
SCALABILITY EVALUATION OF THE GIPSY RUNTIME

SYSTEM

Yi Ji

A thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Applied Science (Software Engineering) at

Concordia University

Montréal, Québec, Canada

March 2011

c© Yi Ji, 2011

Concordia University

School of Graduate Studies

This is to certify that the thesis prepared

By: Yi Ji

Entitled: Scalability Evaluation of the GIPSY Runtime System

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Software Engineering)

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining committee:

Chair
Dr. Brigitte Jaumard

Examiner
Dr. Todd Eavis

Examiner
Dr. Olga Ormandjieva

Supervisor
Dr. Joey Paquet

Approved by
Chair of Department or Graduate Program Director

20
Dr. Robin A. L. Drew, Dean
Faculty of Engineering and Computer Science

Abstract

Scalability Evaluation of the GIPSY Runtime System

Yi Ji

Intensional programming is a declarative programming paradigm that is suitable

for scientific programming since it allows natural expression of equations regarding

multidimensional objects or concepts evolving in a multidimensional context so that

the simplicity of these equations are kept.

The General Intensional Programming System (GIPSY) project aims at providing

a software platform for the long-term investigation of intensional programming.

The GIPSY consists of a flexible compiler and a scalable runtime system, where

the compiler translates any flavor of intensional program into source-language

independent runtime resources, and the runtime system uses the runtime resources to

execute the program in a demand-driven and distributed manner, i.e. computation

requirements are wrapped into demands and are distributed among networked

computers, so that the computations can be executed distributively and concurrently

to shorten their overall computation time.

The multi-tier architecture adopted for the GIPSY runtime system is for research

goals such as scalability. It consists of the Demand Generator Tier that generates

demands, the Demand Store Tier that stores and dispatches demands, as well as

the Demand Worker Tier that computes demands. All the tiers are allocated in

registered computers called the GIPSY nodes, and all the GIPSY nodes and tiers are

under the management of the General Manager Tier, with which new nodes can be

registered and new tiers can be allocated at runtime to deal with increasing workload.

This thesis covers the development of the scalable GIPSY runtime system using the

multi-tier architecture, and presents the assessment of the scalability of the developed

GIPSY runtime system.

iii

Acknowledgments

I would like to express my sincere gratitude to my supervisor Dr. Joey Paquet for

giving me the opportunity to commence my degree and research, and for his patience,

caring guidance and thorough support during my graduate study.

I would also like to thank all the GIPSY team members, specifically, Bin Han and

Serguei A. Mokhov, for outstanding teamwork.

Finally, I would like to thank my dearest parents and my beloved fiancée for their

unconditional love, continuous encouragement and everlasting support.

This work has been sponsored by the Natural Sciences and Engineering Research

Council of Canada and the Faculty of Engineering and Computer Science of Concordia

University, Montreal, Quebec, Canada.

iv

Contents

List of Figures viii

List of Tables x

1 Introduction 1

1.1 General Intensional Programming System 1

1.1.1 Intensional Programming and GIPSY 2

1.1.2 The GIPSY Framework . 3

1.2 Previous Work on the GIPSY Runtime System 5

1.2.1 Pre-Multi-Tier Era . 5

1.2.2 The Multi-Tier Architecture 7

1.3 Scalability Evaluation . 12

1.3.1 Definition of Scalability . 12

1.3.2 Scalability Metrics . 16

1.3.3 Scalability Evaluation of the GIPSY Runtime System 19

1.4 Thesis Overview . 21

1.4.1 Scope . 21

1.4.2 Problem Statement . 22

1.4.3 Contributions . 23

1.4.4 Outline . 24

2 Development of the GIPSY Runtime System 25

2.1 Requirement Analysis . 25

v

2.2 Design . 31

2.2.1 Configuration System . 31

2.2.2 GIPSY Instance Bootstrap Process 33

2.2.3 GIPSY Node Registration . 34

2.2.4 GIPSY Tier Allocation and Deallocation 36

2.3 Implementation . 39

2.3.1 Refactoring the Jini DMS and the JMS DMS 39

2.3.2 Implementation of the Jini and the JMS DSTs 40

2.3.3 Implementation of the GMT and the GIPSY Node 44

2.4 Tests . 49

2.4.1 GIPSY Instance Bootstrap and GIPSY Node Registration . . 49

2.4.2 GIPSY Tier Allocation and Deallocation 52

2.5 Summary . 56

3 Scalability Evaluation 58

3.1 Overview . 58

3.2 Space Scalability . 60

3.2.1 Space Scalability Test: Demand Storage 63

3.2.2 Space Scalability Test: Maximum Demand Size 67

3.2.3 Summary . 70

3.3 Space-Time Scalability . 70

3.3.1 Space-Time Scalability Test: Memory Impact 71

3.3.2 Space-Time Scalability Test: Signature Matching Speed 74

3.3.3 Summary . 79

3.4 Structural Scalability . 79

3.4.1 Structural Scalability Test: GMT 80

3.4.2 Structural Scalability Test: DST 82

3.4.3 Summary . 84

3.5 Load Scalability . 85

3.5.1 Load Scalability Test: All the Tiers in One GIPSY Node . . . 86

vi

3.5.2 Load Scalability Test: DWTs Scaled Out in One GIPSY Node 88

3.5.3 Load Scalability Test: DWTs Scaled Out in Multiple GIPSY

Nodes . 90

3.5.4 Load Scalability Test: Two DGT Nodes for the JMS DST . . 93

3.5.5 Summary . 95

3.6 Conclusion . 96

4 Conclusions and Future Work 97

4.1 Conclusions . 97

4.2 Limitations and Future Work . 98

Bibliography 101

vii

List of Figures

1 Early GEE architecture . 6

2 GIPSY Demand Migration System 6

3 Demand migration and state transition 8

4 Procedural demand migration among the DGT, the DST, and the DWT 11

5 Example of GIPSY instances reproduced from [1] 12

6 The multi-tier packages of the GIPSY runtime system 26

7 The relations among the classes in the multi-tier packages 28

8 GMT use cases . 29

9 Configuration files of the GIPSY runtime system 32

10 Configuration property naming structure 33

11 GIPSYNode bootstrap process . 34

12 GIPSYNode registration process . 35

13 GIPSY tier allocation process . 37

14 GIPSY tier deallocation process . 38

15 Jini DST wrapper and the JMS DST wrapper 41

16 TAs and the TA factory . 43

17 The system demands required by the GMT 46

18 The GMT wrapper class . 46

19 The node-registration sequence diagram 47

20 The tier-allocation sequence diagram 48

21 The tier-deallocation sequence diagram 48

22 Test scenario for GIPSY instance bootstrap and node registration . . 49

23 Screenshots of the GMT console and the two GIPSY Node consoles . 51

viii

24 Test scenario for GIPSY tier allocation and deallocation 52

25 GMT console output for tier allocation and deallocation 54

26 The four DSTs allocated . 55

27 The console output of Node 0 . 56

28 The console output of Node 1 . 57

29 JVM heap generations . 62

30 Demand storage test deployment . 63

31 Maximum total demand size versus heap size 66

32 Maximum demand size for 256 MB heap 69

33 Space-time scalability test deployment: memory impact 71

34 Response time versus demand storage 72

35 Space-time scalability test deployment: signature matching speed . . 75

36 Demand sending time versus the amount of demands stored in the DST 76

37 Average demand sending time versus the amount of demands stored in

the DST . 76

38 Result reading time versus the amount of demands stored in the DST 77

39 Average result reading time versus the amount of demands stored in

the DST . 78

40 Structural scalability test deployment: GMT 81

41 Structural scalability test deployment: DST 82

42 DST connections and threads versus stack sizes 84

43 Load scalability test deployment: all the tiers in one GIPSY node . . 87

44 Load scalability test result: all the tiers in one node 88

45 Load scalability test deployment: DWTs scaled out in one GIPSY node 89

46 Load scalability test result: DSTs scaled out in one GIPSY node . . . 90

47 Load scalability test deployment: DWTs scaled out in multiple GIPSY

nodes . 91

48 Load scalability test result: DSTs scaled out in multiple GIPSY nodes 92

49 Load scalability test deployment: two DGT nodes for the JMS DST . 93

50 Load scalability test result: two DGT nodes for the JMS DST 95

ix

List of Tables

1 Computer hardware and operating system environment 50

2 Hardware and operating system environment 64

3 The 12 DST profiles . 65

4 Demand storage test result . 66

5 Maximum demand size test result . 68

6 DST maximum connection test result 83

x

Chapter 1

Introduction

The General Intensional Programming System (GIPSY) project aims at providing a

software platform for the long-term investigation of intensional programming [1]. The

GIPSY basically consists of a flexible compiler and a scalable runtime system for the

compilation and execution of intensional programs, where the compiler translates any

flavor of intensional programs into source-language independent runtime resources,

and the runtime system uses the runtime resources to execute the program in a

demand-driven and distributed manner, i.e. computation requirements are wrapped

into demands and are distributed among networked computers, so that the required

computations can be executed distributively and concurrently to shorten their overall

computation time.

Since this thesis concerns the development of the runtime system for the GIPSY

project as well the assessment of the scalability of the runtime system, this chapter

introduces the necessary background, previous work and limitations regarding the

GIPSY runtime system and the scalability evaluation methodologies, and delivers

the scope, problem statement, contributions and the outline of this thesis.

1.1 General Intensional Programming System

The General Intensional Programming System (GIPSY) project is for the

investigation of the intensional programming model, and is an ongoing project

1

directed by Dr. Joey Paquet in the Computer Science & Software Engineering

Department at Concordia University in Montreal, Quebec.

1.1.1 Intensional Programming and GIPSY

Intensional programming is a declarative programming paradigm that is suitable

for scientific programming, since it allows natural expression of scientific equations

regarding multidimensional objects or concepts evolving in a multidimensional

context so that the simplicity of these scientific equations are kept [2]. It has

found applications in 3D spreadsheet [3, 4], parallel programming [5], real-time

systems [6, 7], software version control [8, 9] and database systems [10].

Basically the intensional programming model allows the programmers to directly

manipulate their intensions [2]. When solving complex problems of multidimensional

nature such as plasma physics or tensor problems, the scientific equations can

be expressed naturally in an intensional programming language. In contrast, the

solutions written in conventional programming languages such as C, FORTRAN and

Java do not reflect the simplicity and readability of the original scientific equations,

and the solutions provided by mathematical programming languages such as Matlab

and Maple are ad-hoc software packages such as the Tensor package or toolbox

that are specific to the particular sets of problems only, lacking the simplicity

and generalization in directly defining the equations naturally via the intensional

programming model [2].

An example of the intensional programming languages is the evolving Lucid

family [11]. Initially Lucid was a data-flow programming language that used only

the time dimension [12, 13, 14, 15]. Then in 1996 it was evolved to Indexical

Lucid that supported multiple dimensions and Granular Lucid (GLU) that supported

hybrid programming in C or FORTRAN and Indexical Lucid [16, 17]. In 1999

Dr. Paquet proposed the General Intentional Programming Language (GIPL) into

which all the Lucid dialects can be translated [2], hence the name GIPL. After this

generalization, JLucid that embedded Java into Indexical Lucid [18, 19] and Object-

Oriented Lucid Intensional Programming Language that combined features of both

2

Java and Lucid [20, 21, 22] were proposed, enriching the Lucid family with hybrid

intensional programming.

An example showing the advantage of Lucid is the Lucid solution to the Hamming

Problem (after Richard Hamming). The Hamming problem requires generating an

infinite sequence of ascending and non-repeating integers beginning from 1, where the

numbers after 1 are the multiples of the numbers 2, 3, or 5. The imperative solutions

of the Hamming problem usually involves multiple loops and sorting, whereas in Lucid

a trivial and easy-understanding solution is provided [11, 23]:

H

where

H = 1 fby merge (merge (2*H , 3*H) , 5*H);

merge (x , y) = if (xx <= yy) then xx else yy

where

xx = x upon (xx <= yy);

yy = y upon (yy <= xx);

end;

end;

Listing 1.1: An example of a Lucid program

To investigate and demonstrate the possibilities and effectiveness of the intensional

programming model as well as to cope with changes and general needs, the GIPSY

project proposes a software platform to compile and execute programs written in any

flavors of Lucid including hybrid intensional programming languages.

1.1.2 The GIPSY Framework

The GIPSY framework consists of three main subsystems: a flexible compiler called

the General Intensional Programming Compiler (GIPC), a language-independent

runtime system called the General Eduction Engine (GEE) and a component called

the Runtime Interactive Programming Environment (RIPE) that provides visual user

interfaces to allow user interaction with the runtime system.

Basically the complier, GIPC, compiles any GIPSY program into an intermediate

representation. A typical GIPSY program is a hybrid program consisting of the Lucid

(intensional) part written in various dialects of Lucid as well as the procedural part

written in various programming languages such as C, FORTRAN and Java, where the

3

Lucid part calls the procedures or methods defined in the procedural part [24, 25, 18,

19, 20, 21, 22]. Given such a GIPSY program, the compiler first translates the GIPSY

program into a source-language independent General Intensional Programming

Language (GIPL) program using predefined translation rules, then generates source-

language independent Generic Eduction Engine Resources (GEER) based on the

GIPL program. More specifically:

• Generic Eduction Engine Resources (GEER): an intermediate represen-

tation generated by the compiler GIPC containing runtime resources for the

execution of a GIPSY program [19]. Since a GEER is generated from a source-

language independent GIPL program that is generated from a hybrid intensional

program, the GEER is also source-language independent, i.e. generic as its

name implies, and contains all the GIPSY program identifiers, including both

the Lucid identifiers and the procedural identifiers embedded in the hybrid

program, as well as typing information, dimensionality information, the abstract

syntax tree (AST) of the source-language independent GIPL program, and a

dictionary of the procedures called by the Lucid parts of the original hybrid

program. This GEER is then passed to the General Eduction Engine (GEE),

i.e. the runtime system, for the program execution. Since the GEER is source-

language independent, the runtime system is also source-language independent.

When the GEE, i.e. the runtime system, receives a GEER generated by the

compiler, it executes the program using a demand-driven eduction model. A demand

is a request asking for the value of a certain identifier defined in a GIPSY program,

and the identifier is usually defined as an expression using other identifiers and

an underlying algebra within a specific multidimensional context space [1]. In the

demand-driven eduction model, an initial demand requesting the value of a certain

identifier is generated, and to consume this demand, new demands are generated

to request the values of the identifiers constituting the expression defining the initial

identifier, and similarly these demands further generate new demands until eventually

some of the demands are evaluated and propagated back in the chain of demands,

4

so that the identifiers whose values depend on them can be evaluated in turn, and

eventually the initial identifier is evaluated and returned [1]. This demand-driven

eduction model naturally supports distributed execution of intensional programs [17].

The development of the demand-driven GIPSY runtime system has gone through

several stages via the previous work introduced in Section 1.2.1.

1.2 Previous Work on the GIPSY Runtime

System

1.2.1 Pre-Multi-Tier Era

The early architectural design of GEE, i.e. the runtime system, specified that the GEE

generally had three parts: the Intensional Demand Propagator (IDP) that generates

demands, the Intensional Value Warehouse (IVW) that caches the values of computed

demands, and the Ripe Function Executor (RFE), i.e. the worker that does functional

computation as shown in Figure 1 [26]. In this architecture, the IDP generates

demands according to the intensional data dependence structure generated by the

compiler. If a demand generated by the IDP requires some functional computation,

it is either calculated by a local worker or sent to a remote worker, decided by the

Demand Dispatcher of the IDP, and when the demand is computed, its value is

returned to the IDP and put into the IVW for future reuse. The IVW consists

of a warehouse that stores computed values and a garbage collector to remove the

stored values according to certain removal algorithms. This runtime architecture was

investigated and developed by Lu [27] and Tao [28].

Later, a generic Demand Migration Framework (DMF) for migrating demands

in heterogeneous and distributed environment was proposed for the GIPSY runtime

system [29], and a Demand Migration System (DMS) implementing the DMF using

the Jini technology [30] was provided by Vassev [31]. Later, another DMS based on

the JMS technology JMS [32] was provided by Pouteymour [29, 33].

Figure 2 shows a GIPSY Demand Migration System. In this figure, the GIPSY

5

Figure 1: Early GEE architecture

Figure 2: GIPSY Demand Migration System

6

runtime system consists of Demand Generators (DGs) and Demand Workers (DWs)

interconnected by a DMS (the double-lined sphere surrounded by the DWs and the

DGs in Figure 2). The DMS consists of a Demand Space (DS) that is similar

to the previous notion of warehouse in IVW, and a set of Dispatcher Proxies

(DPs) and their corresponding Transport Agents (TAs) implemented in different

middleware technologies, so that the DGs and the DWs can use the TAs to connect

to the DP to send and receive demands via the DS across heterogeneous and

distributed environment. Similar to the notion of generator and worker in the previous

architecture, the DGs generate demands and the DWs do functional computation;

however, in the DMF, the DGs no longer communicate with DWs directly, instead

all the demands are dispatched via the DS who also stores computed results. The

dispatching is achieved by labeling demands with three different states: pending,

inprocess, and computed. Each demand also has a signature called demand signature

serving as the unique identifier of this demand within the DS. Figure 3 illustrates

the demand migration and dispatching process: when a demand is generated by the

Demand Generator and is put into the Demand Space, its state is pending; when the

demand is picked up by a Demand Worker, its state transits to inprocess; after the

demand is computed by the Demand Worker, its state transits to computed and the

computed demand with the same signature is put back into the Demand Space so

that it can be picked up by the Demand Generator.

1.2.2 The Multi-Tier Architecture

Aiming at research goals such as scalability, a multi-tier architecture was proposed

and adopted for the GIPSY runtime system [1, 34], and it is the most up-to-date

architecture of the GIPSY runtime system.

The multi-tier architecture preserves some of the features in the previous Demand

Migration Framework, such as the three demand states pending, inprocess and

computed as well as the demand signature, but further divides the entire runtime

system into four kinds of GIPSY tiers. Each kind of GIPSY tier consists of any

number of differently implemented tier instances, and each tier instance is a separate

7

Figure 3: Demand migration and state transition

process or thread that runs within a registered computer and communicates with

other tiers via demands. The registered computers are called GIPSY nodes; the

creation and start of a tier instance in a GIPSY node is called the tier allocation,

and the stop and destroy of a tier instance is called the tier deallocation. Since the

concrete operational features of a GIPSY tier is provided by a GIPSY tier instance,

unless otherwise specified, for simplicity in this thesis a particular GIPSY tier always

denotes an instance of the specified tier. The detailed descriptions of the four kinds

of GIPSY tiers are:

• Demand Store Tier (DST): a GIPSY tier whose instance serves as the

middleware and cache to provide demand delivery and storage services for other

tiers. Each DST exposes Transport Agents (TAs) that other tiers can obtain

via a lookup service to connect to the DST either remotely or locally. The

use of TA provides location transparency for the DST, and all the TAs share

the same generic interface to provide implementation transparency so that new

TA implementations can be easily integrated into the GIPSY runtime system

without affecting the tiers who are not aware of the heterogeneity of different

TA implementations. Once a demand is computed by other tiers, it is stored in

the DST for future reuse. For the long-term usage, the DST is also designed to

have a garbage collector to eventually remove demands out of the DST to save

8

space and query time.

• Demand Generator Tier (DGT): a GIPSY tier whose instance generates

different types of demands by traversing the abstract syntax tree contained

in a GEER. As described in Section 1.1.2, a GEER is a dictionary of

runtime resources generated by the compiler GIPC from a hybrid intensional

program consisting of the Lucid part and the procedural part. The runtime

resources contained in a GEER basically include program identifiers such as

Lucid identifiers and procedural identifiers, the abstract syntax tree and the

procedures called by the Lucid part. When a DGT traverses the abstract syntax

tree, two types of demands may be generated:

– intensional demand: a demand requesting the value of certain Lucid

identifier contained in the Lucid part of the GIPSY program, given a

certain context where the identifier is defined.

– procedural demand: a demand requesting the evaluation of a certain

procedure defined as a function or a method in the procedural part of the

GIPSY program, when a call to the function or method is encountered

during the traversal of the abstract syntax tree.

A DGT also has a Local GEER Pool to store GEER instances, and an

Intensional Demand Processor that uses the GEERs to process intensional

demands. When receiving an initial intensional demand requesting the value of

a certain Lucid identifier, the DGT checks its Local GEER Pool to retrieve the

corresponding GEER. If the DGT does not have the GEER, it sends a special

type of demand to the DST to request the GEER, and this type of demands is:

– resource demand: a demand requesting a particular GEER instance.

This demand is issued by a DGT and is answered by any DGT that has

the GEER. In this way GEERs are shared among multiple DGTs.

Once the DGT has the GEER, its Intensional Demand Processor traverses

the abstract syntax tree contained in the GEER to generate further demands

9

according to the Lucid program declaration of the Lucid identifier in question.

Some of these generated demands are intensional demands and some are

procedural demands, depending on how the identifiers are further declared and

defined. All these newly generated demands have the state pending and are

stored in the DGT’s Local Demand Store. The Local Demand Store serves as

an outgoing buffer for pending demands, and when the Local Demand Store

is empty, the DGT picks up a new intensional demand from the DST to start

processing the new intensional demand A pending intensional demand stored

in the Local Demand Store can either be processed by a remote DGT if it is

sent to the DST, or processed by the same DGT if it stays in the Local Demand

Store, decided by the Demand Dispatcher of the DGT; in contrast, a pending

procedural demand must be sent to the DST to be processed by an instance of

the Demand Worker Tier described below.

• Demand Worker Tier (DWT): a GIPSY tier whose instance processes

procedural demands by executing the procedural function calls (or methods)

defined in GEERs contained in its Procedural Class Pool. When started, a

DWT connects to a DST to retrieve a pending procedural demand, and if the

DWT has the definitions of the procedures required by the procedural demand,

it execute the procedures; whereas if the DWT does not have the GEER

containing the definitions of the procedures required by the procedural demand,

it issues a resource demand to retrieve the GEER as a DGT does in a similar

situation. When the execution of the procedures is finished, the DWT returns

the computed procedural demand to the DST, so that the computed demand

can be picked by the DGT that generated the original procedural demand. The

DWT also has a Local Demand Store to cache computed demands in case of

DST failure. Figure 4 indicates the procedural demand migration among the

DGT, the DST and the DWT.

• General Manager Tier (GMT): a GIPSY tier whose instance manages the

GIPSY node registration and the allocation and deallocation of DGT, DST and

10

Figure 4: Procedural demand migration among the DGT, the DST, and the DWT

DWT instances. The GIPSY node registration is the process of registering a

computer into the GMT so that the GMT is able to allocate GIPSY tiers in that

computer when necessary. Such managerial tasks are performed via a special

type of demands called:

– system demand: a demand for managerial tasks such as the GIPSY node

registration, GIPSY tier allocation and deallocation.

Under the management of a GMT, a set of interconnected GIPSY tiers allocated

in GIPSY nodes is called a GIPSY instance. A GIPSY instance is able

to expand across the network by registering computers as GIPSY nodes and

allocating GIPSY tiers in the registered GIPSY nodes. Figure 5 shows an

example of three GIPSY instances identified by three different colors running

in six GIPSY nodes.

The multi-tier architecture was partially implemented by Han [34, 35]. He

designed the initial class diagrams and APIs of the multi-tier packages, and

implemented the DGT and the DWT. His work provided a solid foundation for the

multi-tier architecture and verified its feasibility. However, further development and

integration is still required to deliver a deployable GIPSY instance to demonstrate

the effectiveness of the multi-tier architecture towards its research goals such as

scalability, which requires the development of the DSTs and the GMT, the design

and implementation of the GIPSY instance bootstrap process, the GIPSY node

registration process, the GIPSY tier allocation and deallocation processes.

11

Figure 5: Example of GIPSY instances reproduced from [1]

1.3 Scalability Evaluation

Scalability is an important attribute of a computing system as it represents the ability

to achieve long-term success when the system is facing growing demand. The multi-

tier architecture was adopted for the GIPSY runtime system for research goals such as

scalability [1, 34], therefore once implemented, the scalability of the GIPSY runtime

system needs to be assessed for the validation of the implementation. The scalability

of the GIPSY runtime system shall be clearly defined; otherwise the assessment of

scalability is left to intuition. Besides, in order to assess scalability, an appropriate set

of metrics shall also be identified to aid our judgment. Therefore several scalability

definitions and metrics used in scientific literature are investigated for this purpose

in this section.

1.3.1 Definition of Scalability

Although the term scalability is widely used and treated as an important attribute

in computing community, there is no commonly accepted definition of scalability

available [36]. Without a standardized definition, researchers use scalability to denote

the capability for the long-term success of a system in different aspects, such as the

ability of a system to hold increasing amount of data, to handle increasing workload

12

gracefully, and/or to be enlarged easily [37].

Moreover, in recent years, the methods of scaling a computing system have been

classified into two brief categories, scale-up and scale-out [38, 39, 40]. Scale-up refers

to upgrading computers such as adding more processors to handle increased workload,

whereas scale-out usually refers to expanding the system by adding more low-cost and

interconnected computers to handle increased workload. Such classification is useful

in discussing the scalability definitions shown below.

Many attempts have been made to define scalability ever since the question

“What is scalability” was proposed by Mark D. Hill [41] back in 1990, some of which

focused on a generic scalability concept for computer and/or software systems. For

example, Bondi described four general types of scalability covering different aspects

of a system [37] as shown below.

• Load scalability: the ability of a system to achieve desired performance under

increasing loads while making good use of available resources. The load here

indicates the traffic or workload caused by the inputs of the system.

• Space scalability: the ability of a system to support increasing amount of data

without its memory requirements growing into intolerable levels.

• Space-time scalability: the ability of a system to maintain satisfactory

performance while the number of objects that it encloses increases by orders

of magnitude, e.g. a search engine based on linear search is not space-time

scalable, but that based on hash table may be space-time scalable.

• Structural scalability: the ability of a system to expand in a chosen dimension,

i.e. increasing the number of components it encompasses, at least within a

chosen time frame and without major modifications to its architecture.

Such separation of scalability types is reasonable because a complex system, for

example a distributed system with multiple users, servers and databases, naturally

has limits in different aspects that are crucial to the system’s long term success,

therefore a system may simultaneously possess all of these types of scalability. It

13

was argued in the paper [37] that the load scalability and the space scalability have

no causal relationship between each other, whereas poor space-time scalability or

poor structural scalability may result in poor load scalability, but good space-time

scalability or good structural scalability does not guarantee good load scalability.

Although the paper did not provide an effective methodology to identify scalability

metrics, its four types of scalability, especially the load scalability, covered most of

the understanding of scalability as shown in the following examples, and thus are very

helpful in defining the scalability of the GIPSY runtime system.

Another attempt to define a generic scalability for software systems was made by

Duboc et al. [36]. They proposed a general framework to characterize and analyze

scalability. For a particular software system, their framework sorted the measurable

characteristics of this system into predefined concept groups including:

1. scaling dimensions: scaling aspects of the system such as the number of

concurrent users or nodes.

2. nuisance variables: characteristics of the system that cannot be changed, such

as processor speed.

3. dependent variables: conventional software metrics such as performance,

memory consumption that are affected by changes in scaling dimensions.

With the sorted characteristics, scalability of the system was assessed by the

analysis of dependent variables with respect to the variation in scaling dimensions,

based on which a claim regarding scalability could be made as:

A certain system is scalable with respect to some dependent variables

(performance metrics such as response time/query) because it can

maintain these dependent variables at certain level while increasing some

scaling dimensions (e.g. number of queries).

The framework also used a weighted sum to combine dependent variables of

different aspects together and normalized the sum to denote an overall scalability.

14

For example, in Duboc’s paper, two implementations of the same banking system

were compared, and by measuring normalized compound scalability combining the

performance and memory consumption over the increasing number of data entities,

i.e. in this example the overall scalability was the combination of the load scalability

and the space scalability. Therefore, although this framework provided a systematic

way to separate scalability-relevant concerns into concept groups to discover their

causal relations, their way of combining different types of scalability into a single

overall scalability is not suitable for the GIPSY runtime system at the current stage

because the weights of the sum are subjective and may be changed from researcher

to researcher, and it is better to leave different types of scalability as what they are

to allow more flexibility in the assessment of scalability.

In a third attempt, a mathematical representation of scalability was proposed

defining scalability as the direction derivative along a particular dimension in a multi-

dimensional space [42]. It sorted all the factors of a system into 2 vectors, problem

space that generalizes the problem size such as complexity of an algorithm, and system

space that generalizes the system size such as the number of processors. Based on

these two vectors, a function was used to denote the performance of a particular

algorithm with particular computer architecture, and the scalability was defined as

the derivative of this function. This mathematical representation of scalability gave

a useful hint of how to mathematically represent a generic scalability, but essentially

did not add new aspects to scalability definitions and therefore is not adopted for

defining scalability here.

Based on the above descriptions and discussions of the scalability definitions,

we adopt the four types of scalability described in the Bondi’s manuscript [37] to the

GIPSY runtime system, because they covered important aspects of the system such as

performance, memory consumption, number of nodes and together they gave a more

comprehensive assessment of the scalability than other definitions. Still, these four

types of scalability need to be adapted for the GIPSY runtime system and software

metrics need to be identified so that the four types of scalability can be clearly defined

and assessed, therefore several scalability metrics and evaluation methodologies are

15

studied in the next section.

1.3.2 Scalability Metrics

Scalability metrics are necessary for evaluating scalability because they provide a

quantitative basis to reduce subjectivity in the assessment of scalability.

For space scalability, as described in Section 1.2.2, in the GIPSY runtime

system, all the computed demands are stored in the DSTs for future reuse, each DGT

has a Local GEER Pool to store GEERs for processing intensional demands, each

DWT has a Procedural Class Pool to store definitions of procedures for processing

procedural demands, and both the DGT and the DWT have a Local Demand Store

to cache outgoing demands. Therefore there are concerns such as how the memory

requirement of the GIPSY runtime system changes with the increasing amount of

demands stored in the DSTs and in the Local Demand Stores of the DGTs and

the DWTs. However, since the GIPSY runtime system is demand-driven and all

the demands are stored in and migrated via DSTs, the space scalability of DSTs

regarding how their memory requirement changes with increasing demand storage is

of top priority, and thus is investigated in this thesis; other space-scalability relevant

aspects shall be investigated in future work. The metric for space scalability is

therefore the ratio between total demand size and total DST memory size, where the

total demand size indicates the overall size of the demands stored in a DST, and the

total DST memory size indicates the amount of memory available to the DST, e.g.

its heap memory size. This ratio can easily indicate which type of DSTs offers a better

space scalability for the GIPSY runtime system. Also, the maximum demand size

of a single demand that a DST with limited memory can store is also of our interest,

therefore the maximum demand size is the metric for this aspect of the space

scalability.

For space-time scalability, as the amount of demands stored in a DST increases,

if the demand response time, i.e. the demand sending time plus the result reading

time, does not increase accordingly, then the DST is considered space-time scalable

because its performance is not negatively affected by the amount of objects it stores;

16

otherwise it is not space-time scalable. The metrics for this type of scalability are

therefore demand response time, which is the sum of demand sending time and

result reading time.

For structural scalability, since the GIPSY runtime system can be enlarged

by allocating more tiers and tiers including DGTs and DWTs are interconnected

by the DSTs, the maximum number of concurrently connected DWTs and/or

DGTs that a DST can support as well as the maximum number of node/tier

registrations that a typical GMT can store are used to estimate the maximum

size of the system. Therefore the metrics for this type of scalability are

maximum node/tier registrations and maximum DST connections.

As for load scalability, it was discovered that there are many publications

discussing this type of scalability, and most of them assessed load scalability via

the relation between the throughput and the amount of computational resources

such as the number of processors or software components. For example, based on

the limits in existing scalability metrics, a further generalized scalability metric was

proposed focusing on productivity [43]. The productivity was represented as the ratio

between the optimized performance and the system cost, where the performance

was based on the throughput such as response per second, and the system cost is

usually proportional to the amount of computational resources such as the number

of processors.

Similarly, a scalability metric combining both algorithm and hardware system was

proposed [44] based on the assumption that for a scalable system, its communication

overhead should not increase faster than the increase in the computational, i.e.

productive, workload. For a particular system and for a particular algorithm, the

metric investigates the relation between the computed speed of a workload and the

overall processor speed of the system, where the computed speed is the ratio between

the workload and the corresponding execution time. Therefore if the computed

speed is regarded as the throughput, this metric measures the load scalability

via throughput and the amount of computational resources measured by the total

processor speed.

17

Besides the above two papers, the relation between the throughput and the

amount of computational resources in the sense of software components performing

the computation was also used in other publications to measure the load scalability.

For example:

1. To compare the load scalability of 5 different Enterprise JavaBeans

implementations of an e-commerce site, for each implementation, the relation

between the throughput in requests/minute and the number of clients was

studied [45]. Since the session beans used to implement the e-commerce site

was created upon each client connection, the number of clients implied the

amount of the server components, i.e. the beans, running inside the server host.

2. To compare the scalability between the scale-up and the scale-out solutions for

a search engine, a single driver generating fixed number of outstanding queries

was used, and the relation between the throughput in queries/second and the

number of backends was studied [39].

3. Similarly, a number of concurrent clients were used to test an e-commerce

application in scale-out environments of different architectural configurations,

with each client periodically sending request and receiving response [40]. The

scalability was assessed via the relation between the throughput measured in

pages/second and the number of server nodes.

All the above load scalability evaluation methodologies show that the relation

between the throughput and the amount of computational resources is an important

performance metric in evaluating load scalability. Since in the GIPSY runtime system,

demands can be generated in one tier and are processed in other tiers, the tiers that

process the demands are the software components that perform the computations. For

example, in the case of a particular type of procedural demands, after the pending

demands are generated by the DGT, these demands are sent into the DST to be picked

up and processed by the remote DWTs, after which the computed results are put back

into the DST and are received by the DGT. Therefore in this case, the number of

18

DWTs connecting to the DST can be used to indicate the amount of computational

resources, and how many corresponding computed results that the DGT can receive

within a certain time period can be used as the throughput. The load scalability

of the GIPSY runtime system is assessed by investigating the relation between the

throughput and the number of DWTs.

1.3.3 Scalability Evaluation of the GIPSY Runtime System

Based on the scalability definitions and metrics investigated and adopted for the

GIPSY runtime system, the four types of scalability of the GIPSY runtime system

and their metrics are summed up below. Detailed definitions, metrics, tests and

discussions are presented in Chapter 3.

The metrics defined so far for the four types of scalability are:

• total demand size: the size of all the demands stored in a DST. If all the

demands stored in the DST are of the same demand size denoted as the single

demand size, and the amount of demands is denoted as the number of demands,

then total demand size = number of demands × single demand size. The value

of this metric begins from zero, and its unit is a standard byte multiple such as

mega bytes (MB).

• total DST memory size: the size of memory available to a DST. If the DST is

a Java Virtual Machine (JVM) process, then the total DST memory size equals

the heap memory size of the JVM process. The value of this metric begins from

zero, and its unit is a byte multiple such as mega bytes (MB).

• maximum demand size: the maximum size of a single demand that can be

stored in the DST. If the DST is a JVM process, then the maximum demand

size is determined by the largest heap generation size as discussed in Section

3.2. The value of this metric begins from zero, and its unit is a standard byte

multiple such as mega bytes (MB).

19

• demand sending time: the time spent in sending a demand to a DST. If

the Transport Agent of the DST provides a method setDemand() to send a

demand to the DST, then the time interval from the time when this method is

invoked to the time when the method returns is regarded as the demand sending

time. The value of this metric begins from zero, and its unit is millisecond.

• result reading time: the time spent in reading a result from a DST. If the

Transport Agent of the DST provides a method getResult() to get a result

from the DST, then the time interval from the time when this method is invoked

to the time when the method returns is regarded as the result reading time. The

value of this metric begins from zero, and its unit is millisecond.

• demand response time: the demand sending time plus the result reading time.

This metric indicates how long the DGT that generates the pending demand

has to wait until it gets the corresponding computed result. The value of this

metric begins from zero, and its unit is millisecond.

• maximum node/tier registrations: the maximum number of node/tier

registrations that a GMT can support. The value of this metric begins from

zero.

• maximum DST connections: the maximum number of connections that a

DST can support. Since DGTs and DWTs can be connected to the DST, this

number indicates the maximum number of DGTs/DWTs that the DST can

support. The value of this metric begins from zero.

• throughput and number of DWTs: given a particular type of procedural

demands, after a DGT generates these pending demands, the number of

corresponding computed results that the DGT can receive within a certain time

period is denoted as the throughput of the demand computation. Also, the

number of DWTs that connect to the DST to receive and process the procedural

demands is denoted as the number of DWTs. The value of the throughput

20

begins from 0 and its unit is demand/second, and the value of the number of

DWTs begins from 0.

Given the metrics defined above, the four types of scalability are:

• Space scalability: the ability of GIPSY runtime system to store increasing

amount of demands with tolerable memory usage. The judgment of “ tolerable”

is described in Section 3.1. The metrics to assess this kind of scalability are total

demand size and maximum demand size versus total DST memory size.

• Space-time scalability: the ability of GIPSY runtime system to maintain its

performance while the number of demands stored increases. The metrics used

to assess this type of scalability are demand response time consisting of demand

sending time and result reading time.

• Structural scalability: the ability of GIPSY runtime system to allocate more

GIPSY tiers over more GIPSY nodes. The maximum node/tier registrations as

well as the maximum DST connections are the metrics for this type of scalability.

• Load scalability: the ability of GIPSY runtime system to achieve a desired

demand processing throughput that is able to increase proportionally with the

number of the software components that process the demands. The metrics

used to assess this type of scalability are the throughput and the number of

DWTs described above.

1.4 Thesis Overview

1.4.1 Scope

This thesis covers the implementation of the multi-tier architecture of the GIPSY

runtime system and the assessment of the scalability of the implemented GIPSY

runtime system.

21

1.4.2 Problem Statement

The proposal and adoption of the multi-tier architecture for the GIPSY runtime

system aims at research goals such as scalability. To achieve the research goals, the

multi-tier architecture must be implemented. However, before the work presented in

this thesis, several problems remained in the GIPSY runtime system.

The first problem was the lack of a deployable GIPSY instance. As stated in

Section 1.2.2 a GIPSY instance is a GIPSY runtime system consisting of multiple

GIPSY tiers allocated in multiple GIPSY nodes (computers), and a “deployable”

GIPSY instance enables the user to register computers as new GIPSY nodes, to

allocate and deallocate GIPSY tiers at runtime. Although some classes and API for

the multi-tier architecture were defined as stated in Section 1.2.2, the implementation

of the new architecture was incomplete before the work presented in this thesis:

DSTs based on the previous Jini and JMS DMSs (see Section 1.2.1) were not

implemented and integrated into the multi-tier architecture, and the GMT was also

not implemented to perform managerial tasks, needless to say the GIPSY bootstrap

process, GIPSY node registration, GIPSY tier allocation and deallocation that require

an operational GMT. All these tiers and managerial tasks are essential to deliver a

deployable GIPSY instance that is able to expand easily among computers across a

network.

Besides, to adapt the previously implemented Jini DMS and the JMS DMS (see

Section 1.2.1) into the multitier architecture, the incompatibility between the Jini

DMS and the JMS DMS must be resolved: the TAs connecting to their Demand

Spaces did not inherit the same generic TA interface; the demand they migrated

did not inherit the same generic demand interface as well. Such incompatibility

impeded implementation transparency required by the GIPSY runtime system. Also,

the Demand Dispatcher in the Jini DMS was invoked by the TA to connect to the

Demand Space, whereas in the new multi-tier architecture the Demand Dispatcher

is supposed to be a component of the DGT to invoke the TA to connect to the

DST, therefore their roles must be switched with each other. Moreover, the Demand

22

Spaces of the two DMSs, i.e. the JavaSpace service and the JMS broker service were

configured and started manually, and whenever there is a critical parameter change

such as change in service name and address, the source code of the TAs corresponding

to the Demand Spaces must be updated and recompiled as these parameters were

hard-coded in the source code of the TAs. Such inflexibility should also be resolved

in the multitier architecture.

The goal of this thesis is to solve the problems stated above in order to develop

a scalable GIPSY runtime system using the multi-tier architecture, and to assess its

scalability to show that the GIPSY runtime system is indeed scalable.

1.4.3 Contributions

The Contributions of this thesis include two parts: the development of a deployable

GIPSY runtime system, and the assessment of the scalability of the GIPSY runtime

system.

The contributions regarding the development of the GIPSY runtime system

include:

• Development of a configuration system for the GIPSY runtime to achieve

flexibility in the sense of adding new tier implementations without changing

the source code of existing system components.

• Design and implementation of the GIPSY instance bootstrap process to enable

the start of the first GIPSY node where the GMT is allocated.

• Design and implementation of the GIPSY node registration, GIPSY tier

allocation and deallocation processes to enable the expansion of the GIPSY

runtime system over multiple networked computers.

• Implementation of the Jini DST and the JMS DST based on the refactoring of

the Jini DMS and the JMS DMS to adapt them to the multitier architecture.

The contributions regarding the assessment of the scalability of the GIPSY

runtime system include:

23

• Study of scalability evaluation methodologies to define the four types of

scalability and their metrics applicable to the GIPSY runtime system.

• Assessment of the four types of scalability defined for the GIPSY runtime system

via the various tests for each kind of the four types of scalability.

1.4.4 Outline

This thesis consists of five chapters. Specifically:

Chapter 1 introduces the necessary background and the previous work regarding

the GIPSY runtime system, as well as the scalability assessment methodologies, and

presents the scope, problem statement, contributions and outline of this thesis.

Chapter 2 firstly introduces the tasks required for the development of a

deployable GIPSY instance, and then describes the work done to accomplish these

tasks, and thirdly shows the tests of the implemented GIPSY runtime system.

Chapter 3 presents the assessment of the four types of scalability of the GIPSY

runtime system via several tests, with the test results, and discussions and conclusions.

Chapter 4 shows the conclusions and future work.

24

Chapter 2

Development of the GIPSY

Runtime System

This chapter describes the work of developing the GIPSY runtime system using the

multi-tier architecture introduced in Section 1.2.2, so that the scalability of the GIPSY

runtime system can be assessed after the development. This chapter first introduces

the tasks required to implement the multi-tier architecture, then describes the work

done to accomplish these tasks, and finally present the tests to validate the work.

2.1 Requirement Analysis

The purpose of the work described in this chapter is for delivering a deployable

GIPSY runtime system using the multi-tier architecture. The multi-tier architecture,

the concepts of the four kinds of GIPSY tiers including the General Manager Tier

(GMT), the Demand Generator Tier (DGT), the Demand Store Tier (DWT) and

the Demand Worker Tier (DWT) as well as the concepts of the GIPSY node and

the GIPSY instance were introduced in Section 1.2.2. A scenario of a deployable

GIPSY runtime system is that within a Local Area Network (LAN), computers can be

registered into the GMT as GIPSY nodes, and once the GIPSY nodes are registered,

via the GMT the user is able allocate DGT instances, DWT instances and DST

instances in any registered GIPSY nodes at runtime, and is also able to deallocate

25

the GIPSY tiers allocated in the GIPSY nodes. In this way the GIPSY runtime

system can be easily expanded among multiple computers across the network to deal

with increasing workload.

The packages and APIs for the multi-tier architecture of the GIPSY runtime

system are shown Figure 6. These packages were initially proposed by Han [35] who

also developed the prototypes of the DGT and the DWT. The multi-tier packages

were further developed by the work presented in this chapter with the design and

implementation of the DSTs, the GMT and the GIPSY node to deliver a deployable

GIPSY runtime system.

Figure 6: The multi-tier packages of the GIPSY runtime system

The relations among the classes in the multi-tier packages are shown

26

in Figure 7. As shown in this figure, there is a GIPSYNode class, an

INodeController interface inherited and implemented by the four concrete

tier controllers in their corresponding sub-packages, i.e. the DSTController,

the DGTController, the DWTController and the GMTController, and an

interface IMultiTierWrapper inherited and implemented by the four concrete

tier wrappers in their corresponding sub-packages, i.e. the DSTWrapper, the

DGTWrapper, the DWTWrapper and the GMTWrapper. Each tier wrapper class

stands for a tier type, i.e. the DST, DGT, DWT and the GMT respectively, and each

tier controller class is used by a GIPSYNode instance to create the corresponding

tier instances within the GIPSY node, to keep a list of the created tier instances and

to destroy the created tier instances when necessary. Therefore as shown in Figure

7, each GIPSYNode instance has four different GIPSY tier controllers, each one of

which keeps a list of corresponding GIPSY tier instances created by the tier controller

via the TierFactory. Technically to enable the registration of a computer as a

GIPSY node, a process where an instance of the GIPSYNode runs is started in the

computer in advance, and this process is referred as the GIPSYNode process; each

tier instance is a separate thread launched by the GIPSYNode instance inside the

GIPSYNode process, or a separate process started by the GIPSYNode instance in

the same computer where the GIPSYNode process is running.

The roles of all the four kinds of GIPSY tiers were described in Section 1.2.2.

Among all the four kinds of GIPSY tiers, the GMT is vital to the deployment and

the expansion of the GIPSY runtime system across networked computers due to the

managerial tasks required by the its role as the General Manager of the entire runtime

system:

• The GMT handles the GIPSY node registrations: computers can be registered

into the GMT as GIPSY nodes, as shown in the use case “Register Node” in

Figure 8, and at current stage one GMT is sufficient to handle multiple GIPSY

node registrations.

• The GMT handles the GIPSY tier allocation: as illustrated in the use case

27

Figure 7: The relations among the classes in the multi-tier packages

“Allocate Tier” in Figure 8, a user can ask the GMT to allocate tiers in a

specified GIPSY node and the GMT communicates with the GIPSY node to

allocate these tiers. A user interface is required to enable the user interaction.

• The GMT handles the GIPSY tier deallocation: as illustrated in the use case

“Deallocate Tier” in Figure 8, a user can ask the GMT to deallocate some

tiers that are already running inside a specified GIPSY node, and the GMT

communicates with the GIPSY node to deallocate these tiers. Again a user

interface is required for the user interaction.

These managerial tasks described in Figure 8 are demand driven due to the

design choice made in the proposal of the multi-tier architecture [1]. Specifically,

the interactions between the GIPSY node and the GMT in these managerial tasks

are carried out via system demands migrated via the DSTs, as introduced in Section

1.2.2. Therefore to implement these managerial tasks, system demands for the GIPSY

node registration, tier allocation and deallocation are required, and the DSTs that

28

Figure 8: GMT use cases

can be allocated in GIPSY nodes are also required.

However before the work presented in this chapter, the GIPSY tiers of different

implementations were integrated with Java Enumeration, which is inflexible to add

new tier implementations since the source code of the existing system components

affected has to be updated; also, the GIPSY instance bootstrap process, i.e. how a

GIPSY runtime system was started from the beginning was not designed; and the

node registration, the tier allocation, the tier deallocation, as well as the DST and the

GMT were not designed and implemented. Therefore to deliver a deployable GIPSY

instance, the following tasks must be performed:

1. Develop a configuration system for the GIPSY runtime system so that new

tier implementations can be added into the system without the source-code

modification of existing system components.

2. Design the GIPSY instance bootstrap process, i.e. describe how the first GIPSY

node where the GMT is allocated is started and registered.

29

3. Design the GIPSY node registration process. The node registration process

is demand driven due to the design choice proposed with the multi-tier

architecture [1], therefore the system demands required for the node registration

process are also designed in this task.

4. Design the GIPSY tier allocation and deallocation processes. These processes

is also be demand driven due to the design choice proposed with the multi-tier

architecture [1], therefore the system demands required for the tier allocation

and deallocation processes are also designed in this task.

5. Implementation of the DSTs. Since the node registration, tier allocation and

deallocation processes are all demand-driven, and demands are stored in and

dispatched via DSTs, therefore to implement these managerial processes, the

DSTs need to be implemented first. Since the former Jini DMS and the JMS

DMS introduced in Section 1.2.1 already have similar concepts such as the

Transport Agents (TAs), the two DMSs need to be adapted into the multi-tier

architecture.

6. Implementation of the GMT and the GIPSYNode for the GIPSY instance

bootstrap process, the node registration, the tier allocation and deallocation

processes designed in Task 2, 3 and 4. This task also involves the

implementation of the system demands designed in Task 2, 3, 4, and requires

that the DTSs must be implemented before the commence of this task.

7. Test the GIPSY bootstrap process, the GIPSY node registration process,

the GIPSY tier allocation and deallocation processes to validate the

implementation.

Based on the tasks listed above, the following section describes the work performed

to accomplish these tasks.

30

2.2 Design

2.2.1 Configuration System

To easily add new tier implementation into the GIPSY runtime system, a

configuration system based on the Java Reflection [46] and the GIPSY

Configuration was developed for the GIPSY runtime system. The GIPSY

Configuration class was initially proposed, designed and implemented by Serguei

Mokhov based on java.util.Properties.

The idea behind the configuration system is that: each tier instance has a

corresponding Configuration instance that contains a publicly accessible property

indicating what tier implementation class can use this Configuration instance,

and also contains other configuration settings that can only be interpreted by the tier

implementation class itself. For example, when a tier Configuration instance is

received by a TierFactory, the TierFactory inspects the Configuration

instance to find which tier implementation class to instantiate, and uses Java

Reflection to instantiate the tier implementation with the Configuration

instance as the argument to the constructor of the tier implementation. Once the

tier implementation is instantiated, it looks up in the Configuration instance for

other configuration settings to perform its own tasks accordingly. In this way new

tier implementations can be easily added without changing the source code of other

classes such as the TierFactory who instantiates these tier implementations.

Also, since Configuration instances can be easily written to and read from

files, configuration settings can be easily updated to cope with changes by setting

corresponding configuration properties such as service names, ports and addresses,

either manually in a configuration file or automatically by a program, without

changing the source code of tier implementations who use these configuration settings.

The configuration files for each tier implementation are therefore created, and the

paths of these configuration files are also specified in the configuration file for the

GIPSYNode as its default tier configurations using which tiers can be instantiated

and allocated.

31

The idea of the tier configuration and the tier configuration files also applies

to other classes such as the Transport Agent (TA) implementations. Given a TA

configuration, the TAFactory can instantiate a TA instance without knowing the

actual TA implementation at compile time, therefore new TAs can be easily added into

the GIPSY runtime system without source code modification for the TAFactory.

Figure 9 shows the idea of the configuration files: DST1.config and DST2.config

are configuration files for two different DST implementations, and the DST1TA.config

and the DST2TA.config are the configuration files of their corresponding TAs; the only

one GMT.config in the figure is to indicate the scenario when there is only one GMT

implementation available to the GIPSYNode.

Figure 9: Configuration files of the GIPSY runtime system

Inside each configuration file, the names of the configuration properties (or

settings) are arranged in a hierarchical structure similar to how the source code

packages were arranged to ease the addition of new properties. For example, Figure

10 shows the hierarchy of some configuration properties of the JMS DST introduced in

Section 2.3.2: the configuration properties were defined hierarchically. However, since

configuration properties are stored in a flat java.util.Properties instance,

such hierarchical arrangement is for ease of addition only rather than for ease of

search.

Equipped with the flexible configuration system, further design of the GIPSY

runtime system is explained in the following sections.

32

Figure 10: Configuration property naming structure

2.2.2 GIPSY Instance Bootstrap Process

As stated in Section 1.2.2 a GIPSY instance is a GIPSY runtime system deployed

in multiple registered computers (called GIPSY nodes) with multiple GIPSY tiers

allocated in these nodes that together can execute GIPSY programs. Since each

GIPSY node is a computer running a GIPSYNode process that interacts with the

remote or local GMT, once the GIPSYNode process is started, it is registered to the

GMT to enable further communication. However, since the GMT is also allocated

within a GIPSY node, a dilemma similar to the “chicken or the egg” arises when

considering how the GIPSY instance is bootstrapped, i.e. how the first GIPSYNode

process is started and registered.

The design of the bootstrap process presented in this section assumes that the first

GIPSYNode process does not need to be registered when it is started. Instead, the

user can ask this GIPSYNode process to allocate a GMT who will then automatically

register this GIPSYNode process. The flowchart of the bootstrap process is shown

in Figure 11.

In the bootstrap process illustrated in Figure 11, once the GIPSYNode process

is started, it initializes itself by loading all the tier configurations, and if it has a

GMT configuration, it prompts the user to choose if to register the node or to start

up a GMT. If the user chooses to register this node, how the GIPSYNode process

is registered is explained in Section 2.2.3. If the user chooses to start up a GMT,

a DST for receiving other node registrations is started using the DST configuration

33

Figure 11: GIPSYNode bootstrap process

file specified in the GMT configuration, and the TA configuration corresponding to

the DST is created and written into a configuration file to allow other GIPSY nodes

to connect to the DST for the node registration purpose; the GIPSYNode where

this GMT is allocated is also automatically registered into the GMT to complete the

bootstrap process.

2.2.3 GIPSY Node Registration

As a demand-driven system, the GIPSY node registration process is also demand

driven. For each GIPSY instance, there is one GMT and one corresponding DST

started in the GIPSY instance bootstrap process described in Section 2.2.2. The

DST started in the bootstrap process is used by the GMT to receive system demands

34

issued by other GIPSY nodes for the node registrations, therefore this DST is referred

as the RegDST (short for Registration DST). For a GIPSYNode other than the one

who started the GMT, the TA configuration of the RegDST must be available to

the GIPSYNode before the node registration so that once started, the GIPSYNode

process can instantiate a TA to connect to the RegDST to send and receive node

registration relevant system demands.

Figure 12: GIPSYNode registration process

As shown in the flowchart of the GIPSYNode registration process in Figure

12, the GIPSY node registration is done via a pair of system demands called

NodeRegistration and RegistrationResult, with both demands sharing the

35

same demand signature but the state of the former is pending, and that of the latter

is computed. In this process, once the user chooses to register this GIPSY node, the

GIPSYNode process sends the system demand NodeRegistration as a request

to the GMT. Upon receiving the system demand, the GMT assigns an available

DST to the GIPSYNode; the GMT then saves the node registration information and

replies the GIPSYNode with a RegistrationResult demand containing the TA

configuration exported by the DST assigned as well as the node ID assigned by the

GMT. Upon receiving the RegistrationResult, the GIPSYNode connects to the

DST assigned by the GMT to listen to other incoming system demands issued by the

GMT in the situation of tier allocation and deallocation, as described in Section 2.2.4.

The reason why the GMT assigns a DST to the GIPSY node for sending future

system demands rather than always communicating with the GIPSY node via the

RegDST is that: in order to receive system demands issued from the GMT for

purposes such as tier allocation and deallocation, the GIPSYNode must always

connect to the assigned DST for receiving any incoming system demands issued by

the GMT; however, since the maximum connections supported by a DST is limited

as investigated in Section 3.4.2, if only the RegDST is used for sending and receiving

all the system demands, the RegDST will eventually reach its maximum connection

capacity and refuse new node registrations, preventing the system from growing larger

structurally; therefore to resolve this limitation in the structural scalability (see

Section 3.1), during the node registration process, a DST other than the RegDST

can be assigned to the GIPSY node, and if there is no DST available, the GMT

prompts the user to allocate a new DST; such user interaction can be enabled via a

user interface such as a command-line console, as shown in Section 2.3.3.

2.2.4 GIPSY Tier Allocation and Deallocation

When GIPSY nodes are registered, new tiers can be allocated inside the GIPSY node,

and previously allocated tiers can be deallocated. As shown in the flowcharts of the

tier allocation process in Figure 13, the tier allocation process is done via a pair

of system demands, TierAllocationRequest and TierAllocationResult,

36

with both demands sharing the same demand signature but the state of the former is

pending and the state of the latter is computed. The TierAllocationRequest

demand specifies the node ID of the GIPSY node where the tiers are to be allocated,

and also specifies the type of the tier, the tier configuration and how many tier

instances are to be allocated, i.e. allowing tier instances of the same type using the

same configuration file to be allocated in a batch to save time. The corresponding

TierAllocationResult demand contains a list of tier registrations, each tier

registration containing information such as the tier ID assigned internally by the

GIPSY node for each tier instance allocated.

Figure 13: GIPSY tier allocation process

In the tier allocation process described in Figure 13, when the user asks the

GMT via a user interface such as a command-line console to allocate new tiers

37

inside a registered GIPSY node, the GMT issues a TierAllocationRequest

demand to the DST associated with the GIPSY node. Upon receiving

the TierAllocationRequest from its associated DST, the GIPSYNode

process uses the corresponding tier controller, i.e. the DSTController, the

DGTController or the DWTController, according to the tier type specified

by the TierAllocationRequest, to allocate the specified number of tier

instances using the specified tier configuration, and replies the GMT with a

TierAllocationResult demand containing the tier registration information

such as the tier IDs assigned by the GIPSY node itself. Upon receiving the

TierAllocationResult, the GMT saves the tier registrations for future use.

Figure 14: GIPSY tier deallocation process

Similar to the tier allocation process, the tier deallocation process is

done via a pair of system demands, TierDeallocationRequest and

38

TierDeallocationResult, as shown in the flowchart of the tier deallocation

process in Figure 14. In this process, when the user asks the GMT via

a user interface such as a command-line console to deallocate the previously

allocated tiers from a registered GIPSY node, the GMT issues a system demand

TierDeallocationRequest to the DST associated with the GIPSY node. The

TierDeallocationRequest specifies the tier type and the tier IDs of the tier

instances to be deallocated. Upon receiving the system demand, the GIPSYNode

process uses the corresponding tier controller to deallocate the tiers specified, and

replies the GMT with the TierDeallocationResult. Upon receiving the

TierDeallcoationResult, the GMT removes the registration information of the

deallocated tiers.

2.3 Implementation

The implementation of the designs presented in Section 2.2 started from the

refactoring of the Jini DMS and the JMS DMS introduced Section 1.2.1, therefore

this section firstly introduces the refactoring work of the Jini DMS and the JMS

DMS, then the implementation of the Jini DST and the JMS DST, and finally the

implementation of the GMT and GIPSYNode.

2.3.1 Refactoring the Jini DMS and the JMS DMS

The DSTs are critical to the implementation of a deployable GIPSY runtime system

because all the demands are stored in and migrated via the DSTs, and even the

GIPSY instance bootstrap process requires the existence of DSTs as explained in

Section 2.2.2. Since some of the DST relevant concepts in the multi-tier architecture

(see Section 1.2.2) such as the Transport Agent (TA) already existed in the former

Jini DMS and the JMS DMS as introduced in Section 1.2.1, these two DMSs needed

to be adapted to meet the requirements in the multi-tier architecture.

The initial refactoring of the Jini DMS and the JMS DMS was done in

collaboration with Serguei Mokhov and Bin Han. The overall refactoring process

39

went through several major phases:

1. Resolving the incompatibility between the Jini TA and the JMS TA

by making them inherit the same interface, ITransportAgent; also

resolving the incompatibility between the JiniDemandDispatcher and

the JMSDemandDispatcher by making them inherit the same interface,

IDemandDispatcher;

2. Refactoring the Jini TA so that it connected directly to its corresponding

Demand Space, i.e. the JavaSpace; refactoring the JiniDemandDispatcher

so that it no longer directly connected to the JavaSpace directly, instead it

connected to the JavaSpace via the Jini TA;

3. Generalization of the business logic of the JiniDemandDispatcher and

the business logic of the JMSDemandDispatcher so that any one of them

can use any one of the Jini and JMS TAs, i.e. the Demand Dispatcher

implementations deal with ITransportAgent only and are no longer aware

of the heterogeneity of TA implementations.

The refactoring work presented above was just a warm-up of the adapting of the

former DMSs into the multi-tier architecture, since it only adapted the TAs and the

Demand Dispatchers towards the multi-tier architecture. Further development of

deployable DSTs is presented in Section 2.3.2.

2.3.2 Implementation of the Jini and the JMS DSTs

In the former Jini and JMS DMSs introduced in Section 1.2.1, the Demand Spaces,

i.e. the JavaSpace service and the JMS broker service, were configured and started

manually before running the GIPSY runtime system, and whenever there were

parameter changes in such as the JavaSpace service name and address or the JMS

message queue name and address, the corresponding parameters hard-coded in the

TAs would have to be updated as well. To resolve such inconvenience and inflexibility,

a Jini DST and a JMS DST that can be allocated via a system demand were developed

40

in the work presented in this section, and the TAs connecting to these DSTs were also

designed to be flexible in the sense that they can set up connections at runtime using

the TA configurations exported by the DSTs so that they do not need to change their

source code to cope with connection-relevant parameter changes.

The JavaSpace service used for the Jini DST is Apache River v2.1.2 [47], and the

JMS chosen for the JMS DST is the Sun Java System Message Queue 4.3. Both

were chosen due to their ease of deployment and relatively small size. Since the core

services, i.e. the JavaSpace service and the JMS broker service are separate processes

other than the process where the GIPSYNode is running, the Jini DST and the JMS

DST are therefore implemented to be DST wrappers that are able to automatically

start and stop these core services via command lines whenever the GMT asks them

to do so, and are able to dynamically configure these services as needed.

Figure 15: Jini DST wrapper and the JMS DST wrapper

The class diagram of the JiniDSTWrapper and the JMSDSTWrapper is shown

in Figure 15. Each one of the two DST wrappers are instantiated using a tier

Configuration instance by the createTier() method of the TierFactory.

When the startTier() method of either the DST wrappers instance is called, the

DST wrapper first checks if the DST has been allocated or not; if the DST has been

allocated, the DST wrapper then checks if the DST is still operational or not; if the

DST is not operational, the DST wrapper kills the DST process, otherwise the method

returns immediately; if the DST is killed or not allocated, the DST wrapper continues

to allocate a new DST by reading and executing the corresponding command lines

41

contained in the DST configuration. These command lines are preset via configuration

files for ease of modification. Each DST core service, i.e. the JavaSpace service or

the JMS broker service, is started using a dynamically chosen port, and is assigned a

service name that is either automatically generated or preset in the DST configuration.

With the dynamic service port and name configuration, multiple DSTs can be easily

allocated using the same configuration file. Once the DST is started, the DST wrapper

automatically generate the corresponding TA configurations that can be exported via

the method exportTAConfig(). When the method stopTier() is called, the

DST wrapper kills the DST process.

The TA configuration exported by the DST wrapper contains connection relevant

configuration settings such as the DST service name, host, port, as well as service

quality relevant configuration settings such as turning persistence on and off. A DST

with the persistence service turned on is referred as a persistent DST, and a DST

with the persistent service turned off is referred as a non-persistent or transient DST.

Once crashed and restarted, the persistent DST can recover its previous state from

its persistent storage; whereas a transient DST will lose its previous state as it saves

all the information only in memory. When other GIPSY tiers such as DGT and

DWT gets a TA configuration, they use a TA factory to create the corresponding TA

instance to connect to the corresponding DST. Figure 16 shows the class diagram of

the Jini TA, the JMS TA and the TA factory.

Listing 2.1 shows the contents of the configuration file JiniDST.config that is

used by the JiniDSTWrapper to start a non-persistent JavaSpace service, and

the corresponding TA configuration exported by the JiniDSTWrapper is shown in

Listing 2.2.

The content of JiniDST.config shown in Listing 2.1 is based on how the services

required by the Jini DST are started: the Jini DST consists of a JavaSpace service and

a transaction manager service for reliable demand storage and demand state update,

and in order to register and to look up these services, a lookup discovery service is

also started. All these Jini services require a HTTP server as the class file codebase

for downloading their corresponding .jar files, and Apache River v2.1.2 provides such

42

Figure 16: TAs and the TA factory

a HTTP server called the ClassServer. To start the ClassServer and these

services, a Jini configuration file must be passed as the argument to the start.jar

provided with the Apache River v2.1.2, and this configuration file specifies what

services to start and what service implementations to use. The configuration files to

start the persistent Jini services and to start the transient Jini services are different: in

the JiniDST.config shown in Listing 2.2, the startTransientJini4.config is used by

the start.jar to start the transient Jini services, and the startPersistentJini4.config

is used by the start.jar to start the persistent Jini services.

Listing 2.3 shows the contents of the configuration file JMSDST.config used

by the JMSDSTWrapper to start a non-persistent JMS broker service, and the

corresponding TA configuration exported is shown in Listing 2.4. Similar to the

Jini DST, the user can also specify if the DST persistence is enabled or not. Unlike

Jini, the Sun Java Message Queue broker service can be started and configured via

command lines, and the complete reference of the instructions and explanations on

how to start and configure the broker services is in Sun Java System Message Queue

4.3 Administration Guide [48].

With the DSTs and their TAs available, the implementation of the GMT and the

GIPSYNode is presented in Section 2.3.3.

43

Set the class that uses this configuration file to be instantiated , so that the

TierFactory can instantiate the correct DSTWrapper implementation.

gipsy.GEE.multitier.wrapper.impl=gipsy.GEE.multitier.DST.jini.JiniDSTWrapper

Set the working directory of the DST instance process ,

gipsy.GEE.multitier.DST.workingdir=jini/

Specify the port of the lookup service.

gipsy.GEE.multitier.DST.jini.unicast.port =4162

Specify the multicast group name of Jini services.

gipsy.GEE.TA.jini.discovery.multicast.group=gipsy

Set the startup command line without the configuration file passed to Jini’s start.

jar

gipsy.GEE.multitier.DST.jini.start.cmd=cmd /c start java -Xms256m -Xmx256m -XX:

NewRatio =1 -XX:SurvivorRatio =1022 -Xss320k -Djava.security.policy=start.policy -

jar lib/start.jar

To start a persistent Jini DST , pass startPersistent4.config as the value

of this property.

gipsy.GEE.multitier.DST.jini.start.config=startTransient4.config

#gipsy.GEE.multitier.DST.jini.start.config=startPersistent4.config

gipsy.GEE.TA.jini.isTransactional=true

Listing 2.1: Sample JiniDST.config

#RegDST TA Configuration

gipsy.GEE.TA.jini.isTransactional=true

gipsy.GEE.TA.jini.discovery.unicast.URI=jini\:// HostName \:4162/

gipsy.GEE.TA.jini.discovery.multicast.group=gipsy

gipsy.GEE.TA.jini.discovery.lookup.name= HostName -0

gipsy.GEE.TA.implementation=gipsy.GEE.IDP.DemandGenerator.jini.rmi.JINITA

Listing 2.2: Sample content of the configuration of a Jini DST TA

2.3.3 Implementation of the GMT and the GIPSY Node

The implementation of the GMT requires the implementation of the system demands

designed in the GIPSY instance bootstrap process, the GIPSY node registration

process and the GIPSY tier allocation and deallocation processes as described in

Section 2.2. The class diagram of these system demands is shown in Figure 17. The

detailed roles of these system demands in the managerial tasks were described in

Section 2.2.

As mentioned in the designed managerial processes in Section 2.2, the GMT

should be able to save node/tier registrations. As proof of concept, the GMT

implemented in this section uses an instance of the GMTInfoKeeper class to store

44

Set the class that to be instantiated using this configuration file

gipsy.GEE.multitier.wrapper.impl=gipsy.GEE.multitier.DST.jms.JMSDSTWrapper

Set the working directory of the DST instance process.

gipsy.GEE.multitier.DST.workingdir=jms/

Specify how to run the command exe used to start or destroy a broker instance

gipsy.GEE.multitier.DST.jms.imqbrokerd.cmd=cmd /c start mq/bin/imqbrokerd

Specify quality relevant command line options for a broker.

gipsy.GEE.multitier.DST.jms.imqbrokerd.option=-reset store -Dimq.portmapper.backlog

=150 -Dimq.jms.max_threads =10000 -Dimq.message.max_size=-1 -Dimq.autocreate.

destination.maxNumMsgs =-1 -Dimq.autocreate.destination.maxBytesPerMsg =-1 -Dimq.

autocreate.destination.maxBytesPerMsg =-1 -Dimq.autocreate.destination.

maxNumProducers =-1 -Dimq.autocreate.queue.maxNumBackupConsumers =-1 -Dimq.

autocreate.queue.maxNumActiveConsumers =-1 -Dimq.persist.file.sync.enabled=true -

Dimq.persist.file.transaction.memorymappedfile.enabled=false -Dimq.red.threshold

=100 -vmargs "-Xms256m -Xmx256m -XX:NewRatio =1 -XX:SurvivorRatio =1022 -Xss320k"

gipsy.GEE.TA.jms.queue.pending=pending

gipsy.GEE.TA.jms.queue.inprocess=inprocess

gipsy.GEE.TA.jms.queue.computed=computed

gipsy.GEE.TA.jms.isPersistent=false

Listing 2.3: Sample JMSDST.config

gipsy.GEE.TA.jms.queue.computed=computed

gipsy.GEE.TA.jms.broker.address= HostName \:58283

gipsy.GEE.TA.jms.queue.inprocess=inprocess

gipsy.GEE.TA.jms.queue.pending=pending

gipsy.GEE.TA.implementation=gipsy.GEE.IDP.DemandGenerator.jms.JMSTransportAgent

Listing 2.4: Sample content of the configuration of a JMS DST TA

all the node/tier registrations in memory. The class diagram of the GMTWrapper

and the GMTInfoKeeper is shown in Figure 18.

To enable user interaction with the GMT, a simple command-line console was

also implemented as shown in Figure 18 so that the user can request the GMT to

allocate and deallocate GIPSY tiers at runtime. The visual effect of the GMT console

is presented in the tests in Section 2.4. The commands that can be entered into the

GMTConsole to control the GMT are:

• allocate NodeID DST DSTConfigFile HowMany: this command requests

the GMT to allocate HowMany number of DST instances in the node

specified by the NodeID using the DST configuration loaded from the specified

DSTConfigFile.

45

Figure 17: The system demands required by the GMT

Figure 18: The GMT wrapper class

46

• allocate NodeID DWT DWTConfigFile DSTIndex HowMany: this command

asks the GMT to allocate HowMany number of DWT instances in the node

specified by the NodeID using the DWT configuration loaded from the specified

DWTConfigFile, and all the DWTs allocated connect to the DST specified by

the DSTIndex.

• allocate NodeID DGT DGTConfigFile DSTIndex HowMany: this command

asks the GMT to allocate HowMany number of DGT instances in the node

specified by the NodeID using the DGT configuration loaded from the specified

DGTConfigFile, and all the DGTs allocated connect to the DST specified by

the DSTIndex.

• deallocate NodeID TierType TierID1 TierID2 . . . : this command asks the

GMT to deallocate the tier instances specified by the TierID1, TierID2, . . . of

the type TierType in the node specified by the NodeID.

The GIPSYNode class is instantiated by a main() method so that it can be

started as a process. It implements all the GIPSYNode process relevant business logic

designed and described in Section 2.2. When the GIPSYNode process is started, its

registerNode() method can be invoked to register this GIPSY node. Figure 19

shows the sequence diagram of the node registration process.

Figure 19: The node-registration sequence diagram

47

Figure 20: The tier-allocation sequence diagram

Figure 21: The tier-deallocation sequence diagram

Figure 20 and 21 show the sequence diagrams for the tier allocation process and the

tier deallocation process respectively. Whenever the GIPSYNode is asked to allocate

a tier by a TierAllocationRequest system demand issued from the GMT, it

passes the tier configuration contained in the TierAllocationRequest to the

addTier() method of the tier’s corresponding tier controller. The tier controller

then asks the TierFactory to create a tier instance using the tier configuration

via Java Reflection, and starts the tier after the tier is instantiated. For the tier

deallocation, the GIPSYNode invokes the removeTier(String) method of the

corresponding tier controller that in turn invokes the stopTier() method of the

48

corresponding tier.

The GIPSYNode also support command-line input for the user to control the

node interactively. The two most important commands are:

• start GMT GMT.config: allocate a GMT using the configuration specified

by the configuration file GMT.config. This GIPSYNode is then automatically

registered by the GMT started.

• register: register the GIPSYNode to a remote GMT.

With the implementation of the GMT and the GIPSYNode and all the work

presented in Section 2.3, a deployable GIPSY instance is available for the scalability

assessment.

2.4 Tests

2.4.1 GIPSY Instance Bootstrap and GIPSY Node Regis-

tration

Objective

To test if the GIPSY instance bootstrap process and the GIPSY node registration

process is working.

Scenario

Figure 22: Test scenario for GIPSY instance bootstrap and node registration

49

As shown in Figure 22, two computers are used as the GIPSY nodes for this test,

in which the Node 0 is used to test the GIPSY instance bootstrap process, and Node

1 is used to test the GIPSY node registration process. Therefore the test scenario

involves two steps:

Step 1: start the GIPSYNode process in Node 0, and in the command-line

console enter the command:

start GMT GMT.config

The expected results of this step are: a GMT and a DST are allocated in this

bootstrap process in Node 0, and the GMT console shows that Node 0 is

registered during the bootstrap process.

Step 2: start the GIPSYNode process in Node 1, and in the command-line

console enter the command:

register

The expected results of this step are: the command-line console of Node 1

outputs that Node 1 is registered, and the GMT console also outputs that

Node 1 is registered.

Environment

The test was performed in two computers with the configuration specified in Table 1

OS Name Microsoft Windows 7 Enterprise
Version Version 6.1.7600 Build 7600
System Type X86-based PC

Processor
Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz,
1862 Mhz, 2 Core(s), 2 Logical Processor(s)

Installed RAM 2.00 GB
Total RAM 2.00 GB
Available RAM 1.06 GB
Total Virtual Memory 4.00 GB
Available Virtual Memory 2.58 GB
Page File Space 2.00 GB

Table 1: Computer hardware and operating system environment

50

Result

(a)

(b)

Figure 23: Screenshots of the GMT console and the two GIPSY Node consoles

The screenshots shown in Figure 2.23(a) show two console windows, the upper

console is the GMT console, the lower console is the console window of Node 0

where the GMT was started. The consoles show that the GMT and the DST were

allocated in Node 0 following the command start GMT GMT.config as expected,

and that Node 0 was automatically registered as expected as well. Figure 2.23(b)

shows the console output of Node 1 who was registered into the GMT following the

51

command register, and the GMT console in Figure 2.23(a) also shows that Node

1 was registered. These results indicate that the GIPSY instance bootstrap process

and the node registration process were successful.

2.4.2 GIPSY Tier Allocation and Deallocation

Objective

To test if the GIPSY tier allocation and deallocation is working.

Scenario

Figure 24: Test scenario for GIPSY tier allocation and deallocation

As shown in Figure 24, two computers are used as the GIPSY nodes in this test,

i.e. Node 0 and Node 1 respectively. The precondition and the steps of this test

are:

Precondition: Node 0 has the GMT allocated and itself registered in the

GIPSY instance bootstrap process, and Node 1 is registered into the GMT as

well.

Step 1: allocate 4 different DSTs in Node 1 using 4 different configuration

files in as shown in Figure 24 by entering the following commands into the GMT

console (the meaning of these demands were explained in Section 2.3.3):

allocate 1 DST DSTProfiles/p9.config

52

allocate 1 DST DSTProfiles/p10.config

allocate 1 DST DSTProfiles/p11.config

allocate 1 DST DSTProfiles/p12.config

The expected results of this step are: the GMT console outputs that the 4 DSTs

are allocated, and the console windows of the 4 DSTs appear in Node 1.

Step 2: allocate 1 DWT and 1 DGT in Node 0 connecting to the first DST

allocated in Step 1, as shown in Figure 24, by entering the following commands

into the GMT console (the meaning of these demands were explained in Section

2.3.3):

allocate 0 DWT DWT.config 1

allocate 0 DGT sDGT.config 1

The expected results of this step are: the console window of Node 0 outputs

that the DWT and the DGT are allocated.

Step 3: deallocate the DWT and the DGT allocated in Node 0 in Step 2, by

entering the following commands into the GMT console (the meaning of these

demands were explained in Section 2.3.3):

deallocate 0 DWT 0

deallocate 0 DGT 0

The expected result of this step is: the console window of Node 0 outputs that

the DWT and the DGT are deallocated.

Step 4: deallocate the 4 DST allocated in Node 1 in Step 1, by entering the

following command into the GMT console (the meaning of this demand was

explained in Section 2.3.3):

deallocate 1 DST 0 1 2 3

The expected result of this step is: the console window if Node 1 outputs

that the 4 DSTs are deallocated, and the console windows of the 4 DSTs are

automatically closed.

53

Environment

The test was performed in two computers with the configuration specified in Table 1.

Result

Figure 25: GMT console output for tier allocation and deallocation

Figure 25 shows the screenshot of the GMT console, which clearly shows the

GMT commands (lines that begin without hyphens) entered by the user and the

corresponding outputs (lines that begin with two consecutive hyphens) produced by

the GMT. The commands and their outputs corresponding to the 4 test steps are

highlighted in the figure as well.

As expected for Step 1, the GMT console in Figure 25 and the corresponding

console output of Node 1 shown in Figure 28 indicate that the 4 DSTs were allocated

in Node 1. The console windows of the 4 different DSTs are shown in Figure 26.

54

Figure 26: The four DSTs allocated

As expected for Step 2, the GMT console in Figure 25 and the corresponding

console output of Node 0 shown in Figure 27 indicate that 1 DWT and 1 DGT were

allocated in Node 0.

As expected for Step 3, the GMT console in Figure 25 and the corresponding

console output of Node 0 shown in Figure 27 indicate that the DWT and the DGT

allocated in Node 0 were deallocated.

As expected for Step 4, the GMT console in Figure 25 and the corresponding

console output of Node 1 shown in Figure 28 indicate that the 4 DSTs allocated in

Node 1 were deallocated. Figure 28.

The results of this test shows that the GIPSY runtime system developed can

successfully perform tier allocation and deallocation tasks as designed.

55

2.5 Summary

This chapter presents the design, implementation and tests of a deployable GIPSY

runtime system using the multi-tier architecture, and shows that the GIPSY instance

allows the user to register GIPSY nodes, allocate and deallocate GIPSY tiers among

multiple networked computers, with which the scalability of the GIPSY runtime

system can be assessed.

Figure 27: The console output of Node 0

56

Figure 28: The console output of Node 1

57

Chapter 3

Scalability Evaluation

3.1 Overview

Since GIPSY is a demand-driven system, the scalability of GIPSY runtime system

is measured via software metrics regarding demand creation, propagation, storage

and computation. As discussed in Section 1.3, the scalability of the GIPSY runtime

system consists of the following four types of scalability. The metrics of these four

types of scalabilities are described in Section 1.3.3.

• Space scalability: the ability of the GIPSY runtime system to store increasing

amount of demands with tolerable memory usage. The judgment of “tolerable”

may vary from situation to situation and from researcher to researcher. However

in this thesis it is assumed that as long as a particular DST can store demands

whose overall size at least equals the DST’s memory, the memory usage of the

DST is “tolerable” since for the sake of demand storage it uses its memory

well. The metric for this type of scalability is therefore the ratio between

total demand size and total DST memory size. Ideally for a particular DST,

if the ratio is equal to or greater than 1, the DST is considered space scalable

since its memory requirement does not exceed the total size of its demand

storage. In reality for the DSTs whose demand storage capacity is constrained

by its memory, the ratio is expected to be less than 1 due to reasons such as

58

not all the objects stored in the memory of DSTs are demands. Also, given a

total DST memory size, the maximum demand size of a single demand that

can be stored into the DST is also of our interest.

• Space-time scalability: the ability of the GIPSY runtime system to

maintain its performance measured in the demand response time, i.e. the

demand sending time plus the result reading time experienced by a DGT

when the amount of demands stored in the DST to which the DGT connects

is increasing. For a particular DST, if the demand response time increases

with the amount of demands stored in the DST, the DST is considered not

space-time scalable because its performance is undermined by the increase of

the number of demands; otherwise it considered as space-time scalable.

• Structural scalability: the ability of the GIPSY runtime system to allocate more

GIPSY tiers over more GIPSY nodes (Section 1.2.2). This type of scalability

is assessed by estimating the maximum node/tier registrations that a typical

GMT can store and the maximum DST connections supported by the DSTs.

DSTs that can support more connections are considered more structurally

scalable.

• Load scalability: the ability of the GIPSY runtime system to achieve a maximum

demand-processing throughput that is able to increase proportionally with the

number of tiers that perform the demand computation. Since multiple tiers can

be allocated within one GIPSY node, taking a particular type of procedural

demands as an example, the minimum number of DWTs to be deployed

within one GIPSY node to sufficiently utilize its computation power shall be

determined experimentally via the metric throughput versus number of tiers

that perform the computation, and with this minimum number of DWTs

deployed in each GIPSY node, how the throughput changes with the total

number of DWTs allocated in all the GIPSY nodes to perform the demand

computation is used to assess the load scalability.

59

To test the above four types of scalability, a DGT simulator is used as the test

driver to generate and send demands of different types and features, because the

simulator provides more flexibility as it can easily generate different types of demands

with different features to test different aspects of the GIPSY runtime system. For

example, with the simulator it is easy to generate any number of demands of any size

and computation complexity, whereas with a real DGT a special GIPSY program has

to be designed to achieve a similar effect, which is inflexible and inefficient for testing

purpose. Another reason is that the DGT can only test the entire demand migration

process including the DGT sending demands, the DWT receiving and computing

demands, and finally the DGT reading the computed results; in contrast with a

simulator, the demand sending time and result reading time can be isolated via a

tester thread that only sends demands or only reads demands for a better separation

of concern.

Based on the four types of scalability and their metrics described above and with

the use of the DGT simulator, the following sections present the assessment of the

four types of scalability of the GIPSY runtime system respectively.

3.2 Space Scalability

In a GIPSY runtime system, demands are transferred via DSTs and are stored in

DSTs for potential reuse. Therefore when a DST with limited memory is facing

increasing amount of demands to store, how many demands it can store and if it uses

its memory well for demand storage is covered by the space scalability of the GIPSY

runtime system.

As introduced in Chapter 2, both the Jini and the JMS versions of the DST allow

the user to use configuration settings to enable or disable persistence. Once crashed

and restarted, a non-persistent or transient DST will lose its state because it stores

demands in memory, whereas a persistent DST can recover its previous state from its

persistent storage such as log files.

For a transient DST, either the Jini or the JMS version, since it runs as a JVM

60

(Java Virtual Machine) process and stores demands in its memory, its demand storage

capacity is bound to be limited due to the following reasons:

1. Demands are Java objects stored in the heap of the JVM process, therefore

the demand storage is constrained by the size and division of the heap. The

JVM implementation shipped with the Java SE platform, the HotSpot VM

(Virtual Machine) divides the heap into 3 generations: the young generation,

the tenured (or old) generation and the permanent generation [49] as shown

in Figure 29. The young generation is further divided into one eden space

and two survivor spaces. Most objects are allocated in the eden space initially

and are eventually copied to the old generation if they survive some rounds of

garbage collections in the young generation. If the objects are too large to be

allocated in the young generation, they may be allocated in the old generation

directly. The combination of the young and the old generations is referred as

the heap memory [50]. The permanent generation stores JVM metadata such

as the classes and methods loaded, and although logically part of the heap, it

is regarded as part of the non-heap memory [50]. The sizing of the young and

the old generations affects the maximum amount of demands a DST can store.

For example, given a demand size of 100 MB and a total heap memory size of

256 MB, if the eden space of the young generation has 125 MB free memory

and the old generation also has 125 MB free memory, the overall heap memory

can store up to two 100 MB demands with one demand per generation; whereas

if the free space in the eden space is 80 MB and that in the old generation is

170 MB, only one 100 MB demand can be stored in the old generation, because

after storing this demand, neither the young and the old generation can store

another 100 MB demand, although the sum of their free memory space exceeds

100 MB.

2. Regardless the heap generations, the maximum overall heap memory size cannot

exceed the maximum virtual memory address space per process. Such maximum

per-process address space is platform dependent: in Windows the default

61

Figure 29: JVM heap generations

maximum memory that can be used by a process is 2 GB [51]; whereas in 32-bit

Solaris a process can have 4 GB maximum memory space [52]. However, the

maximum virtual memory space per process cannot be completely reserved by

Java heap due to several reasons such as available swap space [53], memory

reserved for code cache, stacks, as well as VM overhead such as necessary

system and VM libraries [52]. The maximum heap size in 32-bit Windows

is approximately 1.4 GB to 1.6 GB [52].

3. Not all the objects stored in the JVM heap of a DST are demands: some are

objects automatically created by the DST to maintain its operation, for example

the thread objects created to handle connections. The more memory occupied

by these objects, the less heap space left for demands.

As to a persistent DST, if its persistent storage is for backing up its memory

storage only, i.e. for the logging purpose only, then its storage capacity is limited

by its memory; whereas if its persistent storage can store extra demands beyond its

memory limit, then its storage capacity is limited by other constraints in such as the

relevant configuration settings and the size of available hard disk space. The tests

described in Section 3.2.1 figure out which DST can use its persistent storage to store

demands beyond its memory limit, and which DST uses its persistent storage for the

logging purpose only.

To measure the total size of all the demands stored in a DST, a special demand

that carries an array of raw bytes as payload was designed. Given a DST that stores

demands carrying the same payload, the overall payloads of all the demands stored

in the DST is used as the total demand size, and the heap memory size of the DST

is used as the total DST memory size. Based on this approach, the following tests

62

were designed to assess the space scalability of the GIPSY runtime system. For each

one of the DSTs in question, i.e. the transient Jini DST, the transient JMS DST,

the persistent Jini DST and the persistent JMS DST, the first test investigates the

relation between the maximum total demand size that the DST can store and its

total DST memory size, and the second test investigates the maximum size of a

single demand that the DST with a particular heap memory size can store.

3.2.1 Space Scalability Test: Demand Storage

Objective

To test if the DSTs of different types and persistence settings are space scalable by

finding the relation between the total demand size and the total DST memory size

for each DST.

Scenario

Figure 30: Demand storage test deployment

12 DST profiles are set up to test the DSTs of different types, different persistence

settings and with different heap memory sizes as listed in Table 3. For each DST

profile, a single GIPSY node is used to perform this test as illustrated in Figure

30: within the GIPSY node managed by the GMT, a DST is allocated using the

DST profile and a DGT simulator (see Section 3.1) is allocated to feed this DST

with demands carrying the same particular payload until the DST throws out-of-

memory error. The maximum number of successfully stored demands is recorded and

63

is multiplied by the demand payload to compute the total demand size. The relation

between the maximum total demand size and the total DST memory size, i.e. the

heap memory size, is used to assess the DST’s space scalability. All the experiments

are done in triplicate.

Environment and Parameters

The test was performed in a computer with the hardware and operating system

environment specified in Table 2.

OS Name Microsoft Windows 7 Enterprise
Version Version 6.1.7600 Build 7600
System Type X86-based PC

Processor
Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz,
1862 Mhz, 2 Core(s), 2 Logical Processor(s)

Installed RAM 2.00 GB
Total RAM 2.00 GB
Available RAM 1.06 GB
Total Virtual Memory 4.00 GB
Available Virtual Memory 2.58 GB
Page File Space 2.00 GB

Table 2: Hardware and operating system environment

The 12 DST profiles are listed in Table 3. All the DST profiles share the same

fixed heap space partition ratio so that their memory usage is predictable. The ratio

between the young and old generation is 1:1 and the ratio between the eden space

and a single survivor space is 1022:1 to allow most of the entire heap memory to

be used by the DST, since JVM deliberately leaves one of the two survivor spaces

empty for garbage collection purpose [49]. The first heap size tested is 64MB, which

is the default maximum heap size of non-server class machines [49], then the heap

size is double to 128M, and finally doubled to 256MB. For each heap size, the DSTs

of different types and persistence settings are tested to find the maximum amount of

demands they each can store. Since persistent JMS DSTs can store messages in hard

disk [48], their overall messages sizes are set to be 50

The demand payload selected is 32 KB, which is the size of the minimum heap

64

Profile # Type Persistence Heap Size and Partition Other

1
64 MB heap memory with

Jini Transient young : old generations = 1:1
eden : survivor spaces = 1022:1

2 JMS Transient Same as Profile 1
3 Jini Persistent Same as Profile 1

4
Overall

JMS Persistent Same as Profile 1 message
size = 96 MB

5
128 MB heap memory with

Jini Transient young : old generations = 1:1
eden : survivor spaces = 1022:1

6 JMS Transient Same as Profile 5
7 Jini Persistent Same as Profile 5

8
Overall

JMS Persistent Same as Profile 5 message
size = 192 MB

9
256 MB heap memory with

Jini Transient young : old generations = 1:1
eden : survivor spaces = 1022:1

10 JMS Transient Same as Profile 9
11 Jini Persistent Same as Profile 9

12
Overall

JMS Persistent Same as Profile 9 message
size = 384 MB

Table 3: The 12 DST profiles

space fragmentation that was set so far to simplify memory relevant calculation and

comparison.

Results

For each DST profile, the maximum number of demands and the calculated

total demand size is shown in Table 4. A graphical representation illustrating the

relation between the maximum total demand size and the total DST memory size, i.e.

the heap memory size, is in Figure 31.

Figure 31 shows that the total demand size of persistent JMS DST was not

constrained by its heap size, rather, it was constrained by the overall message size

specified in its profiles for the simulation of limited hard disk space. This verifies that

65

Demand DST Max. Amount total demand
Payload Profile # of Demands size (MB)
32 KB 1 1899 59.36
32 KB 2 1785 55.80
32 KB 3 1006 31.44
32 KB 4 2917 91.16
32 KB 5 3822 119.44
32 KB 6 3628 113.39
32 KB 7 2032 63.51
32 KB 8 5834 182.31
32 KB 9 7674 239.83
32 KB 10 7284 227.64
32 KB 11 4108 128.39
32 KB 12 11669 364.66

Table 4: Demand storage test result

Figure 31: Maximum total demand size versus heap size

66

the Sun Message Queue can indeed swap messages from memory to its persistent

storage when its memory usage reaches certain level [48]. Due to this feature, the

persistent JMS DST is the most space scalable because its demands storage is not

constrained by its memory and in this test, the ratio between total demand size and

total DST memory size was 1.42, the highest among all the DSTs. In contrast,

the maximum total demand size of the transient Jini DST, the transient JMS DST

and the persistent Jini DST was confined by their heap memory, and their ratio

between their total demand size and total DST memory size were 0.93, 0.88 and

0.49 respectively, which means that the transient Jini and the transient JMS DST can

use most of their memory for demand storage, whereas the persistent Jini can only

use half of its memory for demand storage. The 0.49 memory usage for demand

storage of the persistent Jini DST implies that firstly the persistent Jini cannot

store additional demands beyond its memory limit into its persistent storage, i.e.

its persistent storage is for logging purpose only, and secondly the significant reduce

in its maximum total demand size was caused by the persistent service, which was

the only difference between the persistent Jini DST and the transient Jini DST. Since

most memory of the transient Jini and the transient JMS DSTs can be used for

demand storage, they are considered space scalable, whereas the persistent Jini DST

is considered space unscalable due to that fact that only 0.49 of its memory can be

used for demand storage, which is not resource efficient.

3.2.2 Space Scalability Test: Maximum Demand Size

Objective

For each one of the transient Jini DST, transient JMS DST, persistent Jini DST and

persistent JMS DST, find the maximum demand size of a single demand that the

DST can store, and find how many such demands that the DST can store.

67

Scenario

A single GIPSY node is used to perform this test, as illustrated in Figure 30. The

DST under test is allocated using one of the profiles specified in the next paragraph,

and a DGT simulator (see Section 3.1) is allocated to feed the DST with demands of

various sizes to find the maximum demand size that the DST can store. In this way

the maximum demand sizes supported by the DSTs of different types and persistence

settings can be obtained.

Environment and Parameters

The hardware and operating system environment is the same as that in the previous

test as shown in Table 2. The DSTs are started using the profile number 9, 10, 11, 12

that were used in the previous test, all of which use the 256 MB heap memory size

with 1:1 young-old generation ratio to allow the DGT simulator to send necessarily

large demands without running out of memory. In this test, 1MB is chosen as the

magnitude of demand size to ease the maximum-size finding process.

Results

The maximum demand size that could be stored in each DST as well as the maximum

amount of such demands that could be stored in the DST is listed in Table 5, and

the bar chart showing the relation between the maximum demand sizes and the heap

memory size is in Figure 32.

Profile # Max. Demand Payload Max. Amount of Demands
9 127 MB 1
10 127 MB 1
11 63 MB 1
12 126 MB > 100

Table 5: Maximum demand size test result

The results of this test show that maximum demand payload supported in the

transient Jini DST, the transient JMS DST and the persistent JMS DST were around

127 MB, which is reasonable because the largest heap partition, i.e. the old generation

68

Figure 32: Maximum demand size for 256 MB heap

in their heaps was 128 MB. Also, the persistent JMS DST could store much more

demands of the maximum size since it can swap demands into its persistent storage

beyond its memory limit as it did in the previous test, which is judged more space

scalable. It is also shown that the persistent Jini DST did not support demands as

large as those supported by other DSTs, similar to what it did for 32-KB payload

demands.

The reason why this test is necessary is that in reality a demand could be very

large. For example, since all the runtime resources are contained in the GEER (see

Section 1.1.2), the GEER transferred by a resource demand could be very large

depending on how many runtime resources are contained. Also the data sets required

by the procedural demands could be very large; for example, for some image or audio

processing demands, some large image or audio files could be used as the parameters

or return values of the demands. Therefore this test of the maximum size of a single

demand that a DST can store is of real importance.

69

3.2.3 Summary

In this section the space scalability of GIPSY runtime system was assessed by testing

how the different types of DSTs with different persistence settings and limited memory

handled increasing demand storage. Also the maximum demand sizes that different

DSTs supported were compared. It was discovered that the transient Jini DST, the

transient JMS DST and the persistent JMS DST are space scalable as they can store

increasing amount of memory while making good use of their memory, as discussed

in the test results in this section; in contrast the persistent Jini DST can only use

approximately half of its memory to store demands when storing increasing amount

of demands, which is considered not space scalable.

3.3 Space-Time Scalability

The space-time scalability of GIPSY runtime system mainly concerns how the amount

of demands stored in DSTs affects demand response time of demand migration

consisting of the demand sending time and the result reading time experienced

by the DGT. The demand sending time is the time spent in sending a demand into

the DST, and the result reading time is the time spent in reading a demand whose

state matches the computed state and whose signature matches the demand signature

in question from the DST. Since the amount of demands stored in a DST may affect

both its memory usage and its speed in demand signature matching (when returning

a result to the DGT), the following tests were designed: the first test investigates how

the increase in the total size of demand storage, i.e. the memory usage, affects the

overall demand response time, and the second test isolates the demand sending time

and the result reading time out to investigate how the increasing amount of demands

affects these two times.

70

3.3.1 Space-Time Scalability Test: Memory Impact

Objective

For each of the space-scalable DSTs, test how the demand response time is affected

by the increase in the total size of all the demand stored in the DST.

Scenario

Figure 33: Space-time scalability test deployment: memory impact

In this test the space scalable DSTs, i.e. transient Jini DST, the transient JMS

DST and the persistent JMS DST are tested. A GIPSY instance consisting of four

GIPSY nodes is used to perform this test, as illustrated in Figure 33, so that each tier

is running within its own GIPSY node to separate their CPU usage. In this test, a

GMT is allocated in Node 1 to control tier allocations; a test DST is allocated in Node

3; a DGT simulator (see Section 3.1) is allocated in Node 2 to continuously send a

unique pending demand to the DST and read the computed result back before sending

the next demand; and a DWT is allocated in Node 4 to continuously receive pending

demands from the DST and return the computed result to the DST immediately.

The time taken by each demand sending and result reading operation is recorded

until the DST can no longer store any more demands. Each demand is carrying a 32

KB payload to measure the DST’s memory usage. All the experiments are done in

71

triplicate.

Environment and Parameters

The four GIPSY nodes used in this test all have the same hardware and operating

system environment as shown in Table 2. The DSTs are started using the profile

number 9, 10, and 12 that were used in the space-scalability tests described in Section

3.2.1 to start the transient Jini DST, transient JMS DST and persistent JMS DST

respectively with all the DSTs having a 256 MB heap size.

Results

Figure 34: Response time versus demand storage

Figure 34 shows the demand response time versus the total demand size stored in

the DST. It is shown that in the in the beginning, the demand response time provided

by all the DSTs were relatively stable, and the transient Jini DST was faster than

72

the transient JMS DST that was even faster than the persistent JMS DST, which is

can be explained by the fact that the JMS DSTs require more complicated services

than the Jini DST, such as memory monitor and control, and that the persistent JMS

needs extra time for the persistent storage service. However, as the demand storage

increased, their response times changed due to the way how they use and manage

memory:

1. The Jini DST relies on garbage collection to manage its memory. When

its young generation was full and the old generation was initially empty,

objects were eventually copied to the old generation via minor garbage

collections; therefore in the beginning, there were relatively short pause time

occasionally. As the free space in the old generation decreased, it could no longer

accommodate all the living objects to be copied from the young generation,

therefore the entire heap was collected and this major garbage collection caused

longer pause time from the time when the demand storage was approximately

60 MB. As the demand storage approached 160 MB, the old generation became

full and the young generation was also being filled up, therefore the frequency

of major garbage collections increased until its maximum was reached, resulting

in final part of the curve for the Jini DST.

2. The transient JMS DST provides additional memory management in addition to

the heap garbage collection. For example, Sun Message Queue has four memory

resource states, green, yellow, orange and red indicating the percentage of the

heap memory usage of 0%, 80%, 90% and 98% respectively, and reacts to these

memory resource states accordingly [48]. As the demand storage increased, the

transient JMS DST went through similar garbage collection stages as the Jini

DST. However, when it used approximately 80% of its memory (180MB divided

by 227.64 MB, the maximum demand storage shown in Section 3.2.1), it was in

the yellow state and began to search all the messages stored so far to swap all

the persistent messages into persistent storage, although as a transient JMS it

had no persistent messages to store, while the major garbage collections were

73

very frequent. This explains why after 180MB the demand response time were

extremely long and increasing with the amount of demands stored.

3. The persistent JMS DST has the same memory management mechanism with

transient JMS DST, so its demand response time shared a similar pattern to

that of the transient JMS DST before its memory usage reached the yellow

state. However, as all its messages were persistent messages, it was able to

swap all the persistent messages into its persistent storage to free its memory,

therefore from that point its demand response time fell back to the previous

pattern.

Therefore when facing increasing demand storage, all the DSTs were slowed down

when their memory went critical, and the persistent JMS DST could recover its

memory by swapping persistent message into its persistent storage to reduce its

memory usage.

3.3.2 Space-Time Scalability Test: Signature Matching

Speed

Objective

For each space-scalable DST, test how the amount of demands affects the demand

signature matching speed in the result reading process.

Scenario

In this test demands that each carries a string representation of 128-bit universally

unique identifier are used to make the signature matching time more observable.

These demands carry no payload so that their impact on memory is less significant.

A GIPSY instance consisting of three GIPSY nodes is used to perform this test as

illustrated in Figure 35. Similar to the previous space-time scalability test, each tier is

running in its own GIPSY node to avoid interference in CPU usage. To separate the

demand sending time and result reading time out of the overall demand migration

74

Figure 35: Space-time scalability test deployment: signature matching speed

process for the investigation of demand signature matching speed, the DGT simulator

(see Section 3.1) uses a special tester thread to send and receive demands in 20 batches

with each batch containing 500 such demands, so totally there are 10,000 demands

tested, and each batch of demands is sent to and read from the DST synchronously

before the sending and receiving the next batch. The demand sending time and

result reading time of each demand is recorded. All the experiments are done in

triplicate.

Environment and Parameters

The three GIPSY nodes used in this test all have the same hardware and operating

system environment as shown in Table 2. The DSTs are started using the profile

number 9, 10, and 12 that were used in the space-scalability tests described in Section

3.2.1 to start the transient Jini DST, transient JMS DST and persistent JMS DST

respectively with all the DSTs having a 256 MB heap size.

Results

Figure 36 shows all the demand sending time recorded versus the amount of demands

stored in each DSTs and Figure 37 shows the average demand sending time per batch

(500 demands) versus the amount of demands stored in each DST. The curves of the

75

Figure 36: Demand sending time versus the amount of demands stored in the DST

Figure 37: Average demand sending time versus the amount of demands stored in
the DST

76

demand sending time and the average demand sending time shows that in this

test scenario for each DST, the time used in sending demands to the DST was not

increasing with the amount of demands stored in the DST, which is consistent with

the trend of their demand sending time and result reading time shown in Figure 34

before their memory went critical. Also the transient Jini DST was the faster than

the transient JMS DST that was approximately twice as fast as the persistent JMS

DST.

Figure 38: Result reading time versus the amount of demands stored in the DST

Figure 38 shows the recorded result reading time versus the amount of demands

stored in each DSTs and Figure 39 shows the average result reading time versus

the amount of demand stored in each DSTs. It is shown that in this test scenario,

the average time spent in receiving demands from the transient Jini DST was not

significantly increasing with the amount of demands stored in the DST, compared

to the JMS DSTs whose demand reading time increased almost linearly with the

amount of demands stored. Therefore in the sense of demand signature matching

speed versus the amount of demands, the transient Jini DST is space-time scalable

since its performance is not undermined by the amount of demands stored, whereas

77

Figure 39: Average result reading time versus the amount of demands stored in the
DST

the JMS DSTs are not space-time scalable since their performance are undermined

by the amount of demands stored.

The average demand sending time and result reading time measured in this test

can be used to estimate the communication cost associated with each DST under test,

because the demand used to perform this test has no payload and has no computation

requirements. For the transient Jini DST, the average time spent in sending such an

empty demand is around 2.63 milliseconds, and the average time spent in reading the

demand is around 2.09 milliseconds. For the transient JMS DST, the average time

spent in sending an empty demand is around 14.67 milliseconds, and the average

time spent in reading the demand is around 12.65 milliseconds. For the persistent

JMS DST, the average time spent in sending an empty demand is around 42.82

milliseconds, and the average time spent in reading the demand is around 11.82

milliseconds. Such communication cost includes the time spent in setting up and

tearing down the connections, the time in delivering the data across the network, and

the time in other aspects such as ensuring reliable delivery. Further investigation of

78

the communication cost shall be done in future work.

3.3.3 Summary

In this section the space-time scalability of GIPSY runtime system was tested by

investigating how the increase in the total size of the demand storage affects the

demand response time and how the amount of demands stored in the DST affects

the demand signature matching speed. It is discovered that as the total size of the

demand storage increased, the demand response time provided by the Jini DST was

the shortest, whereas that provided by the transient JMS DST was longer, and that

of the persistent JMS DST was the longest; however, all the DSTs slowed down

when their memory went critical, and the persistent JMS DST was able to recover its

memory by moving messages to persistent storage. As to demand signature matching

speed, the result reading time of the transient Jini DST was not increasing with the

amount of demands stored, where as the result reading time provided by the JMS

DSTs was linearly increasing with the amount of demands stored. Based on these

results, the Jini DST is considered space-time scalable, whereas the JMS DSTs are

not space-time scalable.

3.4 Structural Scalability

The structural scalability of GIPSY runtime system is the ability of the system to

grow larger by allocating more tiers and registering more nodes, and the multitier

architecture of GIPSY runtime system was designed to have this kind of scalability.

For example, when the existing DSTs can no longer store more demands, GIPSY

runtime system can easily deal with this situation by allowing the user to allocate

more DSTs via GMT; similarly when all the DWTs are busy while there are still

many procedural demands pending, more DWTs can be allocated to process these

pending demands in parallel so that they demands may be returned to the DGTs

that generated these demands sooner. In this way the GIPSY runtime system can

gracefully deal with increasing work load by growing larger.

79

The assessment of this kind of scalability concerns how large a GIPSY runtime

system can grow, i.e. how many tiers it can allocate and how many nodes can be

registered. Since all the nodes/tiers are registered into and managed by the GMT,

these questions can be converted to how many node/tier registrations a GMT can

store and manage. Besides, since the DGTs and the DWTs are interconnected by the

DSTs, we are also interested in how many DGTs or DWTs that a single DST can

support. However, there are no definite answers to these questions because:

1. Since the current GMT implementation runs within a GIPSY node process and

stores all the node/tier registrations in its memory, the amount of memory that

can be used to store node/tier registrations varies with the overall heap memory

size and with the amount of memory used by other tiers allocated within the

same GIPSY node process.

2. Since each DST is a JVM process and launches threads to handle each

connection, the maximum amount of threads is affected by the amount of heap

memory available to the thread objects as well as the amount of non-heap virtual

memory available to the threads stacks.

Due to the discussions above, the following tests were designed to investigate the

structural scalability of the GIPSY runtime system.

3.4.1 Structural Scalability Test: GMT

Objective

For a typical GMT, test how many node/tier registrations it can support to estimate

the maximum size of GIPSY instance it supports.

Scenario

To test how many tier registrations a typical GMT can store, two GIPSY nodes

are used as illustrated in Figure 40. The word ”typical” here means that the GMT

is the only tier running Node 1, and the JVM settings of Node 1 are the default

80

Figure 40: Structural scalability test deployment: GMT

client-class JVM settings for the 32-bit Windows system, as the worst case scenario.

Node 2 is used to allocate pseudo DSTs that create DST registrations containing

all the necessary information and configurations but without creating the real DST

processes, so that Node 2 can easily allocate tens of thousands of pseudo DSTs and

send the registrations to the GMT without creating too many processes to run out of

resources. The reason why the DST registration is used rather than other node/tier

registrations is that: typically a DST registration contains more information such as

the exported TA configuration than other node/tier registrations, therefore is more

representative.

Environment and Parameters

The hardware and operating system environment of each GIPSY node is shown in

Table 2. The heap size of the GIPSY node process that runs the GMT is 64MB, the

default JVM heap size in a client-class machine, and no other heap setting is required

for this JVM process. All the experiments are done in triplicate.

Results

The average DST registrations that the GMT can store is 44,767, which means that

if the GMT does nothing but stores node/tier registrations, the maximum node/tier

registrations that it can support is approximately 44,000. In reality this number is

expected to be smaller because extra memory is consumed for management routines

such as tier allocations. By enlarging the heap size, the GMT could support more

node/tier registrations; however, it is suggested to store all the node/tier registration

in a more scalable database in the future to remove the memory constraint.

81

3.4.2 Structural Scalability Test: DST

Objective

For each space-scalable DST, test how many DWTs/DGTs that a DST can support.

Scenario

Figure 41: Structural scalability test deployment: DST

The transient Jini DST, the transient JMS DST and the persistent JMS DST are

tested in this test, and DWTs are used to connect to the DSTs. Two GIPSY nodes

are used to perform this test as illustrated in Figure 41, with the DST under test is

allocated in Node 1, and the DWTs connecting to the test DST allocated in Node

2. For each test DST, as many as possible DWTs are allocated until the DST can

no longer support more DWTs. The memory and the thread usage of the DST is

observed and recorded via JConsole: before connecting the DWTs to the DST, the

DST is garbage collected and its minimum memory and thread usages are recorded;

when the DST can no longer support more DWTs, the DST is garbage collected

and its minimum memory and thread usage are recorded again. We assume that the

differences between the two minimum memory and thread usages are used by the

DST to handle connections. Also, to investigate the impact of the stack size of DST

threads, 3 stack sizes are tested. Based on the observation in this test, an estimated

maximum number of connections that the DST can support is given.

Environment and Parameters

The hardware and operating system environment of each GIPSY node is shown in

Table 2. The 3 stack sizes tested are 320 KB, 672 KB and 1 MB, among which 320

82

KB is the default JVM stack size in 32-bit Windows [53], 1 MB is the default native

stack size in Windows [54], and 672 KB is in the middle. Also in this test both DSTs

use the 256 MB heap setting that were used in previous tests to ensure that they

have sufficient memory.

Results

The results of this test are presented in Table 6. And a bar chart based on the test

results is shown in Figure 42.

DST Type & Stack Memory Memory Min. Max. Max. DWT
Persistence Size Before Test After Test Thread Thread Allocation

Transient Jini 320 KB 3.01 MB 124.54 MB 44 4855 4809
Transient Jini 672 KB 3.65 MB 57.90 MB 51 2267 2219
Transient Jini 1 MB 3.04 MB 39.11 MB 51 1560 1510
Transient JMS 320 KB 3.46 MB 85.32 MB 24 4819 2397
Transient JMS 672 KB 3.43 MB 40.00 MB 25 2268 1121
Transient JMS 1 MB 3.44 MB 24.95 MB 26 1561 767
Persistent JMS 320 KB 3.43 MB 88.54 MB 25 4875 2425
Persistent JMS 672 KB 3.44 MB 39.90 MB 25 2268 1122
Persistent JMS 1 MB 3.46 MB 26.62 MB 27 1561 767

Table 6: DST maximum connection test result

The results of this test show that each JMS DST used two threads to handle each

connection, whereas the Jini DST used one thread for each connection. Therefore

given the same stack size, the same heap settings and the same free heap memory, a

Jini DST is more structural scalable than a JMS DST as it can support approximately

twice the maximum DST connections supported by the JMS DST.

Also, based on our assumption regarding the relation between the connections and

the DST memory and thread usages, it is calculated that in this tests both JMS DSTs

used approximately 20 KB heap memory for each thread regardless of the stack size,

and the Jini DST used approximately 30 KB heap memory for each thread regardless

of the stack size, and that the overall memory occupied by both heap and stacks was

around 1.7 GB to 1.8 GB. Therefore it is estimated that in this test environment and

given the default 320 KB JVM stack size, if all the memory is used for connections,

83

Figure 42: DST connections and threads versus stack sizes

each DST may support approximately 5,000 threads, which leads to 2,500 connections

for a JMS DST, and 5,000 connections for a Jini DST.

However, when considering both the structural scalability and the space

scalability, the maximum DST connections supported by the transient Jini DST

or the transient JMS DST are expected to be fewer than their estimated amount

because the demands stored in the DST also take up heap memory, and to deal with

simultaneous desire for both kinds of scalability, their heap memory size needs to be

increased and/or their thread stack size needs to be reduced to support more threads

for DST connections. In contrast, since the persistent JMS DST can store demands

in hard disk, its space scalability is less dependent on its heap memory and therefore

can have less affected structural scalability, which is supported by the result of a

simple test that the persistent JMS DST with 256 MB heap easily stored 10,000

32-KB payload demands while simultaneously supporting 2,400 DWTs.

3.4.3 Summary

In this section the structural scalability of the GIPSY runtime system was investigated

by testing how many node/tier registrations the GMT can hold and how many

84

connections each DST can support. It was discovered that for a GMT with the default

64 MB heap size and when all the memory is for storing node/tier registrations, there

could be approximately 40,000 node/tier registrations. However in reality, the number

of node/tier registrations that the GMT can store depends on the memory usage of

the GIPSY node process where the GMT is allocated. For example, when there are no

frequent managerial issues arise in the GIPSY runtime system, system demands sent

to the GMT are rare and the memory of the GMT used for management is therefore

limited so that most of its memory can be used to store node/tier registrations;

however, where managerial issues such as DST crashes or tier allocations are frequent,

system demands sent to the GMT will consume much memory, and if the JVM of

the GMT cannot garbage collect its heap in time, eventually the GMT will have no

space for additional node/tier registrations. In the future by using a more scalable

and less memory dependent data storage technology to store node/tier registrations,

for example, a database, the GIPSY runtime system can easily grow much larger to

have for example millions of node/tier registrations.

As to the structural scalability concerning the DSTs, when all the memory is used

for DST connections, the Jini DST is more structural scalable than the JMS DSTs

since it can support approximately twice the maximum DST connections than the

JMS DSTs; whereas when there are significant requirements in the space scalability in

addition to the requirements in the structural scalability, without additional memory

relevant settings both the transient Jini DST and the transient JMS DST will have

to trade off between the space scalability and the structural scalability due to the

resource contention in their heap memory, whereas the persistent JMS DST supports

both kinds of scalability well since it is able to store demands beyond its memory

limit so that it is less constraint by its heap memory size.

3.5 Load Scalability

The load scalability of GIPSY runtime system concerns if the maximum throughput

of demand processing is able to increase proportionally with the number of the tiers

85

that process the demands, since the GIPSY runtime system was designed to be able

to allocate more tiers to handle increasing workload. To assess the load scalability of

the GIPSY runtime system, the throughput of a pi calculation demand is used, and

its relation with the number of DWTs that perform the pi calculation is studied. The

pi calculation demand requires a DWT to compute up to 1000 decimal places, so that

the execution time of such a pi calculation demand is longer than the response time

of each DST observed in Figure 34, making the demand worthy of being processed

remotely while generating a significant throughput.

Before testing the load scalability of the GIPSY runtime system, a test in which all

the GIPSY tiers are allocated in the same GIPSY node shall be performed first, and

the result of this test is used as the benchmark to compare with the scenario when

the DWTs are allocated in multiple GIPSY nodes. After the benchmark test, the

minimum number of tiers to be allocated within a single GIPSY node to sufficiently

utilize its computation power needs to be determined experimentally. With this

minimum number of tiers deployed in each GIPSY node, more tiers can be allocated

in more GIPSY nodes and how the maximum throughput changes with the overall

number of tiers allocated in all the GIPSY nodes is of our interest.

Since it was observed in Section 3.3 that in the sense of demand response time,

the transient Jini DST is faster than the transient JMS DST that is even faster than

the persistent JMS DST, the tests in this section compare the load scalability of the

transient Jini DST and the transient JMS DST since they are the fastest DSTs among

their kinds.

3.5.1 Load Scalability Test: All the Tiers in One GIPSY

Node

Objective

To investigate how the maximum throughput of the GIPSY runtime system changes

with the number of DWTs allocated, and in this test all the GIPSY tiers are allocated

in the same GIPSY node. The result of this test is served as the benchmark in the

86

test in Section 3.5.3.

Scenario

Figure 43: Load scalability test deployment: all the tiers in one GIPSY node

A GIPSY instance consisting of a single GIPSY node (computer) is used to

perform this test as illustrated in Figure 43: and all the GIPSY tiers are allocated in

this single GIPSY node. For each number of DWTs (beginning from 1, 2, 3, . . . , until

16 DWTs) allocated in the node, we adjust the DGT simulator threads to find the

maximum throughput of demand computation. The relation between the maximum

throughput and the number of DWTs is recorded.

Environment and Parameters

The hardware and operating system environment of the GIPSY node is shown in

Table 2. The test DST is started using the profiles that were numbered 9 and 10 in

Table 3 to start a transient Jini DST and a transient JMS DST respectively.

Results

Figure 44 shows that in the case when all the GIPSY tiers are allocated in the same

GIPSY node, for the Jini DST, its throughput reached its approximate maximum

when there were more than two DWTs allocated; however for the JMS DST,

87

Figure 44: Load scalability test result: all the tiers in one node

its throughput increased from the beginning but when there were more than 4

DWTs allocated, its throughput gradually decreased. We attribute the throughput

saturation of the Jini DST to the fact that the computer used for testing had two

processors. Also we attribute the throughput decrease of the JMS DST to the resource

contention due to the increasing amount of threads running in the computer. Further

discussion of this test result is presented in Section 3.5.3.

3.5.2 Load Scalability Test: DWTs Scaled Out in One

GIPSY Node

Objective

To find out the minimum number of DWTs to be allocated in a single GIPSY node by

observing how the throughput of the GIPSY runtime system improves by allocating

more DWTs within the single GIPSY node. The minimum number of the DWTs that

can sufficiently utilize the computation power of the GIPSY node will be used in the

next test in Section 3.5.3.

88

Scenario

Figure 45: Load scalability test deployment: DWTs scaled out in one GIPSY node

A GIPSY instance consisting of four GIPSY nodes (computers) is used to perform

this test as illustrated in Figure 45: Node 1 runs the GMT to control tier allocations,

Node 2 runs the DGT simulator, Node 3 runs the test DST and Node 4 runs multiple

DWTs. For each number of DWTs (beginning from 1, 2, 3, . . . , until 16 DWTs)

allocated in Node 4, we adjust the DGT simulator threads to find the maximum

throughput of demand computation. The relation between the maximum throughput

and the number of DWTs allocated in Node 4 is recorded.

Environment and Parameters

The hardware and operating system environment of each GIPSY node is shown in

Table 2. The test DST is started using the profiles that were numbered 9 and 10 in

Table 3 to start a transient Jini DST and a transient JMS DST respectively.

Results

Figure 46 shows that for both the Jini and the JMS DSTs, their throughput achieved

their approximate maximum when there were two DWTs allocated in the GIPSY

node. This is reasonable because each computer used as the GIPSY node has two

89

Figure 46: Load scalability test result: DSTs scaled out in one GIPSY node

processors as shown in the test environment in Table 2. Therefore it is reasonable to

allocate one DWT per processor in the next test in Section 3.5.3 to make the number

of DWTs proportional to the number of processors used for demand computation.

3.5.3 Load Scalability Test: DWTs Scaled Out in Multiple

GIPSY Nodes

Objective

Assess the load scalability of the GIPSY runtime system by observing the relation

between the maximum throughput provided by the GIPSY runtime system and the

total number of DWTs allocated in the runtime system.

Scenario

A GIPSY instance consisting of 11 GIPSY nodes (computers) is used to perform this

test as illustrated in Figure 47: Node 1 runs the GMT to manage all the GIPSY nodes,

Node 2 runs the DGT simulator, Node 3 runs the test DST and all the other nodes

are used to allocate DWTs, with each node allocating maximally two DWTs, i.e. one

90

Figure 47: Load scalability test deployment: DWTs scaled out in multiple GIPSY
nodes

DWT per processor. For each number of DWTs (beginning from 1, 2, 3, . . . , until

16 DWTs) allocated in the runtime system, we adjust the DGT simulator threads

to find the maximum throughput of demand computation. The relation between

the maximum throughput and the number of DWTs allocated in the entire runtime

system is recorded. .

Environment and Parameters

The hardware and operating system environment of each GIPSY node is shown in

Table 2. The test DST is started using the profiles that were numbered 9 and 10 in

Table 3 to start a transient Jini DST and a transient JMS DST respectively.

Results

Figure 48 shows that when there were up to 16 DWTs allocated in 8 GIPSY nodes with

one DWT per processor, the throughput provided by the Jini DST was approximately

linearly increasing with the number of DWTs allocated, whereas the throughput of the

JMS DST increased sub-linearly with the number of DWTs allocated and was almost

91

Figure 48: Load scalability test result: DSTs scaled out in multiple GIPSY nodes

flat after more than 10 DWTs were allocated. This result leads to a conclusion that in

this test scenario the Jini DST is load scalable since its throughput increased linearly

with the number of DWTs allocated in the GIPSY runtime system.

Also the test result in Section 3.5.1 is also presented in Figure 48 to compare the

results of these two tests directly. The comparison between these two results shows

that the scaling-out of the DWTs into multiple computers indeed has advantage in

the overall throughput of the GIPSY runtime system.

However, the result of this test cannot conclude that the JMS DST is not load

scalable, because its throughput saturation might be caused by either the possible

bottleneck in the Node 2 in Figure 47 where all the DGT threads launched by the

DGT simulator were running, or caused by the possible bottleneck in the Node 3

in Figure 47 where the JMS DST was running. The other GIPSY nodes in Figure

47 where the DWTs were running did not cause the throughput saturation, because

if the throughput saturation was caused by the bottleneck in these DWT nodes, it

should have appeared already when there were two DWTs allocated for the first time,

rather than when there were 10 DWTs allocated as shown in Figure 48. To investigate

if the throughput saturation of the JMS DST was caused by the possible bottleneck

92

in the GIPSY node where all the DGT threads were running, the following test was

performed.

3.5.4 Load Scalability Test: Two DGT Nodes for the JMS

DST

Objective

To find out if the throughput saturation of the JMS DST shown in Figure 48 was

caused by the possible bottleneck in the GIPSY node where all the DGT threads

were running.

Scenario

Figure 49: Load scalability test deployment: two DGT nodes for the JMS DST

A GIPSY instance consisting of 12 GIPSY nodes (computers) is used to perform

this test as illustrated in Figure 49: Node 1 runs the GMT to manage all the GIPSY

nodes, Node 2 runs the DGT simulator, Node 3 runs the JMS DST, Node 4 runs

the second DGT simulator, and the remaining nodes are used to allocate DWTs

93

with two DWTs per node, i.e. one DWT per processor. For each number of DWTs

(beginning from 2, 4, 6, . . . , until 16 DWTs) allocated, use the 2 DGT simulators

allocated in the two different GIPSY nodes to achieve the maximum throughput of

demand computation. Since in this test there are 2 DGT simulators running in two

different GIPSY nodes, compared to the previous test when only one DGT simulator

was used, each one of the two DGT simulators in this test only launches half the

number of the DGT threads as those launched in the previous test. In this way if

the throughput saturation of the JMS DST in the previous test was indeed caused

by the bottleneck in the GIPSY node where the DGT threads were running, then

in this test the throughput saturation should appear much later because in this test

each GIPSY node now has fewer (only half of) DGT threads running so that the

possible bottleneck is reduced and postponed; however if the throughput saturation

in this test still appears at the same time when there are 10 DWTs allocated as it did

in the previous test as shown in Figure 3.5.3, then the throughput saturation in the

previous test was not caused by the bottleneck in DGT threads, which implies that

the throughput saturation in the previous test was caused by the JMS DST itself.

Environment and Parameters

The hardware and operating system environment of each GIPSY node is shown in

Table 2. The test DST running in Node 3 is started using DST profile 10 to start the

transient JMS DST.

Results

Figure 50 shows that the throughput curve of the JMS DST in this test was similar

to the throughput curve of the JMS DST in the previous test. This result leads to the

deduction that the throughput saturation of the JMS DST in the test in Section 3.5.3

as shown in Figure 48 was caused by the JMS DST itself rather than the DGT threads,

because otherwise the throughput saturation in this test should have appeared later

since in this test the DGT threads were distributed into two GIPSY nodes to halve

the resource contention in each DGT node. Based on the result of this test and the

94

Figure 50: Load scalability test result: two DGT nodes for the JMS DST

previous test in Section 3.5.3, it is concluded that the Jini DST is more load scalable

than the JMS DST, because the throughput of the Jini DST increased linearly with

the number of DWTs allocated in the GIPSY runtime system, whereas throughput

of the JMS DST saturated when more than 10 DWTs were allocated, indicating that

the JMS DST could not utilize the computation resources as well as the Jini DST did

in handling increasing workload.

3.5.5 Summary

In this section the load scalability of GIPSY runtime system was investigated by

studying and comparing the relation between the throughput provided by each DST

and the number of DWTs allocated in the GIPSY runtime system. It is concluded

that the Jini DST is more load scalable than the JMS DST as in the test scenarios

the maximum throughput of the Jini DST increased almost linearly with the number

of DWTs allocated in the runtime system, whereas the throughput of the JMS DST

reached it saturation when there were more than 10 DWTs allocated.

95

3.6 Conclusion

In this chapter the four kinds of scalability of GIPSY runtime were assessed via

different experiments. In the GIPSY runtime system, the persistent JMS DST

provides the best space scalability since it can store demands in its persistent storage

beyond its memory limit, whereas the transient Jini DST provides the best space-time

scalability since its demand sending and reading speeds are not undermined by the

amount of demands it stores before its memory goes critical. The transient Jini DST

also provides the best structural scalability since it uses one thread to handle each

connection, whereas a JMS DST uses two threads for each connection; and it offers

the best load scalability as well since its throughput of demand migration and process

increases linearly with the increase in the number of DWTs allocated in the GIPSY

runtime system. However, when requirements in all the four kinds of scalability exist

and the requirement in space scalability dominates, the persistent JMS DST survives

longer than other DSTs as it can store demands into its persistent storage to release

its memory for other requirements in such as the number of DGT/DWT connections.

Therefore for demands that require little demand storage space but fast response

speed, the transient Jini DST is recommend; whereas for demands that require large

demand storage space but are not very response-time sensitive, the persistent JMS

is recommended. By using all the DSTs wisely in a mixed fashion and by expanding

the system via node registration and tier allocation, the GIPSY runtime system can

easily deal with increasing demand processing and storage requirements, and thus is

concluded to have good scalability.

96

Chapter 4

Conclusions and Future Work

4.1 Conclusions

The work presented in this thesis developed the GIPSY runtime system using the

multi-tier architecture and assessed the scalability of the GIPSY runtime system

developed. More specifically this thesis:

• presented the development of a configuration system for the GIPSY runtime

to achieve flexibility for adding new tier implementations without changing the

source code of the existing system components affected.

• presented the design and the implementation of the DSTs, the GMT and

the GIPSY node for the GIPSY instance bootstrap process, the GIPSY node

registration process, the GIPSY tier allocation process and the GIPSY tier

deallocation process, so that the GIPSY runtime system can be easily expanded

over multiple computers in a network.

• researched the scalability evaluation methodologies to find the four types of

scalability applicable to the GIPSY runtime system, i.e. the space scalability,

the space-time scalability, the structural scalability and the load scalability, as

well as their metrics.

• presented the assessment of the four types of scalability of the GIPSY runtime

97

system via various tests.

The scalability assessment shows that the persistent JMS DST provides the best

space scalability and is suitable for demands requiring large storage space with

relatively slower migration speed. Also the transient Jini DST provides the best space-

time scalability, structural scalability and the best load scalability, and is suitable

for demands requiring fast migration speed with relatively smaller storage space

requirements. As demonstrated in this thesis, the GIPSY runtime system is able to

deal with increasing workload and demand storage requirements by registering more

computers as the GIPSY nodes and allocating more GIPSY tiers in the registered

GIPSY nodes, therefore the GIPSY runtime system is scalable.

4.2 Limitations and Future Work

Limitations regarding the four types of scalability exit in the GIPSY runtime system

developed in this thesis, and shall be resolved in the future work. Specifically:

• For the DSTs whose space scalability is limited by their memory, including the

transient Jini DST, the transient JMS DST and the persistent Jini DST, to

resolve this limitation, one could allocate more DSTs in the GIPSY runtime

system so that although the space scalability of a single DST is still constrained

by its memory, the entire GIPSY runtime system can store increasing amount

of demands beyond the memory limit of the single DST. However, this solution

is constrained by the total memory available in the GIPSY runtime system,

therefore does not work in the situation that the entire system is not able to

expand anymore.

Another solution is to apply a garbage collection mechanism to release the

memory of the DSTs when necessary, so that none of the DSTs is likely to run

out of memory in their long-term usage even if no more DSTs can be allocated

in the GIPSY runtime system. It is possible to rely on the Jini DST and the

JMS DST themselves to eventually release the memory taken by demands. For

98

example, by shortening the Jini Lease time, demands will be eventually deleted

from JavaSpace in the order they were stored, and by renewing the lease when

the demand is read, demands that are most frequently used may survive in the

JavaSpace. However, Jini provides no mechanism to prevent memory crash in

the case that a huge amount of demands are flooded into the Jini DST within

a very short time, therefore an external flow-control and garbage collecting

mechanism is necessary for the long-term use of the Jini DST. The situation

of the JMS DST is different: Sun Java Message Queue provides options and

approaches to prevent the broker from crash when its memory goes critical,

for example, by dropping newest messages or deleting oldest messages [48];

however, it is unable to delete the “least frequently used” messages unless they

are deleted by an external JMS client, therefore again an external garbage

collector is required for the JMS DST in the case that the existing mechanisms

provided by the JMS broker do not meet the requirements.

• For the limitation of the JMS DSTs in the space-time scalability, since the

result-reading time provided by the JMS DSTs increases linearly with the

amount of demands stored, the garbage collection mechanism discussed above

can also be used here to remove demands from the JMS DSTs, so that the

amount of demands stored in the DST can be kept under a certain level and

the corresponding result-reading time can be reduced as well.

• For the limitation of the GMT in the structural scalability, since currently

the GMT uses a GMTInfoKeeper to store all the node/tier registrations in

memory, it is suggested to replace the GMTInfoKeeper with more scalable

storage technologies such as a database, so that the growth of the system in the

sense of node/tier registrations is not constrained by the memory limit of the

GMTInfoKeeper.

• For the limitation of the JMS DST in the load scalability, one could allocate

more JMS DSTs in the GIPSY runtime system to distribute the load of the

demand migration and processing among all the allocated DSTs, so that the

99

overall throughput of the demand migration and processing provided by the

entire GIPSY runtime system is not constrained by the throughput saturation

of a single JMS DST.

Besides, the scalability tests presented in this thesis have limits in how the system

was scaled, since the GIPSY runtime system was tested in the computers running 32-

bit Windows 7 in the local area network in the same lab. To further investigate the

scalability, the tests presented in this thesis shall be repeated in other environments,

such as in computers with different network connectivity and/or running Linux or Mac

OS, or in clusters or computers with high number of processors. Also, in the further

the load scalability of the runtime system shall be tested with DWTs allocated in more

computers to investigate when the throughput provided by the Jini DST will saturate.

The number of DWTs corresponding to the beginning of the throughput saturation

is referred as throughput saturation point. With the throughput saturation point

discovered, the system can be further scaled out by allocating more DSTs connected

to more DWTs, with the number of DWTs connected to each single DST below its

corresponding throughput saturation point.

100

Bibliography

[1] J. Paquet, “Distributed eductive execution of hybrid intensional programs,”

in Proceedings of the 33rd Annual IEEE International Computer Software and

Applications Conference (COMPSAC’09), (Seattle, Washington, USA), pp. 218–

224, IEEE Computer Society, July 2009.

[2] J. Paquet, Scientific Intensional Programming. PhD thesis, Department of

Computer Science, Laval University, Sainte-Foy, Canada, 1999.

[3] W. Du and W. W. Wadge, “A 3D spreadsheet based on intensional logic,” IEEE

Software, vol. 7, pp. 78–89, June 1990.

[4] W. Du and W. W. Wadge, “The eductive implementation of a three-dimensional

spreadsheet,” Software Practice and Experience, vol. 20, pp. 1097–1114, Nov.

1990.

[5] W. Du, Indexical Parallel Programming. PhD thesis, Department of Computer

Science, Victoria University, Canada, 1991.

[6] A. A. Faustini and E. B. Lewis, Towards a Real-Time Dataflow Language. Los

Alamitos, CA, USA: IEEE Computer Society, 1989.

[7] J. Plaice, R. Khedri, and R. Lalement, “From abstract time to real time,” in

In Proceedings of the Sixth International Symposium on Lucid and Intensional

Programming, pp. 83–93, 1993.

[8] J. Plaice and W. W. Wadge, “A new approach to version control,” IEEE

Transactions on Software, vol. 19, pp. 268–276, Mar. 1993.

101

[9] W. W. Wadge, G. Brown, M. C. Schraefel, and T. Yildirim, “Intensional HTML,”

in 4th International Workshop PODDP’98, Mar. 1998.

[10] J. Paquet and J. Plaice, “On the design of an indexical query language,” in

Proceedings of the Seventh International Symposium on Lucid and Intensional

Programming, pp. 28–36, 1994.

[11] W. W. Wadge and E. A. Ashcroft, Lucid, the Dataflow Programming Language.

London: Academic Press, 1985.

[12] E. A. Ashcroft and W. W. Wadge, “Lucid – a formal system for writing and

proving programs,” SIAM J. Comput., vol. 5, no. 3, 1976.

[13] E. A. Ashcroft and W. W. Wadge, “Erratum: Lucid – a formal system for writing

and proving programs,” SIAM J. Comput., vol. 6, no. 1, p. 200, 1977.

[14] E. A. Ashcroft and W. W. Wadge, “Lucid, a nonprocedural language with

iteration,” Communications of the ACM, vol. 20, pp. 519–526, July 1977.

[15] E. A. Ashcroft, A. A. Faustini, R. Jagannathan, and W. W. Wadge,

Multidimensional Programming. London: Oxford University Press, Feb. 1995.

ISBN: 978-0195075977.

[16] R. Jagannathan and C. Dodd, “GLU programmer’s guide,” tech. rep., SRI

International, Menlo Park, California, 1996.

[17] R. Jagannathan, C. Dodd, and I. Agi, “GLU: A high-level system for granular

data-parallel programming,” in Concurrency: Practice and Experience, vol. 1,

pp. 63–83, 1997.

[18] S. A. Mokhov, “Towards hybrid intensional programming with JLucid, Objective

Lucid, and General Imperative Compiler Framework in the GIPSY,” Master’s

thesis, Department of Computer Science and Software Engineering, Concordia

University, Montreal, Canada, Oct. 2005. ISBN 0494102934; online at http:

//arxiv.org/abs/0907.2640.

102

http://arxiv.org/abs/0907.2640
http://arxiv.org/abs/0907.2640

[19] P. Grogono, S. Mokhov, and J. Paquet, “Towards JLucid, Lucid with embedded

Java functions in the GIPSY,” in Proceedings of the 2005 International

Conference on Programming Languages and Compilers (PLC 2005), pp. 15–21,

CSREA Press, June 2005.

[20] A. Wu, J. Paquet, and S. A. Mokhov, “Object-Oriented Intensional

Programming: A New Concept in Object-Oriented and Intensional Programming

Domains.” Unpublished, 2007.

[21] A. Wu, J. Paquet, and S. A. Mokhov, “Object-Oriented Intensional

Programming: Intensional Classes Using Java and Lucid.” Unpublished, 2008.

[22] A. Wu, J. Paquet, and S. A. Mokhov, “Object-oriented intensional programming:

Intensional Java/Lucid classes,” in Proceedings of SERA 2010, pp. 158–167,

IEEE Computer Society, 2010. Online at: http://arxiv.org/abs/0909.0764.

[23] W. W. Wadge, “Hammings problem example.” [online], Dec. 2003. http://i.

csc.uvic.ca/home/hei/lup/contents.html.

[24] A. H. Wu, “Semantic checking and translation in the GIPSY,” Master’s

thesis, Department of Computer Science and Software Engineering, Concordia

University, Montreal, Canada, 2002.

[25] J. Paquet, P. Grogono, and A. H. Wu, “Towards a framework for the general

intensional programming compiler in the GIPSY,” in Proceedings of the 19th

Annual ACM Conference on Object-Oriented Programming, Systems, Languages,

and Applications (OOPSLA 2004), (Vancouver, Canada), ACM, Oct. 2004.

[26] J. Paquet and P. Kropf, “The GIPSY architecture,” in Proceedings of Distributed

Computing on the Web, (Quebec City, Canada), 2000.

[27] B. Lu, Developing the Distributed Component of a Framework for Processing

Intensional Programming Languages. PhD thesis, Department of Computer

Science and Software Engineering, Concordia University, Montreal, Canada,

Mar. 2004.

103

http://arxiv.org/abs/0909.0764
http://i.csc.uvic.ca/home/hei/lup/contents.html
http://i.csc.uvic.ca/home/hei/lup/contents.html

[28] L. Tao, “Warehouse and garbage collection in the GIPSY environment,” Master’s

thesis, Department of Computer Science and Software Engineering, Concordia

University, Montreal, Canada, 2004.

[29] A. H. Pourteymour, E. Vassev, and J. Paquet, “Towards a new demand-driven

message-oriented middleware in GIPSY,” in Proceedings of PDPTA 2007, (Las

Vegas, USA), pp. 91–97, PDPTA, CSREA Press, June 2007.

[30] Jini Community, “Jini network technology.” [online], Sept. 2007. http://java.

sun.com/developer/products/jini/index.jsp.

[31] E. I. Vassev, “General architecture for demand migration in the GIPSY demand-

driven execution engine,” Master’s thesis, Department of Computer Science and

Software Engineering, Concordia University, Montreal, Canada, June 2005. ISBN

0494102969.

[32] Sun Microsystems, Inc., “Java Message Service (JMS).” [online], Sept. 2007.

http://java.sun.com/products/jms/.

[33] A. H. Pouteymour, “Comparative study of Demand Migration Framework

implementation using JMS and Jini,” Master’s thesis, Department of Computer

Science and Software Engineering, Concordia University, Montreal, Canada,

Sept. 2008.

[34] B. Han, S. A. Mokhov, and J. Paquet, “Advances in the design and

implementation of a multi-tier architecture in the GIPSY environment with

Java,” in Proceedings of SERA 2010, pp. 259–266, IEEE Computer Society, 2010.

Online at http://arxiv.org/abs/0906.4837.

[35] B. Han, “Towards a multi-tier runtime system for GIPSY,” Master’s thesis,

Department of Computer Science and Software Engineering, Concordia

University, Montreal, Canada, 2010.

104

http://java.sun.com/developer/products/jini/index.jsp
http://java.sun.com/developer/products/jini/index.jsp
http://java.sun.com/products/jms/
http://arxiv.org/abs/0906.4837

[36] L. Duboc, D. S. Rosenblum, and T. Wicks, “A framework for characterization

and analysis of software system scalability,” in ESEC/SIGSOFT FSE

(I. Crnkovic and A. Bertolino, eds.), pp. 375–384, ACM, Sept. 2007.

[37] A. B. Bondi, “Characteristics of scalability and their impact on performance,”

in Proceedings of the 2nd international workshop on Software and performance,

pp. 195–203, 2000.

[38] T. Agerwala and S. Chatterjee, “Computer architecture: Challenges and

opportunities for the next decade,” IEEE Micro, vol. 25, no. 3, pp. 58–69, 2005.

[39] M. M. Michael, J. E. Moreira, D. Shiloach, and R. W. Wisniewski, “Scale-up x

scale-out: A case study using Nutch/Lucene,” in Proceedings of IPDPS, pp. 1–8,

IEEE, 2007.

[40] P. Dube, H. Yu, L. Zhang, and J. E. Moreira, “Performance evaluation of

a commercial application, trade, in scale-out environments,” in MASCOTS,

pp. 252–259, IEEE Computer Society, 2007.

[41] M. D. Hill, “What is scalability?,” SIGARCH Comput. Archit. News, vol. 18,

no. 4, pp. 18–21, 1990.

[42] D. Jin and S. G. Ziavras, “Robust scalability analysis and SPM case studies,”

The Journal of Supercomputing, vol. 43, no. 3, pp. 199–223, 2008.

[43] P. Jogalekar and C. M. Woodside, “Evaluating the scalability of distributed

systems,” IEEE Trans. Parallel Distrib. Syst., vol. 11, no. 6, pp. 589–603, 2000.

[44] Y. Chen, X.-H. Sun, and M. Wu, “Algorithm-system scalability of heterogeneous

computing,” J. Parallel Distrib. Comput., vol. 68, no. 11, pp. 1403–1412, 2008.

[45] E. Cecchet, J. Marguerite, and W. Zwaenepoel, “Performance and scalability of

EJB applications,” in OOPSLA, pp. 246–261, 2002.

[46] D. Green, “Java reflection API.” Sun Microsystems, Inc., 2001–2005. http:

//java.sun.com/docs/books/tutorial/reflect/index.html.

105

http://java.sun.com/docs/books/tutorial/reflect/index.html
http://java.sun.com/docs/books/tutorial/reflect/index.html

[47] Apache River Community, “Apache River.” [online], 2010. http://incubator.

apache.org/river/index.html.

[48] Sun Microsystems, Inc., Sun Java System Message Queue 4.3 Administration

Guide. 4150 Network Circle, Santa Clara, California 95054, U.S.A.: Sun

Microsystems, Inc., 2008.

[49] Sun Microsystems, Inc., Memory Management in the Java HotSpotTM Virtual

Machine. 4150 Network Circle, Santa Clara, California 95054, U.S.A.: Sun

Microsystems, Inc., 2006.

[50] Sun Microsystems, Inc., Java SE Monitoring and Management Guide. 4150

Network Circle, Santa Clara, California 95054, U.S.A.: Sun Microsystems, Inc.,

2006.

[51] MSDN, “Virtual address space.” [online], Dec. 2010. http://msdn.microsoft.

com/en-us/library/aa366912(v=VS.85).aspx, last viewed January 2011.

[52] Sun Microsystems, Inc., Sun Java System Application Server Enterprise Edition

8.1 Performance Tuning Guide. 4150 Network Circle, Santa Clara, California

95054, U.S.A.: Sun Microsystems, Inc., 2005.

[53] Oracle, “Frequently asked questions about the Java HotSpot VM.” [online], 2005.

http://www.oracle.com/technetwork/java/hotspotfaq-138619.html, last

viewed January 2011.

[54] MSDN, “Thread stack size.” [online], Dec. 2010. http://msdn.microsoft.com/

en-us/library/ms686774(v=vs.85).aspx, last viewed January 2011.

106

http://incubator.apache.org/river/index.html
http://incubator.apache.org/river/index.html
http://msdn.microsoft.com/en-us/library/aa366912(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa366912(v=VS.85).aspx
http://www.oracle.com/technetwork/java/hotspotfaq-138619.html
http://msdn.microsoft.com/en-us/library/ms686774(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms686774(v=vs.85).aspx

	List of Figures
	List of Tables
	Introduction
	General Intensional Programming System
	Intensional Programming and GIPSY
	The GIPSY Framework

	Previous Work on the GIPSY Runtime System
	Pre-Multi-Tier Era
	The Multi-Tier Architecture

	Scalability Evaluation
	Definition of Scalability
	Scalability Metrics
	Scalability Evaluation of the GIPSY Runtime System

	Thesis Overview
	Scope
	Problem Statement
	Contributions
	Outline

	Development of the GIPSY Runtime System
	Requirement Analysis
	Design
	Configuration System
	GIPSY Instance Bootstrap Process
	GIPSY Node Registration
	GIPSY Tier Allocation and Deallocation

	Implementation
	Refactoring the Jini DMS and the JMS DMS
	Implementation of the Jini and the JMS DSTs
	Implementation of the GMT and the GIPSY Node

	Tests
	GIPSY Instance Bootstrap and GIPSY Node Registration
	GIPSY Tier Allocation and Deallocation

	Summary

	Scalability Evaluation
	Overview
	Space Scalability
	Space Scalability Test: Demand Storage
	Space Scalability Test: Maximum Demand Size
	Summary

	Space-Time Scalability
	Space-Time Scalability Test: Memory Impact
	Space-Time Scalability Test: Signature Matching Speed
	Summary

	Structural Scalability
	Structural Scalability Test: GMT
	Structural Scalability Test: DST
	Summary

	Load Scalability
	Load Scalability Test: All the Tiers in One GIPSY Node
	Load Scalability Test: DWTs Scaled Out in One GIPSY Node
	Load Scalability Test: DWTs Scaled Out in Multiple GIPSY Nodes
	Load Scalability Test: Two DGT Nodes for the JMS DST
	Summary

	Conclusion

	Conclusions and Future Work
	Conclusions
	Limitations and Future Work

	Bibliography

