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Transport properties of a two-dimensional electron gas (2DEG) and of quantum wires are theoretically

studied in the presence of both Rashba and Dresselhaus terms of the spin–orbit interaction (SOI). Fully

quantum mechanical expressions for the conductivity are evaluated for very low temperatures and the

differences between them and previous semiclassical results are highlighted. Two kinds of confining

potentials in quantum wires are considered, square-type and parabolic. Various cases depending on the

relative strengths of two different SOI terms are discussed and the relaxation times for various impurity

potentials are evaluated. In addition, the spin accumulation in a 2DEG and in a quantum wire (QW) is

evaluated semiclassically and its dependence on the Fermi energy and the SOI strengths is discussed. A nearly

saw-tooth dependence on the electron concentration is obtained for a QW with parabolic confinement.

& 2010 Published by Elsevier B.V.
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1. Introduction

The investigation of spin-dependent phenomena has intensified
since the discovery of giant magnetoresistance in 1988 [1] due to
their potential applications in novel devices [2]. Particular atten-
tion has been given to the spin–orbit effects in semiconductor
structures. It is known that the spin–orbit interaction (SOI) may
play an important role in the transport properties of low-dimen-
sional semiconductor structures. The SOI may manifest itself in
semiconductor structures either as a result of the breaking of
macroscopic inversion symmetry of the whole structure, referred
to as the Rashba SOI (RSOI) term [3], or due to the lack of inversion
symmetry of the crystal structure, referred to as the Dresselhaus
SOI (DSOI) term [4,5]. The RSOI term depends on band alignment
and on any applied external potential if it breaks the overall
inversion symmetry which means it can be tuned by applying a bias
[6–8]. On the other hand, the DSOI term is present in bulk materials
and semiconductor heterostructures. Some III–V semiconductors,
such as GaSb, exhibit large spin-splitting in the absence of a
magnetic field, due to the difference between cations and anions.

The transport properties of low-dimensional semiconductor
structures made of materials with pronounced spin–orbit effects
are expected to be different than those of structures lacking or
negligible zero field spin-splitting. They have been studied in the
past either in the presence of a magnetic field [9] or by numerical
methods and mostly when the RSOI is present [10]. In addition,
weak-localization corrections to the conductivity of a 2DEG have
been studied in Ref. [11] with the RSOI and DSOI terms taken into
Elsevier B.V.

ajić).
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account. In this work we consider both the RSOI and DSOI terms and
derive approximate analytical expressions for the diffusive con-
ductivity of a 2DEG at very low temperatures and for a quasi-one-
dimensional electron gas (1DEG), i.e., for a quantum wire (QW),
with square or parabolic confinement. The non-diagonal contribu-
tion to the conductivity is evaluated numerically.

The case of equal RSOI and DSOI strengths is treated in some
detail since it was predicted [12] that the role of spin-independent
scattering is reduced. This is actually correct when the cubic DSOI
term is neglected as confirmed by a recent experiment [13]. We
underline the differences between previous semiclassical results
and our fully quantum mechanical ones. Further, we provide explicit
expressions for the relaxation time, due to impurity scattering, that
most frequently has been taken as a constant in the literature.

We organize the paper as follows. In Section 2 we present the
theoretical model and give the relevant expressions of the eigen-
values and eigenvectors for a 2DEG and a 1DEG. We also give the
general one-particle expressions for the dc conductivities. We
present and discuss the results in Section 3 and summarize our
conclusions in Section 4.
97
2. Theoretical model

2.1. A 2DEG

We first consider a 2DEG, in the (x,y) plane, in the presence of
both Rashba and Dresselhaus terms of the SOI with strengths,
respectively, a and b. The relevant one-electron Hamiltonian is

H¼H0þHRþHD, ð1Þ
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where H0 ¼ ‘ 2k2=2m� is the free-electron term and mn the effective
mass. HR and HD are, respectively, the Rashba and Dresselhaus SOI
terms given by

HR ¼ aðsxky�sykxÞ, HD ¼ bðsxkx�sykyÞ: ð2Þ

The term HD given above is for a 2DEG grown along the [0 0 1]
direction. If grown along different directions it acquires a different
form, see, e.g., Ref. [14] for growth along the [0 1 0], [1 1 0], and
[1 �1 0] directions.

The eigenvalues of Eq. (1) are [15]

Esk ¼ E7
k ¼

‘ 2k2

2m�
7 ½ðakyþbkxÞ

2
þðakxþbkyÞ

2
�1=2, ð3Þ

and the eigenvectors

jk,sS¼ eiðkxxþkyyÞffiffiffi
2
p

1

seif

� �
, tanf¼

�ðakxþbkyÞ

akyþbkx
, ð4Þ

with s¼ 7 being the spin index. It is convenient to express the
eigenvalues in polar coordinates k and y. Then Eq. (3) is rewritten as

E7
k ¼ lk27key, ey ¼ ½a2þb2

þ2absinð2yÞ�1=2, ð5Þ

where l¼ ‘ 2=2m� and tany¼ ky=kx. At fixed energy, usually the
Fermi energy EF, there are two characteristic wave vectors k7

k7 ¼ ½8eyþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2
yþ4lEF

q
�=2l: ð6Þ

In what follows we will need the matrix elements of the velocity
operator, along x and y axis,

vx ¼
1

‘
@H

@kx
¼

1

‘

2lkx bþ ia
b�ia 2lkx

 !
, ð7Þ

and

vy ¼
1

‘
@H

@ky
¼

1

‘

2lky aþ ib
a�ib 2lky

 !
: ð8Þ

For the evaluation of the conductivity we need the matrix elements
of the velocity operator v̂m,m¼ x,y.

The diagonal elements in the spin index are

/k,sjv̂xjk,sS¼ ½2lkx7 ½ða2þb2
Þkxþ2abky�=key�=‘ , ð9Þ

and the off-diagonal ones

/k,þjv̂xjk,�S¼/k,�jv̂xjk,þS� ¼ ½iða2�b2
Þky=key�=‘ : ð10Þ

Similar expressions can be derived for the matrix elements of the
operator v̂y.

2.2. A quasi-1DEG

We now consider a quasi-1DEG, such as a QW, with confine-
ment along the x axis.

Square confinement. We assume that the confining potential is
zero inside the QW and infinitely high at its walls. If only the first
subband is occupied, the energy spectrum is given by [16]

Esky
¼ E7

ky
¼ E1þlk2

y 7 ða
2þb2

Þ
1=2ky ð11Þ

and the wave function acquires the simple form

csðx,yÞ ¼
1ffiffiffi
2
p

1

seif

� �
, tanf¼�b=a: ð12Þ

Only the operator v̂y is relevant and its diagonal matrix elements are

/ky,sjv̂yjky,sS¼ ½2lky7 ða2þb2
Þ
1=2
�=‘ ; ð13Þ

its off-diagonal elements are equal to zero.
Please cite this article as: P.M. Krstajić, et al., Physica E (2010), doi:1
Parabolic confinement, a¼ b. The transport properties of QW
with parabolic confinement have already been treated in the
literature [17] but with different SOI term, or taking into account
only the Rashba term [18]. If V(x) is the confining potential, Eq. (1) is
written as

H¼H0þVðxÞþHRþHD: ð14Þ

With VðxÞ ¼m�o2x2=2 analytical solutions exist [12] for a¼ 7b
and the eigenfunctions of Eq. (14) for a¼ b have the form

Csðx,yÞ ¼
1ffiffiffi
2
p

1

se�ip=4

� �
fðx,yÞe�sði

ffiffi
2
p

am=‘ 2
ÞðxþyÞ, ð15Þ

while fðx,yÞ satisfies the spin-independent equation

½�lr2
þVðx,yÞ�fðx,yÞ ¼ ðEþa2=lÞfðx,yÞ: ð16Þ

With Vðx,yÞ � VðxÞ ¼m�o2x2=2 the solution is

fðx,yÞ ¼NnHnðx=lÞe�x2=2l2 eikyy, ð17Þ

where Nn ¼ ½2
nn!

ffiffiffiffi
p
p

l��1=2 and l¼ ½‘ =m�o�1=2. Then, with Ey ¼

‘ 2k2
y=2m�, the eigenvalues are

En ¼ ðnþ1=2Þ‘oþEy�2a2m�=‘ 2: ð18Þ

Only the diagonal matrix elements of v̂y are relevant here since its
off-diagonal elements vanish. They are

/ky,sjv̂yjky,sS¼ 2lky=‘ : ð19Þ

Parabolic confinement, a¼�b. When the two SOI interaction
strengths have opposite sign but the same magnitude, the wave
function have somewhat different form than Eq. (20)

Csðx,yÞ ¼
1ffiffiffi
2
p

1

se5ip=4

� �
fðx,yÞe�sði

ffiffi
2
p

am=‘ 2
Þðx�yÞ: ð20Þ

However, the energy and the matrix elements of v̂y have the same
form and so does the diagonal conductivity. The off-diagonal
matrix elements are again zero. For this reason we will not go
further into consideration of this case.

Parabolic confinement, weak a and b. The analytical solution for
the eigenvalues and eigenvectors are not known for unequal
Rashba and Dresselhaus SOI strengths aab, so one may resort
to approximate or numerical methods. We treat [19] HSO as a
perturbation and expand the wave function in terms of the
(unperturbed) eigenfunctions fnðxÞ of H0, i.e.,

Cðx,yÞ ¼
X
n,s

As
nfnðxÞwseikyy, ð21Þ

where ws are the eigenvectors of sz, that is ð1,0ÞT and ð0,1ÞT . The
eigenfunctions of H0 are harmonic oscillator functions. The matrix
elements of the interaction term are non-zero only between states
of opposite spin. The diagonal matrix elements are

ðHSOÞ
7 , 8
nn ¼ ða7 ibÞky, ð22Þ

and the off-diagonal ones

ðHSOÞ
þ ,�
nm ¼

a�ib
l
ffiffiffi
2
p ½

ffiffiffiffiffiffiffiffiffiffiffi
nþ1

p
dn,m�1�

ffiffiffi
n
p

dn,mþ1�, ð23Þ

since kx mixes adjacent states, and

ðHSOÞ
�,þ
nm ¼

�a�ib
l
ffiffiffi
2
p ½

ffiffiffiffiffiffiffiffiffiffiffi
nþ1

p
dn,m�1�

ffiffiffi
n
p

dn,mþ1�: ð24Þ
0.1016/j.physe.2010.11.008
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We will consider only the first three states. This leads to the secular
equation, detjS�EIj ¼ 0 where

S¼

e0 gþ ky 0 g�ffiffi
2
p

l
0 0

g�ky e0
�gþffiffi

2
p

l
0 0 0

0 �g�ffiffi
2
p

l
e1 gþ ky 0 g�

l

gþffiffi
2
p

l
0 g�ky e1

�gþ
l 0

0 0 0 �g�
l e2 gþ ky

0 0
gþ

l 0 g�ky e2

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

, ð25Þ

g7 ¼ a7 ib, and en ¼ ðnþ1=2Þ‘oþlk2
y . The energy spectrum (the

first three levels) is shown in Fig. 1 for two different values of the
SOI strengths, (a) a¼ b¼ a0, (b) a¼ a0, b¼ 0:5a0, where a0 ¼ 5�
10�11 eV m (Ref. [8]). Anticrossings are visible in the latter case
when the two SOI strengths are different. The existence of two
sets of curves is due to the presence of SOI that lifts the spin
degeneracy. The energy difference between the levels is taken to be
E0 ¼ ‘o¼ 0:5 meV.

2.3. Dc conductivities

Within the one-electron approximation and for small electric
fields the conductivity tensor smn ðm,n¼ x,y,zÞ may be separated
into diagonal and non-diagonal parts smn ¼ sd

mnþsnd
mn. The diffusive

contribution sdif
mn to sd

mn is [20]

sdif
mn ¼

e2

kBTS0

X
z

fzð1�fzÞtðEzÞvmzvnz, ð26Þ

where z¼ ðs,kx,kyÞ denotes the set of quantum numbers, S0 the
area, kB the Boltzmann constant vzm ¼/zjvmjzS the velocity
99

101

103

105

Fig. 1. Energy spectrum for a QW with parabolic confinement for two different

values of the SOI strengths, (a) a¼ b¼ a0 and (b) a¼ a0, b¼ 0:5a0, where

a0 ¼ 5� 10�11 eV m.

Please cite this article as: P.M. Krstajić, et al., Physica E (2010), doi:1
expectation value in the state z, and fz the Fermi–Dirac distribution.
Eq. (26) is valid only for elastic scattering. The collisional contribu-
tion to sd

mn is [20]

scol
mn ¼

e2

2S0kBT

X
zzu

fzð1�fzuÞWzzuðazm�a
zu
mÞ

2, ð27Þ

for both elastic ðfz ¼ fzuÞ and inelastic ðfza fzuÞ scattering. Wzzu is the
transition rate between the unperturbed one-electron states
jzS and jzuS, and azm ¼/zjrmjzS the expectation value of the
m-component of the position operator r in the state jzS.

The dc non-diagonal contribution snd
mn to the conductivity is

given by [20]

snd
mn ¼

i‘ e2

S0

X
za zu

fzð1�fzuÞvnzzuvmzuz �
1�eðEz�EzuÞ=kBT

Ez�Ezu
lim
e-0

1

Ez�Ezuþ ie :

ð28Þ

If we use the identity fzð1�fzuÞexp½bðEz�EzuÞ� ¼ fzuð1�fzÞ, Eq. (28)
takes the form of the well-known Kubo–Greenwood formula

snd
mn ¼

i‘ e2

S0

X
zzu

ðfz�fzuÞvnzzuvmzuz
ðEz�EzuÞðEz�Ezuþ iGzÞ

, ð29Þ

with zazu and e taken as the level width Gz.

2.4. Spin accumulation

In order to study the spin accumulation in the structures of
interest one should first calculate the net spin in the presence of a
weak electric field Eel. Then from the semiclassical Boltzmann
equation one finds [22]

/Sx,yS¼
e‘t
m�

X
s

Z
ddk

ð2pÞd
Eel � kssx,y

@fs
@E

, ð30Þ

where d¼1,2 for a QW and a 2DEG, respectively; ssx,y are the
diagonal matrix elements of the spin operator. The electric field is
assumed to point in an arbitrary direction. At small temperatures
the derivative of the distribution function with respect to the
energy may be replaced by a d function. The result, as explained in
Ref. [22], is that Eq. (30) is valid when the Fermi, thermal, and SOI
energies satisfy the inequalities kFey5kBT5EF .
107

109

111

113

115

119

121

123

125

127

129

131

133
3. Results and discussion

3.1. 2DEG

We first evaluate the diagonal contributions to the conductivity.

The collisional contribution scol
mn vanishes identically because azm is

independent of the state z and thus azm�azum ¼ 0. Now it can be proven

[23] thatsdif
xx ¼ sdif

yy so that one can writesdif
xx ¼ 1=2ðsdif

xx þsdif
yy Þ in order

to simplify the results. An approximate analytic expression can be

found near zero temperature, when fzð1�fzÞ=kBT is replaced by the

Dirac d-function in Eq. (26). Further, one may replace tðEzÞ in Eq. (26)

by some constant mean value tF at the Fermi level, which is quite
reasonable approximation for a Fermi degenerate gas [21]. Thus, the
result is

sdif
xx ¼

e2ptF

h2l
½2ða2þb2

þ2lEF Þ�ja2�b2
j�, ð31Þ

which holds fora,b40. The first term in Eq. (31) is the same as the one
obtained from the semiclassical Boltzmann equation in Refs. [22,23]

for d-function scattering. The additional term pja2�b2
j represents a

quantum mechanical contribution to the conductivity. We will
examine two special cases in more detail: (i) equal SOI strengths

ða¼ bÞ and (ii) absence of the Dresselhaus term ðaa0,b¼ 0Þ.
0.1016/j.physe.2010.11.008
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Fig. 2. Conductivity sd
xx of the 2DEG as a function of electron concentration when the

Dresselhaus and Rashba SOI term are equal, a¼ b¼ a0 (solid curve) and in the absence

of Dresselhaus SOI term, b¼ 0,a¼ a0 (dashed curve), where a0 ¼ 5� 10�11 eV m.

Fig. 3. Conductivity of a 2DEG as a function of the strength a, at zero temperature, for

equal Rashba and Dresselhaus SOI terms, a¼ b (solid curve), and for aa0, and b¼ 0

(dashed curve). The electron concentration was kept constant, n0 ¼ 1� 1011 cm�2.
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(i) For a¼ b the energy spectrum consists of two identical
paraboloids [24] with E7

k ¼ lk27
ffiffiffi
2
p

ak½1þsinð2yÞ�1=2. Then the
result for sdif

xx , Eq. (31), acquires the simple form

sdif
xx ¼

4e2tFp
h2

ðEFþa2=lÞ: ð32Þ

Due to the SOI the bottom of the conduction bands is shifted by
an energy jDEj ¼ a2=l and the electron concentration of the
perturbed conduction bands is

nu0 ¼
m�

p‘ 2
ðEFþa2=lÞ: ð33Þ

The last relation can be used to obtain the Drude form of the
conductivity

sdif
xx ¼ nu0e2tF=m�: ð34Þ

(ii) If the Dresselhaus SOI term is absent, i.e., for b¼ 0, the
conductivity assumes a simpler form than Eq. (31),

sdif
xx ¼

n0e2tF

m�
þ

m�e2tF

2p‘ 4
a2 ð35Þ

by virtue of the relation between the concentration n0 of an
unperturbed 2DEG (in the absence of SOI) and the Fermi energy,
n0 ¼ ðm

�=p‘ 2
ÞEF . This relation can also be recast in a more familiar,

Drude-type form if one takes into account the shift jDEj ¼ a2=4l of
the conduction band minima,

sdif
xx ¼ nu0e2tF=m�: ð36Þ

We emphasize that both branches are included and shifted down-
wards by the same amount. Before we proceed with the evaluation
of the conductivity, it would be appropriate to evaluate the
transport scattering time for elastic scattering. First, we consider
the case of equal Rashba and Dresselhaus SOI terms, i.e., a¼ b.
Then, using the definition Eq. (A.1) in Appendix A we obtain, similar
to Eq. (A.4), the result

1

tF
¼
pniU

2
0

‘l
ðAþy þA�y Þ, ð37Þ

with A7
y being the following integrals over y:

A7
y ¼

Z 2p

0
dy 18

a
ffiffiffiffiffi
By

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ByþC7

p
 !

1�cosy
k2

s þk2
7 þk2

0�2k7 k0cosy
; ð38Þ

here By ¼ 2þ2sin2y, C7 ¼ 4lk7 ðlk7 7
ffiffiffi
2
p

aÞ, k7 are the wave
vectors corresponding to the Fermi energy, given by Eq. (6), and U0

is the Fourier transform of the scattering potential. The integration
in Eq. (38) is carried out numerically and the value of k0 is
determined by the root of Esk ¼ Esku, with ‘ku being the momentum
after scattering. Analytical expressions are available when the
Rashba SOI dominates over the Dresselhaus SOI term, i.e., for abb,
see Eqs. (A.4)–(A.6) in Appendix A. For convenience we rewrite here
the result for impurities having a screened Coulomb potential

1

tF
¼

2p2niU
2
0

‘
ðICþ þ IC�Þ, ð39Þ

where IC + and IC� are specified in Appendix A and ni is the
concentration of impurities per unit area. This result is derived
under the assumption 2lk�4a. For typical values ni � 109 cm�2,
n2D � 1011 cm�2, and ks � 108 m�1 the scattering time is about
t� 3 ps. In Fig. 2 we show the dependence of the longitudinal
conductivity sd

xx of the 2DEG as a function of its concentration for
equal Rashba and Dresselhaus SOI terms (solid curve) and in the
presence of only the Rashba SOI term (dashed curve). The con-
ductivity increases with the concentration of the 2DEG in both
cases. The difference in values of sd

xx in the two cases is not
Please cite this article as: P.M. Krstajić, et al., Physica E (2010), doi:1
significant since the Fermi energy depends on the SOI too which
compensates in part the absence of the Dresselhaus SOI term. The
value of a ðbÞ is taken to be a0 ¼ 5� 10�11 eV m.

Further, it would be useful to investigate the dependence of the
conductivity on the strength a. Fig. 3 shows this dependence for
equal Rashba and Dresselhaus SOI terms (solid curve), for the
Rashba SOI term only (dashed curve), and for a¼ 0:5b (dotted
curve) versus a at zero temperature and fixed electron concentra-
tion, n2D ¼ 1011 cm�2. The functional dependence is not linear since
both the Fermi energy EF and the scattering time t depend on a. In
fact, the increase of the conductivity when only the Rashba term is
present is mainly due to the increase in the relaxation time.

Next, we proceed with the non-diagonal part of the conductivity
snd given by Eq. (29). The summation in Eq. (29) is over different
spin indices sasu. The parameter Gssu, characterizing the energy
level broadening, is assumed to be independent of spinGssu �G. The
fraction in Eq. (29) can be expanded and Eq. (29) can be rewritten as

snd
xx ¼

i‘ e2

S0

X
kssu

fks�fksu
Esk�Esuk

ðEsk�Esuk�iGÞvxkssuvxksus

ðEsk�Esuk Þ
2
þG2

: ð40Þ
0.1016/j.physe.2010.11.008
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It can be shown that the real part of the sum in Eq. (40) vanishes, so
only its imaginary part, piG, survives. Furthermore, the product of
the velocity matrix elements is (see Eq. (10))

vxkþ�vxk�þ ¼ vxk�þ vxkþ� ¼
ða2�b2

Þ
2 sin2 y

‘ 2e2
y

: ð41Þ

Taking into account the fact that the first fraction under the sum
in Eq. (40) does not change sign upon interchanging the spin indices
s and su, Eq. (40) becomes

snd
xx ¼

e2

2h

ða2�b2
Þ
2

p

Z
dk dy

fkþ�fk�

4k2e2
yþG

2

G sin2 y
e3
y

: ð42Þ

The level broadening G is estimated by the golden rule
G� ‘

P
zzuWzzu. At zero temperature the integral over the momen-

tum k can be carried out analytically. The result is

snd
xx ¼

e2

4h

ða2�b2
Þ
2

p

Z 2p

0
dy

sin2 y
e4
y

�½arctanð2eyk�=GÞ�arctanð2eykþ =GÞ�, ð43Þ

where

k7 ¼ ½8eyþðe2
yþ4lEF Þ

1=2
�=2l: ð44Þ

In Fig. 4 we show the numerically evaluated conductivity snd
xx as

a function of the level broadening G. The solid black curve is the
result from Eq. (42), for T¼10 K, and the dashed one for T¼0 K
using Eq. (43), for the interaction strengths a¼ 5� 10�11 eV m,
b¼ 0:5a.

We proceed with the evaluation of the spin accumulation in a
2DEG in the presence of SOI. If we denote the angle between the
electric field Eel and the wave vector k with c and use Eq. (30), it is
possible to find an analytical expression for the net spin compo-
nents. Along the x axis the result is

/SxS¼
eEelm

�tF

2p‘ 3
ðbcoscþasincÞ, ð45Þ

and along the y axis

/SyS¼
eEelm

�tF

2p‘ 3
ðacoscþbsincÞ: ð46Þ
109

111

Fig. 4. Non-diagonal conductivity of a 2DEG, with the RSOI and DSOI terms present,

as a function of the level broadening G. The solid black curve is the exact numerical

result from Eq. (42), for T¼10 K, and the dashed one for T¼0 K using Eq. (43). The

interaction strengths are a¼ 5� 10�11 eV m, b¼ 0:5a.
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The magnitude of the spin accumulation /SS is then /SS¼
½/SxS2

þ/SyS2
�1=2 and its explicit expression

/SS¼
eEelm

�tF

2p‘ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þb2

þ2absinð2cÞ
q

, ð47Þ

agrees with that of Ref. [22]. The anisotropy of the spin accumula-
tion is due to the angular dependence of the energy given by Eq. (6):
the spin–orbit splitting is different for different directions of the
momentum [22]. Fig. 5 shows the dependence of the spin accu-
mulation (in arbitrary units) on the electron concentration of a
2DEG, for equal Rashba and Dresselhaus SOI terms (solid curve,
a¼ b¼ 5� 10�11 eV m), and in the presence of the Rashba SOI term
only (dashed curve). The higher values for a¼ b are mainly due to
the factor ½a2þb2

þ2abc�1=2 in Eq. (47).

3.2. Quasi-1D system

The transport properties of a Q1DEG have been investigated in
the presence of only the Rashba [25] SOI term in the ballistic
regime. Here we treat the case when both the Rashba and
Dresselhaus SOI terms are present in the non-ballistic regime.
We first notice that the non-diagonal conductivity is zero for square
and parabolic confinement. As for the expression for the diffusive
conductivity, it is easier to evaluate than that of a 2DEG since only
the integration over ky needs to be performed. Using Eq. (26) with t
constant and one subband occupied for square confinement, we
obtain, for very low temperatures, the result

sdif
yy ¼

2e2tF

p‘ 2
½a2þb2

þ4lðEF�E1Þ�
1=2: ð48Þ

The corresponding density of states reads

D1DðEÞ ¼ 2=ðp½a2þb2
þ4lE�1=2Þ: ð49Þ

For parabolic confinement and equal Rashba and Dresselhaus SOI
strengths ða¼ bÞ the conductivity is

sdif
yy ¼

4e2tF

p‘ 2

X
n

½lðEF�E0
nÞþa

2�1=2, ð50Þ

where E0
n ¼ ðnþ1=2Þ‘o. This result is also valid for a�b. The

conductivity is shown in Fig. 6 as a function of the electron
concentration for a¼ b¼ 5� 10�11 eV m. The non-monotonic
dependence is due to the presence of discrete levels in the lateral
direction produced by the parabolic confinement. Note that the
relaxation time tF depends on the concentration. Better insight can
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133Fig. 5. Spin accumulation in a 2DEG as a function of the electron concentration for

a¼ b¼ a0 ¼ 5� 10�11 eV m (solid curve) and a¼ a0 ,b¼ 0 (dashed curve) at T¼0 K.
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Fig. 6. Diffusive conductivity of a parabolically confined QW as a function of the

electron concentration, a¼ b¼ a0 ¼ 5� 10�11 eV m.

Fig. 7. Density of states of a parabolically confined QW fora¼ b¼ a0 ¼ 5� 10�11 eV m.

Fig. 8. Spin accumulation in a parabolically confined QW as a function of the

electron concentration, at zero temperature, for a¼ b¼ a0 ¼ 5� 10�11 eV m and

‘o¼ 0:5 meV.
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be acquired by investigating the density of states D1D for which the
result is

D1DðEÞ ¼
ð2m�Þ1=2

p‘
X

n

½E�E0
nþa

2=l��1=2; ð51Þ

the summation terminates at the last occupied level. D1D(E) is
shown in Fig. 7 as a function of energy in appropriate units. The
usual singularities are visible but shifted by a2=l as a result of the
SOI. Notice the correspondence with the maxima of sdif

yy .
As in the case of a 2DEG, we will evaluate the spin accumulation

using the general expression Eq. (30) for square confinement and
only one subband occupied. The result is

/SyS¼
eEeltF

p‘
bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2þb2
þ4lðEF�E1Þ

q : ð52Þ

Note that the net spin in this case depends not only on tF but also on
EF in contrast to the 2DEG, see Eq. (47). In addition, its value
vanishes in the absence of the Dresselhaus SOI. Notice also that
while the 2D result Eq. (47) is zero for a¼ b and c¼�p=4, Eq. (52)
pertains to quasi-1D systems and for that reason we evaluated only
/SyS. However, szu ¼ ðsx�syÞ=

ffiffiffi
2
p

is a conserved quantity when
a¼ b, and the result for /SzuS is

/SzuS¼
eEeltF

p‘
a�bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2þb2
þ4lðEF�E1Þ

q : ð53Þ
Please cite this article as: P.M. Krstajić, et al., Physica E (2010), doi:1
The quantum wire with parabolic confinement should be
treated independently due to the different energy spectrum and
eigenvectors. However, analytical results can be found only for
equal SOI strengths a¼ b. Noticing that the eigenvalues have only
quadratic terms in ky leads to

/SyS¼

ffiffiffi
2
p

4

eEeltF

p‘
Nocc , ð54Þ

where Nocc is the number of occupied levels. The scattering time tF

is evaluated assuming a screened Coulomb impurity potential,
which for 1D systems may be modeled [26] as UðyÞ ¼U0e�ksjyj=

jyj1=2. The spin accumulation also depends on the Fermi level but
indirectly through Nocc and the scattering time tF . In Fig. 8 we show
the spin accumulation (in arbitrary units) in a QW with parabolic
confinement as a function of the concentration. The steps are due to
the non-monotonic dependence of the Fermi level on the concen-
tration, i.e., the occupancies of the discrete levels jump suddenly.
4. Concluding remarks

We studied the transport properties of a 2DEG and of QWs, with
square or parabolic confinement, in the presence of the Rashba and
Dresselhaus terms of the SOI. We derived analytical expressions for
the diagonal and non-diagonal conductivities. For a 2DEG the
conductivity has an additional term pja2�b2

j, when compared
with previous semiclassical results, that is of quantum mechanical
origin. In addition, there is a non-diagonal contribution the
conductivity pða2�b2

Þ
2, cf. Eq. (43), which, however, is very small.

For a QW with square-well confinement the expressions are
valid for aab but with only the lowest subband occupied while for
a parabolically confined QW they are valid only for a¼ 7b but
with no limitation on the number of occupied subbands. We also
obtained approximate and numerical results in the latter case for
aab. The diffusive conductivity is given by expressions similar to
that for a 2DEG but without the term pja2�b2

j, cf. Eqs. (49) and
(50), but the non-diagonal contribution to the conductivity
vanishes.

Moreover, we evaluated the amount of spin accumulation for
both a 2DEG and a quasi-1DEG, and discussed its dependence on
the SOI strengths and the Fermi energy. Finally, we evaluated the
momentum relaxation time, usually taken as constant or evaluated
for d-function potentials, analytically for three type of possible
impurity potentials, see Appendix A, and numerically for some
results. E.g., those of Fig. 3.
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Appendix A. Evaluation of the relaxation time

The general expression for the relaxation time t is

1

tF
¼

1

ð2pÞd
X
su

Z
ddkuWkkussuð1�k̂ � k̂uÞ, ðA:1Þ

where Wkkussu is the transition rate between the jk,sS and jku,suS
eigenstates,

Wkkussu ¼ ð2pni=‘ Þj/kjUjkuSj2dssudðEsk�EskuÞ: ðA:2Þ

In Eq. (A.1) d denotes the dimensionality of the structure: d¼2 for a
2DEG and d¼1 for a 1DEG. Further, it is understood that k is the
Fermi wave vector as the transport properties are determined by
the states near the Fermi energy. The potential is spin-indepen-
dent; this results in the appearance of dssu. Eq. (A.1) holds only for
elastic or quasi-elastic scattering and under assumption that the
relaxation time depends only on the energy of state [20]. The
results for several types of impurity potentials are as follows.

d¼2, 2DEG: (a) For screened, Coulomb-type impurity potentials,
UðrÞ ¼U0e�ksr=r, with U0 ¼ e2=ð4pe0erÞ and ks the screening wave
vector, the matrix element /kjUjkuS is

/kjUjkuS¼ ð2pU0Þðk
2
s þq2Þ

�1=2, ðA:3Þ

with q¼ jk�kuj. The integration over ku is carried out using the
properties of the d function and only the root ku¼ k of the equation
EðkÞ�EðkuÞ ¼ 0 contributes to the integral. If the Rashba SOI dom-
inates over the Dresselhaus SOI term, i.e., for abb, the integration
over y in Eq. (A.1) can be carried out analytically. The result is

1

tF
¼

2p2niU
2
0

‘
ðICþ þ IC�Þ, ðA:4Þ

where

ICþ ¼
kþ

2lkþ þa

Z 2p

0

ð1�cosyÞ dy
k2

s þq2
ðA:5Þ

and q2 ¼ 2k2
þ ð1�cosyÞ. Note that ni is the concentration of impu-

rities per unit area. By contour integration the integral over y gives

ðp=k2
þ Þ½1�ks=ðk2

s þ4k2
þ Þ

1=2
� and one obtains

ICþ ¼ ½1�ks=ð4k2
þ þk2

s Þ
1=2
�=½kþ ð2lkþ þaÞ�: ðA:6Þ

IC� is determined by the same formula with 2lkþ þa replaced by

j2lk��aj in Eq. (A.6).
(b) For short-range impurity potentials of the form

UðrÞ ¼ V0dðr�riÞ, where ri is the position of the impurity, tF is
easier to evaluate and the matrix element j/kjUjkuSj2 is simply
equal to V0

2. This leads to

1

tF
¼

2m�niV
2
0

‘ 3
, ðA:7Þ

where V0 has the units of energy times length squared.
(c) For Gaussian-type impurity potentials, of the form UðrÞ ¼

U0e�r2=2s2
, one readily obtains

/kjUjkuS¼ 2pU0s2e�jk�kuj2s2=2: ðA:8Þ

Then Eq. (A.1) assumes the form

1

tF
¼

2pniU
2
0s4

‘

Z 2p

0
dy
Z 1

0
dkuð1�cosyÞe�jk�kuj2s2

�dðlðk2�ku2Þ7aðk�kuÞÞ: ðA:9Þ
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Only the root k¼ ku contributes to the integral over ku. Then, after
integration over y, Eq. (A.9) takes the form

1

tF
¼

2pniU
2
0s4

‘
ðIGþ þ IG�Þ, ðA:10Þ

where the ‘‘+’’ branch gives

IGþ ¼
2pkþ

2lkþ þa
½I0ð2s2k2

þ Þ�I1ð2s2k2
þ Þ�, ðA:11Þ

with I0 and I1 being the zeroth- and first-order modified Bessel
functions, respectively. The ‘‘� ’’ branch gives Eq. (A.11) with
2lkþ þa replaced by j2lk��aj.

d¼1, 1DEG: (d) For a QW with parabolic confinement, a¼ b, and
screened Coulomb impurities we consider the model potential [26]

UðrÞ ¼U0expð�ksjyjÞ=jyj
1=2, ðA:12Þ

with U0 ¼ 2p
ffiffiffi
c
p

e2=e0er and c a material-dependent parameter [26].

Since 1�k̂k̂u is nonzero only if kyu ¼�ky. Then Eq. (A.1) takes the form

1

tF
¼

1

2p
X
n,s

Z 1
�1

2Wkku dku ðA:13Þ

and

/�kynu jUjkynu S¼
ffiffiffiffi
p
p

U0ð½ks�2ikynu �
�1=2þ½ksþ2ikynu �

�1=2Þ: ðA:14Þ

The final result is

1

tF
¼

8pm�niU
2
0

‘ 3

X
n

ksþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

s þ4k2
yn

q
kynðk2

s þ4k2
ynÞ

: ðA:15Þ

Once again, kyn in the last equation denotes the Fermi wave vector for
the nth subband. The wave vector of the last subband is small and
contributes the most to the value of tF , so that the sum in Eq. (A.15)
can, in practice, be approximated by a single term n¼Nocc.

(e) For a QW with parabolic confinement, a¼ b, and a short-
range impurity potential U(r) given by UðrÞ ¼ V0dðy�yiÞwe proceed
as in the case d¼2. The matrix element of this potential is now
easier to evaluate, the result is j/�kyu jUðyÞjkyuSj2 ¼ V2

0 . This leads to a
simple relation for the relaxation time at the Fermi energy

1

tF
¼

4m�niV
2
0

‘ 3

X
n

1

kyn
: ðA:16Þ

(f) For QW with parabolic confinement, a¼ b, and a Gaussian

impurity potential of the form UðrÞ ¼U0e�ðy�yiÞ
2=2s2

, we easily

obtain j/�kyu jUðyÞjkyuSj2 ¼ 2ps2U2
0 e�2kyu

2 s2
. This yields

1

tF
¼

8pm�niU
2
0s2

‘ 3

X
n

e�2k2
yns2

kyn
: ðA:17Þ
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