

note that the definition of “level l fault” (Definition 4.2.1) plays a significant role in

determining the structure of our proposed CDM. Distinguishing faults at different

levels based on the above definition allows one to avoid cycles in the CDM.

6.2.2 Proposed Bayesian Network Model Structure and Node

States

In this chapter, we represent our proposed hierarchical decomposition with a novel

Bayesian network-based Component Dependency Model (CDM) [149] as shown in

Figure 6.1. The following notations are consistent with those in Chapters 4 and 5,

namely the entire system under consideration is described by a single node at the

highest level and which consists of sub-components that are located at lower levels.

We denote the p-th component at level l in the hierarchy as C l
p. For example, if

we consider a 4-level decomposition of a fleet of systems as shown in Figure 4.1, for

l = 1, C1
p would correspond to the p-th sensor or actuator (subsystem component)

whereas for l = 4, C4
1 would correspond to the “fleet”. For the intermediate levels,

i.e., l = 2 and l = 3, a component C l
p would correspond to the p-th subsystem and

system, respectively. Let L denote the total number of levels in the hierarchy, and

for any C l
p, the set of components that are parents of C l

p (as represented in Figure
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6.1) is denoted by pa(C l
p).

Figure 6.1: Bayesian network representation of an L level hierarchical decomposi-
tion.

Node Health States: The possible states of a given node in our proposed CDM

represent the health states of the corresponding component. It should be clear,

according to the Definition 4.2.1 that the origin of a fault (level l fault) is at one of

the nodes C l
p (refer to Figure 6.1) for which pa(C l

p) = ∅. If pa(C l
p) 6= ∅, the states

of the parent nodes have impact on the states of C l
p, and the fault may manifest at

C l
p after originating from some other node at lower levels. Depending on whether

a node C l
p has parent nodes or not, we assign its health state as follows: given a

component C l
p and its parents pa(C l

p) = {C l−1
1 , ..., C l−1

m , ..., C l−1
M }, the possible health

states X l
p of C l

p are represented as X l
p = {x0, ..., xm, ..., xM}; where x0 corresponds

to the state “healthy C l
p” and xm corresponds to the state “component C l−1

m fault

in C l
p”. If pa(C l

p) = ∅, the possible health states X l
p of C l

p are represented as

X l
p = {x0, ..., xk, ..., xK}; where xk corresponds to the level l fault f lk that originates

at C l
p.

Note that it is possible to represent an anomaly in a node that corresponds to

multiple simultaneous faults by a health state of the node. However, the diagnosis

algorithm that is employed at that node must be capable of distinguishing among
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say, two single faults and their simultaneous occurrences. In such a case, from fault

identification perspective, the anomaly involving multiple faults can be treated as

a “single fault” while generating a node performance evaluation matrix such as a

confusion matrix [56]. For sake of simplicity, in this thesis we do not consider health

states xm ∈ X l
p (or xk ∈ X l

p) that correspond to multiple fault scenarios.

It is worthwhile to note that in Bayesian modeling, it is required that the

possible node’s states are exhaustive and mutually exclusive to ensure that the

entire state space is under consideration and the node is in a single state at a given

instant. These requirements are satisfied in a practical environment by taking into

account all the possible, or at least the dominant, faults corresponding to that node

that are determined through the well-known Failure Mode Effect and Criticality

Analysis (FMECA) procedures.

As mentioned above, node states are observed by executing appropriate fault

diagnosis algorithms at that node. Therefore, evidence should be introduced to the

network nodes when the states are identified by the diagnosis algorithms without

ambiguity. In this chapter fuzzy Rule-Based Reasoning (RBR) (as developed in

Chapter 5) is employed to identify the states of a node and to generate evidences

(this will be discussed in detail in Section 6.2.4) that are introduced to the node.

However, our proposed hierarchical approach is generic for accommodating any type

of reasoning algorithm; i.e., at a particular node, Case-Based Reasoning (CBR) or

Model-Based Reasoning (MBR) algorithms may be employed as well.

6.2.3 Determination of Model Parameters

Parameters of our proposed Bayesian network-based CDM are the conditional prob-

abilities that are specified in the form of Conditional Probability Tables (CPT). It is

well-known that the CPT that is specified at C l
p has a number of parameters (condi-

tional probabilities) that are exponential in the number of parents pa(C l
p); i.e., one
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must specify P (X l
p|pa(X l

p)) for each configuration of the parents. An overview of

the methods that are commonly employed for probability elicitation from domain

experts is available in [145], and the limitations of eliciting probabilities exhaus-

tively with domain experts are well-known. Detailed discussions on the benefits and

drawbacks of these methods are available in [145], and reviewing them is therefore

beyond the scope of this thesis.

In our case, elicitation of CPTs from the domain expert opinions will be diffi-

cult because as the possible number of faults becomes large in the parent nodes of

a given node, the number of parent configurations will become too specific for the

expert to specify a distribution of the node’s health state. Furthermore, it is not

reasonable to assume that real data corresponding to different faults and all of their

combinations are available. Generating synthetic data for combinations of fault oc-

currences will be cost prohibitive and challenging, if not impossible, eventhough a

high fidelity simulator is available.

Therefore, a requirement for parameter learning from data is likely to impose

a significant barrier in model development and deployment. Furthermore, as men-

tioned in Section 6.2, the existing methods for generating CPTs are not useful in

our case. The above-mentioned difficulties in eliciting probabilities from experts and

the unavailability of sufficient data that are always barriers in deploying diagnostic

schemes for real systems, have motivated us to investigate alternative methods for

generating CPTs.

Uncertainty Information: Recall that our central problem at hand is to manage

and utilize the health observations that are available from different subsystems and

components. A framework and methodology was proposed in Chapter 4 for system

health monitoring where it is desired that diagnostic decisions are made by taking

into account the uncertainty that is associated with health state observations at

different nodes in the hierarchy. The uncertainty is quantified by the conditional

118



probabilities that, as indicated above, are commonly elicited by utilizing information

from the various sources [150] such as: (a) physical or numerical models, (b) results

of experiments or passive observations, and (c) opinions of domain experts.

In the area of health monitoring, the performance metrics for fault detection

and identification/isolation are specified separately for both temporal and static per-

formance evaluations [119,151]. Since this chapter is concerned with fault identifica-

tion by using a probabilistic reasoning model we concentrate on confusion matrices

that are used to evaluate static performance of isolation algorithms, and which also

provide statistical or probabilistic information.

In the proposed CDM, the health state of a given node is observed by first

employing the most appropriate fault diagnosis algorithms that are feasible. Despite

the fact that these algorithms are developed by different teams separately and are

often proprietary to the teams, it is expected that the diagnosis algorithms that

are employed at different nodes have their respective performance evaluation data

available, in the form of confusion matrices [56].

A confusion matrix consists of the elements representing the proportion of

correct and incorrect classification rates. It is possible to obtain the following con-

ditional probabilities from the confusion matrix that is associated with a given

node: P (X l
p = xk|I lp = xn); where N is the maximum possible value of k (and n),

k = 0, ..., N , n = 0, ..., N , and I lp is the health state identification at the node. By

utilizing these local conditional probabilities, one can derive the conditional proba-

bilities that are necessary to specify P (X l
p|pa(X l

p)), and qualify the uncertainty in

our proposed CDM as described in the subsequent paragraphs.

Overview of the Proposed Procedure: In [152], it is argued that the care with

which any given probability distribution needs to be elicited in a BN model de-

pends strongly on the structure of the model and the queries that are intended to
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be processed. The procedure for CPT generation that is proposed in the subse-

quent paragraphs focuses on a set of initial distributions that are easily verifiable

by a human expert. The idea is to construct a set of initial distributions from the

information that is available in the confusion matrices, and provide a flexibility to a

human expert for modifications, if necessary [149]. There may not be a need for any

modification if the expert agrees with the initial distributions. Therefore, instead

of asking an expert to provide a new distribution, a procedure is developed to con-

struct distributions that the expert can modify, if necessary, according to his/her

belief.

These initial distributions correspond to non-simultaneous sub-component (par-

ent node) faults within a component (child node). Another rational for providing

the non-simultaneous sub-component faults significance is due to the fact that most

diagnosis algorithms are designed by incorporating this assumption. Furthermore, it

is reasonable to assume that the probability of occurring simultaneous n component

faults in a set of components decreases as the number of faults n increases. Once the

initial distributions are determined, remaining distributions are derived from these

initial ones.

Initial Distributions: Consider a generic segment of our proposed model as shown

in Figure 6.2, where the child node C l
p at level l has N parent nodes at level l−1; i.e.,

pa(C l
p) = {C l−1

1 , ..., C l−1
n , ..., C l−1

N } and their corresponding number of health states

are (m1 +1), ..., (mn+1), ..., (mN +1). Consequently, the possible health sates of C l
p

are X l
p = {x0, ..., xn, ..., xN} and the possible health sates of the n-th parent node

are X l−1
n = {xi}; i = 0, 1, ...,mn. In other words, the possible number of parent

configurations is
∏N

n=1(mn + 1). Our objective is to determine a CPT that specifies

P (X l
p|X l−1

1 , ..., X l−1
N ).

Let I lp denote the output of the health state identification algorithm that is

employed at the node C l
p. Hence, the possible outputs of I lp correspond to the
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Figure 6.2: Health states of a child node at level l and its parent nodes at level l−1.

possible node health states X l
p; i.e., I lp = {x0, ..., xn, ..., xN}. From the confusion

matrix it is possible to obtain the following information: P (X l
p = xk|I lp = xn);

where, k = 0, ..., N , and n = 0, ..., N . Similarly, at level l − 1, the information

available at the n-th sub-component of C l
p are: P (X l−1

n = xk|I l−1
p = xi); where

k = 0, 1, ...,mn and i = 0, 1, ...,mn.

In order to determine the
∏N

n=1(mn + 1) belief or probability distributions

P (X l
p|X l−1

1 , ..., X l−1
N ) from the conditional probabilities above, first we focus on the

distributions that correspond to single (non-simultaneous) component faults at level

l−1 and the one that corresponds to the healthy states of all the components at level

l−1. Our objective is to determine Nλ+1 initial distributions over X l
p, where Nλ =∑N

j=1mj. Note that these distributions correspond to the parent configurations

which can be verified relatively easily by a human expert. The Nλ initial distri-

butions that correspond to the fault occurrences at level l − 1 are in the following

general form:

P (X l
p|X l−1

1 = x0, ..., X
l−1
n−1 = x0, X

l−1
n = xi, X

l−1
n+1 = x0, ..., X

l−1
N = x0) (6.1)

where n = 1, ..., N and i = 1, ...,mn. The remaining one initial distribution is as
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follows:

P (X l
p|X l−1

1 = x0, ..., X
l−1
n = x0, ..., X

l−1
N = x0) (6.2)

Computation of Initial Distributions: First, it should be noted that there is

a systematic pattern by which the health states at level l − 1 are mapped to the

health states X l
p at level l in our proposed CDM which is as follows:

Observaton 6.2.1 (Health State Mapping). The health states X l
p of a compo-

nent at level l and its sub-components at level l − 1 are mapped as follows:

• X l−1
n = xi; i = 1, ...,mn are mapped to the state X l

p = xn for a given compo-

nent at level l − 1.

• X l−1
n = x0;n = 1, ..., N (non-faulty states of multiple components) are mapped

to a single state X l
p = x0.

It is important to note that according to the way node health states are mapped in

our modes, and as stated in Observation 6.2.1, X l
p = x0 is to be considered “true”

only when all the parent nodes are healthy; i.e., X l−1
n = x0;∀n. It is now reasonable

to state the following assumption.

Assumption 6.2.1 (Independent Influences of Parent Nodes). Faults or

faulty states of the components at level l− 1 influence the component health states

at level l independently.

Assumption 6.2.1 is particularly valid if the target severity range (refer to the

Definition 4.2.1) is low and the components are monitored frequently enough so that

the occurrences of faults in one component do not affect the fault identification in

other components [143]. Based on this independence assumption, the distribution

122



in (6.1) is approximated as follows:

P (X l
p|X l−1

1 = x0, ..., X
l−1
n−1 = x0, X

l−1
n = xi, X

l−1
n+1 = x0, ..., X

l−1
N = x0)

≈
(
P (X l

p = x0|X l−1
1,...,N = x), P (X l

p = x1|X l−1
n = xi),

..., P (X l
p = xn−1|X l−1

n = xi), P (X l
p = xn|X l−1

n = xi),

P (X l
p = xn+1|X l−1

n = xi), ..., P (X l
p = xN |X l−1

n = xi)
)

(6.3)

where the first term is conditioned on the health states of all the parent sub-

components at level l − 1 with x 6= x0 for the n-th sub-component, and x = x0

otherwise. Since P (X l
p) = 1, the distribution in (6.3) is subjected to the constraint

N∑
j=1

P (X l
p = xj|X l−1

n = xi) = 1 (6.4)

As indicated above, the conditional probabilities that are available from the

confusion matrices at levels l and l − 1 are local to the nodes at a given level. On

the other hand, our problem here is to quantify dependencies between levels l and

l − 1. The difficulty is that due to different sensitivities of the diagnostic signals at

the two levels there is no guarantee that whenever a fault is identified at level l− 1

at a given instant, its manifestation at level l − 1 is also identified at that instant

as well or vice versa.

One way to determine the dependencies is to conduct extensive experiments

to observe the relative diagnostic performances of the nodes at the two levels for

obtaining each CPT which is quite difficult, if not impossible. Alternatively, ac-

cording to the way the health state mapping is set up in our model it is easy to see

that whenever a faulty state X l−1
n = xi is identified at level l− 1, the component C l

p

becomes faulty (since C l−1
n is a sub-component of C l

p) — whether the health state

of C l
p is identified as X l

p = xn or not. In the case where the fault is not identified al

level l, the fault is latent in the sub-component C l−1
n within C l

p. Based on the above
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observations, one can make approximations that if a state at level l−1 is faulty, the

state at level l is the corresponding faulty state as well.

Consequently, one can utilize the conditional probabilities that are available

from the confusion matrices at level l − 1 to specify the distributions in (6.1) and

(6.2). Therefore, to practically overcome an unrealistic requirement of conduct-

ing extensive experiments, we propose to quantify dependencies by introducing the

notion of hierarchical health state agreement as follows:

Definition 6.2.1 (Hierarchical Health State Agreement). Given the health

state mapping in the Observation 6.2.1, and an identified fault that is manifested

as X l
p = xn, (n 6= 0) at level l and X l−1

n = xi, (i 6= 0) at level l− 1, the health state

identifications are in agreement if whenever I lp = xn at level l, I l−1
n = xi, at level

l − 1.

Based on the Definition 6.2.1, if I lp and I l−1
n are known to be in agreement,

given I l−1
n = xi, the probabilities of X l

p and X l−1
n are the same. However, it is

necessary to specify the “degree of agreement” to quantify the Definition 6.2.1 in

presence of the above-mentioned uncertainties. The following policy is proposed to

quantify the degree of agreement by a belief adjustment factor that is denoted by

hp,nn,i as follows:

hp,nn,i =

 al−1
xi
/alxn if al−1

xi
< alxn

alxn/a
l−1
xi

if al−1
xi

> alxn

(6.5)

where alxn is the accuracy with which the health state xn is identified at level l. The

notion of accuracy is computed by constructing a “one-versus-all” decision matrix

(as discussed in [143, 149]) from the confusion matrix by following the procedure

that is described next.

Let Ccon denote an (N + 1)× (N + 1) confusion matrix that is associated with

N + 1 health states of a node at level l in which the actual and the identified health
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states are along the rows and the columns, respectively. To compute the accuracy

in identifying the n-th state, a 2 × 2 dimensional “one-versus-all” decision matrix

Cn is constructed as follows. Let ci,j denote the element in the i-th row and the j-th

column of Ccon, and c′i,j denote the element in the i-th row and the j-th column of Cn.

The elements of the Cn matrix are computed from c′2,2 =cn,n, c′2,1 =(
∑N

k=1 cn,k)−cn,n,

c′1,2 =(
∑N

k=1 ck,n) − cn,n, and c′1,1 =(sum(Ccon) − c′2,2−c′2,1−c′1,1). The accuracy of

identifying the n-th state is now defined as alxn = trace(Cn)/sum(Cn).

Similar procedure is followed to determine al−1
xi

. The superscripts p, n in hp,nn,i

correspond to the p-th component C l
p and its n-th health state. The subscripts

n, i correspond to the n-th sub-component of C l
p and its i-th health state. It is

important to note that the belief adjustment factor provides one’s degree of belief

(in terms of probabilities) about the health states that should be decreased when

the level l is changed. Therefore, if the probability of X l−1
n is known given certain

condition I, to find the probability of X l
p given the same condition I, P (X l−1

n |I)

should be multiplied by the belief adjustment factor. We consider (1 − hp,nn,i ) to be

a representative of the degree of disagreement.

It is not unusual that in most cases a diagnosis algorithm that is employed

at a specific module or component meets the user specified accuracy (say, γspec) in

identifying the component health states by using the test data. For example, in [56],

the acceptance criteria for fault isolation/identification given a detection is recom-

mended as γ = 0.95 in a major component; i.e., the deployed fault identification

algorithms should be capable of identifying 95% of the faults that are detected by

the fault detection mechanism. Consequently, γspec ≤ alxn ≤ 1, γspec ≤ al−1
xi
≤ 1,

and it follows that 0 < hp,nn,i ≤ 1; where hp,nn,i = 1 represents the highest degree of

hierarchical agreement.

Note that at any two consecutive levels it is possible to have low accuracies

but high belief adjustment factors. Furthermore, it is important to point out that
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the above policy is not precise, since as stated in Observation 6.2.1 all the faulty

health states of the n-th sub-component at level l − 1 are mapped to one health

state X l
p = xn at level l. Consequently, alxn does not entirely correspond to the

health state X l−1
n = xi, (i 6= 0). However, it should be clear that with the accuracy

γspec ≤ al−1
xi
≤ 1 in identifying X l−1

n = xi, i = 1, ...mn, the policy is expected to

be well-behaved. Next, we determine the probability values that are corresponding

to the approximated distribution in (6.3) which are categorized into the following

three cases:

Case 1: Computation of P (X l
p = xk|X l−1

n = xi) for k = n

This is the probability that the state X l
p is in its n-th faulty state given that the fault

has been identified in its n-th subcomponent; i.e., X l−1
n = xi. Since all faulty states

of a particular parent node are mapped to a single faulty state of the child node (refer

to Observation 6.2.1), as long as the fault is identified at the n-th subcomponent

(X l−1
n 6= x0), it is desired that the state at level l be X l

p = xn. Therefore, one must

take into account both the correctly classified faults and the misclassified (with other

faults in the subcomponent) faults at level l−1 while computing P (X l
p = xn|X l−1

n =

xi).

The probability P (X l
p) is conditioned on a faulty state which is identified

by observing the output of I l−1
n . Therefore, assuming a hierarchical health state

agreement (Definition 6.2.1) with the belief adjustment factor hp,nn,i , in this thesis we

propose the following:

P (X l
p = xn|X l−1

n = xi) ≈ P (X l
p = xn|I l−1

n = xi)

= hp,nn,i

(
P (X l−1

n = xi|I l−1
n = xi) +

mn∑
j 6=i,j=1

P (X l−1
n = xj|I l−1

n = xi)
) (6.6)

It may be worthwhile to emphasize that the last term in (6.6) is necessary since

when a fault is misclassified as another fault (but not as “healthy”) in a component

126



at level l − 1, the health state of the child component remains the same (faulty).

Case 2: Computation of P (X l
p = xk|X l−1

1,...,N = x) for k = 0

The probability P (X l
p = x0|X l−1

n = xi) is the probability that level l is at a healthy

state given that it’s n-th sub-component at level l − 1 is at a faulty state xi. Since

this is a case of disagreement between the two levels, we use the belief adjustment

factor (1−hp,nn,i ) in our following computations. Furthermore, since the state X l
p = x0

is dependent on all the parent sub-components (Observation 6.2.1), we need to take

into account the probabilities that are related to all the sub-components’ healthy

states as follows:

P (X l
p = x0|X l−1

1,...,N = x)

≈ P (X l
p = x0|I l−1

n = xi)
N∏

j 6=n,j=1

P (X l
p = x0|I l−1

j = x0)

= (1− hp,nn,i )P (X l−1
n = x0|I l−1

n = xi)
N∏

j 6=n,j=1

hp,0j,0P (X l−1
j = x0|I l−1

j = x0)

(6.7)

Case 3: Computation of P (X l
p = xk|X l−1

n = xi) for k 6= 0 and k 6= n

As in Case 2 above, this is a case of disagreement as well. However, in this case since

k 6= 0 and k 6= n, when the level l is at the state xk there is no dependency that

is represented in the dependency model (Observation 6.2.1) through which xk can

be related to the health state of the n-th sub-component at level l − 1. Therefore,

the set of probabilities P (X l
p = xk|X l−1

n = xi), k = 1, ..., N (k 6= 0 and k 6= n)

represent uncertainties that are related to un-modeled dependencies. Given that

the distribution in (6.3) has to satisfy the constraint in (6.4), we now propose to

distribute beliefs equally among the set:

P (X l
p = xk|X l−1

n = xi)

=
1

N − 1

(
1− P (X l

p = xn|X l−1
n = xi)− P (X l

p = x0|X l−1
1,...,N = x)

) (6.8)
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where k 6= 0 and k 6= n. The procedure for computing P (X l
p = xn|X l−1

n = xi) and

P (X l
p = x0|X l−1

1,...,N = x) are described in Case 1 and Case 2, respectively.

Next, in order to determine the distribution in (6.2) we observe that X l
p = x0

only when all the parent sub-components are healthy. To avoid any ambiguity, we

denote the distribution in (6.2) by P (X l
p|X l−1

1,...,N = x0). By Assumption 6.2.1, we

now propose to compute the distribution as follows:

P (X l
p = x0|X l−1

1,...,N = x0)

= 1− P (X l
p = x̄0|X l−1

1,...,N = x0)

= 1−
N∏
j=1

(1− hp,0j,0)P (X l−1
j = x̄0|I l−1

j = x0)

(6.9)

where x̄0 corresponds to the set {X l
p}\x0 or {X l−1

n }\x0 depending on the level

in the hierarchy. The remaining probabilities in the distribution in (6.2), i.e.,

P (X l
p = xk|X l−1

1,...,N = x0) where k = 1, ..., N , represent un-modeled dependencies

since according to Observation 6.2.1, non-faulty states at level l−1 are not mapped

to faulty states at level l. In such a situation, as in Case 3 above, we propose to

distribute beliefs equally among the set as follows:

P (X l
p = xk|X l−1

1,...,N = x0) =
1

N

(
1− P (X l

p = x0|X l−1
1,...,N = x0)

)
(6.10)

Computation of Initial Distributions When Nodes Are Not Actively Monitored: As

mentioned in Section 6.2.2, it may be the case that some nodes in our proposed

CDM are not monitored actively. Consequently, fault diagnosis algorithms are not

deployed in those nodes. However, since our proposed node health state assignments

follow a systematic pattern (refer to Section 6.2.2 and Observation 6.2.1), it is easy

to observe that the distributions in (6.1) or (6.3) are expected to be maximum at

X l
p = xn assuming that the accuracy of the diagnosis algorithm satisfies the user
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specification γspec. Similarly, the distribution in (6.2) is expected to be maximum

at X l
p = x0. Therefore, the initial distributions are specified such that the following

conditions are satisfied:

argmaxxn∈Xl
p
P (X l

p|X l−1
1,...,N) =

 xn for the distributions in (6.1)

x0 for the distribution in (6.2)
(6.11)

In order to satisfy the above conditions, in the case of missing information

first we assume a near-maximum hierarchical agreement and set hp,nn,i (in (6.6) and

(6.7)), and hp,0j,0 (in (6.7) and (6.9)) a value that is close to 1. Next, we assume “ideal”

probabilities by setting P (X l−1
n = xi|I l−1

n = xi) = β11 (in (6.6)), P (X l−1
n = x0|I l−1

n =

xi) = β01 and P (X l−1
j = x0|I l−1

j = x0) = β00 (in (6.7)), and P (X l−1
j = x̄0|I l−1

j =

x0) = (1− β00) (in (6.9)); where β11 = γspec, β01 = (1− γspec), β00 = γspec, and γspec

is the desired (design specification) probability of the correct health state given an

identification in the parent nodes if suitable diagnosis algorithms were employed.

Finally, in the case of a component C l−1
p that does not have a confusion matrix

available, but has a similar component C l−1
q with the same health states (for exam-

ple, the reaction wheel actuators in a three-axis active attitude control subsystem)

and a common child node C l
p, the confusion matrix of C l−1

p may be considered to

be the same as that associated with C l−1
q in order to specify the distributions in the

CPT at the child node C l
p. For such a set of similar components, it is also possible

to construct a common confusion matrix by including data from the components.

Computation of the Remaining Distributions: Once the initial distributions

are determined, we now propose to compute the remaining distributions by using a

weighted-sum of the initial distributions, as in (6.1) and (6.2), as follows:

P (X l
p|X l−1

1,...,N) =

Nλ+1∑
j=1

wjPj(X
l
p|X l−1

1,...,N) (6.12)
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where P (X l
p|X l−1

1,...,N) represents P (X l
p|X l−1

1 , X l−1
2 , ..., X l−1

N ), Pj is an initial distribu-

tion, wj ∈ W , and W is an (Nλ + 1) dimensional weight vector that is subjected

to the constraint
∑Nλ+1

j=1 wj = 1. It is suggested that the human experts are pro-

vided with the initial distributions and are asked to decide the weights wj based on

their judgements. Therefore, given the initial distributions, the proposed procedure

would require that the number of weight parameters wj grows linearly with the total

number of the parent nodes’ health states.

It is worthwhile to note that as pointed out in [53], it is easy for the human

experts to express their opinions in terms of such weight assignments. Therefore,

eventhough our procedure is simple, it is consistent with how human experts develop

their beliefs by starting from some “anchor” values and adjusting them to specify

probabilities (adjustment and anchoring heuristics) [153]. Alternatively, one may

choose to develop a weight assignment policy that is based on prior probabilities

of the faults in the initial distributions under consideration. However, in order to

minimize biases towards certain types of faults that are frequently identified, the

policy should include other considerations such as component operating hours since

some faults may develop only toward the end of life of the component whereas others

may develop at the early stages. Development of such a policy is not investigated

in this thesis, and has been left as part of the future work.

6.2.4 Evidence Generation

By evidence generation at a node C l
p with health states xk ∈ X l

p, k = 0, 1, ..., K we

refer to the construction of a K dimensional vector elp = {x0 = 0, ..., xk = 1, ..., xK =

0} of zeros and ones that is used to instantiate the node when its health state is

identified as xk by employing a suitable fault diagnosis algorithm. As mentioned in

Section 6.2.3, component/node health states are identified by employing appropri-

ate/available fault diagnosis algorithms in our CDM nodes. It is possible to obtain
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fault evidences by utilizing a fuzzy Rule-Based Reasoning (RBR) method, as de-

veloped in Chapter 5, at various nodes of our proposed CDM. The methodology

for performing fuzzy RBR at different levels of the hierarchy was presented in our

earlier work [143,154].

It may be recalled from Chapter 5 that it is possible to specify one or more rules

for each possible health state xk ∈ X l
p of C l

p. In the general case, for a given health

state xi and Nd diagnostic signals sln, we synthesize fuzzy rule(s) in the following

form (similar to the general if-then rule in Chapter 5):

If (sl1 ∈M l
1,k) and (sl2 ∈M l

2,k), ..., and (slNd ∈M
l
Nd,k

) then xk

where xk ∈ X l
p, and M l

n,k ∈ M l
p is a (set of) value(s) of the n-th diagnostic signal

(characterized by the fuzzy membership function(s)) when the component health

state is xk. The health state with maximum rule activation level is considered as

the identified fault in the node.

It is important to note that the fuzzy rule activation values are not considered

as probabilities since they are fundamentally different from each other. As discussed

in detail in Chapter 5, if pa(C l
p) = ∅, the rules corresponding to the faulty states of C l

p

identify faults that originate in C l
p with some common and reasonable assumptions

in diagnosis, such as non-simultaneous faults within a time step over which the

health state of C l
p is identified and introduced to our proposed CDM.

On the other hand, if pa(C l
p) 6= ∅ (as discussed in detail in Chapter 5), the

health state of C l
p is identified by the rules that are synthesized based on the relative

behavior specifications of pa(C l
p) (sub-components of C l

p) assuming that the inter-

actions of the sub-components are characterized by a leader-follower or master-slave

control configuration and ensuring that the master component is in its healthy state

before determining the rule activation levels of the slave sub-components.

Once the health state xk ∈ X l
p of C l

p is identified by employing the above
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procedure (or any other reasoning algorithm that is employed at C l
p) at a given

instant, an evidence over the K possible states of C l
p is generated as follows: elp =

{x0 = 0, ..., xk = 1, ..., xK = 0}, and is subsequently introduced to the C l
p node of

the proposed CDM.

6.3 Demonstration of the Proposed Approach and

Fault Diagnosis Results

In a leader-follower formation flight, since the leader acts as a reference point, and

the formation flying mission is subjected to a single-point failure of the leader satel-

lite, we propose to reduce the health management workload for only the follower

satellites by utilizing our proposed solution. In other words, it is assumed that the

leader satellite is healthy as far as our analysis is concerned. This can be ensured if

we assume that the components of the leader satellite are monitored and diagnosed

frequently enough to ensure that the leader is fault free before carrying out the

monitoring and diagnosis of the follower satellites.

Implementation of the Proposed Model: A 4-level Bayesian network-based

Component Dependency Model (CDM) has been implemented for the formation

flight of 5 satellites that was described in Chapter 3. The open source BN tool that

is available from [155] has been utilized for belief propagation and updating using the

well-known recursive conditioning algorithm [55]. Figure 6.3 shows the implemented

CDM where “Sat-1” ... “Sat-5” represent the five satellites in the formation, and

“RW-X”, “RW-Y”, and “RW-Z” represent the reaction wheels (RW) in the X, Y ,

and Z directions, respectively.

First, we assign the states of the components C l
p with pa(C l

p) = ∅ by following

the procedure that was described in Section 6.2.2. Each of the 15 RWs, denoted as
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Figure 6.3: A 4-level Bayesian network-based component dependency model (CDM)
for hierarchical fault diagnosis.

C1
i ; where i = 1, ..., 15 at level 1 (identified as the “subsystem component level”) is

assigned with the following 3 health states: X1
i = {Healthy, frictionfault, current

fault} (the fault models are discussed earlier). Each of the 5 electrical power

subsystem (EPS) nodes, denoted as C2
i ; where i = 2, 4, 6, 8, 10 at level 2 (iden-

tified as the “subsystem level”) is assigned with the following 3 health states:

X2
i = {Healthy, regulatorfault, batteryfault} (the fault models are discussed ear-

lier). We assume that at the beginning of the formation operation, the system is

healthy and assign prior probabilities X1
i = {0.9, 0.05, 0.05}; where i = 1, ..., 15, and

X2
i = {0.9, 0.05, 0.05}; where i = 2, 4, 6, 8, 10, that represent the above assumption.

We assign the states of the components with pa(C l
p) 6= ∅ by following the pro-

cedure that was specified in Section 6.2.2. Each of the 5 attitude control subsystems

(ACS) nodes, denoted as C2
i ; where i = 1, 3, 5, 7, 9 at level 2 is assigned with the

following 4 health states: X2
i = {Healthy,RW.Xfault, RW.Y fault, RW.Zfault}.

Each of the system level (level 3) nodes or satellites is assigned with the follow-

ing 3 health states: X3
i = {Healthy, ACSfault, EPSfault}. In the case of the

formation component (C4
1), note that |pa(C4

1)| = 5 and each parent has 3 states

which would lead to a large (35) number of parent configurations. Consequently,
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first we have implemented 5 intermediate nodes between the levels 3 and 4 which

we denote as “C4
1 , C

3
i ”; where i = 1, ..., 5. We assign to each of the “C4

1 , C
3
i ” nodes 2

states {Healthy, Sat.ifault}. Finally, we assign to the formation component (C4
1)

3 health states: X4
1 = {Healthy, Leaderfault, followerFault}. Since the health

states of the nodes “C4
1 , C

3
i ” and C4

1 are binary, we have implemented a noisy-OR

model (as mentioned in Section 6.2) above level 3. In the nodes with pa(C l
p) 6= ∅,

we specify CPTs by following our proposed procedure in Section 6.2.3.

In the subsequent discussion, we demonstrate how the CPTs in the ACS nodes

in Figure 6.3 are specified by using our proposed procedure. Since we are consid-

ering identical satellites, we constructed a single confusion matrix for the 15 RWs

(C1
1 , ..., C

1
15). Therefore, in this case, the CPTs that are specified in each of the

5 ACS nodes C2
i (i = 1, 3, 5, 7, 9) are the same. For demonstration purposes and

without loss of generality, we consider the ACS of only Sat-1, i.e., the node C2
1 in

the subsequent discussion.

Specification of the CPTs: To specify the CPT node C2
1 , first note that the

parent nodes are three RWs; i.e., pa(C2
1) = {C1

1 , C
1
2 , C

1
3}. Therefore, the number

of parent nodes is N = 3. Consequently, the possible number of health states of

C2
1 is N + 1 = 4, which are given by X2

1 = {x0, x1, x2, x3} = {Healthy, C1
1fault,

C1
2fault, C

1
3fault}. The possible number of the health states of the parent nodes

are (m1 + 1) = (m2 + 1) = (m3 + 1) = 3. The possible states of each of the parent

nodes, as mentioned above, are X1
i = {x0, x1, x2} = {H, ff , fc}; where i = 1, 2, 3, H

represents “Healthy”, ff represents a “friction fault”, and fc represents a “current

fault”.

The total number of distributions that are required to be specified is
∏N

n=1(mn+

1) = 27. Now, we need to identify the Nλ + 1 initial distributions over X2
1 , where

Nλ =
∑N

j=1mj = 6. The Nλ + 1 = 7 initial distributions over X2
1 are given as

follows:
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(a) P (X2
1 |X1

1 = x0, X
1
2 = x0, X

1
3 = x0)

(b) P (X2
1 |X1

1 = x1, X
1
2 = x0, X

1
3 = x0)

(c) P (X2
1 |X1

1 = x2, X
1
2 = x0, X

1
3 = x0)

(d) P (X2
1 |X1

1 = x0, X
1
2 = x1, X

1
3 = x0)

(e) P (X2
1 |X1

1 = x0, X
1
2 = x2, X

1
3 = x0)

(f) P (X2
1 |X1

1 = x0, X
1
2 = x0, X

1
3 = x1)

(g) P (X2
1 |X1

1 = x0, X
1
2 = x0, X

1
3 = x2)

Note that the initial distribution (a) above corresponds to equation (6.2) and

the remaining distributions correspond to equation (6.1). To specify the distribution

(a) above, we need to compute the following conditional probabilities: (a.1) P (X2
1 =

x0|X1
1 = x0, X

1
2 = x0, X

1
3 = x0), (a.2) P (X2

1 = x1|X1
1 = x0, X

1
2 = x0, X

1
3 = x0), (a.3)

P (X2
1 = x2|X1

1 = x0, X
1
2 = x0, X

1
3 = x0), and (a.4) P (X2

1 = x3|X1
1 = x0, X

1
2 =

x0, X
1
3 = x0).

Note that we have employed fuzzy rule-based component fault diagnosis (refer

to Section 6.2.4) in the following nodes of Figure 6.3 that is the 15 RWs (C1
1 , ..., C

1
15),

the five EPSs (C2
2 , C

2
4 , C

2
6 , C

2
8 , C

2
10), and the formation component (C4

1). For comput-

ing the conditional probability (a.1), we refer to equation (6.9). Since the confusion

matrices that are associated with the three parent nodes C1
1 , C1

2 , and C1
3 are the

same, the corresponding belief adjustments factor are the same. In addition, since

we do not have any diagnosis algorithm deployed in C2
1 , the information (the val-

ues a2
xn ;n = 0, 1, 2, 3; refer to the policy that is related to the belief adjustment

factor as mentioned in Section 6.2.3) necessary to determine the belief adjustment

factor is not available. However, in this case, we have a1
xi

; i = 0, 1, 2. We assume

a2
xn = 0.95; for n = 0, 1, 2, 3 (close to 1 as mentioned in Section 6.2.3), and from the

“one-versus-all” decision matrices (as described in Section 6.2.3) that are obtained

from the confusion matrices (associated with the employed rule-based reasoning at

nodes C1
1 , C1

2 , and C1
3 , and not shown here), we have, a1

x0
= 0.937, a1

x1
= 0.893, and
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a1
x2

= 0.941.

Consequently, we have h1,0
1,0 = h1,0

2,0 = h1,0
3,0 = 0.937/0.95 = 0.986, h1,1

1,1 = h1,2
2,1 =

h1,3
3,1 = 0.893/0.95 = 0.940, and h1,1

1,2 = h1,2
2,2 = h1,3

3,2 = 0.941/0.95 = 0.991. Since

all the parent nodes are associated with the same confusion matrix, as indicated

earlier from the confusion matrix we obtain, P (X1
1 = x̄0|I1

1 = x0) = P (X1
2 =

x̄0|I1
2 = x0) = P (X1

3 = x̄0|I1
3 = x0) = 0.071. With these values, the conditional

probability (a.1) is computed as follows: P (X2
1 = x0|X1

1 = x0, X
1
2 = x0, X

1
3 = x0) =

1− {(1− h1,0
1,0)P (X1

1 = x̄0|I1
1 = x0) (1− h1,0

2,0)P (X1
2 = x̄0|I1

2 = x0) (1− h1,0
3,0)P (X1

3 =

x̄0|I1
3 = x0)} = 0.999.

For computing the conditional probabilities (a.2), (a.3), and (a.4) we refer to

equation (6.10) and compute the following probabilities: P (X2
1 = xi|X1

1 = x0, X
1
2 =

x0, X
1
3 = x0) = (1/N)

(
1− P (X2

1 = x0|X1
1 = x0, X

1
2 = x0, X

1
3 = x0)

)
= 0.0003.

Therefore, the initial distribution (a) is computed as P (X2
1 |X1

1 = x0, X
1
2 =

x0, X
1
3 = x0) = (0.999, 0.0003, 0.0003, 0.0003). Next, to specify the distribution (b),

we need to compute the following probabilities: (b.1) P (X2
1 = x0|X1

1 = x1, X
1
2 =

x0, X
1
3 = x0), (b.2) P (X2

1 = x1|X1
1 = x1, X

1
2 = x0, X

1
3 = x0), (b.3) P (X2

1 = x2|X1
1 =

x1, X
1
2 = x0, X

1
3 = x0), and (b.4) P (X2

1 = x3|X1
1 = x1, X

1
2 = x0, X

1
3 = x0).

For computing the conditional probability (b.2), we refer to equation (6.6).

The value P (X1
1 = x1|I1

1 = x1) = 0.644 is obtained from the confusion matrix.

Using the value of the belief adjustment factor that was computed earlier as h1,1
1,1 =

0.940, the conditional probability is obtained as follows: P (X2
1 = x1|X1

1 = x1) =

h1,1
1,1

(
P (X1

1 = x1|I1
1 = x1) + P (X1

1 = x2|I1
1 = x1)

)
= 0.877.

For computing (b.1), we refer to equation (6.7) and use the conditional proba-

bilities that are available from the confusion matrix according to the following com-

putations: P (X2
1 = x0|X1

1 = x1) = P (X2
1 = x0|I1

1 = x1)
∏3

j=2 P (X2
1 = x0|I1

j = x0)

= (1 − h1,1
1,1)P (X1

1 = x0|I1
1 = x1)h1,0

2,0P (X1
2 = x0|I1

2 = x0) h1,0
3,0P (X1

3 = x0|I1
3 = x0)

= 0.003.
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For computing (b.3) and (b.4), we refer to equation (6.8) and compute the

conditional probabilities as follows: P (X2
1 = xk|X1

1 = x1) = (N − 1)
(
1 − P (X2

1 =

x1|X1
1 = x1)− P (X2

1 = x0|X1
1 = x1)

)
= 0.060.

Therefore, the initial distribution (b) is obtained as P (X2
1 |X1

1 = x1, X
1
2 =

x0, X
1
3 = x0) = (0.003, 0.877, 0.060, 0.060). By following the same procedure, the

initial distribution (c) is computed as P (X2
1 |X1

1 = x2, X
1
2 = x0, X

1
3 = x0) =

(0.000, 0.991, 0.0045, 0.0045). Now, since we have a single confusion matrix for all

the three parent nodes, in this particular case the remaining initial distributions,

i.e., (d), (e), (f), and (g) are obtained as P (X2
1 |X1

1 = x0, X
1
2 = x1, X

1
3 = x0) =

(0.003, 0.060, 0.877, 0.060), P (X2
1 |X1

1 = x0, X
1
2 = x2, X

1
3 = x0) = (0.000, 0.0045, 0.991,

0.0045), P (X2
1 |X1

1 = x0, X
1
2 = x0, X

1
3 = x1) = (0.003, 0.060, 0.060, 0.877), and

P (X2
1 |X1

1 = x0, X
1
2 = x0, X

1
3 = x2) = (0.000, 0.0045, 0.0045, 0.991), respectively.

The remaining distributions in the CPTs are generated by using equation

(6.12). As an example, the distribution associated with two different faults (a “fric-

tion fault” in the RW-1 and a “current fault” in the RW-3) is computed by assigning

weights (this should be assigned by the human expert) as P (X2
1 |X1

1 = x1, X
1
2 =

x0, X
1
3 = x2) = w2(b) +w7(g) = (0.0015, 0.4407, 0.0323, 0.5255); where w2 = 0.5 and

w7 = 0.5 (the two faults are believed to be equally possible), and the remaining

weights are set to zero. The computation of the distribution (g) and that of the

other distributions are quite similar and are not shown here.

Node Health State Identification and Evidence Generation: In order to

generate the health state evidences that are to be introduced at different nodes of

our CDM, we have performed a fuzzy rule-based component fault diagnosis (refer

to Section 6.2.4) for the following components of Figure 6.3. Specifically, we have

the 15 RWs (C1
1 , ..., C

1
15), the five EPSs (C2

2 , C
2
4 , C

2
6 , C

2
8 , C

2
10), and the formation

component (C4
1).

For the health state identification of the RWs (C1
1 , ..., C

1
15), we have obtained
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the diagnostic signals by extracting features from the following reaction wheel (RW)

measurements, namely (a) the motor current, (b) the torque command voltage, and

(c) the wheel speed. Based on our earlier experience with an actual attitude con-

trol subsystem telemetry data [43], we have extracted simple features that include

(over an invocation window of 512 seconds; that is approximately 11 invokes per

orbit) mean, standard deviation, minimum value, peak value, energy, and the first

5 components of the Fast Fourier Transform (FFT) energy spectrum. The rules

corresponding to the healthy RW condition as well as to the two faults under con-

sideration are determined (the general form of the rules is given in equation (5.1) and

the details are available in [143] and are not discussed here), and the rule activations

in each invocation are computed.

Similarly, to identify the health states of the EPSs (C2
2 , C

2
4 , C

2
6 , C

2
8 , C

2
10),

we have obtained the diagnostic signals by extracting features from the following

EPS measurements, namely (a) the bus voltage, (b) the regulator output current,

and (c) the battery current. We have extracted simple features that include (over

the above-mentioned invocation window of 512 seconds) mean, standard deviation,

minimum value, and the one component of the Fast Fourier Transform (FFT) energy

spectrum. Rules corresponding to the healthy EPS condition as well as to the two

faults under consideration are determined by utilizing the above features.

For the health state identification of the formation (C4
1), mean of the relative

attitude measurements over an invocation window is utilized as a diagnostic signal.

As in the case of RWs, the rule activations in each invocation are computed for EPSs

and for the formation level. Note that the health state evidences corresponding to

the formation node are introduced at the intermediate nodes as mentioned earlier.

Hierarchical Diagnosis: At this stage fault evidences at different levels to the

CDM are introduced, the evidences are propagated, and belief distributions of the

CDM nodes are updated by using the well-known recursive conditioning algorithm
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(a) Before the presence of the fault. (b) During the presence of the fault.

Figure 6.4: P(X3
3 ) of Sat-3 when an evidence of a fault is introduced at the subsystem

component level.

[55]. In most cases, the computed distributions clearly justified the existence of

faults. For example, when the fault evidence e1
9 = {0, 1, 0} (friction fault at Sat-3

RW-Z) is introduced, the probability distributions over the health states of Sat-3

under the fault free condition as well as under the injected friction fault at Sat-3

RW-Z are shown in Figure 6.4. The distributions clearly justify the existence of

a fault in the ACS. The distributions corresponding to the other fault scenarios

are not graphically presented here. Instead, the accuracy of the hierarchical fault

diagnosis results are summarized under various scenarios in the next section.

6.4 Performance Evaluation

We evaluate the performance of our proposed CDM by using a set of fault scenarios

under which the actual health states of all the nodes in the CDM are known. The

accuracy is computed in terms of the % of nodes in the CDM that are “represen-

tative” of their true known health states. The representativeness is determined as

follows: let a fault evidence el1p1 be introduced at node C l1
p1

and the known actual

health state of a component C l2
p2

be x∗ ∈ X l2
p2

. Furthermore, let π(C l1
p1

) and σ(C l1
p1

)

denote the sets of predecessors and successors of node C l1
p1

, respectively in the CDM.

We consider the health state of C l2
p2

to be representative of its true health state x∗

when the following specifications or conditions hold:

1. Let C l2
p2
∈ σ(C l1

p1
), then belief about X l2

p2
= x∗ increases with the introduction
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of the evidence; i.e., P (X l2
p2

= x∗|el1p1) > P (X l2
p2

= x∗|∅).

2. Let C l2
p2
∈ π(C l1

p1
) and the actual known state be faulty (x∗ 6= x0), then belief

about X l2
p2

= x∗ increases with the introduction of the evidence, and the belief

is higher than (or, at least equal to) that of other fault states at level l2; i.e.,

P (X l2
p2

= x∗|el1p1) > P (X l2
p2

= x∗|∅) and P (X l2
p2

= x∗|el1p1) ≥ P (X l2
p = xj|el1p1);

where xj 6= x0, xj 6= x∗ and p represents the component at level l2 at which

no evidence has been introduced.

3. Let C l2
p2
∈ π(C l1

p1
) and the actual known state be healthy (x∗ = x0), then the

belief about the faults in C l2
p2

are lower than that in the faulty components at

level l2; i.e., P (X l2
p2

= x|el1p1) < P (X l2
p = xj|el1p1); where x ∈ {X l2

p2
\x∗}, xj 6= x0

and p represents the faulty component, if any, at level l2 at which no evidence

has been introduced.

If there is no known faulty component at level l2 (fault originated at C l3
p3

,

l1 < l3 < l2), then the belief distribution over X l2
p2

is maximum at x∗ and

P (X l2
p2

= x|el1p1) < P (X l3
p3

= xj|el1p1); where x ∈ {X l2
p2
\x∗} and xj 6= x0.

4. Let C l2
p2

/∈ {π(C l1
p1
∪ σ(C l1

p1
)}, then the belief distribution over X l2

p2
remains

unchanged with the introduction of the evidence; i.e., P (X l2
p2
|el1p1) = P (X l2

p2
|∅).

It is obvious that given a fault evidence at a node, when the CDM node states

are representative of their true known health states as per the condition stated

above, the fault propagation path(s) (refer to Section 4.4) is/are identified. In other

words, a path is formed with a set nodes at which probability of the fault state

(corresponding to the introduced evidence) becomes higher when the evidence is

introduced at the node.

Table 6.1 shows the computed accuracy under various scenarios with single as

well as multiple fault evidences that are introduced in the follower satellites in the

CDM as shown in Figure 6.3. By “conflicting” evidence in Table 6.1 it is implied that
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Table 6.1: Performance Evaluation of the Implemented CDM
Number Number Maximum Minimum Average Comments

of of Accuracy Accuracy Accuracy

Evidences Scenarios (in % Nodes) (in % Nodes) (in % Nodes)

Single Fault in a Follower Satellite
1 16 100% 83.33% 97.91% None

2 20 100% 100% 100% Evidences introduced

at different levels

2 8 91.67% 86.11% 90.28% Conflicting evidence

at levels 1 or 2

2 8 100% 100% 100% Conflicting evidence

at formation level

Two Simultaneous Faults in Two Follower Satellites
2, 3, 4 72 100% 77.78% 90.43% Different evidence types

and combinations

for the two evidences that are available in two nodes connected through a directed

path, one evidence indicates a healthy state while the other indicates a faulty state.

Such a scenario is possible when, for example, a fault evidence in a node at the high

level is obtained but at the low level the fault is not identified or vice-versa.

Note that although the scenarios are not the only possible cases, they represent

some of the most common cases that may occur in practice. The average accuracy

is computed over all the scenarios under consideration. Row 1 represents scenarios

where a single fault evidence is introduced at a given node and the accuracy is

computed for each scenario (by using the conditions above). It is observed that

when one additional evidence is introduced (refer to row 2), the average accuracy

increases. However, if the additional evidence is conflicting and the mis-identification

is at the low level, the average accuracy decreases (refer to row 3). Furthermore,

if the additional evidence is conflicting but the mis-identification is at the high

level, the accuracies remain unchanged (refer to row 4). Finally, the last row shows

accuracies for two simultaneous faults in two different follower satellites where the

scenarios consist of both conflicting and non-conflicting evidences.
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The purpose of the above performance evaluation has been to determine if

the proposed CDM can achieve acceptable accuracy (close to 95%, as specified in

Section 1.4). The results show that it is possible to achieve the desired accuracy

by using the proposed CDM scheme. It is expected that other well known fault

diagnosis schemes may achieve similar accuracy in fault identification. However, it

is very likely that the other schemes would not address the fault diagnosis problem

(as stated in Section 1.4) that is investigated in this thesis. As mentioned before,

the performance of the traditional ground-based satellite fault diagnosis that is

performed via data plotting, trend analysis and limit checking depends heavily on

the operator’s level of expertise, and there is no standard or universal procedure

to perform such analysis. Consequently, a performance comparison of proposed

approach with respect to such traditional approaches is not performed in the thesis.

6.5 Advantages and Limitations

As in any large Bayesian network model, building a BN-based hierarchical fault

diagnosis model as proposed in this thesis involves a careful trade-off between a

rich hand-crafted model versus generic dependency model. The design considera-

tions to take into account are model parameters and result accuracies, the cost of

construction (including the demand for human experts’ time), maintenance (includ-

ing the cost of model updating), and the complexity of the probabilistic inference.

Consequently, in practice, building such a model requires multiple iterations over

these tasks until a satisfactory model and solution is achieved. A discussion on the

advantages and limitations of the proposed methodology is provided below.

Advantages and Comparison with HFDM: First it should be noted that the

proposed component dependency model (CDM) is a generic model that can be

used to decompose a complex system hierarchically in order to perform coherent
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fault diagnosis. The model is generic in the sense that (a) the health states of a

given component is not defined subjectively, rather they are identified by the known

dominant fault modes of the component, and (b) the proposed method does not

impose any restrictions on the type of diagnosis algorithms that one may employ at

a given node of the model as long as its performance evaluation matrix is available.

Furthermore, our proposed method for obtaining model parameters overcomes the

limitations of the other probability elicitation methods [52, 53, 145] as discussed in

Section 6.2.3.

Second, the proposed approach requires less demand on domain experts’ time

for obtaining the model parameters, which is known to be a costly commodity. In-

stead of entirely depending on interviewing domain experts, the initial distributions

are obtained from node fault diagnosis performance data and known health state

dependencies. This minimizes the well-known limitations of eliciting probabilities

exhaustively with domain experts.

Third, the model parameters are easy to update when node performance ma-

trix changes due to the availability of new data and improved versions of the node

fault diagnosis algorithm. In this case, the initial distributions can be re-computed

by following our proposed well-defined procedure (this avoids the repetition of the

time consuming interview of domain experts), and the weights, if necessary, may be

updated.

Finally, for formation flight fault diagnosis, the proposed CDM enables one to

hierarchically decompose a complex system in order to use the data that are avail-

able from different system components systematically, and to perform diagnostic

reasoning coherently. By propagating fault evidences from a node in the CDM, one

is able to update the probable health state of the other nodes, and perform in-depth

investigation of the nodes of interest only (based on the updated health states). This

avoids exhaustive plotting and trend analysis across a large number of components
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manually which requires extensive effort by human operators. Therefore, the ap-

proach has the potential for reducing the size of the operations team. Furthermore,

since the performance evaluation matrix data represents an expert human’s observa-

tions to a great extent, and the method obtains model parameters by utilizing such

matrices, less-experienced personnel will be benefited while performing monitoring

and diagnosis tasks at ground stations by utilizing our proposed model.

Note that there will always be a trade-off between a rich/detailed hand-crafted

model versus a generic dependency model. It is clear from the above discussion that

our proposed model will reduce the cost of model construction (the demand for

human experts’ time) and maintenance (the cost of model updating).

With the HFDM approach that was developed in Chapter 5, it was possible

to specify the dependencies only with absolute certainty by using ones and zeros to

indicate connectivity/dependency as opposed to using BN-based models and CPTs.

Consequently, if a fault evidence is found at a given node, fuzzy rule activations had

to be computed at all the parent nodes, and it was not possible to propagate beliefs

to update and estimate health states without computing the rule activations. Given

the fault evidence(s) and updated belief distributions, in this chapter we compute

the rule activations at only those nodes that have high fault probabilities to confirm

the identification of a fault.

Limitations: The main limitation of the proposed method is that the faults that

originate in a component at a particular level are implicitly assumed to be non-

interfering with the diagnostic signals of other components (that have a common

child node) at the same level. This assumption is reasonable when the fault diagnosis

algorithms that are deployed in those nodes are designed to identify faults with

a severity range that is low enough not to affect the performances of the other

nodes in the same level. Consequently, their influences on the child nodes are to

be considered as independent. Note that this limitation arises from the type of
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information that is made available to the proposed model development. Specifically,

according to our problem in hand, the node fault diagnosis algorithms are developed

in isolation, and are often proprietary to the development teams. Nevertheless, one

should investigate the validity of the independence assumptions by using design

information and experimental data. Another limitation may be the belief adjustment

factor that is denoted by hp,nn,i in equation (6.5). The policy may be too simple for

some systems.

6.6 Summary

In this chapter, a hierarchical fault diagnosis methodology was developed which al-

lows systematic and coherent fault diagnosis in different components or subsystems

of a complex formation flight of satellites. The general idea is to decompose a com-

plex system hierarchically into simpler modules or nodes, and perform diagnostic

reasoning hierarchically by utilizing the fault diagnosis algorithms that are deployed

at different nodes and which are connected via the proposed Bayesian network-based

Component Dependency Model (CDM). The model structure was developed from

the knowledge of the component health state dependencies. A methodology for de-

termining model parameters was developed which demands considerably less effort

from the domain experts, and easy to update when node fault diagnosis perfor-

mances change. To determine the probability distributions that are required and

that need to be specified in the Conditional Probability Tables (CPT), the proposed

method obtains certain initial probability distributions from the node fault diagno-

sis performance matrices. Subsequently, by taking the domain experts’ opinion into

account, the remaining probability distributions are specified.

The effectiveness of our proposed methodology has been demonstrated by uti-

lizing synthetic formation flight data of 5 satellites that was described in Chapter 3.
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As mentioned in Chapter 3, the data generation model consists of two subsystems,

namely the attitude control subsystem and the electrical power subsystem for each

satellite in the formation. The proposed CDM was implemented by decomposing

the formation flying system hierarchically into 4 levels. Fault evidences that are

generated via fuzzy rule-based reasoning of faults at different levels in the hierarchy

were introduced in the CDM nodes. The fault diagnosis results show that when fault

evidences are introduced at a node, the states of the remaining nodes of the imple-

mented CDM are updated to reflect the correct health states of the corresponding

components. The performance of the developed CDM was quantified which corre-

sponds to the identification of fault propagation path that was defined in Chapter

4. In the next chapter, verification and validation of the fault diagnosis models that

have been proposed in this thesis are investigated.
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Chapter 7

V&V of Hierarchical Fault

Diagnosis

In this chapter, the verification and validation (V&V) of the Bayesian network-based

fault diagnosis model namely, CDM that was developed in Chapter 6 is primarily

investigated. The V&V of the fuzzy rule-based fault diagnosis model namely, HFDM

that was developed in Chapter 5 is also briefly discussed.

7.1 Introduction

V&V of artificial intelligence models and algorithms is a challenging area where quite

limited research have been pursued [156–159]. Validation ensures that a product (in

this thesis, a model) actually meets the user’s needs, and that the specifications

were correct in the first place, while verification ensures that the product has been

built according to the requirements and design specifications.

In this thesis, the term “V&V of a fault diagnosis model” implies that the

verification of the model does satisfy a generic requirement, namely that “the model

shall be capable of identifying the health states of the system under consideration”.

Furthermore, V&V of the hierarchical fault diagnosis is divided into two levels: (1)
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the overall model level, and (2) the node level. The former is related to the problem

of the V&V of Bayesian knowledge bases. The later is dependent on what type of

algorithm is deployed at a given node. In our case, this investigation is related to

the V&V of fuzzy rule bases since fuzzy rule-based reasoning is employed at different

nodes of the implemented CDM and HFDM.

Formal verification of fuzzy rule bases are usually performed by utilizing petri-

net models to ensure that certain properties of rules in the rule base are satisfied.

Such rule base V&V approaches have already been investigated in the literature to

a large extent [160]. However, there has been very few published work [150,161–163]

on the verification of Bayesian knowledge bases.

The overall fault diagnosis algorithm development and V&V process that is

proposed in this thesis is depicted in Figure 7.1. which essentially summarizes the

Figure 7.1: Development and validation process of the proposed fault diagnosis
models.

fault diagnosis model development process that was discussed in Chapter 6, and

adds the V&V of the model with the process. In Figure 7.1, the overall process is
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divided into three stages: (1) diagnosis of individual components at multiple levels,

(2) BN-based hierarchical model development, and (3) model V&V. Note that at

stage 2, it is necessary to validate independent assumptions that are made while

determining the model structure or node conductivities (as mentioned in Section

6.5). Such validation should be performed at early stage in order to avoid major

changes in the model at the “model V&V” stage where ideally only model parameter

tuning should take place. In this thesis, it was assumed that the model structure

and the component interactions are known for the given formation flight model, and

such direct validation of the independence assumption is considered to be beyond

the scope of the thesis.

It is evident from Chapters 5 and 6 that fuzzy rule base reasoning can be

employed at the first stage, namely “diagnosis of individual components at multiple

levels” of CDM development. In that case, the verification of fuzzy rule base can

be performed at each node/component separately, whereas the V&V of the CDM

corresponds to the overall model and takes into account interaction of various nodes

in the model.

In the subsequent sections first, the verification of the Bayesian network-based

fault diagnosis model namely CDM that was developed in Chapter 6 is investigated

in detail. Next, the V&V of the fuzzy rule-based fault diagnosis model namely

HFDM that was developed in Chapter 5 is briefly discussed.

7.2 Development of a Verification Approach for

CDM

Sensitivity analysis (SA) is a well-known and standard method for verifying Bayesian

networks which allows systematic investigation of influences of the model parameters

on its outputs. The general objective of the sensitivity analysis is to investigate
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how one or more hypothesis variables in a network varies with the variation of

one or more parameters (a parameter is an entry in a conditional probability table

(CPT)) in the network. Sensitivity analysis helps one to ensure that the constructed

Bayesian network is not too sensitive to small variations in network parameters. A

brute-force method for varying the parameters involves the variation of every single

conditional probability, and such sensitivity analysis is both highly time-consuming

and computationally intensive process. Therefore, a systematic SA approach is

required for the V&V of a Bayesian network model.

As reviewed in Section 2.2.3, the most common approach for sensitivity anal-

ysis assumes proportional scaling. Under this assumption, if X has n states, and x1

is a parameterized state, it is assumed that P (X|π) = (t, (1 − t)x2, ..., (1 − t)xn),

where
∑n

i=1 xi = 1. It is possible to deal with several parameters in the same dis-

tribution. If, for example, the first two states are parameterized, one would require

P (X|π) = (t, s, (1 − t − s)x3, ..., (1 − t − s)xn). Then, s does not scale when t is

changed. By varying a (set of) network parameters in the above-mentioned ap-

proach one is interested to know how P (h|e) varies with the parameter variation;

where H is a hypothesis variable and h is a particular state of H which is the focus

of interest.

The above method for varying the network parameters is primarily useful in

situations when one is interested to investigate the sensitivity of the network out-

put due to a change in parameter(s) that is caused by probability elicitation (from

domain experts) error. However, in the component dependency model (CDM) that

is proposed in Chapter 6, the conditional probabilities are obtained from confu-

sion matrices. Therefore, one must investigate how a change in a confusion matrix

impacts the network performance. Therefore, the objective here is to investigate

how a change in the fault diagnosis performance at a given node affects the network

outputs.
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In other words, our objective is to perform the verification that the CDM

satisfies a more specific requirement, namely that “the model shall be negligibly

sensitive to small changes in its parameters” (this requirement is clearly related to

the generic requirement that was stated in Section 7.1). The term “negligibly” is

however somewhat subjective here which can be clarified by quantifying it in terms

of the changes in probability values, if necessary.

It is not difficult to realize that the above procedure which assumes propor-

tional scaling is not suitable for the component dependency model (CDM) that is

proposed in Chapter 6. This is due to the fact that a change in a confusion matrix

impacts the computation of initial probability distributions (as proposed in Section

6.2.3) – and consequently, almost the entire CPT – in a way that does not satisfy the

proportional scaling assumption. In the subsequent sections, a sensitivity analysis

procedure for the proposed CDM will be investigated. The investigation is divided

into two parts: (a) the analysis of parameter variation in CDM, and (b) the proposed

verification steps.

7.2.1 Parameter Variation in the CDM

First, we investigate how the parameters in the proposed CDM are varied due to a

change in the associated confusion matrix. In other words, we will consider a specific

change in a confusion matrix that corresponds to a fault mode identification at a

node of the CDM, and investigate how this change would affect the CDM parame-

ters. We consider a general case of such parameter variation which is investigated

in the subsequent paragraphs.

Let C l
p be a node in the CDM, and C l−1

1 , ..., C l−1
N are the parent nodes of C l

p.

According to the notations in Chapter 6, the states of X l
p =x0, x1, ..., xn, ..., xN ; xn 6=

x0 correspond to the faulty subcomponents of C l
p and x0 corresponds to the state

of C l
p when all the subcomponents of C l

p are healthy. For the sake of convenience
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Table 7.1: The Change in the Confusion Matrix at the Node C l−1
1 Caused Due to a

Change of the Performance of the Diagnosis Algorithm Deployed at the Node
Identified → f0 f1 f2 ... fK1

Actual ↓

f0 c0,0 c0,1 c0,2 ... c0,K1

f1 c1,0 + ρ0δ c1,1 − δ c1,2 + ρ2δ ... c1,K1 + ρK1δ
f2 c2,0 c2,1 c2,2 ... c2,K1

... ... ... ... ... ...
fK1 cK1,0 cK1,1 cK1,2 ... cK1,K1

in notation, and without loss of generality, let us assume that the states of the n-th

parent node are X l−1
n = f0, f1, ..., fk, ..., fKn , where fk 6= f0 corresponds to the faults

in C l−1
n and f0 corresponds to the healthy state of the node.

Without any loss of generality, we consider a change in the confusion matrix

of C l−1
1 that corresponds to the identification of the first fault mode f1 in C l−1

1 .

Specifically, let us consider the change in the confusion matrix of C l−1
1 which is

caused due to a change of performance of the diagnosis algorithm deployed at the

node, as shown in Table 7.1. Note that prior to the change in c1,1 number of cases

the fault mode or state f1 was identified correctly as shown in Table 7.1. Now, due

to the change in performance of the diagnosis algorithm that is deployed in C l−1
1 , the

number reduces to c1,1−δ. This implies that in the δ number of cases the faulty state

f1 is now misidentified as other states of the node which are represented in terms

of ρkδ, where k = 0, ..., K1, k 6= 1 and
∑Kn

k 6=1,k=0 ρk = 1. We denote the parameter

of our interest by θ =P (X l−1
1 = f1|I l−1

1 = f1) which signifies the probability of C l−1
1

being in its state X l−1
1 = f1 given an identification f1 by the diagnosis algorithm

deployed at C l−1
1 . In terms of the changed confusion matrix elements in Table 7.1,

the parameter of our interest is θ =(c1,1 − δ)/((
∑K1

j=0 cj,1)− δ).

Recall from the CDM parameter computation procedure that was proposed

in Section 6.2.3, the above change in the confusion matrix of C l−1
1 will impact the

CDM parameters (the entries of the CPT) that are stored in C l
p. Since the CPT is
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computed from the initial distributions, one first need to identify how the change

impacts the initial distributions. Therefore, the changes in the following general

cases of the Nλ + 1 (in this case, Nλ =
∑N

n=1Kn, as explained in Section 6.2.3)

initial distributions over X l
p require attention, specifically for:

Case 1: P (X l
p|X l−1

1 = f1, X
l−1
2 = f0, ..., X

l−1
N = f0)

Case 2: P (X l
p|X l−1

1 = fk, X
l−1
2 = f0, ..., X

l−1
N = f0), where k = 2, ..., K1

Case 3: P (X l
p|X l−1

1 = f0, ..., X
l−1
n = fk, ..., X

l−1
N = f0), where n = 2, ..., N and

k = 1, ..., Kn

Case 4: P (X l
p|X l−1

1 = f0, X
l−1
2 = f0, ..., X

l−1
N = f0)

To investigate the above initial distributions the following results are required.

Proposition 7.2.1 (Accuracy Change). Let the change in the confusion matrix

of a node C l−1
1 , caused due to a change of performance of the diagnosis algorithm

deployed at the node, is according to Table 7.1. Let θ = (c1,1− δ)/((
∑K1

j=0 cj,1)− δ).

Then, the accuracy of identifying the faulty state f1 can be expressed according to

al−1
f1

= a1θ + b1, where a1 and b1 are real-valued numbers.

Proof. Recall that for computing hierarchical agreement factors in Chapter 6, the

accuracy al−1
f1

(with which the health state f1 is identified at level l−1) is computed

by constructing a 2×2 dimensional “one-versus-all” decision matrix C1 (as discussed

in Section 6.2.2). Let Ccon denote an (K1 + 1)× (K1 + 1) confusion matrix that is

associated with K1 + 1 health states of the node C l−1
1 as shown in Table 7.1. Let ci,j

denote the element in the i-th row and the j-th column of Ccon, and c′i,j denote the

element in the i-th row and the j-th column of C1. The elements of the C1 matrix

are computed as follows:

c′2,2 =c1,1 − δ

c′2,1 =
(∑K1

k=0(c1,k + ρkδ)
)
− (c1,1 − δ)

=
(∑K1

k 6=1,k=0(c1,k + ρkδ)
)

+ (c1,1 − δ)− (c1,1 − δ)
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=
(∑K1

k 6=1,k=0 c1,k

)
+ δ = κ21 + δ; since

∑Kn
k 6=1,k=0 ρk = 1

c′1,2 =
∑K1

k 6=1,k=0 c1,k = κ12

c′1,1 =sum(Ccon)− c′2,2−c′2,1−c′1,1= κ11

where κ21 = (
∑K1

k 6=1,k=0 c1,k), κ12 =
(∑K1

k 6=1,k=0 c1,k

)
, and κ11 are real numbers that

are independent of δ and ρks. Furthermore, ρ1 = 1 as per Table 7.1.

The accuracy of identifying the 1-st fault state is computed as follows:

al−1
f1

= trace(C1)/sum(C1)

= (c1,1 − δ + κ11)/(c1,1 + κ11 + κ12 + κ21)

= κ(c1,1 − δ) + κκ11

where κ = 1/(c1,1 + κ11 + κ12 + κ21). Dividing and multiplying the first term by

(
∑K1

k=0 ck,1)− δ, and approximating for a small change δ the term κ((
∑K1

k=0 ck,1)− δ)

≈ κ(
∑K1

k=0 ck,1), the accuracy can be expressed in the form:

al−1
f1

= a1θ + b1

where a1 = κ(
∑K1

k=0 ck,1) and b1 = κκ11 are real numbers that are independent of δ

and ρk.

Corollary 7.2.1 (Accuracy Change). Let the change in the confusion matrix

of a node C l−1
n , caused due a change of performance of the diagnosis algorithm

deployed at the node follows the pattern in Table 7.1 for a state fk. Let θ′ =

(ck,k − δ)/((
∑Kn

j=0 cj,k) − δ). Then, the accuracy of identifying the state fk can be

expressed in the form al−1
fk

= akθ
′ + bk; where ak and bk are real-valued numbers.

Proof. The proof is only a generalization of the Proposition 7.2.1 that follows along

the same lines as in the proof of Proposition 7.2.1 for fk with a confusion matrix

where δ is associated with fk, and ρkδ is associated with the other health states.

It is clear that for a change δ in any mode fk (instead of the 1-st fault mode f1)

at any component at a given level l, the accuracy alfk can be expressed in the form

akθ
′ + bk; where ak and bk are real numbers that are independent of δ and ρk.
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Proposition 7.2.2 (Accuracy Change). Let the change in the confusion matrix

of a node C l−1
1 , caused due a change of performance of the diagnosis algorithm

deployed at the node is according to Table 7.1. Let θ = (c1,1 − δ)/((
∑K1

j=0 cj,1)− δ).

Then, the change in the accuracy of identifying the health state fk, where fk 6= f1,

is negligible for a sufficiently small δ.

Proof. The proof is similar to that of the Proposition 7.2.1. The key difference

between the above two propositions is that here we are interested in the accuracy

of fk compared to f1 while the change δ is still associated with f1. Recall that

for computing hierarchical agreement factors in Chapter 6, the accuracy al−1
f1

with

which the health state f1 is identified at level l − 1 is computed by constructing

a 2 × 2 dimensional “one-versus-all” decision matrix Ck (as discussed in Section

6.2.2), where k 6= 1. Let Ccon denote an (K1 + 1)× (K1 + 1) confusion matrix that

is associated with the K1 + 1 health states of the node C l−1
1 as shown in Table 7.1.

Let ci,j denote the element in the i-th row and the j-th column of Ccon, and c′i,j

denote the element in the i-th row and the j-th column of C1. The elements of the

Ck matrix are changed due to the change in the confusion matrix of a node C l−1
1 as

follows:

• c′2,2 =ck,k remains unchanged despite the change in the confusion matrix,

• c′2,1 =
(∑K1

j=0 ck,j

)
− ck,k= κ21 remains unchanged despite the change in the

confusion matrix,

• c′1,2 =κ12 + ρkδ where κ12 = (
∑K1

j=0 cj,k) − ck,k is the value of c′1,2 when δ = 0

(without any change in the confusion matrix), and

• c′1,1 = sum(Ccon)− c′2,2 − c′2,1 − c′1,1 = κ11 − ρkδ where κ11 is the value of c′1,1

when δ = 0 (without any change in the confusion matrix).

Note that sum(Ccon) remains the same despite the change in the confusion
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matrix. The accuracy of identifying the k-st health state is computed as follows:

al−1
fk

= trace(C1)/sum(C1)

=
κ11 + ck,k − ρkδ

κ11 + ck,k + κ12 + κ21

Since (κ11 +ck,k +κ12 +κ21) >> ρkδ, the accuracy is reduced by a negligible amount

(ρkδ)/(κ11 + ck,k + κ12 + κ21).

We are now in a position where in the remainder of this section we investigate

the four general cases 1 to 4 corresponding to the initial distributions that are stated

earlier.

Case 1: The initial distribution that corresponds to the faulty state f1 of C l−1
1 .

From Equation (6.3), the probability distribution over X l
p is computed as

follows:

P (X l
p|X l−1

1 = f1, X
l−1
2 = f0, ..., X

l−1
N = f0)

≈
(
P (X l

p = x0|X l−1
1,...,N = f), P (X l

p = x1|X l−1
1 = f1),

P (X l
p = x2|X l−1

1 = f1), ..., P (X l
p = xN |X l−1

1 = f1)
) (7.1)

where the first term is conditioned on the health states of all the parent sub-

components at level l − 1 with f 6= f0 for the 1-st sub-component, and f = f0

otherwise.

From Equation (6.6), the probability P (X l
p = x1|X l−1

1 = f1) is expressed as
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follows:

P (X l
p = x1|X l−1

1 = f1) ≈ P (X l
p = x1|I l−1

1 = f1)

= hp,11,1

(
P (X l−1

1 = f1|I l−1
1 = f1) +

K1∑
j=2

P (X l−1
1 = fj|I l−1

1 = f1)
)

= hp,11,1

( c1,1 − δ
(
∑K1

j=0 cj,1)− δ
+

∑K1

j=2 cj,1

(
∑K1

j=0 cj,1)− δ

)
= hp,11,1

(
θ +

(
∑K1

j=0 cj,1)− c0,1 − c1,1

(
∑K1

j=0 cj,1)− δ

)
= hp,11,1

(
θ +

κ0

(
∑K1

j=0 cj,1)− δ

)

(7.2)

where κ0 is a parameter independent of δ and ρk. By the definition of θ, (
∑K1

j=0 cj,1)−

δ can be expressed as (c1,1 − δ)/θ. Consequently, P (X l
p = x1|X l−1

1 = f1) above

becomes:

P (X l
p = x1|X l−1

1 = f1) = hp,11,1

(
θ +

κ0θ

c1,1 − δ

)
= hp,11,1θ

(
1 +

κ0

c1,1 − δ

)
(7.3)

In Equation (7.3), κ0 = 0 if none of the f1 fault cases are misidentified as

other faults in the confusion matrix. Usually, c1,1 >> κ0 and for small change in δ,

c1,1 >> δ. Therefore, the effects of δ are to be considered as negligible in Equation

(7.3). Furthermore, since the hierarchical agreement factor hp,11,1 in Equation (7.3) is

a ratio of two accuracies (as described in Chapter 6), and the decreased accuracy at

level l − 1 satisfies Proposition 7.2.1, the probability P (X l
p = x1|X l−1

1 = f1) can be

expressed as follows:

P (X l
p = x1|X l−1

1 = f1) = a1θ
2 + b1θ + c1 (7.4)

where a1, b1, and c1 are real numbers.

Next, from Equation (6.7), the probability P (X l
p = x0|X l−1

1,...,N = f) is expressed
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as follows:

P (X l
p = x0|X l−1

1,...,N = f)

≈ P (X l
p = x0|I l−1

1 = f1)
N∏
j=2

P (X l
p = x0|I l−1

j = f0)

= (1− hp,11,1)P (X l−1
1 = f0|I l−1

1 = f1)
N∏
j=2

hp,0j,0P (X l−1
j = f0|I l−1

j = f0)

= (1− hp,11,1)
c0,1

(
∑K1

j=0 cj,1)− δ

N∏
j=2

hp,0j,0P (X l−1
j = f0|I l−1

j = f0)

(7.5)

The probabilities inside the product in Equation (7.5) are determined from the

unchanged confusion matrices of the other parent nodes of C l
p, and the product is a

real number κ1. Hence, Equation (7.5) becomes:

P (X l
p = x0|X l−1

1,...,N = f) = (1− hp,11,1)κ1
c0,1

(
∑K1

j=0 cj,1)− δ (7.6)

and the last factor in Equation (7.6) can be expressed as follows:

c0,1

(
∑K1

j=0 cj,1)− δ
=
(

1− ¯c0,1

(
∑K1

j=0 cj,1)− δ

)
=
(

1− c1,1 − δ
(
∑K1

j=0 cj,1)− δ
− c2,1+, ...,+cK1,1

(
∑K1

j=0 cj,1)− δ

)
= 1− θ − κ2

(7.7)

where κ2 is real number that is independent of δ and ρk. Therefore, combining

Equations (7.6) and (7.7) we get,

P (X l
p = x0|X l−1

1,...,N = f) = (1− hp,11,1)κ1(1− θ − κ2) (7.8)

As explained above, hp,11,1 has the form in Proposition 7.2.1 and κ1 is a real

number. Consequently, P (X l
p = x0|X l−1

1,...,N = f) in Equation (7.8) can be expressed
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as follows:

P (X l
p = x0|X l−1

1,...,N = f) = a0θ
2 + b0θ + c0 (7.9)

where a0, b0, and c0 are real numbers. Next, from Equation (6.8), the remaining

probabilities P (X l
p = xn|X l−1

1 = f1), where n = 2, ..., N , are expressed as follows:

P (X l
p = xn|X l−1

1 = f1)

=
1

N − 1

(
1− P (X l

p = x1|X l−1
1 = f1)− P (X l

p = x0|X l−1
1,...,N = f)

) (7.10)

From Equations (7.4) and (7.9), the probability P (X l
p = xn|X l−1

1 = f1) in

Equation (7.10) can be expressed as follows:

P (X l
p = xn|X l−1

1 = f1) = anθ
2 + bnθ + cn (7.11)

where an, bn, and cn are real numbers.

Remark 7.2.1 (Parameter Variation). From Equations (7.4), (7.9), and (7.11),

the probability distribution of Equation (7.1) can be expressed in the form:

P (X l
p|X l−1

1 = f1, X
l−1
2 = f0, ..., X

l−1
N = f0)

=
(

(a0θ
2 + b0θ + c0), (a1θ

2 + b1θ + c1), ..., (aNθ
2 + bNθ + cN)

)

Case 2: The initial distribution that corresponds to the other faulty state fk of C l−1
1 ,

where k = 2, ..., K1.

From Equation (6.3), the probability distribution over X l
p is computed as
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follows:

P (X l
p|X l−1

1 = fk, X
l−1
2 = f0, ..., X

l−1
N = f0)

≈
(
P (X l

p = x0|X l−1
1,...,N = f), P (X l

p = x1|X l−1
1 = fk),

P (X l
p = x2|X l−1

1 = fk), ..., P (X l
p = xN |X l−1

1 = fk)
) (7.12)

where the first term is conditioned on the health states of all the parent sub-

components at level l − 1 with f 6= f0 for the 1-st sub-component, and f = f0

otherwise.

From Equation (6.6), the probability P (X l
p = x1|X l−1

1 = fk) is expressed as

follows:

P (X l
p = x1|X l−1

1 = fk) ≈ P (X l
p = x1|I l−1

1 = fk)

= hp,11,k

(
P (X l−1

1 = fk|I l−1
1 = fk) +

K1∑
j 6=k,j=2

P (X l−1
1 = fj|I l−1

1 = fk)
)

= hp,11,k

( ck,k

(
∑K1

j=0 cj,k) + ρkδ
+

(c1,k + ρkδ) +
∑K1

j 6=k,j=2 cj,k

(
∑K1

j=0 cj,k) + ρkδ

)
= hp,11,k

((
∑K1

j=1 cj,k) + ρkδ

(
∑K1

j=0 cj,k) + ρkδ

)
= hp,11,k

((
∑K1

j=0 cj,k)− c0,k + ρkδ

(
∑K1

j=0 cj,k) + ρkδ

)

(7.13)

It is easy to see that
∑K1

j=0 cj,k >> ρkδ, as δ represents a small change and ρkδ is a

fraction of δ. Therefore, the effects of the change in the confusion matrix at node

C l−1
1 is negligible on the second factor in Equation (7.13). By Proposition 7.2.2, the

factor hp,11,k in Equation (7.13) is considered to be negligibly affected by the change

in δ as well.

From Equation (6.7), the probability P (X l
p = x0|X l−1

1,...,N = f) is expressed as
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follows:

P (X l
p = x0|X l−1

1,...,N = f)

≈ P (X l
p = x0|I l−1

1 = fk)
N∏
j=2

P (X l
p = x0|I l−1

j = f0)

= (1− hp,11,k)P (X l−1
1 = f0|I l−1

1 = fk)
N∏
j=2

hp,0j,0P (X l−1
j = f0|I l−1

j = f0)

(7.14)

The last term that consists of the product in Equation (7.14) is computed from the

unchanged confusion matrices of the other parent nodes of C l
p, and the product is a

real number that is unaffected by the change in the confusion matrix at node C l−1
1 .

As found above, hp,11,k is considered to be negligibly affected by the change in the

confusion matrix. Consequently, the term (1 − hp,11,k) is considered to be negligibly

affected by the change in the confusion matrix at node C l−1
1 . Now,

P (X l−1
1 = f0|I l−1

1 = fk) =
c0,k

(
∑K1

j=0 cj,k) + ρkδ

As found in the analysis of P (X l
p = x1|X l−1

1 = fk) above,
∑K1

j=0 cj,k >>

ρkδ, and consequently, the probability P (X l−1
1 = f0|I l−1

1 = fk) is considered to be

negligibly affected by the change in the confusion matrix at node C l−1
1 .

From Equation (6.8), the remaining probabilities P (X l
p = xn|X l−1

1 = fk),

where n = 2, ..., N , are expressed as follows:

P (X l
p = xn|X l−1

1 = fk)

=
1

N − 1

(
1− P (X l

p = x1|X l−1
1 = fk)− P (X l

p = x0|X l−1
1,...,N = f)

) (7.15)

From the analysis of the probabilities P (X l
p = x1|X l−1

1 = fk) and P (X l
p = x0|X l−1

1,...,N =

f) above, it follows that the probability P (X l
p = xn|X l−1

1 = fk) in Equation (7.15)

is negligibly affected by the change in the confusion matrix at node C l−1
1 .
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Remark 7.2.2 (Parameter Variation). From the analysis of the probabilities

P (X l
p = x1|X l−1

1 = fk), P (X l
p = x0|X l−1

1,...,N = f) and P (X l
p = xn|X l−1

1 = fk) above,

it follows that the probability distribution in Equation (7.12) is negligibly affected

by the change in the confusion matrix at node C l−1
1 .

Case 3: The initial distributions that correspond to the faults in the other parent

nodes of C l
p.

From Equation (6.3), the probability distribution over X l
p is computed as

follows:

P (X l
p|X l−1

1 = f0, ..., X
l−1
n = fk, ..., X

l−1
N = f0)

≈
(
P (X l

p = x0|X l−1
1,...,N = f), P (X l

p = x1|X l−1
n = fk),

...P (X l
p = xn|X l−1

n = fk), ..., P (X l
p = xN |X l−1

n = fk)
) (7.16)

where n = 2, ..., N ; k = 1, ..., Kn; and the first term is conditioned on the health

states of all the parent sub-components at level l − 1 with f 6= f0 for the n-th

sub-component that is faulty, and f = f0 otherwise.

From Equation (6.6), the probability P (X l
p = xn|X l−1

n = fk) is expressed as

follows:

P (X l
p = xn|X l−1

n = fk) ≈ P (X l
p = xn|I l−1

n = fk)

= hp,nn,k

(
P (X l−1

n = fk|I l−1
n = fk) +

Kn∑
j 6=k,j=1

P (X l−1
n = fj|I l−1

n = fk)
) (7.17)

All the probabilities on the right-hand side of Equation (7.17) correspond to the

parent nodes of C l
p whose confusion matrices remain unchanged. Therefore, the

probability P (X l
p = xn|X l−1

n = fk) is unaffected by the change in the confusion

matrix at node C l−1
1 .

From Equation (6.7), the probability P (X l
p = x0|X l−1

1,...,N = f) is expressed as
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follows:

P (X l
p = x0|X l−1

1,...,N = f)

≈ P (X l
p = x0|I l−1

n = fk)
N∏

j 6=n,j=1

P (X l
p = x0|I l−1

j = f0)

= (1− hp,nn,k)P (X l−1
n = f0|I l−1

n = fk)
N∏

j 6=n,j=1

hp,0j,0P (X l−1
j = f0|I l−1

j = f0)

(7.18)

Equation (7.18) can be rearranged as:

P (X l
p = x0|X l−1

1,...,N = f) = (1− hp,nn,k)P (X l−1
n = f0|I l−1

n = fk)

hp,01,0P (X l−1
1 = f0|I l−1

1 = f0)
N∏

j 6=n,j=2

hp,0j,0P (X l−1
j = f0|I l−1

j = f0)
(7.19)

In Equation (7.19), all the factors, except hp,01,0 and P (X l−1
1 = f0|I l−1

1 = f0),

correspond to the parent nodes of C l
p whose confusion matrices remain unchanged,

and are unaffected by the change in the confusion matrix at node C l−1
1 . By Proposi-

tion 7.2.2, there are negligible effects of the change in the confusion matrix at node

C l−1
1 on hp,01,0. Furthermore,

P (X l−1
1 = f0|I l−1

1 = f0) =
c0,0(∑K1

j=0 cj,0

)
+ ρ0δ

In general,
∑K1

j=0 cj,0 >> ρ0δ. Therefore, there is a negligible effect of the change in

the confusion matrix at node C l−1
1 on P (X l−1

1 = f0|I l−1
1 = f0).

From Equation (6.8), the remaining probabilities P (X l
p = xn′ |X l−1

1 = fk),

where n′ represents all the healthy subcomponent of C l
p except C l−1

n , are expressed

as follows:

P (X l
p = xn′ |X l−1

1 = fk)

=
1

N − 1

(
1− P (X l

p = xn|X l−1
n = fk)− P (X l

p = x0|X l−1
1,...,N = f)

) (7.20)
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From the analysis of the probabilities P (X l
p = xn|X l−1

n = fk) and P (X l
p = x0|X l−1

1,...,N =

f) above, it follows that the probability P (X l
p = xn′|X l−1

1 = fk) in Equation (7.20)

is negligibly affected by the change in the confusion matrix at node C l−1
1 .

Remark 7.2.3 (Parameter Variation). By the analysis of the probabilities P (X l
p =

xn|X l−1
n = fk), P (X l

p = x0|X l−1
1,...,N = f) and P (X l

p = xn′|X l−1
1 = fk) above, it fol-

lows that the probability distribution in Equation (7.16) is negligibly affected by

the change in the confusion matrix at node C l−1
1 .

Case 4: The initial distribution that corresponds to the situation when all parent

nodes of C l
p are healthy.

From Equation (6.3), the probability distribution over X l
p is computed as

follows:

P (X l
p|X l−1

1 = f0, X
l−1
2 = f0, ..., X

l−1
N = f0)

≈
(
P (X l

p = x0|X l−1
1,...,N = f0), P (X l

p = x1|X l−1
1,...,N = f0),

P (X l
p = x2|X l−1

1,...,N = f0), ..., P (X l
p = xN |X l−1

1,...,N = f0)
) (7.21)

where each term is conditioned on the healthy states of all the parent sub-components

at level l − 1.

From Equation (6.9), the probability P (X l
p = x0|X l−1

1,...,N = f0) is expressed as

follows:

P (X l
p = x0|X l−1

1,...,N = f0)

= 1− P (X l
p = x̄0|X l−1

1,...,N = f0)

= 1−
N∏
j=1

(1− hp,0j,0)P (X l−1
j = f̄0|I l−1

j = f0)

(7.22)
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where x̄0 and f̄0 correspond to the set {X l
p}\x0 and {X l−1

n }\f0, respectively depend-

ing on the level in the hierarchy. Equation (7.22) can be re-written as:

P (X l
p = x0|X l−1

1,...,N = f0)

= 1−
(

(1− hp,01,0)P (X l−1
1 = f̄0|I l−1

1 = f0)

N∏
j=2

(1− hp,0j,0)P (X l−1
j = f̄0|I l−1

j = f0)
) (7.23)

In equation (7.23), all the factors, except (1−hp,01,0) and P (X l−1
1 = x̄0|I l−1

1 = f0),

correspond to the parent nodes of C l
p whose confusion matrices remain unchanged,

and are unaffected by the change in the confusion matrix at node C l−1
1 . From

Proposition 7.2.2, there are negligible effects of the change in the confusion matrix

at node C l−1
1 on hp,01,0. Furthermore,

P (X l−1
1 = f̄0|I l−1

1 = f0) =

∑K1

j=1 cj,0(∑K1

j=0 cj,0

)
+ ρ0δ

Since
∑K1

j=0 cj,0 >> ρ0δ, there is a negligible effect of the change in the confusion

matrix at node C l−1
1 on P (X l−1

1 = f̄0|I l−1
1 = f0).

From Equation (6.10), the remaining probabilities P (X l
p = xn|X l−1

1,...,N = f0),

where n = 1, ..., N , are expressed as follows:

P (X l
p = xn|X l−1

1,...,N = f0) =
1

N

(
1− P (X l

p = x0|X l−1
1,...,N = f0)

)
(7.24)

From the analysis of the probability P (X l
p = x0|X l−1

1,...,N = f0) above, it follows

that the probability P (X l
p = xn|X l−1

1,...,N = f0) in equation (7.24) is negligibly affected

by the change in the confusion matrix at node C l−1
1 .

Remark 7.2.4 (Parameter Variation). From the analysis of the probabilities

P (X l
p = x0|X l−1

1,...,N = f0) and P (X l
p = xn|X l−1

1,...,N = f0) above, it follows that the
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probability distribution in Equation (7.21) is negligibly affected by the change in

the confusion matrix at node C l−1
1 .

The following results utilize the notion of a probability potential φ that was

reviewed in Section 2.2.1.

Lemma 7.2.1 (Parameter Variation). Let φ(V ) denote a potential over the

variables V . Let X ∈ V , and let v∗ be a set of configurations over V \{X}. Let all

entries in φ(V ) be real numbers except for φ(X,v∗) which is in the form (α0θ
2 +

β0θ + γ0, ... , αNθ
2 + βNθ + γN). Then

∑
V

φ(V ) = αθ2 + βθ + γ

where α, β, and γ are real numbers.

Proof. Let V ∗ be the set of all configurations in span(V) except for the (X,v∗)-

configurations. Then

∑
V

φ(V ) =
∑
V ∗

φ(V ) +
∑
X

φ(X,v∗)

The first term is equivalent to a real number γ∗, and the second term is the sum

of the (α0θ
2 + β0θ+ γ0) ... (αNθ

2 + βNθ+ γN) entries for all (X,v∗)-configurations.

Hence,

∑
V

φ(V ) =
(∑

i

αi

)
θ2 +

(∑
i

βi

)
θ +

(∑
i

γi

)
+ γ∗

= αθ2 + βθ + γ

where α, β, and γ are real numbers.

Theorem 7.2.1 (P (e) as a function of a parameter). Let the CDM be a

Bayesian network over the universe U . Let θ be a parameter and let e denote
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the evidence that is entered in the CDM. Then assuming that some distributions

are in the form (α0θ
2 + β0θ + γ0, ... , αNθ

2 + βNθ + γN), we have

P (e)(θ) = αθ2 + βθ + γ

where α, β, and γ are real numbers.

Proof. The proof is similar to that of Theorem 2.2.1 in Chapter 2. Let U = {X} ∪

{X1, ..., Xn}, fa(X) = {X} ∪ pa(X) and let π denote a set of parent configurations

for which P (X|πi) = (α0θ
2 + β0θ + γ0, ... , αNθ

2 + βNθ + γN). Let the evidence

potentials be denoted by e1, ..., em. Now

P (e) =
∑
U

P (U, e) =
∑
U

P (X|pa(X))
∏
i

P (Xi|pa(Xi)
∏
j

ej

=
∑
fa(X)

P (X|pa(X))
∑

U\fa(X)

∏
i

P (Xi|pa(Xi)
∏
j

ej

The factor
∑

U\fa(X)

∏
i P (Xi|pa(Xi)

∏
j ej is a potential, denoted by φ(fa(X)),

with only real numbers, and we have

P (e) =
∑
fa(X)

P (X|pa(X))φ(fa(X))

The product P (X|pa(X))φ(fa(X)) is a potential satisfying the conditions in Lemma

7.2.1, and we can conclude that

P (e)(θ) = αθ2 + βθ + γ

where α, β, and γ are real numbers.

Corollary 7.2.2 (P (X|e) as a function of a parameter). Let the CDM be

a Bayesian network over the universe U . Let θ be a parameter and let e denote

the evidence that is entered in the CDM, and let u∗ be a set of configurations over
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U\{X}. Let xi be a state of X ∈ U . Then assuming a set of φ(X,u∗)-configurations

in the form (α0θ
2 + β0θ + γ0, ... , αNθ

2 + βNθ + γN), P (X = xi|e) has the form:

P (X = xi|e) =
αθ2 + βθ + γ

aθ2 + aθ + c

where α, β, γ, a, b, and c are real numbers.

Proof. The proof follows along the similar lines as in the Theorem 7.2.1, and then

follows from the fundamental rule for variables P (X = xi|e) = P (X=xi,e)
P (e)

.

7.2.2 Proposed Verification Steps

It is obvious from Remarks 7.2.1 to 7.2.4 of the initial distributions that due to the

change in the confusion matrix at node C l−1
1 the entries of the CPT that is stored at

node C l
p are either in the form aθ2 + bθ + c, or are real numbers that are negligibly

changed. This is due to the fact that since the remaining distributions in the CPT

are computed by using a weighted-sum of the initial distributions (from Equation

(6.12)), the entries corresponding to those distributions are also either in the form

aθ2 + bθ + c, or are real numbers that are negligibly changed. Given the above

observations and Corollary 7.2.2, one can validate a CDM via a sensitivity analysis

procedure which allows one to evaluate the behavior of the output(s) of the CDM

when a CDM parameter θ (as defined in Section 7.2.1) changes. The sensitivity

analysis is a standard procedure for verifying Bayesian networks, and by utilizing

Corollary 7.2.2, the procedure becomes straight-forward as described below:

Step 1. Choose 3 values of δ, namely δ0, δ1, and δ2 such that the chosen range of

δ would cause a small variation in θ in Step 2. The term “small variation”

is somewhat subjective and as an example, one may quantify the term by

assuming that approximately 0.05 change in the probability θ over the chosen

range of δ is a small variation. As an alternative, the variation can also be
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quantified easily in terms of the change in the identification accuracy of the

fault that is associated with δ.

Step 2. Find the values of θ (as defined in Section 7.2.1), namely θ0, θ1, and θ2 that

correspond to the three chosen values of δ (here ρk values are assumed to be

the same, however, one may choose to select different values).

Step 3. For the obtained θ0 value,

• Compute initial distributions.

• Compute the CPT by using the initial distributions.

• Compute P (e)(θ0).

• Introduce and propagate the evidence e under consideration to the net-

work (with the computed CPT) to obtain P (X = x1, e)(θ0)

Step 4. Repeat step 3 for θ1 and θ2.

Step 5. Form the following two sets of equations to solve for α, β, γ, a, b, and c:

To determine the coefficients α, β, and γ solve the following:

αθ2
0 + βθ0 + γ = P (X = xi, e)(θ0)

αθ2
1 + βθ1 + γ = P (X = xi, e)(θ1)

αθ2
2 + βθ2 + γ = P (X = xi, e)(θ2)

To determine the coefficients a, b, and c solve the following:

aθ2
0 + bθ0 + c = P (e)(θ0)

aθ2
1 + bθ1 + c = P (e)(θ1)

aθ2
2 + bθ2 + c = P (e)(θ2)
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Step 6. Plot P (X = xi|e) as a function of θ by using the relationship:

P (X = xi|e) =
αθ2 + βθ + γ

aθ2 + aθ + c

Determination of Sensitivity: The plot is interpreted as follows. As discussed

in Section 7.2, our objective is to perform the verification that the CDM satisfies

a more specific requirement, namely that “the model shall be negligibly sensitive

to small changes in its parameters”. The term “negligibly” is however somewhat

subjective here which can quantified it in terms of the changes in probability values.

For any two plotted (refer to Step 6 above) conditional probabilities P (X = x1|e)

and P (X = x2|e), where P (X = x1|e) > P (X = x2|e) (without any variation in

model parameters), we consider the model to be negligibly sensitive if the same

inequality P (X = x1|e) > P (X = x2|e) remains true over entire range of θ under

consideration.

It is important to note that in the above steps, while computing the CPTs

by using the computed initial distributions, the weights in the weighted-sum (refer

to Equation (6.12)) are kept unchanged. The underlying assumption is that any

small change in the sensitivity parameters δ should not affect the way the initial

distributions are combined to compute the remaining distributions in the CPT.

7.3 CDM Verification Results

In this section, a number of sample CDM verification results are provided which

demonstrate that the sensitivity of the implemented CDM to parameter changes

with different fault evidences is negligible. Table 7.2 shows the confusion matrix

that corresponds to the node Sat-3 Y -axis RW (C1
8) of the CDM shown in Figure

6.3 of Chapter 6. Table 7.2 is obtained from Table 5.1 (Chapter 5) by removing the

“Ambiguity” column. Here, we consider that there is a change in the performance of
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Table 7.2: Confusion Matrix at Sat-3 RW-Y (C1
8)

Identified → Healthy Friction Current

Actual ↓ Fault Fault

Healthy 169 3 0
Friction Fault 11 + ρ0δ 29− δ 0 + ρ2δ
Current Fault 2 13 25

the diagnosis algorithm at node C1
8 , and consequently, in δ cases, the “friction fault”

is mis-identified as either the “healthy” case or the “current fault” case. Note that

for a given δ, there are various ways in which ρks may be varied. In this investigation

we assume that all the ρks are the same, i.e., the number changed/misidentified cases

(δ) are distributed evenly among the other health states. Therefore, ρ0 = 0.5 and

ρ2 = 0.5. Note that there are infinite possible ways to distribute the number δ

mis-identified fault into other health states, and an exhaustive investigation of all

such cases is beyond the scope of this thesis.

The results that are presented in the remainder of this section have been

obtained by using the Symbolic Math Toolbox in MATLAB (for solving the two

sets of equations for sensitivity analysis and for computing the CPTs), and the open

source BN tool that is available from [155] (for belief propagation and updating).

Note that the same BN tool was utilized for implementing the CDM in Chapter 6).

Three possible values of δ are chosen: δ0 = 0, δ1 = 3, and δ2 = 6. The three values

of δ were selected such that the chosen range of δ would cause a small variation

of approximately 0.05 in θ. Recall that the parameter of our interest is defined

as θ =(c1,1 − δ)/((
∑K1

j=0 cj,1) − δ) = (29 − δ)/(45 − δ). Therefore, for the three

chosen values δ0 = 0, δ1 = 3 and δ2 = 6, corresponding values of θ are obtained

as θ0 = 0.6444, θ1 = 0.6190, and θ2 = 0.5897, respectively. Table 7.3 quantifies

the parameter variations under consideration in terms of the accuracy changes.

Note that the approximately 0.05 variation in θ corresponds to approximately 2.4%

decrease in the accuracy in identifying the friction fault.
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Table 7.3: Fault Identification Accuracy Changes at Sat-3 RW-Y (C1
8)

Accuracy → Healthy Friction Current

δ ↓ Fault Fault

δ0 93.65% 89.29% 94.05%
δ1 93.06% 88.10% 93.45%
δ2 92.46% 86.90% 92.86%

First, let us investigate the outputs/the probabilities P (X = xi|e), where

xi is a state of Sat-3 ACS in the implemented CDM (refer to Figure 6.3). Let e

denote the evidence of the friction fault in Sat-3 Y -axis reaction wheel (RW). Re-

call from Chapter 6 that the possible states of the ACS are {Healthy,RWXfault,

RWY fault, RWZfault}, which are denoted here by x0, x1, x2 and x3, respectively.

Furthermore, recall that the three possible states of a RW are {Healthy,frictionfault,

currentfault}, which are denoted here by f0, f1, and f2, respectively.

The following results are obtained by executing the Steps 1 to 4 of the verifi-

cation procedure that is presented in Section 7.2.2.

For θ0 = 0.6444 we obtain:

The initial distributions:

P (ACS|RWy = f1) = (0.0034, 0.0597, 0.8772, 0.0597)

P (ACS|RWy = f2) = (0.0000, 0.0050, 0.9900, 0.0050)

P (ACS|RWx = f1) = (0.0034, 0.8772, 0.0597, 0.0597)

P (ACS|RWx = f2) = (0.0000, 0.9900, 0.0050, 0.0050)

P (ACS|RWz = f1) = (0.0034, 0.0597, 0.0597, 0.8772)

P (ACS|RWz = f2) = (0.0000, 0.0050, 0.0050, 0.9900)

P (ACS|RWx = f0, RWy = f0, RWz = f0) = (0.9970, 0.0010, 0.0010, 0.0010)

After recomputing the entire CPT that is stored at Sat-3 ACS node, and

propagating the evidence with probability P (e)(θ0) = 0.05, the following results are

obtained (note that the P (X = xi, e)(θj) values have been normalized to obtain the
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sum of the probabilities over the health states xi equal to 1):

P (ACS = x0, e)(θ0) = 0.0042

P (ACS = x1, e)(θ0) = 0.1003

P (ACS = x2, e)(θ0) = 0.7952

P (ACS = x3, e)(θ0) = 0.1003

For θ1 = 0.6190 we obtain:

The initial distributions:

P (ACS|RWy = f1) = (0.0044, 0.0673, 0.8611, 0.0673)

P (ACS|RWy = f2) = (0.0000, 0.0081, 0.9837, 0.0081)

P (ACS|RWx = f1) = (0.0034, 0.8772, 0.0597, 0.0597)

P (ACS|RWx = f2) = (0.0000, 0.9900, 0.0050, 0.0050)

P (ACS|RWz = f1) = (0.0034, 0.0597, 0.0597, 0.8772)

P (ACS|RWz = f2) = (0.0000, 0.0050, 0.0050, 0.9900)

P (ACS|RWx = f0, RWy = f0, RWz = f0) = (0.9964, 0.0012, 0.0012, 0.0012)

After recomputing the entire CPT that is stored at Sat-3 ACS node, and

propagating the evidence with probability P (e)(θ1) = 0.05, the following results are

obtained (note that the P (X = xi, e)(θj) values have been normalized to obtain the

sum of the probabilities over the health states xi equal to 1):

P (ACS = x0, e)(θ1) = 0.0051

P (ACS = x1, e)(θ1) = 0.1071

P (ACS = x2, e)(θ1) = 0.7807

P (ACS = x3, e)(θ1) = 0.1071

For θ2 = 0.5897 we obtain:

The initial distributions:

P (ACS|RWy = f1) = (0.0055, 0.0750, 0.8444, 0.0750)

P (ACS|RWy = f2) = (0.0000, 0.0113, 0.9774, 0.0113)
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P (ACS|RWx = f1) = (0.0032, 0.8772, 0.0598, 0.0598)

P (ACS|RWx = f2) = (0.0000, 0.9900, 0.0050, 0.0050)

P (ACS|RWz = f1) = (0.0032, 0.0598, 0.0598, 0.8772)

P (ACS|RWz = f2) = (0.0000, 0.0050, 0.0050, 0.9900)

P (ACS|RWx = f0, RWy = f0, RWz = f0) = (0.9957, 0.0014, 0.0014, 0.0014)

After recomputing the entire CPT that is stored at Sat-3 ACS node, and

propagating the evidence with probability P (e)(θ2) = 0.05, the following results are

obtained (note that the P (X = xi, e)(θj) values have been normalized to obtain the

sum of the probabilities over the health states xi equal to 1):

P (ACS = x0, e)(θ2) = 0.0061

P (ACS = x1, e)(θ2) = 0.1141

P (ACS = x2, e)(θ2) = 0.7656

P (ACS = x3, e)(θ2) = 0.1142

Note that pa(C1
8) = ∅, and P (e) are the same in all cases. It is also worthwhile

to note that the initial distribution P (ACS|RWy = f1) above corresponds to the

analysis in the Case 1 in Section 7.2.1, P (ACS|RWy = f2) above corresponds to the

analysis in the Case 2 in Section 7.2.1, and P (ACS|RWx = f0, RWy = f0, RWz = f0)

above corresponds to the analysis in the Case 4 in Section 7.2.1. The remaining four

initial distributions correspond to the analysis in the Case 3 in Section 7.2.1.

It is easily verifiable that the approximations that are made in the analysis in

Section 7.2.1 are justified with an exception of the initial distribution P (ACS|RWy =

f2). It is observed that with the variation of the parameter θ, the changes in this

distribution is noticeable. This is due to the fact that in the confusion matrix shown

in Table 7.2, the approximation
∑K1

j=0 cj,k >> ρkδ is not valid. This is due to the

fact that an unusually high number of the “current fault” cases were mis-identified

as the “friction fault” which caused the sum to become unexpectedly low. However,
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it is important to note that although the change in P (ACS|RWy = f2) is notice-

able, it is less than that in P (ACS|RWy = f1) which varies as anθ
2 + bnθ + cn (the

degree of the polynomial is of at the most 2) where an, bn, and cn are real numbers.

Consequently, Lemma 7.2.1, Theorem 7.2.1, and Corollary 7.2.2 are still valid for

the obtained results.

Figure 7.2 shows the outputs under consideration that are obtained from the

Step 6 of the verification procedure (after determining the polynomial coefficients

in Step 5 of the procedure). It is observed that for small variations in the network

Figure 7.2: Sensitivity of Sat-3 ACS states (subsystem level) given a friction fault
evidence at Sat-3 RWy (component level).

parameters, there is a negligible change in the state of the ACS which implies that

when there is an evidence of a friction fault in the Y axis RW (component level),

the probability that the Y axis RW is faulty remains the highest (in the subsystem

level) despite the parameter variations. This indicates that the CDM is not too

sensitive to small variations in the network parameters, as desired.

Next, Figure 7.3 shows the same outputs with the evidence e as the current

fault in Sat-3 X-axis RW. This again indicates that the CDM is not sensitive to

small variations in the network parameters, as desired. Note that Figure 7.3 was
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Figure 7.3: Sensitivity of Sat-3 ACS states (subsystem level) given a current fault
evidence at Sat-3 RWx (component level).

generated by using the following information that are obtained with the recomputed

CPT that is stored at the Sat-3 ACS node, and finally propagating the evidence with

the probability P (e)(θ2) = 0.05, namely (as before, the P (X = xi, e)(θj) values have

been normalized to obtain the sum of the probabilities over the health states xi equal

to 1):

For θ0 = 0.6444 we obtain:

P (ACS = x0, e)(θ0) = 0.0012

P (ACS = x1, e)(θ0) = 0.8971

P (ACS = x2, e)(θ0) = 0.0509

P (ACS = x3, e)(θ0) = 0.0509

For θ1 = 0.6190 we obtain:

P (ACS = x0, e)(θ1) = 0.0012

P (ACS = x1, e)(θ1) = 0.8973

P (ACS = x2, e)(θ1) = 0.0503

P (ACS = x3, e)(θ1) = 0.0511
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For θ2 = 0.5897 we obtain:

P (ACS = x0, e)(θ1) = 0.0012

P (ACS = x1, e)(θ1) = 0.8976

P (ACS = x2, e)(θ1) = 0.0498

P (ACS = x3, e)(θ1) = 0.0514

Finally, let us investigate the outputs P (X = xi|e), where xi is a state of

Sat-3 Y -axis RW in the implemented CDM (refer to Figure 6.3). Let e denote the

evidence RWY fault in Sat-3 ACS. With the given three selected values θ1 = 0.6444,

θ2 = 0.6190, and θ3 = 0.5897, the following results are obtained (note that the

computed initial distributions are the same as above, and we are considering here a

different evidence and a different hypothesis variable):

For θ0 = 0.6444 we have:

P (e) = 0.0909

P (RWy = f0, e)(θ0) = 0.0689

P (RWy = f1, e)(θ0) = 0.4375

P (RWy = f2, e)(θ0) = 0.4936

For θ1 = 0.6190 we have:

P (e) = 0.0900

P (RWy = f0, e)(θ1) = 0.0712

P (RWy = f1, e)(θ1) = 0.4336

P (RWy = f2, e)(θ1) = 0.4952

For θ2 = 0.5897:

P (e) = 0.0891

P (RWy = f0, e)(θ2) = 0.0736

P (RWy = f1, e)(θ2) = 0.4295

P (RWy = f2, e)(θ2) = 0.4969
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As in the above earlier cases, the P (X = xi, e)(θj) values have been normalized

to obtain the sum of the probabilities over the health states xi equal to 1. Figure 7.4

shows the output under consideration that is obtained from step 6 of the validation

procedure (after determining the polynomial coefficients in step 5 of the procedure).

It is observed that as before, for the small variations in the network parameters,

Figure 7.4: Sensitivity of Sat-3 RWy states (component level) given a fault evidence
at Sat-3 ACS (subsystem level).

there is a negligible change in the state of the ACS. When there is an evidence of a

RW fault in the subsystem level, the probabilities corresponding to the RW states

(component level) changes slightly despite the parameter variation. This indicates

that the CDM is not sensitive to small variations in the network parameters, as

desired.

7.4 V&V of the HFDM

In this thesis, by the term V&V of HFDM we imply the verification of fuzzy rule

bases at different nodes of the HFDM. A fuzzy RBR system is usually constructed

by encoding the observations of several human experts, and the experts may have

observations and/or expertise that are in conflict with each other. Therefore, it
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is necessary to validate the diagnostic knowledge that are encoded in one or more

rule base(s). Rule bases that correspond to complex systems often consist of a

large number of rules. The objective of rule base V&V is to ensure that there is

no inconsistency or error in the rule base. The verification of rule-based systems

becomes more important for rule bases that consist of a large number of rules.

Rule base verification has been investigated extensively in literature [160,164,

165]. Formal verification of fuzzy rule bases are usually performed by utilizing petri-

net models to check certain properties such as redundancy, circularity, consistency,

and completeness of rules in a rule base. There is a systematic procedure in which

rule bases are verified. The errors of interest are mainly the structural errors in the

encoded rules. Such errors are related to redundancy (due to redundant and sub-

sumed rules), circularity (due to infinite inference), inconsistency (due to conflicting

rules), and incompleteness (due to missing rules) in the rule bases [160].

Note that the fuzzy rules that are utilized in the HFDM have a specific form

as follows:

If (slp,1 ∈M l
p,1,k) and (slp,2 ∈M l

p,2,k)... and (slp,J ∈M l
p,J,k) then (f lk)

where slp,j, M
l
p,j,k, and f lk have their usual meaning as mentioned in Chapter 5. Note

that the set of faults F l
p = {fk : k = 1, ..., K}, as specified in Chapter 5, corresponds

to the possible health states X l
p = {xk : k = 1, ..., K} that are specified in Chapter

6. The following are true for the set of rules that are specified in a FDM (refer to

Definition 5.2.3):

1. There is only one consequent (fault) for each rule, and all the possible values of

the diagnostic signals that correspond to the consequent (fault) are specified in

the antecedent part of the rule. Therefore, a “redundancy error” can occur in

cases where either a rule is specified multiple times, or for a given consequent
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(fault), there exists at least one rule that is subsumed into another rule.

2. The consequent part of a rule never appears in the antecedent part of another

rule. Therefore, the possibility of any “circularity error” is ruled out.

3. Since there is only one consequent for each rule, an “inconsistency error” will

not occur unless the antecedent parts of any two rules that correspond to two

different consequents (faults) are the same.

4. The “incompleteness error” can occur either when there are no rule speci-

fied for a known fault (or health state) of the component, or there exists an

unknown faulty state of the component.

5. Due to the hierarchical decomposition of our methodology the number of rules

are few in numbers.

It is important to note that since the overall spacecraft formation flight is

decomposed hierarchically, the fuzzy rules are specified separately (and in isolation)

for each node in the proposed HFDM (refer to Chapter 5 for details). Faults that

are under consideration in this thesis correspond to the RW nodes, the EPS nodes,

and the Formation node as shown in Figure 5.4. One rule has been specified for

a given fault at a node. Therefore, each of the rule bases that corresponds to one

of the nodes consists of a few rules. Consequently, verification of the rule bases in

somewhat trivial for the implemented HFDM due to the following reasons:

Redundancy: In the implemented HFDM, a single rule is specified for a given

fault, and it is easy to verify that given consequent (fault), there exists no rule that

is subsumed into another rule.

Circularity: As explained above, circularity error is ruled out because consequent

part of a rule never appears in the antecedent part of another rule in the HFDM.
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Inconsistency: One needs to ensure that the antecedent parts of any two rules

that correspond to two different consequents (faults) are not the same. Consider

the fault manifestations that are encoded in the fuzzy rules for diagnosing faults in

the independent components at Level 1 (refer to Section 5.3). It is easily verifiable

that antecedent parts of any two rules (diagnostic signal values for the friction fault

and the current fault as well as the ones for identifying the healthy state) are not

the same. The rules in the formation node as well as the ones in the electrical power

subsystem (EPS) nodes are verified to be consistent as well.

Incompleteness: In this thesis, faults at some selected nodes of the HFDM have

been considered, and one rule was specified for each of the faults under consideration.

Furthermore, since all the faults under consideration were injected in a simulation

model, there was no unknown faulty state. Therefore, any incompleteness error is

ruled out.

Because of the above-mentioned reasons, verification of the implemented fuzzy

rule-based HFDM is not investigated further in this thesis.

7.5 Summary

In this chapter, the validation of the Bayesian network-based fault diagnosis model

namely, the CDM that was developed in Chapter 6 is investigated. A thorough

analysis of the parameter variations in the CDM is provided. The parameter vari-

ations are induced by changes in the confusion matrix of a given node. It has been

shown analytically that the behavior of P (h|e) with respect to a varied parameter

of interest θ can be expressed as a ratio of two polynomials of degree 3; where H is a

hypothesis variable in the CDM, and h is a particular state of H which is the focus

of interest. A number of sample CDM verification results are presented in the form

of sensitivity plots which demonstrate that the implemented CDM is not sensitive
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to small variations in the network parameters, as desired. The verification of the

fuzzy rule-based fault diagnosis model namely, the HFDM that was developed in

Chapter 5, is also discussed.
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Chapter 8

Conclusions and Future Directions

of Research

8.1 Concluding Remarks

In this thesis hierarchical fault diagnosis framework, models and algorithms have

been developed to facilitate systematic and coherent diagnostic reasoning in complex

systems such as a satellite formation flight system by decomposing its complex

structure hierarchically into simpler modules or components. The decomposition

is driven by the need, from project management perspective, for supporting the

development of the components/subsystems of the overall system by a number of

teams and by performing an integration at the end.

Hierarchical fault diagnosis in satellites formation flight has been investigated

first by developing a fuzzy rule-based hierarchical fault diagnosis model (HFDM),

which is then extended to a Bayesian network-based component dependency model

(CDM) that is flexible to utilize fuzzy rule-based diagnosis at various nodes in

the CDM. The fuzzy rule-based and the Bayesian network-based approaches were

chosen so that appropriate modeling of fault behaviors can be performed which
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would allow diagnostic decision making under uncertainty. The Verification and

Validation (V&V) of the proposed models have also been investigated.

The proposed CDM-based scheme is found to have potential to serve as a fault

diagnosis tool that can automate the tasks of the operators at ground stations. Such

a fault diagnosis tool will be particularly useful to the less-experienced operators for

performing the ground support-based health management tasks of a large number

of satellites in a formation. Furthermore, though the development of our proposed

methodology is based on the health management of satellites formation flight, the

methodology is generic enough to be applicable to other systems or a fleet of systems

that require health monitoring decision support systems (DSS).

8.2 Future Research Directions

One may pursue the following research directions to investigate further the fault

diagnosis models and algorithms that are developed in this thesis.

8.2.1 Investigation of the CPT Generation

In this research the CDM parameters, namely the CPTs, are determined by com-

puting some initial probability distributions and by computing the remaining dis-

tributions by using a weighted-sum of the initial distributions. The weights can

be determined either by consulting the domain experts, or by developing a rigor-

ous weight assignment policy (as discussed at the end of Section 6.2.3). One may

investigate the development of a weight assignment policy that is based on prior

probabilities of the faults in the initial distributions under consideration. However,

in order to minimize biases towards certain types of faults that are frequently identi-

fied, the policy may include other considerations such as component operating hours

since some faults may develop only toward the end of life of the component whereas
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others may develop at the early stages. In addition, it would be a valuable research

to validate the developed policy with the opinion of a domain expert.

8.2.2 Investigation of the Hierarchical Agreement Factor

As pointed out in Section 6.5, a limitation of the proposed CDM may be the belief

adjustment factor that is used to quantify “hierarchical health state agreements”

between the fault manifestations in two CDM nodes. In this thesis, the belief adjust-

ment factor is defined as a ratio of two class accuracies. This may appear to be an

over-simplification of the component dependency and fault manifestation mappings

in real-world complex dynamical systems. Consequently, it would be necessary to

find an alternative way of defining the belief adjustment factor. Such investiga-

tion may employ suitable estimation models which would be able to quantify the

hierarchical health state agreements in two CDM nodes.

8.2.3 Investigation of the Dynamic CDM

The extension of the proposed CDM to a “dynamic CDM” will be an interesting

research problem that may be pursued especially if data that is representative of

the time progression of faults in the system is available. It is well-known that in

general the more the severity of faults increases in a system over time, the better

the performance of the diagnosis algorithms becomes. Consequently, the confusion

matrices that are used to compute the CDM parameters would change over such time

durations. Therefore, an interesting problem would be to develop a methodology

that would facilitate the selection of appropriate confusion matrices that are based

on the estimated fault severity. This investigation will also allow one to determine

if the CDM approach can be extended to prognosis or failure prediction of various

components in the system under consideration.
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8.2.4 Experimental Validation

Upon the availability of a real formation flight mission telemetry data, investigations

on the validation of the HFDM and/or the CDM with the actual telemetry data

would be an interesting research that one may pursue. Such investigations will

allow one to validate the independence assumptions on fault manifestations that are

made while determining the CDM and the HFDM structures, as well as the CDM

parameters (initial distributions).

8.2.5 The Cost-Benefit Analysis

An important research that is related to the proposed fault diagnosis methodologies

is the cost-benefit analysis in a practical environment with real system data. There

have been considerable interest in such investigations (for example, refer to [166]

where the authors derives cost matrices from confusion matrices). Such analysis

provides more realistic assessment of a diagnostic algorithm under the expected op-

erating conditions, the cost of fault occurrences, and the mis-diagnosis that impacts

the algorithms value.
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