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Abstract
A Formal Component-Based Software Engineering Approach for

Developing Trustworthy Systems

Mubarak Sami Mohammad, Ph.D.

Concordia University, 2009

Software systems are increasingly becoming ubiquitous, affecting the way we experience

the world. Embedded software systems, especially those used in smart devices, have be-

come an essential constituent of the technological infrastructure of modern societies. Such

systems, in order to be trusted in society, must be proved to be trustworthy. Trustworthiness

is a composite non-functional property that implies safety, timeliness, security, availability,

and reliability. This thesis is a contribution to a rigorous development of systems in which

trustworthiness property can be specified and formally verified.

Developing trustworthy software systems that are complex and used by a large het-

erogenous population of users is a challenging task. The component-based software en-

gineering (CBSE) paradigm can provide an effective solution to address these challenges.

However, none of the current component-based approaches can be used as is, because all of

them lack the essential requirements for constructing trustworthy systems. The three con-

tributions made in this thesis are intended to add to the expressive power needed to raise

CBSE practices to a rigorous level for constructing formally verifiable trustworthy systems.

The first contribution of the thesis is a formal definition of the trustworthy compo-

nent model. The trustworthiness quality attributes are introduced as first class structural

elements. The behavior of a component is automatically generated as an extended timed

automata. A model checking technique is used to verify the properties of trustworthiness.

A composition theory that preserves the properties of trustworthiness in a composition is

presented.

Conventional software engineering development processes are not suitable either for

developing component-based systems or for developing trustworthy systems. In order to

develop a component-based trustworthy system, the development process must be reuse-

oriented, component-oriented, and must integrate formal languages and rigorous methods
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in all phases of system life-cycle. The second contribution of the thesis is a software engi-

neering process model that consists of several parallel tracks of activities including compo-

nent development, component assessment, component reuse, and component-based system

development. The central concern in all activities of this process is ensuring trustworthi-

ness.

The third and final contribution of the thesis is a development framework with a com-

prehensive set of tools supporting the spectrum of formal development activity from mod-

eling to deployment.

The proposed approach has been applied to several case studies in the domains of

component-based development and safety-critical systems. The experience from the case

studies confirms that the approach is suitable for developing large and complex trustworthy

systems.
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Chapter 1

Introduction

Software systems are increasingly becoming ubiquitous affecting the way we experience

life and perform work. For example, smart devices and intelligent sensors are currently

used to capture information about human activities along with their physiological and psy-

chological status and communicate it through wireless connections [DSS08]. The col-

lected information triggers adaptation in a pervasive environment according to predefined

preferences. Such systems are being used in the health-care sector to improve its ser-

vices. Another example can be found in avionics. Currently, aircrafts are being controlled

fully by autopilot, a software that guides the aircraft. Moreover, modern day cars con-

tain up to 67 processors that implement around 270 user functions that a driver interacts

with [PBKS07]. Modern day cars are expected to contain up to one gigabyte of embedded

software [PBKS07]. Some of these software units perform safety critical missions such as

controlling the engine, brakes, and steering.

These examples show the current advancement of software development in areas that

affect our daily lives. At the same time, it raises questions about the ability of the current

software development paradigms to cope with the risky trends of pervasive computing,

which provide highly customizable and personalized services that must have the capability

to run anytime, anywhere and on any device with minimal user attention. Pervasiveness

also raises concerns on trustworthiness: to which extent the current software development

paradigms are capable of producing trustworthy systems that control the lives of people

and manage their private data?

1



1.1 Trustworthiness

Trustworthiness is a moral value concept which implies commitment and ability to be relied

and depended on. Trust is a social aspect that is hard to define formally. It is a relation be-

tween two parties in which the trusting party places confidence, reliance, and dependance,

whereas the trustee commits to take responsibility and never betray the trust.

In social aspects, it is difficult to measure trust because it is based on beliefs, feelings,

and accumulated experiences. In all cases, trust is relative. There is no absolute trust. It

is always bound to defined tasks. For example, we trust the postman to deliver our mail

on time and to the correct address. However, we may not trust him to run our business or

perform our private financial transactions. Trust implies a factor of risk. However if the

level of reliance exceeds the level of risk we are inclined to trust.

In the domain of technology and computing, we rely on technology on which aircrafts,

trains, traffic controllers, automated teller machines, and elevators serve us in our daily

life although it fails from time to time causing many inconveniences, some even causing

damage to property and humans. Yet, we continue to use them because they have been

tried and tested for long periods of time that they seem to have passed our minimum ac-

ceptance level. Many embedded software systems have also become an essential part of

the technological infrastructure of modern societies. Hence, there is a need to design these

systems such that they are provably trustworthy. Towards this purpose, the credentials of

trust should be formally defined along with their level of acceptance.

There are many important questions arising from the user perspective. These are the

following:

• Is the system doing what it is supposed to do?

• Is the system available when the user needs it?

• Is the system protecting the private data?

• Is the system safe for use? Is it likely to cause damage to the environment in which

it is deployed or the user who is using it?

• Will the system respond to user requests in a timely fashion.

• Is it possible to repair the system in real-time, if it fails? How often the system is

likely to fail? How long will it stay in failure mode?

2



These questions form an envelope to defining the essential requirements of trustworthy sys-

tems. In the literature, trustworthiness is defined as the system property that denotes the

degree of user confidence that the system will behave as expected [SBI99, ALRL04]. The

terms trustworthiness and dependability are used interchangeably [Som07]. Dependability

is defined as ”the ability to deliver services that can justifiably be trusted” [ALRL04]. A

comparison between the two terms presented in [ALRL04] has concluded that the two prop-

erties are equivalent in their goals and address similar concerns. The goals of dependability

are providing justifiably trusted services and avoiding outage of service that is unaccept-

able to the consumer. The above definitions emphasize the importance of justifying trust.

In order to justify trust, we should define trustworthiness formally.

There is a common consensus [SBI99, ALRL04, MdVHC02] that trustworthiness is a

composite concept and that the essential quality properties contributing to trustworthiness

are safety, security, reliability, and availability. Since many of the current systems are

real-time, we also include timeliness to the quality attributes of trustworthiness. These

properties are defined below.

• Safety is the quality of the operational behavior of the system in which no system ac-

tion that may lead to catastrophic consequences will happen. Safety includes a set of

properties that describe the correct and safe behavior of the system. Any violation to

a safety property may cause dangerous consequences on the users and the environ-

ment. For example, modern vehicles have an anti-lock brake system (ABS) which

prevents the wheels from locking while braking. The safety property states that if

one wheel is rotating significantly slower than the others then the hydraulic pressure

to the brake at the affected wheel must be reduced within a fraction of a second. On

the other hand if the wheel is turning faster than the others, then the brake hydraulic

pressure to the wheel should be increased so the braking force is reapplied and the

wheel slows within a fraction of a second.

• Security is a composite property that includes confidentiality, integrity, and avail-

ability. Confidentiality ensures that system services and information are not exposed

or disclosed to unauthorized users. Integrity ensures that there is no improper al-

teration to the system state or the information. For example, in a banking system,

confidentiality means that only the client or one of his authorized people can perform

transactions and view information related to this client. Integrity means that when

the client deposits $500 then his account should be increased by exactly $500 not
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less or more.

• Reliability is the quality of continuing to provide correct services despite any failure.

It is possible to have an accepted frequency of failures. In this case the accepted

mean time between failures should be precisely defined and respected. For example,

many avionic systems have a required reliability of 109 hours mean time between

failures [PBKS07].

• Availability means readiness for correct service. It is the quality of operation in

which there is no unforeseen or unannounced disruption of service. A temporary

outage of service may not cause big problems for a non-critical system. The required

services can be requested at a later point of time when the system becomes available.

However, any service outage for a safety-critical system may lead to catastrophic

consequences. When a system fails, availability specifies the maximum accepted

time of repair until the service returns back to operate correctly.

• Timeliness refers to bounded time constraint behavior. It means, when a request

for service is received, the system should respond within acceptable limits of time.

Timeliness is an essential safety requirement for real-time systems. In these systems

the correctness of system behavior depends not only on providing services but also

on the time at which the services are provided. It is possible to regard timeliness as

one of the safety properties.

Some interesting questions are how can these properties be satisfied collectively in one de-

velopment process?, and can the current state of the art of software development paradigms

collectively address their requirements?

In the literature, there has been a tremendous research effort resulting in many publi-

cations about safety, security, reliability, and availability. However, research in specifying

and verifying safety and security and estimating reliability and availability properties at the

system architectural level have progressed only independently. This is due to many reasons

such as (1) the early finding that safety and security properties cannot be formally specified,

composed, and verified together in any one formal method [McL96], (2) the conventional

ways of estimating reliability at a system architecture using stochastic methods which are

based on uncertain and inaccurate parameters [Gok07], and (3) the lack of research in an-

alyzing availability [IN08]. There is no published work that we are aware of which has

successfully managed to combine all these attributes in one formal approach. In order to

4



develop trustworthy systems, all these properties must be combined together in one formal

approach. This thesis provides a novel formal approach which uses component-based soft-

ware engineering (CBSE) for developing trustworthy systems. Our approach enables the

specification and verification of safety, security, reliability, and availability properties.

1.2 Component-Based Software Engineering (CBSE)

CBSE promises many advantages to software development including reuse, managing com-

plexity, and reducing development time, effort, and cost. CBSE is widely adopted in the

software industry as the mainstream approach to software engineering [Som07]. It is in-

creasingly used to develop software systems, especially embedded systems, deployed in

safety critical environments. Complexity is effectively managed by dividing the problem

into smaller problems of manageable magnitudes, each of which handled separately in

CBSE. The cost of development is reduced by reusing existing solutions to solve these sub-

problems. The essential constituents of CBSE are component model and component-based

development process model [Som07]. The following subsections briefly discuss these two

elements.

1.2.1 Component Model

A component model defines what components are (their syntax and semantics), their com-

position to develop component-based systems, and their deployment [LW07]. A compo-

nent is defined as “a software element that conforms to a component model and can be

independently deployed and composed without modification according to a composition

standard” [HC01]. Components provide and require services through public interfaces.

The provided services are the operations performed by the component. The required ser-

vices are the operations that the component need in order to complete its provided services

and produce results. The interfaces of a component provide specification of the public ser-

vices that are provided and required by the component. Component models describe the

internal structure of components. A component can be primitive or composite [SG96]. A

primitive component is the basic unit that can not be further divided. It is specified by its

implementation. Primitive components can be composed together to form composite com-

ponents. Connectors are used to bind the interfaces of the constituent components. Figure 1

depicts a composite component.
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Figure 1: Composite Component

1.2.2 Component-based Development Process Model

A software development process defines the set of activities along with their interdepen-

dencies and relations that lead to the production of software systems. A typical process in-

cludes requirements definition and analysis, design, implementation, testing, deployment,

and maintenance. A component-based development process (CBD) is a special type of

software development process tailored for developing reusable components and building

systems by integrating existing components. A conventional software development pro-

cess is not suitable for developing component-based systems. This is because CBD is bi-

ased towards reuse. In order to achieve a successful reuse and integration of the developed

components, the development process should be tailored to CBSE [Som07]. Therefore, a

different development process is required to develop component-based systems than the

development process used for conventional software.

CBD addresses the activities involved throughout the entire component and system

life-cycles. It comprises two parallel activities: software component development and

component-based systems development [CCL06, Pre05]. The former addresses the issues

of components’ specification, development, qualification, documentation, cataloguing, and

adaptation and selection for reuse. The later addresses the issues related to assembling

components to develop component-based systems.

1.3 Research Motivation

Pervasive computing raises major concerns about the ability of current development paradigms

to develop trustworthy systems. Since CBSE is a mainstream approach to software engi-

neering [Som07], an important question is : can CBSE be used to develop systems which
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are provably trustworthy? In order to answer this question, we first investigate whether or

not CBSE has fulfilled its initial intended promises.

1.3.1 Analyzing Component Models

In general, software systems implement functional and non-functional requirements. This

implies that component specification methods and qualification techniques should support

both functional and non-functional requirements. However, generally, current component-

based development approaches have limited or no support for non-functional requirements.

Furthermore, non-functional requirements and environmental constraints should be defined

as contracts at the interfaces of a component. This is because environmental assumptions

and non-functional requirements might not be valid when components are used in different

deployment environments. For example, in real-time embedded systems, time constraints

that define the maximum amount of time for a safe execution of a service might be different

depending on hardware and software configurations of the deployment environment. The

separation between the computation part of the component and its contract enables compo-

nents to be reused in different environments by changing only its contract. However, when

studying current component models, there is limited or no support for contracts. Therefore,

current component engineering practices can only support limited reusability of compo-

nents. Moreover, a study of current component models [LW07] revealed that components

are composed using direct method calls or indirect message passing through connectors.

Thus, these models produce tightly coupled components that are difficult to reuse. Also,

when assembling components, special composition rules should be applied to ensure that

the non-functional requirements of the constituent components are preserved in the assem-

bly. This requires a defined composition theory. However, there is no component model

that defines a composition theory for both the structural and nonfunctional parts of compo-

nents [LW07]. Therefore, current component models are not suitable as is for specifying

trustworthy systems.

1.3.2 Analyzing Component-Based Development Process Models

Safety and secure critical systems require a special type of software development process,

preferably one based on formal methods for the representation and analysis of software

specification. The primary goals of this process are to ensure the correctness of system
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specification and design, and help to verify that the system implementation is consistent

with its specification. Formal methods include specification, verification, and testing tech-

niques throughout the different stages of system development. In order to develop systems

that can be certified to be trustworthy, validation and verification of trustworthiness features

should be made a core activity linked to all activities in the development process. Typical

component-based development processes presented in the literature focus on the general

activities involved in developing component-based systems with emphasis on reuse and

integration testing. There is no work, that we are aware of, which presents a rigorous de-

velopment process that is suitable for developing trustworthy component-based systems.

Therefore, current component-based development processes are not suitable as is for de-

veloping trustworthy systems.

1.3.3 Evaluation

The above discussion about the current component models and component-based develop-

ment processes confirms that:

1. they lack support for non-functional requirements,

2. they lack composition theory, and

3. current CBSE practices are not based on rigorous process models.

Therefore, despite the wide adoption of CBSE in software industry and the tremendous

number of publications about it in academic research, it is still lacking essential formal

foundations for the specification, composition, and verification of non-functional require-

ments. Therefore, current CBSE practices do not provide the essential needs for developing

trustworthy systems.

1.4 Thesis Goals

This thesis is a contribution to a rigorous CBSE and trustworthy systems. This thesis inves-

tigates the challenges of defining trustworthy components, composing trustworthy compo-

nents, and verifying trustworthiness in a unified model. The thesis provides a formal CBSE

approach which satisfies the requirements of trustworthy systems. The approach provides a
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remedy to the shortcomings of current component models by providing a component defini-

tion which collectively addresses the requirements of trustworthiness and component-based

development. We do not intend to create a new component model, give it a new name, and

add it to the list of component models in the literature. The goals of this thesis are:

1. Provide a formal definition that can be adopted by other component models to en-

hance their support for trustworthiness,

2. Show that it is possible to provide a single component definition that includes spec-

ifications of structural, functional, and non-functional requirements, especially the

properties of trustworthiness,

3. Show that it is possible to define a composition theory which includes rules for com-

posing both structural requirements and trustworthiness properties,

4. Show that it is possible to use one formal verification technique for safety, security,

reliability, and availability properties, and

5. Provide a rigorous process model with tool support for the development of trustwor-

thy component-based systems.

1.5 Thesis Outline

This thesis is organized as follows: Chapter 2 presents a detailed literature survey that cov-

ers the work done in the areas of component models and component-based process models.

Chapter 3 introduces our research methodology. We present our contributions and provide

a detailed discussion of the research problems and research questions that are related to

the development of trustworthy component-based systems. Then, we provide our proposed

solutions. Chapter 4 introduces our trustworthy component model. We provide formal def-

initions of the structural, functional, and trustworthiness properties. Also, it introduces a

composition theory that preserves the properties of trustworthiness. Chapter 5 introduces

an architecture description language (TADL) that is based on the trustworthy component

model. The TADL specification provides a high level description of systems to make it

easy for software architects to use our formal approach. Chapter 6 provides an automated

model transformation technique for generating component behavior and real-time mod-

els. Chapter 7 presents a novel approach for the specification and verification of reliability
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and availability using model checking. Chapter 8 presents a process model for developing

trustworthy systems. Chapter 9 presents a framework of tools support for implementing the

process model. We discuss different kinds of tools that has been development or under de-

velopment. Finally, Chapter 10 concludes the thesis. It provides summary and assessment

of the presented approach.
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Chapter 2

Literature Survey

This chapter provides a survey of different component models and component-based de-

velopment process models that have been presented in the literature of component-based

software engineering. Section 2.1 surveys the related component models. We study differ-

ent component models and describe their structural and behavioral definitions. Section 2.2

provides an analysis of the current component models and shows the lack of support for

non-functional requirements. Since both component models and architecture description

languages (ADL) share the component concept, Section 2.3 surveys the related work in

ADLs and analyze their support for non-functional requirements. Section 2.4 briefly sur-

veys the work done to specify trustworthiness properties. It describes the research efforts

of the security and realtime research communities in putting forth one unified composi-

tion theory for trustworthiness properties, in particular how they failed to achieve it. Also,

it give pointers to the work done in specifying and measuring reliability at an architec-

ture level. The section provides arguments for the need to find a new formal method for

ensuring reliability. Then, Section 2.5 surveys the related work in defining component-

based development process models. We highlight the main activities used for developing

component-based systems and provide a component-based process model for developing

trustworthy systems. Section 2.6 explains the motivation behind our work.
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2.1 Component Models

There is a common agreement [CL02, Szy02] that component specification should include

both structural and behavioral descriptions. Structural description includes, but is not lim-

ited to, specifying interfaces, connectors, and composition. These are central concepts in

component-based development. An interface defines access points to the services provided

and requested by components. A connector is a special component that defines the com-

munication between two components. Composition allows building systems by connecting

existing components in such a way that preserves their essential properties.

In the literature, there is a large number of different component definitions. However,

only a few of them have been considered as component models in a taxonomy of software

component models [LW05, LW07]. These are SOFA 2.0 [BHP06], Fractal [BCL+06],

KobrA [APRS01], Koala [vOvdLKM00], PECOS [NAD+02], and Pin [HIPW05]. We

add SaveCCM [ÅCF+07] to this list. These component models provide a wide variety

of component definitions and contributions to the advancement of CBD. In the following

sections we provide an overview of these component models and analyze their relative

merits.

2.1.1 Koala

Koala [vOvdLKM00] is a component model used for specifying and developing embed-

ded systems in consumer electronics. Koala provides strict separation between component

and configuration development. Components are developed with no assumption about the

deployment configuration in which the component will be used. A component definition

in Koala includes a set of interfaces. There are two types of interfaces: requires and pro-

vides. Requires interfaces are used to access functionality, whereas, provides interfaces

are used to provide functionality. Diversity interfaces are special required interfaces that

are attached to components and used to get configuration parameters that are controlled

centrally. Switches allow requires interfaces to be bound to multiple different provides

interfaces based on configuration parameters. Then, when the selection is resolved, only

one binding is selected depending on the values returned through the diversity interfaces.

Consequently, the switch will direct calls to one of the required interfaces bound to it. It

is possible to define optional interfaces and query if they are available or not before try-

ing to connect to them. A configuration is a set of components bound together to form a
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Figure 2: Koala component and its CDL description

product. Modules are used to implement functions of interfaces. A module is a component

with no interfaces. It is bound to interfaces of a component to provide initialization and

implementation code.

Koala has a component description language (CDL) used to specify systems and com-

ponents. A design viewer is used to view CDL descriptions. Koala provides code synthesis

by mapping CDL to an implementation programming language. Figure 2 shows a Koala

component and its corresponding CDL description.

The above description shows that Koala provides only structural description for com-

ponents. It does not provide behavior specification or non-functional contract. Therefore,

it is not a suitable model for specifying and verifying trustworthiness properties.

2.1.2 PIN

Pin [HIPW05] is a component model and runtime environment. It provides a basic and

simple component technology suitable for building embedded safety critical systems. Pin

components are fully encapsulated by applying the container concept. Containers provide

a “prefabricated shell” in which the custom code of the component executes and through

which all interactions between the custom code and its external environment are mediated.

Systems are assembled by selecting components and connecting their interfaces, called

pins. Component interfaces receive stimuli through sink pins and respond through source

pins. Figure 3 depicts a Pin component.

Each Pin component is implemented as a distributable dynamic link library (DLL). Pin
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Figure 3: Pin component

supports a model of pure assembly. Applications are constructed by connecting compo-

nents using connectors. A connector may impose coordination policies beyond those pro-

vided by containers. For example, a connector may impose a queuing policies on message

buffers.

Pin component technology includes a component runtime environment which provides

services and enforces component interaction policies. Services include access to the under-

lying platform; for example, timers, interrupts, and input devices. Interaction policies gov-

erning shared resources, such as process scheduling and inter-component communication,

are also provided by the runtime environment. Lastly, the runtime provides a portability

layer for components and their assemblies.

Similar to Koala, Pin does not provide support for non-functional properties. Hence, it

is not a suitable model for specifying and verifying trustworthy component-based systems.

2.1.3 PECOS

PECOS [NAD+02] is used for specifying and developing component-based embedded sys-

tems of field devices such as sensors, actuators, and positioners. In PECOS, a component

has a name, a number of property bundles, and ports. The ports of a component represent

data that may be shared with other components. The behavior of a component consists of

a procedure or an algorithm that reads internal data or the data available at its ports. Then,

it produces data on the component ports or produce effects in the physical world.

Figure 4 provides an overview of PECOS component model. Components can be ei-

ther simple or composite. A simple component can not be further defined by a model but
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Figure 4: PECOS component model

rather directly implemented in a programming language. A component may have multiple

property bundles, where each of property bundle consists of one or more properties. A

composite component contains two or more subcomponents connected together. Connec-

tors are used to connect ports of subcomponents.

A port is specified using a unique name, the type of the data passed over the port, and

the range of the correct values (minimum and maximum values) that can be passed through

the port. A port is implemented as a shared variable which allows communication between

components. The ports of subcomponents can be connected only if they have the same data

type. A connector is specified using a name, a type, and a list of ports it connects.

A property in PECOS is a tagged value, where the tag is an identifier and the value

is typed. A collection of properties are grouped using a property bundle. It is used to

characterize aspects of a component such as timing or memory usage.

A system is specified in CoCo language, which can be easily translated into target

languages such as C++ or Java. The component structure from the CoCo specification can

be mapped directly to an identical class structure in the target language. The behavior of the

component has to be implemented by programmers. Thus, PECOS does not have behavior

specification method.

PECOS provides a means to define simple non-functional requirements such as mem-

ory usage and timing. It is possible to perform real-time schedule analysis based on PECOS

specification. Therefore, it provides only very limited support to non-functional require-

ments. Therefore, it is not a suitable model for specifying and verifying the trustworthiness

properties.
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2.1.4 KobrA

KobrA [ABB+02, ABB+07] is not a formal language, but rather a methodology for model-

ing architectures. It comprises a set of principles for using mainstream modeling languages,

such as UML, to describe and break down the design of complex systems in a component-

based way.

KobrA divides the full specifications of a component into two parts: a specification

and a realization. A specification describes what a component does; hence, it focuses on

the external view of a component. On the other hand, a realization describes how the

component does its functionality in terms of interaction with other components; therefore,

it focuses on the internal design of subcomponents and interactions between them. UML

diagrams are used to describe these parts. The specification description includes three main

models: (1) one or more static structure diagram giving the structural view that describes

the nature of classes and their relationships, (2) a set of operation specifications giving

the functional view in a tabular form specifying name, description, receives, sends, rules,

changes, assumes, and result, and (3) a state chart diagram giving the behavioral views

in terms of events, operations and states. The realization description includes three main

models: (1) a static structure diagram presenting the design level structural view, (2) a set of

interaction diagrams (collaboration or sequence diagrams) giving the interaction-oriented

view, and (3) a set of activity diagrams giving the algorithmic view.

KobrA does not have tool support to ensure that a created model is compliant with the

KobrA methodology. The process of modeling and analysis can be done only manually.

Consequently, using the KobrA modeling technique for any large and complex project is

both tedious and error-prone.

2.1.5 Fractal

A component in Fractal [BCL+06, BBC+07] consists of a content part and a control part.

The content part contains either a hierarchical composition of subcomponents for a com-

posite component or a java implementation for a primitive component. A component has

a number of possible interfaces. Each interface is an instance of an interface type which

states the signature of the interface, its kind, contingency, and cardinality as follows:

• The interface is a server (required) or a client (provided)

• Interface contingency defines whether an interface is mandatory or optional.
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• Interface cardinality defines the number of possible instances that can be created of

a specific interface type.

The control part is a composition of controllers, where each controller performs a particular

management functionality such as creating components, binding client interfaces, manag-

ing sub-components, manipulating component’s attributes, and managing the component’s

life cycle.

Figure 5 depicts a fractal component. The content part represents a component com-

posed of two sub-components. The external interfaces are visible outside the components,

whereas the internal interfaces are used to compose the constituent components of the con-

tent. Control interfaces are used to deliver management commands to components. Client

and server interfaces are bound with internal interfaces that are not part of composition.

The behavior of Fractal applications is specified using SOFA [BHP06] behavior pro-

tocols, which specify the valid sequences of method calls on component’s interfaces. The

FractalBPC, behavior protocol checker, platform is used for specifying behavior protocols

and verifying whether or not the behavior of a component complies with its stated behav-

ior protocol. A correct behavior means absence of communication errors. There are three

identified types of communication errors:

• Bad activity: an issued method call cannot be accepted.
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• No activity: all of the ready method calls are prefixed with input sign (deadlock).

• Infinite activity: the composed protocols can not reach their final method calls, which

means that the composed behavior contains an infinite trace.

FractalBPC is made of two behavior protocol checkers: static (code) checking using Java

Pathfinder [Pat] and run-time checking. Static checking allows exhaustive analysis to verify

whether the implementation of each primitive component corresponds to its defined behav-

ior protocol. Run-time checking is done by monitoring method calls on the component’s

external interfaces at run-time to check whether or not the traces of component execution

comply with the stated behavior protocol.

FractalADL is an XML-based architecture description language for Fractal component

model. Also, it is the name of a tool-chain that parses the ADL, which describes how to

instantiate components, and builds the application accordingly using Fractal API.

The behavior protocol specification is limited to functional requirements, where se-

quences of valid invocation of methods are specified. It does not support specifying non-

functional requirements over those valid sequences such as security or reliability. Also, it

does not support timing requirements. This is because Fractal is focused on the domain of

distributed systems, not real-time systems.

2.1.6 SOFA 2.0

SOFA 2.0 [BHP06] is a hierarchical component model that inherits structure from its ances-

tor SOFA [PV02]. The main features of SOFA 2.0 include: (1) a meta-model based design

of components, (2) support for dynamic reconfiguration of architectures using predefined

patterns that allow adding/removing components and connecting to external services, (3)

support for different communication styles by defining connectors as first class compo-

nents, (4) defining the control part of components using micro-components, (5) seamless

support for version control, (6) provision of design time and runtime environments for the

development and deployment of component-based systems, and (7) support for behavior

specification and verification of compliance.

A component in SOFA is specified by a frame and architecture. The frame specifies a

black-box view of the component. It defines the requires and provides interfaces and prop-

erties of the component. An interface is an instance of an interface type, which specifies

the signature of the provided or requested methods. An interface definition contains the
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following specification attributes: (1) connection type, which determines whether an inter-

face can be used for reconfiguration control or not, (2) is collection, which captures the

cardinality of an interface, and (3) communication style, which denotes the communication

paradigm used at deployment time for the methods in the interface.

The architecture specifies the implementation of the frame. A frame can be imple-

mented by several architectures. An architecture describes whether a component is com-

posite or primitive. It specifies the internal structure of composite components using con-

nectors and bindings. Connectors are first-class entities in the SOFA component model.

There are three possible bindings: (1) delegation, which connects a provides interface of a

component to one of its subcomponent’s provides interfaces, (2) subsumption, which con-

nects a subcomponent’s requires interface to a requires interfaces of the component, and

(3) connector, which represents a connection between two or more subcomponents.

SOFA 2.0 allows dynamic reconfiguration to components during run-time. There are

three reconfiguration patterns allowed in SOFA 2.0: (1) factory, which allows adding new

component to the architecture, (2) removal, which allows removing a component from the

architecture, and (3) utility interface, which allows accessing interfaces across the compo-

nent boundaries.

The behavior of a component is specified as a set of traces of events (method call re-

quests and their corresponding responses) appearing on component interfaces. A behavior

protocol is an expression built using events, classical regular operators (’;’, ’+’, ’*’), and

parallel composition by interleaving events. It defines the set of valid sequences. Tool

support is provided to verify the compliance of component behavior to its defined behavior

protocol. Static and run-time checking is provided.

The component definition language (CDL) is used to describe interfaces, frames and

architectures of SOFA components. Figure 6 shows an example CDL specification. The

example shows the specification of a frame, DataAccess, which consists of one requires in-

terface of type IAuthorize and another provides interface of type IAccess. The specification

of each interface type includes signatures of methods and the behavior protocol specifica-

tion of the corresponding interface type. For example, the behavior protocol of IAccess

represents all the possible traces in which the method init is executed first and followed

by zero or more executions of either executeQuery or executeReport and terminated by the

method finish. An architecture specification is provided to implement the composite frame

DataProcess by composing the two components DataAccess and AuthorizeData. SOFA
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2.0 is supported by a tool-suite for developing, assembling, deploying, and controlling run-

time of applications.

Similar to Fractal, SOFA modeling is targeted for the domain of distributed systems.

Thus, it provides powerful support for defining hierarchical components, different commu-

nication styles, and dynamic reconfiguration. However, it does not support specifying and

verifying the trustworthiness properties neither in the structural definition nor the behav-

ioral specification.

2.1.7 SaveCCM

SaveCCM [ÅCF+07] is a component model specially designed for vehicular systems. The

model includes components, interfaces, switches, and assemblies. The SaveCCM model is

based on the control flow paradigm using the pipe-and-filter architecture style. Interfaces

are divided into input and output ports. A port can be used for data, control, or both data

and control. Data ports are used to read and write data, whereas control ports are used

to activate components. An interface may contain a set of name-value attributes such as

the worst-case execution time value and the estimated reliability value. The functionality

provided by a component is implemented by a single entry function using the C language.

Therefore, each component in SaveCCM provides only one function, where its data ports

act as data parameters for this function and its control ports activate the execution of the

code. A component’s function can be executed only if data has been received at all its input

data ports and its input trigger ports are active. The execution model is read-execute-write:

read input data from input ports, execute the component function, and write data to data

output ports. Figure 7 depicts a SaveCCM component and shows the different possible

ports that can be associated with it.

The switch construct in SaveCCM is similar to its synonym in Koala. It allows changing

the component interconnection structure using predefined conditions specified as logical

expressions. An assembly is used for naming a set of components connected sequentially

according to pipe-and-filter architecture style.

The internal behavior of components is modeled using timed automata.

The UPPAAL [BDL04] model checker is used to verify timeliness and safety properties.

The component function is modeled as a real-time task associated with computation time,

deadline, and sequence of variable assignments. The Times [AFM+03] tool is used to

perform real-time schedule analysis. A transformation tool is used to automate the process
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interface IAccess {
void init();
void executeQuery(in string q);
void executeReport(in string r);
void finish();
protocol: init; (executeQuery + executeReport)*; finish
};

interface IAuthorize {
void requestAuthorization();
void requestStatus();
protocol: requestStatus; requestAuthorization

}
frame DataAccess {

provides: IAccess p;
requires: IAuthorize r;
protocol: !r.requestAuthorization; ?p.init;

(?p.executeQuery + ?p.executeReport)*;
?p.finish; !r.requestStatus

}
frame DataProcess {

...
}
frame AuthorizeData {

...
}
architecture DatabaseAccess

implements DataProcess {

inst DataAccess da;
inst AuthorizeData az;

bind da.r to az.authorize;
delegate processQuery to da.p;
}

Figure 6: Example SOFA CDL specification
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input data port

input triggering port

input data and triggering port

output data port

output triggering port

output data and triggering port

<<SaveComp>>

Component

Figure 7: SaveCCM component

of analyzing components and generating extended timed-automata with tasks suitable for

the Times tool. Also, an automatic code generation tool is used to create all the low-level

platform dependent code, which is necessary for run-time.

SaveCCM components are primitive with only one provided function. Its execution

model is very restrictive. The architecture style used is limited. It is very well suited for

its intended domain, which is the domain of vehicular systems. However, it cannot be used

for modeling other types of component-based systems. Also, it provides little support for

specifying non-functional requirements.

2.2 Analyzing Current Component Models

2.2.1 Comparison

A detailed comparison between the component models mentioned above is presented in

Table 1 and Table 2. In Table 1 we compare the static and dynamic aspects of the compo-

nent models. The model includes several views. These are : (1) structural view: a view of

the component structure, (2) contract view: a view which includes description of the non-

functional requirements, (3) behavioral view: a specification of the behavior protocol, and

(4) composition: a formal rule to compose simple components into a composite compo-

nent. In Table 2 we compare the ability of the component models to ensure trustworthiness

during different phases of software development. This includes the type of tools used to

perform analysis during: (1) design, (2) implementation, (3) run-time, and (4) dynamic
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configuration at run-time.

Table 1 compares the static and dynamic aspects of component models. It shows that:

• Component structures are either hierarchical or flat, primitive, including interfaces

and connectors with the exception that Fractal does not have connectors.

• Only PECOS and SaveCCM define some non-functional requirements. All other

component models have no support for non-functional requirements in their compo-

nent definitions.

• PECOS and SaveCCM support only temporal requirements. PECOS’s contract view

is limited to execution-time, cycle-time, and memory consumption. SaveCCM en-

ables defining named values; however, it is not clear how invariants and non-functional

constraints can be defined using these named values.

• In SaveCCM the temporal requirements are encoded in the behavioral protocol. This

limits the expressiveness of non-functional requirements by the behavior specifica-

tion language.

• Component compositions define structural composition only. Although the compo-

nent definition mentioned earlier highlights the importance of the composition rule,

there is no current component model that defines a compositional theory that includes

both structural and non-functional requirements [LW05]. Such compositional theory

is essential for ensuring trustworthiness.

Table 2 compares the analysis ability and tool support of component models. It shows that:

• PECOS and SaveCCM support real-time analysis at design time using formal verifi-

cation. All other component models don’t have support for non-functional require-

ments analysis.

• The non real-time component models, except KobrA, provide compilers to check the

syntax of system definitions.

• SOFA and Fractal support analysis at all development phases for protocol compliance

(functional properties) to ensure that components behavior is restricted to the defined

behavior protocol. However, their compliance analysis at implementation and run-

time can handle only non-parameterized protocols.
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• Only SOFA and Fractal supports run-time reconfiguration of components.

Therefore we find that, generally, current component models have limited or no support

for non-functional requirements, specifically the properties of trustworthiness.

2.2.2 Services

Component can be defined generally as a software unit which provides or requires services.

Service definitions are used to classify, search, and select components. A service can be

defined as a function that maps a parameterized input request into an output action. We

argue that non-functional requirements are generally concerned with component services.

The following examples illustrate our hypothesis:

• Component security is concerned with ensuring that only authorized users have ac-

cess to component data and services. It is possible to have different security classi-

fication and access levels to different services. However, integrity requirements are

concerned generally with the component as a whole not a specific service.

• Component safety is concerned with ensuring that service executions do not cause

catastrophic consequences to users or the environment. Timeliness requirements are

concerned with execution time of services.

• Reliability is concerned with “the continuity of correct services” [ALRL04].

• Availability is concerned with “the readiness for correct service” [ALRL04].

These examples show that service definition is a central concept. Therefore, component

definitions should include service definitions and enable assigning non-functional require-

ments, specially the properties of trustworthiness, to services. In current component mod-

els, services are defined indirectly as signatures in interface definitions. This makes service

definitions a secondary concept with no attributes or properties assigned to them, which

makes it difficult to specify and verify the non-functional requirements that are related to

services.

2.2.3 Component Contract

We argue that non-functional requirements and environmental constraints, which are con-

straints related to the environment in which the component will be deployed, should be
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Table 1: Comparison of static and dynamic aspects of component models
Structural View Contract

View
Behavioral
View

Composition

Koala hierarchical com-
ponents, inter-
faces, switches,
and modules

structural

Pin flat components,
container, inter-
faces, and con-
nectors

stimulus-
response
behavior
using UML
statechart

structural

PECOS hierarchical com-
ponents, ports,
and connectors

execution
and cycle
time, and
memory
consump-
tion

structural

KobrA hierarchical com-
ponent defined
using UML and
interfaces

UML inter-
action dia-
gram

binding inter-
faces

Fractal hierarchical
components,
controllers, and
interfaces

behavior
protocol

binding in-
terfaces and
behavioral com-
position

SOFA 2.0 frame, architec-
ture, controllers,
interfaces, and
connectors

behavior
protocol

structural and be-
havioral compo-
sition

SaveCCM flat compo-
nents, interfaces,
switches, and
assemblies

name-value
properties

timed
automata

structural
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Table 2: Comparison of analysis tools support
Tools Design-Time

Analysis
Implementa-
tion Analy-
sis

Run-Time
Analysis

Dynamic
Configura-
tion

Koala design
viewer,
code syn-
thesis,
and ADL
compiler

Pin run-time
environ-
ment

PECOS code syn-
thesis

real-time
schedule
analysis

KobrA
Fractal FractalADL

and Frac-
talBPC

static
checking
of behavior
protocol
compliance
and cor-
rectness of
communi-
cation

run-time
checking to
verify that a
component
code obeys
its behavior
protocol

component
life cycle
manage-
ment and
interface
binding
control

SOFA 2.0 runtime en-
vironment,
designer,
code syn-
thesis,
and static
checking

static
checking
of behavior
protocol
compliance
and cor-
rectness of
communi-
cation

run-time
checking to
verify that a
component
code obeys
its behavior
protocol

adding and
remove
compo-
nents at run
time

SaveCCM designer,
verifica-
tion tool,
and code
synthesis

model check-
ing safety and
performing
real-time
schedule
analysis
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defined in a non-functional contract associated with the component. The contract speci-

fication should not be included as part of the component definition but rather assigned to

it. This is because environmental assumptions and non-functional requirements might not

be valid when the component is used in different deployments. For example, in real-time

embedded systems, time constraints that define the maximum amount of time for a safe

execution of a service might be different depending on hardware and software configu-

rations of the deployment environment. The separation between the computation part of

the component and its contract enables components to be reused in different environments

by changing only its contract. However, when studying current component models, we

find that there is no support for non-functional contracts. In current component models,

non-functional requirements, if they exist, are defined either as attributes in the compo-

nent definition or as part of the behavior protocol specification. For example, in PECOS,

memory consumption and worst-case execution time are specified as attributes in the com-

ponent definition. On the other hand, in SaveCCM, timing requirements are specified in

the timed automata. In the former case, specifying non-functional requirements inside the

component definition makes it difficult to reuse the component for different deployments.

In the later case, specifying non-functional requirements in the behavior protocol restricts

the specification by the limitation of the behavior protocol specification language. Thus,

the lack of contract specification in current component models severely limits the reuse of

components, the very essential motivating factor for propounding component technology.

2.2.4 Encapsulation and Composition Theory

A component model addresses the issues of assembling components to develop component-

based systems. There are two major concerns when assembling components: encapsulation

and composition of non-functional properties.

First, components should be self contained and loosely coupled. The composition

mechanism should preserve encapsulation of component’s data and control. This is done

by separating the computation part of the component from its interactional specification. A

study of current component models [LW07] revealed that components are composed using

direct method calls or indirect message passing through connectors. Thus, these models

produce tightly coupled components that are difficult to reuse.

Second, when assembling components, special composition rules should be applied to

ensure that the non-functional requirements of the constituent components are preserved
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in the assembly. This requires a defined composition theory. Composition is a central

concept in component-based development. However, when analyzing the aforementioned

component models we found that they define only structural composition by linking inter-

faces together. There is no component model that defines a composition theory for both

structural and non-functional parts of a component. This finding has also been described

in [LW07].

2.3 ADL Related Work

This section discusses the related work in the architecture description languages (ADLs)

literature. Both component models and ADLs share the component concept. A compre-

hensive study of ADLs was presented in [MT00]. Recent studies have shown the limited

support of ADLs for non-functional requirements. Garlan and Schmerl [GS06] remark that,

“despite the notable progress and concern for ways to represent and use software architec-

ture, specification of architecture designs remains relatively informal, relying on graphical

notations with weak or non-existent semantics that are often limited to expressing only

the basic of structural properties”. This section presents a brief review of three ADLs:

Acme [GMW00], secure-xADL [RT05], and AADL [AAD].

2.3.1 Acme

Acme is a second generation architectural description language. It provides support for

specifying the canonical set of structural elements of an architectural design. It includes

definitions of component, port (runtime interface), connector, connector role, system, prop-

erty (attribute), constraint, and representation (substructure of a component or a connector).

Acme is extensible. Therefore, it serves as a basis for developing new domain specific

ADLs and integrating existing architectural design analysis tools. Acme is intended to pro-

vide a unifying ADL for interchanging architecture descriptions between different ADLs.

It includes only the essential items that are common among ADLs. Since non-functional

requirements are not common in ADLs, component definition in Acme does not include

non-functional requirements. Hence, it is not suitable for defining architecture of trustwor-

thy component-based systems.
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2.3.2 Secure-xADL

A secure architectural description language (secure-xADL) was introduced in [RT05]. The

proposed language is based on extending xADL, an XML based extensible ADL. The ba-

sic structural elements of architectural modeling in xADL are components and connectors.

Secure-xADL uses an access control mechanism for modeling security at the architectural

level. The access control model [Bis03] precisely defines the rights of every subject with

respect to every other secured entity. In order to ensure security, components and connec-

tors play different, yet complementary, roles. Component types provide security contracts

that specify the subject it acts for, the principals it can take, the privileges it possesses, and

the safeguard it requires. These are defined as part of its interface specifications. On the

other hand, connectors regulate and enforce the defined security contracts of the communi-

cating components. Connectors check the contracts at the two ends of the communicating

components and decide whether they have sufficient privilege to communicate. Then it

either lets the communication passes through or rejects it.

Although Secure-xADL introduces a promising approach for modeling security at the

architectural level, there are four major issues that, to the best of our knowledge, have not

been addressed by Secure-xADL. First, it does not provide a solution to the compositional

problem which is a major concern in component-based development. Second, Secure-

xADL does not provide mechanism for the formal verification of security policies in a

component and in the whole system. Third, it does not provide a mechanism for perform-

ing consistency checking to ensure that the defined policies does not include conflicting

specifications. Fourth, security contracts are maintained at a component level; therefore,

there is a need to prove that the subject actually posses the claimed privileges on the ob-

jects. Otherwise, any component can make false claims and violate security by accessing

restricted resources. There is a need for either a centralized or distributed authentication

authority to confirm the legitimacy of the claimed privileges. To the best of our knowledge,

Secure-xADL is the only secure ADL proposed in the literature.

2.3.3 AADL

The architecture analysis and design language (AADL) [AAD] is a textual and graphical

architecture description language used to specify the design of real-time systems. AADL

provides formal modeling abstractions for the specification of complex real-time embedded
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systems. The structure of a system is specified as an assembly of communicating compo-

nents. Their interfaces, functional and data, and non-functional properties, such as timing

requirements and space requirements, are precisely defined. Component specification in

AADL includes an identity, possible interfaces with other components, properties, and

subcomponents defining the internal structure of the component’s implementation. Com-

ponents are divided into three categories: application software, execution platform (hard-

ware), and system. Each component category has its own predefined set of properties.

Interactions between components are defined as flows of control and information through

defined connections. Multiple predefined configuration settings and interactions between

components can be defined using operational modes. The language enables deployment

specification by allocating software components to execution platform components. It is

possible to extend the language with more properties and analysis specific constructs that

can be associated with components. The error model annex is a standard AADL extension

that supports fault/reliability modeling and analysis.

In AADL a primitive component represents a single service for which the defined data

ports specify the stimulating input or triggered output event and the input and output data

parameters. Therefore, AADL does not provide a clear distinction between a component

and a service. In AADL, the critical safety requirements are specified as properties that de-

fine timing requirements, period, worst-case execution time, deadline, space requirements,

and arrival rates. These properties are included in the component specification. This hin-

ders the reuse of components for different deployments. In our view, specifying contracts

outside component definition enables reuse of components and contracts definitions and al-

lows changes to contract without affecting component specification. AADL does not sup-

port security specification, but it supports reliability specification by defining error models

annotated with probability parameters. However, the values of the probability parameters

are based on assumptions. Therefore, the accuracy and precision of these values can not be

proven or justified. AADL does not provide a mechanism to analyze availability.

2.4 Specifying Trustworthiness Properties

This section reviews the research efforts made in the past for formally specifying trustwor-

thiness properties and summarize their conclusions.
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2.4.1 Combining Safety and Security Properties

In the literature, safety and security properties are formally specified and composed us-

ing different methods. This is due to the common consensus that while safety properties

are defined as sets of “safe” sequences, security properties cannot be expressed as sets of

sequences[McL96, Zak96, Man02]. It is well known [AL93] that safety properties can be

preserved in a composition; however, some security properties are not preserved by any

composition [McC88]. Hence it was concluded that it would not be possible to neither

express safety and security using one formal logic nor use one compositional theory for

both safety and security. This implies that different formal methods have to be used for the

specification and verification of security independent of safety.

Many security properties have been proposed as information flow properties [GM82,

McC88, McL90, McL94, FG95, Man00] which attempt to prevent a low-level user from

inferring some thing that is confidential to a high-level user [Zak96]. Many interface secu-

rity properties that were presented early on were proved to be weak in later research and

were replaced by stronger ones. See [GM82, McC88, McL90, McL94, FG95] for a history

of the research related to the introduction of new information flow properties and an account

of how they were either proven to be weak subsequently or proven that they failed to pre-

serve security in composition. Most importantly, the use of this type of security properties

doesn’t allow combining it with safety properties within one formal specification method

so that composition, and verification can be formally achieved [McL96, Zak96, Man02].

Finding a single composition rule and a formalism to assure the satisfaction of trustworthi-

ness in composite components has been an open problem until now.

In this thesis we propose a composition rule that unifies both access control and in-

terface security models. Access control models restrict access to component services, and

validate user requests of authorized users. We apply this restriction at the interfaces of com-

ponents. We argue that the access control security properties suggested by this thesis can

be expressed as sets of sequences. Hence, these security properties can be expressed in any

mathematical logic in which safety properties are expressed. Therefore, one compositional

theory can be used for both safety and security.
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2.4.2 Reliability

In the literature, there is a large number of publications aiming to predict the reliability

of systems at architecture level [IN08, Gok07]. The comprehensive analysis of these ap-

proaches reveals that these practices suffer from a serious defect which is the fact that the

estimated quantitative value of reliability is based on inaccurate or unjustified assumptions

about component reliability [CRMG08, IN08, Gok07]. This is because the only way to

quantitatively measure the exact accomplished reliability is by using operational profiles,

sets of execution sequences of component behavior. Since the reliability prediction is done

at design time and since the operational profiles are available only after deployment and

execution time, many assumptions are made in order to quantify reliability. These assump-

tions are uncertain and unjustifiable. This is the motivation for seeking a new approach for

defining reliability and availability in this thesis. We believe that reliability and availability

must be architected at design time, specified in the component’s contract, and ensured by

the implementation. Model checking technique can be used to verify the correctness of

architecting reliability and availability at design time.

2.5 Process Models for Component-based Development

A software engineering process defines a set of integrated activities to develop software

systems. A typical software engineering process groups the related activities into stages

of requirements acquisition and analysis, design, implementation, testing and verification,

deployment, and maintenance. The type of activities involved may vary from one system

to another depending on the type of system and the development methodology used. For

example, the activities involved in designing a safety critical system differs from those

used to design a library classification system. Rigor must be applied in the former. Also,

the design of a system using the object-oriented methodology differs from the design of the

same system using procedural programming.

In order to achieve the benefits of component-based development (CBD), a component-

based process must be used. The design of a component-based system differs than the de-

sign of other types of systems. CBD is a reuse oriented process. Therefore, the development

of reusable components and the integration of components to create systems are the main

concerns in a CBD process. A major difference between conventional software engineer-

ing process and a CBD process is that the former results in a software system, whereas the
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later results in a software system as well as a system with reusable components [TGG07]. A

typical component-based development process comprises two parallel activities: software

component development and component-based system development [CCL06, Pre05]. The

former addresses the issues of component’s specification, development, qualification, doc-

umentation, cataloguing, and adaptation and selection for reuse. The later addresses the is-

sues of assembling components to develop component-based systems. Several component-

based process models exist in the literature [Chr95, DT03, TGG07, CCL06]. The follow-

ing presents an overview of these process models highlighting their main features. The

overview is arranged in a chronological order based on their presentation time.

In [Chr95], a reuse-based software development process model was presented. This

process is based on the hypothesis that domain engineering is the foundation for a reuse-

based software system development. A domain is a set of applications that share similar

requirements, capabilities, and data. Domain engineering is the set of activities that create

and support a model, architectures, components, and applications specific to the domain.

The domain analysis defines the requirements that are common for all products in the do-

main and the requirements that vary for each product. These requirements are used to de-

velop a domain model that includes requirements of all products. From the domain model,

a domain architecture is developed to form the basis for all domain products. The architec-

ture is further refined to define the constituent reusable components. Domain applications

are designed based on the domain architecture and developed by reusing existing domain

components.

In [DT03], a component-oriented development process was presented. The process

focusses on system development by integrating existing components. It is based on the

abstract design paradigm which suggests decomposing a system structure hierarchically

into components and associating data, functions, and controls to each component. A design

modeler starts with system requirements and uses a recursive structural decomposition to

arrive to the definition of composite or simple components. Then, activities of component

specification, search, modification, or creation starts. After that, the system is built by

integrating components.

In [CCL06] a process of three parallel tracks was presented: component development,

component assessment, and system development. The activities in component assess-

ment include finding and evaluating existing components. It yields a repository of com-

ponents that includes the components’ specifications, descriptions, documented tests, and
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executable components. In [TGG07] two independent processes are defined for component

and system development.

Tables 3 and 4 provides a summary of the activities suggested in [Chr95, DT03, CCL06,

TGG07] for both component and system development. Reviewing these models helps us

to extrapolate the main activities involved in a general component-based development pro-

cess, which can be extended with rigorous methods to define a component-based process

for developing trustworthy systems.

2.5.1 Discussion

From the above summary and Tables 3 and 4, we find that there are four major activities

involved in component-based development. These are domain engineering, component de-

velopment, component assessment, and system development. These activities are important,

however might not all be required at the same time. For example, it is possible to have a

company which focuses only on developing and selling components. Therefore, there is

neither domain engineering nor system development. On the other hand, there could be

a company which has a domain engineering and system development but no component

development because it buys the required components from others using the component as-

sessment activities. Also, it is possible to have a single project which uses CBD; therefore,

it requires component development and system development only. It is quite possible, how-

ever, to have an enterprise which uses all the four types of activities for developing complex

systems. Such examples may be found in avionics, automotive, and product-line develop-

ment industries. Therefore, a component-based development process should address all

four types of activities.

Component assessment through testing and verification is an important factor for the

success of reuse. The assessment should be done at a component level, in which the func-

tional and nonfunctional requirements are tested and verified, and at a system level, in

which composability tests are used to test the successful integration of reusable compo-

nents. Integration testing should assess not only structural assembling but more impor-

tantly nonfunctional requirements, specially unwanted properties that may emerge at sys-

tem level but remain invisible at component level. In safety/security critical systems, the

issue of emergent properties is critical. Integration may violate safety or security proper-

ties. Verification of such properties is challenging [CCL06]. Therefore, a component-based

development process for trustworthy systems must use rigorous formal methods, including
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Table 3: A summary of the component and system development activities - Part 1
Phase Component Development System Development
Requirements Domain analysis is used

to identify required com-
ponents [Chr95]. The
defined requirements should
address ranges of require-
ments and the possibility of
reuse [TGG07].

In addition to require-
ments acquisition, existing
components’ information
and documentation are
reused [CCL06]. System
requirements are captured
and component requirements
are defined to help in search-
ing and selecting existing
components [TGG07].

Analysis and De-
sign

Assumptions are made about
the environment in which the
component will operate. A
component technology is se-
lected for components, such
as .NET, J2EE, COM+, etc.
The design should be gen-
eral to enable reuse. Design
adaptations to existing com-
ponents to fit into the sys-
tem [CCL06]. Detail com-
ponent specification are de-
signed including functional,
structural, and nonfunctional
specifications [TGG07].

The overall system architec-
ture is designed. Then, the
architecture is refined and the
constituent components are
identified and specified in de-
tails [DT03, CCL06]. A
component-oriented architec-
ture is selected and compo-
nents are identified. Detail
design of new components is
performed. Verification and
validation of functionalities
are conducted [TGG07].

Implementation The selected component
technology determines
the implementation de-
tails [CCL06]. The methods
and events of components
are implemented [TGG07].
Reuse is encouraged when-
ever possible.

The emphasis in implementa-
tion is put on component
selection and adapta-
tion [DT03, CCL06].
Components must be as-
sessed before reuse [CCL06].
New components are de-
veloped and glue code is
written [TGG07].
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Table 4: A summary of the component and system development activities - Part 2
Phase Component Development System Development
Integration Integration considerations

must be continuously in focus
through all phases [CCL06].

Architectural matches should
be tested, and functional
and nonfunctional behavior
should be verified thoroughly
to insure successful integra-
tion [CCL06]. Connectors
are used to integrate compo-
nents [DT03].

Testing Extensive tests such as unit
and integration testing should
be done to verify functional
and nonfunctional require-
ments. Test results should
be delivered with the com-
ponent to system develop-
ers [CCL06].

Tests must be performed
during component selection
and integration [CCL06].
Integration, system, and
acceptance testings are
required [TGG07].

Maintenance Strategies should be defined
for component mainte-
nance [CCL06].

Replace old components by
new ones or add new compo-
nents into the system when-
ever necessary [CCL06].
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verification and testing techniques, in component development, assessment, and system

integration to ensure a correct and trustworthy system behavior.

Since software requirements form the foundation from which the development process

starts and quality attributes can be assessed, there is a need for a formal specification lan-

guage that collectively and precisely define the software requirements related to functional,

nonfunctional (such as trustworthiness), and structural parts of the software. The com-

bination of rich formal specification language and a rigorous development process pro-

vide a high assurance level of trustworthiness. Trustworthiness must be a central concern

throughout the different activities in the component and system life-cycle as depicted in

Figure 8. In every stage, established methods for the verification of trustworthiness are

to be used. Iterative cycles exist between sequential phases to ensure that the trustworthi-

ness requirements are satisfied. Although formal methods may seem complex and costly,

they are inherently supported by automation tools. Therefore, a rich specification language

and tools support are essential for the success of the development process of trustworthy

systems.

Requirements

Testing

Design

Verification of
Trustworthiness

Implementation

Maintenance

Deployment

Figure 8: Trustworthy development life-cycle

2.6 Summary

From the above discussion, we conclude that there is a need for: (1) a rich and unified for-

mal specification language for defining trustworthy components and systems, (2) a rigorous

development process model that collectively includes domain engineering, component de-

velopment, component assessment, component reuse, and system development activities,
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and (3) a framework of tool support to support formal specification and the development

process model. In these elements, trustworthiness must be a central concern. From the

above survey and analysis it is clear that none of the existing component modeling tech-

nique nor a development process model can fit our needs. This is both a challenge and

opportunity for creating a new component modeling technique that is both formal and prac-

tical.
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Chapter 3

Research Methodology

This chapter presents the objectives of this research and shows the different research steps,

which together formulate the research methodology used to reach the objectives.

3.1 Research Objectives

The goal of this research is to develop a formal component-based software engineering

approach for developing trustworthy systems. The objective is achieved by putting together

the following three contributions:

• A formal component model that collectively addresses the requirements of trustwor-

thiness and component-based development,

• A formal development process model that describes component engineering and

component-based development of trustworthy systems, and

• A framework with a comprehensive set of tools that support the formal development

process.

3.2 Research Methodology

The research methodology is divided into three phases. The first phase is concerned with

defining a formal component model for trustworthy systems. The second phase is con-

cerned with defining a process model for the component-based development. Finally, the

third phase is concerned with defining and implementing a development framework. The
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following three sections describe the research problems, research questions, the solutions

provided by our research for the stated problems, the limitations, and the future work of

each phase.

3.2.1 Phase 1: Defining A Formal Component Model for Trustworthy
Systems

This section presents the research problems in defining a formal component model for

trustworthy systems. There are four research problems outlined in this section. For each

problem, we discuss the corresponding challenging research questions and provide our

proposed solution.

Research Problem 1-A: The lack of support for non-functional requirements

Problem Statement: Current component models provide limited or no support for defin-

ing non-functional requirements. Therefore, they do not fit the need to define trustworthy

component-based systems. As discussed in our literature survey, current component models

focus on the structural part of components. In order to profit form component technology

to develop trustworthy systems, there is a need to extend component definitions with spec-

ification of trustworthiness.

Research Questions: Below we discuss the questions related to the research problem

1-A and provide solutions.

Q1: What are the essential properties of trustworthiness? We define trustworthiness as a

composite concept that involves safety, security, reliability, and availability proper-

ties. The safety property is an invariant property of the system. Thus the property is

true at all system states. In general, a safety property is a constraint that will prevent

a system state in performing an action that might injure the environment as well as

damage its internals. For real-time systems that are safety-critical, both liveness and

timeliness become part of safety property. Security properties include confidentiality

and custom defined security policies that are concerned with security of the services

provided by the component and its local data. Reliability and availability properties

include constraints that will limit, if not prevent, the frequency of system failures and

set acceptable duration on non-availability of service due to repairs.
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Q2: What are the essential constituents of the component model? Components provide

and request services at public interfaces. A component can have local data variables

that are used by its services. Also, a component may have constraints that define

invariants over its behavior or its structural definition. A component can have non-

functional requirements. Components interact with each other through connectors. A

component can be primitive or composite. An architecture defines the internal struc-

ture of components. Therefore, in our perspective, a component definition should

include structural, contract, and behavioral parts. The structural part defines the

following concepts: component, interface, connector, architecture, attributes, con-

straints. The contract part defines the services, trustworthiness properties, and other

non-functional requirements. The behavioral part defines the inter-play communica-

tion at the interfaces of a component and the trustworthiness restrictions.

Q3: How can we define a trustworthy component model? In order to develop trustwor-

thy systems, rigorous methods should be applied for specifying and verifying sys-

tems. We use mathematical notations for formally specifying the structure, contract,

and behavior of component-based systems. We formally specify the requirements of

safety, security, reliability, and availability in the contract. The formalism provides

abstract and precise definitions of the component model and trustworthiness prop-

erties. The formalism is the foundation of our engineering approach. It provides a

unified language for describing the structure and the properties of trustworthiness.

Also, it enables automatic techniques for formal analysis. Based on the formalism,

verification of trustworthiness properties can be automated.

Q4: How can we make the formalism easily accessible to non experts? Realizing that

formal notations are difficult to use and communicate among software architects, we

created an architecture description language (TADL), which is based on our formal-

ism. Our architecture description language provides complete descriptions for our

trustworthy component model in a high level language that can be understood by

software engineers.

Q5: How can we define the behavior of trustworthy components? In order to analyze and

reason about the behavior of trustworthy components, there is a need for a behavior

specification method that combines all the trustworthiness properties. We provide an

extended timed automata for describing the behavior of trustworthy components. In
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our solution, timed automata are augmented with timing constraints, security poli-

cies, and failure and repair behaviors. This rich behavioral model is generated auto-

matically by analyzing the component structure and contract specification.

Limitations and Future work: In our component model, the security mechanism fo-

cuses only on confidentiality and authorization aspects. However, security is a broad con-

cept that includes more considerations such as data integrity, encryption, intrusion detec-

tion, denial of service, and impersonalization. Some of these consideration must be guaran-

teed by the implementation of the component and the connector. For example, it is possible

to implement connectors that analyze the communication and perform intrusion detection.

Also, it is possible to implement encryption connectors that encrypt any communicated

data or services. Moreover, our component model assumes a centralized security mecha-

nism, where a central authority authenticates and authorizes users. However, in distributed

systems, it is possible to have distributed authorization. In order to support such require-

ments, we need to add a control unit to the component definition. This control unit will

be responsible for trust management. It operates as a controlling filter through which all

out-going requests are encrypted and digitally signed and assigned a public key. Also, It

decrypts the received requests and verifies the identity and credentials of the requesters.

In this case, distributed authorities are needed, which host lists of certified identities with

credentials. The control unit can communicate with those distributed authorities to verify

identities. For every component, in order to operate, it should seek a digital certificate along

with a public key from one of the distributed authorities. Then, it can use this certificate

when communicating with other components. The certificate involves information about

the contract guaranteed by the components, some of its quality attributes along with their

values, and its security credentials.

Research Problem 1-B: The strong coupling of components

Problem Statement: In current component models, components are composed using in-

terface binding or connectors. This binding makes components tightly coupled. The strong

coupling of composite components in current component models severely limit the reuse of

components, the very essential motivating factor for propounding component technology.

Therefore, there is a need for a solution to define loosely coupled components that can be

reused easily.
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Research Question: Below we discuss the questions related to the research problem 1-B

and provide solutions.

Q6: How can we develop reusable components? We provide two solutions for this ques-

tion. First, the non-functional requirements of a component should be defined in

a contract, which is associated with the component definition. This enables recon-

figuring the contract to fit different deployments and systems. Second, the relation

between the requested services and the provided services is specified in the con-

tract, outside the component definition. The binding between services should not

be included inside the component definition. This enables configuring different be-

haviors, relations between requests and responses, without affecting the component

definition. Therefore, it increases reuse of the component definition.

Research Problem 1-C: The need for a composition theory

Problem Statement: Current component models define only structural composition by bind-

ing interfaces, either directly or using connectors. No composition theory exists for com-

ponents. The concept of component composition goes beyond connecting components.

Composition allows analysis about the non-functional properties of the constituent compo-

nents after the composition. It ensures that the composition does not violate the properties

that are already satisfied by the constituent components. Therefore, there is a need for a

composition theory.

Research Questions: we discuss the questions related to the research problem 1-C and

provide solutions.

Q7: How can we define a composition theory for trustworthy components? A composi-

tion theory should include both structural and contract composition. We provide a

composition theory that defines two types of composition rules: composition rules

for the structural part and composition rules for the contract part of our component

model. The structural composition rules describe how a new component structure

is formed by gluing compatible interfaces using connectors. It is possible to have

multiple architectures for the new composite component. The contract composition

rules specify how the services and trustworthiness properties are composed to form

a new contract. There is only one possible contract for a component. Our proposed
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solution is based on our ability to define both the structural and contract part of a

component using one formalism.

Q8: Is it possible to use one composition theory for safety and security properties? In

the literature, it was not possible to compose safety and security properties together

because they were defined in different ways. The security properties were defined as

information flow properties, which can not be composed in one method with safety

properties. However, in our approach we use a role-based access control security

mechanism. In this mechanism, security policies are specified using predicate logic.

This makes it possible to specify, compose, and verify these policies with safety

properties using one approach.

Limitations and Future work: The composition theory proposed by our research pro-

vides rules for composing safety and security properties only. We need to extend the com-

position theory with rules for composing reliability and availability. When a service fails

at one component, it either produces erroneous results or become unavailable. This will

affect the other components that request this service. Therefore, failures can propagate

from one component to another. If a service becomes unavailable then it may violate the

timeliness requirements because the component will not respond to requests in within the

safe limits of time. Therefore, there is a need to extend the component definition to prevent

the propagation of failures. In this regard, it is possible to define a control unit to monitor

the behavior of services. If a service failure occurs then this service must be hidden from

the public interface of the component until it is corrected. Dynamic reconfiguration may

provide solution in this case. For example, the control part may create a new instance of

the component, rebind all connectors to the interfaces of the new component, and delete

the faulty component.

Research Problem 1-D: The need for an approach for specifying and verifying relia-
bility and availability at architecture level

Problem Statement: The current approaches for analyzing reliability and availability

at an architecture level are based on inaccurate or unjustified assumptions. Component

reliability can be measured quantitatively by analyzing its execution sequences at run time.

Since this information is not available at design time, the current approaches in the lit-

erature are trying to only estimate, but not measure, reliability. The estimation requires
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assumptions about the deployment environment and the behavior of the component at run

time. Since it is difficult to prove the accuracy and correction of the assumptions, there is a

need for a qualitative approach for specifying and verifying reliability and availability.

Research Question: Below we discuss the questions related to the research problem 1-D

and provide solutions.

Q9: How can we provide a formal approach for specifying and verifying reliability and

availability? In our trustworthy component model, the definition of reliability and

availability are based on service failures and repair durations. A failure is a deviation

from the correct service behavior. It is indicated by any violation to the functional

or non-functional requirements including those of safety and security. A repair is a

change from the state of service failure to the state of correct service. The acceptable

level of reliability is defined based on the frequency and severity of service failures.

The acceptable level of availability is defined based on the duration of service failure

time. The component implementation and maintenance should guarantee the repair

time. The failures, repairs, and the acceptable levels of reliability and availability are

formally defined in the component contract. Also, the behavior model is extended

with failure and repair specification. This enables us to use formal model checking

to verify safety, security, reliability, and availability in a one approach.

3.2.2 Phase 2: Defining A Process Model for Developing Trustworthy
Component-Based Systems

This section presents the research problems in defining a formal process model for devel-

oping trustworthy component-based systems. We discuss the corresponding challenging

research questions and provide our proposed solution.

Research Problem 2-A: The need for a process model for developing trustworthy sys-
tems

Problem Statement: A conventional software engineering development process is not

suitable for developing component-based systems. Also, a conventional component-based

development process is not suitable for developing trustworthy systems. Current component

technologies are focusing on the structural and implementation aspects of component-based
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systems. The typical component-based development processes presented in the literature

focus on the general activities involved in developing component-based systems with em-

phasis on reuse and integration testing. On the other hand, safety-critical development

processes are not suitable for component-based systems. This is because component-based

development generates two products: a component-based system and reusable components.

Therefore, there is a need for a rigorous component-based process for developing trustwor-

thy systems.

Research Questions: Below we discuss the questions related to the research problem

2-A and provide solutions.

Q10: What are the major activities in a component-based development process? Our re-

search found that a component-based development process should address four major

types of activities. These are domain engineering, component development, compo-

nent assessment, and system development.

Q11: What are the requirements of a component-based development process for trustwor-

thy systems? We provide a process that inclusively blends the activities of component-

based development and those of rigorous critical systems development. Our process

includes the following merits: (1) it uses rigorous formal methods, including veri-

fication and testing techniques, in component development, assessment, and system

integration to ensure a correct and trustworthy system behavior, (2) trustworthiness

is a central concern throughout the different activities in the component and system

life cycle, and (3) it has tool support for specifying and verifying component-based

systems.

3.2.3 Phase 3: Developing a framework with comprehensive tool sup-
port

This section presents the research problems in developing a framework that supports the

development process model. We discuss the corresponding challenging research questions

and provide our proposed solution.
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Research Problem 3-A: The need for tools support

Problem Statement: Defining a rigorous development process is not sufficient to ensure

trustworthiness. It requires tools to support the schematic implementation of the various

tasks as in the process model. Formal development of systems without tools is a difficult

task. Designing systems formally requires expertise and takes long time and effort. There-

fore, there is a need for building tools to automate and support the various activities defined

in the rigorous development process model.

Research Questions: Below we discuss the questions related to the research problem

3-A and provide solutions.

Q12: What are the necessary tools for realizing the trustworthy development process model?

We propose a blueprint of a framework for the development of trustworthy systems.

The framework can be viewed in three layers: design, implementation, and deploy-

ment. Taken as a whole, the framework describes the tools necessary for the different

stages outlined in the process model. As of now, we have implemented the visual

modeling and the transformation tools which includes the activities of designing sys-

tems, translating design to ADL notation, generating behavior models, and generat-

ing real-time models. Also, we have successfully adopted UPPAAL and Times tool

in our framework.

Q13: How can we make the formalism accessible to software architects We provide a visual

modeling tool, developed in our research lab, to design trustworthy component-based

systems. The tool provides a graphical user interface that allows the user to select,

drag, and drop different elements of our trustworthy component model on a design

canvas. The user can specify the structural and contract requirements with no knowl-

edge of the underlying formalism. The tool provides syntactic checking and report

any design errors to the user. The tool automatically generates formal system specifi-

cation in accordance with our TADL language. Zhou Yun [Yun09] has implemented

the visual modeling tool.

Q14: How can we specify the behavior of trustworthy components easily? We use model

transformation techniques to automate the process of generating behavior specifi-

cation and real-time models. We provide a transformation tool, developed in our
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research lab, to automatically analyze the TADL specification, generated by the vi-

sual modeling tool, and generate a behavior model as extended timed automata. The

behavior model contains functional and non-functional specifications including the

requirements of safety, security, reliability, and availability. The transformation tool

produces extended timed automata that conforms to the specification language of

UPPAAL and Times model checkers. Naseem Ibrahim [Ibr08] has implemented this

transformation tool.

Q15: How can we verify the properties of trustworthiness? We use model checking to

verify the trustworthiness properties. Safety, security, reliability, and availability re-

quirements are verified using UPPAAL model checker. Real-time requirements, such

as schedule analysis, are verified using the Times tool. The extended timed automata

that is produced by the transformation tool is input to UPPAAL and Times to conduct

the formal verification.

Limitations and Future work: The current implementation of the framework includes

only the design time tools. We need to build a repository to host components definitions

and the results of their testing and verification.

3.3 Summary

In this section, we presented our research methodology for achieving a formal software

engineering approach for developing trustworthy systems. We provided our solution to the

research problems and their corresponding research questions. We provided our solutions

based on our conducted research and the results we found. We are not aware of any other

approach to answer these problems. In the rest of the thesis the technical details of the

proposed solutions are given.

48



Chapter 4

Trustworthy Component Model

This chapter introduces a formal model of a trustworthy component. Informally, a com-

ponent has a structure and behavior. The structure of a component is shown in Figure 9.

This component structure is different from other models proposed earlier [LW07]. The

novel contribution of the component model is the formal way in which safety contract and

security mechanism are combined and in which reliability and availability are defined and

verified. The rationale for the new model arises from the essential need for defining non-

functional requirements, composing them in such a way that preserves these non-functional

requirements, and verifying them. Therefore, the new model is designed in such a way that

it collectively addresses the requirements of CBD and trustworthiness. Also, the model is

designed in a formal way that allows automated analysis and verification of trustworthi-

ness. The formal specification of reliability and availability is presented in Chapter 7. The

remaining elements that make up the component model are formalized in the following

sections.

4.1 Event and Data Parameters

Components provide and request services through public interfaces. Component technol-

ogy provides a means to define, implement, deploy, maintain, and reuse related services

in one entity. Service definitions are used to classify, search, and discover components.

Therefore, it is important to model services independently and include their definitions in

components. We model a service as a function mapping an input request to an output re-

sponse. Requests and responses are parameterized events where a parameter is either a data
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Figure 9: Structure of Trustworthy Component

parameter or an attribute. A parameter has a type, value, and a set of constraints defined

over the value.

A component interacts with other components through stimulus and response. Let Σ

denote a finite nonempty set of events. An event in Σ denotes either a stimulus, request for

service, or a response, service provision, but not both. A request for service is an input event

representing an information flow from outside the component to the inside. On the other

hand, a service provision is an output event representing an information flow from inside the

component to the outside. Input and output events are external events. Internal processing

inside the component is done using internal events. Output events are divided into two

types: output response and output request. An output response models the actual response

to a request. An output request models an event sent to request additional processing from

outside the component. Therefore, Σ is divided into a set of input events Σinput, a set of

output events Σoutput, and a set of internal events Σinternal where Σoutput = Σresponse ∪
ΣOutRequest. Formally, Σ = Σinput ∪ Σoutput ∪ Σinternal, Σinput ∩ Σoutput ∩ Σinternal = ∅.

An event representation has 4 tuples in it; one tuple denotes the set of data parameters, one

tuple denotes the set of attributes, one tuple denotes the set of constraints, and one tuple

denotes the event flow.

Constraints: A constraint is a logical expressions, defined over data parameters and at-

tributes, which is an invariant associated with an event. Constraints are used to define the

valid values of event’s parameters. Let C denote the set of all logical expressions. A logical

50



expression χ ∈ C is defined using first order predicate logic (FOPL).

We use the following notation in all subsequent definitions:

• T denotes the set of all data types.

• D ∈ T means D is a data type such as N.

• ν : D denotes that v is either a constant or variable of type D.

• χν is a constraint on ν. If ν is a constant then χν is true.

Data parameters: A data parameter is information carried by an event. The definition

of a data parameter includes name, data type, and value. In principle, abstract data types

can be data parameter types; however, we restrict only to simple data types such as integer,

char, boolean, and float and arrays defined over them. The set of data parameters is Λ =

{λ = (D, ν, χν) | D ∈ T, ν : D, χν ∈ C}. Modeling data parameters as architectural

elements has three important implications. These are:

• It allows modeling different types of simple and complex data communicated at the

interfaces of a component, which results in a rich communication specification.

• It provides a mechanism for securing the information passed through the interfaces of

a component. Security is essential for both the services and the data communicated

at the interfaces. Therefore, explicit modeling of data parameters enables designing

information security at architectural level.

• It enables rich specification of safety contracts by regulating reactions of the compo-

nent based on values of data parameters.

Attributes: An attribute qualifies the semantic content associated with an element in the

component model. A quality attribute has a type, which can be either simple or complex.

As an example, attributes can be used to qualify real-time information, such as priority and

worst-case execution time. These attributes are necessary for performing real-time schedule

analysis. The set of attributes is A = {α = (D, να, χαν) | D ∈ T, να : D, χαν ∈ C}.

Event is formalized in Definition 1.
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Definition 1 Let SY = {?, !, !!, ε}. The set of events is formally defined by Σ = {e =

(Λe,Ae, χe, %e) | Λe ⊆ Λ, Ae ⊆ A, χe ∈ C, %e ∈ SY } where

%e =





?, if e is an input event;

!, if e is an output response;

!!, if e is an output request;

ε, if e is an internal event.

Example 1 A sensor sends the current temperature in the room, where it is installed, to a

centralized controlling unit. The upper and lower bounds on sensor reading constrain the

temperature value sent to the controller. In order to formalize this event, which is a service

request received by the controller, we let x be the current temperature and [-25,40] be

the range for sensory observations. The behavior of the sensor’s output is either periodic,

sporadic, or controlled.

Let Λ = {λtemp = (N, x, x < 40 ∧ x > −25)}.

Let Behavior = {Periodic, Controlled, Sporadic} be the set of types to model the

message output by the sensor. We define Periodic ≡ N, Sporadic ≡ [Low, High] where

Low : N, High : N, Low < High, and Controlled ≡ {0, 1}. The set of attributes is

A = { αbehavior, αpriority, αWCET} where αbehavior = (Periodic, 10, true),

αpriority = (N, y, true), and αWCET = (N, z, true). The values y of worst-case execution

time (WCET) and z of priority are assigned by the designers of the system. No additional

system constraint is imposed on the event. Therefore, the event specification is the tuple

(Λ,A, true, ?).

4.2 Services and Contracts

The behavior of a component must be predictable, deterministic. When a request for ser-

vice arrives at an interface, the component must react by providing a response. When a

component receives a request for service at an interface, which will be discussed later, it

reacts by doing one of the following actions:

• performing internal processing and becoming silent, a log monitoring component for

example;

• performing an internal processing and sending a response to the calling component,

a query analyzer component for example; or
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• performing an internal processing, sending an output request to another component to

get more information or perform further processing, and finally, sending the response

to the initial caller.

input request

output response
internal

output request

Figure 10: The different types of events

Therefore, response events are either internal, output response, or output request events.

On the other hand, the request for service, stimulus, can be an external input request or

an internal event. Having internal events as stimulus enables modeling periodic events

that stimulate the component to perform monitoring or self control activities. Therefore,

stimulus events are either internal or input requests. Figure 10 depicts the different kinds

of events occurring at a component. A service is defined as a function that maps stimulus

to response with the help of data and time constraints as described bellow.

Data Constraint: In general, a stimulus may have more than one possible response. Data

constraints are used to avoid this nondeterminism. For each possible response, a data con-

straint is defined such that only one data constraint can be true at an instant. Therefore, only

one response will be selected. A data constraint is a special type of constraint that is used

to decide whether or not a specific response for a requested service should be sent. The

decision is based on evaluating a logical expression defined over the values of the data pa-

rameters associated with the stimulus and the attributes of the stimulus and the component.

The response is given only if the constraint evaluates to true. The set of data constraints is

Ω = {ω = (Aω, s, r, χω) | Aω ⊆ As ∪Aø, s ∈ Σstimulus, r ∈ Σresponse, χω ∈ C} where

As is the set of attributes in the stimulus and Aø is the set of attributes of the component,

which will be defined later in this chapter. If s has n responses than there must be n number

of mutually exclusive data constraints defined for the responses of s in Ω. This ensures that

the responses of s are mutually exclusive which ensures determinism.

We define dc : Σstimulus → PΩ which extracts the data constraints for a given stimulus.

dc(s) = Ωs ⊆ Ω such that Ωs = {ωi = (Aωi
, si, ri, χi | ωi ∈ Ω ∧ si = s)}.
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Time Constraint: The correct behavior of real-time systems does not depend only on the

provided services but also on the time at which the services are provided. Therefore, service

provision can be governed by time constraints. A time constraint specifies the maximum

amount of time allowed to elapse between the time of receiving a stimulus and the time

of sending the response. This is an essential requirement for safety critical systems where

timeliness is a critical factor in defining safety. The set of time constraints is Γ = {γ =

(Aγ, χγ, s, r, δ) | Aγ ⊆ A, χγ ∈ C, s ∈ Σstimulus, r ∈ Σresponse, δ : N} where δ

defines the maximum safe time, the maximum safe time interval between the occurrence of

a stimulus and the occurrence of its corresponding response. If χγ(Aγ) evaluates to true

then the maximum safe time is enforced on the response. However, if χγ(Aγ) evaluates to

false, then the maximum safe time need not be enforced.

A response event can be accompanied by executing several update statements that set

the values of local attributes. Also, a response can be accompanied by several actions,

which are internal or external events that occur after a response. Service is formalized in

Definition 2.

Definition 2 Let Γ be a finite set of time constraints, Ω be a finite set of data constraints,

Σstimulus = Σinternal ∪ Σinput, and Σresponse = Σinternal ∪ Σoutput. A service is defined as

a function Θ : Σstimulus × Ω × Γ × N→ Σresponse × PU × S × N
where U is a set of update statements defined using the function assign : D → A such that

assign(α) = ν assigns a value ν from the domain D to an attribute α ∈ Ar ∪ Aø where

Ar is the set of attributes of the response and Aø is the set of attributes of the component,

and S ⊂ Σoutput ∪ Σinternal is a set of actions triggered by the service.

The precondition for the function is defined as follows:

Let s ∈ Σstimulus, s = {Λs, As, χs, ?} such that:

• Λs ⊆ Λ, Λs = {λsi
= (Di, νi, χi) | Di ∈ T, νi : Di, χi ∈ C}

• As ⊆ A, As = {αsi
= (D′

i, ν
′
i, χ

′
i) | D′

i ∈ T, ν ′i : D′
i, χ′i ∈ C}

The stimulus occurs if the following conditions are satisfied:

• the constraints defined for the data parameters are satisfied. That is,
∧

(Di,νi,χi)
χi(νi) =

true,

• the constraints defined for the attributes are satisfied. That is,
∧

(D′i,ν′i,χ′i) χ′i(ν
′
i) =

true, and
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• the additional constraint defined in the stimulus specification is satisfied. That is,

χs = true

Θ(s, ωsr , γsr , t1) = (r,R, t2) where t1 is the time at which the stimulus occurs, t2 is the

time at which the response occurs, and:

1. r is extracted from the tuple ωsr = (Aωsr
, s, r, χi) ∈ Ωs such that χi evaluates to

true,

2. select γsr = (A, χγsr
, s, r, δ) ∈ Γ

3. The post condition of the function is:

a. r = (Λr,Ar, χr, SYr), where SYr ∈ {!, !!, ε},

b. Λr ⊆ Λ, Ar ⊆ A, R ⊆ Σoutput ∪ Σinternal, and

c. |t2 − t1| ≤ δ.

For convenience, we define the function φ : Σstimulus → P Σresponse such that φ(s) 6= ∅.

This function maps each stimulus to the set of responses associated with it.

Service

stimulus

data constraint

start time

response

set of updates
set of actions

finish time

time constraint

Figure 11: Service

Figure 11 Depicts a service.

Safety Property: Safety properties can be defined at a component level to enforce safe

behavior. A component safety property is an invariant over the behavior of a component.

The behavior can be defined using timed automata which will be discussed later. A safety

property is regarded as a special type of constraint over the services provided by the com-

ponent. A contract defines a nonempty set of services and safety properties. The rationale

behind specifying the contract outside of the component type definition is to allow reuse of
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a contract for other components that provide similar services and to enable reconfiguration

of its specification. The reconfiguration updates maximum safe time, data constraints, and

services for different system configurations and deployment plans.

Definition 3 We define a set of safety properties P = {p = (Σp, χ) | Σp ⊆ Σ, χ ∈ C}. A

contract Ξ is defined as a tuple Ξ = (Θ, Ω, Γ, P).

The service definition must satisfy the following conditions:

• ∀γ1, γ2 ∈ Γ, γ1 = (A1, χ1, s1, r1, δ1) ∧ γ2 = (A2, χ2, s2, r2, δ2) → s1 6=
s2 ∨ r1 6= r2. That is, it is not possible to define two different time constraints for

the same stimulus-response (service).

• ∀ω1, ω2 ∈ Ω, ω1 = (A1, s1, r1, χ1) ∧ ω2 = (A2, s2, r2, χ2) → s1 6= s2 ∨ r1 6=
r2. That is, it is not possible to define two different data constraints for the same

stimulus-response (service).

• ∀s ∈ Σstimulus, |φ(s)| > 1 → ∃Ωs ⊆ Ω • ∀ω1, ω2 ∈ Ωs, ω1 = (A1, s, r1, χ1),

ω2 = (A2, s, r2, χ2), ω1 6= ω2 ∧ χ1 ⊕ χ2, i.e. if a stimulus has multiple possible

responses then we must define a service for every stimulus-response relation and

assign it a different data constraint. The data constraints must be mutually exclusive.

Example 2 Assume a real-time Continuous Glucose Monitoring system which consists of

(1) a sensor inserted subcutaneously in the abdominal area to measure interstitial fluid

glucose levels, and (2) a small mobile monitoring device. The sensor takes glucose readings

regularly and relays it to the monitoring device. The monitoring device has an attribute

which specifies an alarm threshold glucose level. If the current glucose reading is above the

defined threshold then the monitoring device should trigger the alarm within 5 units of time

to alert the patient to potentially dangerous glucose level and display the level. Otherwise,

the monitoring device should just display the current glucose level. The following defines

only the service definition part of this example for the monitoring device.

Let Λ = {λglucose} where λglucose = (N, ν, true) is the data parameter defining the

current glucose level.

Let A1 = {threshold} where threshold = (N, ν, true).

Let Σ = {Level, Alarm, Display} be the set of events where Σinput = {Level} and

ΣInternal = {Alarm, Display} such that: Level = (Λ, ∅, true, ?),

Alarm = (Λ, A1, true, ε), and Display = (Λ, A1, true, ε).
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Let Γ = {γ} where γ = (∅, true, Level?, Alarm, 5).

Let Ω = {ωalarm, ωnormal} where ωalarm = (∅, Level?, Alarm, λglucose ≥ threshold) and

ωnormal = (∅, Level?, Display, λglucose < threshold). The service definitions are:

Θ(Level?, ωalarm, γ, t1) = (Alarm, ∅, {Display}, t2) and

Θ(Level?, ωnormal, γ, t1) = (Display, ∅, ∅, t2).

4.3 Component Architecture

The structural description of a component includes definitions of interface types, connector

role types, connector types, architecture types, and component types.

Interface Types: Interfaces are access points to the services provided and requested by

components. An interface type is an enumerated type whose elements are events from Σ.

An interface is an instance of an interface type, it inherits the events listed in the type

definition. We define Π as the set of interface types where each interface type π is a triple

π = (Aπ, χπ, σ) such that Aπ ⊆ A is a set of attributes defined for the interface type,

χπ ∈ C is a constraint over the events and attributes of the interface type, and σ : Π → PΣ

is a function that associates a finite non-empty subset of external events to each interface-

type such that ∀π1, π2 ∈ Π, π1 6= π2, σ(π1)∩σ(π2) = ∅. Two interface types π1 and π2 are

compatible if and only if for every event s ∈ π1 there exists exactly one event s ∈ π2 such

that %(s) =! and %(s) =? are complementary. That is, in designing component interactions

both s and s will be assigned to occur simultaneously at component interfaces of interacting

components. We define the predicate Compatible(π1, π2) which is true if and only if π1

and π2 are compatible.

Component

Interface

Component

Connector role

Connector

Attachement specification

Figure 12: Connecting two components
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Connector Type: A connector defines the connectivity between two or more compo-

nents. A connector type definition includes a non-empty finite set of connector role types

in addition to attributes and constraints. A connector role type serves as an interface to a

connector. It links a connector to a component interface. Figure 12 presents an attachment

specification showing how two components can be attached together using a connector, two

interfaces, and two connector role types. The attachment specification is inspired by the

work in ACME [GMW00]. Abstracting the connector role from the connector specification

enables abstracting the communication method used in the connector from its access points.

Therefore, it is possible to define different communication methods such as RPC, HTTP,

and SOAP using the same access points (connector roles). Also, introducing connection

points at the ends of a connector can help to reason about the integrity of the communica-

tion method by comparing representations of the data before and after the communication.

A connector role type is defined as a triple ρ = (Aρ, χρ, π) where Aρ ⊆ A and χρ ∈ C.

A Connector type is defined as a tuple K = (Ak, χk, R,M) where R is a finite set

of connector role types, Ak ⊆ A is a set of attributes associated with the connector, and

χk ∈ C is a constraint that can be used to specify an invariant or restriction that controls

whether or not the communication is allowed. The communication method M specifies

the type of communication used by the connector to deliver services. There are a number

of common communication styles to choose from [SG96] such as procedure call, mes-

sage passing, remote procedure calls, etc. The communication is bidirectional. Details of

the communication method fall outside the scope of this thesis. The attachment specifica-

tion is a tuple (K, ρ, π, CT ), where ρ ∈ RK is a connector role type in the connector

type K, CT is a component type (definition will follow), and π is an interface type that is

defined in both ρ and CT . The attachments are specified outside the connector type defini-

tion to make the connector specification independent from how it is used. This abstraction

enhances reuse and reconfiguration of connector type specification. A connector K̃ is an

instance of a connector type K. It inherits all the connector roles defined at the connector

role type, implement the communication method, and restrict communication to the defined

constraints.

Architecture Type: A component can be primitive or composite [SG96]. A composite

component is built by assembling existing components and specifying their connectors. An

architecture type defines the structure of a composite component in which the constituent
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components and their internal connections are specified. A component type can have multi-

ple possible architecture types. An architecture type comprises connector types, attributes,

constraints, and attachments specifications. An attachment specifies how components are

connected. This is specified by linking the interface type of a connector role type with

an interface type of a component at the ends of a connector. The attachment specifica-

tion allows us to define the structural composition of components. We use the notation

∝= ρ @ K ./ π @ CT , instead of tuple notation, to introduce an attachment specifica-

tion that links interface type π of the connector role type to its corresponding one in the

component type. Each attachment specification defines the connection at one end of a con-

nector. For example, a binary connector which connects two component types requires two

attachment specifications each of which specifying the connection point at one end. We

use the notation ∝1 ¢ ∝2 to introduce a structural composition of two components at

an architecture type definition using one connector type. Defining the architecture outside

of the component type definition increases reuse and allows reconfiguration of architecture

without changing the component definition.

Component Type: A component type definition includes definitions of events, interface

types, architecture types, a contract, attributes, and constraints. If no architecture is speci-

fied then the component type denotes a primitive component. In a composite component’s

type definition, the list of interface types that are not attached to connector role types form

the external interface types, whereas the attached ones form the internal interface types.

Definition 4 A Component Type is a tuple CT = (Σ, Π, σ, Λ, ξ, Ξ, Ac, Cc, T ) where Σ

is the set of events, Π is the set of interface types through which the events are accessed, σ is

a function that associates events to interface types such that ∀π1, π2 ∈ Π, σ(π1)∩ σ(π2) =

∅, Λ is the set of data parameters, ξ : Σ → P Λ is a function that associates with each

service request or provision a set of data parameters, Ξ is a contract, Ac ⊆ A is a set of

attributes, Cc ⊆ C is a set of constraints, and T is a set of architecture types describing the

possible internal structures of composite component types. If T = ∅ then the component is

primitive. An architecture type τ is defined as a tuple τ = (O, N , H, Aτ , Cτ ) where O
is the set of constituent component types, N is the set of connector types used to connect

these component types, H is the set of attachment specifications used to attach connector

types to interface types of component types, Aτ ⊆ A is a set of attributes, and Cτ ⊆ C is a

set of constraints.
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Figure 13 depicts the component definition.

Definition 5 A component ø is an instance of a component type CT . The set of its ex-

ternal interface types ΠI is created from the set of interface types Π of CT by specifying

for each interface type π in Π the number of interfaces (#π) of type π required in ø. If

#π = n, we let øπ = {π1, . . . , πn} denote the interfaces created. A specification of ø is

(Σ, ΠI , σ, Λ, ξ, Ξ, Aø, Cø, T ), where ΠI =
⋃

π ∈ Π øπ. The σ function is extended to

interfaces: ∀πi ∈ π • σ(πi) = σ(π). This means that an event can be provided at mul-

tiple instances (interfaces) of the same interface type. Each instantiated interface will be

used to provide the event to a specific component using a specific connector (instance of a

connector type).

A component architecture oτ from a component type’s architecture type τ is created by

defining (1) a set of components instantiated from the component types, (2) n connectors in

øτ for each connector type in τ if n interfaces have been created in ø corresponding to the

interface type(s) in the connector type’s role type definitions, and (3) a set of attachments

instantiated from the attachment specifications H in τ where each attachment is of the

form ∝̃ = ρ @ K̃ ./ p @ ø where K̃ is a connector instantiated from K, p is an interface

instantiated from π, and ø is a component instantiated from CT .

Component type and architecture type definitions satisfy the following properties:

• ∀ø : CT • ø = (Σø, Πø, σø, Λø, ξø, Ξø, Aø, Cø, T ) → ∀π1, π2 ∈ Πø • σ(π1) ∩
σ(π2) = ∅ i.e. a service request and a service response events can be defined only

once at only one interface type.

• ∀c : K • (c = (Ac, χc,R,M)) → (∀ρ1, ρ2 ∈ R • ρ1 = (A1, χ1, π1) ∧ ρ2 =

(A2, χ2, π2) → Compatible(π1, π2)) i.e. the interface types used for connecting
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components must be compatible.

Example 3 The anti-lock brake system (ABS) is a safety critical system which prevents

the wheels from locking while braking. The system is composed of (1) a central electronic

control unit (ECU), (2) four wheel speed sensors, one for each wheel, (3) four hydraulic

valves to release pressure, and (4) four hydraulic pumps to increase pressure. The sensors

continuously sense the speed of the wheels and inform the ECU. The ECU continuously

monitors the rotational speed of each wheel. When the ECU detects that a wheel is rotat-

ing significantly slower than the others it actuates the corresponding valve to reduce the

hydraulic pressure; hence, it reduces the braking force on that wheel. Then the wheel turns

faster and if the ECU detects that it is turning significantly faster than the other wheels

then it increases the pressure so the wheel slows. The process is repeated many times.

In this example, we focus only on the architecture part of the system. The architecture

of the ABS system is composed of 4 different component types: ECU, Sensor, Valve, Pump.

It also contains 3 different connector types: ECU-sensor(Ks), ECU-valve(Kv), and ECU-

pump(Kp), and 3 different interface types: ISensing, IReleasing, IPressing. ECU contains

all the interface types, Sensor contains only ISensing, Valve contains only IReleasing, and

Pump contains only IPressing. The system consists of one instance of ECU, 4 instances

of Sensor, 4 instances of Valve, and 4 instances of Pump. It also contains 12 connectors

where 4 instances of each connector type are created to link the ECU instance component

with the other instances of each type. The ECU instance includes 4 interface instances of

each interface type so that each of which can be attached to a connector.

Formally: let Πe = {ISensing, IReleasing, IPressing}, Πs = {ISensing},

Πv = {IReleasing}, and Πp = {IPressing}.

Let ECU = ((Σc, Πc, σc, Λc, ξc, Ξc, ∅, ∅, ∅),
Sensor = ((Σs, Πs, σs, Λs, ξs, Ξs, ∅, ∅, ∅),
V alve = ((Σv, Πv, σv, Λv, ξv, Ξv, ∅, ∅, ∅), and

Pump = ((Σp, Πp, σp, Λp, ξp, Ξp, ∅, ∅, ∅).
The connector role types are ρs1 = (∅, true, ISensing), ρs2 = (∅, true, ISensing),

ρv1 = (∅, true, IReleasing), ρv2 = (∅, true, IReleasing), ρp1 = (∅, true, IPressing),

and ρp2 = (∅, true, IPressing). The connector types are Ks = (∅, true, {ρs1, ρs2}, M),

Kv = (∅, true, {ρv1, ρv2}, M), and Kp = (∅, true, {ρp1, ρp2}, M). Figure 14 shows

the structure of the ABS.

The following attachment specifications are used to link the component types in the
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Figure 14: Structure of the ABS

system architecture:

∝1= ρs1 @ Ks ./ ISensing @ ECU ,

∝2= ρs2 @ Ks ./ ISensing @ Sensor,

∝1 ¢ ∝2,

∝3= ρv1 @ Kv ./ IReleasing @ ECU ,

∝4= ρv2 @ Kv ./ IReleasing @ V alve,

∝3 ¢ ∝4,

∝5= ρp1 @ Kp ./ IPressing @ ECU ,

∝6= ρp2 @ Kp ./ IPressing @ Pump,

∝5 ¢ ∝6.

The architecture type of the system is τ = ({ECU, Sensor, V alve, Pump},
{Ks, Kv, Kp}, {∝1, ∝2, ∝3, ∝4, ∝5, ∝6}, ∅, ∅).

The following components are created:

1. An instance of ECU : øE = (Σc, {ISensing1, ISensing2, ISensing3, ISensing4,

IReleasing1, IReleasing2, IReleasing3, IReleasing4,

IPressing1, IPressing2, IPressing3, IPressing4},
σc, Ξc, ∅, ∅, ∅),
2. 4 instances of Sensor: øs1 = ((Σs, {ISensings1}, σs, Ξs, ∅, ∅, ∅),
øs2 = ((Σs, {ISensings2}, σs, Ξs, ∅, ∅, ∅),
øv3 = ((Σs, {ISensings3}, σs, Ξs, ∅, ∅, ∅),
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and øs4 = ((Σs, {ISensings4}, σs, Ξs, ∅, ∅, ∅),
3. 4 instances of V alve: øv1 = ((Σv, {IReleasingv1}, σv, Ξv, ∅, ∅, ∅),
øv2 = ((Σv, {IReleasingv2}, σv, Ξv, ∅, ∅, ∅),
øv3 = ((Σv, {IReleasingv3}, σv, Ξv, ∅, ∅, ∅),
and øv4 = ((Σv, {IReleasingv4}, σv, Ξv, ∅, ∅, ∅),
4. 4 instances of Pump: øp1 = ((Σp, {IPressingp1}, σp, Ξp, ∅, ∅, ∅),
øp2 = ((Σp, {IPressingp2}, σp, Ξp, ∅, ∅, ∅),
øp3 = ((Σp, {IPressingp3}, σp, Ξp, ∅, ∅, ∅),
and øp4 = ((Σp, {IPressingp4}, σp, Ξp, ∅, ∅, ∅).

Attachments are created to link component instances. For example,

∝̃1 = ρs1 @ K̃s1 ./ ISensing1 @ øE ,

∝̃2 = ρs2 @ K̃s1 ./ ISensings1 @ øs1,

∝̃1 ¢ ∝̃2

is created to link the component øE with the component øs1 using the connector K̃s1. Other

attachment specifications are created in the same manner to link all components.

The architecture of the system is ({øE, øs1 . . . øs4, øv1 . . . øv4, øp1 . . . øp4},
{K̃s1 . . . K̃s4, K̃v1 . . . K̃v4, K̃p1 . . . K̃p4}, {∝̃1 . . . ∝̃24}). Figure 15 depicts the compo-

nent instances.

ECU
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ISensing

s1

ISensing1

Ks1

S1 S1 S1

v1
v4v3v2

IReleasing1

IReleasingv1

Kv1

p1

p2

p3

p4
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IPressingp4

Figure 15: ABS component instances
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4.4 Security Mechanism

There is a general consensus [ALRL04] that security is a composite concept that comprises

confidentiality, ”the prevention of any unauthorise discloser of information”, integrity,

”prevention of the unauthorized amendment or deletion of information”, and availabil-

ity, ”the prevention of the unauthorized withholding of information”. This section focuses

on confidentiality.

The component type definition includes a user attribute. This attribute is set at com-

ponent’s instantiation time with a value that denotes the identity of the client on whose

behalf the component executes. The value of user identity is assigned from a domain of

user identities defined at system level. In computer security [Bis03] the identity of the en-

tity executing a process is the basis for assigning and checking security access rights. We

assume a list of all possible identities defined at the system level. In our discussion, the user

identity, henceforth called user, is associated with the component at its instantiation time.

All access control to system resources assume that the association is correct. Verifying the

correctness of the identity and describing how it is associated to components falls outside

the scope of this thesis.

The security mechanism is based on role-based security access control (RBAC). The

mechanism restricts access of services and data parameters to authorized users only. In [AM07a]

we defined security property in terms of service security and data security.

• Service security states that: (1) for every request received at the interfaces of a

component, the request should be received from a user who has permission to request

the service, and (2) for every response sent by the component, the user who will

receive the response should have permission to receive it.

• Data security states that: (1) for every request received, for every data parameter in

the request, the user sending the request should have permission to access the data

parameter, and (2) for every response sent, for every data parameter associated with

the response, the user receiving the response should have permission to access the

data parameter.

If a user does not have a permission to send a request then the request will be ignored.

Also, if a user does not have a permission to receive a response, the response will not be

sent. On the same manner, if a user does not have a permission to access a data parameter,

the data parameter value is set to null value.
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Figure 16: Role-based Access Control

The main concepts in RBAC are user, group, role, and privilege. Figure 16 depicts

the elements of RBAC and their relations. A group defines a set of related users. A user

can be individual or belong to one or more groups. A role defines a security responsibility

that a user or a group of users can take in the system. A privilege defines a permission to

access a service or a data parameter. A role comprises many privileges. A privilege can be

assigned to many roles. The functions Group-User-Assignment, User-Roles-Assignment,

and Group-Roles-Assignment are used to assign users to groups, roles to users, and roles to

groups accordingly.

There are two types of privileges: service privilege and data parameter privilege. A

service privilege defines an access right for a service. Hence, it is associated with services

and roles using the function Role-Service-Assignment. A data parameter privilege defines

an access right for a data parameter. Therefore, it is associated with data parameters and

roles using the function Role-Data-Assignment.

Definition 6 Let User, Role, Group, and Privilege be defined as finite sets of users,

roles, groups, and privileges respectively. The following functions are used to define the

RBAC:

• Group-User-Assignment: GUA : Group → P User assigns for a group g ∈ Group

the users GUA(g) ∈ P User. A user may belong to more than one group. The

function UG : User → P Group gives for each user u ∈ User the set of groups

UG(u) ∈ P Group that he belongs to.

• User-Role-Assignment: URA : User → P Role assigns for a user u ∈ User the

roles URA(u) ∈ P Role. The function RU : Role → P User gives for each role

r ∈ Role the set of users RU(r) ∈ P User that has r.

• Group-Role-Assignment: GRA : Group → P Role assigns for a group g ∈ Group

the roles GRA(g) ∈ P Role. All users of a group are equally assigned the same set
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of roles. The function RG : Role → P Group gives for each role r ∈ Role the set

of groups RG(r) ∈ P Group that has r.

• Role-Service-Assignment: RSA : Role × Σ → P Privilege assigns for a role r ∈
Role and a service s ∈ Σ the set of privileges RSA(r, s) ∈ P Privilege. A service

access control matrix is SAC = P(Role, Σ,P(Privilege)).

• Role-Data-Assignment: RDA : Role×Λ → P Privilege assigns for a role r ∈ Role

and a data parameter λ the set of privileges RDA(r, λ) ∈ P Privilege. A data access

control matrix is DAC = P(Role, Σ,P(Privilege)).

• Functions:

– US : User × Σ → boolean returns true if a user u has a privilege to access a

service s i.e. US(u, s) → ∃r ∈ Role • r ∈ URA(u) ∧RSA(r, s) 6= ∅.

– USP : User×Σ× Privilege → boolean returns true if a user u has privilege

v on service s. The function UD : User×Λ → boolean returns true if a user u

has a privilege to access a data parameter λ i.e. UD(u, λ) → ∃r ∈ Role • r ∈
URA(u) ∧RDA(r, λ) 6= ∅.

– UDP : User × Λ × Privilege → boolean checks whether or not a user has a

specific privilege on a data parameter.

– GU : User × Group → boolean returns true if a user u is part of a group g

i.e. g ∈ UG(u).

– UR : User×Role → boolean returns true if a user u has role r i.e. r ∈ RU(u).

It is possible to extend the protected data to include not only the data parameters but also

the local attributes of a component. This enables protecting the inner state variables of a

component from any unauthorized change.

The tuple (User, Group, Role, Privilege, SAC, DAC) defines the state of the security

mechanism at any instance. The state changes with time as different security specifications

are modified, for example when users are assigned or denied roles or when the privileges

associated with roles are changed. We assume that there is a security officer component

which is responsible for maintaining the state of the security mechanism. Every system

that requires security mechanism has this component as part of it. A security policy Υ

comprises service security and/or data security requirements. It is defined as an expression,
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using first order predicate logic, that involves any conjunctions of the RBAC functions in

Definition 6. The result of a security policy expression reflects the state of the security

mechanism at the time of evaluating the expression.

A component which has no security restrictions will respond to every stimulus received

by it. The introduction of security mechanism will enrich its behavior by forcing (1) an

analysis of the stimulus received before processing it internally, and (2) an analysis of the

response before sending it. Therefore, the service definition will be extended to include

security policies as follows.

Definition 7 The set of security properties is Ψ = {ψ = (s, x, Υ) | s ∈ Σstimulus, x ∈
Σresponse ∪ Λs ∪ A} where Λs is the set of data parameters of the stimulus s and Υ is a

security policy defined for the relation between s and x. There are three possible relations

between s and x: either x ∈ φ(s) is the response for s, x ∈ Λs is a data parameter

associated with s, or x ∈ A is an attribute. Ψ is divided into a set of service security

Ψservice and a set of data security Ψdata such that Ψ = Ψservice ∪Ψdata.

The service definition is extended to include secure services:

Θ : Σstimulus×Ω×Γ×N×Ψservice×PΨdata → Σresponse×PU×S×N×PΨservice×PΨdata

Note that, in the service definition:

• On the left hand side, Ψservice includes service security of the stimulus and PΨdata

includes the data security properties of the data parameters associated with it.

• On the right hand side, PΨservice includes service security for the response and the

actions in S, whereas PΨdata includes data security for the data parameters associ-

ated with the response and actions and the update statements in PU .

The contract Ξ is extended to include the security properties: Ξ = (Θ, Ω, Γ, P , Ψ).

Filtering services:

The following part explains how security properties are used to filter the behavior of a

service.

The reactions of a component are filtered by the security properties defined for its ser-

vices. As mentioned earlier, the identity of the user on whose behalf the component is

executing is assumed to be associated with the component at its initialization time. There-

fore, when a component requests a service, it provides the identity of the user as part of the
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request. Let s be a stimulus and r be its corresponding response, let Λs be the set of data

parameters associated with s and Λr be the set of data parameters associated with its cor-

responding response r. For convenience, we define the predicates: PROCESS(x) which

means that event x will be processed by the component, ACCESS(λ) which means that

the value λ will be accessed and used by the service, IGNORE(x) which means the event

x will be ignored i.e. it will not trigger any service processing or change in the state of

a component, NULL(v) which means v will be set to a null value. We use the function

assign(α) = v which means that the value of the attribute α will be set to v. The behavior

of a service

Θ : Σstimulus×Ω×Γ×N×Ψservice×PΨdata → Σresponse×PU×S×N×PΨservice×PΨdata

is determined according to the following rules (R1 and R2 are related to service requests,

whereas R2,R3,R4 are related to service provision):

R1: ∀ψ ∈ Ψservice, ψ = (s, r, Υ), ( (Υ → PROCESS(s)) ∨ (¬Υ → IGNORE(s)) )

i.e. if the security policy associated with the service evaluates to true then the stimu-

lus will be accepted and processed, otherwise, the stimulus will be ignored.

R2: ∀ψ ∈ Ψdata, ∀λ ∈ Λs, ψ = (s, λ, Υ) → ( (Υ → ACCESS(λ)) ∨ (¬Υ →
NULL(λ)) ) i.e. for all the data parameters associated with the stimulus, if the secu-

rity policy associated with a data parameter evaluates to true then the data parameter

will be used, otherwise, the data parameter will be set to null value.

R3: ∀ψ ∈ Ψdata, ∀λ ∈ Λr, ψ = (s, λ, Υ) → ( (Υ → ACCESS(λ)) ∨ (¬Υ →
NULL(λ)) ) i.e. for all the data parameters associated with the response, if the

security policy associated with a data parameter evaluates to true then the data pa-

rameter will be used, otherwise, the data parameter will be set to null value.

R4: ∀ψ ∈ Ψservice, ∀y ∈ S, ψ = (s, y, Υ) → ( (Υ → PROCESS(y)) ∨ (¬Υ →
IGNORE(y)) ) i.e. if there is a security policy associated with triggering an ac-

tion within the service then the action will be triggered only if the security policy

evaluates to true.

R5: ∀ψ ∈ Ψdata, ∀y ∈ U , y = (assign(α) = v) ∧ ψ = (s, y, Υ) → ( (Υ →
assign(α) = v) ∨
(¬Υ → NULL(α)) ) i.e. if there is a security policy associated with an update state-

ment then the update statement will be executed only if the security policy evaluates

to true, otherwise, the attribute will be set to null value.
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Example 4 Consider a fingerprint-based car security system mounted on the door of a car.

The system consists of three components: (I) a remote control which comprises a biometric

sensor that collects user fingerprint, buttons that trigger the required actions such as start-

ing the car and locking/unlocking the doors, and a small monitor to show information such

as the current status of the car, next maintenance time, and details about the last trip, (II) a

controller which is responsible for starting the car, locking, unlocking the doors, and send-

ing information about the car, and (III) the security officer component which is responsible

for defining and maintaining the security configuration. The security configuration at an

instance includes (1) two roles: driver and passenger, (2) one group : family, (3) four priv-

ileges: start the car, lock, unlock, and view information, and (4) 4 users: father, mother,

son, daughter. A driver has all privileges, whereas a passenger has only the privilege to

lock and unlock the doors. The father has a driver role, whereas the other family members

have passenger role. In this example we focus only on the representation of the security

configuration and the secure service specification.

Let User = {father,mother, son, daughter} be the set of users,

Group = {family}, and GUA(family) = {mother, son, daughter} assigns the mother,

son, and daughter to the family group.

Let Role = {driver, passenger} be the set of roles, GRA(family) = {passenger}
assigns passenger role to family group, and URA(father) = {driver} assigns driver role

to the father.

Let Privilege = {start, lock, unlock, view} be the set of privileges,

RSA(driver) = {start, lock, unlock, view} assigns privileges to the driver role, and

RSA(passenger) = {lock, unlock} assigns privileges to the passenger role.

Let Σ = {start, lock, unlock, view, switchOn, open, close, show} be the set of events,

Λ = {status, info} be the set of data parameters, and ξ(show) = {status, info} assigns

data parameters to the show event.

Let u ∈ User be the current user using the remote control (the identity is recognized when

the user swipes his finger on the scanner), the security policies are:

• ψ1 = (start, switchOn, US(u, start) ∨ UR(u, driver)) is a service security prop-

erty associated with the stimulus start.The security policy states that: either the user

has the start privilege or he has the driver role;

• ψ2 = (lock, close, US(lock) ∨ UG(u, family) ∨ UR(u, driver)) is a service

security property associated with the stimulus lock. The security policy states that:
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either the user has the lock privilege, he is member of the family group, or he has the

driver role;

• ψ3 = (unlock, open, US(lock) ∨ UG(u, family) ∨ UR(u, driver)) is a service

security property associated with the stimulus unlock. The security policy states that:

either the user has the lock privilege, he is member of the family group, or he has the

driver role;

• ψ4 = (view, show, US(u, show) ∨ UR(u, driver)) is a service security property

associated with the stimulus view. The security policy states that: either the user has

the show privilege or he has the driver role;

• ψ5 = (show, status, UD(u, status) ∨ UR(u, driver)) is a data security property

associated with the data parameter status. The security policy states that: either the

suer has the status privilege or he has the driver role; and

• ψ6 = (show, info, UD(u, info) ∨ UR(u, driver)) is a data security property

associated with the data parameter info. The security policy states that: either the

suer has the info privilege or he has the driver role.

Thus the set of security properties Ψ = {ψ1, ψ2, ψ3, ψ4, ψ5, ψ6}. Let Ω = {ω1, ω2, ω3, ω4}
where ω1 = (∅, start, switchOn, true), ω2 = (∅, lock, close, true),

ω3 = (∅, unlock, open, true), ω4 = (∅, view, show, true). Let Γ = {γ1, γ2, γ3, γ4} where

γ1 = (∅, true, start, switchOn,∞), γ2 = (∅, true, lock, close,∞),

γ3 = (∅, true, unlock, open,∞), γ4 = (∅, true, view, show,∞). Service specifications

are:

• Θ(start, ω1, γ1, t1, ψ1, ∅) = (switchOn, ∅, ∅, t2, ∅, ∅}),

• Θ(lock, ω2, γ2, t1, ψ2, ∅) = (close, ∅, ∅, t2, ∅, ∅}),

• Θ(unlock, ω3, γ3, t1, ψ3, ∅) = (open, ∅, ∅, t2, ∅, ∅}), and

• Θ(view, ω4, γ4, t1, ψ4, ∅) = (show, ∅, ∅, t2, ∅, {ψ5, ψ6}).

4.5 Behavior

The behavior of a component is determined by its services (stimulus and response) and the

constraints defined over them. For a component ø = (Σø, Πø, σø, Λø, ξø, Ξø, Aø, Cø, Tø)
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where Ξø = (Θø, Ωø, Γø,Pø, Ψø) we define the behavior at an interface π as a set S(π) of

timed sequences, where each sequence $ ∈ S(π) contains only stimulus and response

events (in addition to actions triggered by the response and occurrence time of each event)

belonging to σ(π) ∪ Σø internal, and satisfies the following conditions:

S1 for every stimulus s in $, s ∈ σ(π), there exists exactly one response r such that

r ∈ φ(s)∧ r ∈ $. The stimulus s may occur at many different times in $; therefore,

let s[i] denote an occurrence of s in $ then for every s[i] there exists exactly one

response r[i] where r[i] ∈ φ(s), i : N, i < number of events in $. It is possible

to have different responses for different occurrences of the same stimulus (based on

data constraints in Ωø);

S2 t(r[i]) ≥ t(s[i]), where t(.) is the time function for event occurrences and r[i], s[i]

denote an occurrence of s and r in $. Also, t(s[i]) ≥ t(s[j])∧ t(r[i]) ≥ t(r[j]), i, j :

N, i > j ∧ i, j < number of events in $. This means that an event may occur at

different times in the timed sequence where always the time of the later occurrence is

greater than the time of the former occurrence of the same event. Moreover, if there

is an action a, a ∈ S ∧ a ∈ Σø internal, defined in the reactivity then t(a) ≥ t(s);

S3 for every stimulus s ∈ $, response r ∈ $ ∧ r ∈ φ(s): if there is a time constraint

γ = (A, s, r, δ) ∧ γ ∈ Γø then |t(r)− t(s)| ≤ δ;

S4 for every stimulus s ∈ $, response r ∈ $∧r ∈ φ(s): if there is a data constraint ω =

(A, s, r, χ) ∧ ω ∈ Ωø defined over the data parameters of s then the data constraint

is satisfied i.e. χ → true. If there are many data constraints defined on the data

parameters of s then only one of them is satisfied;

S5 for every stimulus s ∈ $, response r ∈ $ ∧ r ∈ φ(s): if there is a security property

ψ = (s, r, Υ) defined for the stimulus then Υ → true ;

S6 for every stimulus s ∈ $, response r ∈ $ ∧ r ∈ φ(s): for every data parameter

d ∈ ξ(s) and d′ ∈ ξ(r) ∧ r ∈ φ(s) if there is a security property ψs = (s, d, Υs) or

ψr = (r, d′, Υr) then Υs ∧Υr → true;

S7 for every action a, a ∈ $ ∧ a ∈ S: if there is a security property ψ = (s, a, Υ)

defined for the action then Υ → true ;
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S8 for every update statement u for an attribute α, u ∈ U : if there is a security property

ψ = (s, α, Υ) defined for the update then Υ → true; and

S9 for every safety property p ∈ Pø, $ satisfies p ($ ` p).

Notice that [S1] assures predictability, [S2] and [S3] assure timeliness, [S4] and [S9] assert

that safety requirements are satisfied, and [S5], [S6], [S7], and [S8] asserts that security

properties are satisfied.

Definition 8 The behavior of a component is the arbitrary interleaving of the behaviors

at the interfaces of the component. Let Πø = {π1, π2, . . . , πn} be the set of interfaces and

S(Π) = {S(π1), S(π2), . . . S(πn)} be the set of its corresponding behaviors where S(πi)

is the behavior at interface πi. We define the behavior of a component as the set S(Πø) of

timed sequences where each sequence $ ∈ S(Πø) is constructed by interleaving sequences

from S(Π) such that $ = $19$29· · ·9$n where $1 ∈ S(π1)∧$2 ∈ S(π2)∧· · ·∧$n ∈
S(πn) satisfying the following conditions:

B1 : if a stimulus s is defined at one interface s ∈ σ(πi) and the response is defined at

another interface r ∈ φ(s) ∧ r ∈ σ(j), i, j : N, i, j ≤ n ∧ i 6= j, this means that

s ∈ $i ∧ r ∈ $j , then in the interleave sequence $: s, r ∈ $ ∧ t(s) ≤ t(r) always;

and

B2 : similar to [B1], all the above conditions ([S1],[S2],[S3],[S4],[S5],[S6],[S7],[S8]

and [S9]) can be redefined for the interleave sequences and must be satisfied. Note

that: S ⊆ Σ.

4.6 System Definition

The system definition includes two types of components, hardware and software, and con-

figuration. A hardware component is a special type of component on which the software

components will be deployed i.e. a deployment unit. Resource capabilities of deployment

units are specified as attributes. For example, a hardware component definition can include

attributes such as the number of CPUs and the memory capacity. We define a standard

attribute called type where its value is either software or hardware. If this attribute is not

defined in a component then it is assumed to be a software component. The system config-

uration specification includes instances of the defined software and hardware component
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types and deployment specification. Deployment Specification are assignments of software

instances to hardware instances using the Deploy function, Deploy : CTs → CTh where

∃types ∈ As,∃typeh ∈ Ah • assign(typeh) = hardware ∧ assign(types) = software.

Configuration is defined as a triple (CTs, CTh, Deploy) where CTs is a finite set of soft-

ware components, CTh is a finite set of hardware components.

4.7 Composition

Informally, composition means “gluing together” two or more components to form a new

component. A given set of components can be composed in different ways to achieve

different results. However, the challenging aspect is to develop a set of rules for a stated

requirements of trustworthiness to be preserved in a composition. It should be possible

to reason about the properties of the composite component relative to the properties of

the constituent components. In this respect composition of components is different from

component integration [CL02].

In this section we propose a composition rule that composes both the structural part

and the contract part of components. For example, composing two components ø1 and ø2

results in a new composite component ø such that: (1) the structural part of ø results from

gluing the compatible interfaces of ø1 and ø2, and (2) the contract part of ø results from

composing the contracts of ø1 and ø2. The composition should preserve the requirements of

trustworthiness ([S1], [S2], [S3], [S4], [S5], [S6], [S7], [S8], [S9]). In this section we define

the composition of two component types CT1 and CT2.

Definition 9 Let CT1 = (Σ1, Π1, σ1, Λ1, ξ1, Ξ1,A1, C1, T1) where Ξ1 = (Θ1, Ω1, Γ1,P1, Ψ1)

and CT2 = (Σ2, Π2, σ2, Λ2, ξ2, Ξ2,A2, C2, T2) where Ξ2 = (Θ2, Ω2, Γ2,P2, Ψ2), their cor-

responding architecture types T1 and T2 are hidden. The compositional rule defines a

unique CT which can have many architectures T .

The composition CT = (Σ, Π, σ, Λ, ξ, Ξ,ACT , CCT , T ) where Ξ = (Θ, Ω, Γ,P , Ψ) is de-

fined using the following rules:

C1 (Interfaces): Π = {π|(π ∈ Π1 ∧@Q ∈ Π2 •Compatible(π, Q))∨ (π ∈ Π2 ∧ @Q ∈
Π1 • Compatible(π, Q))}: compatible interface types are used to connect the com-

ponents together. They form the internal interface types of the composite component,

whereas non-compatible interface types form the external interface types.
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C2 (Events): Σ = Σ1 ∪ Σ2 such that:

- Σinternal = Σ1 internal∪Σ2 internal∪{s | (s ∈ Σ1 input∪Σ1 output, s ∈ σ(π)∧π ∈
Π1∧∃Q ∈ Π2•Compatible(π,Q)) ∨ (s ∈ Σ2 input∪Σ2 output, s ∈ σ(π)∧π ∈
Π2 ∧ ∃Q ∈ Π1 • Compatible(π, Q))}: the events defined at the compatible

interface types are regarded as internal events for the composite component.

- Σoutput = Σ1 output∪Σ2 output \ {s | (s ∈ Σ1 output, s ∈ σ(π)∧π ∈ Π1∧∃Q ∈
Π2 • Compatible(π, Q)) ∨ (s ∈ Σ2 output, s ∈ σ(π) ∧ π ∈ Π2 ∧ ∃Q ∈
Π1 • Compatible(π,Q))}

- Σinput = Σ1 input ∪ Σ2 input \ {s | (s ∈ Σ1 input, s ∈ σ(π) ∧ π ∈ Π1 ∧ ∃Q ∈
Π2 • Compatible(π,Q)) ∨ (s ∈ Σ2 input, s ∈ σ(π) ∧ π ∈ Π2 ∧ ∃Q ∈
Π1 • Compatible(π,Q))}

C3 (Data Parameters): Λ = Λ1 ∪ Λ2

C4 (Event’s data parameters): ∀s ∈ Σ, ξ(s) = {ξ1(s) | s ∈ Σ1} ∪ {ξ2(s) | s ∈ Σ2}

C5 (Interface’s events): ∀π ∈ Π, σ(π) = {σ1(π) | π ∈ Π1} ∪ {σ2(π) | π ∈ Π2}

C6 (Attributes): ACT = A1 ∪ A2

C7 (Constraints): CCT = C1 ∪ C2

C8 (Architecture): T = {τ} where τ = {O,N ,H,Aτ , Cτ} such that:

- The set of component types: O = {CT1, CT2}
- The set of connector types: ∀π1 ∈ Π1,∀π2 ∈ Π2•Compatible(π1, π2) → ∃K ∈
N , K = (Ak, Ck, {ρ1, ρ2},M) ∧ ρ1 = (A1, χ1, π1) ∧ ρ2 = (A2, χ2, π2)

- The set of attachments: ∀π1 ∈ Π1, ∀π2 ∈ Π2, Compatible(π1, π2) → ∃ ∝1

¢ ∝2,∃K ∈ N , ∝1= ρ1 @ K ./ π1 @ CT1∧ ∝2= ρ2 @ K ./ π2 @ CT2

There could be many architecture types for CT in T because not all the interfaces in

the resulting connector types should be linked. Also, different component instances

can have different number of connector and interface instances which enables the

component to have different possible dynamic architectures.

C9 (Services): Θ = Θ1 ∪Θ2
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C10 (Data Constraints): Ω = Ω1 ∪ Ω2

C11 (Time Constraints): Γ = Γ1 ∪ Γ2

C12 (Safety Properties): P = P1 ∪ P2

C13 (Security Properties): Ψ = Ψ1 ∪Ψ2

The security officer is defined at a system level. Therefore, RBAC functions are not affected

by the composition.

We assert that the composition rule stated in Definition 9 preserves the requirements of

safety and security ([S1] . . . [S9]).

Theorem 1 The composition of two components that satisfy the requirements of safety and

security ([S1] . . . [S9]) results in a component that satisfies these requirements.

Proof 1 Let ø1 and ø2, instances of CT1 and CT2 respectively, be two components that

satisfy the requirements of safety and security ([S1] . . . [S9]). Let ø be an instance of CT ,

the composition of CT1 and CT2 according to Definition 9. Let S1 and S2 be behaviors

representing the set of all possible observed sequences of ø1 and ø2 respectively, S be

the behavior of the composite component ø representing the set of all possible observed

sequences of ø, S(π) be the behavior at an interface instantiated from the interface type

π ∈ Π in ø. We want to proof that S satisfies the requirements of safety and security

([S1] . . . [S9]).

We use the following properties in the proof, which are derived from Definition 9:

Prop.1 From C5 in Definition 9 and from Definition 4, Every event is associated with only

one interface type: ∀π1, π2 ∈ Π, σ(π1) ∩ σ(π2) = ∅,

Prop.2 From C1, every interface type in the composite component belongs only to one com-

ponent definition CT1 or CT2: ∀π ∈ Π • (π ∈ Π1 ∨ π ∈ Π2) ∧ (π /∈ Π1 ∩ Π2),

and there are no two interface types that are compatible in the composite component:

@π1, π2 ∈ Π, Compatible(π1, π2).

Prop.3 The behavior of a component is the arbitrary interleaving of the behaviors at the

interfaces of a component. From [Prop.2], Π ⊆ Π1 ∪ Π2, excluding the compatible

interface types. From Definition 8, the observed behavior of the composite com-

ponent is the arbitrary interleaving of the timed sequences of the non-compatible

interface types.
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Prop.4 From Definition 8, the behavior of an interface π is the set of timed sequences S(π).

From [Prop.2] an interface in the composite component either belongs to CT1 or

to CT2. Since, CT1 and CT2 satisfy ([S1] . . . [S9]) then ∀π ∈ Π1 ∪ Π2, ∀$ ∈
S(π), $ ` ([S1] . . . [S9]) i.e. every timed sequence in the behavior of every interface

satisfies ([S1] . . . [S9]).

[Prop.3] defines the behavior of the composite component and [Prop.4] shows that the

timed sequences of the behavior of the composite component satisfy ([S1] . . . [S9]). There-

fore, the behavior of the composite component is an interleaving of sequences which al-

ready satisfy ([S1] . . . [S9]). Therefore,we need to prove that the composition rule doesn’t

violate any of ([S1] . . . [S9]) so that the sequences remain to satisfy ([S1] . . . [S9]) after

interleaving.

S1 for every stimulus there is a response: We need to show that stimulus and response

relations exist after composition and stimulus and response events are still available

in interface definitions after composition: From C2, the events of CT1 and CT2 are

preserved in CT after composition. From C5, interface definitions preserve their

events after composition. From C9, service definitions doesn’t change after composi-

tion. Therefore, stimulus-response relations doesn’t change after composition. This

means that in every timed sequence of every interface behavior, for every stimulus

there exists one response. Since the interleaving doesn’t change the time sequences

then the behavior of the composite component is an interleaving of timed sequences

where for every stimulus in each sequence there exists one response. Therefore, in

the result interleaved sequence, for every stimulus there exists one response.

S2 response occurs after stimulus: From B1 in Definition 8, the interleaving preserves

the timing of events. Therefore, building on the previous proof, for every timed se-

quence in the behavior of the composite component the time of the response occurs

after the time of the stimulus.

S3 |t(r) − t(s)| ≤ δ: From the previous two proofs, stimulus and response relations

are preserved and their timing order is preserved. Therefore, we need to prove that

time constraints are preserved and their associations with stimulus-response rela-

tions are preserved in the composition: From C11, time constraints are preserved in

the composition. From C9, service definitions are preserved; therefore, the associa-

tions between time constraints and services are preserved in the composition. Since
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the interleaving doesn’t change the occurrence time of events in a sequence then

t(s), the time of a stimulus s, before the interleaving equals t(s) after the interleav-

ing. Also, t(r), the time of the corresponding response remains the same. Therefore,

|t(r)− t(s)| is the same before and after the interleaving and since time constraints

are preserved then δ is the same. Thus |t(r)− t(s) ≤ δ| is preserved.

S4 data constraints are preserved: We need to prove that the data constraints are pre-

served and that the evaluation of the logical expression doesn’t change before and

after the interleaving. (1) From C10, data constraints are preserved in the composi-

tion. From C9, service definitions are preserved. Therefore, the association between

data constraints and stimulus-response are preserved. Similar to the previous proof,

for every sequence, any data constraint defined before the interleaving will remain

after the interleaving. (2) The evaluation of the logical expression depends on the

values of event’s data parameters and on the attributes. Therefore, we need to prove

that the sequences of the other component doesn’t affect the values of data param-

eters and attributes so that the evaluation of the logical expression doesn’t change

before and after the interleaving: First, each event defines a set of data parameters.

The values of the data parameters are not affected by other events because they are

defined locally for the event. Therefore, the interleaving doesn’t affect the values of

data parameters of events. Second, each component define its own set of attributes.

The services defined in each component affect only the attributes defined for that

specific component. Since, CT1 and CT2 satisfy [S4], the time sequences of each

component satisfy [S4]. Therefore, each interleaved sequence consists of two parts.

One part from CT1 and another part from CT2. Since each part doesn’t affect the at-

tributes of the other part then the evaluation of logical expressions remains the same

after interleaving. Therefore, the composition preserves [S4].

S5,S6,S7,S8 security properties are preserved: We need to prove that the security properties are

preserved in the composition and that the behavior of the composite component does

not violate the defined security properties. First, From C3, the data parameters are

preserved. From C4, the associations between events and data parameters are pre-

served. From C9 and C13, the defined security properties are preserved in the com-

position. Second, from [Prop.4], each sequence of ø1 and ø2 satisfies the security

properties before the interleaving. Therefore, in each sequence of ø1 and ø2, for ev-

ery security policy, if the security policy of a service security evaluates to false then
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an event will be filtered out and not included in the sequence. Also, if the security pol-

icy of a data security evaluates to false then the value of the data parameter will be

set to Null value. Since interleaving does not change events and does not introduce

new events then any event that exists in the sequences of will exist in the interleaving

and any blocked event that does not exist in the sequences of ø1 and ø2 will not exist

in the interleaving. Therefore, for any event that exists in an interleaved sequence,

either there is no service security defined for it or the security policy evaluates to

true in the original sequence before the interleaving. Data security can be proved

in similar way. Information flow is prevented because response events and data pa-

rameters associated with them are filtered based on the user to whom the service is

provided. Therefore, in the interleaved sequence, if the destination user doesn’t have

privilege then events and data will be filtered.

S9 safety properties are preserved: We need to proved that safety property definitions

are preserved and that the behavior of the composite component does not violate a

safety property which is satisfied by any of its constituent components. First, from

C13 and [Prop.4], safety property definitions are preserved. Second, ∀p ∈ P , p ∈
P1 ∨ p ∈ P2. Case 1 (p ∈ P1): 1) p is defined over the attributes and evens of

CT1, 2) ∀$1 ∈ S1, $1 ` p, 3) ∀$ ∈ S, $ = $1 9 $2 where $2 ∈ S2 i.e.

each sequence of the behavior of the composite component is defined from two parts:

one part comes from the behavior of ø1 and the second part from the behavior of ø2.

From 1, $1 ` p. Since a safety property is defined over events and attributes of a

specific component then p is defined over Σ1 and A1. Since $2 consists of events

that belong to Σ2 then these events doesn’t violate p. Therefore, p is satisfied after

the composition. Case 2: it can be proved in a similar way to case 1.

4.8 Summary

This chapter presented a formal description of the structure, contract, and behavior of trust-

worthy components. The structural definition included the essential elements of component-

based development. The contract definition included timeliness, safety and security prop-

erties. The behavior specification of components are generated automatically as extended

timed automata. Chapter 6 provides detail description of the behavior specification. Reli-

ability and availability properties will be discussed on Chapter 7. This chapter introduces
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a composition theory that includes rules for composing the structural part and the contract

part of trustworthy components. We provided a proof that the composition theory preserves

the defined requirements of timeliness, safety, and security.
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Chapter 5

TADL: Trustworthy Architecture
Description Language

Formal notations are difficult to use and communicate among software architects. In order

to comprehend and use the formally expressed content, some mathematical background

and expertise in the formal language’s semantics are essential. Therefore, we created an

architecture description language (TADL), which is a light-weight formal notation based

on our formalism. TADL provides complete descriptions of our trustworthy component

model in a high level language that can be understood by software engineers. This chapter

introduces the TADL syntax for architectural elements.

The formalism described in Chapter 4 is an abstract description of a component. Fig-

ure 17 shows the meta model of a component as well as a system that can be composed of

components. There is a one to one correspondence between the formal elements and the

elements shown in Figure 17.

5.1 Meta-Architecture

Our component model is a meta-architecture, an architecture type from which different

system architectures can be created. Figure 17 depicts the component model. The main

building blocks of the component model are component definition, component architec-

ture definition, contract, security mechanism, system definition, package, constraint, and

attribute. All the elements in the model inherit from the System Element which contains
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Figure 17: Trustworthy Component Model
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ElementType < name > {
(Attribute < name >)*;

}

Figure 18: The TADL syntax of Element Type

basic class definition along with attributes and constraints. A component definition in-

cludes an architecture definition, the internal structure of the component implementation,

and contract specification, a description of services together with restrictions that constrain

the behavior of component interactions. In addition, a component definition includes a se-

curity mechanism to filter the services and data that are communicated through interfaces.

The system definition contains hardware components and system configuration specifica-

tion. A package contains a collection of definitions of related elements. The formal defi-

nitions of the elements of the component model has already been introduced in Chapter 4.

The following section describes the TADL syntax definition of the elements of the meta

architecture shown in Figure 17. Note that, reliability and availability properties are not

shown in Figure 17. They will be introduced in Chapter 7.

5.2 TADL

In this section we give a concrete syntax of a component description and call the lan-

guage of description TADL. Consequently, corresponding to each element of the compo-

nent model in Figure 17 there is a description in TADL. Moreover, the abstract formal

description given in Chapter 4 for each element is written in a concrete syntax within the

structural element of this unit.

In TADL, every element of the meta-architecture is described separately. The rationale

behind this is to increase reuse of elements for designing different systems and allow re-

configuration without affecting other definitions. The description of an element contains:

(1) element type, (2) element name, and (3) specification of the contents of the element.

Figure 18 gives an example of an element specification. Note that (Attribute < name >)∗
means that 0 or more attributes can be defined as part of the element.
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ParameterType < name > {
< DataType >< name >;
Default < value >;
Constraint < FOPL >;

}

EventType < name > {
(Attribute < name >)*;
Constraint < FOPL >;
(ParameterType < name >)*;
Direction < name >;

}

Attribute< name > {
< DataType >< name >;
Default < value >;
Constraint < FOPL >;

}

Figure 19: The TADL syntax of Parameter Type, Event Type, and Attribute

5.2.1 Event and data parameter

The formal description of a data parameter, attribute, and event, which were given in Chap-

ter 4, are: λ = (D, ν, χν), α = (D, να, χαν), and e = (Λe,Ae, χe, %e). The TADL syntax of

the data parameter, attribute, and event type are presented in Figure 19. The TADL syntax

of the data parameter and attribute include data type, default value, and constraint. The

TADL syntax of the event type includes a set of attributes, a constraint, data parameters,

and the direction of the event.

Figure 20 shows an example specification of an event type called ControlTemperature.

It has one data parameter of integer type, CurrentTemperature, and two attributes, priority

and WCET. The event type definition includes one constraint stating that the value of the

current temperature data parameter must not exceed 100 or be less than -25.
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ParameterType CurrentTemperature{
DataType Integer;}

Attribute Priority{
DataType Integer;
Default 1;}

Attribute WCET{
DataType Integer;
Default 30;}

EventType ControlTemperature{
CurrentTemperature temp;
Priority p;
WCET w;
Constraint temp ≥ −25 ∧ temp ≤ 100;
Direction input;

}

Figure 20: An example definition of an event type

5.2.2 Contract

The formal description of a time constraint, data constraint, service, safety property, se-

curity property, and contract, which were given in Chapter 4, are: ω = (Aω, s, r, χω),

γ = (Aγ, χγ, s, r, δ), Θ : Σstimulus × Ω × Γ × N × Ψservice × PΨdata → Σresponse ×
PU ×S×N×PΨservice×PΨdata, p = (Σp, χ), ψ = (s, x, Υ), and Ξ = (Θ, Ω, Γ, P , Ψ).

Figure 21 shows the TADL syntax of a time constraint, data constraint, service, safety

property, security policy, and contract.

The TADL syntax of time constraint, data constraint, and service include a set of at-

tributes and two event types defining the request event and the response event and two

predicates specifying which event is the request (RequestService) and which event is the

response (ResponseService). The TADL syntax of time constraint includes the maximum

safe time, whereas the TADL syntax of data constraint includes a logical expression stated

using first order predicate logic (FOPL). The syntax definition of a service includes a data

84



constraint, time constraint, security policies, update statements, and action event types as-

sociated with the service. The TADL syntax of a safety property and security policy include

a set of event types, a set of data parameter types, set of attributes, and a logical expression.

The TADL syntax of a contract includes one or more services, a set of safety properties,

and a set of security policies.

An example of a contract specification is presented in Figure 22. It includes three Event

types: ControlTemperature (defined earlier), Raise, and Lower. ControlTemperature repre-

sents a request for service aimed to control the current temperature in a room. In response,

either Raise or Lower should be executed. Therefore, there is a need to define two data

constraints to specify the conditions based on which either Raise or Lower will be selected

as a response to ControlTemperature. The two data constraints are RaiseDataConstraint

and LowerDataConstraint. The first constraint requires the current temperature, which

is a data parameter defined in ControlTemperature, to be less than or equal to 20. The

second constraint requires the current temperature to be more than 20. Two services are

defined: Control-Raise, which will be activated if the data constraint RaiseDataConstraint

evaluates to true, and Control-Lower, which will be activated if the data constraint Low-

erDataConstraint evaluates to true. Time constraint specification mandates the interval of

time between the two actions ”request to control the temperature” and ”raising the temper-

ature to the desired level” be less than or equal to 45 units of time. The time constraint is

associated with the Control-Raise service. Also, a safety property is defined as part of the

contract.

5.2.3 Component architecture

The structural description of a component includes definitions of interface types, connector

role types, connector types, architecture types, and component types. Their corresponding

formal definitions are: π = (Aπ, χπ, σ), ρ = (Aρ, χρ, π), K = (Ak, χk, R,M),

τ = (O, N , H, Aτ , Cτ ), and CT = (Σ, Π, σ, Λ, ξ, Ξ, Ac, Cc, T ). Figure 23 presents

the TADL syntax of these elements. An interface definition includes a set of attributes, a

constraint, and one or more event types. The TADL syntax of a connector role type includes

a set of attributes, a constraint, and an interface type. The TADL syntax of a connector type

includes one or more connector role types in addition to a set of attributes and a constraint.

Also, it includes communication method. The TADL syntax of an architecture type in-

cludes one or more component types, one or more connector types, a set of attributes, a set
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TimeConstraint < name > {
(Attribute < name >)*;
Constraint < FOPL >;
EventType < request− name >;
RequestService
(< request− name >);
EventType < response− name >;
ResponseService
(< response− name >);
float MaxSafeT ime;

}

DataConstraint < name > {
(Attribute < name >)*;
EventType < request− name >;
RequestService
(< request− name >);
EventType < response− name >;
ResponseService
(< response− name >);
Constraint < FOPL >;

}

ContractType < name > {
(Service < name >)+;
(SafetyProperty< name >)*;
(SecurityPolicy< name >)*;

}

Service < name > {
EventType < request− name >;
RequestService
(< request− name >);
EventType < response− name >;
ResponseService
(< response− name >);
DataConstraint < name >;
TimeConstraint < name >;
(Update statements)*;
(EventType < action− name >)*;
(SecurityPolicy< name >)*;

}

SafetyProperty < name > {
(EventType < name >)*;
(ParameterType < name >)*;
(Attribute< name >)*;
Constraint < FOPL >;

}

SecurityPolicy < name > {
(EventType < name >)*;
(ParameterType < name >)*;
(Attribute< name >)*;
Constraint < FOPL >;

}

Figure 21: The TADL syntax of Time Constraint, Data Constraint, Service, Safety Property,
and Contract
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EventType Raise{. . . };
EventType Lower{. . . };

DataConstraint RaiseDataConstraint{
ControlTemperature Control;
RequestService(Control);
Raise raise;
ResponseService(raise);
Constraint Control.temp ≤ 20;
}

DataConstraint LowerDataConstraint{
ControlTemperature Control;
RequestService(Control);
Lower lower;
ResponseService(lower);
Constraint Control.temp > 20;
}

TimeConstraint RaiseTimeConstraint{
ControlTemperature Control;
RequestService(Control);
Raise raise;
ResponseService(raise);
float MaximumSafeTime = 45;
}

Service Control-Raise{
ControlTemperature Control;
RequestService(Control);
Raise raise;
ResponseService(raise);
RaiseDataConstraint dcl;
RaiseTimeConstraint tc1;}

Service Control-Lower{
ControlTemperature Control;
RequestService(Control);
Lower lower;
ResponseService(lower);
LowerDataConstraint dcl;}

SafetyProperty Safety{
ControlTemperature Control;
(Control.temp > 20 →
Control − Lower)∨
(Control.temp ≤ 20 →
Control −Raise); }

ContractType Contract{
Control-Raise cr;
Control-Lower; cl
Safety p; }

Figure 22: An example of a contract specifications
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of constraints, and a set of attachment specification. Each attachment specification binds a

connector role type of a connector to an interface type of a component. The TADL syntax

of a component type includes sets of event types, attributes, constraints, and architecture

types. Also, it includes a contract, one or more interface types, and a special attribute called

user, which identifies the client on whose behalf the component is executing.

Figure 24 shows an example of a composite component specification. It shows two

components types, DataStore and QueryManager which are connected together using a

connector type DBConnector. The architecture specification is defined using the archi-

tecture type DatabaseArchitecture. Each constituent component defines an interface type.

DataStore contains IDataProvider and QueryManager contains IDataReader. Two con-

nector role types are used to connect DBConnector to the interface types of the two com-

ponents. The system is defined as a composite component, DatabaseSystem, whose archi-

tecture is of type DatabaseArchitecture.

5.2.4 Security mechanism

Figure 25 presents the TADL syntax of role based access control (RBAC) specifications.

The syntax of RBAC includes assigning users to groups, users to roles, roles to groups,

privileges to roles, service privileges and data parameter privileges to roles. The formal

description of a user, role, group, and privilege is identical to the formal description of an

attribute. The formal description of the assigning functions are described in Chapter 4.

Figure 26 shows an example of RBAC specification using TADL. The user Anne is

assigned the role Accountant. This role has the privilege GenerateReport, which allows

Anne to generate the account receivable report GenerateAccountReceivableReport.

5.2.5 System definition

Figure 27 includes the TADL syntax of system configuration. It includes one or more

system elements and a deployment specification, which assign software component types

to hardware component types.

Figure 28 shows an example configuration specification using TADL. It includes one

software component DatabaseSystem which is deployed on a hardware component, called

server. This hardware component is configured with Xenon processor and 4GB memory.

The meta-architecture elements are units of reuse. Towards this purpose we include a

88



InterfaceType < name > {
(Attribute < name >)*;
(EventType < name >)*;
Constraint < FOPL >;

}

ConnectorRoleType < name > {
(Attribute < name >)*;
Constraint < FOPL >;
InterfaceType < name >;

}

ConnectorType < name > {
(ConnectorRoleType < name >)+;
(Attribute < name >)*;
Constraint < FOPL >;
Communication Method < name >;

}

ArchitectureType < name > {
(ComponentType < name >)+;
(ConnectorType < name >)+;
(Attribute < name >)*;
(Constraint < FOPL >)*;
(Attachment
(ConnectorType.RoleType.InterfaceType,
ComponentType.InterfaceType))*;

}

ComponentType < name > {
(EventType < name >)*;
(Attribute < name >)*;
(Constraint < FOPL >)*;
User u;
(InterfaceType < name >)+;
(ArchitectureType < name >)*;
ContractType < name >;

}

Figure 23: The TADL syntax of Interface Type, Connector Role Type, Connector Type,
Architecture Type, and Component Type
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repository in the design. All meta-architecture elements’ definitions are stored in a repos-

itory, a storage place to store and reuse the specified and developed meta-architectural

elements. The repository provides storage facilities for system specification, development

source code, and compiled, execution ready assembly of components. The repository al-

lows storing and retrieving different versions of the same component. Detailed discussion

of the repository is provided in Chapter 9.

5.3 Summary

This chapter introduced TADL, an architecture description language that is based on our

trustworthy component model. We described the TADL syntax for the elements of our trust-

worthy component model. A visual modeling tool [Yun09] is used to design component-

based systems based on our component model. The tool provides user interface to design

systems and automatically generates the corresponding TADL specification of the system.

We use an automatic model transformation technique to analyze the resulting TADL spec-

ification and generate behavior specification and real-time models.
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InterfaceType IDataProvider{}
InterfaceType IDataReader{}
ConnectorRoleType Provider{
IDataProvider iRoleDataProvider;}
ConnectorRoleType Reader{
IDataReader iRoleDataReader;}
ConnectorType DBConnector{

Provider providerRole;
Reader readerRole;}

ComponentType DataStore {
IDataProvider idataProvider;}
ComponentType QueryManager{
IDataReader idataReader;}
ArchitectureType DatabaseArchitecture{

DataStore storeDB;
QueryManager queryDB;
DBConnector connect;
Attachment
(connect.providerRole.iRoleDataProvider,
storeDB.idataProvider);
Attachment
(connect.readerRole.iRoleDataReader,
queryDB.idataReader);

}
ComponentType DatabaseSystem{
DatabaseArchitecture dBArchitecture;}

Figure 24: An example of a composite component specification
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User< name > {
(Attribute < name >)*;
Constraint < FOPL >;}

Group< name > {
(Attribute < name >)*;
Constraint < FOPL >;}

Role< name > {
(Attribute < name >)*;
Constraint < FOPL >;}

Privilege< name > {
(Attribute < name >)*;
Constraint < FOPL >;

}

RBAC< name > {
(User < name >)*;
(Group < name >)*;
(Role < name >)*;
(Privilege < name >)*;
(User −Groups− Assignment(User,Group))*;
(User −Roles− Assignment(User,Role))*;
(Group−Roles− Assignment(Group,Role))*;
(ServiceType < name >)*;
(ParameterType < name >)*;
(Privileges−for − services

(Service,Privilege,Role))*;
(Privileges−for − data− parameters

(DataParameter,Privilege,Role))*;
}

Figure 25: The TADL syntax of RBAC specification
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RBAC Accounting{
User Anne;
Role Accountant;
Privilege GenerateReport;
User-Roles-Assignment(Anne,Accountant);
ServiceType GenerateAccountReceivableReport{}
Privileges-for-services(GenerateAccountRecievableReport,
GenerateReport,Accountant);

}

Figure 26: An example RBAC specification using TADL

Configuration< name > {
(SystemElement < name >)+;
(Deploy(HardwareComponentType,ComponentType))+;

}

Figure 27: The TADL syntax of system configuration specification

ComponentType DatabaseSystem{}
Attribute Processor{

DataType String;
Default ”Xenon”;}

Attribute RAM{
DataType String;
Default ”4GB”;}

HardwareComponent Server{
Processor Xenon;
RAM memory;}

Configuration Deployment{
DatabaseSystem DBS;
Server server;
Deploy(server,DBS);}

Figure 28: An example configuration specification using TADL
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Chapter 6

Model Transformation and Formal
Verification

Our goal is to achieve a uniform specification language for specifying and analyzing the

different kinds of trustworthiness properties. The contract specification enables regulating

services through time constraints, restricting services through constraints, and specifying

safety properties. The security mechanism specification enables filtering services and infor-

mation so that only authorized users can request services and view information. Therefore,

These features enable specifying trustworthiness properties at the architecture level.

TADL 
Specification

Transformation
Process

Behavior
Protocol

Real-time
Model

Model
Checking

Real-time
Analysis

Desgin Artifact

Process

Figure 29: The process of transformation and analysis

The next step is to reason about safety and security in a uniform manner. Figure 29

depicts the transformation and analysis process. During this process, the specification is

analyzed and undergoes an automatic transformation process. The transformation process

automatically generates behavior protocols and real-time models. The behavior is gener-

ated as an extended finite-state machine. The resulting state machine is input into a model

checker to verify safety and security. The real-time model is generated as a finite-state
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machine augmented with real-time tasks specification. The resulted state machine and task

specification are input into a real-time schedule analysis tool to verify timeliness require-

ments.

The next sections describe how the specification is transformed into behavior protocols

and real-time models and how safety and security properties are verified.

6.1 Verifying Safety and Security

This section introduces transformation rules from our component model into UPPAAL

model checker [BDL04]. We explain how the formal specification of a component is trans-

formed into UPPAAL extended timed automata. First, we present brief information about

UPPAAL model checker. Then, we introduce transformation rules for the automatic gener-

ation of component behavior. Finally, we describe how the verification process is conducted

using UPPAAL model checker.

6.1.1 UPPAAL

UPPAAL [BDL04] is a mature model checker that has been used successfully for more

than a decade to model check several types of concurrent real time systems. The UPPAAL

modeling language is based on timed automata TA = (L, l0, K, A, E, I) where L is the

set of locations denoting states, l0 is the initial location, K is the set of clocks, A is the set

of actions denoting events that cause transitions between locations, E is the set of edges,

and I is the set of invariants. Formally, E ⊆ L × A × B(K) × 2K × L where B(K) is

the set of clock and data constraints denoting guard conditions that restrict transitions, 2K

is the set of clock initializations to set clocks whenever required, and I : L → B(K) is

a function assigning clock constraints to locations as invariants. UPPAAL extends timed

automata with additional features. We present some of these features that are relevant to

the transformation process:

• Templates: Timed automata are defined as templates with optional parameters. Pa-

rameters are local variables that are initialized during template instantiation in system

declaration.

• Global variables: Global variables and user defined functions can be introduced in

a global declaration section. Those variables and functions are shared and can be
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accessed by all templates.

• Binary synchronization: Two timed automata can have a synchronized transition

on an event when both move to a new state at the same time when the event occurs.

An event that causes synchronous transition is defined as a channel, a UPPAAL data

type. A channel can have two directions: input(labeled with ?) and output(labeled

with!).

• Committed Location: Time is not allowed to pass when the system is in a commit-

ted location. If the system state includes a committed location, the next transition

must involve an outgoing edge from the committed location.

• Expressions: There are three main types of expressions: (1) Guard expressions are

evaluated to boolean and used to restrict transitions; guard expressions may include

clocks and state variables, (2) Assignment expressions are used to set values of clocks

and variables, and (3) Invariant expressions are defined for locations and used to

specify conditions that should be always true in a location.

• Edges: Edges denote transitions between locations. An edge specification consists

of four expressions: Select: assigns a value from a given range to a defined variable,

Guard: an edge is enabled for a location if and only if the guard is evaluated to true,

Synchronization: specifies the synchronization channel and its direction for an edge,

and Update: assignment statements that reset variables and clocks to required values.

In UPPAAL, system properties are expressed formally using a simplified version of CTL

[BDL04] as follows:

• Safety property is formulated positively stating that some thing good is invariantly

true. For example, let ϕ be a formula, A2 ϕ means that ϕ should be always true.

• Liveness property states that some thing good will eventually happen. For example,

A ¦ ϕ means that ϕ will eventually be satisfied.

6.1.2 Transformation Rules

In this section, we introduce the transformation rules for the automatic generation of com-

ponent behavior based on the analysis of component’s structure and contract defined in its

96



specification. A component-based system is a network of connected components. Every

component is mapped to a UPPAAL template in a one to one manner. We assign a param-

eter to every UPPAAL template to denotes the identifier of the user on whose behalf the

component is running. This parameter will be used for ensuring service and data security.

Let O = {ø1, . . . , øn} be the set of components in a system where

øi = (Σi, Πi, σi, Λi, ξi, Ξi, Ai, Ci, Ti) and Ξi = (Θi, Ωi, Γi,Pi, Ψi). Let TA =

(L,L0, K,A, E, I, u) be the definition of UPPAAL timed automata where u denotes the

user identity parameter associated with the template at its instantiation. Then, the trans-

formation rules construct T = {t1, . . . , tn}, a set of UPPAAL templates, where ti is the

template constructed from component øi. In brief, during the process of constructing

TA = (L, l0, K,A, E, I) from the component specification:

• Σi is used to construct L where every location in L denotes the state of processing a

service request in Σi,

• Γi is used to construct K and I where a clock in K and an invariant in I are defined

for every time constraint in Γi,

• Σi is used to construct A where an action in A is defined for every service request

and response in Σi, and

• Σi, Λi, ξi, Θi, Ωi, and Ψi are used to construct E and its associated expressions. More

precisely, Λi defines data parameters in ξi which in turn are used in defining data

constraints in Ωi that are used along with Υ to define Guard conditions for edges.

Σi and Θi are used in defining Sync expressions. Ψ is used to control data parameters

access in Update expression.

We extend the UPPAAL formal template by adding security features. In the global decla-

ration section, we define: (1) lists of groups, roles, privileges, and a list of representative

users where a user defined for each role and group, (2) a service-access control matrix,

SAC, that defines role access rights to services, (3) a data-access control matrix, DAC,

that defines role access rights to service data parameters, and (4) implementation of the

security functions defined in Definition 6.

The steps for constructing TA = (L,L0, K, A, E, I, u) re given bellow:

Locations [L]: We use locations to denote the states for processing services. The function

∆ : Σ → L constructs for an event e a location ∆(e) in L. The location is the state
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for processing the event e. The set of locations L can be constructed with the help of Σ as

follows:

• [L.1] Create an initial location l0 to denote the idle state where the component is

waiting for a stimulus.

• [L.2] For every stimulus event, create a location to represent the service of processing

the stimulus.

• [L.3] For every output request event, create a location to represent the state of re-

questing that service.

• [L.4] For every action in the service definition, create a location to represent the state

of processing the service action.

Clocks [K]: Time constraints in Γ can be represented by clocks in K and invariants repre-

senting clock constraints in I . The set of clocks K can be constructed by creating a clock

for every time constraint that constrains the response of a stimulus. Clocks are defined as

template’s local variables.

Invariants [I]: Time constraints are defined as location invariants in I . We create an invari-

ant in I for each time constraint in Γ and assign it to ∆(e) to form the set of invariants for

that state, I∆(e). Also, the constraint that is defined for service request (stimulus) is added

to I: ∀x ∈ Σ, x = (Λ,A, χ, %), χ ∈ I ∧ χ ∈ I∆(e).

Actions [A]: The set of actions A can be constructed by creating an action in A for every

stimulus and response in Σstimulus ∪ Σresponse. Actions are defined as synchronous chan-

nels. Input actions are decorated with ? and output actions are decorated with !.

Edges [E]: The behavior of a component is based on stimuli and responses. Therefore, E

can be constructed using Σ according to the rules [E.1], [E.2], and [E.3] defined bellow.

The specifications of edge expressions are derived from the data parameters Λ and the con-

straints in Ω and Ψ that are related to the action a, which is the stimulus, service action, or

response that causes the transition, according to the following rules [E.Ex]:

• Select: It is used to get a value in a temporary variable for each data parameter in

ξ(a). These values will be assigned to their corresponding data parameters in the

Update expression. The data type of the parameter, D, is used to specify the type of

the temporary variable.
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• Guard: A guard condition is a conjunction ω ∧ Υ such that: ω ∈ Ω is a predicates

over the value of data parameters in ξ(a) and of component, service, and reactivity

attributes, and Υ is a service security policy related to a where (a, r, Υ) ∈ Ψ.

• Sync: the action, which is the event causing the transition.

• Update: It includes assignment statements that: (1) update the value of data parame-

ters in ξ(a), (2) reset the clock in K related to the time constraint in Γ that is defined

for a, and (3) update the value of component attributes. In order to ensure data secu-

rity, update statements are constrained by Υ as follows:

∀d ∈ ξ(a), d := Υ?Select(d) : Null, which means that if there is a data security

property ψd = (a, d, Υ) associated with the data parameter then d will be assigned

the selected value only if Υ evaluates to true; otherwise, d will be set to Null. Also,

∀u ∈ U , u := assign(α, ν) ∧ (a, α, Υ) ∈ Ψ → α := Υ?Select(α) : Null which

means that in the update statements of the service, the value of the attribute will be

set only if the security policy evaluates to true.

The following rules are used to construct template edges. Constructing edges is based on

the service definitions in Θ; therefore, the following steps will be repeated for every service

definition:

• [E.1] For every stimulus e, an edge from the initial location l0 to ∆(e) is created. If

there is a time constraint defined for the service then the defined clock of this time

constraint should be reset in the update expression, as defined above in [E.Ex].

After finishing the processing of e, the response is sent and the component can go

back to idle state waiting for the next stimulus. Therefore, for every response, an

edge from ∆(e) back to l0 is created.

• [E.2] In order to provide the required services, the component may request services

from other components. When a stimulus e has a response r ∈ ΣOutRequest then an

edge from ∆(e) to ∆(r) is created and a second edge from ∆(r) to l0 is also created

.

• [E.3] If the stimulus has multiple possible responses where data constraints are used

to select the proper response then an edge for each case is created and the data con-

straint defined in the service is added to the guard condition of the edge. The edge
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is created from ∆(e) to: (1) I0, if the response is internal or output response i.e.

r ∈ Σinternal ∪ Σoutput, or (2) ∆(r), if r is an output request i.e. r ∈ ΣOutResponse.

• [E.4] the component may have a concurrent behavior. It can receive stimuli while

processing others. Therefore, an edge is created from every location that represents

stimulus processing location lp1 to the other stimulus processing locations lp2. An

intermediate committed locations is used to split the edge into two edges: (1) an

edge from lp1 to the committed location labeled with the stimulus and (2) an edge

from the committed location to lp2 labeled with the response of lp1. The reason for

having two edges is that UPPAAL doesn’t allow having two synchronous channels

on an edge.

• [E.5] If there is one or more actions defined in the service i.e. S 6= ∅ then a location

∆(xi) is created for each action x ∈ S where i : N, 0 ≤ i ≤ n, n = |S|. Then, the

edge created for the response (in E.1, E.2, and E.3) is pointed to ∆(x1) and edges are

created between ∆(x1) . . . ∆(xn). Then a final edge is created back to l0.

After constructing each edge, the rules in [E.Ex] are used to define its expressions. All

attributes are defined as local variables of the component.

6.1.3 Example

Figure 30 shows the extended timed automata generated for the following service defini-

tion:

Θ(s, ω, γ, t1, ψs, {ψd}) = (r, {k := x}, {a}, t2, {ψa}, {ψu}) where ξ(s) = {d} and

γ = (s, r, 5)

The construction is done as follows:

Locations: idle is created according to rule [L.1], ∆(s) according to [L.2] and [E.5], the

invariant c ≤ 5 at ∆(s) according to [I], and ∆(a) according to [L.4].

Edges: created according to the following rules and [E.Ex]: (1) (idle, s, ∆(s)) is created

according to [E.1], (2) (∆(s), r, ∆(a)) and (∆(a), a, idle) is created according to [E.5].

Clocks: c and the invariant at ∆(s) are created according to rules [K] and [I].

Actions: s?, r! are created according to [A] and [E.Ex]

The security properties, events security and data security, can be specified in UPPAAL

language in the following way:
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Select: v:int
Guard:          /\ 
Sync: s?
Update: d:=        ? v : Null,
              c:=0

Select
Guard: 
Sync: r!
Update: 

Select: x:int
Guard:        
Sync: 
Update: k:=        ? x : Null

idle (s)

(a)

c<=5

a

u

s

d

Figure 30: Example Transformation

• Event security: An event can be triggered only by a user who has access right. This

is expressed as the CTL formula:

A2 for all(i:int[1,NoOfUsers]) C.user==i && C.eventx imply US(i,eventx). It

means: invariantly, in all system executions, eventx can be triggered by authorized

users only. Each user is identified with a unique identifier.

• Data security: A data parameter value should be visible only to authorized users.

This is expressed as the CTL formula:

A2 for all(i:int[1,NoOfUsers]) C.user==i && DataParameter!=Null imply

UD(i,DataParameter). It means: invariantly, in all system executions, the value of

DataParameter can be visible only to authorized users; otherwise, it is set to Null;

Figure 31 shows the extended timed automata generated for the controller component of

the fingerprint car security system presented in Example 4.

6.1.4 Preserving the requirements of safety and security

Theorem 2 The transformation rules preserve the requirements of safety and security

([S1] . . . [S9]).

The following proof shows that the transformation process preserves safety and security

requirements:

Proof 2 In order to proof that the transformation process preserves the safety and secu-

rity requirements we need to show that the sequences generated by the UPPAAL extended
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idle

Guard: US(u,start) || UR(u,driver) 
Sync: start?

(start)

(lock)

(unlock)

(view)

Sync: SwitchOn!

Guard: US(u,lock) || UG(u,family) || 
            UR(u,driver) 
Sync: lock?

Sync: Close!

Guard: US(u,unlock) || UG(u,family) || 
           UR(u,driver) 
Sync: unlock?

Guard: US(u,view) || UR(u,driver) 
Sync: start?

Select: x:int, y:int
Guard: 
Sync: show!
Update: 
status:= (UD(u,status) || UR(u,driver))?x: Null
info:=(UD(u,info) || UR(u,driver))?y:Null

Sync: Open!

Figure 31: The UETA of the controller component

timed automata (UETA) satisfy [S1] . . . [S9]. This can be shown by proving that the trans-

formation rules preserves [S1] . . . [S9]. In this proof we use the rules [S1] . . . [S9] as the

equivalency conditions. If these rules are satisfied in the component behavior and in the

UETA then we say that the component behavior and its UETA are equivalent.

[S1] for every stimulus, there is exactly one response: in the component model, services

are defined by Θ. In UETA, transitions are defined as edges. The transformation rules

[E.1] and [E.2] ensure that for every stimulus there is two edges and a state. The first edge

is labeled with the stimulus and the second edge is labeled with the response. Therefore,

every sequence generated by the timed automata will have exactly one occurrence of a

response for each occurrence of a stimulus.

[S2] a stimulus occurs before a response in any sequence: since the edge created for

a stimulus precedes the edge created for a response([E.1] and [E.2]), a stimulus always

occurs before its corresponding response.

[S3] time constraints are respected: in the component model, time constraints are defined

in Γ as part of the contract definition Ξ. In the UPPAAL template, a time constraint is cre-

ated by defining a clock and assigning the time constraint as an invariant to a location. The

transformation rules [K] and [I] ensure that a clock is defined for every time constraints

and that the time constraint is assigned to the location that represents the state of process-

ing the stimulus. Therefore, for every sequence generated by UETA, time constraints are

enforced.
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[S4] data constraints are respected: in the component model, data constraints are defined

in Ω as part of the contract definition Ξ. In UETA, data constraints are defined as guard

conditions restricting transitions. The transformation rules [E.Ex - Guard] and [E.3] en-

sure that a guard condition is defined over the edge that represents the response transition.

Therefore, for every sequence generated by UETA, data constraints are enforced and only

the proper responses are included in the sequences.

[S5 and S7] event security properties are enforced: in the component model, security

policies are defined in Ψ and included in the service definition Θ. In UETA, event security

policies are defined as guard conditions restricting transitions. The transformation rule

[E.Ex - Guard] ensures that the security property is defined as part of the guard condition

of the edge that represents the response transition. Therefore, for every sequence generated

by UETA, security properties are enforced.

[S6 and S8] data security properties are enforced: in the component model, security poli-

cies are defined in Ψ and included in the service definition Θ. In UETA, data security

policies are defined as conditions restricting the update statements of an edge. The trans-

formation rule [E.Ex - Update] ensures that the data security property is defined as a

condition on updating data values. Therefore, for every sequence generated by UETA, data

security properties are enforced.

Theorem 3 The composition of two UPPAAL extended timed automata (UETA) preserves

the safety and security requirements ([S1] . . . [S9]).

The following proof shows that the composition of two UPPAAL extended timed automata

(UETA) preserves the safety and security requirements:

Proof 3 let M1 = (L1, l01, K1, A1, E1, I1) and M2 = (L2, l02, K2, A2, E2, I2) be two UE-

TAs. The composition of M1 and M2 is M = (L, l0, K,A, E, I) where: L = L1 × L2,

l0 = (l01, l02), k = K1 ∪ K2, I = I1 ∪ I2 such that the invariant of a composite loca-

tion is the conjunction of the invariants of all its constituent locations i.e. ∀l = (l1, l2) ∈
L • I(l) = I(l1) ∧ I(l2), and E is given as follows (Edge Composition Rule): an edge

is defined as a tuple (l, a, g, r, u, l′) where l is the initial location, a is an action, g is a

guard condition, r resets clock values, u is an update expression, and l′ is the destination

location. For (l1, a1, g1, r1, u1, l
′
1) ∈ E1 and (l2, a2, g2, r2, u2, l

′
2) ∈ E2 :

if a1 = a2 then E includes ((l1, l2), a1, g1 ∧ g2, r1 ∪ r2, u1 ∧ u2, (l
′
1, l

′
2));
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if a1 /∈ A1 ∩ A2 then E includes ((l1, l2), a1, g1, r1, u1, (l
′
1, l2)); and

if a2 /∈ A1 ∩ A2 then E includes ((l1, l2), a2, g2, r2, u2, (l1, l
′
2)).

Since M1 and M2 satisfy [S1] . . . [S9], we need to show that M satisfies those require-

ments:

[S1] for every stimulus, there is exactly one response: since M1 and M2 satisfy [S1] then

for every stimulus a ∈ A: a ∈ A1 ∨ a ∈ A2 ∨ a ∈ A1 ∩ A2 and there is a location

l ∈ L1 ∨ l ∈ L2 ∨ L1∪L2 that represents the state of processing a. Since L = L1×L2 then

there exists a set of states La ⊂ L such that ∀x ∈ La•( x = (l, y)∧l ∈ L1, y ∈ L2) ∨ ( x =

(y, l) ∧ l ∈ L2, y ∈ L1) ∨ ( x = (l, l) ∧ l ∈ L1 ∪ L2). Also, since M1 and M2 satisfy [S1]

then there exists two edges e1 = (l0, a, g, r, u, l), e2 = (l, s, g′, r′, u′, l′) ∧ s ∈ φ(a) such

that e1, e2 ∈ E1 ∨ e1, e2 ∈ E2 ∨ e1, e2 ∈ E1 ∪ E2 that represents receiving the stimulus

and triggering response to it. From the Edge Composition Rule, there exists edges in E

corresponding e1, e2. Therefore, the composition preserves the reactivity requirement.

[S2] a stimulus occurs before a response in any sequence: in the previous proof, e1,

which is created for the stimulus, precedes e2, which is created for the response; therefore,

a stimulus always occurs before its corresponding response in M .

[S3] time constraints are respected: since M1 and M2 satisfy [S3], then there exists a

clock c ∈ K1 ∨ c ∈ K2 and an invariant i ∈ I1 ∨ i ∈ I2 for every time constraint.

Since k = K1 ∪ K2, I = I1 ∪ I2, and ∀l = (l1, l2) ∈ L • I(l) = I(l1) ∧ I(l2) then the

composition preserves time constraints and every sequence in the composed model respects

time constraints.

[S4,S5,S7] data constraints and event security are respected: since M1 and M2 satisfy

[S3], then for every edge e = (l, a, g, r, u, l′), e ∈ E1 ∨ e ∈ E2 ∨ e ∈ E1 ∪ E2 the guard

condition g is a conjunction ω∧Υ. From the Edge Composition Rule, guard conditions are

preserved in the composition. Therefore, data constraints and event security are preserved

in the composition.

[S6 and S8] data security properties are enforced: since M1 and M2 satisfy [S3], then for

every edge e = (l, a, g, r, u, l′), e ∈ E1 ∨ e ∈ E2 ∨ e ∈ E1 ∪ E2 the update expression u

contains the data security properties. From the Edge Composition Rule, update expressions

are preserved in the composition. Therefore, data security are preserved in the composition.

Model checking has been used effectively for verifying safety critical systems. However,

model checking falls short when used for large and complex systems because it suffers

inherently from the state-space explosion problem. This problem limits the application
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of model checking to small size problems. Our formal approach provides a technique to

overcome the state-space explosion problem by using incremental model checking. Prim-

itive components can be verified for trustworthiness properties. Then, large and complex

systems can be built by composing these components. There is no need to perform model

checking on the composite component because the composition preserves the trustworthi-

ness properties. Therefore, Theorem 3 provides an important contribution for incremental

model checking. Thus, the model checking problem is tractable despite the size of the

component-based system.

6.2 Real-Time Analysis

It is possible to conduct real-time scheduling analysis relative to criticality, priority, and

other real-time non-functional properties based on the formal specification. Times [AFM+03]

is used to perform the real-time analysis. First, the formal specification are transform into

timed automata extended with tasks, which is the language used by Times tool. Then, times

tool performs the scheduling analysis.

Times uses a timed automata extended with tasks to model real-time systems. The

structure of the timed automata is similar to the structure of UPPAAL timed automata. In

addition, Times extends UPPAAL model by defining real-time tasks and their real-time

attributes, which are explained bellow. In order to define real-time models, events must

be annotated with real-time task attributes. These attributes are used to build the real-time

characteristics of the service when executed at run-time. Therefore, we define a standard

set of attributes that must be defined for every stimulus and response events. These at-

tributes are:

• Behavior: an enumeration type whose value is: Controlled, Periodic, or Sporadic.

This attributes specifies the execution behavior of the service type.

• Priority: an integer value specifying the priority of the service type.

• Computing time: an integer vale specifying the computation time of a service, the

total time required for the service to finish executing.

• Deadline: the maximum safe time before which the service must finish its execution.

It is similar to the specified time constraint.
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• Period: this attributes specifies the time before two consecutive executions of the

same service type.

• Offset: this attribute specifies the variable time allowed for the service to start after

its period time occurs.

• Max number of tasks: this attribute specifies the number of concurrent instances of

the same task.

Since Times model is similar to UPPAAL model, the transformation process follows the

same rules as those specified earlier for UPPAAL with few added rules that are related to

the new concept of Task. These are:

• Defining tasks: a task is created for every stimulus.

• Assigning attributes: the service attributes are mapped into task attributes.

• Generating templates: templates are created in the same way used for UPPAAL in-

cluding their timed automata. Note that some templates are environmental templates;

therefore, an attribute is used at the component type level to specify if a component

is environmental or not.

• Global declaration: similar to the former transformation rules of UPPAAL, global

declarations are added to the system.

• Instantiation: an instance for each template is created and added to the system.

• Local declaration: a local declaration is created for each template, same as UPPAAL.

• Assigning tasks to locations: for every stimulus, its task is associated with the loca-

tion which represents the state of processing the stimulus.

• Deciding policy: a scheduling policy is selected.

6.3 TADL Semantics

In this section we give an argument as to why TADL has a formal semantics. The se-

mantics basis of the formalism is grounded on set theory. Let the transformation from the

106



formal model to UPPAAL formal model, described in this Chapter, be called f . The im-

plementation of f has a TADL file as input. Therefore, we have Figure 32 where u is the

automatic transformation developed within UPPAAL model checker and g is the transfor-

mation described in Chapter 5. Therefore, for every formal model m we have the equation

f(g(m)) = u(f(m)). Since f and u are both sound and complete, it follows that g is sound

and complete. That is, TADL has a set theoretical formal semantics.

Formalism

UPPAAL Presentation

UPPAL Formalism

TADL

f

f

ug

Figure 32: TADL Semantics

6.4 Summary

This chapter introduced a model transformation technique for analyzing systems built using

our trustworthy component model and generating two types of extended timed automata.

One type is suitable for UPPAAL model checker and another type is suitable for the Times

tool. Formal transformation rules were provided to describe how the extended timed au-

tomata is generated from the formal component specification. This approach allows us

to formally verify the requirements of safety, security, and real-time systems using model

checking. A model transformation tool [Ibr08] has been developed to automatically gen-

erate UPPAAL and Times timed automata from TADL specification based on the transfor-

mation rules. Detail description of the tool is available in Chapter 9.
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Chapter 7

Reliability and Availability

This section introduces a novel formal approach for specifying and verifying reliability

and availability properties using model checking. The section includes modeling service

failures and repairs. An example case study is provided to explain our approach.

7.1 Service Failures and Repairs

Reliability and availability are two related trustworthiness attributes. In the literature [ALRL04],

reliability is defined as the “continuity of correct servic”, whereas availability is defined as

the “readiness for correct service”. A service failure is defined as a deviation from the

correct service behavior [ALRL04]. The deviation is defined with respect to the required

functional and non-functional requirements of the system. We assume that the require-

ments have been reviewed and validated at the system analysis phases. Therefore, the

stated specification is used as the basis for deciding whether or not the behavior complies

with the required and stated specification. A service has functional and non-functional re-

quirements. While in operation, the service can change the values of attributes and local

variables. It can also trigger events. A service failure is indicated by any violation to the

requirements of safety and security stated in ([S1] . . . [S9]):

1. If a service request arrives but no response is triggered;

2. If a service request arrives but an event other than the expected response is triggered;

3. If the time of the response precedes the time of the request;

4. If a service delivers results later than the maximum safe time;
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5. If a service request violates a data constraint (precondition);

6. If one of the constraints associated with data parameters or events is violated;

7. If service security is violated; and

8. If data security is violated.

These failures can be categorized into 4 classes: reaction(1 and 2), timing(3 and 4), condi-

tion(5 and 6), and security(7 and 8) failures. A service failure has the following attributes:

• Class: an enumerated value that defines the class of a service failure (reaction, timing,

condition, security);

• Conditions: a set of logical expressions that define the situation leading to the failure;

• Severity: an enumerated value that classifies the consequences of a service failure

(critical, minor);

• Persistence: an enumerated value that classifies the duration of a service failure (per-

manent, transient); and

• Acceptable frequency: a pair (ν, t) where ν defines the number of occurrences of a

service failure during time t. This pair defines the acceptable frequency of service

failure. (0,∞) means that the service failure is not accepted at all.

We define the set of service failures:

F = {f = (Σstimulus, Σresponse, Classf , Conditions, Severity, Persistence, Frequency)}
A service repair is defined as a change from incorrect service to correct service. A

repair can be internal or external. Internal repairs are done by internal events automatically

when a failure is detected. An external repair is done by an external entity such as human

or system control component. An external repair can be part of system maintenance. Main-

tenance includes all modifications to the system throughout its deployment and execution

phase [ALRL04]. A service repair has the following attributes:

• Class: an enumerated value that defines the class of a service repair (internal, exter-

nal);

• Actions: a set of events executed to remedy the effect of a service failure;
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• Updates: a set of update statements to reset the values of attributes affected by the

service failure;

• Time to recover: an integer value specifying the mean time to recover the service

failure starting from the time in which a failure is detected; and

• Type of recover: an enumerated value that states the type of recovery (Full, partial).

Full recover means that the failure has been remedied and the service will return

back to correct behavior. Partial recover means the service will continue to work in

degraded mode, during the failure period, until a full recover repair arrives.

We define R = {r = (Classr, Action, Updates, Type, T ime)} as a set of service repairs.

7.2 Defining Reliability and Availability

The acceptable level of reliability is defined based on the frequency and severity of service

failures. The acceptable level of availability is defined based on the duration of service

failure time. In order to assure trustworthy services, there should be a repair or set of re-

pairs defined for each failure. Repairs are reactions to failures aimed to recover failures

and return to correct service behavior. The component implementation must guarantee the

failure-repair relations and acceptable levels of reliability and availability of services. The

component implementation and maintenance must guarantee the repair time. The accept-

able levels of reliability and availability should be added to the component contract. Then,

operational profiles are used to assess the validity of the values specified in the contract.

Reliability and availability are formally defined in Definition 10.

Definition 10 We define a total function FR : F → PR that associates a set of repairs to

every failure such that ∀f ∈ F, FR(f) 6= ∅.

The following defines reliability and availability requirements: let f1, f2 ∈ F be service

failures and rp1, rp2 ∈ R be service repairs such that FR(f1) = {rp1}, FR(f2) = {rp2}

- Reliability is defined as a set of invariants Re where each invariant is a logical ex-

pression defined over the severity and frequency of service failures. For example the

reliability invariant frequency(f1) ≤ 5/100 means that the occurrence frequency of

the service failure f1 should be less than or equal to 5 times every 100 units of time.

Another reliability invariant example is severity(f2) = critical → frequency(f2) ≤
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1/100 which means that if a service failure f2 has a critical severity then the occur-

rence frequency of f2 should be less than or equal to once every 100 units of time.

- Availability is defined as a set of time constraint Av where each time constraint spec-

ifies the maximum time allowed between the occurrence of a failure and its corre-

sponding repair. For example, t(rp1) − t(f1) ≤ 5 means that the service repair rp1

should occur within 5 units of time from the occurrence time of the service failure

f1, where t(.) means the occurrence time of the failure or repair. This ensures that

the service will be available within 5 units of time in case of failure.

The contract definition of components is extended to include the requirements of reliability

and availability.

Definition 11 Let F be the set of service failures, R be the set of service repairs, Re be

the set of reliability invariants, Av be the set of availability time constraints, and FR be the

total function that maps failures to repairs. The contract definition is extended to include

reliability and availability as follows Ξ = (Θ, Ω, Γ,P , Ψ, F,R, Re, Av, FR).

7.3 Verifying Reliability and Availability

Specification of
Failure and Repair

Extend UPPAAL 
timed automata
with Failure and 
Repair Specification

Specify Reliability 
and Availability
properties using 
UPPAAL CTL

Perform 
Model 
checking

Figure 33: The process of modeling and verifying reliability and availability

Figure 33 presents our qualitative approach to specify and verify reliability and avail-

ability properties. The process includes the following steps:

1. The failure and repair specifications are formally defined. These information are

part of the system requirements. Domain knowledge helps extrapolate these require-

ments.

2. The UPPAAL extended timed automata for each component is extended to include

not only the correct service behavior but also the failure and repair behavior. A ser-

vice failure is a transition from a state of processing the service request to the state
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that represents the service failure. A service partial repair is a transition from a state

of service failure to a state of partial repair. A service full repair is a transition from

a state of service failure or partial repair to a state of correct service behavior. The

destination of the transition depends on the actions specified in the repair specifica-

tion tuple. Clock variables are used to model availability time constraints. Local

variables are used to hold the frequencies of failure occurrences.

3. The requirements of reliability and availability are specified as UPPAAL CTL for-

mulas.

4. UPPAAL model checker is used to formally verify that component’s behavior satis-

fies the requirements of availability and reliability.

The next section provides an example case study that illustrates this process.

7.4 Steam Boiler Controller Case Study

The steam boiler controller case study [ABL96] is a benchmark case study for modeling

real-time systems. We adopt a simplified component-based version of the case study to

explain reliability and availability modeling.

7.4.1 System specification

The steam boiler controller system consists of hardware and software components. Hard-

ware components are: (1) A steam boiler characterized by two safe limits of water: min-

imum (min) and maximum (max). The minimum value indicates the lowest safe level of

water under which the steam boiler will be in danger. The maximum value indicates the

maximum safe level of water above which the steam boiler may be in danger. (2) A water

pump to pour water inside the steam boiler in order to increase the level of water. (3) A

valve to evacuate water from the steam boiler in order to reduce the level of water. (4)

A water level measuring sensor which is continuously measuring the current quantity of

water (q − water) inside the steam boiler. (5) A steam level measuring sensor which is

continuously measuring the current quantity of steam (q− steam) coming out of the steam

boiler.
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Software components are: (1) A controller component responsible for maintaining a

safe level of water inside the steam boiler. (2) A control monitoring component responsible

for monitoring and managing the system in cases of failure.

7.4.2 System operation

When the system is initialized, the controller sends a stimulus Program Ready to check

if all hardware components are ready. If all hardware components are ready then the con-

troller will receive a response from each hardware component within 5 units of time. In this

case the controller will set the value of the local attribute operational mode to Normal and

be ready to receive stimulus from sensors. However, if one of the hardware components is

not ready then the system will operate in failure modes as explained later.

If the controller is in the normal operating mode then the water level measuring sensor

reads the current quantity of water (q −water) inside the steam boiler, and the steam level

measuring sensor reads the current quantity of steam q − steam. They send stimulus to

the controller component informing it about the current quantities. To simplify the require-

ments, we assume that one stimulus Level will carry the readings of the two sensors. The

stimulus is parameterized by q − water and q − steam. The controller component should

react to the stimulus within 5 units of time. The reaction depends on the value of q−water.

If the value is bigger than the maximum allowed i.e. q − water > max, the controller

will send a stimulus to instruct the valve to open and evacuate water. However, if the value

is less than the minimum allowed i.e. 0 ≤ q − water < min, the controller will send a

stimulus to instruct the pump to open and pour water inside the steam boiler. If the value

is within the safe limit i.e. min ≤ q − water ≤ max, the controller does nothing and

waits for the next stimulus.

7.4.3 Failure and repair operations

In this simplified version, we define the following failures:

F1 : If the controller sends Program Ready to the hardware components and does not

receive Pump Ready, V alve Ready, Water Ready, or Steam Ready within 5

units of time then this indicates that there is a failure in the pump, valve, water level

measuring sensor, or steam measuring sensor. In this case there are three possible
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repairs R1, R2, and R3 which switch the operational mode according to the following

conditions:

R1 : if the responses Pump Ready, V alve Ready, or Steam Ready are not re-

ceived within 5 units of time since Program Ready is sent then an internal

repair switches the controller to Emergency Stop mode. This is a partial in-

ternal repair.

R2 : if the responses Pump Ready, V alve Ready, and Steam Ready are all re-

ceived within 5 units of time but Water Ready is not received then an inter-

nal repair switches the controller to Rescue mode. In this mode, the value of

q − steam is used to estimate the quantity of water inside the boiler. This is a

partial internal repair.

R3 : if the controller is in Emergency Stop then a full external repair fixes the

defective hardware components and switches the mode to Initialize.

F2 : The water level measuring should always send a positive non-zero value indicating

the current quantity of water. If q − water < 0 then the sensor is malfunctioning

and it indicates a failure. In this case, if all other hardware components are working

properly then an internal partial repair switches the mode into Rescue. The full ex-

ternal repair R3 fixes the defective water level measuring and switches the controller

back to Initalize.

F3 : The steam level measuring should also send a positive value indicating the current

quantity of steam. If q − steam ≤ 0 then the steam measuring sensor is malfunc-

tioning and it indicates a failure. In this case an internal partial repair switches the

controller to Emergency Stop mode.

Local variables (attributes) are used to hold the current status of each hardware component.

These are PumpOK, ValveOK, SteamOK, and WaterOK. Initially these attributes are set to

zero to indicate that the ready response is not received yet from each hardware component.

When a ready response is received, its corresponding attribute is set to 1 to indicate that

it has responded. If 5 units of time passed and the value of an attribute is still 0 then this

indicates that no response was received.

The set of failures is F = {f1, f2, f3, f4, f5, f6} where:

f1 = (Program Ready, {Pump Ready}, condition,

114



(t(Pump Ready)− t(Program Ready) > 5 ∧ PumpOK = 0), critical, transient,

(F1max, F1time));

f2 = (Program Ready, {V alve Ready}, condition,

(t(V alve Ready)− t(Program Ready) > 5 ∧ V alveOK = 0), critical, transient,

(F1max, F1time));

f3 = (Program Ready, {Steam Ready}, condition,

(t(Steam Ready)− t(Program Ready) > 5 ∧ SteamOK = 0), critical, transient,

(F1max, F1time);

f4 = (Program Ready, {Water Ready}, condition,

(t(Water Ready)− t(Program Ready) > 5 ∧ SteamOK = 1), critical, transient,

(F1max, F1time));

f5 = (Level, ∅, condition, (q − water < 0), critical, transient, (F2max, F2time));

f6 = (Level, ∅, condition, (q − steam ≤ 0), critical, transient, (F1max, F1time)).

For example, f1 defines a failure that occurs due to the following scenario: the con-

troller issues Program Ready and resets a clock to measure the time passed starting from

Program Ready until it receives the response Pump Ready. If 5 units of time passed

and the controller did not receive Pump Ready, which means the value of the attribute

PumpOK is still set to 0, then the controller will assume that the pump is not working

and a failure is detected. The severity of this failure is critical and the acceptable frequency

is indicated by the constant F1max during F1time units of time. The other failures can be

explained in the same manner.

The set of repairs is R = {rp1, rp2, rp3, rp4} where:

rp1 = (internal, ∅, {mode := Emergency Stop}, Partial, 1);

rp2 = (internal, ∅, {mode := Rescue}, Partial, 1);

rp3 = (external, F ix Level, {mode := Normal}, Full, 100); and

rp4 = (external, F ix Units, {mode := Initialize}, Full, 100).

The first two repairs are internal partial repairs, no action assigned to them. They switch

the operational mode of the controller to either Emergency Stop or Rescue within one

unit of time. The third and fourth repairs are external events issued by the control moni-

toring component to indicate that the defective hardware components have been fixed. The

component stays in a repair state until a full repair is received. The associations between

the failures and repairs are:

FR(f1) = FR(f2) = FR(f3) = FR(f6) = {rp1, rp4};
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FR(f4) = FR(f5) = {rp2, rp3};
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Figure 34: The UETA of the steam-boiler controller component

Figure 34 depicts the UPPAAL extended timed automata of the controller component.

In this Figure, state 0 is the initial state. States 1,2,3, and 4 represent the correct behavior

of the component. Since there are two equivalent types of associations between failures

and repairs, we create two states F1 and F2 that represent the occurrence of failures and

two states R1 and R2 that represent the occurrence of repairs corresponding to the failures.

There are 4 transitions that indicate the occurrence of a failure: (1) from state 1 to F1 if

f1, f2, or f3 occurs, (2) from state 1 to F2 if f4 occurs, (3) from state 2 to F2 if f5 occurs,
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and (4) from state 2 to F1 if f6 occurs. There are 4 transitions that indicate the occurrence

of a repair: (1) from state F1 to R1 when rp1 occurs, (2) from state F2 to R2 when rp2

occurs, (3) from state R1 to 0 when rp4 occurs, and (4) from state R2 to 0 when rp3 occurs.

There is one state V which represents the state of violating reliability requirement. There

are two transitions to state V : (1) from R2 to V if the occurrence frequency of failure f6

exceeds the maximum allowed number within the maximum allowed time period, and (2)

from state 2 to V if the occurrence frequencies of failures f5 or f6 exceed the maximum

allowed number. The transitions to failure states are guarded by conditions that check if the

occurrence frequencies of failures exceed the maximum allowed numbers. For example,

the transition from state 2 to state F1 has the following guard condition: q − steam ≤
0 ∧ (cf1 < F1time ∧ F1freq < F1max) this means that if the value of steam quantity is

invalid and if the frequency of failure F1 (F1freq) has not exceeded the maximum allowed

number F1max within F1time then F1 occurs; otherwise, if F1 exceeds those limits then

the system moves to V states indicating a violation to the stated reliability requirement.

The clock variable cf1 is used to keep track of the time since the first occurrence of F1.

Similar conditions are used for F2. Figure 34 includes two availability requirements: (1)

the full repair rp4 should occur within 100 units of time from the occurrence of the failure.

This is specified by the time constraint cav1 ≤ 100 which is associated with the repair

state R1 indicating that the system should move from this state within 100 units of time.

(2) the system should be restarted within 500 units of time after the violation of reliability

requirements. This is specified by the time constraint cav2 ≤ 500 which is associated with

the V state.

Reliability and availability properties can be stated as CTL formulas in UPPAAL as

follows:

• Reliability: “F1 → F1freq < F1max && cf1 < F1time”, which means if failure

F1 occurs then the frequency is less than the maximum allowed and the value of the

clock variable associated with the failure is within the acceptable period of time.

• Availability: “F1 → state0 && cav1 ≤ 100”, which means if failure F1 occurs then

the system will recover and move back to the initial state within 100 units of time

i.e. the services will be available within 100 units of time after the occurrence of the

failure.

Therefore, using the extended state machine depicted in Figure 34, along with the other

state machines of the other components, and the stated reliability and availability properties,
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it is possible to use the UPPAAL model checker to verify the availability and reliability of

the steam boiler controller case study. This shows that it is possible to use model checking

techniques to provide a qualitative approach to ensure reliability and availability.

7.5 Summary

This chapter provided an extension to our trustworthy component model. Formal defini-

tions of reliability and availability were provided based on the failure and repair models. A

model checking technique is used to verify reliability and availability properties.
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Chapter 8

Process Model for Developing
Trustworthy Systems

This chapter introduces our proposed rigorous process model for developing trustworthy

systems. The process is based on the formal component model which is introduced in

Chapter 4, the TADL which is introduced in Chapter 5, the model transformation process

which is introduced in Chapter 6, and the specification and verification of reliability and

availability which is introduced in Chapter 7. The process integrates these formal methods

in the phases of systems life-cycle. In particular, it incorporates incremental design using

TADL, validation and formal verification using our model checking technique, iterative

development, traceability analysis, and certification.

The entire development process is divided into several tracks that can run in parallel.

The tracks are domain engineering, component development, component assessment, com-

ponent reuse, and system development. Figures 35 and 40 depict the rigorous development

process tracks. Figures 35 presents the domain engineering and component development,

assessment, and reuse tracks. Figure 40 presents the system development track. The activ-

ities along these tracks are explained in the following sections.

8.1 Domain Engineering

We propose an ontology-based approach to domain engineering which consists of two

phases: building ontology and deriving components and component-based systems speci-

fications from it.
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Figure 35: Domain Engineering and Component Engineering (development, assessment,
and reuse)

The goal of domain engineering is to define, model, construct, and catalogue a set of ar-

tifacts that can be reused in all applications within a specific domain [Pre05]. Thus, domain

analysis involves identification and analysis of the applications, their detailed requirements,

and the relations and data that exist in a specific domain. For example, the domain of au-

tomotive industry deals with designing, manufacturing, and marketing motor vehicles. A

car, for example, contains many control systems such as cruise control, cooling and heat-

ing, stability control, anti-lock braking, and fingerprint-based security systems. Domain

analysis aims towards understanding each system, its interactions with other systems, the

constituent components in the system, their functional and non-functional requirements,

and the data and events stored and communicated between them. For example, the car

control systems mentioned above share the usage of smart sensors which collect relevant

data about the current status of the car and use it to perform control actions. The results of

the domain analysis is a domain model which consists of knowledge about the domain and
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all its applications and its reusable components. This knowledge can be stored in a knowl-

edge base. Domain analysis plays a key role in software reuse, which has been recognized

earlier on in the literature [Nei84].

An Ontology is a ”content theory about the sorts of concepts, their properties, con-

straints, and the relations between concepts that are possible in a specified domain of

knowledge”[CJB99]. It provides terms for describing the knowledge about a domain cap-

turing the intrinsic conceptual structure of the domain[CJB99]. Building ontologies is a

major approach for capturing and representing reusable knowledge. Many methodologies,

tools, and languages are available for building and maintaining ontologies [CFLGP03]. In

order to allow sharing and reusing ontologies, a common ontology language was developed

and named ontology web language (OWL) [SWM04, GHM+08]. OWL allows represen-

tation of and reasoning about ontologies. Reasoning involves: (1) syntax checking, (2)

consistency checking, ensuring that the ontology doesn’t contain contradictory facts (3)

subsumption, checking whether a class description is more general than another class de-

scription, and (4) query answering, retrieving knowledge from the knowledge base.

Both ontologies and domain models are forms of models that result in detailed speci-

fications of reusable knowledge. The former produces detailed specifications of reusable

concepts and their relations and the later, when applied to component-based development,

produces detailed specification of reusable components and component-based architec-

tures. Achieving efficient component-based development depends on building an appro-

priate domain ontology. The ontology can be used as a basis for specification and devel-

opment of domain applications. The captured conceptualization and relations should be

formally specified. OWL can be used to formally represent the results of domain analysis.

Consequently, this enables mapping the OWL ontology formalization into TADL. Thus,

our proposed ontology-based approach for domain engineering consists of the following

steps:

• Design an ontology for representing the knowledge captured during domain analysis.

• Represent in a precise and unambiguous way the elements that model the existing

domain entities. Tools such as Protege [Pro], which provides a graphical user inter-

face, can be used to capture the ontology of domain model and communicate it with

domain experts. The tool uses OWL to describe the ontology.
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• Analyze the resulting ontology and map its concepts and relations into TADL. Map-

ping occurs between OWL language constructs and their relevant TADL constructs.

Details about this mapping are explained later in this section.

• Visualize the TADL model using a graphical editing tool.

The following example is used to illustrate our approach. We use the fingerprint-based car

security system example, which was introduced earlier on, with slight modification.

Example 5 Consider a fingerprint-based car security system mounted on the door of a car.

The system consists of two entities: (I) a remote control which comprises a biometric sensor

that collects user fingerprint and buttons that trigger the required actions such as starting

the car and locking/unlocking the doors, and (II) a controller which is responsible for

starting the car, locking, and unlocking the doors. The functional requirements includes:

start the car, lock, and unlock doors. The security requirements state that only authorized

drivers have access to these functions. The safety requirements state that the doors must

be locked/unlocked within 1 unit of time. Reliability requirements states that if the remote

control fails to lock/unlock then it must be possible to luck/unlock manually using the car

key.

The basic constructs that define an ontology are the concepts, properties, and instances

of concepts (individuals). Properties are binary relations on individuals. The first step

in designing an ontology is defining what these constructs represent. Figure 36 depicts

our proposed abstract design of ontology for capturing domain analysis. In this Figure,

rectangles represent concepts, arrows represent properties which model relations between

concepts, and dash-arrows indicate that a concept is sub-class-of another concept. The do-

main consists of multiple applications where each of which consists of entities that perform

functions and are restricted by non-functional requirements. An entity can be composed of

multiple entities. This is indicated by the is-part-of relation. Also, an entity can be sub-

class-of another entity, which means that any instance of the sub-class is an instance of the

super-class. Non-functional requirements include safety, security, reliability, availability,

and other non-functional requirements.

Figure 37 presents an ontology for Example 5. It is an instance of the abstract ontology

model presented in Figure 36. In this example, the domain is car and it comprises multiple

applications: anti-lock brake, stability control, cruise control, and fingerprint security. The
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Figure 36: An ontology for domain analysis

example focuses on the fingerprint security application and shows its entities. Two indi-

viduals instantiated from the entity concept are shown in the figure: remote control and

controller. The controller contains individual requirements instantiated from the functional

and non-functional requirement concepts. Relations between individuals are represented by

properties. Two kinds of properties exist in the model: has-property and request-property.

For example, the controller has five functional requirements: lock, unlock, start car, manual

lock, and manual unlock. These functional requirements has some non-functional require-

ments. For example, the lock function has a security requirement (LockDoorSecurity) and

a safety requirement (LockUnlockOnTime). The request-property relation relates an indi-

vidual of type entity or functional to and individual of type functional to indicate that the

former is requesting the function provided by the later. When creating this ontology ex-

ample in the Protege tool, the OWL language specification are generated automatically.

Figure 38 shows part of the OWL language generated for the example. It focuses on the

controller entity and its functional and non-functional requirements and their relations.

TADL specification can be generated by mapping OWL language constructs to TADL

constructs as follows:

• Entities are mapped to components. The part-of relation between entities is mapped

to composite components where a component consists of multiple constituent com-

ponents. Note that the sub-class-of relation is not supported in the current version of

TADL.
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Figure 37: Car ontology example focusing on the fingerprint security system

• Data are mapped to attributes. An attribute is a data element that can be associated

with any construct in TADL.

• Functional requirements are mapped to services. For every functional requirement, a

service is created in TADL. Also, two events are created for each service: a request

for service and a response of the service. The has-property and request-property

relations help identify which component is providing the service and which compo-

nents are consuming it. A service is provided by the component which is related to

the functional requirement by the has-property relation. An interface is created for

each component. The request and response events are associated with this interface.

The services provided and consumed by the component are provided and requested

at this interface. A connector is created for every request-property relation to provide

a means to communicate requested and provided services. If two components are

related by multiple service requests then it is sufficient to create one connector for

the communication between the two components.
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// some classes
<owl:Class rdf:about="#Functional">

<rdfs:subClassOf rdf:resource="#Requirements"/>
<owl:disjointWith rdf:resource="#Non_Functional"/>

</owl:Class>
<owl:Class rdf:about="#Non_Functional">

<rdfs:subClassOf rdf:resource="#Requirements"/>
</owl:Class>
<owl:Class rdf:about="#Reliability">

<rdfs:subClassOf rdf:resource="#Non_Functional"/>
</owl:Class>
<owl:Class rdf:about="#Requirements">

<rdfs:subClassOf rdf:resource="&owl;Thing"/>
</owl:Class>
<owl:Class rdf:about="#Safety">

<rdfs:subClassOf rdf:resource="#Non_Functional"/>
</owl:Class>
<owl:Class rdf:about="#Security">

<rdfs:subClassOf rdf:resource="#Non_Functional"/>
</owl:Class>
//some Individuals
/////////////////
<Entity rdf:about="#Controller">

<hasRequirements rdf:resource="#Lock"/>
<hasRequirements rdf:resource="#ManualLock"/>
<hasRequirements rdf:resource="#ManualUnlock"/>
<hasRequirements rdf:resource="#StartCar"/>
<hasRequirements rdf:resource="#Unlock"/>

</Entity>
<Functional rdf:about="#Lock">

<hasSecurityProperty rdf:resource="#LockDoorsSecurity"/>
<hasSafetyProperty rdf:resource="#LockUnlockOnTime"/>

</Functional>
<Security rdf:about="#LockDoorsSecurity"/>
<Safety rdf:about="#LockUnlockOnTime"/>
<Functional rdf:about="#ManualLock">

<hasReliabilityProperty rdf:resource="#ManualLockUnlockReliability"/>
</Functional>
<Reliability rdf:about="#ManualLockUnlockReliability"/>
<Functional rdf:about="#ManualUnlock">

<hasReliabilityProperty rdf:resource="#ManualLockUnlockReliability"/>
</Functional>
<Functional rdf:about="#StartCar">

<hasSecurityProperty rdf:resource="#StartCarSecurity"/>
</Functional>
<Security rdf:about="#StartCarSecurity"/>
<Functional rdf:about="#Unlock">

<hasSafetyProperty rdf:resource="#LockUnlockOnTime"/>
<hasSecurityProperty rdf:resource="#UnlockDoorsSecurity"/>

</Functional>
<Security rdf:about="#UnlockDoorsSecurity"/>

Figure 38: OWL specification of the controller concept
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• Non-functional requirements are used to define the contract of each component. The

contract contains services, safety, security, reliability, availability, and any other non-

functional requirements. A one to one mapping occurs between elements of these

types of non-functional requirements. For example, a safety property is created in the

component contract for every safety requirement in the ontology. A manual interven-

tion is required in this step of generating TADL. Domain experts should translate the

non-functional requirements, such as safety, to their corresponding representation in

TADL, such as first order predicate logic expressions.

• Constraints are mapped into their corresponding synonym in TADL. A constraint is

an invariant on services. Here also, a manual intervention is required to translate

the constraints specified in the requirements to first order predicate logic suitable for

TADL.

Figure 39 presents the TADL specification of the fingerprint security example. The speci-

fication includes only the controller component.

Therefore, domain engineering yields an ontology representing the knowledge base of

the domain. The domain architecture can be deduced from the ontology. It includes the

applications and their relations. Then, an architecture is created for each application. This

architecture is specified by TADL specification which is generated from the ontology. The

constituent domain components and their detail specifications are also defined in TADL. A

component’s definition includes details about functional, data, non-functional, and struc-

tural requirements. This knowledge and the resulting TADL specification will be used for

both component and system development processes. The formal specification of TADL

will enable formal analysis and reasoning about trustworthiness properties in the following

steps. The ontology and TADL specification will be stored in a “repository” and reused by

the next steps.

Domain engineering is a challenging task. We have provided an ontology-based ap-

proach for domain engineering. The approach is directly related to TADL which has been

introduced in Chapter 5. There are many challenges in domain engineering. Further re-

search is required in order to address the following questions:

• how to transform the system requirements which are collected by system analysts

into the ontology?
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Service Lock{
. . . }

Service Unlock{
. . . }

Service StartCar{
. . . }

Service ManualLock{
. . . }

Service ManualUnlock{
. . . }

SecurityPolicy LockDoorSecurity{
. . . }

SecurityPolicy UnlockDoorSecurity{
. . . }

SecurityPolicy StartCarSecurity{
. . . }

TimeConstraint LockUnlockOnTime{
RequestLock rl;
RequestService(rl);
LockDoor ld;
ResponseService(ld);
float MaximumSafeTime = 1;
}

ContractType Contract{
Lock l;
Unlock ul;
StartCar sc;
ManualLock ml;
ManualUnlock mul;
LockDoorSecurity lds;
UnlockDoorSecurity uds;
LockUnlockOnTime luot;
StartCarSecurity scs;
ManualReliabilityAvailability mra;

}

InterfaceType IController{
RequestLock rl;
LockDoor ld;
RequestUnlock ru;
UnlockDoor ud;
RequestStartCar rsc;
StartTheCar stc;
RequestManualUnlock rmu;
DoManualUnlock dmu;
RequestManualLock rml;
DoManualLock dml;

}

ComponentType Controller{
User u;
IController ic;
Contract c;

}

Figure 39: TADL specification of the Controller component
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• how to translate the requirements of trustworthiness from a human readable text into

formal properties suitable for formal analysis?

• how to minimize the human intervention or guide it in such a way that will avoid

errors in the specification?

8.2 Component Development

This section describes the activities done during component development, which are de-

picted in Figure 35. Component requirements are defined for new components or reused for

existing domain components. The requirements are defined using TADL which is based on

our formal component model introduced in Chapter 4. Therefore, formal component defini-

tions are created using TADL or reused from the repository. The formal definitions specify

component’s structure, functional, and trustworthiness requirements in details using TADL

syntax. Safety, timeliness, security, reliability, and availability properties should be de-

fined formally using some mathematical logic which is compatible with the adopted model

checking tool. The syntax of TADL specification is validated to check its correctness with

reference to the correctness rules specified in Chapter 4. An iterative process occurs here

until the specification passes the validation successfully. Then, the specification is analyzed

and the component behavior is generated automatically as an extended time-automata us-

ing our approach which is presented in Chapter 6. The output is an extended time automata

which is compatible with the UPPAAL modeling language. The transformation rules has

been discussed in Chapter 6. After that, verification is conducted using UPPAAL model

checking techniques to verify the correctness of the design. An iterative process of verifi-

cation occurs until the design passes all functional, safety, security, reliability, availability,

and timeliness requirements checks successfully. In case of errors or violation of any re-

quirement, the component is redesigned using TADL specifications and the process starts

over.

After finishing the iterative process of design and verification, the component is imple-

mented by the developers. A component technology is selected to determine the imple-

mentation details. Emphasis during implementation should be on component reuse. Soft-

ware engineering design concepts such as abstraction, hiding, functional independence,

refinement, and structural programming can effectively help in developing reusable com-

ponents [Pre05].
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In this thesis we provided a formal approach to the analysis and design activities of the

component development in Chapter 4, Chapter 5, Chapter 6, and Chapter 7. However, the

correct design of components does not guarantee that its implementation is correct. There-

fore, further investigation is needed to analyze the challenges in component implementation

such as:

• what is the suitable programming language for developing trustworthy components?

• how to ensure that the developers will implement all the trustworthiness require-

ments?

• how to ensure that the implemented trustworthiness requirements are implemented

correctly?

• how to minimize the developed code? Is it possible to generate code automatically?

• how to implement the component contract?

• how to keep the components loosely coupled?

8.3 Component Assessment

This section describes the activities used for component assessment, which are depicted in

Figure 35. The implemented component undergoes iterative cycles of code inspection and

traceability analysis to ensure that the implementation satisfies the verified design. An au-

tomated black-box testing method is applied to ensure the correctness and predictability of

components’ behavior. Then, the new component is certified and stored in the component

repository. Traceability, testing, and certification are discussed later in Sections 8.6 and 8.8.

The component’s requirements documentation, design, implementation, testing reports and

verification results, traceability analysis and certificates are all stored as meta-data in the

repository . This requires a powerful and automated classification technique that eases stor-

ing and retrieving components and their meta-data. Examples of automated approaches for

searching and retrieving reusable components in large repositories and on the Internet exist

in the literature [YEV08].
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8.4 Component Reuse

This section describes the activities involved in component reuse, which are depicted in

Figure 35. During system design, designers and integrators can reuse existing components.

If there exists no component which satisfies the requirements, a new component should be

developed. System designers start searching for candidate components that could satisfy

the stated requirements, both functional and non-functional. The meta-data stored in the

repository along with the automated classification and retrieval approaches will facilitate

an efficient searching of the repository. If the search is successful in finding some compo-

nents, the selection task is carried out to qualify the candidate components and select the

most appropriate one. Selection is based on domain knowledge and components meta-data

retrieved from the repository. If the component requires some modifications to fit in the

new deployment environment, the adaptation task is carried out to perform the required

modifications. These modifications must be tested using the component assessment ac-

tivities. After finishing the testing, the adapted component is certified and stored in the

component repository for future reuse.

-- Selecting components using component reuse. 
-- Formal definition of the system using TADL.
-- Reuse application architecture from domain
if exists.

Validate formal definitions using TADL
correction rules.

Verify safety, security, timeliness,
predictability, and constraints of the 
composite system using Model Checking.

Integration of components' 
implementations retrieved from the 
repository and writing glue code.

Repository

Testing

-- Elicitate system requirements: functional,
structural, and trustworthiness.
-- Elicitate environmental requirements.
-- Elicitate deployment requirements. 
-- Reuse existing domain knowledge from repository.

reuse components requirements,
design, implementation, and assessment 
from the repository

Formal model of software unit
by composing components
specification from the repository

Formal model of environment

Formal model of trustworthiness

Formal model of deployment

Validation and Verification

Analysis and Design Integration and Testing

Deployment

Deployment

Run-time monitoring
and maintenance

1

2

3

4

Figure 40: Component-based system development

Component Adaptation involves many challenges. System integrators need to evaluate

the effectiveness of adapting an existing component versus implementing a new one. Fur-

ther research is required to investigate the following questions that are related to component

adaptation:
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• how to ensure that the trustworthiness properties will be preserved during the adap-

tation process?

• how to create a sub type of an existing component type?

8.5 System Development

Figure 40 presents the system development process. It consists of four phases: analysis

and design, validation and verification, integration and testing, and deployment. In system

requirements definition, reuse of domain knowledge is to be encouraged whenever possi-

ble. We have outlined our approach for the reuse of domain knowledge in Section 8.1.

Requirements should include functional, structural, and trustworthiness aspects of the sys-

tem. The requirements are stated in TADL. The requirements analysis leads to selecting

components to build the component-based system. The reuse of components is discussed

in Section 8.4. Once the components are selected, their formal specifications are retrieved

to build the software unit formal specification. The formal specifications are based on our

formal component model introduced in Chapter 4. Domain application architecture can be

used, if exists, to build the system architecture and define relations between components.

The trustworthiness properties of the system must be defined using a formal logic language.

There is a need to translate the trustworthiness properties from TADL specification into a

formal logic language. The language depends on the kind of model checking tool used,

such as UPPAAL [BDL04]. A formal model of the environment is required to test the

boundaries of the system. A formal deployment model is required to verify the correct-

ness of the deployment, relations between hardware and software components. The formal

model of the environment is specified using TADL.

An iterative process of validation is conducted to ensure that the system design is syn-

tactically and semantically correct with respect to TADL rules. Then, the formal models

of software unit is formed by composing the extended time-automata for all the constituent

components using UPPAAL according to our approach which is introduced in Chapter 6.

Also, the trustworthiness properties are specified using UPPAAL’s CTL language. Then,

the formal verification process starts. The goal is to ensure that the composition of compo-

nents does not violate the stated trustworthiness properties, which are already satisfied at a

component level.

If the system design is proven correct, integration activities take place to integrate the
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implementations of the selected components, which are retrieved from the repository, ac-

cording to the system architecture. Glue code is written whenever required. The implemen-

tation undergoes an iterative cycle of extensive system testing. Different kinds of testing

can be applied such as unit, integration, and acceptance testing. Then, the software is

deployed according to the formal deployment plan in a run-time environment that allows

dynamic reconfiguration. While in operation, the run-time software is continuously mon-

itored and analyzed to ensure that its behavior respects the trustworthiness properties and

conforms to the verified formal models. Run-time monitoring (see Section 8.9) is a pow-

erful mechanism to ensure availability and analyze reliability. During maintenance, com-

ponents can be substituted to fix bugs or install new upgraded versions that provide more

services. In this case, the formal model of the new component must be composed with the

software unit design and validation, verification, and integration testing activities should be

applied to ensure that the new component does not compromise the trustworthiness of the

system.

The formal component model and TADL are the basis for the formal specification of

component-based systems. We provided a compositional theorem which preserves the re-

quirements of trustworthiness when assembling components together. This theorem makes

the model checking of large component-based systems tractable. There are many chal-

lenges in the component-based development for trustworthy systems that need further in-

vestigation such as:

• what is the effect of the glue code between components on their trustworthiness re-

quirements?

• what the the requirements of a trustworthy deployment environment in which trust-

worthy systems can be deployed?

• how to perform run-time monitoring? what is the effect of runtime monitoring on the

performance of the system?

• how to guarantee that the maintenance will be applied whenever it is needed?

• how to perform dynamic reconfiguration? what is the effect of the dynamic recon-

figuration on the properties of trustworthiness?
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8.6 Traceability

The goal of traceability is to analyze newly developed components and verify their confor-

mance to design specifications. Traceability verifies that the code satisfies the functional,

structural, and trustworthiness specifications. Traceability analysis is not a trivial task. It

requires scrutinizing the generated and developed component code. We propose the fol-

lowing techniques to perform this operation:

Traceability of functional and structural specifications: During the automatic code

generation or manual development of components, there is a need to maintain the relation

between each functional and structural design element and its implementation construct.

These relations can be kept in a transformation file in which the name and type of each

design element is associated with the name and type of its actual implementation. For ex-

ample, the services that are defined at the interfaces of a component in TADL are associated

with implementation methods, functions in C# or Java. Then, model transformation analy-

sis techniques, such as [CHM+02], can be used to verify the completeness and correctness

of the code generation and development. At the same time, information can be added to

component’s meta-data to link the implementation to its source design time specification.

For example, current programming languages like C# and Java support defining custom

attributes. These attributes can add semantic information to implementation constructs

such as methods and classes. Then, Reflection techniques are used to read attributes and

analyze component’s meta-data. Therefore, the traceability uses attributes and reflection to

analyze the conformance of component’s implementation to its design specifications.

Traceability of real-time specification: Worst case execution time (WCET) of services

can be specified as an attribute to a service at design time and as a custom attribute at

implementation time. Then, during traceability analysis, the functions that implement real-

time services can be executed to check if their measured execution time is bound by their

specified WCET attribute.

Traceability of trustworthiness: The actual traceability of security, availability, relia-

bility, and safety behavior can be analyzed using run-time analysis techniques described in

Section 8.9.

Traceability analysis is a challenging task. Further research is needed to investigate the

following directions:

• how to implement a custom attribute for the different language constructs of TADL?
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• how to build an efficient reflection mechanism to verify that the developers have

implemented all the requirements?

• how to verify that the implementation of each requirement is correct?

• how to link a language construct to its implementation? Is it sufficient to use names

to link a requirement to an implementation?

• the execution time at a development or test environment may be different than the

execution time at a real deployment environment. Therefore, how to validate the

implementation of worst-case execution time?

8.7 Certification

After traceability analysis, there is a need to interact with a certification authority to obtain

a certificate that indicates the trustworthiness of the component and the level of develop-

ment conformity to design and quality attributes stated in its specifications. Certification

authorities do exist for electronic components [ECC]. However, for software components,

the issues of certification exists only in research. Despite many publications about this

topic in the literature [AdAdLM05], there is no general official certification authority that

currently exists. A certification authority could exist only at a domain level. For example,

in the domain of avionics, the Federal Aviation Administration (FAA) and the European

Aviation Safety Agency (EASA) use the DO-178B guidance to give certificates to software

components. Also, it is possible that the same company develops and reuses its compo-

nents; therefore, it can have a local certification body.

The certificate can be issued based on analyzing the following information: (i) the

information of the software development firm, (ii) component’s design specification and

implementation code, (iii) the results of the conducted design-time verification. It is pos-

sible to submit the state space generated by the local model checker for external reviewer

to verify properties, in case the company does not want to submit the detail design, (iv) the

results of the traceability analysis of components implementation relative to its design, (v)

the test results from the automated black-box testing, and (vi) detailed information about

the tools used to generate the analysis reports. Then, the certification authority can verify

the claimed analysis reports ( may perform the verification and traceability checks again)
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and issue the certificate. Certificates are stored with components along with their analysis

reports in the component repository.

Certification is still a challenging task. Further research is required to investigate the

following questions:

• what are the requirements of a trustworthy certification authority?

• how to ensure that a certified component has not been modified after certification?

• how to validate certificates?

• what is the effect of component modification on certificates? what type of modifica-

tions invalidate a certificate?

8.8 Automated Component Testing

The formal specification approach is necessary for having an automated, contract-based

testing. The component formal definition, introduced in Chapter 4, includes specifications

of the services provided or requested by the component along with the data parameters

communicated through them. It is possible to use the constraints that are defined for data

parameters to specify the valid ranges of values. Service specification defines the relation

between requests for services and their corresponding responses. It can be used also to

define the relation between the valid input and output values. These formal information

can be used to define automatic, black-box test scenarios for each component. A selection

of input data both from the valid and invalid ranges can be used to test the responses of

components. Then these responses are analyzed according to the service specification to

determine whether or not the correct responses ware issued and whether or not the valid

outputs were attached to it.

The technique described above helps building automatic testing scenarios for the ob-

servable behavior of a component. However, there are more research problems that need to

be investigated to develop an effective and automated component testing such as:

• how to test the composition and communication between components?

• how to ensure that the internal, non-observed, behavior of a component is correct?
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8.9 Run-Time Monitoring

In this activity, a tool performs run-time analysis during system execution. The tool ensures

that system behavior conforms to the stated functional and trustworthiness properties. This

is done by observing input, output, and system states during program execution. Execution

sequences can be monitored, logged, and visualized to ease analyzing system behavior.

These sequences are used to build usage profiles for components. These profiles can be

used to monitor the availability and analyze the reliability of components and system. The

execution profiles can be subjected to formal verification. Verification is done by ensuring

that system executions do not reach a state that violates trustworthiness. It can produce a

counter-example in case of system failure.

Run-time monitoring is a challenging task. The following research problems require

further investigation:

• what are the requirements of a run-time environment for trustworthy systems?

• how to ensure that the run-time environment is supplying all the essential needs of

trustworthy components?

• how to intercept the interplay communication between components to build execu-

tion profiles?

• is it possible to monitor the internal behavior of a component?

• how to perform efficient formal verification using the execution profiles?

8.10 Accomplishments

This chapter provided our perspective of a process model for the development of trustwor-

thy component-based systems. The process model consists of several phases that cover the

different activities that are necessary for developing such systems. We have outlined the

essential activities that are necessary for a rigorous component-based development process

model. We provided a brief discussion about each activity. This thesis accomplished the

following tasks:

• Domain Engineering: we provided an ontology oriented approach for domain on-

tology in Section 8.1. The approach includes providing an ontology for trustworthy
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systems, designing systems using this ontology, and transforming the design into

TADL. We provided an example to illustrate our approach.

• Component Development: we provided a formal component model in Chapter 4 and

TADL in Chapter 5 which is based on the formal component model. TADL is used to

specify trustworthy components. Specifically, it provides language descriptions for

the functional, trustworthiness, and structural requirements. Validation rules have

been defined in Chapter 4 to validate the syntactic correctness of component speci-

fication. We provided an automated model transformation technique for specifying

the behavior of components automatically in Chapter 6. We provided a technique for

the formal specification of reliability and availability in Chapter 7. We integrated two

model checkers, UPPAAL and Times, for verifying the trustworthiness properties of

the component.

• Component-based system development: the formal component model, TADL, model

transformation technique, and model checking contributions that we provided for the

component development are applicable also for the component-based system devel-

opment. We provided a composition theorem which insures that the trustworthiness

properties are preserved in the composition. Therefore, incremental model check-

ing can be used effectively to model check component-based systems using our ap-

proach.

We provided a brief discussion and research directions about the other activities, which in-

clude component implementation, traceability analysis, automated black-box testing, com-

ponent reuse, and deployment. These activities need to be explored further.
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Chapter 9

Framework Architecture

The framework is being built on the rigorous process model. Tools are provided to prac-

tise CBSE to develop trustworthy systems. The framework can be viewed in three layers:

design, implementation, and deployment. Taken as a whole, the framework describes the

tools necessary for the different activities outlined in the process model, which was intro-

duced in Chapter 8. Figure 41 depicts the framework architecture showing the tools in the

three layers. This chapter gives a detailed description of the tools and highlights the merits

of each tool.

9.1 Design-Time Tools

9.1.1 Visual modeling tool

This tool is used in the component development activity described in Section 8.2 and

the system analysis and design activity described in Section 8.5. This tool provides a

user friendly interface to model components and systems and specify functional and non-

functional properties. It acts as an interface to perform design without being directly ex-

posed to the formal notation. The tool projects both textual and visual representations of

the design. Also, it projects the model into 3 different views for different users: CBD,

real-time, and trustworthiness view. The tool has been implemented using Java [Yun09].

Every architectural element has a defined visual representation. The user designs a sys-

tem by dragging and dropping visual elements into a design canvas. Relations, properties,

attributes, and conditions can be associated with the design elements. The system specifi-

cation are saved in an XML file according to TADL syntax. Figure 42 shows a screen shot
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of the visual modeling tool.

9.1.2 Compiler and model transformation

This tool is used in the component development activity described in Section 8.2 and the

system analysis and design activity described in Section 8.5. This tool checks the syntac-

tic correctness of the visual modeling design with respect to its abstract definitions. The

compositional correctness of component design elements and the architectural mismatches

such as incompatibility of the interface types defined in the connector types or those used

in the architectures of composite components are checked. Error messages are given when

inconsistent or incompatible definitions appear in the design. If the design is syntactically
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Figure 42: Visual Modeling Tool

correct, the compiler generates a formal descriptions of the visual model. The compiler

generates different types of output by transforming the valid design according to formally

defined transformation rules. The current version of the compiler generates three types of

output:

• a textual description in TADL syntax,

• a behavioral model descriptions as UPPAAL extended timed automata, and

• a real-time model using timed automata extended with tasks.

Manual transformation of component specification at design time into other models is com-

plex and error-prone. Therefore, applying automatic model transformation techniques is

very important to ensure a highly convincing level of trustworthiness. The transformation

process is implemented using XSLT [XSL], a standard mechanism for transforming XML

documents into other types of documents. The process uses the formal transformation rules,

140



defined in Chapter 6, to transform the system specification from the saved XML file into

the required output format. The transformation rules are implemented using XSLT instruc-

tions and XPath, an expression language for finding information in an XML document. The

implementation of this tool can be easily extended to accommodate more views. This is

because the transformation is implemented using XSLT. This means that the transformation

rules can be maintained, updated, and extended without affecting the transformation pro-

cess or requiring reimplementation. Figure 43 shows a snap shot of the compiler and model

transformation tool [Ibr08]. The window is divided into two sections: system specification

and model translation. The system specification part displays the TADL specification using

XML tree or textual format. The model translation shows the generated UPPAAL or Times

extended timed automata, which is resulted from the transformation process.

Figure 43: The compiler and model transformation tool
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9.1.3 Transformation analysis

This tool is used in the component development activity described in Section 8.2 and the

system analysis and design activity described in Section 8.5. Automatic model transfor-

mation is increasingly being adopted as a technique to reduce the complexity and faults of

transformation. However, the correctness and completeness of the transformation process

must be subject to reasoning. Design and implementation flaws are still possible during the

development of the automatic transformation tools. Therefore, it is necessary to subject the

transformation process to inspection in order to make it trustworthy. The transformation

analysis tool is crucial to verify the correctness, completeness, and compatibility of the

views produced by the transformation process of the compiler. A view is complete with

respect to the visual model if every feature in the view is a feature in the visual model. That

is, there is no extraneous feature in a view. A view is correct with respect to a visual model

if the view is complete and every feature in the visual model is mapped to only one feature

in the view. Two views are compatible if and only if both views are correct with respect to

the visual model. Depending on the type of output (ADL, behavior protocol, or real-time

model) and defined formal transformation rules, the tool will analyze the transformation

process and produce the result to the user.

The transformation analysis is done by reversing the transformation process and vali-

dating the resulting output with the original XML file that specifies the system. This is done

by defining an XSLT with reverse transformation rules, from extended timed automata to

system specification in XML. The process takes a behavioral specification as input and

produces a system specification as output. Then, the resulted XML file is validated against

the original XML file. In this process, every component specification, including its ser-

vices, attributes, data constraints, time constraints, and security specification, should match

a component specification in the original XML file.

9.1.4 Simulation and model checking

This tool is used in the component development activity described in Section 8.2 and the

system analysis and design activity described in Section 8.5.

The distinct advantage of the compiler tool is that it can generate the behavior model in

different notations, thus allowing different model checkers to be integrated into the frame-

work to perform formal verification. There exists no general purpose model checker, in the
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sense that no existing model checker has the ability to model check any stated property.

Since trustworthiness attributes can be defined differently by developers for different ap-

plications, a developer must be given the facility to plug in the model checker that is most

suitable for verifying the chosen trustworthiness properties. This is the rationale behind

our design decision to translate the model into different formal notations.

By design the translator in our tool is syntax-directed and hence extensional. The trans-

lator in our compiler will only require the grammar of the target language to produce an

output in the target language. No change to the translator code is necessary.

In the current implementation, the compiler supports only UPPAAL [BDL04] format.

Therefore, we use UPPAAL tool for simulation and model checking.

9.1.5 Real-time analysis

This tool is used in the component development activity described in Section 8.2 and the

system analysis and design activity described in Section 8.5.

This tool supports real-time scheduling and real-time analysis relative to criticality, pri-

ority, and other real-time non-functional properties. We are currently using Times [AFM+03]

to perform real-time analysis.

9.1.6 Architectural analysis

This tool is used in the component development activity described in Section 8.2 and the

system analysis and design activity described in Section 8.5.

This tool analyzes the correctness of the architectural style and system configuration

specification relative to architectural constraints defined in the system design.

9.2 Implementation Tools

9.2.1 Component repository

This is a storage place to store and reuse developed trustworthy components. The repository

provides storage facilities for: (i) component specification (structure and contract), (ii)

development source code, (iii) compiled, execution ready assembly of the component, and

(iv) usage profiles and certificates. The repository allows storing and retrieving different

versions of the same component.
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9.2.2 Code generation

This tool is used in the component development activity described in Section 8.2 and the

system analysis and design activity described in Section 8.5.

This tool produces source code. It supports different programming languages such as

C++, C#, and java. It analyzes the system design specification. Then, for every component

or connector, if the component exists in the component repository then it should reuse

it; otherwise, it should produce source code or skeleton for new components. The tool

will also develop code for new components by refining existing implementations. The

tool provides facilities to use language specific compilers such as C# or java to perform

syntactic and semantic analysis of components code. Contracts will be handled as cross-

cutting concerns implemented as aspects.

9.2.3 Traceability analysis

This tool performs the traceability activity, which is described in 8.6. It takes a component’s

specification and its corresponding implementation as input. Then, it queries the meta-

data of the component implementation using reflection techniques to retrieve the custom

attributes. After that, it compares the implementation constructs of the component with its

specification. For example, it checks if all the defined services has been implemented or

not.

9.3 Run-time Tools

9.3.1 Run-time environment

This tool supports running systems and dynamically reconfiguring executions. The tool is

a middleware between the component repository and the run-time environment that com-

municates with the operating system (e.g., J2EE or .NET run-time environment). It com-

municates with the component repository to load component assemblies. The tool allows a

controlled reconfiguration to the running system (e.g., adding a new component or replac-

ing an existing one).
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9.3.2 Run-time analysis

This tool performs the run-time analysis activity, which is desribed in 8.9. This tool moni-

tors that interplay communications between components and logs it for further analysis. It

is possible to extend the implementation of connectors by adding logging mechanism. This

enables logging all the interactions between components. Then, the logs of all connectors

of a component can be composed together to analyze the overall behavior of the compo-

nent. These logs build operational profiles that can be used to perform run-time analysis of

the trustworthiness properties.

9.4 Summary

This chapter introduced a framework which is designed to implement the rigorous process

model. Currently, the design time tools has been implemented and tested on several case

studies in the domains of component-based development and safety critical systems. The

other tools are under different stages of design and development. Figure 44 shows the

currently implemented tools. The visual modeling tools, which is implemented by Zhou

Yun [Yun09], is used to design and specify trustworthy component-based systems. Then,

the tools exports the TADL specification as an XML file. This file is input into the compiler

tool, which is implemented by Naseem Ibrahim [Ibr08]. Then, the compiler produces two

output XML files one with UPPAAL representation language and the other with Times

representation language. After that, the two files are input into the model checkers to

perform verification.

Visual Modeling
Tool

Compiler Tool

UPPAAL
Model Checker

XML-
TADL

XML-
UPPAAL

XML-
Times

Times
Model Checker

Figure 44: The implemented and adopted tools
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These implemented tools have the following limitations:

• The visual modeling tool is used to design component-based systems. However, the

whole component-based system specification is saved into one XML file. Therefore,

it is not possible to reuse an existing component specification for another system.

There is a need to improve the tool to allow reuse of system elements.

• The output of the compiler tool is limited to UPPAAL and Times representation

languages. There is a need to extend the tool to support other compiler representation

languages.

• There is a need to embed the compiler functionality inside the visual modeling tool.

This will facilitate the design and avoid the use of an intermediate XML file between

the two tools.
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Chapter 10

Conclusion

In this thesis we have evaluated the state of the art of CBSE approaches. The analysis

shows that the CBSE has not fully realized its objectives and still has a long way to go

to fulfilling its promises. Hence, it is unlikely that current practices of CBSE can lead to

developing trustworthy systems. Therefore, we have introduced a formal approach that

aims to remedy the shortcomings of CBSE by proposing a trustworthy component model,

a rigorous development process model, and a framework that implements the development

process.

Component modeling techniques with whom we have compared our work, do not pro-

vide all the tools necessary for rigorous analysis at different stages of system life-cycle. The

reason is that these component models are designed and implemented for different specific

domains. For examples, SaveCCM, Pin, and PECOS are real-time component models.

Hence they provide tools for real-time analysis and verification of safety and liveness. On

the other hand, SOFA is a distributed component-based model focusing on distributed sys-

tems’ architecture and communication aspects.

A virtue of the presented software engineering approach is that it can be a unified

platform for developing component models, regardless of their application domain. The

proposed component model provides both real-time elements and essential architectural

features for hierarchical, as well as distributed systems. Also, it supports the specification

and verification of trustworthiness properties.

It is reasonable not to claim that systems developed under this proposed framework will

be absolutely trustworthy, but it is justifiable to claim that such systems can be provable to

meet the trustworthiness criteria, provided that the tools in the framework are correct.
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As of now, the visual modeling, the compiler, the automatic translator to ADL notation,

and translating the model to UPPAAL language for model checking have been completed.

We tested the translation to UPPAAL model checker on the steam boiler controller case

study [ABL96] and the common component modeling example [RRMP08] and verified

timeliness, safety and security properties. Times tool has been used to perform real-time

analysis. We are optimistic in realizing the rest of the tools.

10.1 Summary

In this section we discuss and evaluate the results achieved in this thesis with respect to the

goals stated in Chapter 3.

1. Defining “A Formal Component Model for Trustworthy Systems”: there are 4 re-

search problems stated for this goal. The research problems and the solution provided

by this thesis are stated bellow:

• The lack of support for trustworthiness requirements in component models: the

solutions provided for this problem and their limitations are listed bellow:

– Solution 1: in Chapter 4 we provided a formal component model which

supports the specification of safety and security requirements.

– Solution 2: in Chapter 7 we provided a formal specification for reliability

and availability.

– Solution 3: the trustworthiness properties are define in the component con-

tract.

– Solution 4: in Chapter 5 we provided an architecture description language

for describing trustworthy component-based systems.

– Solution 5: in Chapter 6 we provided an automated approach to specify the

behavior of trustworthy components using extended timed automata.

– Limitation 1: the security properties are limited to role-based access secu-

rity. Further research is required to explore other security mechanisms and

distributed authentication.

• The strong coupling of components: the solution for this problem is provided

in in Chapter 4. The dependence between components is defined in the com-

ponent contract. Therefore, component specification does not need to include
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information about the components it communicates with.

• The need for a composition theory:

– Solution: in Chapter 4 we provided a composition theory for trustworthy

components.

– Limitation: the composition theory includes only safety and security re-

quirements. Further research is needed to investigate the composition of

reliability and availability.

• The need for an approach for specifying and verifying reliability and availabil-

ity at architecture level: in Chapter 7 we provided a novel approach for the

specification and verification of reliability and availability at architectural level.

2. Defining “A Process Model for Developing Trustworthy Component-Based Systems”:

the solution provided for this goal and the limitations are stated bellow:

• Solution: in Chapter 8 we provided process models for component engineering

and component-based development of trustworthy systems.

• Limitation: brief discussion was provided for the activities of component imple-

mentation, traceability analysis, automated black-box testing, component reuse,

and deployment. Further research is required to explore these activities.

3. Developing “A Framework with Comprehensive Tool Support”: the solution pro-

vided for this goal and the limitations are stated bellow:

• Solution: in Chapter 9 we introduced a framework with comprehensive set of

tools for supporting the activities in the process model.

• Limitation: We implemented only the design time tools. Further research is

required to design and implement the rest of tools.

10.2 Assessment

The formal approach presented in this thesis is a contribution to CBSE. A model is a corner

stone in any engineering practice. A formal model helps in understanding and reasoning

about a problem very well. Our formal approach includes tools to support the engineering

activities. In this section, we evaluate our formal approach with respect to the following
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criteria: completeness, comprehensibility, modifiability, testability, reusability, scalability,

and usability.

Completeness: Are the elements of the formal component model sufficient to model trust-

worthy systems? The following factors support our argument that the elements of the formal

model are sufficient to express various trustworthy component-based systems:

• Component Model: When we analyze the various component definitions in the liter-

ature, we find that the essential defining elements of a component model are: compo-

nent, interface, connector, attribute, architecture, and behavior specification. These

elements might have different names or syntactic definitions but there is a common

consensus about their semantics. The formal component model that is introduced in

this thesis includes all these elements.

• Trustworthiness: When we analyze the definition of trustworthiness in the literature,

we find that safety, security, reliability, and availability are the essential properties

of trustworthiness. The contract of our component model inclusively defines these

properties.

• Case Studies: We have tested our component model on two benchmark case studies:

(1) steam boiler controller case study [ABL96], which is a benchmark case study in

the domain of safety critical systems, and (2) Common Component Modeling Exam-

ple [RRMP08], which is a benchmark case study for testing the modeling ability of

component models. The results are provided in [Ibr08, AM07b]. It shows that our

component model is capable of modeling such case studies. The early definition of

our trustworthy component model appeared in [AM07a].

Comprehensibility: Are the formal descriptions easy to understand? Mathematical no-

tations are not easy to understand for a non expert. This motivated us to create an architec-

ture description language (TADL). TADL uses high level language to describe component-

based systems. Therefore, it is easy to understand by non experts in our formalism. TADL

appeared in [MA08]. The behavior specifications are generated in timed automata, which

is widely used in the literature to describe the behavior of different types of systems, spe-

cially safety-critical ones. Trustworthiness properties are modeled using guard conditions

and state invariants which makes it easy to the reader to understand their rule in governing

system transitions.
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Modifiability: How easy it is to modify the specification? Every element in our formal

model is described separately. For example, a contract is specified separately from a com-

ponent definition. This enables modifying the contract without affecting the definition of a

component. Also, the definition of an architecture type is specified separately form a com-

ponent. This enables customizing the structural definition of components without affecting

their definition.

Testability: Is it possible to validate whether or not a specification is right? We have

provided rules of well-formedness for the elements of the formal model. A visual modeling

tool [Yun09] is used to design systems according to our component model. This tool checks

the rules of well-formedness and report any error to the user.

Reusability: Does the formal model support reuse? Since every element in our com-

ponent model is described separately, it is possible to reuse these definitions for different

systems. We are currently designing a repository tool to host the component-based system

specifications so that the elements can be reused.

Scalability: Does the formalism scale up to handle large problems? The scalability issue

can be analyzed in the following two contexts:

• Specification: The formal specifications of component-based systems is scalable to

large systems. It is possible to define hierarchical components and analyze it at differ-

ent levels of granularity. Architectures can be used to specify the design of complex

systems and encapsulate the details in one composite component specification.

• Verification: Our design time verification is based on model checking. Scalability

of model checking is still an open challenge. The problem of state-space explosion

limits the scalability of the verification process. Techniques such as symbolic model

checking have been applied successfully to improve the scalability of model check-

ing. In our model, incremental composition can be used to effectively address the

state-space explosion problem.

Usability: Is it easy to use the formal approach? Our formal model can be used easily by

software architects to specify and verify component-based systems. The user uses a visual

modeling tool to design the system and configure its elements. Then, the visual modeling
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tool will generate the corresponding TADL. After that, a model transformation tool will

take the generated TADL as input and produce two types extended timed automata. The

syntax of one extended time automata conforms to the syntax of UPPAAL model checker

and the syntax of the other conforms to the syntax of the Times tool. Then, the design is

verified against any trustworthiness properties. Thus, the whole process is supported by

tools and the user needs to know only how to user the graphical user interface of the visual

modeling tool and the property specification language of UPPAAL.

10.3 Case Studies

In this section we briefly describe the work done to apply our design methodology on two

benchmark case studies in the fields of component-based development and safety-critical

systems. The two case studies are: the common component modeling example [RRMP08]

and steam boiler controller [ABL96]. The goals of applying our methodology on these two

case studies are:

• test the expressiveness power of TADL,

• test the automatic model transformation process, which transforms TADL specifica-

tion into extended timed automata,

• test the formal verification of the properties of trustworthiness using one unified

model and one model checking tool, and

• test the visual modeling and compiler tools.

10.3.1 The common component modeling example

A common component modeling example (CoCoME) has been introduced by the com-

ponent development community [RRMP08] to be used by different component models to

evaluate and compare the practical application of existing component models using a com-

mon component-based system as a modeling example. The details of specification and

verification of the case study was introduced in [Ibr08] and [Yun09]. In this section, we

provide a brief description and show the results.

The CoCoME defines the Trading System, which is concerned with all aspects of

handling sales at a supermarket, including the interaction with the customer at the cash
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desk (product scanning and payment) and recording of the sale for inventory purposes. It

also deals with ordering goods from wholesalers and generating various kinds of reports.

Figure 45 shows the architecture of the trading system. It consists of the following compo-

nents:

• Cash Box: this component is responsible of performing the selling operation by the

cashier.

• Bar Code Scanner: this component is responsible for scanning the items to be sold

and reading their bar code.

• Card Reader: this component is responsible for managing the process of card pay-

ment. It reads the card information and sends it to the bank to approve the payment.

• Bank: this component represents the financial institution that is responsible for per-

forming and approving the card payment.
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• Printer: this component is responsible for printing the sale receipt.

• Stock Manager: this component represents the stock manager which is responsible

for receiving arriving orders and checking them then rolling them into the inventory.

• Light Display: this component represents the display light above the cash box which

is used to indicate if this cash box is in express mode.

• Inventory: this component represents that store server (inventory).

First, we used the visual modeling tool to model the system. Figure 46 shows the ar-

chitecture of the cash desk in the visual modeling tool. After that, the visual modeling

tool automatically generated TADL specification for the case study. Figures 47 and 47

show parts of the generated TADL. The full TADL specification and verification is pro-

vided in [Ibr08] and [Yun09]. After that, the TADL was input into the compiler tool which

generated the timed automata for all the components in the system using UPPAAL specifi-

cation language. For example, Figure 49 shows the extended timed automata of the Cashier

component. After that, we performed model checking to verify safety and security require-

ments.

The limitation of our methodology is that it does not handle the concurrency require-

ments which are part of the requirements of this case study.

Therefore, applying our methodology to the common component modeling example

shows that the language constructs of TADL were sufficient to specify the requirements of

the common component modeling example. Also, we were able to transform the require-

ments successfully to UPPAAL extended timed automata and perform verification of safety

and security properties.

10.3.2 The steam boiler controller case study

In Chapter 7 we used the steam boiler controller case study to illustrate the expressive

power of our formalism and design methodology in specifying and verifying reliability

and availability requirements. We included the extended timed automata of the controller

component which is the main component in this case study.
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Figure 46: The architecture of the cash desk
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TimeConstraint ProcessCashPay{
Cash cash;
RequestEvent(cash);
ReturnChange returnChange;
ResponseEvent(returnChange);
float MaxSafeTime=120;

}
DataConstraint CashBoxDataCons1{

CheckIfExpress checkIfExpress;
RequestEvent(checkIfExpress);
CheckLastHour checkLastHour;
ResponseEvent(checkLastHour);
Constraint Mode==done;

}
Service CashReturn{

Cash cash;
RequestEvent(cash);
ReturnChange returnChange;
ResponseEvent(returnChange);
TimeConstraint ProcessCashPay;
Security Policy ;
Update {
}
Action {
}

}
Service ExpressHour{

CheckIfExpress checkIfExpress;
RequestEvent(checkIfExpress);
CheckLastHour checkLastHour;
ResponseEvent(checkLastHour);
DataConstraint CashBoxDataCons1;
Security Policy ;
Update {

Statement Mode:=waiting;
Security Policy null;

}
Action {
}

}
ContractType CashBox_Contract{

Service CashReturn;
Service ExpressHour;
.....;

}
InterfaceType Cashier_cashBox{

PassItem passItem;
Cash cash;
Card card;
SaleFinished saleFinished;
DisableExpress disableExpress;
Pay pay;
IsMoreItem isMoreItem;

}
InterfaceType CashBox_internal{

CheckIfExpress checkIfExpress;
ReturnChange returnChange;
AddTotal addTotal;
Ignore ignore;
ChangeModeToNormal changeModeToNormal;

}
}

Figure 47: Part of the TADL specification of CocoMe
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ComponentType CashBox{
Contract CashBox_Contract;
CashBox_scanner cashBox_scanner;
CashBox_displayLight cashBox_displayLight;
CashBox_printer cashBox_printer;
CashBox_cashier cashBox_cashier;
CashBox_cardReader cashBox_cardReader;
CashBox_inventory cashBox_inventory;
CashBox_internal cashBox_internal;

}
ArchitectureType CashDesk{

DisplayLight displayLight;
CashBox cashBox;
Scanner scanner;
Bank bank;
CardReader cardReader;
Cashier cashier;
Printer printer;
Cash-CashierCNN Cash-Cashier;
Card-CashCNN Card-Cash;
Card-BankCNN Card-Bank;
Display-CashCNN Display-Cash;
Cash-ScannerCNN Cash-Scanner;
Cash-PrinterCNN Cash-Printer;
Attachment(Cash-Cashier.Connector29Role30.cashier_cashBox,Cashier.cashier_cashBox);
Attachment(Cash-Cashier.Connector29Role31.cashBox_cashier,CashBox.cashBox_cashier);
Attachment(Card-Cash.Connector32Role33.cashBox_cardReader,CashBox.cashBox_cardReader);
Attachment(Card-Cash.Connector32Role34.cardReader_cashbox,CardReader.cardReader_cashbox);
Attachment(Card-Bank.Connector35Role36.cardReader_bank,CardReader.cardReader_bank);
Attachment(Card-Bank.Connector35Role37.bank_CardReader,Bank.bank_CardReader);
Attachment(Display-Cash.Connector23Role24.displayLight_cashBox,
DisplayLight.displayLight_cashBox);
Attachment(Display-Cash.Connector23Role25.cashBox_displayLight,
CashBox.cashBox_displayLight);
Attachment(Cash-Scanner.Connector20Role21.cashBox_scanner,CashBox.cashBox_scanner);
Attachment(Cash-Scanner.Connector20Role22.scanner_cashBox,Scanner.scanner_cashBox);
Attachment(Cash-Printer.Connector26Role27.printer_cashBox,Printer.printer_cashBox);
Attachment(Cash-Printer.Connector26Role28.cashBox_printer,CashBox.cashBox_printer);

}

Figure 48: Part of the TADL specification of CocoMe
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Figure 49: Extended timed automata of the Cashier component
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Jean-Bernard Stefani. The FRACTAL component model and its support

160



in java: Experiences with auto-adaptive and reconfigurable systems. Soft-

ware Practice & Experience, 36(11-12):1257–1284, 2006.

[BDL04] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on Up-

paal. In Proceedings of the 4th International School on Formal Meth-

ods for Design of Computer, Communicadtion and Software Systems-Real

Time, number LNCS 3185, pages 200–236, 2004.

[BHP06] Tomas Bures, Petr Hnetynka, and Frantisek Plasil. Sofa 2.0: Balancing

advanced features in a hierarchical component model. In Proceedings of

the 4th International Conference on Software Engineering Research, Man-

agement and Applications, pages 40–48, August 2006.

[Bis03] Matt Bishop. Computer Security: Art and Science. Addison Wesley, 2003.

[CCL06] Ivica Crnkovic, Michel Chaudron, and Stig Larsson. Component-based

development process and component lifecycle. In Proceedings of the In-

ternational Conference on Software Engineering Advances (ICSEA’06),

pages 321–327. IEEE Computer Society, 2006.

[CFLGP03] Oscar Corcho, Mariano Fernández-López, and Asunción Gómez-Pérez.
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