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Abstract. A discrete-time random dynamical system is said to be a random map if one of a

number of transformations is randomly selected and applied at each iteration of the process.

Invariant densities of random maps describe the asymptotic properties of a random map.

If the individual maps of a random map are piecewise onto and piecewise expanding then

the random map satisfies Pelikan’s average expanding condition and the random map

has invariant densities. For individual maps, piecewise expanding and piecewise onto are

sufficient to establish many important properties of the invariant densities, in particular,

the fact that the densities inherit smoothness properties of individual maps. It is of interest

to see if this property is transferred to random maps satisfying piecewise expanding and

piecewise onto conditions. We show that if all the maps constituting the random map are

piecewise expanding and piecewise onto, then the same result is true.
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1 Introduction

One of the fundamental problems in ergodic theory is to describe the asymp-
totic behavior of trajectories defined by a dynamical system. The existence
and properties of invariant measures for chaotic dynamical systems reflect
their long time behavior and play an important role in understanding their
chaotic nature. For a single transformation of an interval, much is known
about the densities of the absolutely continuous invariant measures (acim).
For example, it is known that the densities inherit smoothness properties
from the map itself (Halfant [8] , Szewc [16]), that the supports consist of a
finite union of intervals and that the densities are bounded below on their
supports (Keller [9] and Kowalski [10]).

Random dynamical systems provide a useful framework for modeling and
analyzing various physical, social and economic phenomena [5,14]. A random
dynamical system of special interest is a random map where the process
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switches from one map to another according to fixed probabilities [13] or,
more generally, position dependent probabilities [1, 3, 4]. Random maps
have applications in the study of fractals [3], in modeling interference effects
in quantum mechanics [5] and in computing metric entropy [15]. Random
maps are also a convenient framework for modeling processes with randomly
changing environment, e.g., the stock market. In [1, 2] random maps are
used to replace the binomial model applied to determine option prices.

The existence and properties of invariant measures for random maps re-
flect their long time behavior and play an important role in understanding
their chaotic nature. It is, therefore, important to establish properties of their
absolutely continuous invariant measures. In particular, it is interesting if the
density of an acim of a random map inherits the smoothness properties of the
individual maps involved in the construction of the random map. In this pa-
per we generalize to random maps results of Halfant [8], who proved that the
density of an acim of a nonsingular map of an interval inherits the smooth-
ness properties of the map itself. A random map is a far more complicated
system than an individual deterministic chaotic map. Although the methods
of exploring both are similar, an extra complication of a random choice of
the acting map is involved on every step. Our main results are proven under
the assumption that the individual maps used to construct the random map
are piecewise onto and piecewise expanding. Our proof is, in a sense, more
complete than the proof in [8] where the author leaves the main inductional
step for a reader. So it is interesting even for the case of an individual chaotic
map.

In Section 2 we present the notation and summarize the results we shall
need in the sequel. In Section 3 we prove the main result.

Now, we state the main theorem (Theorem 1.1) of this paper. All defini-
tions and notations are given later.

Theorem 1.1 Let T = {τ1, τ2, . . . , τK ; p1, p2, . . . , pK} be a random map such
that τ1, . . . , τK ∈ T1(I) are piecewise Cr, r ≥ 2, piecewise onto and T satisfy
conditions A and B in Section 2. Then, T−invariant density f∗ is of class
Cr−2 and, for any s ≤ r − 2, (Pn

T 1)(s) → f∗(s) uniformly as n → +∞.

2 Preliminaries

Let I = [0, 1] ⊂ R and (I,B, λ) be a normalized measure space, where λ
is the Lebesgue measure on I. Let τ : (I,B, λ) → (I,B, λ) be a piecewise
monotonic on a partition P ={I1, I2, ......, Iq} of I. That is, τ restricted to Ii

is a monotonic function. Let V (.) be the standard one dimensional variation
of a function, and BV (I) be the space of functions of bounded variation on
I equipped with the norm ‖ . ‖BV = V (.)+ ‖ . ‖1 . In this paper we study the
behavior of the systems which admit absolutely continuous invariant measure.
Then, the asymptotic behavior of τ is given by a probability density function
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(pdf), f, of τ associated with the absolutely continuous invariant measure µ
of τ. This is stated mathematically by the following equation:

∫

A

fdλ =

∫

τ−1(A)

fdλ

for any (measurable) set A ⊂ I. The Frobenius-Perron operator, Pτf,
defined by

∫

A

Pτfdλ =

∫

τ−1(A)

fdλ

acts on the space of integrable functions and transforms a pdf into a pdf. If
τ is piecewise smooth and piecewise differentiable on a partition of n subin-
tervals, then we have the following representation for Pτ [4,10]:

Pτf(x) =
∑

z∈{τ−1(x)}

f(z)

|τ ′(z)|
, (1)

where, for any x, the set {τ−1(x)} consists of at most n points.

Definition 2.1 Let T0(I) denote the class of transformations τ : I → I that
satisfy the following conditions:
(i) τ is piecewise monotonic, i.e., there exists a partition P = {Ii =
[ai−1, ai], i = 1, 2, . . . , q} of I such that τi = τ |Ii is C1, and

|τ ′
i(x)| ≥ α > 0, (2)

for any i and for all x ∈ (ai−1, ai);
(ii) g(x) = 1

|τ ′

i
(x)| is a function of bounded variation, where τ ′

i(x) is the

appropriate one-sided derivative at the end points of J .
We say that τ ∈ T1(I) if τ ∈ T0(I) and α > 1 in condition (2), i.e., τ is

piecewise expanding.

The following important result was established in [12](see also [4]):

Theorem 2.2 Let τ be piecewise monotonic, piecewise C2 map of an in-
terval I = [0, 1] into itself satisfying infx∈I |τ

′(x)| > 1. Then,

1. If f ∈ L1([0, 1]) is of bounded variation, Pτf is also of bounded varia-
tion and
V 1

0 Pτf ≤ α ‖ f ‖ +βV 1
0 f with α > 0 and β = 2

M where M = inf |τ ′(x)|.

2. τ has an acim whose density f is of bounded variation and satisfies
Pτf = f .
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Thus, the fixed points of the operator Pτ are the density functions of the
acims for the map τ.

In Section 3, we will generalize the following theorem established in [8,4]

Theorem 2.3 Let τ ∈ T1(I) be piecewise onto and piecewise Cr, r ≥ 2. Then

τ− invariant density f∗ is of class Cr−2 and, for any s ≤ r − 2, (Pn
τ 1)

(s)
→

f∗(s) uniformly as n → +∞

Random maps: Let τk : I → I, k = 1, 2, . . . , K be piecewise mono-
tonic on a common partition P = {Ii = [ai−1, ai], i = 1, 2, . . . , N} of I and
nonsingular transformations. A random map T with constant probabilities
is defined as

T = {τ1, τ2, . . . , τK ; p1, p2, . . . , pK},

where {p1, p2, . . . , pK} is a set of constant probabilities on I. For any x ∈
X , T (x) = τk(x) with probability pk and, for any non-negative integer N ,
T N (x) = τkN

◦ τkN−1 ◦ . . . ◦ τk1(x) with probability ΠN
j=1pkj

. A measure µ is
T−invariant if and only if it satisfies the following condition [13]:

µ(E) =

K
∑

k=1

pkµ(τ−1
k (E)), (3)

for any E ∈ B.
The Frobenius-Perron operator of T is given by [13]:

PT f(x) =

K
∑

k=1

pk(Pτk
f)(x), (4)

where Pτk
is the Frobenius-Perron operator associated with the transfor-

mation τk. The properties of PT resemble the properties of the traditional
Frobenius-Perron operator [4].

Theorem 2.4 ([13]) Let T = {τ1, τ2, . . . , τK ; p1, p2, . . . , pK} be a random
map, where τk ∈ T0(I), with the common partition P = {I1, I2, . . . , Iq},
k = 1, 2, . . . , K. If, for all x ∈ [0, 1], the following Pelikan’s condition

K
∑

k=1

pk

|τ ′
k(x)|

≤ γ < 1, (5)

is satisfied, then for all f ∈ L1 = L1([0, 1], λ) :
(i) The limit

lim
n→∞

1

n

n−1
∑

i=1

P i
T (f) = f∗ exists in L1;
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(ii) PT (f∗) = f∗;
(iii) V[0,1](f

∗) ≤ C · ‖f‖1, for some constant C > 0, which is independent of
f ∈ L1.

We consider random maps T = {τ1, τ2, . . . , τK ; p1, p2, . . . , pK} satisfying
conditions A and B below:

CONDITION A:

1. τk, k = 1, 2, . . . , K, have a common defining partition P = {Ii =
(ai−1, ai), i = 1, 2, . . . , q} of I;

2. For each i = 1, 2, . . . , q, τk,i = τk|Ii
, k = 1, 2, . . . , K has a C2-extension

to the closure Ii of Ii;

3. For each i = 1, 2, . . . , q, τk,i, k = 1, 2, . . . , K is strictly monotone on
Ii and therefore determines a 1 − 1 mapping of Ii onto some closed
subinterval τk(Ii) of I.

4. For each J ∈ P and for each k, k = 1, 2, . . . , K ,

τk(J) = I,

i.e., each τk is piecewise onto.

For each n ≥ 1 we define

Ωn = {ωn = (k1, k2, . . . , kn) : kj ∈ {1, 2, . . . , K}, j = 1, 2, . . . , n}.

For ωn−1 ∈ Ωn−1, ωn−1 = (k1, k2, . . . , kn−1) let P
(n)
ωn−1 be the the common

refinement of

P , τ−1
k1

(P), (τk2 ◦ τk1 )
−1(P), . . . , (τkn−1 ◦ τkn−2 ◦ . . . ◦ τk2 ◦ τk1)

−1(P),

n ≥ 1, where σ−1P = {σ−1(J) : J ∈ P}. Then, P(n) is the union of all

P
(n)
ωn−1 , ωn−1 ∈ Ωn−1. Let I(n) denote a generic element of P(n). We have

I(n) ∈ P
(n)
ωn−1 , for some ωn−1 = (k1, k2, . . . , kn−1) or I(n) = (τkn−1 ◦ τkn−2 ◦

. . . ◦ τk2 ◦ τk1)
−1Is, for some Is ∈ P . We will write I(n) = I

(n)
ωn−1 . Let

T i−1
ωi−1

= τki−1 ◦ τki−2 ◦ . . . ◦ τk2 ◦ τk1 . Then, T n−1
ωn−1

is well defined on I
(n)
ωn−1

and T n−1
ωn−1

(I
(n)
ωn−1) = Is. Moreover T i−1

ωi−1
(I

(n)
ωn−1) ∈ P

(n−i)
ωn−i−1 , where ωn−i−1 =

(ki+1, ki+2, . . . , kn−1).

Two points x, y are in the same I
(n)
ωn−1 if and only if T i

ωi
(x), T i

ωi
(y) lie in

the same element of P for 0 ≤ i ≤ n− 1. T n
ωn

has a C2−extension to I
(n+1)

ωn
,
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also denoted by T n
ωn

, which maps I
(n+1)

ωn
monotonically onto some Is ∈ P .

Let

M(I
(n+1)

ωn
) = sup

x,y∈I(n+1)

|(T n
ωn

)′(x)/(T n
ωn

)′(y)|

and

Mn = sup
ωn∈Ωn

sup
I
(n+1)
ωn ∈P

(n+1)
ωn

M(I
(n+1)

ωn
). (6)

CONDITION B: There exists an ǫ > 0 and a positive integer p ≥ 1

such that for all ωp ∈ Ωp, all I
(p+1)
ωp and all x ∈ I

(p+1)
ωp we have

|(T p
ωp

)′(x)| > 1 + ǫ.

For such random maps we conclude from the chain rule that

α = inf |(T j
ωj

)′(x)| > 0, (7)

where the infimum is taken over all ωj ∈ Ωj , all I
(j+1)
ωj and all x ∈ I

(j+1)
ωj for

0 ≤ j ≤ p. Furthermore,

inf
x∈I

(n+1)
ωn , I

(n+1)
ωn ∈P(n+1)

|(T n)′(x)| ≥ α(1+ǫ)[n/p] ≥ α(1+ǫ)(n/p)−1, n ≥ 1. (8)

For each I(n+1) there is an Is such that T n
ωn

(I
(n+1)

) = Is. Thus by virtue

of the mean value theorem, we know that there exists an x ∈ I
(n+1)

such
that λ(I(n+1)) = λ(Is)/|(T

n
ωn

)′(x)|. It follows from Condition B and (8) that

λ(I(n+1)) ≤ Bθn, (9)

where θ = (1 + ǫ)−1/p < 1 and B = (1+ǫ)
α maxIs∈P λ(Is).

3 Smoothness of invariant densities for ran-

dom maps

Let T = {τ1, τ2, . . . , τK ; p1, p2, . . . , pK} be a random map such that
τ1, τ2, . . . , τK ∈ T1(I) are piecewise Cr, r ≥ 2, piecewise onto and T satisfies
condition A and B in Section 2. Thus, by Pelikan’s Theorem (Theorem 2.4)
T has an absolutely continuous invariant probability measure µ with respect
to Lebesgue measure. In this section we generalize Theorem 2.3 for a single
transformation to a theorem on random map.

The proof of the main result (Theorem 1.1) proceed by following lemmas.
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Lemma 3.1 There exists c > 0 such that for all N ≥ 0, all ωN ∈ ΩN and

all I
(N+1)
ωN ∈ P (N+1)

|(
d

dx
|(T N)′(x)|)−1| < c, (10)

where

T N(x) = T N
ωN

(x) = τkN
◦ τkN−1 ◦ . . . ◦ τk1(x), x ∈ I(N+1)

ωN
.

Proof: By (7), (T N )′(x) does not vanish on Ī(N+1) and so |(T N )′(x)| is C1

on Ī(N+1). Using chain rule,

(T m)′(x) = (τkm
)′(τkm−1 ◦ τkm−2 ◦ . . . ◦ τk1(x)) · · · (τk2)

′(τk1(x)) · τ ′
k1

(x)

and
(T N)′(x) = (T N−m)′(T m(x)) · (T m)′(x).

Logarithmic differentiation gives
∣

∣

∣

∣

∣

(

d

dx
|(T N )′(x)|

)−1
∣

∣

∣

∣

∣

=
∣

∣(T N)′(x)
∣

∣

−1
∣

∣

∣

∣

d

dx
log |(T N)′(x)|

∣

∣

∣

∣

= |(T N)′(x)|−1

∣

∣

∣

∣

d

dx
log |(τkN

)′(τkN−1 ◦ τkN−2 ◦ . . . ◦ τk1(x))|

+
d

dx
log |(τkN−1)

′(τkN−2 ◦ τkN−3 ◦ . . . ◦ τk1(x))|

+ . . . +
d

dx
log |(τk2)

′(τk1(x))| +
d

dx
log |(τk1)

′(x)|

∣

∣

∣

∣

= |(T N)′(x)|−1

∣

∣

∣

∣

∣

N−1
∑

m=0

d

dx
log (τkm+1)

′(T m(x))

∣

∣

∣

∣

∣

= |(T N)′(x)|−1

∣

∣

∣

∣

|(τkN
)′′(τkN−1 ◦ τkN−2 ◦ . . . ◦ τk1(x))|(τkN−1 ◦ τkN−2 ◦ . . . ◦ τk1)

′(x)

|(τkN
)′(τkN−1 ◦ τkN−2 ◦ . . . ◦ τk1(x))|

+
|(τkN−1)

′′(τkN−2 ◦ τkN−3 ◦ . . . ◦ τk1(x))|(τkN−2 ◦ τkN−3 ◦ . . . ◦ τk1)
′(x)

|(τkN−1)
′(τkN−2 ◦ τkN−3 ◦ . . . ◦ τk1 (x))|

+ . . . +
|(τk2)

′′(τk1 (x))|(τk1 )
′(x))

|(τk2)
′(τk1(x))|

+
|(τk1)

′′(x)|

|(τk1)
′(x)|

∣

∣

∣

∣

=

N−1
∑

m=0

∣

∣

∣

∣

(τkm+1)
′′(T m(x))

(τkm+1)
′(T m(x))

(T m)′(x)

(T N)′(x)

∣

∣

∣

∣

≤ max{sup

∣

∣

∣

∣

τ ′′
1 (x)

τ ′
1(x)

∣

∣

∣

∣

, sup

∣

∣

∣

∣

τ ′′
2 (x)

τ ′
2(x)

∣

∣

∣

∣

, . . . , sup

∣

∣

∣

∣

τ ′′
K(x)

τ ′
K(x)

∣

∣

∣

∣

}
N−1
∑

m=0

∣

∣

∣

∣

(T m)′(x)

(T N)′(x)

∣

∣

∣

∣

≤ max{sup

∣

∣

∣

∣

τ ′′
1 (x)

τ ′
1(x)

∣

∣

∣

∣

, sup

∣

∣

∣

∣

τ ′′
2 (x)

τ ′
2(x)

∣

∣

∣

∣

, . . . , sup

∣

∣

∣

∣

τ ′′
K(x)

τ ′
K(x)

∣

∣

∣

∣

}
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N−1
∑

m=0

|(T (N−m))′(T m(x))|−1.

Using (9), we obtain

∣

∣

∣

∣

∣

(

d

dx
|(T N)′(x)|

)−1
∣

∣

∣

∣

∣

≤ max{sup

∣

∣

∣

∣

τ ′′
1 (x)

τ ′
1(x)

∣

∣

∣

∣

, sup

∣

∣

∣

∣

τ ′′
2 (x)

τ ′
2(x)

∣

∣

∣

∣

, . . . , sup

∣

∣

∣

∣

τ ′′
K(x)

τ ′
K(x)

∣

∣

∣

∣

}

N−1
∑

m=0

1 + ǫ

α
θN−m

≤ max{sup

∣

∣

∣

∣

τ ′′
1 (x)

τ ′
1(x)

∣

∣

∣

∣

, sup

∣

∣

∣

∣

τ ′′
2 (x)

τ ′
2(x)

∣

∣

∣

∣

, . . . , sup

∣

∣

∣

∣

τ ′′
K(x)

τ ′
K(x)

∣

∣

∣

∣

}

1 + ǫ

α

N−1
∑

m=0

θN−m < ∞.

�

Lemma 3.2 There exists M > 0 such that for all N ≥ 0

MN ≤ M,

where MN is as in (6).

Proof: Let us fix N , ωN ∈ ΩN and I
(N+1)
ωN . We will skip the ωN subscript.

For x, y ∈ I(N+1), we get by monotonicity of T N on I(N+1) and Lemma 3.1

log

∣

∣

∣

∣

(T N )′(x)

(T N)′(y)

∣

∣

∣

∣

= log
(T N )′(x)

(T N )′(y)
=

∫ x

y

(T N)′′(t)

(T N)′(t)
dt

= −

∫ x

y

(T N)′(t)
d

dt

1

(T N)′(t)
dt

≤ c · |

∫ x

y

(T N)′(t)dt| ≤ c · λ(T N (Ī(N+1))) ≤ c.

Setting M = ec completes the proof.
�

Now, we prove the main result (Theorem 1.1) of this paper. We split the
proof into a number of lemmas.

Lemma 3.3 Let T = {τ1, τ2, . . . , τK ; p1, p2, . . . , pK} be a random map such
that T satisfies conditions of Theorem 1.1 with r = 2. Then the T−invariant
density f∗ is a uniform limit of {Pn

T 1}n≥0 and continuous.

Proof: Consider the sequence fn = Pn
T 1, n = 1, 2, . . . . We have

f0(x) = 1(x)
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f1(x) = PT 1(x) =

K
∑

k=1

pkPτk
1(x)

=

K
∑

k=1

pk

q
∑

i=1

1

|τ ′
k(τ−1

k,i (x))|
.

Since τk, k = 1, 2, . . . , K is piecewise onto and τ ′
k,i = τ ′

k|Ii
, k = 1, 2, . . . , K, i =

1, 2, . . . , q are continuous, f1(x) is continuous.

f2(x) = P 2
T 1(x) = PT (PT 1(x)) = PT

(

K
∑

k=1

pkPτk
1(x)

)

=
K
∑

k=1

pkPT (Pτk
1(x))

=

K
∑

k=1

pk

K
∑

l=1

plPτl
(Pτk

1(x))

=

K
∑

k=1

pk

K
∑

l=1

pl

q
∑

j=1

q
∑

i=1

1

|τ ′
l (τ

−1
l,j (τ−1

k,i )(x))||τ ′
k(τ−1

k,i (x))|
,

where τ ′
k,i = τ ′

k|Ii
, τ ′

l,j = τ ′
l |Ij

, k, l = 1, 2, . . .K, and i, j = 1, 2, . . . , q. Thus,
we have

f2(x) =
∑

1≤k1,k2≤K

∑

1≤i1,i2≤q

pk1pk2

|τ ′
k2

(τ−1
k2,i2

(τ−1
k1,i1

)(x))||τ ′
k1

(τ−1
k1,i1

(x))|
,

and again f2 is continuous. In general, we have

fn(x) =
∑

1≤k1,k2,...,kn≤K

∑

1≤i1,i2,...,in≤q
[

pk1pk2 · · · pkn

|τ ′
kn

(τ−1
kn,in

(τ−1
kn−1,in−1

(. . . (τ−1
k2,i2

(τ−1
k1,i1

(x))) . . .)))|

1

|τ ′
kn−1

(τ−1
kn−1,in−1

(. . . (τ−1
k2,i2

(τ−1
k1,i1

(x))) . . .))| . . . |τ ′
k1

(τ−1
k1,i1

(x))|

]

=
∑

1≤k1,k2,...,kn≤K

∑

1≤i1,i2,...,in≤q
[

pk1pk2 · · · pkn

|(τkn,in
◦ τkn−1,in−1 ◦ . . . ◦ τk2,i2 ◦ τk1,i1)

′(φn,kn,jn(x))|

]

where fn is continuous and

φn,kn,jn = (τkn,in
◦ τkn−1,in−1 ◦ . . . ◦ τk2,i2 ◦ τk1,i1)

−1,
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with jn = (in, in−1, . . . , i2, i1) ∈ {1, 2 . . . , q}n,kn = (kn, kn−1, . . . , k2, k1) ∈
{1, 2, . . . , K}n .

We want to show that fn’s are uniformly bounded and equicontinuous.
We have,

fn(x) =
∑

kn

∑

jn

pk1 · pk2 · · · pkn
|φ′

n,kn,jn(x)|. (11)

In Lemma 3.2 we have proved that there exists a constant M > 1 such that
for any n ≥ 1, any k, any j and any x ∈ I,

1

M
<

sup |φ′
n,k,j(x)|

inf |φ′
n,k,j(x)|

< M. (12)

We can apply inequality (12) to equation (11) to obtain

1

M
<

sup fn(x)

inf fn(x)
< M. (13)

Since fn is a density function of normalized measure, we get

1

M
< fn(x) < M. (14)

Next, we show that fn is equicontinuous. It is easy to see that for l ≥ 0,

fn+l(x) =
∑

kn

∑

jn

pk1pk2 . . . pkn
fl(φn,kn,jn(x))|φ′

n,kn,jn(x)|. (15)

Differentiating both sides we obtain,

|f ′
n+l(x)| ≤

∑

kn

∑

jn

pk1pk2 . . . pkn

[

f ′
l (φn,kn,jn(x))|(φ′

n,kn ,jn(x))2|

+fl(φn,kn,jn(x))|φ′′
n,kn,jn(x)|

]

. (16)

Now, using (8) and (14), we have
∑

kn

∑

jn

pk1pk2 . . . pkn
|(φ′

n,kn,jn(x))2|

≤ sup
kn

sup
jn

|φ′
n,kn, jn(x)|

∑

k

∑

j

pk1pk2 . . . pkn
|φ′

n,kn,jn(x)| ≤
(1 + ǫ)M

α(1 + ǫ)n/p
.

Thus, for n0 big enough, we have

sup
x∈I

∑

kn0

∑

jn0

pk1pk2 . . . pkn0
|(φ′

n0,kn0 , jn0
(x))2| ≤ θ < 1. (17)

Let

d = sup
x∈I

∑

kn0

∑

jn0

pk1pk2 . . . pkn0
|φ′′

n0,kn0 , jn0
(x)| < +∞

Bn = sup
x∈I

|f ′
n(x)|, n = 0, 1, 2, . . . .
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Then (16) with n = n0 implies

Bl+n0 ≤ Blθ + Md, l = 0, 1, 2, . . . .

Thus,
Bl+2n0 ≤ Bl+n0θ + Md ≤ (Blθ + Md)θ + Md,

and

Bl+mn0 ≤ Blθ
m−1 + Md(1 + θ + . . . θ(m−1)) ≤ Bl + Md

1

1 − θ
= B̄l,

for m = 1, 2, . . . . Thus the sequence {Bn}
∞
n=0 is bounded by

max{B̄0, B̄1, . . . , B̄n0−1}. We have proved that the sequence {fn} is uniformly
bounded and equicontinuous. By the Ascoli-Arzela theorem it contains a
subsequence {fnl

}l≥0 uniformly convergent to a continuous function g. By
our assumption, the random map has a unique invariant density f∗. Thus
{fnl

}l≥0 converges to f∗ in L1. Thus, g = f∗ and fnl
→ f∗ uniformly, as

l → +∞. Since this argument applies to any subsequence of {fn}n≥0, the
entire sequence converges uniformly to f∗, which is continuous. �

The following lemma can be proved by induction:

Lemma 3.4 Let F (x) = f(φ(x))φ′(x), x ∈ I. Then

F (s+1) = f (s+1)(φ)(φ′)s+2 +
∑

i≤s

f (i)(φ)
[

Ps,i(φ
(1), φ(2), . . . , φ(s+2))

]

,

where Ps,i is a polynomial of order i + 1, i = 0, 1, . . . , s.

Proof of Theorem 1.1:

We proceed by induction. The first step, i.e., uniform boundedness of
(Pn

T 1)(1) and uniform convergence Pn
T 1 → f∗, has been proved in Lemma

3.3. Let us assume that r ≥ 3 and that {(Pn
T 1)(j)}n≥0 is uniformly bounded

for j = 0, 1, . . . , s ≤ r − 2, (Pn
T 1)(j) → f∗(j) uniformly as n → +∞ for

j = 0, 1, . . . , s − 1. We will show that the same is true for s + 1. Let fn =
Pn

T 1, n = 0, 1, . . . . Using Lemma 3.4 and formula (15), we can write

f
(s+1)
n+l (x) =

∑

kn

∑

jn

pk1pk2 · · · pkn

[

f
(s+1)
l (φn,kn, jn(x))(|φ′

n,kn, jn(x)|)s+1

+

s
∑

i=0

f
(i)
l (φn,k,j(x))

[

Ps,i(φ
(1)
n,kn, jn

(x), φ
(2)
n,kn, jn

(x), . . . , φ
(s+2)
n,kn, jn

(x))
]

]

For n0 of formula (17), we have
∑

kn0

∑

jn0

pk1pk2 · · · pkn0
(|φ′

n0,kn0 , jn0
(x)|)(s+1) (18)

≤

(

(1 + ǫ)

α(1 + ǫ)n0/p

)s

M = θs+1 < 1.
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By the inductive assumption, f
(i)
l are uniformly bounded for i = 0, 1, . . . , s.

Also φ
(i)
n0,kn0 , jn0

, i = 1, 2, . . . s +2 are bounded. Thus, we can find a constant

As+1 > 0 such that

∣

∣

∣

∣

∣

∣

∑

kn0

∑

jn0

pk1pk2 · · · pkn0

s
∑

i=0

f
(i)
l (φn0,kn0 ,jn0

(x)) (19)

[

Ps,i(φ
(1)
n0,kn0 ,jn0

(x), . . . , φ
(s+2)
n0,kn0 ,jn0

(x))
]
∣

∣

∣
≤ As+1

for all l ≥ 0 and x ∈ I. If we denote D
(s+1)
n = supx∈I |f

(s+1)
n (x)|, we obtain

D
(s+1)
n0+l ≤ D

(s+1)
l θs+1 + As+1

for all l = 0, 1, . . . .

As in Lemma 3.3 this implies that the sequence {f
(s+1)
n } is uniformly

bounded. Thus, the sequence {f
(s)
n } is uniformly bounded and equicon-

tinuous. By the Ascoli-Arzela theorem it contains a subsequence {fnl
}l≥0

convergent uniformly to a continuous function g. Since f
(s−1)
nl

→ (f∗)(s−1)

uniformly as l → ∞, g = (f∗)(s). Since this argument applies to any subse-

quence of {f
(s)
n }n≥0, the entire sequence {f

(s)
n }n≥0, converges uniformly to

(f∗)(s) which is continuous. This completes the proof of the theorem.
Remark: If we omit the assumption A (4), then the same reasoning

proves the smoothness of the density function on the subintervals of the set

I \
⋃

n≥1

T n({a0, a1, . . . , aq}),

where T n({a0, a1, . . . , aq}) =
⋃

ωn∈Ωn
T n

ωn
({a0, a1, . . . , aq}).

Example: In [12] Lasota and Rusek created a model of oil drill operation
using eventually piecewise expanding maps of an interval (see [4, Chapter 13]
for a detailed description). The map τ models the process of drill jumping
up and falling back down. The more uniform is the invariant density of τ the
more uniform is the tear of the drill, so knowing the invariant density is of
practical importance. Since the parameters of drill movement are measured
only with a certain accuracy and they vary during the operation it is more
realistic to model the system with a random map. Instead of considering
just one map τ we will consider a family of approximations τi to τ applied
at random on each step of the iteration.

For Froude number Λ = 3 we approximate τ by three eventually piecewise
expanding, piecewise onto maps τ1, τ2 and τ3. We define τi by formula
(20) using constants: a1 = −1.40, a2 = −1.41, a3 = −1.39, b1 = 6.5888,
b2 = −8.7850, b3 = 11.7134,e1 = 10, e2 = 11, e3 = 12. The graph of
τ1 is shown in Figure 1 a). The graphs of the others are indistinguishable
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Figure 1: Map τ1 and an approximation to the invariant density of random
map T .

from the this one at the precision we can show. We define random map
T = {τ1, τ2, τ3; p1, p2, p3}, with p1 = 0.5, p2 = 0.25, p3 = 0.25. We calculated
densities fn = Pn

T 1 numerically using Maple 11. f5 is shown in Figure 1 b).
The Maple 11 program is available on request.

τi(x) = (20)

ai(x − 0.25) + (30.6667ai + 66.3382)(x− 0.25)2

+(240ai + 562.5680)(x− 0.25)3 + (533.3333ai + 1444.8607)(x− 0.25)4 ,

for 0 ≤ x ≤ 0.25 ;

(1 + bi(x − 1)ei)

(

0.9(x − 1) − 0.17(x − 1)2 +
3

2
(1 −

√

1 −
4

3
(1 − x)

)

,

for 0.25 < x ≤ 1 .
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