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Transport properties of a two-dimensional electron gas (2DEG) and of quantum wires are theoretically
studied in the presence of both Rashba and Dresselhaus terms of the spin-orbit interaction (SOI). Fully
quantum mechanical expressions for the conductivity are evaluated for very low temperatures and the
differences between them and previous semiclassical results are highlighted. Two kinds of confining
potentials in quantum wires are considered, square-type and parabolic. Various cases depending on the

relative strengths of two different SOI terms are discussed and the relaxation times for various impurity
potentials are evaluated. In addition, the spin accumulation in a 2DEG and in a quantum wire (QW) is
evaluated semiclassically and its dependence on the Fermi energy and the SOI strengths is discussed. A nearly
saw-tooth dependence on the electron concentration is obtained for a QW with parabolic confinement.

© 2010 Published by Elsevier B.V.

1. Introduction

The investigation of spin-dependent phenomena has intensified
since the discovery of giant magnetoresistance in 1988 [1] due to
their potential applications in novel devices [2]. Particular atten-
tion has been given to the spin-orbit effects in semiconductor
structures. It is known that the spin-orbit interaction (SOI) may
play an important role in the transport properties of low-dimen-
sional semiconductor structures. The SOl may manifest itself in
semiconductor structures either as a result of the breaking of
macroscopic inversion symmetry of the whole structure, referred
to as the Rashba SOI (RSOI) term [3], or due to the lack of inversion
symmetry of the crystal structure, referred to as the Dresselhaus
SOI (DSOI) term [4,5]. The RSOI term depends on band alignment
and on any applied external potential if it breaks the overall
inversion symmetry which means it can be tuned by applying a bias
[6-8]. On the other hand, the DSOI term is present in bulk materials
and semiconductor heterostructures. Som(;\lII—V semiconductors,
such as GaSb, exhibit large spin-splitting in the absence of a
magnetic field, due to the difference between cations and anions.

The transport properties of low-dimensional semiconductor
structures made of materials with pronounceg\ spin-orbit effects
are expected to be different than those of structures lacking or
negligible zero field spin-splitting. They have been studied in the
past either in the presence of a magnetic field [9] or by numerical
methods and mostly when the RSOI is present [10]. In addition,
weak-localization corrections to the conductivity of a 2DEG have
been studied in Ref. [11] with the RSOI and DSOI terms taken into

* Corresponding author.
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account. In this work we consider both the RSOl and DSOI terms and
derive approximate analytical expressions for the diffusive con-
ductivity of a 2DEG at very low temperatures and for a quasi-one-
dimensional electron gas (1DEG), i.e., for a quantum wire (QW),
with square or parabolic confinement. The non-diagonal contribu-
tion to the conductivity is evaluated numerically.

The case of equal RSOI and DSOI strengths is treated in some
detail since it was predicted [12] that the role of spin-independent
scattering is reduced. This is actually correct when the cubic DSOI
term is neglected as confirmed by a recent experiment [13]. We
underline the differences between previous semiclassical results
and our fully quantum mechanical ones. Further, we provide explicit
expressions for the relaxation time, due to impurity scattering, that
most frequently has been taken as a constant in the literature.

We organize the paper as follows. In Section 2 we present the
theoretical model and give the relevant expressions of the eigen-
values and eigenvectors for a 2DEG and a 1DEG. We also give the
general one-particle expressions for the dc conductivities. We
present and discuss the results in Section 3 and summarize our
conclusions in Section 4.

2. Theoretical model
2.1. A 2DEG

We first consider a 2DEG, in the (x,y) plane, in the presence of
both Rashba and Dresselhaus terms of the SOI with strengths,
respectively, « and f5. The relevant one-electron Hamiltonian is

H=Hy+Hr+Hp, (1)
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where Hy = h2k? /2m* is the free-electron term and m* the effective
mass. Hg and Hp are, respectively, the Rashba and Dresselhaus SOI
terms given by

Hg = a(oxky—ayky), Hp = f(oxky—oyky). )

The term Hj, given above is for a 2DEG grown along the [0 0 1]
direction. If grown along different directions it acquires a different
form, see, e.g., Ref. [14] for growth along the [0 1 0], [1 1 0], and
[1 —1 0] directions.

The eigenvalues of Eq. (1) are [15]
h’k2 2 2.1/2
e + [(otky + Bkyx)” + (otkx + Bky)~1 /=, 3)
and the eigenvectors
pikex +kyy) 1
7 (oo
with 6 = + being the spin index. It is convenient to express the
eigenvalues in polar coordinates k and 0. Then Eq. (3) is rewritten as

EX =2k* +key, €= [0 + % +2aBsin(20)]/2, (5)

Ej=Ef =

—(otkx + Bky)

ko = oty + Py

) , tan¢g = s 4)

where /1= h2/2m* and tan0 =k /ky. At fixed energy, usually the
Fermi energy Ef, there are two characteristic wave vectors k .

ki =[F &g+ /€3 +42EF]/2. (6)

In what follows we will need the matrix elements of the velocity
operator, along x and y axis,

_1oH 1 2Aky  B+io .
S Rake B\ pic 27k )’ @
and

16H 1 /[24ky, a+if
W= Rok, ~ h\ a—if 27k, | ®)

For the evaluation of the conductivity we need the matrix elements
of the velocity operator V,,u=Xx,)y.
The diagonal elements in the spin index are

(K05 K0 = [22kx + [(0% + B)kx+ 20Ky ] /keg) /T, )
and the off-diagonal ones

R+ T3k, = = (R [T, + > = [i(0? — )k /Keg] /. (10)
Similar expressions can be derived for the matrix elements of the
operator V.

2.2. A quasi-1DEG
N\

We now consider a quasi-1DEG, such as a QW, with confine-
ment along the x axis.

Square confinement. We assume that the confining potential is
zero inside the QW and infinitely high at its walls. If only the first
subband is occupied, the energy spectrum is given by [16]

Ef =Ef =Ei+7k) & 02+ %)k, an

and the wave function acquires the simple form

1 1
e ) LT (12)

Only the operator 7y is relevant and its diagonal matrix elements are
Ry, al0ylky, 0> =[27ky + (62 + )12 /h; (13)

its off-diagonal elements are equal to zero.

Parabolic confinement, o = f3. The transport properties of QW
with parabolic confinement have already been treated in the
literature [17] but with different SOI term, or taking into account
only the Rashba term [18]. If V(x) is the confining potential, Eq. (1) is
written as

H = Ho + V(x)+ Hg + Hp. (14)

With V(x) = m*®?x?/2 analytical solutions exist [12] for = + f3
and the eigenfunctions of Eq. (14) for « = f§ have the form

1
2

while ¢(x,y) satisfies the spin-independent equation

1 . 2
Ys(x,y) = ( p—— ) ¢(x,y)e—a(zﬁam/h x+Y), (15)

[AVZ 4+ VEIPX.Y) = (E+02 | DD(x,Y). (16)
With V(x,y) = V(x) = m*w?x? /2 the solution is
P(x,y) = NpHn(x/he /20 el 7

where N,=[2"nly/zl""/? and [=[h/m*w]"2. Then, with E, =
hzkf,/Zm*, the eigenvalues are

En = (n+1/2)ho+Ey—20>m* /h>. (18)

Only the diagonal matrix elements of v, are relevant here since its
off-diagonal elements vanish. They are

Cky,alVylky,0> =22k, /h. (19)

Parabolic confinement, o = —f. When the two SOI interaction
strengths have opposite sign but the same magnitude, the wave
function have somewhat different form than Eq. (20)

1
2

However, the energy and the matrix elements of v, have the same
form and so does the diagonal conductivity. The off-diagonal
matrix elements are again zero. For this reason we will not go
further into consideration of this case.

Parabolic confinement, weak o and f5. The analytical solution for
the eigenvalues and eigenvectors are not known for unequal
Rashba and Dresselhaus SOI strengths o # f3, so one may resort
to approximate or numerical methods. We treat [19] Hso as a
perturbation and expand the wave function in terms of the
(unperturbed) eigenfunctions ¢, (x) of Ho, i.e.,

1 ; 2
Vo) = 75 (i ) Bope N, (20)

YI(Xv‘y) = ZAg(bn(x)Xgeikyyv (21)

noc

where y, are the eigenvectors of ¢, that is (1,0)” and (0,1)". The
eigenfunctions of Hy are harmonic oscillator functions. The matrix
elements of the interaction term are non-zero only between states
of opposite spin. The diagonal matrix elements are

(Hso)iy ™ = (o £ ip)ky, (22)

and the off-diagonal ones
_ o—if .
(HSO)nn'q = W[\/ n+15n,m—1_\/ﬁon,m+1]v (23)

since k, mixes adjacent states, and

(Hso)um™ =

loi/_z‘lﬁ[v n+15n,m—1_\/ﬁén,m+1]- (24)
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We will consider only the first three states. This leads to the secular
equation, det|S—EI| =0 where

o y.k, O i 0 0
vk, & ’\gl 0 0 0
0 S e y.k 0 Iz
S— y V21 + Yy . 1 ‘ (25)
o= y_ky & ,* 0
0 0 == & y.ky
0 0 o 0 yk &

7, =otif,and & = (n+l/2)ﬁw+/1k2 The energy spectrum (the
first three levels) is shown in Fig. 1 for two different values of the
SOI strengths, (a) « = f = ag, (b) = 0tg, f=0.500, where og =5 x
107" eV m (Ref. [8]). Anticrossings are visible in the latter case
when the two SOI strengths are different. The existence of two
sets of curves is due to the presence of SOI that lifts the spin
degeneracy. The energy difference between the levels is taken to be
Eg=hw=0.5meV.

2.3. Dc conductivities

Within the one-electron approximation and for small electric
fields the conductivity tensor o, (i4,v=Xx.y, z) may be separated
into diagonal and non-diagonal parts ¢, = o +Jfl‘f The diffusive
contribution aﬁ’{c to qu is [20]

ol = TS TS Zf(l YT EV Vg, (26)

where { =(0,ky,ky) denotes the set of quantum numbers, Sy the
area, kg the Boltzmann constant vﬂ = {{|vul{> the velocity

a20

10

Energy E [meV]
o W o

5 | | |
-0.10 -0.05 0.00 0.05 0.10

-1
ky [nm ]

10

Energy E [meV]

-5
-0.10 -0.05 0.00 0.05 0.10
-1
ky [nm™ ]
Fig. 1. Energy spectrum for a QW with parabolic confinement for two different

values of the SOI strengths, (a) a=f =0y and (b) a=0wp, =0.500, where
o =5x10"" eVm.

expectation value in the state {, and f; the Fermi-Dirac distribution.
Eq. (26) is valid only for elastic scattering. The collisional contribu-

tion to af” is [20]

= 55 TZfa —fo)Wee (e —05)°, 7

for both elastic (f; =f;) and inelastic (f; # f;) scattering. W; is the
transition rate between the unperturbed one-electron states
> and |'», and oc,{: {{Irull> the expectation value of the
u-component of the position operator r in the state ().

The dc non-diagonal contribution o ' to the conductivity is

given by [20]
n  1he? 1 —eE~Ep)/ksT 1
O'uv - L;f (1 fL )V\gg V}h. 4 EC —Eg/ 81113 E: —Eg/ e

(28

If we use the identity f,(1—f.)exp[B(E;—E;)]=f-(1—-f;), Eq. (28)
takes the form of the well-known Kubo-Greenwood formula

nd ihez (f -f)v\’ss ut
‘ —Z(Ev—EC NE—E;+il;)’ (29)

with { # {" and ¢ taken as the level width I";.
2.4. Spin accumulation

In order to study the spin accumulation in the structures of
interest one should first calculate the net spin in the presence of a
weak electric field E.. Then from the semiclassical Boltzmann
equation one finds [22]

ehr

Eel kstrx Y A f (30)

<Sx,y> = (2 ) OE’

where d=1,2 for a QW and a 2DEG, respectively; Sy, are the
diagonal matrix elements of the spin operator. The electric field is
assumed to point in an arbitrary direction. At small temperatures
the derivative of the distribution function with respect to the
energy may be replaced by a ¢ function. The result, as explained in
Ref. [22], is that Eq. (30) is valid when the Fermi, thermal, and SOI
energies satisfy the inequalities krey < kgT < Ep.

3. Results and discussion
3.1. 2DEG

We first evaluate the diagonal contributions to the conductivity.
The collisional contribution JC‘” vanishes identically because oc“ is

independent of the state { and thus ocil—ocs = 0. Now it can be proven

[23] that 6% = af,;f so that one can write ¢2/ = 1 /2(0,‘3,’{ + aﬂj{) inorder
to simplify the results. An approximate analytic expression can be
found near zero temperature, when f;(1—f;)/kgT is replaced by the
Dirac d-function in Eq. (26). Further, one may replace t(E;) in Eq. (26)
by some constant mean value 7 at the Fermi level, which is quite
reasonable approximation for a Fermi degenerate gas [21]. Thus, the
result is

ot = ST (2002 4 [+ 28010~ G

which holds for «, § > 0. The first term in Eq. (31) is the same as the one
obtained from the semiclassical Boltzmann equation in Refs. [22,23]

for -function scattering. The additional term oc |2 — 3?| represents a

quantum mechanical contribution to the conductivity. We will

examine two special cases in more detail: (i) equal SOI strengths
= f) and (ii) absence of the Dresselhaus term (o # 0, = 0).
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(i) For o= the energy spectrum consists of two identical
paraboloids [24] with E;f = 2k? + v/2ak[1+sin(26)]"/2. Then the
result for 637, Eq. (31), acquires the simple form

4e?1pm

o = = Erta/2). (32)

Due to the SOI the bottom of the conduction bands is shifted by
an energy |AE|=0?/A and the electron concentration of the
perturbed conduction bands is

no = "I’; (Ep+02/1). (33)

T

The last relation can be used to obtain the Drude form of the
conductivity

¥l = n'getp/m*. (34)

(ii) If the Dresselhaus SOI term is absent, i.e., for f=0, the
conductivity assumes a simpler form than Eq. (31),

npe2tr  mre’tr 2
m* 2nh?

by virtue of the relation between the concentration ng of an

unperturbed 2DEG (in the absence of SOI) and the Fermi energy,

ng = (m* /nhz)Ep. This relation can also be recast in a more familiar,

Drude-type form if one takes into account the shift |AE| = &% /4/. of

the conduction band minima,

oW = (35)

¥l = n'ge?tp/m*. (36)

We emphasize that both branches are included and shifted down-
wards by the same amount. Before we proceed with the evaluation
of the conductivity, it would be appropriate to evaluate the
transport scattering time for elastic scattering. First, we consider
the case of equal Rashba and Dresselhaus SOI terms, i.e., a=f.
Then, using the definition Eq. (A.1) in Appendix A we obtain, similar
to Eq. (A.4), the result

1 U2
‘L'I:_ hi

Ay +Ap), (37)

with Af being the following integrals over 6:

2n B
Ai:/ o 15 —1Be
" Jo ( T a2By 1 Cs

here By =2+2sin20, C. =4k, (k. ++/2w), k. are the wave
vectors corresponding to the Fermi energy, given by Eq. (6), and Ug
is the Fourier transform of the scattering potential. The integration
in Eq. (38) is carried out numerically and the value of kg is
determined by the root of E] = Ef, with ik’ being the momentum
after scattering. Analytical expressions are available when the
Rashba SOI dominates over the Dresselhaus SOI term, i.e., for o > f3,
see Eqs. (A.4)-(A.6)in Appendix A. For convenience we rewrite here
the result for impurities having a screened Coulomb potential

1—cos0 .
k2 + k% +kg—2k . kocos®’

(38)

2 'U2
— =0 (e +eo), 39

where Ic. and I-_ are specified in Appendix A and n; is the
concentration of impurities per unit area. This result is derived
under the assumption 2k_ > o. For typical values n; ~10° cm~2,
nap ~ 10" cm2, and ks~ 108 m~! the scattering time is about
T~ 3 ps. In Fig. 2 we show the dependence of the longitudinal
conductivity ¢, of the 2DEG as a function of its concentration for
equal Rashba and Dresselhaus SOI terms (solid curve) and in the
presence of only the Rashba SOI term (dashed curve). The con-
ductivity increases with the concentration of the 2DEG in both
cases. The difference in values of ¢d, in the two cases is not

30

25

20

15

o, [MA/V]

10

n[10"em?]

Fig. 2. Conductivity o¢, of the 2DEG as a function of electron concentration when the
Dresselhaus and Rashba SOI term are equal, & = f§ = o (solid curve) and in the absence
of Dresselhaus SOI term, f# = 0,0 = o9 (dashed curve), where oo =5 x 107" evm.

3
<
=
= 16
> t.
©
$=0.5a
1.5 F
1‘4 1 1 1 1
0 1 2 3 4 5

a[10"eVm]

Fig. 3. Conductivity of a 2DEG as a function of the strength o, at zero temperature, for
equal Rashba and Dresselhaus SOI terms, o = f§ (solid curve), and for o # 0, and =0
(dashed curve). The electron concentration was kept constant, ng =1 x 10" cm~2.

significant since the Fermi energy depends on the SOI too which
compensates in part the absence of the Dresselhaus SOI term. The
value of o () is taken to be og=5 x 107! eV m.

Further, it would be useful to investigate the dependence of the
conductivity on the strength «. Fig. 3 shows this dependence for
equal Rashba and Dresselhaus SOI terms (solid curve), for the
Rashba SOI term only (dashed curve), and for oo=0.5f (dotted
curve) versus « at zero temperature and fixed electron concentra-
tion, nyp = 10'! cm~2. The functional dependence is not linear since
both the Fermi energy Er and the scattering time 7 depend on «. In
fact, the increase of the conductivity when only the Rashba term is
present is mainly due to the increase in the relaxation time.

Next, we proceed with the non-diagonal part of the conductivity
o™ given by Eq. (29). The summation in Eq. (29) is over different
spin indices ¢ # ¢'. The parameter I, characterizing the energy
level broadening, is assumed to be independent of spin I, = I'. The
fraction in Eq. (29) can be expanded and Eq. (29) can be rewritten as

na_ ihe?

— fka_fko' (EK_E](:/_iF)VXkO'J'vXkJ’O'
T S G BCE (BB 4T

(40)
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It can be shown that the real part of the sum in Eq. (40) vanishes, so
only its imaginary part, ocil’, survives. Furthermore, the product of
the velocity matrix elements is (see Eq. (10))

(o2—p?)? sin 0

Vet ~Vake—+ = Ve + Ve - = = 55— (41)
h%e;

Taking into account the fact that the first fraction under the sum
in Eq. (40) does not change sign upon interchanging the spin indices
o and o', Eq. (40) becomes

nd _ ez(o( _.B)
- £ [ aka

fk+ —fi. I'sin*0
k285+r2 83 . (42)

XX

The level broadening I' is estimated by the golden rule
I'~h3 W At zero temperature the integral over the momen-
tum k can be carried out analytically. The result is

T ﬂ) /2“ L

xx 4h
x[arctan(zgok J)— arctan(ZS()Ic*/F)], (43)
where
* =[F &9+ (e} +42Ep)'/?]/22. “4)

In Fig. 4 we show the numerically evaluated conductivity ¢7¢ as
a function of the level broadening I'. The solid black curve is the
result from Eq. (42), for T=10 K, and the dashed one for T=0K
using Eq. (43), for the interaction strengths ¢ =5 x 107! eV m,
S =0.50.

We proceed with the evaluation of the spin accumulation in a
2DEG in the presence of SOI. If we denote the angle between the
electric field E¢ and the wave vector k with yy and use Eq. (30), it is
possible to find an analytical expression for the net spin compo-
nents. Along the x axis the result is
ek, lm F

(S ) = ——5—(fcosy +oasiny), (45)

and along the y axis

eE,m* ’EF

Sy =
(Sy» = Py

e T (acosy + Bsimyy). (46)

0 " n
0.00 0.25 0.50 0.75 1.00 1.25
I' [meV]

Fig. 4. Non-diagonal conductivity of a 2DEG, with the RSOI and DSOI terms present,
as a function of the level broadening I'. The solid black curve is the exact numerical
result from Eq. (42), for T=10 K, and the dashed one for T=0 K using Eq. (43). The
interaction strengths are =5 x 107" eV m, = 0.50.

The magnitude of the spin accumulation <S) is then <(S) =
[{Sx>%+4 ¢Sy >?]"/? and its explicit expression

\/ocz + B +20sin(2y), (47)

eE,m*tp

Tonh3
agrees with that of Ref. [22]. The anisotropy of the spin accumula-
tion is due to the angular dependence of the energy given by Eq. (6):
the spin-orbit splitting is different for different directions of the
momentum [22]. Fig. 5 shows the dependence of the spin accu-
mulation (in arbitrary units) on the electron concentration of a
2DEG, for equal Rashba and Dresselhaus SOI terms (solid curve,
o= =5 x 10~ eV m), and in the presence of the Rashba SOI term
only (dashed curve). The higher values for o = § are mainly due to
the factor [0 + % +2a ]2 in Eq. (47).

(5y=

3.2. Quasi-1D system

The transport properties of a Q1DEG have been investigated in
the presence of only the Rashba [25] SOI term in the ballistic
regime. Here we treat the case when both the Rashba and
Dresselhaus SOI terms are present in the non-ballistic regime.
We first notice that the non-diagonal conductivity is zero for square
and parabolic confinement. As for the expression for the diffusive
conductivity, it is easier to evaluate than that of a 2DEG since only
the integration over k, needs to be performed. Using Eq. (26) with t
constant and one subband occupied for square confinement, we
obtain, for very low temperatures, the result

ot = 2€TF 02 L g2 L a2, 48)
TC

The corresponding density of states reads
Dip(E) = 2/(mfo + i +42E]'/?). (49)

For parabolic confinement and equal Rashba and Dresselhaus SOI
strengths (¢ = f) the conductivity is

dif 4e’tp 0 211/2
ol = —3 > [MEF—ED)+02]'72, (50)
n

where E? =(n+1/2)ho. This result is also valid for o—p. The
conductivity is shown in Fig. 6 as a function of the electron
concentration for o=f=5x 107" eV m. The non-monotonic
dependence is due to the presence of discrete levels in the lateral
direction produced by the parabolic confinement. Note that the
relaxation time 7 depends on the concentration. Better insight can

o=p p=0_.-""

Spin accumulation <S> [arb. units]
\
A

n[10"em?]

Fig. 5. Spin accumulation in a 2DEG as a function of the electron concentration for
o=pf=09=5x10""" eV m (solid curve) and o = azg, = 0 (dashed curve) at T=0 K.
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Fig. 6. Diffusive conductivity of a parabolically confined QW as a function of the
electron concentration, o= ff =0y =5 x 10"! eV m.
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S
T

100

w
(=]
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Density of states D, (E) [eV-lnm_l]
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Energy E[meV]

Fig.7. Density of states of a parabolically confined QW forot = f = 0tg =5 x 107! eV m.

be acquired by investigating the density of states D;p for which the
result is

\1/2
Dip(E) = (Z%Z[E—E2+oc2 S22, (51)

the summation terminates at the last occupied level. Dp(E) is
shown in Fig. 7 as a function of energy in appropriate units. The
usual singularities are visible but shifted by «?// as a result of the
SOI. Notice the correspondence with the maxima of ayy

As in the case of a 2DEG, we will evaluate the spin accumulation
using the general expression Eq. (30) for square confinement and
only one subband occupied. The result is

ek tr B .
T Jo2 s B adE—Er)

Note that the net spin in this case depends not only on 7¢ but also on
Er in contrast to the 2DEG, see Eq. (47). In addition, its value
vanishes in the absence of the Dresselhaus SOIL Noticg\also that
while the 2D result Eq. (47) is zero for o = ff and y = —1 /4, Eq. (52)
pertains to qua51 1D systems and for that reason we evaluated only
{Sy). However 0, =(0x— ay)/f is a conserved quantity when
o= f3, and the result for <S; ) is

(52)

<Sy> =

ekt OC—ﬂ

<sz'> = .
mh \/ o2+ B +4/(E—E1)

(33

1.0

0.8 |
0.6

0.4 74

02 r

Spin accumulation <S> [arb. units]

0.0 s 1 s 1 s 1

n[10%m™]

Fig. 8. Spin accumulation in a parabolically confined QW as a function of the
electron concentration, at zero temperature, for o= f =0 =5 x 107" eV m and
hw=0.5meV.

The quantum wire with parabolic confinement should be
treated independently due to the different energy spectrum and
eigenvectors. However, analytical results can be found only for
equal SOI strengths oo = f5. Noticing that the eigenvalues have only
quadratic terms in ky, leads to

eE
(s, V2t (54)

where N, is the number of occupied levels. The scattering time 1
is evaluated assuming a screened Coulomb impurity potential,
which for 1D systems may be modeled [26] as U(y) = Uge kW /
ly|'/2. The spin accumulation also depends on the Fermi level but
indirectly through N, and the scattering time 7. In Fig. 8 we show
the spin accumulation (in arbitrary units) in a QW with parabolic
confinement as a function of the concentration. The steps are due to
the non-monotonic dependence of the Fermi level on the concen-
tration, i.e., the occupancies of the discrete levels jump suddenly.

4. Concluding remarks

We studied the transport properties of a 2DEG and of QWs, with
square or parabolic confinement, in the presence of the Rashba and
Dresselhaus terms of the SOI. We derived analytical expressions for
the diagonal and non-diagonal conductivities. For a 2DEG the
conductivity has an additional term oc|oc2—ﬂ2|, when compared
with previous semiclassical results, that is of quantum mechanical
origin. In addition, there is a non-diagonal contribution the
conductivity oc (o2 —/?2)2, cf. Eq. (43), which, however, is very small.

For a QW with square-well confinement the expressions are
valid for & # f§ but with only the lowest subband occupied while for
a parabolically confined QW they are valid only for « = + f but
with no limitation on the number of occupied subbands. We also
obtained approximate and numerical results in the latter case for
o # f. The diffusive conductivity is given by expressions similar to
that for a 2DEG but without the term oc |ocz—[f2|, cf. Egs. (49) and
(50), but the non-diagonal contribution to the conductivity
vanishes.

Moreover, we evaluated the amount of spin accumulation for
both a 2DEG and a quasi-1DEG, and discussed its dependence on
the SOI strengths and the Fermi energy. Finally, we evaluated the
momentum relaxation time, usually taken as constant or evaluated
for o-function potentials, analytically for three type of possible
impurity potentials, see Appendix A, and numerically for some
results)\E.g., those of Fig. 3.
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Appendix A. Evaluation of the relaxation time

The general expression for the relaxation time 7 is

L. / AR Wy (1-K - K, A1)

o 2mn)

where Wy, is the transition rate between the |k,c> and |k',c" >
eigenstates,

Wikeo = Qrn; /)| <KIUIK > | $ 5o O(Ef —ER.). (A2)

In Eq. (A.1) d denotes the dimensionality of the structure: d=2 fora
2DEG and d=1 for a 1DEG. Further, it is understood that k is the
Fermi wave vector as the transport properties are determined by
the states near the Fermi energy. The potential is spin-indepen-
dent; this results in the appearance of 0,4 . Eq. (A.1) holds only for
elastic or quasi-elastic scattering and under assumption that the
relaxation time depends only on the energy of state [20]. The
results for several types of impurity potentials are as follows.

d=2,2DEG: (a)For screened, Coulomb-type impurity potentials,
U(r) = Upe "7 /r, with Uy = €2 /(4meper) and ks the screening wave
vector, the matrix element {k|U|k’") is

kUK = 2rUo) (K2 +q*) /2, (A3)

with g = |k—K/|. The integration over k' is carried out using the
properties of the ¢ function and only the root k' = k of the equation
E(k)—E(k’)y = 0 contributes to the integral. If the Rashba SOI dom-
inates over the Dresselhaus SOI term, i.e., for o > f3, the integration
over 0 in Eq. (A.1) can be carried out analytically. The result is

1 272n;U?
= =0 (e, I, (A4
TF

where

(A.5)

I

o ky 2™ (1—cosb) do
o 2)J<++ac/0 k2 +q?

and ¢? = 2k% (1—cos0). Note that n; is the concentration of impu-
rities per unit area. By contour integration the integral over 0 gives
(/K2 )[1—ks/ (k2 +4Kk% )!/?] and one obtains

Iey =[1—ks/(4K% +Kk2)V21/ky 27k + ). (A.6)

Ic_ is determined by the same formula with 21k, +o replaced by
|12Ak_—u| in Eq. (A.6).

(b) For short-range impurity potentials of the form
U(r) = Vopo(r—r;), where r; is the position of the impurity, tf is
easier to evaluate and the matrix element |{k|U|k'>|? is simply
equal to V3. This leads to

1 2m*nVg
T
where Vj has the units of energy times length squared.

(c) For Gaussian-type impurity potentials, of the form U(r) =
Uge—"/27"  one readily obtains

, (A7)

(kUK S = 2nUqgg2e ka2, (A.8)

Then Eq. (A.1) assumes the form

J12 4 21 oo )
1 - M/ dH/ dk’(]—cos@)e“k‘k"z"
TF h 0 0

xS —k?) + a(k—k). (A.9)

Only the root k =k’ contributes to the integral over k'. Then, after
integration over 6, Eq. (A.9) takes the form

1 2mnU3c*

o A (Ig+ +1c-), (A.10)
where the “+” branch gives
Iy = 2Tk lo262K2 )~ 11 (262K2 )], (A11)

= 20k, +o

with Iy and I; being the zeroth- and first-order modified Bessel
functions, respectively. The “—" branch gives Eq. (A.11) with
2k +o replaced by [24k_—of.

d=1, 1DEG: (d) For a QW with parabolic confinement, & = f3, and
screened Coulomb impurities we consider the model potential [26]

U(r) = Ugexp(—kslyl)/1yI"/?, (A12)

with Ug = 27/ce? /egé; and ¢ a material-dependent parameter [26].
Since 1-KK’ is nonzero onlyifky = —ky. Then Eq. (A.1) takes the form

1 1 o0 \
- = %;/_w W dk (A13)
and

C=kpnlU k> = /TUo([ks—2iky] =112 + [ks + 2ikyn] ~1/2). (A.14)

The final result is

1 8tm'nU3 ks+/k2 +4k2, a15)

T #H3 — kyn(kz +4k2,)

Once again, ky, in the last equation denotes the Fermi wave vector for
the nth subband. The wave vector of the last subband is small and
contributes the most to the value of 7, so that the sum in Eq. (A.15)
can, in practice, be approximated by a single term n=N.

(e) For a QW with parabolic confinement, o = f5, and a short-
range impurity potential U(r) given by U(r) = Voo(y—y;) we proceed
as in the case d=2. The matrix element of this potential is now
easier to evaluate, the resultis | { —ky [Uy)Iky> |> = V2.Thisleadstoa
simple relation for the relaxation time at the Fermi energy

1 4mnV3 1
— =) —. A16
TF A3 zn:kyrl ( )

(f) For QW with parabolic confinement, o = f3, and a Gaussian
impurity potential of the form U(r)= Upe-—¥°/2°  we easily
obtain | —ky|Uy)lky> [> = 2n2U32e~2K o° This yields
1 8amnU30? e 2’

= X A17
- 3 Z Kon (A17)
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