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ABSTRACT

Integrating SAT with MDG for Efficient Invariant Checking

Khaza Anuarul Hoque

Multiway Decision Graph (MDG) is a canonical representation of a subset of

many-sorted first-order logic. It generalizes the logic of equality with abstract types

and uninterpreted function symbols. The area of Satisfiability (SAT) has been the

subject of intensive research in recent years, with significant theoretical and practi-

cal contributions. From a practical perspective, a large number of very effective SAT

solvers have recently been proposed, most of which based on improvements made

to the original Davis-Putnam algorithm. Local search algorithms have allowed solv-

ing extremely large satisfiable instances of SAT. The combination between various

verification methodologies will enhance the capabilities of each and overcome their

limitations. In this thesis, we introduce a methodology and propose a new design

verification tool integrating MDG and SAT, to check the safety of a design by in-

variant checking. Using MDG to encode the set of states provide powerful mean

of abstraction. We use SAT solver searching for paths of reachable states violating

the property under certain encoding constraints. In addition, we also introduce an

automated conversion-verification methodology to convert a Directed Formula (DF)

into Conjunctive Normal Form (CNF) formula that can be fed to a SAT solver. The

formal verification of this conversion is conducted within the HOL theorem prover.

Finally, we implement and conduct experiment on some examples along with a case

study to show the correctness and the efficiency of our approach.
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Chapter 1

Introduction

1.1 Motivation

Faulty systems (bugs in digital systems) can be very dangerous and very expensive;

especially for those which have safety-critical applications such as Magnetic Res-

onance Imaging (MRI) machines, space shuttles, microprocessors and so on. For

example, bugs in Therac-25 machine caused 3 deaths and 3 serious injuries in 1985.

In 1994, FDIV bug in Intel pentium processor caused them about $500 million USD

followed by Mars polar lander loss in 1996 which cost NASA $165 million USD. There

is a great advantage in being able to verify the correctness of such systems, whether

they are hardware, software, or a combination. In the case of safety-critical systems,

this is most obvious, but also applies to those that are commercially-critical, such

as mass-produced chips. Formal verification methods have quite recently become

usable by industry and there is a growing demand for professionals able to apply

them [58]. Detection of bugs in design involves extra effort, time and cost. The

overhead is even worse if the bug is detected late in the design process increasing

the overall cost of the chip as well. The traditional debugging technique is simu-

lation. However, due to the increasing size and complexity of VLSI circuits, it is

impossible to simulate large designs properly. To overcome these limitations, formal
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verification comes into play as a complement to simulation to detect errors in the

design as early as possible.

Formal verification techniques have origins in the field of applied mathematics

and have been successfully used in the past to prove that the implementation of a

design meets its specification. These techniques can be categorized into two main

groups: (1) state exploration based techniques [51], namely model checking and

equivalence checking, and (2) deductive reasoning based techniques, namely theo-

rem proving. Both of these techniques have their own strengths and weaknesses.

Equivalence and model checkers are automatic tools and can be used by an engineer

with no special knowledge about formal methods. These techniques, however, suffer

from the state space explosion problem [36]. On the other hand, verification using

theorem proving with higher-order-logics is not an automatic technique but can be

applied to larger sized problems. Strengths and weakness of both, state exploration

method and deductive theorem proving are summarized in Table 1.1 [11].

Table 1.1: Deductive theorem proving vs. state exploration method

Method State exploration method Deductive method

Automation completely automatic interactive

Domain size finite system infinite system

(large) (complex)

Debugging generates expert based

counter-example

Multiway Decision Graphs (MDGs) [25], are a special kind of decision diagrams

that subsumes Binary Decision Diagrams (BDDs) and extends them by canonically

and compactly representing a subset of first-order functions. The MDG system is

a decision diagram-based verification tool, primarily designed for hardware verifi-

cation. MDG tool supports both equivalence checking and model checking. With

MDGs, a data value is represented by a single variable of an abstract type and oper-

ations on data are represented in terms of an uninterpreted functions. MDGs consist
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of a set of algorithms. The specification and the implementation of the design are

described using Hardware Description Languages (HDL) and then translated into

the decision diagrams via intermediate languages. The algorithms in the system are

used to efficiently and automatically deal with the decision diagrams so as to obtain

a correct result.

Satisfiability Checking (SAT)-based tools to perform various forms of model

checking has achieved a lot of attention these days [29, 9], as they are less sensitive

to the problem sizes and the state explosion problem of classical Binary Decision Di-

agram (BDD)-based [21] model checkers. Expressing transition relation using Con-

junctive Normal Form (CNF) along with SAT is an alternative to decision graphs

and BDD-based approach. Such an approach, performance wise, is less sensitive to

the problem size. As a result, many researchers have developed methods for per-

forming Bounded Model Checking (BMC) [40, 71] using SAT. The common theme

in these works is to convert the problem of interest into a SAT problem, by figuring

out an appropriate propositional Boolean formula, and to utilize other non-canonical

representations of state sets. These methods exploit the ability of SAT solvers to find

a single satisfying solution, when it exists. In the recent years the SAT solver tech-

nology has improved significantly and a number of sophisticated packages are now

available. Some of the well known state-of-the-art SAT solvers include CHAFF [62],

GRASP [59] and SATO [80]. Most of the model checking techniques, in their im-

plementation, involve state set manipulations. The state set manipulation problem

can be transformed into a SAT problem. SAT solvers, thus, have the potential of

enormously boosting the speed and applicability of model checking techniques.

In [9], an overview of a very interesting methodology integrating SAT and

MDG model checker tool, was presented by the authors with preliminary experi-

mental results. They used a rewriting based SAT solver to prune the transition

relation of the circuits to produce a smaller one that is fed to the MDG model

checker. The basic idea was to use the SAT solver as a reduction engine within
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the MDG model checker tool [25]. In our work, we propose a new methodology to

build a verification tool for invariant checking. An invariant is a liner time property

that is given by a condition φ for the states and requires that φ holds for all the

states. For our proposed methodology we use SAT [33] as a verification engine for

MDG models. MDG as data structure, for representing transition systems or set

of states, provide a powerful means for abstraction in order to suit large models

intended for model checking. As an alternative of using MDG as a stand alone tool

for invariant checking, we explore the benefits of combining SAT and MDG in our

proposed methodology- for a new verification tool.

1.2 Formal Verification Techniques

Formal verification is a technique to prove mathematically that an implementation

satisfies a given set of specification. The implementation(description of the design)

to be verified can be described at different level of abstraction which leads in to

different verification methods. The class of the implementation system or circuit

to be verified is another issue. For example different verification approaches may

be required for combinational/sequential, synchronous/asynchronous, pipelined or

non-pipelined circuits. The correctness of the system is determined with respect to

properties derived from specification. In practice, implementation and specification

both are needed to be modeled in the tool. Then formal verification algorithm of

that tool is applied to check the correctness of the system. A counter example is

generated to trace error/errors, if the verification fails.

Although formal verification techniques use mathematical reasoning to estab-

lish that an implementation meets the specification, such correctness proof cannot

guarantee that a real device will never malfunction. An actual device may still show

unintended behavior, even if the hardware design is proved correct using formal ver-

ification tool. Wrong specification can play a major role in this or defects in physical
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fabrication can cause this problem too. In formal verification, a model of the design

is verified rather than a real physical implementation. As a result, a fault in the

modeling process can result in false negatives (design errors that do not exist).

Formal verification techniques can be divided into 3 categories, namely:

• Theorem proving

• Equivalence checking

• Model checking

1.2.1 Theorem Proving

In theorem proving, both the implementation and specification is described in formal

logic. The correctness is obtained by mathematically proving their relationship

formed as a theorem [48]. The logic is characterized by a proof system which refers

to a set of axioms and a set of inference rules. Inference rules are applied until the

desired theorem is proven. HOL(Higher Order Logic), ISABELLE, PVS (Prototype

Verification System) and ACL2 [57, 64, 68, 50] are some of the high performance

theorem provers. Unfortunately, using theorem prover requires expertise. Using

theorem prover for verification is a white box approach, which means user is expected

to know the whole design. It is not fully automated and requires a large amount

of time on the part of the user in developing specifications of each component and

in guiding the theorem prover through a large set of lemmas. A theorem prover

may sometimes provide an insight into the reasons why a proof failed but is unable

to provide counter-example in case the proof fails. The higher-order logics used in

theorem proving are expressive. As a result, they allow modeling and verification of

very complex systems and circuits very easily. Because they require a considerable

interactive effort, theorem provers have less practice in industry and are mainly used

for safety critical applications.
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1.2.2 Equivalence Checking

Equivalence checking is a method to prove that two designs, represented at two

different levels of abstraction of the same system are functionally equivalent [48]. A

possible common scenario of equivalence checking can be comparing a circuit’s gate-

netlist description with its RTL description. Equivalence checking is usually divided

into two classes: Combinational equivalence checking and Sequential equivalence

checking. In combinational equivalence checking, the circuits to be compared are

converted into canonical representation of Boolean functions, usually BDDs [21]

which are then structurally compared. MDG [38] in academia, Synopsys Formality

and Cadence Conformal [6] in the industry are two examples of tools that offer

combination equivalence checking. On the other hand, in sequential equivalence

checking, the given two designs are represented using state-encoding and later on the

equivalence is then established by building the product finite state machine followed

by checking whether the output is invariant for any initial states of the product

machine. Sequential equivalence checking can verify between RTL and behavioral

models because it only considers the behaviors of the models while ignoring details

of the implementation. However, state space explosion problem restricts it from

checking large designs. MDG and VIS [7] are examples of tools which can perform

sequential equivalence checking.

1.2.3 Model Checking

Model checking as a verification technique was developed independently by Clarke

and Emerson [36] and by Quielle and Sifakis [66] in the early 1980s. In model

checking, a system is modeled as a set of states together with a set of transitions

between states that represents how the system behavior evolves from one state to

another over time, in response to internal and external stimulus. Model checking

tools allow automatic verification of properties expressed in some temporal logic. In
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case the verification fails, a counter example is generated that helps in tracing bugs

in the design.

Structure
M

Model Checker

(Is M |= p ? )

Desired 
specfication

p

Behavioral or 
RTL Model

Yes
or

No + counter Example

Figure 1.1: Model-checking method

Just like other verification techniques, model checking also has its own advan-

tages and disadvantages. Model checker has two important advantages. First, model

checking is fully automatic. Once the correct design of the system and the required

properties has been fed in, it requires no further information or interaction from the

user. Second, if the property fail to hold, the verification process is able to produce

a counter-example (i.e. an instance of the behavior of the system that violates the

property) which is extremely useful in helping the human designers pinpoint and fix

the flaw. On the other hand, model checkers are unable to handle very large designs

due to the state space explosion problem [36]. Another drawback is the problematic

description of specifications as properties, this description sometimes may not give

full system coverage.
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SPIN [5], SMV [4], NuSMV [2], and MDG tool [77] are some of the commonly

used model checking tools. They take as input, design description in a structural

form along with system specifications or properties described in an appropriate

temporal logic, and automatically check to see whether the system satisfies the

property.

Since the model is usually a finite-state transition system, the problem of

model checking is considered to be decidable. The design or model is formalized in

terms of a state machine (Transition System), or a Kripke [49] structure:

M = (P, S, I, R, L)

where M is a state machine (model) with transitions to describe the circuit behavior,

P is a set of atomic propositions, S is a finite set of states, I ⊆ S is a set of initial

states, R ⊆ S × S is a transition relation that must be total (i.e. for every s ∈ S

there exists s′ ∈ S such that (s, s′ ∈ R)), and L : S → 2P maps each state to the

set of atomic propositions true in that state.

The property φ is formalized as a logical formula that the machine should

satisfy. The verification problem is stated as checking the formula φ in the model

M :

M � φ

If the model M is represented as a transition relation, then the size of the model is

limited to the number of states that can be stored in the computer memory. This

is about a few million states with the current state-of-the-art technology. Recently,

the use of efficient state representations and manipulations using BDDs and/or SAT

solving techniques has increased the size of problems that can be handled with model

checking techniques by an order of magnitude.

An alternate approach based on a new class of decision graphs known as the

Multiway Decision Graph (MDG) was proposed by Cerny et al. in 1997 [30]. This
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approach is capable of dealing with the state-space explosion problem very effec-

tively. In MDG based model checking, data signals are denoted by abstract vari-

ables, and data operators are represented by uninterpreted function symbols. As

a result, a verification based on abstract-implicit-state-enumeration can be carried

out independently of data path width. This results in a substantial reduction of the

state space size. Table 1.2 shows [11] the abstraction level of MDG corresponding

to traditional methods. A model-checking methodology typically consists of three

major parts: a specification language, a system modeling language and a set of algo-

rithms to perform model-checking. In existing MDG methodology, these are LMDG

[77], MDG-HDL [79] and MDG-tool [77, 78] respectively.

Table 1.2: Raising the abstraction level

Conventional method Multiway Decision Graph

ROBDD [21] MDG

Finite State Machine Abstract State Machine

Implicit state enumeration [26] Abstract state implicit enumeration of ASM

CTL based model-checking Subset of first-order abstract CTL

1.3 Thesis Contribution

A desirable approach is to develop synergies between various verification method-

ologies, and between design and verification, in order to overcome the limitations

and to enhance the capabilities of each and our work is motivated by this goal.

Traditional invariant checking using MDG tool is the direct use of MDG reacha-

bility analysis algorithm [79]. We propose a new invariant checking methodology

integrating SAT with MDG. SAT has already been integrated with MDG tool as

a reduction engine [9]. In our work, we integrate SAT as a verification engine, to

enhance the performance of invariant checking. Our study and implementation of
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the methodology suggest a new verification tool combining the strengths of both:

MDG and SAT. In terms of reviews of related work, proposed methodology and

discussions, we believe our contribution can be specified as:

• We proposed a SAT based invariant checking methodology. For the complete-

ness of the methodology:

1. We implemented a Preprocessor, an automated uninterpreted function

removal method to impose Boolean encoding on Directed Formula (DF)

with adequate encoding constraints.

2. An Encoder is also implemented to apply a linear CNF conversion al-

gorithm on a Boolean Directed Formula. The Encoder also generates a

correctness formula to be fed to a SAT solver.

• We proposed a technique to formally verify the correctness of CNF conversion

Directed Formula and also implemented a goal generator that takes the input

from the Preprocessor and generates a goal. Later on, an automated call to

the HOL [57] theorem prover is placed to check the goal.

1.4 Thesis Outline

The rest of the thesis is organized as bellow:

• In Chapter 2, we present some of the related work in the area of Equality with

Uninterpreted function removal, different CNF conversion algorithms and also

some SAT based Verification approaches.

• In Chapter 3, we review the basics of temporal logic and specification, the

structure of Multiway Decision Graph (MDG), MDG-tool followed by MDG

model checking approach. Some basic review on Boolean SAT solvers, HOL

theorem prover and normal forms concludes the chapter.
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• In Chapter 4, we propose our methodology to integrate SAT with MDG and

provide step by step description of the methodology. Also we present the

methodology to formally verify the correctness of the CNF conversion algo-

rithm.

• In Chapter 5, we present some experimental results showing the correctness of

our conversion-verification approach. Also we present the case study, to show

the efficiency of our proposed SAT-MDG invariant checking methodology.

• We conclude the thesis in Chapter 6 and provide some future research direc-

tions.
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Chapter 2

Related Work

In this Chapter, we present some related research work in the area of SAT based

verification. We divide the related works in three different categories. The first

category focuses on different techniques to translate the formulas in Equality with

Uninterpreted Functions(EUF) to propositional logic. The second category describes

several algorithms for the conversion of propositional formula to CNF. In last and

final category we discuss some related SAT based verification techniques.

2.1 EUF Elimination

Their exist two possible ways to eliminate EUFs [69], while enforcing their prop-

erty of functional consistency, Ackermann constraints [12] and nested If-Then-Else

operators (ITE) [67, 74]. In Ackermann’s approach, the UF was replaced with a

new term variable and the next application of UF with respect to the previous one

was enforced by extending the resulting formula with constraints. Such constraints

added for each pair of applications of that UF. Bryant and Velev presented an ap-

proach to eliminate the applications of UF with nested ITEs in [67]. In nested

ITE scheme, the first application of the UF is still replaced by a new term variable.

However the subsequent applications are eliminated by introducing nested ITEs with
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new term variables while preserving functional consistency. We prefer nested ITE

scheme which directly captures the functional consistency and readily exploit the

maximal diversity property while Ackermann’s can not [67]. For our methodology,

we use the nested-ITE approach. However we add few small modifications to match

the MDG directed formula syntax.

2.2 CNF Conversion

Lack of fast and efficient CNF generation algorithm has always been a bottle neck for

CNF based SAT solvers. Hence researchers paid much attention to this point. Until

recently [20], most of the CNF generation algorithms used in practice were minor

variations of Tseitin linear time algorithm [73]. Another CNF conversion algorithm

came from Velve [75] showing an efficient CNF generation technique with identifying

gates with fan-out count of 1 and merging them with their fan-out gate to generate

single set of equivalent CNF clauses. Nested ITE chains where each ITE is used

only as else argument of the next ITE are similarly merged and represented with a

single set of clauses without introducing intermediate variables. Such approach is

good for pipelined machine verification problems, identifying certain patterns aris-

ing in formulas. Another approach for CNF generation is based on technological

mapping [32] and its implemented in ABC [72]. This algorithm computes the map-

ping sequence, partial functions from And-Inverter-Graph (AIG)[16] nodes in order

to cut of the graph for minimization of the heuristics cost function. CNF is then

generated for the cuts of the nodes with respect to the final mapping by using their

sum of products representation. Very recently an algorithm was presented [23] for

converting Negation, ITE, Conjunction and Equivalence (NICE dags) to CNF. A

new data structure called NICE dag subsume AIGs.

All the approaches described above use an intermediate representation or data

structure for the boolean formula (either RBC, AIGER or NICE dag). The MDG
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DF is itself a DAG, so intermediate DAG representation is not required to facilitate

the conversion. The most interesting thing we observed is in most of the papers

a ”paper and pencil” sketch was given for the proof of their conversion approach.

This motivated us to build an automated tool for the verification of conversion as

well.

2.3 SAT and BDD Based Verification

Most of the efforts today are spent on developing Satisfiability Checking (SAT) based

tools to perform several forms of model checking as they are less sensitive to the

problem size and the state explosion problem of classical Binary Decision Diagram

(BDD) based model checkers. As a result, many researchers have developed routines

for performing Bounded Model Checking (BMC) [40][71] using SAT.

BDD and SAT based verification have been a major field of interest for re-

searchers for a long time. Given that both techniques perform an implicit search in

the underlaying Boolean space, it is no surprise that different approaches have been

explored recently to combine both of them for target applications. Their benefits

have been combined in many applications such as BMC[41, 8] and model checking

[46]. In [47], the authors used BDDs to represent state sets, and a CNF formula to

represent the transition relation. All valid next state combinations are enumerated

using a backtracking search algorithm for SAT that exhaustively visits the entire

space of primary input, present state and next state variables. However, rather than

using SAT to enumerate each solution all the way down to a leaf, they invoked BDD-

based image computation at intermediate points within the SAT decision procedure,

which effectively obtains all solutions below that point in the search tree. In a sense,

their approach can be regarded as SAT providing a disjunctive decomposition of the

image computation into many subproblems, each of which is handled in the standard

way using BDDs. Model checking techniques for security protocol analysis based on
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reduction to Boolean logic has been explained in [15]. The main idea was, given a

protocol description in multi-set formalism and an integer k, to build propositional

formulas whose models correspond to attacks on the protocol. Propositional formu-

las are checked for satisfiability to indicate an attack on the protocol. For checking

invariant properties of the form AGp (p is globally true along all paths) of transi-

tion systems using Induction [29], Deharbe and Moreira modified a standard model

checking algorithm. Set of states and image computation are expressed using BDD.

Velev presented an indirect method to automatically prove the safety and liveness

of a pipelined microprocessor. The term-level simulator TLSim [76], used for the

symbolic simulation of the implementation and specification and a EUFM correct-

ness formula is produced. The decision procedure EVC [76] exploits the positive

equality, performs some other optimizations and converts the EUFM formula to an

equivalent. An efficient SAT solver proves the formula to be a tautology in order for

the implementation to be correct. In [70], A safety property checking technique of

finite state machines using SAT solver was presented. Their approach demonstrates

the practicality of combining a SAT-solver based safety property checking of in a

real design flow using induction. All the works described above relies on BDD based

state encoding,which suffers from state explosion for larger designs. In our case, We

use MDG to encode the set of sates to get rid of the state explosion problem.

SAT and MDG integration was proposed in [9], while using SAT solver as a

reduction engine. On the other hand, our proposed SAT based invariant checking

methodology for MDG model, uses a SAT solver as a verification engine. More-

over, we implemented SAT encoding technique (CNF conversion) for MDG Direct

formula (DF) and proposed another automated methodology to formally verify the

correctness of the conversion. For the conversion part, we use Tseitin [73] approach

while introducing ”fresh variables” only for AND gates and for the verification part

we use the HOL [57] theorem prover. Implementation of SAT for model checking

with Multiway Decision Graph (MDG) distinguishes our approach from others.
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In this Chapter, we presented some of the works related to uninterpreted

function removal, different techniques of CNF conversion followed by some works

related to SAT based verification. Also, we also mentioned how our work differs

from those. In next Chapter, we present some preliminaries required to understand

our contribution better.
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Chapter 3

Background

In this chapter, we give a brief introduction to the Temporal Logic, Multiway De-

cision Graphs (MDGs) with MDG tool, followed by some basics of Boolean SAT

solvers, the HOL theorem prover and normal forms. The intent is to familiarize the

reader with the main concepts and notations that are used in the rest of the thesis.

Section 3.1 presents temporal logic and how they are specified with LTL, CTL and

CTL*. Section 3.2 describes the underlying formal logic of MDGs, the Abstract

State Machine (ASM) and the MDGs structure. Introduction to MDG tool, MDG

model checker and invariant specification in MDG tool is described in Section 3.3. A

brief introduction to SAT solver and SAT solving algorithm is described in Section

3.4. Section 3.5 starts by a basic description of higher-order logic concepts as well as

the proof methods supported by the HOL theorem prover. We conclude the chapter

in Section 3.6 describing the basic format of Conjunctive Normal Form(CNF) and

Disjunctive Normal Form(DNF).

3.1 Temporal Logic and Specification

Desired specifications in model checking methods, are usually written in proposi-

tional temporal logic formulae [65]. This allows the user to write propositions with
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respect to time. The model of time is represented either in linear time (LTL) [55, 48]

or branching time (CTL) [24]. A logic that combines the expressive power of LTL

and CTL is known as CTL* which is also known as full branching-time logic.

3.1.1 Linear Time Logic

The structure of time in linear time logic, is a totally ordered set (S, <), isomorphic

to the set of natural numbers (N, <) [31]:

If AP is a set of atomic propositions, a linear time structure is defined as M(S, x, L),

where:

• S is a set of states;

• x : N → S is an infinite sequences of states;

• L : S → 2AP is a labeling of each state with the set of atomic propositions in

AP at the state.

Following is an example (Fig. 3.1):

Model M(S, x, L)

x:

S = { s0, s1, s2, …}

p p q r u

s0 s1 s2

AP = {p, q, r, u, v}
L(s0) = {p}, L(s1) = {p, q},  L(s2) = {r, u}, … 

. . .

Figure 3.1: Model Structure

In propositional linear temporal logic (PLTL), one can use propositional logic

as building block and apply temporal operators to specify properties. The PLTL
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syntax is defined as a least set of formulae generated by the following rules [31]:

1. Each atomic proposition is a formula;

2. If p and q are formulae then ¬p and p ∧ q are formulae;

3. If p and q are formulae then pUq and Xp are formulae.

The semantics of a formula p of PLTL with respect to a linear-time structure

M(S, x, L) is defined below. Here, we write M, x |= p iff p ∈ L(s0) for atomic

proposition p to mean that in structure M formula p is true on timeline

x; xi denotes the suffix path si, si+1, si+2, and so forth.

1. M, x |= p iff p ∈ L(s0).

2. M, x |= ¬p iff not M, x |= p.

3. M, x |= {p ∧ q} iff M, x |= p and M, x |= q.

4. M, x |= Xp iff M, x1 |= p.

5. M, x |= p U q iff ∀j(M, xi |= q, and ∀0<i<j(M, xk |= p)).

6. M, x |= Fp iff ∃j(M, xj |= p).

7. M, x |= Gp iff ∀j(M, xj |= p).

A PLTL formula p is satisfiable iff there exists a linear-time structure M =

(S, x, L) such that M, x |= p, and any such structure defines a model of p.

Examples are as following (Fig. 3.2):

Fp Gp 

Xp pUq

p

p

p p p p

p p p q

Figure 3.2: LTL formulae and time.
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3.1.2 Computation Tree Logic

Computation tree logic (CTL) is based on branching time temporal logic (BTTL).

It was first proposed by Clarke and Emerson [35]. In CTL, the time is modeled as a

branching tree-like structure where each moment may have many different successor

moments. Along each path, the timeline is isomorphic to the natural number. To

specify a property in CTL, we simply apply the path operators along with temporal

operators to the propositional building blocks. There are two strict restrictions in

CTL:

1. Only single linear time operator F, G, X or U can follow a path quantifier;

2. Time operators cannot be combined directly with the propositional connec-

tives.

The syntax of CTL is governed by the following rules:

1. Every proposition is a CTL formula;

2. If p and q are CTL formula, then so are p, (p∧q), AXp, EXp, A(pUq), E(pUq).

The remaining operators can be derived from the above rules. The truth of a formula

is determined on a given state and not on a branch of the time structure. The

structure resembles an infinite computation tree. A temporal formula p is satisfied

by a model M with transitions T, if it is true for all the initial states s0 of the model.

The semantics of CTL formula is given below:

1. M, s0 |= p iff p ∈ L(s0).

2. M, s0 |= ¬p iff not M, s0 |= p.

3. M, s0 |= {p ∧ q} iff M, s0 |= p and M, s0 |= q.

4. M, s0 |= AXp iff for all states s
′
0 with (s0, s

′
0) ∈ T , M, s

′
0 |= p.
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5. M, s0 |= EXp iff for some state s
′
0 with (s0, s

′
0) ∈ T , M, s

′
0 |= p.

6. M, s0 |= A(pUq) iff for all paths (s0, s1, . . . ), there exists a j > 0 with M, sj |=

q, and M, si |= p holds ∀0 ≤ i < j.

7. M, s0 |= E(pUq) iff for some path (s0, s1, . . . ), there exists a j > 0 with M, sj |=

q, and M, si |= p holds ∀0 ≤ i < j.

Figure 3.3 shows intuitive meanings of some CTL formulae.

EG f EF ff

f

f

f

AG f

AF f

f

f f f

f

f ff

f f f f f

AXf EXf

f f f f

Figure 3.3: CTL formulae and time.

3.1.3 Full Branching-time Logic

Full branching-time logic is the class of logic formulas that combines the branching-

time and linear-time operators. In CTL*, a path quantifier can be a prefix to an

assertion composed of arbitrary combination of the temporal operators: F, G, X and

U. Like CTL, the tree is formed by designating an initial state s0 in model M, and
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then unwinding the structure into an infinite tree with s0 as the root. The semantics

of the path quantifiers and temporal operators remain the same.

3.1.4 Categories of Specification

The specifications are written as properties of the system. They are categorized as

follows:

1. Safety property – ensures that nothing ‘bad’ will ever happen. A temporal logic

formula is a safety property if it can be written as AGϕ(in CTL or CTL*) or

Gφ(in PLTL), where ϕ is a propositional frormula.

2. Liveness property – ensures that something ‘good’ will eventually happen.

Depicted as |= Fp or |= AFp, where p will eventually be true at some point in

the future.

3. Precedence property – ensures precedence order of events. Depicted as |= pUq,

where q is true in present time or p is true until q becomes true.

Among the three, safety property is the most used when writing specifications of a

design under verification.

3.2 Multiway Decision Graph

3.2.1 Abstract State Machine

In MDG, a state machine is described using finite sets of input, state and output

variables, which are pair-wise disjoint. The behavior of a state machine is defined by

its transition/output relations including a set of reset states. An abstract descrip-

tion of the state machine, called Abstract State Machine (ASM) [37], is obtained

by letting some data input, state or output variables be of an abstract sort, and
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the datapath operations be uninterpreted function symbols. As ROBDDs are used

to represent sets of states and transition/output relations for finite state machines

(FSM), MDGs are used to compactly encode sets of (abstract) states and transi-

tion/output relations for ASMs. This technique replaces the implicit enumeration

technique[27] with the implicit abstract enumeration [25].

3.2.2 Structure

MDGs are graph representation of a class of quantifier-free and negation-free first-

order many sorted formulae. It subsumes the class of Bryant’s (ROBDDs) [19]

while accommodating abstract data and Uninterpreted Function symbols. MDG

can be seen as a Directed Acyclic Graph (DAG) with one root, whose leaves are

labeled by formulae of the logic True (T) [25], such that:

1. Every leaf node is labeled by the formula T, except if the graph G has a single

node, which may be labeled Tor F.

2. The internal nodes are labeled by terms, and the edges issuing from an internal

node v are labeled by terms of the same sort as the label of v.

Following is an example: Let graph G represent Boolean formula(¬x∧F0)∨(x∧F1),

Where, F0 and F1 are the Boolean formulas represented by the sub-graphs G0 and

G1 respectively. In many sorted first-order logic the graph G can be viewed as

representing a formula: ((x = 0) ∧ F0) ∨ (x = 1) ∧ F1)).

Three possible generalizations of G and the corresponding formulas are shown in

(Fig. 3.4. F0, F1 and F2 are first-order formulas represented by the sub-graphs G0,

G1 and G2 respectively:

1. From G to G
′
: x ∈ {0, 1} → x ∈ {0, 2, 3}, and Graph G

′
represents the

formula

((x = 0) ∧ F0) ∨ ((x = 2) ∧ F1) ∨ ((x = 3) ∧ F2).
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2. From G to G
′′
: x ∈ {0, 1} → x ∈ {a, y, f(a, y)}, and Graph G

′′
represents the

formula

((x = a) ∧ F0) ∨ ((x = y) ∧ F1) ∨ ((x = f(a, y)) ∧ F2).

3. From G to G
′′′
: x ∈ {0, 1} → g(x) ∈ {0, 2, 3}, and Graph G

′′′
represents the

formula

((g(x) = 0) ∧ F0) ∨ ((g(x) = 2) ∧ F1) ∨ ((g(x) = 3) ∧ F2).

XBoolean variable

G:

Boolean Constant 0 1

G0 G2

X
G’

Sort    :[0,1,2,3,4] 

G0 G1 G2

Concrete variable of 

0

2

3 Individual constant of 

X

G0 G1 G2

Sort    :[0,1,2,3,4] G’’’

0

2

3

Cross operator of 

Individual constant of 

X
G’’

G0 G1 G2

a
y

f(a,y)

Sort     : abstract
Abstract variable of

Generic constant of

Abstract variable of

Abstract term of

Figure 3.4: BDDs to MDGs.

The above generalized decision graph G
′
, G

′′
and G

′′′
are examples of Multiway

Decision Graphs (MDGs).

As in ordinary many-sorted First Order Logic (FOL), terms are made out of

sorts, constants, variables, and function symbols. Two kinds of sorts are distin-

guished: concrete and abstract. Concrete sort is equipped with finite enumerations,

lists of individual constants. Concrete sorts are used to represent control signals.
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Abstract sort has no enumeration available and represents a data signal. MDGs

represent and manipulate a certain subset of first order formulae, which we call

Directed Formulae (DFs).

Sort S ::= S | S

Abstract Sort S ::= α | β | γ | · · ·

Concrete Sort S ::= α | β | γ | · · ·

Generic Constant C ::= a | b | c | · · ·

Concrete Constant C ::= a | b | c | · · ·

Variable X ::= V | V

Abstract Variable V ::= x | y | z | · · ·

Concrete Variable V ::= x | y | z | · · ·

Directed Formulae DF ::= Disj | � | ⊥

Disj ::= Conj ∨Disj | Conj

Conj ::= Eq ∧ Conj | Eq

Eq ::= A = C(A ∈ T (F , V ))

|V = C

|V = A(A ∈ T (F ,X ))

Let F be a set of function symbols and V a set of variables. We denote the set of

terms freely generated from F and V by T (F ,V). The syntax of a Directed Formula

is given by the grammar given above. [13]. The underline is used to differentiate

between the concrete and abstract variables.

The vocabulary consists of generic constants, concrete constants (individuals),

abstract variables, concrete variables and function symbols. DFs are always disjunc-

tions of conjunctions of equations or � (true) or ⊥ (false). The conjunction Conj

is defined to be an equation only (Eq) or a conjunction of at least two equations.

Atomic formulae are the equations, generated by the clause Eq. An equation can be
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an equality of concrete terms and an individual constant, equality of a concrete vari-

able and an individual constant, or equality of an abstract variable and an abstract

term.

A directed formula DF of type U → V is a formula in Disjunctive Normal

Form (DNF) plus � (truth) and ⊥ (false), where U and V are two disjoint sets

of variables. Just as ROBDD must be reduced and ordered, MDGs must obey a

set of well-formedness conditions given in [25]. DFs are used for two purposes: to

represent sets (viz. sets of states as well as sets of input vectors and output vectors)

and to represent relations (viz. the transition and output relations) as well as the set

of possible initial states and the sets of states that arise during reachability analysis.

ALU: x0

y yyy

zero sub(x1,x2) add(x1,x2) inc(x1)

0
1 2

3

alu y
x1

x2

x0
T

Figure 3.5: MDG of an ALU

Figure 3.5 shows MDG reforestation of a simple Arithmetic Logic Unit (ALU).

Depending on the value of selection signal x0 the output value is chosen between the

addition or the subtraction of x1 and x2, increment of x1 or the output value can be

zero as well. The Directed Formula(DF) representation of the MDG is as following:

[(x0 = 0) ∧ y = zero]∨

[(x0 = 1) ∧ y = sub(x1, x2)]∨

[(x0 = 2) ∧ y = add(x1, x2)]∨

[(x0 = 3) ∧ y = inc(x1)]∨
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3.3 The MDG-Tool

The MDG-tool [79] is a well known academic tool. It supports invariant check-

ing, sequential equivalence checking, and model checking. The MDGs tool uses a

Prolog-style hardware description language called the MDG-HDL(MDG-HDL) [25].

MDG-HDL supports structural, behavioral and mixed styles of coding. A structural

specification is usually a netlist of components connected by signals. A behavioral

description consists of a tabular representation of the transition and output relations

in the form of a truth table.

M odelChecking
Equivalence Checking
InvariantChecking

M DG Construction

Property
specification

Algebraic
Specification

Variable
Order

Structural
M odel

Behavioral
M odel

Yes/No (CounterExam ple)

Figure 3.6: The Structure of the MDGs-tool

The first step in the verification is to describe the design specifications and

implementations using MDG-HDL, as shown in Figure 3.6. An MDG-HDL algebraic

specification consists of sorts, function types, and generic constants. Rewrite rules

needed for interpreting function symbols are also provided. Symbol ordering (like

for ROBDD) can either be specified by the user, or can be dynamically generated

by the MGD tool. Symbol ordering can critically affect the size of the generated

MDGs and the performance of the verification.
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3.3.1 MDGs Model Checking

The MDGs model checking is based on an abstract implicit state enumeration. The

circuit under verification is expressed as an Abstract State Machine (ASM) and the

properties to be verified are expressed as formulae in LMDG [77, 11]. The ASM

description of the digital systems is at a higher level of abstraction. LMDG atomic

formulae are Boolean constants (True and False), or equations of the form (t1 = t2),

where t1 is an ASM variable (input, output or state variable) and t2 is either an

ASM system variable, an individual constant, an ordinary variable or a function

of ordinary variables. Ordinary variables are defined to memorize the values of

the system variables in the current state. The basic Next let formulas contain

temporal operator X (next time) is defined follows [13]:

• Each atomic formula is a Next let formula;

• If p, q are Next let formulas, then so are: !p (not p), p&q (p and q), p|q (p

or q), p → q (p implies q), Xp (next-time p) and LET (v=t) IN p, where t is

a system variable and v an ordinary variable.

Using the temporal operators AG (always), AF (eventually) and AU (until),

the supported LMDG properties are defined in the following BNF grammar:

Property ::= A(Next let formula)

|AG(Next let formula)

|AF (Next let formula)

|A(Next let formula)U (Next let formula)

|AG(Next let formula)⇒ F (Next let formula)

|AG((Next let formula)⇒

((Next let formula)U Next let formula)))

Model checking in MDGs is carried out by automatically building additional

circuits that represent the Next let formulas appearing in the property to be verified,
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composing it with the original circuit, and then checking a simpler property on the

composite machine [77].

3.3.2 Invariant Specification in MDG

An invariant file specifies the invariant condition to be checked during reachability

analysis[79]. An invariant condition can be specified by a combinational circuit

whose output signals are named by the variables that occur in the condition. By

convention, an assignment of values to those variables satisfies the condition iff

the outputs of the combinational circuit take those values for some assignment of

values to the inputs. An MDG representing the invariant is obtained from the

MDG representing the functionality of the combinational circuit by existentially

quantifying the concrete inputs. The variables representing abstract inputs are left

in the graph as implicitly quantified secondary variables [82].

For example, for the equivalence checking of two ASMs, we need to specify

the equality of two corresponding signals as the invariant. This is expressed by

the simple fork as shown in Figure 3.7 (a). The fork may yield different MDGs

depending on the sort of the signals. If u, x and y are of the Boolean sort, then u is

existentially quantified and we get the MDG as shown in Figure 3.7 (b) which simply

represents x = y. If x and y are of an abstract sort, then we get an MDG as shown in

Figure 3.7 (c) which represents the formula (x = u)∧ (y = u). Taking the secondary

variable u to be existentially quantified, the invariant is ∃u((x = u) ∧ (y = u)),

which is logically equivalent to x = y.

This combinational circuit is described completely in this invariant specifica-

tion file, including the following predicates: signal/2, component/2, outputs/1 and

order cond/1 which gives the node order for the variables and the cross-function

symbols appeared in the circuit.
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Figure 3.7: Invariant specification in MDG tool

3.4 Boolean Satisfiability

The Boolean Satisfiability (SAT) problem is a well-known constraint satisfaction

problem. It has many applications in the field of computer aided design such as

test generation, logic verification and timing analysis. Given a Boolean formula,

the objective is to either find a boolean assignment to the variables so that the

formula evaluates to true, or establish that such an assignment does not exist. The

Boolean formula is typically expressed in Conjunctive Normal Form (CNF), also

called product-of-sums form. Each sum term (clause) in the CNF is a sum of single

literals, where a literal is a variable or its negation.

Most state-of-the-art SAT solvers are based on the Davis-Putnam algorithm [28].

The basic algorithm begins from an empty assignment, and proceeds by assigning

a 0 or 1 value to a free variable at a time. After each assignment, the algorithm

determines the direct and transitive implications of that assignment on other vari-

ables. This process is sometimes also called the Boolean Constraint Propagation

(BCP). If no contradiction is detected during the implication procedure, the algo-

rithm picks the next free variable, and this process is repeated. Otherwise, the

algorithm attempts a new partial assignment by complementing the most recently

assigned variable for which only one value has been tried so far. This step is called

backtracking. The algorithm terminates either when all clauses have been satisfied
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and a solution has been found, or when all possible assignments have been exhausted.

The algorithm is complete in that it will find a solution if it exists.

Algorithm 1 Davis Putnam()

1: while true do
2: if DecideNextBranch()==false then
3: return(SATISFIABLE);
4: end if
5: while Deduce()==CONFLICT do
6: if ResolveConflict()==false then
7: RETURN(UNSATISFIABLE);
8: end if
9: end while

10: end while

Algorithm 1 shows the Pseudo code adapted from the basic Davis-Putnam

search procedure. The function DecideNextBranch() selects a variable that is not

currently assigned, and gives it a value. This variable assignment is referred to

as a decision. The Deduce() function carries out Boolean Constraint Propagation

(BCP). It propagates variable assignments based on the current decision. Basically,

if a clause consists of only literals with value 0 and one unassigned literal, then

that unassigned literal must take on a value of 1. Clauses in this state are said to

be unit, and this rule is referred to as the unit clause rule. In the pseudo-code,

Deduce() carries out BCP transitively until either there are no more implications

(in which case it returns SATISFIABLE) or a conflict is produced (in which case it

returns UNSATISFIABLE). A conflict occurs when implications for setting the same

variable to both 1 and 0 are produced.

Algorithm 2 ResolveConflict()

1: d = most recent decision not tried both ways;
2: if d == NULL then
3: return(false);
4: end if
5: flip the value of d;
6: mark d as tried both ways;
7: undo any invalidated implications;
8: return(true);
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In order to deal with a conflict, we can flip the value of the decision assignment,

undo all the implications by the decision, and allow BCP to then proceed as normal.

If both values have already been tried for this decision, then we backtrack through

the decision stack until we encounter a decision that has not been tried both ways,

and proceed from there in the manner described in Algorithm 2.

3.5 The HOL Theorem Prover

The HOL system is an LCF [45, 11] (Logic of Computable Functions) style proof

system. It was originally intended for hardware verification, but because of its ability

to handle a variety of applications, it is now considered a general purpose proof

system. Some of these applications include security systems, verification of fault-

tolerant computers, compiler verification, program refinement calculus, software and

algorithms verification, modeling, and automation theory. HOL provides a wide

range of proof commands, rewriting tools and decision procedures. The system

is user-programmable and proof tools can be developed for specific applications

without compromising reliability [44].

The set of types, type operators, constants, and axioms available in HOL are

organized in the form of theories. The theories are arranged in a hierarchy. These

theories include various formalized mathematical concepts such as lists, products,

sums, numbers, primitive recursion, and arithmetic etc. On top of these, users

are allowed to introduce application-dependent theories by adding relevant types,

constants, axioms, and definitions.

The HOL system supports higher order logic with three main expressions:

• Variables can range over functions and predicates.

• The logic is typed.

• There is no separate syntactic category of formulae.
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The basic interface to the system is a Standard Meta Language (SML) inter-

preter. SML [54] is both the implementation language of the system and the Meta

Language in which proofs are written. The HOL system supports both forward and

backward proof methods common in a natural-deduction style calculus. In the for-

ward proof method, the steps of a proof are implemented by applying inference rules

chosen by the user, and HOL checks that the steps are safe. All derived inference

rules are built on top of a small number of primitive inference rules. This approach

has some limitations since it is hard to know where to state the proof and, for large

proofs, to determine which sequence of rules to apply. The results are strong and

the user can have great confidence since the most primitive rules are used to prove

a theorem. In the backward proof method, the user sets the desired theorem as

a goal. Small programs written in SML called tactics and tacticals are applied to

break the goal into a list of subgoals. Tactics and tacticals are repeatedly applied

to the subgoals until they can be resolved. In practice, forward proof is often used

within backward proof to convert each goals assumptions into a suitable form.

Theorems in the HOL system are represented by values of the ML abstract

type thm. There is no way to construct a theorem except by carrying out a proof

based on the primitive inference rules and axioms. HOL system has many built-in

inference rules and ultimately all theorems are proved in terms of these axioms and

basic inferences of the calculus. By applying a set of primitive inference rules, a

theorem can be created. Once a theorem is proved, it can be used in further proofs

without recomputation of its own proof. In this way, the ML type system protects

the HOL logic from arbitrary construction of a theorem, so that every computed

value of the type-representing theorem is a theorem. The user can have a great deal

of confidence in the results of the system.

The HOL system has been used in hardware verification, reasoning about secu-

rity, verification of fault-tolerant computers, and reasoning about real-time systems.

It has also found application in compiler verification, program refinement calculus,
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software and algorithms verification, modeling, and automation theory. HOL also

has a rudimentary library facility which enable theories to be shared. This provides

a file structure and documentation format for self contained HOL developments.

Many basic reasoners are given as libraries such as mesonLib, bossLib, and sim-

pLib. These libraries integrate rewriting, conversion and decision procedures and

free the user from performing low-level proof.

3.6 Normal Forms

Definition 1. A formula is in Disjunctive Normal Form (DNF) if it is a disjunction

of minterms (conjunctions of literals). In other words, a DNF formula is a sum of

products and looks like:

(x11 ∧ x12 ∧ ..... ∧ x1n1) ∨ (x21 ∧ ... ∧ x2n2) ∨ ...... ∨ (xm1 ∧ .... ∧ xmnm)

where each xij is a literal. Literal is a variable or it’s negation. In short:

∨

i

∧

j

xij

Definition 2. A literal L is either an atom p or the negation of an atom ¬p. A

formula C is in Conjunctive Normal Form(CNF ) if it is a conjunction of clauses,

where each clause D is a disjunction of literals:

L ::= p|¬p

D ::= L|L ∨D

C ::= D|D ∧ C

Definition 3. Given a formula φ in propositional logic, we say that φ is satisfiable

if it has a valuation in which it evaluates to T. For example, the formula p ∨ q → p

is satisfiable since it computes T if we assign T to p. Clearly, p ∨ q → p is not valid.

Thus, satisfiability is a weaker concept since every valid formula is by definition also

satisfiable but not vice versa. However, these two notions are just mirror images of
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each other, the mirror being negation.

Proposition 4. Let φ be a formula of propositional logic. Then φ is satisfiable iff

¬φ is not valid.

Proof: First, assume that φ is satisfiable. By definition, there exists a valuation of

φ in which φ evaluates to T; but that means that ¬φ evaluates to F for that same

valuation. Thus, ¬φ cannot be valid.

Second, assume that ¬φ is not valid. Then there must be a valuation of ¬φ in

which ¬φ evaluates to F. Thus, φ evaluates to T and is therefore satisfiable. (Note

that the valuations of are exactly the valuations of ¬φ).

This result is extremely useful since it essentially says that we need to provide

a decision procedure for only one of these concepts. For example, lets say that we

have a procedure P for deciding whether any ¬φ is valid. We obtain a decision

procedure for satisfiability simply by asking P whether ¬φ is valid. If it is, φ is

not satisfiable; otherwise φ is satisfiable. Similarly, we may transform any decision

procedure for satisfiability into one for validity.

In this Chapter, we presented some of the basics required for better under-

standing the rest of chapters of this book. We provided the basics of temporal logics,

Multiway Decision Graph, MDG tool, boolean SAT solvers as well as HOL theorem

prover. In the next chapter, we describe our proposed methodology in detail.
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Chapter 4

Integrating SAT with MDG

In this chapter, we present the proposed methodology for SAT based invariant check-

ing. SAT has already been integrated with MDG tool as a reduction engine in [9].

This chapter provides a step by step description of the complete methodology using

SAT as verification engine with MDG.

4.1 Formalization of the Problem

Given a state machine M with initial states I and transition relation Tr, we would

like to check whether a property P holds for all the reachable states. The reachable

states are those which can be reached by Tr transitions starting from an initial

state. Let S denote the entire set of states. A system is a safe system, where all the

reachable states satisfy P .

Introduction of various type of paths through the graph of a transition relation

is required to formalize the problem more precisely. We write Tr(x, y) to indicate

that x is related to y by a transition relation Tr. We define the sequence of states

to be a path through Tr.

path(s[0...n]) �
∧

0≤i<n

Tr(si, si+1)

36



Here ” � ” sign means ”is defined to be” and s[0...n] denotes a sequence of

states (set of state) e.g. s0, s1, s2....sn. A path can have a length n, if it makes n

transitions. For us, we are interested to show that, starting from the initial state

and repeated application of transition relation always leads to a state that satisfies

P . We want to show that,

∀i.∀s0....si.(I(s0) ∧ path(s[0...i])→ P (si))

where, i ≥ 0 and si ∈ S. Similarly, proving backward from bad states involves

showing that, starting from a state that violates P and going backwards through

Tr always leads to a non-initial state, which is

∀i.∀s0....si.¬(I(s0)← path(s[0...i]) ∧ ¬P (si))

To get a more symmetric view at the problem, we say there are no paths that

start in an initial state and end in a non-P-state, that is,

∀i.∀s0....si.¬(I(s0) ∧ path(s[0...i]) ∧ ¬P (si))

4.2 Proposed Methodology

We propose a methodology (Figure 4.1) to formulate and verify a formula (we call

this formula Correctness formula), to check the safety of a system or design. In our

methodology, we are interested to check if the formula,

∀i.∀s0....si.¬(I(s0) ∧ path(s[0...i]) ∧ ¬P (si))

holds for i = 0, i = 1, i = 2 and so on. It is similar to check I(s0) ∧ path(s[0...i]) ∧

¬P (si) is a contradiction for each i, for s0 to si; i.e. ¬(I(s0)∧path(s[0...i])∧¬P (si))

is a tautology. If the property P is violated in a reachable state, then, ∃i.I(s0) ∧

path(s[0...i]) ∧ ¬P (si) is satisfiable. A SAT solution refers that there exists a path
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Figure 4.1: Verification Methodology using MDG tool and SAT solver

of length i starting from initial states that violates P and it can be used for tracing

errors.

Automation of this approach with MDG involves four main tasks:

• Compute the reachable states, starting from the initial state. It will give us the

path by which each possible reachable state can be reached, by each transition,

until all the reachable states have been visited.

• The reachable states are computed in Directed Formula format. Removal of

Uninterpreted functions and introduction of boolean encoding is required to

convert the formula suitable for boolean SAT solvers.

• Perform the CNF conversion of the boolean formula using a linear algorithm

to avoid exponential blow up (direct conversion from DNF to CNF has expo-

nential blow up).

• Fed the formula to a SAT solver to check the satisfiability.

Using SAT solver with MDG tool is a new and efficient approach for invariant

checking. The steps in the methodology are as following:
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1. We use MDG tool to compute the sets of reachable states for the given MDG

model (behavioral/RTL) written in MDG-HDL language. Any other imple-

mentation of MDG reachability analysis algorithm can be used instead of MDG

tool. We conjunct all the sets of states which gives us the a set Sreachable con-

sisting of all the reachable states for the system in DF format.

2. Boolean Encoding is imposed by the preprocessor to reduce the DF in propo-

sitional logic. After removal of uninterpreted functions the encoder generates

a pure boolean formula DFbool with certain encoding constraints.

3. We get formula BDF after conjunction of DFbool with Encoding constrains and

negated invariant property.

4. The BDF is converted into CNF using Tseitin algorithm. The output is SAT

encoded CNF formula in DIMACS [3] format. At this stage we call this formula

Correctness Formula.

5. The SAT encoded correctness formula is fed to a SAT solver to prove ¬(Sreachable∧

¬P∧constraints) a tautology or (Sreachable∧¬P∧constraints) is a contradiction.

Detail description of these steps is explained in the following subsections.

4.2.1 Using MDG for Reachibility Analysis

The presence of uninterpreted symbols in the logic means that we must distinguish

between a state machine M and its abstract description D in the logic. This is called

Abstract State Machine, a state machine given an abstract description in terms of

DFs, or equivalently MDGs, as defined in [25, 11].

Definition 1. An Abstract Description of a State Machine (ASM) M is a tuple

D = (X, Y, Z, Y ′, IS, T r, Or), where:

• X : finite set of input variables,
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• Y : finite set of state variables,

• Z : finite set of output variables,

• IS : MDG of type U0 → Y , where U0 is a set of disjoint abstract variables, IS

is the abstract description of the set of initial states,

• Tr : MDG of type X∪Y → Y ′. Tr is the abstract description of the transition

relation,

• Or : MDG of type X ∪ Y → Z. Or is the abstract description of the output

relation.

Algorithm 3 shows how the analysis of the reachable states of M is performed based

on the abstract description D.

Algorithm 3 MDG Reachibility Analysis

1: R := IS;
2: Q := IS;
3: i := 0;
4: while Q �= F do
5: i := i + 1;
6: IN := new inputs(i); – Produce new inputs
7: NS := next states(IN, Q, T r); – Compute next state
8: Q := frontier(NS, R); – Set difference
9: R := union(R, Q); – – Merge with set of states reached previously

10: end while

The algorithm is initialized by the construction of the initial MDG structure

in Lines 1-3. In line 4-10, within the while loop, the set of reachable states is com-

puted. When the frontier set (Q) becomes empty (F), the while loop terminates.

A new MDG input is produced in line 6. In line 7, Next state is computed by the

function next state using the RelP operation, that takes the MDGs representing the

set of inputs, the current state and the transition relation as assignment, respec-

tively. In line 8, The function frontier, computes the set difference using the PbyS

operation, that approximates the set difference between the newly reachable state

in the current iteration from the reachable state in the first iteration. Finally, the
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set of all reachable states so far is computed, in line 9. The MDG tool applies the

reachibility algorithm[10] and gives all the possible sets of reachable states in terms

of DF. We conjunct initial state with frontier sets and output relations computed

by MDG tool for each transitions to construct the complete DF, representing all the

sets of reachable states e.g. DFcomplete = DF0∧DF1∧DF2∧DF3......∧DFn. Here n

is the number of transitions the reachibility analysis algorithm needs to terminate.

DF0 indicates initial state and rest of the each DF is the conjunction of frontier

sets and outputs relations.

4.2.2 Preprocessing to Impose Boolean Encoding

The naive structure of DF contains Uninterpreted Functions and predicates. We

convert the DF formula to a boolean formula. The preprocessor eliminates the

EUF applications and introduces boolean encoding with adequate constraints. We

describe step by step procedure in the following subsections.

Boolean Encoding for Clauses with Constraints

Consider a directed formula (r = 0) ∧ (f = 1) ∨ (r = 1) ∧ (f = 0). We introduce

Boolean variables r0, f1, r1 and f0 respectively for abstracting the clause (r =

0), (f = 1), (r = 1) and (f = 0). Constraints are introduced at the same time.

For this example, we know that (r = 0) and (r = 1) can not be true at the same

time. Meanwhile one of them must be true, forcing them to be mutually exclusive,

otherwise the equation will not be satisfiable. A similar constraint is also applicable

to (f = 0) and (f = 1). So, after reduction to propositional logic the directed

formula looks like:

(r0) ∧ (f1) ∨ (r1) ∧ (f0)

The constraints for the above example are: r0 ⊕ r1 and f0 ⊕ f1
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EUF Elimination

The logic of Equality with Uninterpreted Functions (EUF) was first presented by

Burch and Dill [22]. The syntax of EUF logic in directed formula is given in [13].

Our EUF elimination approach is inspired by using nested ITEs [67]. We intro-

duce domain variables replacing each function application term with a nested ITE

structure that directly holds the functional consistency. For example, if g(x1, y1),

g(x2, y2) and g(x3, y3) are three applications of UF g(), then the first application

will be eliminated by a new term variable c1. The second one will be replaced by

ITE((x2 = x1) ∧ (y2 = y1), c1, c2), where c2 is a new term variable. The third one

will be replaced by ITE((x3 = x1)∧(y3 = y1), c1, ITE((x3 = x2)∧(y3 = y2), c2, c3)),

where c3 is a new term variable.

For ITE terms, we define encITE as:

encTr(ITE(G, T1, T2)) = encDF (G) ∧ encTr(T1) ∨ ¬encDF (G) ∧ encTr(T2)

where encTr(T1) and encTr(T2) represent Boolean encoded terms and encDF (G)

represents an encoded propositional of formula G. For some cases, we modified

Bryant’s encoding slightly for the MDG DF case. For example, if the formula inside

ITE contains a comparison between two different constants (such cases sometime

occurs in MDG DF), then it is always false. So, we define the encoding for such

cases as:

encTr(ITE(Gconst1=const2, T1, T2)) = encTr(T2)

The Min-Max example

For the illustration of EUF elimination approach, we consider the MIN-MAX circuit

described in [25, 11]. Figure 4.2 represents the MIN-MAX state machine which has

two input variables, X = {r; x} and three state variables Y = {c; m; M}, where r

and c belongs to the Boolean sort B, a concrete sort with enumeration {0; 1}, and x,

m, and M are of an abstract sort s. The outputs coincide with the state variables,
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which means, all the state variables are observable and therefore no additional output

variables is introduced.

The transition labels denote the conditions under which each transition can

be taken and an assignment of values to the abstract next state variables n m and

n M . The machine stores in m and M , respectively. m and M are the smallest and

the greatest values respectively, presented at the input x since the last reset (r = 1).

m is loaded by the maximal possible value max and M by the minimal possible

value min, if the machine is reset. The min and max symbols are uninterpreted

generic constants of sort s. An operator leq Fun computes the smallest and greatest

values, such that for any two values p and q of sort s, leq Fun(p, q) = 1 if and only

if p is less than or equal to q. The transition relation can be described by a set

of individual transition relations, one related with each next state variable. The

directed formulas of these individual transition relations, for a particular custom

symbol order, are stated below:

Tr c = [((r = 0) ∧ (n c = 0))∨

((r = 1) ∧ (n c = 1))]

Tr m = [((r = 0) ∧ (c = 0) ∧ (n m = m) ∧ (leq Fun(x, m) = 0))∨

((r = 0) ∧ (c = 0) ∧ (n m = x) ∧ (leq Fun(x, m) = 1))∨

((r = 0) ∧ (c = 1) ∧ (n m = x))∨

((r = 1) ∧ (n m = max))]

C=1 C=0
r=1,
{n_m =m ax,
n_M =m in}

r=0,
{n_m =if leq_Fun(x,m ) 
then x else m ,
n_M =if leq_Fun(x,M ) 
then M  else x}

r=1, {n_m =m ax, n_M =m in}

r=0, {n_m =x, n_M =x}

Figure 4.2: MIN-MAX State Machine
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Tr M = [((r = 0) ∧ (c = 0) ∧ (n M = x) ∧ (leq Fun(x, M) = 0))∨

((r = 0) ∧ (c = 0) ∧ (n M = M) ∧ (leq Fun(x, M) = 1))∨

((r = 0) ∧ (c = 1) ∧ (n M = x))∨

((r = 1) ∧ (n M = min))]

The conjunction of these individual transition relations represents the DF of the

system transition relation Tr. We illustrate with this example, how we reduce this

directed formula to propositional logic. We consider the Directed formula describing

the transition relations. Directed formula representing the set of states can be

reduced to propositional logic in the same way. We have two appearance of same

function symbol with different arguments. We define two term variables U1 and U2

for these terms. But we are not imposing ITE chain here, because M and m are

constants, so (m = M) is always false. So we are introducing a new domain variable

for both the cases:

U1 = leq fun(x, m) = uf1

U2 = leq fun(x, M) = uf2

We should introduce some constraint to establish a relation between uf1 and uf2.

For this case:

uf1⇒ uf2

= ¬uf1 ∨ uf2

We replace the UF application and introduce boolean variables for the rest of the

terms. After replacing all the terms with boolean variables we get an equivalent

boolean formula:
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Tr c = [((r0) ∧ (nc0))∨

((r1) ∧ (nc1))]

Constraints = r0⊕ r1

nc0⊕ nc1

Tr m = [((r0) ∧ (c0) ∧ (nm eq m) ∧ (uf1 eq 0))∨

((r0) ∧ (c0) ∧ (nm eq x) ∧ (uf1 eq 1))∨

((r0) ∧ (c1) ∧ (nm eq x))∨

((r1) ∧ (nm eq max))]

Constraints = r0⊕ r1

nc0⊕ nc1

nm eq x⊕ nm eq m

uf1 eq 0⊕ uf1 eq 1

Tr M = [((r0) ∧ (c0) ∧ (nM eq x) ∧ (uf2 eq 0))∨

((r0) ∧ (c0) ∧ (nM eq M) ∧ (uf2 eq 1)∨

((r0) ∧ (c1) ∧ (nM eq x))∨

((r1) ∧ (nM eq min))]

Constraints = r0⊕ r1

nc0⊕ nc1

nM eq x⊕ nM eq M

uf2 eq 0⊕ uf2 eq 1

4.2.3 CNF Conversion of Directed Formula

The encoder takes the Boolean encoded directed formula DFbool as input and con-

junct the encoding constrains and the negated property ¬P with it. In this step the

formula to be converted to CNF can be expressed by:

BDF = DFbool ∧ Constraints ∧ ¬P
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Algorithm 4 CreateCNFFormula(DF)

1: Formula = MDG Direct Formula;
2: DFbool = Replace UF’s by introducing term variables;
3: Infer constraints between predicates;
4: Transform predicates to Boolean variables;
5: for each DNFi in DFbool do
6: CNFDNFi = ConvertoCNF(DNFi)
7: end for
8: CNFcomplete = Conjunct all CNFDNFi

9: ReturnCNFcomplete;

After CNF conversions we call this formula a correctness formula:

CorrectnessFormula = CNF (BDF )

Algorithm 4 shows the complete algorithm for the encoding and conversion. A

BDF can be a single DNF formula (representing the set of states) or conjunction

of several individual DF, where each of these DF is in DNF format(representing

transition relations):

DFcomplete =
∧

i

DF (4.1)

where i is the number of transitions the and DFi is a DNF. So, it is enough to get

the equivalent CNF for each DFi and conjunct them because conjunction of CNF

is also a CNF.

DFCNF =
∧

i

CNFDF (4.2)

Linear algorithm for computing CNF (DF ) is well known as Tseitin [73]. In

Tseitin a new variables for every logical gate is introduced. Thus variables impose

a constraint that preserve the function of that gate. Given a DNF formula

(a ∧ b) ∨ (c ∧ d) (4.3)

with Tseitin encoding, a new variable for each subexpression is introduced. In

this example, let us assign the variable x to the first ’and’ gate (representing the

subexpression a ∧ b), y for the second ’and’ gate (representing the subexpression

c ∧ d). We also introduce a new variable z to represent the top most operator. For
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Figure 4.3: Tesitin encoding to convert a propositional formula to CNF linearly

DF, the top most operator which is always an ’OR’ gate connected with several

’AND’ gates. Figure 4.3 illustrates the parse tree of our formula. We need to satisfy

the two equivalences:

x⇐⇒ a ∧ b

y ⇐⇒ c ∧ d
(4.4)

The overall CNF formula is the conjunction of the two equivalences written in CNF

as:

(¬x ∨ a) ∧ (¬x ∨ b) ∧ (¬a ∨ ¬b ∨ x)∧

(¬y ∨ c) ∧ (¬y ∨ d) ∧ (¬c ∨ ¬d ∨ y)

The unit clause (z) which represents the top most operator. Instead of (z)

we use (x ∨ y), which represents the same. The converter keeps track by mapping

the Tseitin variable for each logic gates. In the example, Equation (4.4) represents

this mapping. Such mapping will be fed to the goal generator in the next step for

verification of the conversion.

4.2.4 Verification of the Conversion

Application and improvement of different linear algorithms for CNF conversion has

been a major research interest for researchers [72, 16, 32, 23]. However, we could
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not find any automated methodology to formally verify the conversion approach.

This motivated us to give some extra effort and integrate a small tool that formally

verifies our CNF conversion.

Our automated conversion-verification methodology in Figure 4.4 using HOL

theorem prover is an extra contribution to the methodology to demonstrates the

correctness of the CNF conversion automatically. The obtained CNF formula is

compared formally to the original DF using the HOL theorem prover. This will

enhance confidence in the whole verification process. The verification part of the

methodology contains a goal generator and HOL Theorem prover. The goal gener-

ator generates the goal to be proved by the HOL theorem prover. At the end, HOL

provides a decision based on the inputs.

Goal Generator

The goal generator takes the CNF formula, Tseitin variable for each logic gate

mapping generated by the converter and the Boolean encoded DF as input. Given

the Tseitin variable for each logic gate mapping, the assumptions are computed by

the goal generator. The assumptions for the previous conversion example(Figure 4.3)

can be written as:

x = a ∧ b

y = c ∧ d
(4.5)

At the end, the goal generator ends up with generating a complete goal to prove in

HOL:

Assumptions =⇒ EncodedDF ⇐⇒ CNFFormula

Call to the HOL theorem prover

As we mentioned earlier, we used HOL theorem prover to prove the goal. After

generating the goal, the goal generator places a call to the HOL theorem prover.

Given the input goal, the proof is conducted by applying rewriting rules. Note that
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the goal is generated in such a way that only one Tactic is enough to decide the

goal.

4.2.5 Specification of Invariant Property and Correctness

Formula

In our proposed methodology, we check the safety of a design by checking invariant

property. The specification is in a commonly encountered generic form of safety

properties, M � Pinit ⇒ AGPs, where Pinit and Ps are instantaneous formulas not

containing temporal operators. A safety property of this form is called invariant and

has the intuitive interpretation that every computation of M , which starts in a state

satisfying Pinit also satisfies Ps at all reachable states. For example, heating should

be turned of when the door of a microwave-oven is open. This invariant property

can be expressed in CTL logic as follows:

AG(!(door = open)&(heating = on))

In order to build a correctness formula we consider EF (¬P ); the negation

of the property. The encoder described in 4.2.3 conjuncts the negated property

with the encoding constraints and boolean encoded directed formula. The CNF

representation of this formula is a correctness formula:

Correctnessformula = CNF (Directed formula representing all the reachable states

∧ EncodingConstraints ∧ Negated invariant property).

We use SAT solver to prove the correctness formula UNSAT i.e. contradictory.

For the microwave-oven example, we use the SAT solver to prove that there is a state

where (door = open) and (heating = on). If no such path exist, where such state

occurs, SAT solver will give an UNSAT decision.
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4.2.6 Using SAT as a Verification Engine

The use of SAT-solvers in various applications is on the march. As insight on

how to efficiently encode problems into SAT is increasing, a growing number of

problem domains are successfully being tackled by SAT-solvers. This is particularly

true for the electronic design automation (EDA) industry [17, 52]. The success

is further magnified by current state-of-the-art solvers being adapted to meet the

specific characteristics of these problem domains [14, 34].

The method of representing an instance of a search problem as a propositional

formula so that a satisfying assignment represents a solution, and then running a

SAT solver to find such an assignment if there is one, has been found to be a practical

and effective method for solving a number of problems. It has been used successfully

in the electronic design automation (EDA) industry for a variety of tasks including

microprocessor verification [18] and automated test generation [53] among many

others [58]. Perhaps most notably, SAT-based bounded model checking [71] has

become a widely used verification method, and these methods are being extended to

un-bounded model checking [60]. SAT solvers are used as computational engines in

a variety of model checking tools such as NuSMV[2]. SAT solvers, or modifications

of them, are used as the engines for tools using more expressive logics, including for

problems that we expect are not in NP, such as answer set programming [42, 56],

quantified boolean formulas and modal logics [43], and even restricted first order

theorem proving [1].

The successful SAT-MDG integration as a reduction engine [9] motivated us

to for a new methodology, using the SAT solver as a verification engine for MDG

model. Given a correctness formula, a SAT solver can be used to search for a path

such that the property holds true at all the nodes in that path. If at least one such

path exists, then the formula is satisfiable, indicating that property is true for the

given model. Absence of a feasible path indicates a violation of the property. We

use MiniSAT 2.0 [33] as an efficient SAT solver. As our approach is to prove the
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correctness formula as a tautology, so, a satisfiable decision by the solver indicates

violation of the property and gives a counter example, whereas an unsat decision

validates the property. If satisfiable, the assignments constitutes a counter example

to the original(un-negated) formula. Optionally, the satisfiable assignments can be

substituted in the negation of the formula and a theorem that the counter example

implies the negated formula can be derived. To explain more in detail, in the next

chapter, we will present an illustrative example of SAT based invariant checking.

In this chapter we presented the overview of our proposed methodology. Also

we provided step by step description of our the methodologies with examples. In next

chapter, we present implementation and experimental result of the methodologies

we described above.
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Chapter 5

Implementation and Case Study

In this chapter, we discuss the implementation details and experimental results of

our proposed methodology, to integrate SAT as a verification engine with MDG.

Unlike other researchers, we implement not just the conversion algorithm to convert

MDG Direct formula (DF) to CNF(which will be fed to the SAT solver), but also

implement an automated verification technique to formally verify the conversion.

We present and analyze the experimental results that we obtained for both of the

methodology, supporting the correctness, soundness and performance of them.

5.1 Conversion-Verification of Directed Formula

5.1.1 Experiment Description

We implement our methodology in C++ and run it on several different sized directed

formulas, each of them containing different number of clauses and variables. For the

experiment we considered DF with minimum 100 clauses to maximum 1000 clauses.

Those clauses contain from 38 upto 168 different variable. The experiments are

performed under Fedora Core 9 on an Intel Xeon 3.4 GHz processor with 3 GB of

RAM. We summarize the results of conversion and verification runtime in the next
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subsection.

5.1.2 Experimental Results

Table 5.1 shows the experimental results. Our program produced a delay of less

than 0.01 second for the DF with less than 100 clauses. Hence, we increased both

the number of clauses and the number of variables with some bigger sized DFs to

check the performance. We observed, a very fast response time of 0.02 second with a

larger DF with 300 clauses of 78 variables. Conversion time increased to 0.04 second

for the DF with 500 clause and 118 variables. The largest DF we tested with our

methodology is 1000 clauses with 168 variables. Out program took only 0.1 second

to compute the CNF of that DF. Figure 5.1 shows a nearly linear behavior for our

implementation. The slight deviations from linearity is ignored(those are caused by

the interruption internal processes of the operating system).

On the other hand, we noticed, the verification time in HOL increases with

the size of directed formula. HOL took a few seconds for the verification of smaller

sized DFs, but suffers for bigger sized DFs while taking a longer time to prove.

As we mentioned earlier, the way we constructed the goal requires only one Tactic

(DECIDE TAC) for proving the goal, which is a positive side for the methodology. For a

DF with 100 clauses, our conversion produced a less than 0.00 second delay, where as

HOL took about 4.010 seconds to verify the conversion. HOL took about 14.901 and

28.021 seconds to prove the conversion of DFs with 300 and 500 clauses, respectively,

Table 5.1: CNF conversion time
DF size No. of variables Conversion time Verification time

100 38 less than 0.01 4.010
200 58 0.01 8.231
300 78 0.02 14.908
400 98 0.03 19.042
500 118 0.04 28.021
700 148 0.06 53.098
1000 168 0.10 93.118
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Figure 5.1: DF size vs. CNF conversion time

which is more than the conversion time. The verification time increases sharply for

the DF with 1000 clauses of 168 variables. But for all cases, HOL successfully

verified the conversion.

5.2 Integrating SAT with MDG for Invariant Check-

ing

The main goal of our work is to integrate SAT with MDG for a new invariant

checking methodology. In the following subsection, we present a small abstract

counter example to illustrate the approach. Also, we present a case study to show

the performance of our approach.

Abstract Counter Example

In the abstract counter example, we show how we verify the invariant on a design.

Abstract counter example was introduced in [63]. Figure 5.2 shows the state tran-

sition graph of the counter. There are five control states: c fetch, c load, c inc1,

c inc2, c dec. Depending on the input, the counter pc gets a new value, increased
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Figure 5.2: An abstract counter
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by one, decreased by one or keeps the previous value.

To apply our methodology, we first describe the behavior of the counter using

the MDG-HDL language. The counter PC is of abstract sort. The control state

is initialized to c fecth and the initial value of pc is a free variable called init pc

(i.e. the initial value is generalized to any value). The output variables incr and

decr is initialized to ’0’. The MDG tool computes all the reachable states in three

transition steps. Conjunction of these set of states, for each transition, generates

the complete set of reachable states for the design. Preprocessor applies the boolean

encoding and generates a boolean formula BDF along with the encoding constraints.

The Encoder applies the CNF conversion and generates the correctness formula to

be verified with a SAT solver. We consider the following property to be verified:

Property 1: Starting from the c fetch state, there is no such state in the future,

where pc is incremented and decremented at the same time. The property can be

expressed as an invariant as following:

AG !(incr = 1 & decr = 1)

We check this invariant using both our SAT-MDG methodology and MDG

tool. Table 5.2 summarizes the result. The SAT-MDG approach including boolean

encoding of directed formula, CNF conversion with correctness formula generation

and using SAT solver for decision took about 0.0422 seconds in total. On the other

hand using MDG as a stand alone tool for the invariant checking took about 0.220

seconds. Even though we use the MDG tool to compute the reachable states, the

negligible verification time (in comparison to MDG tool) of MDG-SAT technique

gives us a clear indication about the efficiency of our proposed methodology.
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Table 5.2: Invariant Checking Results with MDG tool and MDG-SAT approach

Property MDG-SAT approach MDG tool
Preprocessing Encoding Decision Total

Time Time Time Time
Property 1 0.02 0.02 0.002295 0.0422 0.220

5.2.1 Case Study: Island Tunnel Controller (ITC)

System Description

The results from abstract counter example motivated us to check the efficiency with

larger design. The SAT-MDG reduction technique is demonstrated on the example

of the Island Tunnel Controller (ITC) [9], which was originally introduced by Fisler

and Johnson [39]. We illustrate our SAT-MDG verification methodology on the

same example. Based on the information collected by sensors installed at both ends

of the tunnel, the ITC controls the traffic lights at both ends of a tunnel : there

is one lane tunnel connecting the mainland to an island. As shown in Figure 5.3,

at each end of the tunnel, there is a traffic light. Four sensors are used to detect

the presence of cars: one at tunnel entrance on the island side (ie), one at tunnel

exit on the island side (ix), one at tunnel entrance on the mainland side (me), and

one at tunnel exit on the mainland side (mx). The following constraint is imposed

in [39] : maximum sixteen cars may be on the island at any time. The assumptions

includes all cars are finite in length, that no car gets stuck in the tunnel, that cars

do not exit the tunnel before entering the tunnel, that cars do not leave the tunnel

entrance without traveling through the tunnel, and sufficient distance is maintained

between two cars so that the sensors can distinguish the cars.

As depicted in Figure 5.4, the ITC specification is composed of three com-

munication controllers and two counters. The communication controllers are: The

Island Light Controller (ILC), the Tunnel Controller (TC), the Mainland Light Con-

troller (MLC). The two counters are: the Island Counter and the Tunnel Counter
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(refer to [39] for the state transition diagrams of each component). The Island Light

Controller (ILC) has four states: green, entering, red and exiting. The green and

red lights on the island side are controlled by the outputs igl and irl respectively; iu

denotes that the cars from the island side are currently occupying the tunnel, and

ir denotes that ILC is requesting the tunnel. As shown in Figure 5.4, the input iy

requests the ILC to release the control of the tunnel, and ig grants control of the

tunnel from the island side. For the Mainland Light Controller (MLC), a similar set

of signals is defined. The requests for access issued by ILC and MLC is processed

by The Tunnel Counter (TC). The number of cars currently on the island and in

the tunnel is monitored by the The Island Counter and the Tunnel Counter, respec-

tively. In the case of tunnel controller, the counter tc is increased by 1 depending

on tc+ or decremented by 1 depending on tc- unless it is already 0. The Island

Counter functions in a similar way, except that increment and decrement depend

on ic+ and ic-, respectively: one for the island lights, one for the mainland lights,

and one tunnel controller to process the access requests issued by the other two

controllers.

5.2.2 Implementation Description

Property checking is handy to verify that a specification meets the certain require-

ments. In [77, 81, 9],verification of Island Tunnel Controller (ITC) thorough Model

checking was performed. Three different invariant properties were verified for this

circuit in [61, 81]. We list below those three properties with their corresponding

CTL formula:

• Property 1: Cars never travel both directions in the tunnel at the same time.

AG(!((igl = 1)&(mgl = 1)))

• Property 2: The tunnel counter is never signaled to increment simultaneously

by the ILC and the MLC.

60



AG(!((itc+ = 1)&(mtc+ = 1)))

• Property 3: The island counter is never signaled to increment and decrement

simultaneously. controller requests.

AG(!((ic− = 1)&(ic+ = 1)))

To check the correctness and efficiency of our proposed methodology, we modified

the property in a way so that it fails in both: invariant checking by MDG as a stand

alone tool and SAT-MDG approach :

• Property 1: AG(!((igl = 1)&(mgl = 0)))

• Property 2: AG(!((itc+ = 1)&(mtc+ = 0)))

• Property 3: AG(!((ic− = 1)&(ic+ = 0)))

The MDG tool computes the reachable states for the given MDG-HDL model

of ITC tunnel controller. Although, to ensure the correctness of the design, all

the reachable states should be considered and conjuncted to build the complete

Sreachable, we consider the first five reachable states and the initial state and was able

to identify the violation of property (the granularity can be adjusted to identify the

first violation of property). The reason behind that is the implementation of interface

parser to collect the reachable states from the MDG tool and to fed the preprocessor

is not yet available. This is a straight forward implementation issue which can be

implemented easily as future work for the completeness of the methodology. So we

decided not to spend much time on it and concentrate on the other important parts

of the methodology. Also as we use MDG tool for reachability analysis so we don’t

include the reachable state computation time in the MDG-SAT experiential results.

To evaluate three different properties, we generate three different correctness

formula. An UNSAT decision from SAT solver validates the property whereas a
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SAT decision indicates the violation of the property. For the experiments, solaris

5.10 workstation was used containing a quad-core processor running at 2.5GHz and

having 6 GB of physical memory.

5.2.3 Experiment Results

Table 5.3 summarizes the results of our MDG-SAT approach. Preprocessor im-

poses the boolean encoding on it with adequate constraints. For Property 1 the

preprocessor took only 0.5 seconds and similar time was taken for the other two

properties. Correctness formula is generated by the encoder. Encoder conjuncts

the constraints and the negated property with the directed formula representing

the reachable states. Later on, the encoder generates a correctness formula, i.e an

equivalent CNF representation. In our experiment correctness formula generation

for all the properties took same time, 0.06 seconds because of the similar size of the

property. We check the satisfiability of the correctness formula using MiniSAT 2.0.

MiniSAT took 0.00361 seconds to fail Property 1. Property 2 and Property 3 took

0.00538 seconds and 0.00539 to fail the property.

We verify those properties with MDG tool and summarize the results in Ta-

ble 5.4. As we use the reachability analysis feature of MDG tool and unable to

extract the time to compute reachable individual set of states, so we don’t com-

pare the results but the table clearly shows the efficiency of MDG-SAT approach.

MDG-tool failed Property-1 in 0.95 seconds where as MDG-SAT approach took only

0.11361 seconds to do the same. For Property-2 and Property-3, MDG-tool took

Table 5.3: Total time for SAT-MDG approach
Benchmark Preprocessing Encoding Decision Total
Properties Time Time Time Time

P1 0.05 0.06 0.00361 0.11361
P2 0.04 0.06 0.00538 0.10538
P3 0.04 0.06 0.00539 0.10539
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Table 5.4: Invariant checking time: SAT-MDG and MDG tool
Benchmark MDG MDG-SAT
Properties Time Time

P1 0.81 0.11361
P2 0.920 0.10538
P3 0.910 0.10539

0.92 and 0.91 seconds. On the other hand, MDG-SAT approach took only 0.10538

and 0.10539 second to fail those same properties. The results show the efficient and

effectiveness of our proposed approach the prospect as a new tool. Implementation

of MDG reachability analysis algorithm in any language will give us a completely

new tool combining both SAT and MDG. Use of MDG to represent the circuit

provides a higher level of abstraction. Also, the use of SAT solver as a fast and

efficient verification engine and its fast search algorithm to find the states violating

the properties will facilitate the tool.

In this chapter, we presented the results of our proposed conversion-verification

methodology and SAT based invariant checking methodology. From the results we

observed that our SAT-MDG methodology is very efficient and the fast verification

time gives us the indication about the prospect of a new tool development using

our methodology . Also, the experimental results of conversion-verification method-

ology showed the correctness and soundness of our approach while increasing the

confidence in whole verification approach.
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Chapter 6

Conclusion and Future work

MDG based model checking is an improvement over traditional BDD-based model-

checking [13]. The design is represented in a higher level of abstraction, simplifying

the data path operations. As a result, users can effectively deal with the state

explosion problem. Integrating SAT with MDG is a new concept to enhance the

performance of safety checking and our proposed methodology for the new tool

shows the efficiency through the experimental results.

In our work, we propose the integration of a SAT solver with MDG as a ver-

ification engine. We presented a conversion-verification methodology for the CNF

conversion of MDG DF with verification of this conversion. This enhances the con-

fidence in whole verification approach. Our automated verification technique for

the CNF conversion is a new contribution to this field of research. Researchers

working with CNF conversions inspired by Tseitin algorithm, or slight modifica-

tion/enhancement of Tseitin algorithm can easily apply this automated technique

to formally verify their conversion. In chapter 5, experimental results with different

sized formula showed the correctness of our approach.

We presented our main contribution, the proposed methodology to integrate

the SAT solver with MDG for verification of safety properties in Chapter 4. The in-

variant checking results of abstract counter example presented in chapter 5 indicates
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the improvement of performance. Later on, the Island Tunnel Counter(ITC) case

study shows the efficiency of our invariant checking approach. We claim, our imple-

mentation of the methodology, is a prototype for a new tool for efficient invariant

checking.

Using SAT solver as a verification engine with MDG has a wide range of re-

search area. Our future work includes to apply this conversion-verification technique

with algorithms other than Tseitin. The experimental result showed that with in-

creasing the number of DFs, HOL suffers to prove the goal with larger runtime.

This gives us more area to improve the performance. However, different goal gen-

eration techniques with and without quantifiers can also be a good research topic.

Also, using different algorithms on MDG DF for CNF conversion and comparing

different SAT solver’s performance for invariant checking can also be interesting. As

a continuation of this research work of integrating SAT with MDG, some new and

interesting case studies will also be handy. So, future directions will concentrate on

experimenting the methodology with industrial circuits and comparing the results

with other industrial model checkers.
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