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ABSTRACT

Rank Equalities Related to Generalized Inverses of Matrices and Their
Applications

by

Yongge Tian

This thesis develops a general method for expressing ranks of matrix expressions that involve the Moore-
Penrose inverse, the group inverse. the Drazin inverse, as well as the weighted Moore-Penrose inverse of
matrices. Through this method we establish a variety of valuable rank equalities related to generalized
inverses of matrices mentioned above. Using them, we characterize many matrix equalities in the theory

of generalized inverses of matrices and their applications.
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Chapter 1

Introduction and preliminaries

This is a comprehensive work on ranks of matrix expressions involving Moore-Penrose inverses. group
inverses, Drazin inverses, as well as weighted Moore-Penrose inverses. In the theorv of generalized inverses
of matrices and their applications. there are numerous matrix expressions and equalities that involve these
three kinds of generalized inverses of matrices. Now we propose such a problem: Let p( -l{ -+ Apyand
q( B[f. seey B,f ) be two matrix expressions involving Moore-Penrose inverses of matrices. Then determine
necessary and sufficient conditions such that p( A{. ce-l A{, ) = q( B,f. See Bf ) holds. A seemingly trivial

condition for this equality to hold is apparently
e | f f t —
rank [p( 4], , Ag)—q(Bf, ---. B/ )] =0. (L.1)

However, if we can reasonably find a formula for expressing the rank of the left-hand side of Eq.(L.1).

then we can derive immediately from Eq.(1.1) nontrivial conditions for
p(Al. - ALy =q(Bl. ---. B])

to hold. This work has a far-reaching influence to many problems in the theory of generalized inverses of
matrices and their applications. This consideration motivates us to make a thorough investigation to this
work. In fact, the author has successfully used this idea to establish necessary and sufficient conditions
such that (ABC)t = CtBT AL, (ABC)t = (BC)'B(AB)!, and (A;As--- Ag)f = AL -~ A0 Al (¢f. Tian.
1992b, 1994). But the methods used in those papers are somewhat restricted and not applicable to various
kind matrix expressions. In this thesis, we shall develop a general and complete method for establishing
rank equalities for matrix expressions involving Moore-Penrose inverses, group inverses, Drazin inverses.
as well as weighted Moore-Penrose inverses of matrices. Using these rank formulas. we shall characterize
various equalities for generalized inverses of matrices. and then present their applications in the theory

of generalized inverses of matrices.

The matrices considered in this paper are all over the complex number field C. Let 4 € C™*™. We
use 4~, r(4) and R(4) to stand for the conjugate transpose, the rank and the range (column space) of

-, respectively.

It is well known that the Moore-Penrose inverse of matrix A is defined to be the unique solution .\°

of the following four Penrose equations
(1) AXA =4, (2) XYAX =X, 3) (AX)" = 4X. (4) (XYA4)" = X4

and is often denoted by X = Af. In addition. a matrix X that satisfies the first equation above is called

an inner inverse of A. and often denoted by .4~. A matrix X that satisfies the second equation above is



called an outer inverse of 4, and often denoted by A(). For simplicity, we use E4 and F, to stand for

the two projectors
Es=I-44A"  and Fy=1-4t4

induced by 4. As to various basic properties concerning Moore-Penrose inverses of matrices. see. e.g..

Ben-Israel and Greville (1980). Campbell and Meyer (1991). Rao and Mitra (1971).

Let A € C™*™ be given with Ind 4 = k, the smallest positive integer such that r(A*7!) = r(A%).

The Drazin inverse of matrix A is defined to be the unique solution .\ of the following three equations
(1) A*XA=4F (2) X4X =X, (3) AX =XA4,

and is often denoted by .Y = AP, In particular, when Ind 4 = 1. the Drazin inverse of matrix A is call

the group inverse of 4, and is often denoted by A¥.

Let 4 € C™*". The weighted Moore-Penrose inverse of 4 € C™*" with respect to the two positive
definite matrices A € C™*™ and N € C"*" is defined to be the unique solution of the following four

matrix equations
(1) AXA =4, (2) XAX =X, 3) (MAX)" =MAYX,, ) (NYAH)"=NXYA

and this X is often denoted by X = AR,_ ~- In particular, when M = [, and N = [, .-lR,_N is the
conventional Moore-Penrose inverse A! of 4. Various basic properties concerning Drazin inverses. group
inverses and Weighted Moore-Penrose inverses of matrices can be found in Ben-Israel and Greville (1980).

Campbell and Meyer (1991), Rao and Mitra (1971).

It is well known that generalized inverses of matrices are a powerful tool for establishing various rank
equalities on matrices. A seminal reference is the paper [36] by Marsaglia and Styan (1974). I[n that
paper, some fundamental rank equalities and inequalities related to generalized inverses of matrices were
established and a variety of consequences and applications of these rank equalities and inequalities were
considered. Since then, the main results in that paper have widely been applying to dealing with various
problems in the theory of generalized inverses of matrices and its applications. To some extent, this thesis

could be regarded as a summary and extension of all work related to that remarkable paper.
We next list some key results in that paper, which will be intensively applied in this thesis.

Lemma 1.1 (Marsaglia and Styan, 1974). Let 4 € C™*". Be C™**, C € C'*" and D € C***. Then

r[d. Bl=r(4) +r(B - A4'B)=r(B) +r(4 - BBt4), (1.2)
[

r ; =r(d) +r(C —-CA'4) =r(C) +r(4 - ACTC), {1.3)
[ 1 B

e o= r(B)+r(C)+r(Eg AFc) = 7(B)+r(C)+r[ ([ -BB)A(I,-C'C)].(1.4)

[§%}



i B] 0 E.B -
r =r(d)+r (L.9)
C D CFy Sa
(4 B [a4
r = +r{d, B]—r(A) +r[J(D)], (1.6)
D C
. . A B
where S4 = D — CA'B is the Schur complement of A in M = lr c D ] ., and
J(D) = [I - (CF.)(CFa)"|Sall — (EaB)(E4B)].
called the rank complement of D in M. In particular. if
R(B) C R(4) and R(C”) C R(A"),
then
A B
r =r(A)+r(D-CA'B). (1.7)
C D

The siz rank equalities in Eqs.(1.2) —(1.7) are also true when replacing A" by A~.
Lemma 1.2 (Marsaglia and Styan. 1974). Let 4 € C™*". B € C"™*F. C € C**" and D € C***. Then

(a) r[4 B]=r(4) +r(B) < R(A)NR(B) = {0} & R[(E.B)*] = R(B*) & R[(Epd)*] =
R(A%).

(b) r ; =7(4) +r(C) <= R(A")NR(C™) = {0} < R(CF.4) = R(C) <> R(AF) = R(A).
L~ ]

(¢) r[4, B]=r(4) < R(B) C R(4) <= E.B = 0.

(d) r : =r(A) & R(C") C R(A*) «= CF,4 =0.

() r g ﬁ J =r(d) + r(B) +(C) & R(4)N R(B) = {0} and R(4*) N R(C*) = {0}.

€) r c g =r(d) & R(B) C R(A) and R(C") C R(A*) and D = CA'B.

Lemma 1.3 (Marsaglia and Styan, 1974)(rank cancellation rules). Let A € C™*". B € C™** and

C € C'*™ be given, and suppose that

R(AQ) = R(4) and R[(PA)"] = R(47).

Then _
(AQ, B]=r[4, B] P A (1.8)
r AQ, =r[ 4, , r =r .
C C
In particular, ~
A4 A
r{d4%, Bl=r[4, B], r =r . (1L.9)
C C



Lemma 1.4 (Marsaglia and Styan, 1974). Let A, B € C™*". Then

() r(AxB)>r [ ; j! +7r[A, B]—r(d) —-r(B).

(b) If RGA)NR(B) = {0}, then r(A+B) =r { ; J '

(¢} If R(A")NR(B*) = {0}, thenr(A+ B)=r[4A. Bl

(d) "(A+B)=r(A)+r(B) <= (A - B)=r(4) +r(B) &= R(A)N R(B) = {0}, and R(A*) N
R(B*) = {0}.

In addition. we shall also use in the sequel the following several basic rank formulas. which are either

well known or easy to prove.

Lemma 1.5. Let 1€ C™>* B e C™™™ and N € C™*™. Then

rMA-ABA)=r(A)+r([, —BA)—-n=r(4d) +7r([pn — AB) - m. (1.10)
r(NEN)=r(N)+r(I.£N)=-m=r(A)+r(fpn — AB) —m, {(L.11)
(L =N =r(In + N)+r([pn—N)—m. (1.12)

Lemma 1.6. Let 4. B € C™*". Then

A B
rl :lzr(--l-i—B)-{-r(.-l—-B). (1.13)
B A

Proof. Follows from the following decomposition

I, I 4 B I, I, A+ B 0 -
Im —Inm B A Iy —In 0 A-B |

Lemma 1.7 (Anderson and Styan, 1982). Let 4 € C™*™. Then

N —

rM(A—A3) =r(A+2)+7r(4 = 42) = r(A). (1.14)

This thesis is divided into 17 chapters with over 240 theorems and corcllaries. They organize as

follows.

In Chapter 2, we establish several universal rank formulas for matrix expressions that involve Moore-
Penrose inverses of matrices. These rank formulas will serve as a basic tool for developing the content in

all the subsequent sections.

In Chapter 3, we present a set of rank formulas related to sums, differences and products of idempotent
matrices. Based on them, we shall reveal a series of new and untrivial properties related idempotent

matrices.



In Chapter 4, we extend the results in Chapter 3 to some matrix expressions that involve both
idempotent matrices and general matrices. In addition, we shall also establish a group of new rank

formulas related to involutory matrices and then consider their consequences.

In Chapter 5. we establish a set of rank formulas related to outer inverses of a matrix. Some of them

will be applied in the subsequent chapters.

In Chapter 6, we examine various relationships between a matrix and its Moore-Penrose inverse using
the rank equalities obtained in the preceding chapters. We also consider in the chapter how characterize
some special types of matrices, such as, EP matrix, conjugate EP matrix. bi-EP matrix. star-dagger

matrix. power-EP matrix, and so on.

In Chapter 7. we discuss various rank equalities for matrix expressions that invalve two or more Moore-
Penrose inverses. and then use them to characterize various matrix equalities that involve Moore-Penrose

inverses.

[n Chapter 8. we investigate various kind of reverse order laws for Moore-Penrose inverses of products

of two or three matrices using the rank equalities established in the preceding chapters.

In Chapter 9. we investigate Moore-Penrose inverses of 2 x 2 block matrices. as well as n x n block

matrices using the rank equalities established in the preceding chapters.

In Chapter 10. we investigate Moore-Penrose inverses of sums of matrices using the rank equalities

established in the preceding chapters.

In Chapter 11, we study the relationships between Moore-Penrose inverses of block circulant matrices
and sums of matrices. Based on them and the results in Chapter 9, we shall present a group of expressions

for Moore-Penrose inverses of sums of matrices.

In Chapter 12, we present a group of formulas for expressing ranks of submatrices in the Moore-Penrose

inverse of a matrix.

In Chapters 13—17, our work is concerned with rank equalities for Drazin inverses. group inverses. and
weighted Moore-Penrose inverses of matrices and their applications. Various kinds of problems examined
in Chapters 6—12 for Moore-Penrose inverses of matrices are almost considered in these five chapters for

Drazin inverses, group inverses, and weighted Moore-Penrose inverses of matrices.



Chapter 2

Basic rank formulas

The first and most fundamental rank formula used in the sequel is given below.

Theorem 2.1. Let 4 € C™*", B € C™**, C € C'*™ and D € C'** be given. Then the rank of the
Schur complement Sy, = D — CA'B satisfies the equality

. A*44 4B
r(D - CAIB) =r|: ] - r(4). (2.1)
cA* D

Proof. It is obvious that
R(A*B) CR(A™) = R(A"447), and R(AC") C R(4) = R(AA"4).

Then it follows by Eq.(1.7) and a well-known basic property A*(A*A4%)t4* = Af(see Rao and Mitra.
1971, p. 69) that

A4 A*B
"
cAs D

} = r(ATAAY) + [ A = CAT(AAATAB] = r(A) + (D = CATB).

establishing Eq(2.1). a

The significance of Eq.(2.1) is in that the rank of the Schur complement S4 = D — CA!B can be
evaluated by a block matrix formed by 4. B. C and D in it. where no restrictions are imposed on S
and no Moore-Penrose inverses appear in the right-hand side of Eq.(2.1). Thus Eq.(2.1) in fact provides

us a powerful tool to express ranks of matrix expressions that involve Moore-Penrose inverses of matrices.

Eq.(2.1) can be extended to various general formulas. We next present some of them. which will

widely be used in the sequel.
Theorem 2.2. Let 4, 4», By, Ba, Cy, Ca and D are matrices such that expression D — C, .{‘;Bl -
Cg.-l.EB-_: is defined. Then
A1 A7 0 A1 By
T(D —CIAEB] —C;;A-EB-_)) =T 0 .’.3.' 2:1-3 .-l-EB'_) —T‘(:l[) - r(-’l2)- ( -
C, 47 Ca 45 D

(8]
o
~—

In particular. if

R(B\) C R(A1).  R(CT) € R(4A}). R(B2) € R(A2) and R(C3) C R(AD).



then

-'ll 0 Bl
(D =CAlBI —CoAlBy) =7 | 0 4y By | —7r(A) —r(da). (2.3)
C]_ C-_g D
Proof. Let
B A 0
C=[C, C}, B=1|"" and A= """ .
B, 0
Then Eq.(2.1) can be written as Eq.(2.2), and Eq.(2.3) follows from Eq.(L.6). ]

If the matrices in Eq.(2.2) satisfy certain conditions. the block matrix in Eq.(2.2) can easily be reduced

to some simpler forms. Below are some of them.
Corollary 2.3. Let 4 € C™*", B e ™%k, C € C'*" and N € C*** be given. Then

AA*4 — 4(BNC)*4 4C* O
(Nt —CcABY=r B4 0 N | —r(d)—r(N). (2.4)
0 N 0

In particular. if
R(B"4) C R(N) and R(CA") C R(N7),

then
r(NT —CAlB) = r[A4™A - ABNC) A} +7(N) — r(4). (2.5)
If
R(B*4) C R(N), R(CA™) C R(N"), R(BN)C R(4) and R[(NC)]C R(A™).
then
NV —CA'B)Y=r(A—=BNC) +r(N) —r(4). (2.6)
Theorem 2.4. Let A;, By, By, Ci(t = 1. 2, ---. k) and D are matrices such that expression D —
CyAIB, —--- = Cr AL By is defined. Then
" ¢ A 44 A*B _
I‘(D—Cl.’-llBl—"'—CkAkBk) =T -—I'(.—{). (2.1)
cA- D
where A = diag( Ay, A2, ---. Ag), B*=[B[, B;. ---. Bi]land C ={Cy, Cs. ---. Cr].

Theorem 2.5. Let A. B, C. D. P and Q are matrices such that expression D — CPTAQ'B is defined.
Then
P*AQ* P PP 0
r(D—-CP'4Q'B) =r | Q*QQ* 0 QB | —r(P) - r(Q). (2.8)
0 cpP* -D

~I



In particular, if
R(A™) C R(Q™). R(B)C R(Q) and R(CT)C R(P).

R(A) C R(P),
then
4 P 0
r(D-CP'AQ'B)=r| Q 0 - r(P) - r(Q).
0 C =D

Proof. Note that

r(D-CP'4Q'B) = r
CPt4 D

Applying Eq.(2.1) to it and

rank cancellation law Eq.(1.8). [}

= r + - I’( A ) -
0 D 0 C Q 0 0 B

then simplifying yields Eq.(2.8). Eq.(2.9) is derived from Eqs.(2.8) by the

Theorem 2.6. Suppose that the matriz expression S = D — C, Plf.-llQIB[ - CgR_j.—lg()iB‘g is defined.

Then _ _
PEAQ; 0 PIRPE 0 0
0 P A,Q; 0 PiP,Pr 0
r(S)=r| Q;Q.Q; 0 0 0 QB | ~d
0 Q3Q2Q3 0 0 (5B
0 0 C\P;  GP; D |

where d = r(Py) + r(P) + r(Qy) + r(Q2). In particular. if

R(A:) € R(P).  R(4}) € R(Q]), R(B:i) C R(Q:) and R(C]) C R(F}).

then _

A4 0 A 0
0 4 0 A
r(S)=r| Q@ 0 0 0 By | -—r(A)-r(Q)-r(P)—r(Q).
0 @ 0 0 B
| 0o ¢ C, -D ]
Moreover,
D*DD* 0 0 D=

0 P*AQ* P*PP* 0
0 QTQe" 0 Q"B
D* 0 cP* 0

r(DY —CPTAQ'B) =r

-r(P) —r(Q) - r(D).

(2.10)



Proof. Writing S as

¥ i
P 0 A 0 0 B
S=D-[Ci, C] 1 1 Q1 v
0 P 0 A 0 @ B,
and then applying Eq.(2.8) to it produce Eqgs.(2.10). Eq.(2.11) is derived from Eqs.(2.10) by the rank

cancellation law Eq.(1.8). Eq.(2.12) is a special case of Eq.(2.10). a

It is easy to see that a general rank formula for
D —C\Pl4,Q!B, = CyP} 4,Q1Bs ~ --- — C. P A Q) Bi

can also be established by the similar method for deriving Eq.(2.10). As to some other general matrix
expressions, such as

Sk = AoP] 4 Pl 4y--- Pl A,

and their linear combinations. the formulas for expressing their ranks can also be established. However

they are quite tedious in form. we do not intend to give them here.



Chapter 3

Rank equalities related to idempotent
matrices

A square matrix A is said to be idempotent if 4> = 4. If we consider it as a matrix equation 4% = A.
then its general solution can be written as A = V(V*)T V. where V' is an arbitrary square matrix. This
assertion can easily be verified. In fact, 4 = V(V?)TV, apparently satisfies 4? = 4. Now for any matrix
A with A2 = d. welet V" = 4. Then V(V2)IV = A(A*)T4 = A4T4 = 4. Thus 4 = V{71 s
indeed the general solution the idempotent equation 42 = 4. This fact clearly implies that any matrix
expression that involves idempotent matrices could be regarded as a conventional matrix expression
that involves Moore-Penroses inverses of matrices. Thus the formulas in Chapter 2 are all applicable to
determine ranks of matrix expressions that involve idempotent matrices. However because of speciality of
idemnpotent matrices, the rank equalities related to idempotent matrices can also be deduced by various
elementary methods. The results in the chapter are originally derived by the rank formulas in Chapter

2. we later also find some elementary methods to establish them. So we only show these results in these

elementary methods.

Theorem 3.1. Let P, Q € C'™™™ be two idempotent matrices. Then the difference P — () satisfies the

rank equalities

HP-Q)=r g +r(P. Q]—r(P) - MQ). (3.1)
f(P=Q)=r(P-PQ)+r(PQ~Q). (3.2)
r(P=Q)=r(P-QP)+r(QP-Q). (3.3)
-P 0 P
Proof. Let M = 0 @ @ |- Then it is easy to see by block elementary operations of matrices
P Q@ 0
that
-P 0 0
rM)y=r| 0 Q 0 =r(P)+r(Q)+r(P -Q).
0 0 P-Q

On the other hand. note that P?* = P and Q? = Q. It is also easy to find by block clementary operations

10



of matrices that

-P 0 P 0 0 P P'I
rMy=r| —QP 0 Q |=r| 0 0 Q|=r o J +r{P. Q}.
P Q@ 0 P Q O

Combining the above two equalities yields Eq.(3.1). Consequently applying Eqs.(1.2) and (1.3) to [ P. Q]

P
and [ o J in Eq.(3.1) respectively yields

r[P. Ql=r(P)+r(Q - PQ), (3.4)
r[P. Ql=r(Q)+r(P -QP), (3.5)
_ - .
r =r(P)+r(Q-QP), (3.6)
L QJ
_ o - )
T 0 =r(Q)+r(P - PQ). (3.7)

Putting Eqs.(3.4) and (3.7) in Eq.(3.1) produces Eq.(3.2), putting Eqs.(3.5) and (3.6) in Eq.(3.1) produces
Eq.(3.3). o
Corollary 3.2. Let P. Q € C™*™ be two idempotent matrices. Then

(a) R(P—-PQ)NR(PQ-Q)={0} and R[(P - PQ)"|NR[(PQ - Q)] = {0}.

(b) R(P-QP)NR(QP-Q)={0} and R[(P - QP )’ |NR[(QP - Q)] = {0}.

(¢) IfPQ=00rQP =0, thent(P-Q) =r(P)+r(Q), i.e.. R(IP)NR(Q) = {0} and R(P*)NR(Q") =
{0}.

(d) If both P and Q are Hermitian idempotent, then r(P — Q) =2r[P. Q] ~ r(P) — r(Q).

Proof. Parts (a) and (b) follows from applying Lemma 1.4(d) to Eqs.(3.2) and (3.3). Part (¢) is a direct
consequence of Eqs.(3.2) and (3.3). Part (d) follows from Eq.(3.1). o

On the basis of Eq.(3.1), we can easily deduce a known result due to Hartwig and Styan (1987) on

the rank subtractivity two idempotent matrices.

Corollary 3.3. Let P. Q@ € C™*™ be two idempotent matrices. Then the following statcments are
equivalent:
(a) (P -Q)=1r(P)—-r(Q). ie.. Q <, P.
r
(b)y r =r{P, Q]=r(P).
Q

(¢) R(Q) € R(P) and R{Q~) C R(P").
(d) PQRQ=QP=Q.
(¢) PQP=Q.
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Proof. The equivalence of (a) and (b) follows immediately from applying Eq.(3.1). The equivalence of
(b). (¢), (d) and (e) can trivially be verified. a

In addition, from Eq.(3.1), we can immediately find the following result. which has been given in [36]

by Gross and Trenkler.

Corollary 3.4. Let P, Q € C™*™ pe two idempotent matrices. Then the following statements are
equivalent:

(a) The difference P — Q is nonsingular.

Q

Proof. Follows directly from Eq.(3.1). a

P
(b) r [ :l =r[P, Q]l=r(P)+r(Q) =m. (c) R(P)= R(Q)=R(P")=R(Q") =C™.

Notice that if a matrix P is idempotent, the [,, — P is also idempotent. Thus replacing P in Eq.(3.1)

by [,, — P, we get the following.

Theorem 3.5. Let P, Q € C™*™ be two idempotent matrices. Then the rank of [,, — P — Q satisfies

the equalities

r(fln —P—-Q)=r(PQ)+r(QP)—-r(P)—r(Q) +m. (3.8)
r([m—P—Q)=I‘([m—P—Q+P(2)+1’(P(2). (39)
(Im =P =-Q)=r(ln—P-Q+QP)+r(QP). (3.10)

Proof. Replacing P in Eq.(3.1) by [,,, — P yields
Im — P
"([m.—P_Q)zr[ Q }‘i‘?‘[[m—P, QJ—T’(I"I—P)—I'((Q). ('3]-1)

[t follows by Eqgs.(1.2) and (1.3) that
[l —P. Ql=r(l[n —P)+r[Q~ (I, —-P)Q]=m-r(P)+ r(PQ).
and

Im.—P
[ Q }="(lm—P)+T[Q—Q(Im—P)I=m-f(P)+"(QP)'

Putting them in Eq.(3.11) produces Eq.(3.8). On the other hand. replacing P in Eqs.(3.2) and (3.3) by

[,, — P produces

"Im=P)=Q) = r(Im—P)=Un-P)Q|+r[(In—P)Q-Q]j
= 1([m -P-Q+PQ)+r(PQ),

and
r[([rn—P)_Q] = r[(Im—P)_Q(Inx—P)]+r[Q([nl—P)—Q}
= r(Im—P-Q+QP)+r(QP),

12



both of which are exactly Eqs.(3.9) and (3.10). o

Corollary 3.6. Let P, Q € C™*™ be two idempotent matrices. Then

(a) R(In, —P-Q+ PQ)NR(PQ)={0} and R[(I, — P - Q + PQ) |NR[(PQ)*] = {0}.

(b) R(L,.-P—-Q+QP)NR(QP)={0} and R[(I,, - P-Q + QP ) |NR[(QP)*] = {0}.

(¢) P+Q=1I, < PQ=QP =0 and R(P)& R(Q) = R(P*) = R(Q") =C™.

(d) IfFPQ=QP=0.thenr([,, —P-Q)=m~—r(P)-rQ).

(e) I, — P —Q is nonsingular if and only if r(PQ) = r(QP) = r(P) = r(Q).

(£) If both P and Q are Hermitian idempotent, then r([,, — P — Q) = 2r(PQ) — r(P) — r{(Q) + .
Proof. Parts (a) and (b) follow from applying Lemma 1.4(d) to Eqgs.(3.9) and (3.10). Note from
Eqs.(3.8)—(3.10) that P + Q = I, is equivalent to PQ = QP =0 and r(P) + r(Q)) = rn. This assertion
is also equivalent to PQ = QP =0 and R(P) & R(Q) = R(P*) & R(Q") = C™. which is Part (¢). Parts
(d). (e} and (f) follow from Eq.(3.8). O

As for the rank of sum of two idempotent matrices, we have the following several results.

Theorem 3.7. Let P. Q € C™*™ be two idempotent matrices. Then the sum P + () satisfics the rank

cqualities
P Q P
r(P+Q)=r @ -r(@Q)=r ? —-r(P). (3.12)
Q 0 P 0
r(P+Q)=r(P-PQ-QP+QPQ)+r(Q), (3.13)
r(P+Q)=r(Q—-PQ—-QP+ PQP)+r(P). (3.14)
P o P]
Proof. Let M =| 0 (@ @ |- Thenitis easy to see by block elementary operations of matrices that
P Q 0 |
[P 0 0
rMy=r| 0 Q 0 =r(P)+r(Q)+r(P+Q).
0 0 -P-Q

On the other hand. note that P? = P and Q* = Q. It is also easy to find by block elementary operations

of matrices that

P 0 P 2P 0 P 2P 0 0 P o
r(My=r| -QP 0 Q |=7r| 0 0 Q|=r| 0 0 Q |=r [ o 0 } + r(P)
P Q 0| | P Q 0 | L 0 Q P | )
and
[0 -PQ P [0 o P] [0 0o P ]
r(M)=r] 0 Q Q|=r|{0 20 Q@ 1=r]0 20 O =r [ 2 ] +r(Q)-
P Q 0 | P Q 0 | | P 0 iQ |
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The combination of the above three rank equalities yields the two equalities in Eq.(3.12). Consequerntly

applying Eq.(1.4) to the two block matrices in Eq.(3.12) yields Eqgs.(3.13) and (3.14). respectively. =]

Corollary 3.8. Let P. Q € C™*™ be two idempotent matrices.
(a) If PQ = QP, then

r(P+Q)=r[P. Q]=r[P}, (3.15)
Q
or, equivalently,
R(Q) C R(P+Q) and R(Q") C R(P™+Q"). (3.16)

(b) If R(Q) C R(P) or R(Q™) C R(P*). thenr(P + Q) = r(P).
Proof. If PQ = QP. then Eqs.(3.13) and (3.14) reduce to
(P+Q)=r(P-PQ)+r(Q)=r(Q-PQ)+r(P).

Combining them with Eqs.(3.4) and (3.7) yields Eq.(3.15). The equivalence of Eqs.(3.15) and (3.16)

follows from a simple fact that

[z]-1

as well as Lemma 1.2(c) and (d). The result in Part (b) follows immediately from Eq.(3.12). O

and r[P, Q]=r[P+Q. Q],

Corollary 3.9. Let P. Q € C™*™ be two idempotent matrices. Then the following five statements are

equivalent:

(a) The sum P + Q is nonsingular.

P =1m a P Q =
o [ 2] om e 1] 2 ]t 2] -0

P Q-
¢) r{P, =m and R R = {0}.
R F P LI

(d) r|:Q}=m and R[Q}HR[P:lz{O}.
P P 0

(¢) r[Q, Pl=m and R I: Q: jl NR [ 1:)- = {0}.

Proof. In light of Eq.(3.12), the sum P + Q is nonsingular if and only if

- p -
o L (3.17)
Q 0
or equivalently ) i
P
o @ = H(P) +m. (3.18)
P 0
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Observe that

r Q:ISTI:P}ﬁ-rl:QJSm%-r(Q),
0 Q 0

] <r[P. Q]+ r[Q, 0] <m +r(Q).

P} Srl:QJ+rl:P} <m +r(P),
0 P 0

r j, <r{Q, P+ r[P. 0] <m +r(P).
P 0

Combining them with Egs.(3.17) and (3.18) yields the equivalence of Parts (a)—(e). c

Theorem 3.11. Let P. Q € C™*™ be two idempotent matrices. Then
(a) The rank of I, + P — Q satisfies the equality

(In+P—-Q)=r(QPQ) —r(@) + . (3.19)
(b) The rank of 21,, — P — Q satisfies the two equalities
"(2[171 —P_Q) =T(Q_QPQ)—"'(Q)+"’" (320)

(2, —P-Q)=r(P—-PQP)~r(P)+m. (3.21)

Proof. Replacing @ in Eq.(3.12) by the idempotent matrix [,,, — Q and applying Eq.(1.4) to it vields

r(IIII+P_Q) = I Q 0

= r([m_Q)"'r[([m_([m—(2))[)([111_(["(_(2))]
= m—-r(Q) +7(QPQ),

T‘[ F ["1—62}_"(["1—Q)

establishing Eq.(3.19). Further, replacing P and @ in Eq.(3.12) by I, — P and [,, — Q. we also by
Eq.(1.4) find that

r(2l, —-P-Q) = }—r(lm—Q)

Im.—Q 0
= 7'(Ivn_Q)+r[([m-(Im _Q))([rrl"P)([rn ’_([m-CQ))]
m—-71(Q) +r(Q - QPQ).

[[m—P In—0Q
.

establishing Eq.(3.20). Similarly, we can show Eq.(3.21). a

Corollary 3.11. Let P, Q@ € C™*™ be two idempotent matrices.



(a) If R(P) C R(Q) and R(P*) C R(Q~), then P and Q satisfy the two rank equalities

r(lm+P—-Q)=m+r(P) -r(Q), {3.22)
(2l —P-Q)=m+r(Q - P)—r(Q). (3.23)

(b) Im + P — Q is nonsingular &= r(QPQ) = r(Q).
(¢) 2I, — P —Q is nonsingular <= r(P — PQP) =1(P) < r(Q - QPQ) = r(Q).
(d) Q-P=1I, <= r(QPQ) +r(Q) =m.

Proof. The two conditions R(P) C R(Q) and R(P*) C R(Q") are equivalent to QP = P = PQ. In
that case. Eq.(3.19) reduces to Eq.(3.22), Eqs.(3.20) and (3.21) reduce to Eq.(3.23). The results in Parts

(a)—(c) are direct consequences of Eq.(3.19). c
we next consider the rank of PQ — QP for two idempotent matrices P and (.

Theorem 3.12. Let P, Q € C™*™ be two idempotent matrices. Then the difference PQ — QP satisfies

the five rank equalities

HPQ-QP)=r(P-Q)+r(Iln—-P—-Q)—m. {3.24)
r(PQ-QP)=r(P-Q)+r(PQ)+r(QP) —r(P) —r(Q), (3.23)
"(PQ-QP)=r [ 61; } +r[P, Q]+ r(PQ) +r(QP) =2r(P) - 2r(Q). (3.26)
r(PQ—-QP)=r(P-PQ)+r(PQ—-Q)+r(PQ)+r(QP)-r(P)-rQ). (3.27)
r(PQ—-QP)=r(P-QP)+r(QP - Q) +r(PQ)+r(QP) —r(P) - r(Q). (3.28)

In particular. if both P and Q are Hermitian idempotent, then

r(PQ -QP)=2r[P. Q] +2r(PQ) - 2r(P) - 2r(Q). 3201

Proof. It is easy to verify that that PQ — QP = (P - Q) P+ Q - I,,). Thus the rank of PQ - QP

can be expressed as

[m P —["l
r(PQ—QP)=r[(P—Q)(P+Q—Im)]=r{ e ]—m.

P-qQ 0

On the other hand. it is easy to verify the factorization

[m P+(2_[m _ [m. 2F)_[m 0 P+(2_[m [ [”l 0
P-Q 0 "o I P-Q 0 | 201w fw |

Hence

[ Im P+Q-1In
.

} :7‘(P—Q)+r(lm—P—(L))'
P-Q 0
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Putting it in Eq.(3.30) yields Eq.(3.24). Consequently putting Eq.(3.8) in Eq.(3.24) yields Eq.(3.25):
putting Eq.(3.1) in Eq.(3.25) yields Eq.(3.26); putting Eqs.(3.2) and (3.3) respectively in Eq.(3.25) vields
Eqs.(3.27) and (3.28). o

Corollary 3.13. Let P. Q € C™*™ be two idempotent matrices. Then the following five statements are
equivalent:
(a) PQ=QP.
b) (P-QY+r([m—-P—-Q)=m.
(¢) r(P—-Q)=r(P)+r@Q)~-r(PQ) - r(QP).
(d) r(P=PQ)=r(P)-r(PQ) and r(Q-PQ)=r(Q)-r(PQ). i.e.. PQ <,y P and PQ <,, Q.
(e) r(P=QP)=r(P)-r(QP) and r(Q-QP)=r(Q)-7r(QP), ie.. QP <,y P and QP <, Q.

() r g =r(P)+r(Q)-r(PQ) and r[P. Q]=r(P)+r(Q) - r(QP).
- p -
(g) r 0 =r(P)+r(Q)-r(QP) and r[P. Q] =r(P)+r(Q) — r(PQ).
Proof. Follows immediately from Eqs.(3.24)—(3.28). a

Corollary 3.14. Let P, Q € C™*™ be two idempotent matrices. Then the following three statements

are equivalent:
(a) F(PQ-QP)=r(P-Q).
{(b) Ln — P —Q is nonsingular.
(¢) r(PQ)=r(QP)=r(P)=r(Q).
Proof. The equivalence of Parts (a) and (b) follows from Eq.(3.24). The equivalence of Parts (b) and

(¢) follows from Corollary 3.6(e). a

Corollary 3.15. Let P, Q € C™*™ be two idempotent matrices. Then the following three statements
are equivalent:

(a) PQ — QP is nonsingular.

(b) P—-Q and I, — P — Q are nonsingular.

(¢) R(P)& R(Q) = R(P*) 2 R(Q7) =C™ and r(PQ) =r(QP) = r(P) =r(Q) hold.
Proof. The equivalence of Parts (a) and (b) follows from Eq.(3.24). The equivalence of Parts (b) and
(c) follows from Corollaries 3.4(e) and 3.6(e). ]

A group of analogous rank equalities can also be derived for PQ + QP. where P and @ are two

idempotent matrices P and Q.

Theorem 3.16. Let P, Q € C™*™ be two idempotent matrices. Then PQ + QP satisfies the rank

equalities
M(PQ+QP)=r(P+Q)+r(In—P=Q)-m, (3.31)
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r(PQ+QP)=r(P+Q)+r(PQ)+r(QP) - r(P) - r(Q). (3.32)
r(PQ+QP)=r(P—-PQ-QP+QPQ) + r(PQ) +r(QP) - r(P). (3.33)
r(PQ+QP)=7(Q—-PQ—-QP+ PQP) +r(PQ) +r(QP) — r(Q). (3.34)

Proof. Note that PQ+ QP = (P +Q)> —( P+ Q). Then applying Eq.(1.11) to it. we directly obtain
Eq.(3.31). Counsequently, putting Eq.(3.8) in Eq.(3.21) yields Eq.(3.32), putting Eqs.(3.13) and (3.14)
respectively in (3.32) vields Egs.(3.33) and (3.34). a
Corollary 3.17. Let P, Q € C™*™ be two idempotent matrices. Then the following four statements
are equivalent:

(a) r(PQ+QP)=r(P+Q).

(b) I, — P — (@ is nonsingular.

(¢) r(PQ) =r(QP)=r(P)=r(Q).

(d) (PQ-QP)=r(P-Q).
Proof. The equivalence of Parts (a) and (b) follows from Eq.(3.31). and the equivalence of Parts (h)—(d)

comes from Corollary 3.14. a

Corollary 3.18. Let P. Q € C™*™ be two idempotent matrices. Then the follouing two statements are
equivalent:

(a) PQ + QP is nonsingular.

(b) P+ Q and [, — P — Q are nonsingular.

Proof. Follows directly from Eq.(3.31). |
Combining the two rank equalities in Eqs.(3.24) and (3.31). we obtain the following.

Corollary 3.19. Let P, Q € C™*™ be two idempotent matrices. Then both of them satisfy the following
rank identity

M(P+Q)+r(PQ-QP)=r(P-Q)+r(PQ+QP). (3.35)

Thoerem 3.20. Let P, Q € C™*™ be two idempotent matrices. Then

rl{P-QYP —(P-Q)|=r(In —P+Q)+r(P-Q)—m. (3.36)
ri(P-Q)* —(P-Q)]=r(PQP)—r(P)+r(P -Q). (3.37)

Proof. Eq.(3.36) is derived from Eq.(1.11). According to Eq.(3.19). we have r([,, — P + Q) =
r(PQP) — r(P) + m. Putting it in Eq.(3.36) yields Eq.(3.37). ]

Corollary 3.21 (Hartwig and Styan, 1987). Let P, Q € C™*™ be two idempotent matrices. Then the

following five statements are equivalent:
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(a} P — Q@ is idempotent.

by r([lm —P+Q)=m—-r(P-Q).

() r(P-Q)=r(P)-r(Q). ie. Q<rs P.
(d) R(Q) € R(P) and R(Q") C R(P").

(e) PQP =QqQ.

Proof. The equivalence of Parts (a) and (b) follows immediately from Eq.(3.36). and the equivalence of
Parts (c). (d) and (e) is from Corollary 3.3(d). The equivalence of Parts (a) and (e) follows from a direct

matrix computation. m]

In Chapter 4. we shall also establish a rank formula for (P —Q ) — (P — Q) and consider tripotency

of P - Q. where P. Q are two idempotent matrices.

Theorem 3.22. Let P. Q € C™*™ e two idempotent matrices. Then [, — PQ satisfies the rank
equalities

Ml —PQ)=r(2[, —P-Q)=r{([m - P)+([m-Q)] (3.38)

Proof. According to Eq.(1.10) we have
r(lm —PQ)=r(Q -QPQ) -r(Q) +m.
Consequently putting Eq.(3.20) in it yields Eq.(3.38). o

Corollary 3.23. Let P. Q € C™*™ he two idempotent matrices. Then the sum P + () satisfies the rank
tdlentities

(P+Q)=r(P+Q-PQ)=r(P+Q—QP). (3.39)

In particular, if PQ = QP, then

(P+Q)=r(P)+r(Q)-r(PQ). (3.40)

Proof. Replacing P and @Q in Eq.(3.38) by two idempotent matrices [,, — P and [,,, — (2 immediarelv
vields Eq.(3.39). If PQ = QP. then we know by Egs.(3.13) and (3.14) that

F(P+Q)=r(P-PQ)+r(Q) =r(Q—-QP)+r(P). (3.41)
and by Corollary 3.13 we also know that
(P ~PQ)=r(P) - r(PQ) and r(Q - QP) =r(Q) - HQP). (3.42)
Putting Eq.(3.42) in Eq.(3.41) yields Eq.(3.40). O
Corollary 3.24. Let P, Q € C™*™ be two idempotent matrices. Then

7[P(\.) —(PQ).Z] =r([m —P(J) +T(PQ) —m= 7‘(2[711 - P—(2)+I'(P(2) — m. (*5’1'3)
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In particular, the following statements are equivalent:

(a}) PQ is idempotent.

b) r(Im — PQ)=m—-r(PQ).

(c) r(2l,, - P—-Q)=m—-r(PQ).
Proof. Applying Eq.(1.11) to PQ — (PQ)* gives the first equality in Eq.(3.43). The second one follows
from Eq.(3.38). a

Corollary 3.25. Let P, Q € C™*™ be two idempotent matrices. Then
(Im =P -Q+PQ)=m—r(P)-r(Q)+r(QP).
Proof. This follows from replacing A in Eq.(1.4) by I,,. a

Notice that if a matrix 4 is idempotent, then 4" is also idempotent. Thus we can easily find the

following.

Corollary 3.26. Let P € C™*™ be an idempotent matriz. Then

(a) (P —-P*)=2r[P. P*]-2r(P).

by r(fr,=P-P)=r([n+P—-P")=m.

(c) r(P+P)=r[P, P'l.t.e., RIPYC R(P+ P*) and R(P*) C R(P + P~).

(d) r(PP*—-P*P)=r1(P - P~).
Proof. Parts (a) follows from Eq.(3.1). Part (b) follows from Eq.(3.8). Part (¢) follows from Eq.(3.31).
Part (d) follows from Eq.(3.24) and Part (b). =

The results in the preceding theorems and corollaries can easily be extended to matrices with properties

P? = AP and Q* = nQ, where XA # 0 and p # 0. In fact. observe tha"

1\ 1, 1 I U |
—-P) =P =P - = —=Q = —Q.
( A ) A2 A ( It Q) s 2 I 2
Thus both P/XA and @/ are idempotent. In that case. applying the results in the previous theorems and

corollaries. one may establish a variety of rank equalities and their consequences related to such kind of

matrices. For example,

P
r(uP—=AQ)=r 0 } +r[P, Q]-r(P)-r(Q),
P P
r(uP+AQ)=r Q:I-F(Q)=I‘[Q }-"(P)-,
P 0 P 0

r(Meln — pP = AQ) =1(PQ) + r(QP) — r(P) — r(Q) + m.
r(PQ—-QP) =r(pP = AQ) +r(Aulyn —puP — AQ) —m.
r(PQ+QP) =r(pP +AQ) +r(Aulpn — uP — AQ) — m.
F( Ml — PQ) = r(2Aplm — P — AQ),

and so on. We do not intend to present them in details.
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Chapter 4

More on rank equalities related to
idempotent matrices and their applications

The rank equalities in Chapter 3 can partially be extended to matrix expressions that involve idempotent
matrices and general matrices. In addition, they can also be applied to establish rank equalities related

to involutory matrices. The corresponding results are presented in this chapter.

Theorem 4.1. Let 4 € C™*" be given. P € C™*™ and (Q € C"*" be two tdempotent matrices. Then
the difference PA — AQ satisfies the two rank equalities

P4
r(PA—-AQ)=r { 0 } +7[AQ, P —r(P)-r(Q). (4.1)
FM(PA-AQ)=7r(PA - PAQ) +r( PAQ — AQ). (4.2)
-P 0 P4
Proof. Let M = 0 Q @ |- Then it is easy to see by the block elementary operations of
P AQ 0
matrices that
-FP 0 0
riM)y=r 0 Q 0 =r(P)+r(Q)+r(P4 - 4Q). (1.3)

0 0 P4A-A4Q
On the other hand, note that P? = P and Q* = Q. It is also easy to find by block elementary operations

of matrices that

0 PAQ PA 0 0 P4 P
r(M)=r 0 Q Q =r 0 0 Q =r [ (. } + I‘[.-l(). P] (4.4)
P AQ 0 P 4@ O !

Combining Eqs.(4.3) and (4.4) yields Eq.(4.1). Consequently applying Eqs.(1.2) and (1.3) to [ AQ. P]

PA
and 0 in (4.1) respectively yields Eq.(4.2). a

Corollary 4.2. Let 4 € C™*™ be given, P € C™*™ and ) € C**" be two idemnpotent matrices. Then

(a) R(PA—-PAQ)NR(PAQ — A4AQ) = {0} and R[(P4 - PAQ ) ]NR[(PAQ — AQ )*] = {0}.

(b) IfPAQ =0, then r(PA — AQ) = r(PA) + r(4AQ). or, equivalently R(PA)N R(AQ) = {0} and
R{(PA)" N R[(4Q)"] = {0}.

(¢) PA=4Q@ <= PA(I-Q)=0and (I - P)AQ = 0 < R(AQ) C R(P) and R[(PA)"] C
’(Q).



Proof. Part (a) follows from applying Lemma 1.4(d) to Eq.(4.2). Parts (b) and (c) are direct conse-
quences of Eq.(4.2). a

Corollary 4.3. Let 4, P, Q € C™*™ be given with P, Q being two idempotent matrices. Then the
following three statements are equivalent:

(a) PA — AQ is nonsingular.

Q
(¢) r(PA) =r(P). r(4Q) =r(Q) and R(4Q) & R(P) = R[(PA)"] = R(Q") =C™.

P4
(b) 1‘{ } =I'[:1.Q, P}ZI'(P)-I—T(Q):m

Proof. Follows from Eq.(4.1). a
Based on Corollary 4.2(c), we find an interesting result on the general solution of a matrix equation.

Corollary 4.4. Let P € C™ ™ and @Q € C™*" be two idempotent matrices. Then the general solution

of the matriz equation PX = X Q can be written in the two forms
X=PUQ+ ([, -P)V(I,—-Q),. {4.3)
X =PW+WQ -2PWQ, (-.6)
where U, V, W € C™*" are arbitrary.

Proof. According to Corollary 4.2(c), the matrix equation PX = XY@ is equivalent to the pair of matrix
equations

PX(I-Q)=0 and (I-P)XQ =0. (4.7)

Solving the pair of equations, we can find that both Eq.(4.5) and Eq.(4.6) are the general solutions of
PX = XQ. The process is somewhat tedious. Instead. we give here the verification. Putting (4.5) in
PX and XQ, we get

PX =PUQ and XQ=PUQ.

Thus Eq.(4.3) is solution of PX = X@Q. On the other hand. suppose that .\ is a solution of P\ = XQ
and let U = V' = X in Eq.(4.3). Then Eq.(4.5) becomes

XN =PXoQ+ ([, - P)Xo(In —Q)=PXpQ + Xy - PXg — XoQ + PXpQ = \y.

which implies that any solution of PX = X@Q can be expressed by Eq.(4.3). Hence Eq.(4.3) is indeed
the general solution of the equation PX = X Q. Similarly we can verify that Eq.(4.6) is also a general

solution to PX = X Q. 0

As one of the basic linear matrix equation, AX = X' B was examined (see, e.g.., Hartwig [37]. Parker
[77]. Slavova et al [88]). In general cases, the solution of AX = XB can only be determined by the
canonical forms of 4 and B. The result in Corollary 4.4 manifests that for idempotent matrices 4 and B.

the general solution of AX = X B can directly be written in 4 and B. Obviously, the result in Corollary



4.4 is also valid for an operator equation of the form 4AX = XB when both 4 and B are idempotent

operators.

Theorem 4.5. Let A € C™*" be given, P € C™*™ and Q € C™*" be two idempotent matrices. Then
the sum PA + AQ satisfies the rank equalities

[ P4 A AQ P
r(PA+4Q)=r @ -rQ)=r @ — r(P). (4.8)
Q 0 P4 0
-
AQ - PA
r(PA+4AQ)=r @ @ =r[PA-PAQ, AQ]. (4.9)
P4
0 P4
Proof. Let M =| 0 Q @ |. Then it is easy to see by block elementary operations of matrices
P AQ O
that
P 0 0
r(M)=r| 0 Q 0 =r(P)+r(Q)+r( P4+ AQ).

0 0 PA+AQ

On the other hand. note that P? = P and Q® = Q. We also obtain by block elementary operations of

matrices that

[P -PAQ P4
r(M) = r| 0 0 Q
P 4Q 0
[oP 0 PA 2P 0 0
P4 AQ
= r 0 0 Q =r 0 0 Q =r(P)+r 0 0 .
P 4Q © 0 4Q -iP4
and
[0 -PiQ Pa
r(M) = r| o Q Q
| P AQ 0
[0 o0 P4 0 0 PA
10 P
= r}i 0 20 Q@ =ri 0 2Q 0 =7r(Q)+r .
PA 0
| P 4Q 0 P 0 -1l4Q

Combining the above three rank equalities for M yields Eq.(4.8). Consequently applying Eqs.(1.2) and
(1.3) to the two block matrices in Eq.(4.8) yields Eq.(4.9). O

Corollary 4.6. Let 4 € C™*™ be given, P € C™*™ and Q € C"*" be two idempotent matrices.
(a) If PAQ =0, then r(PA + AQ) = r(PA) + r(AQ), or equivalently R(PA) N R(AQ) = {0} and
R[(P4)*] N R(4Q)"] = {0}.
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(b) PA+AQ =0<= P4 =0 and AQ =0.
(c) The general solution of the matriz equation PX + XQ = 0is X = (I — PYU(I — Q), where

U e C™*™ is arbitrary.

Proof. If PAQ =0, then r(PA — AQ) = r(PA) + r(AQ) by Theorem 4.1(b). Consequently r( PA +
AQ) =r(PA)+r(AQ) by Lemma 1.4(d). The result in Part (b) follows from Eq.(4.9). According to (b).
the equation P.X + X @Q = 0 is equivalent to the pair of matrix equations PX = 0 and XQ = 0. According
to Rao and Mitra (1971), and Mictra (1984), the common general solution of the pair of equation is exactly

X =(I-P)U(I-Q), where U € C™*" is arbitrary. O

Corollary 4.7. Let A, P, Q € C™*™ be given with P. Q being two idempotent matrices. Then the
following five statements are equivalent:

(a) The sum PA + AQ is nonsingular.
P4 A4
(b) r [ OQ :l =m + r(Q).

Q
(¢) r |: AQ P jl =m +r(P).
P4 0
(PA)” Q"
() rf[P4, AQ] = dR NR = {0}.
en aremma] 7 |oa[ €] o
(e) r[AQ =m and RIVAQ:IOR[P]z{O}.
P4 P4 0
Proof. Follows from Eq.(4.8). o

Theorem 4.8. Let A € C™*" be given, P € C™*™ and Q € C***" be two idempotent matrices. Then
the rank of A — PA — AQ satisfies the equalities

H(A-PA—AQ)=r [ (3 f)) } +r(PAQ) —1(P)=r(Q) = r( A= PA—AQ+ PAQ) +r(PAQ). (4.10)

In particular,
(a) Pd+A4AQ =4« (I -P)A(I-Q) =0 and PAQ =0.
(b) The generel solution of the matriz equation PX + XQ = XN is X = ([ - PYUQ + V(I - Q).

where U, V' € C™*" are arbitrary.

Proof. According to Eq.(4.1), we first find that
I-P)A .
H(A=PA-AQ)=r[(I-P)A-4Q]=r |: ( 0 ) J +r[AQ. [ =Pl —-r(I-P)—-r(Q).
According to Eq.(1.2) and (1.3), we also get

T ([-P)4 =r 4 P —r(P), and r[AQ, I = P]=r(PAQ)+r({-P).
Q Q0

24



Combining the above three yields the first equality in Eq.(4.10). Consequently applying Eq.(1.4) to the
block matrix in it yields the second equality in Eq.(4.10). Part (a) is a direct consequence of Eq.(4.10).

Part (a) follows from Corollary 4.4. |

If replacing P and @ in Theorem 4.5 by I,,, — P and I, — Q, we can also obtain two rank equalities

for 24 — P4 — 4Q. For simplicity we omit them here.

Theorem 4.9. Let 4 € C™*" be given, P € C™*™ and Q € C™*" be two idempotent matrices. Then
the rank of A — PAQ satisfies the equality

A 4@ P (I - P)YA(I [ — P)YAQ
M(A=-PAQ)=r| P41 0 0 | -r(P)=r(Q)=r - P =Q) (I=P). . (41
o o o PA(I-Q) 0

In particular,

(a) PAQ = A<= (I -P)A(I-Q)=0. (I -PYAQ =0 and PA{I-Q)=0 P4 =
A and AQ = A.

(b) The general solution of the matriz equation PXQ = X is X = PUQ, where U € C™*" is

arbitrary.

Proof. Note that P? = P and Q* = Q. It is easy to find that

1 40 P [ 4 0 P
rv P4 0 0 = r| 0 —-PAQ -P
Q 0 0 Qe @ o
[ 4 0o P
= r| -P4Q 0 -P
0 -Q 0
[ 1-P1Q 0 0O
= r 0 0 —P | =r(4=PAQ) + r(P) + r(Q).
I 0 ~Q o0

as required for the first equality in Eq.(4.11). Consequently applying Eq.(1.4) to its left side vields the
second one in Eq.(4.11). Part (a) is a direct consequence of Eq.(4.11). Part (b) can trivially be verified.
a

O

Applying Eq.(4.1) to powers of difference of two idempotent matrices. we also find following several

results.

Theorem 4.10. Let P, Q € C™*™ be two idempotent matrices. Then
(a) (P — Q)? satisfies the two rank equalities

P - PQP
Q

r[(P—Q)3]=T[ +(Q - QPQ, P} ~r(P) - r(Q), (4.12)

[N
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r[(P=Q)]=r[P~PQP~-PQ+(PQ)?|+r[Q -QPQ - PQ + (PQ)*} (4.13)

In particular,
(b) If (PQ)* = PQ, then

Mf(P=-Q)l=r(P-PQP)+r(QPQ - Q). (414

(¢) T(P=QP]=r(P-Q), ie.Ind(P—-Q) <. if and only if

Q

P - PQP
Q

] =r [ P } and r[Q —-QPQ. Pl=r[Q. P]. (4.15)

or. equivalently,

R({P—PQPJ )=R<[P] ) and R[Q - QPQ. P} = R[Q. P]. (4.16)
Q Q@

. P - PQP
(d) (P=Q)P=0cr 0 =r(Q) and r[Q — QPQ. P] = r(P) <> R(Q - QPQ) C
R(P) and R[(P - PQP)*] C R(Q").

Proof. Since P?> = P and Q? = Q, it is easy to verify that
(P-QY¥ =PI, —QP)~(I. -QP)Q. (4.17)

Letting 4 = [,,, — QP and applying Eqs.(4.1) and (4.2) to Eq.(4.17) immediately yields Eq.(4.12) and
(+.13). The results in Parts (b)—(d) are natural consequences of Eq.(4.13). a

Corollary 4.11. Let P, Q € C™*™ be two idemnpotent matrices. Then

+r[QPQ. P]—r(P) —r(Q). (4.18)

; P
f'[(P—Q)J—(P—Q)]=Tl'Pg }

In particular.
(a) P —Q 1s tripotent <= R(QPQ) C R(P) and R[(PQP)"] C R(Q").
(b) If PQ = QP. then P — Q is tripotent.

Proof. Observe from Eq.(4.17) that
(P-Q)P-(P-Q)=-PQP+QPQ.

Applying Eq.(4.1) to it immediately yields Eq.(4.18). The results in Parts (b} and (c¢) are natural
consequences of Eq.(4.18). a

Corollary 4.12. A matriz A € C™*™ is tripotent if and only if it can factor as A = P — Q. where P

and @@ are two idempotent matrices with PQ = QP.
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Proof. The “if” part comes from Corollary 4.11(b). The * only if” part follows from a decomposition

of 4
1= S+ )~ S(42-4
: —72'(‘ + )—5(- —-4).
where P = (4% + 4) and Q = $( A% — 4) are two idempotent matrices with PQ = QP. O

The rank equality (4.12) can be extended to the matrix ( P—@Q ), where both P and Q are idempotent.

In fact. it is easy to verify
(P-QP =P(In—QP) - (I.-QP)Q.
Hence by Eq.(4.1) it follows that

P([ru - QP)J

0 J +r[(Im —QP)*Q. P]~r(P) -1 (Q).

r[(P—Q)S]zr[

Moreover, the above work can also be extended to ( P —Q )***!(k = 3. 4. ---), where both P and Q are

idempotent.

Applying Eq.(4.1) to PQ — QP, where both P and @ are idempotent. we also obtain the following.

Corollary 4.13. Let P. Q € C™*™ be two idempotent matrices. Then

a
HPQ-QP)=r PPQ } +r[QP, P~ 2r(P),

P
r(PQ-QP)=r QQ }+T[PQ, Q] -2r(Q),

r(PQ—QP)=r(PQ - PQP)+r(PQP - QP).
r(PQ—-QP)=r(PQ-QPQ)+r(QPQ—-QP).

In particular, if both P and @@ are Hermitian idempotent. then

r(PQ—-QP)=2r(PQ - PQRQP)=2r(PQ — QPQ).

The rank equality (4.23) was proved by Bérubé, Hartwig and Styan(1993).
Corollary 4.14. Let P, Q € C™*™ be two idempotent matrices. Then
r[(P=PQ)+AMPQ-Q)=r(P-Q)
holds for all A € C with A # 0. In particular,

M(P+Q—-2PQ)=r(P+Q-2QP)=7(P-Q).

[\V]
~1

(4.19)

(4.25)



Proof. Observe that
(P-PQ)+AMPQ-Q)=P(P+AQ)—-(P+2Q)Q.

Thus it follows by Eq.(4.1) that

I P(P+ A
r(P=PQ)+APQ-Q)] = r ( :2- 9 +r{(P+AQ)Q. P] —r(P)-r(Q)

- p -

= r +r{AQ. P] —r(P) —r(Q)
L Q .
-P-+[P Ql—r(P)-r(Q)

= r ri P, —r -r .
L Q o

Contrasting it with Eq.(3.1) yields Eq.(4.24). Setting A = —1 we have Eq.(4.25). o

Replacing P by [, — P in Eq.(4.24), we also obtain the following.
Corollary 4.15. Let P, Q € C™*'™ be two idempotent matrices. Then
(I —P-Q+APQ)=7r([, - P-Q)
holds for all X\ € C with \ # 1.

In the remainder of this paper, we apply the results in Chapter 3 and this chapter to establish various
rank equalities related to involutory matrices. A matrix 4 is said to be involutory if its square is identity.
i.e.. A2 = I. As two special types of matrices, involutory matrices and idempotent matrices are closelv
linked. As a matter of fact, for any involutory matrix A. the two corresponding matrices ([ + -4 )/2 and
(I — A4)/2 are idempotent. Conversely. for any idempotent matrix A. the two corresponding matrices
+([ — 24) are involutory. Based on the basic fact, all the results in Chapter 3 and this chapter on

idempotent matrices can dually be extended to involutory matrices. We next list some of them.

Theorem 4.16. Let 4. B € C™*™ be two involutory matrices. Then the rank of A + B and A — B

satisfy the equalities

i i
r(A+B)=r jJ’; +r[I+4, I-B]—r(I+A)=r(I-B). (4.26)
F(A+B)=r[(I+A)I+B)|+r[([-A)(I=-B)] (4.27)
r .
riA-B)=r [+ +r{l+ A, I+B]—1r(I+A)=r(I+B). (4.28)
I+ B
F(A=B)=r[(I+A)I=B)]+r{([-A)I+B)] (4.29)

Proof. Notice that both P = (I + A)/2 and @ = (I — B)/2 are idempotent when 4 and B are

involutory. In that case,

r(P—Q):r[%(I+A)—%(1_B) =r(A+B).
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and

[+;}+r[l+:l. I =B]-r(I+4d)-r(]-DB).

P
r +r[P. Q] -r(P)-T(@Q)=r
Q
Putting them in Eq.(3.1) produces Eq.(4.26). Furthermore we have

rP=pQ)=r|(1+) (1= 31-8)) ] =rl(r+ )1+ )

r(PQ—Q):r[(-;-(I-i-A)—I) (I—B)} =r{(I-4)(T-B)],

Putting them in Eq.(3.2) yields Eq.(4.27). moreover, if B is involutory, then — B is also involutory. Thus
replacing B by —B in Eqs.(4.26) and (4.27) vields Eqgs.(4.28) and (4.29). a

Corollary 4.27. Let 4, B € C™*™ be two involutory matrices.
(a) If(I+ANT-B)=0o0or ([ —-B)(I+A)=0, then

r(A+B)Y=r(I+4)+r(I-B). (4.30)
by f(I+4)I+B)=0or(I+B)I+4)=0, then

T(A-B)=r(I+A)+r(I+ B). (4.31)

Proof. The condition (/ + 4)({/ — B) =0 is equivalent to
I+4d=B+B4 and [-B = 4B — 4.

In that case,
(I+A)YI+B)Yy=I+A+B+AB=2(1+4),

and

(I -A)I-B)=[-B-A+4B =2(I-DB).

Thus Eq.(4.27) reduces to (4.30). Similarly we show that under (/ — B)(I + 4) = 0. the rank equality
(+4.30) also holds. The result in Part (b) is obtained by replacing B in Part(a) by —DB. a

Corollary 4.18. Let 4, B € C™*™ be two involutory matrices.

(a) The sum A + B is nonsingular if and only if
R(I+A)nR(I-B)= {0}, R(I+A")NR({I—~B")={0} (1.32)

and

r(I+Ad)+r(I—-B)=m. {4.33)
(b) The difference A — B is nonsingular if and only if

R(I+A)NR(I+B)={0}, R(I+4A")nR(I+B")={0} (1.34)
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and

Ml +AY+r([+B)=m. (4.33)

Proof. Follows immediately from (4.26) and (4.27). a

Theorem 4.19. Let 4, B € C™*™ be two involutory matrices. Then A+ B and A — B satisfy the rank

equalities
r(A+B)=r[([+A)I+B)]|+r[([+B)}I+A)]—-r(I[+A)=r([+B)+n. (4.36)
H(A=B)=r{[([+ANI-B)|+r{(I=-BYI+4)]=-r([+A)=1r(I—-B)+m. (4.37)

Proof. Putting P = (I + A)/2 and Q = ([ — B)/2 in Eq.(3.8) and simplifying yields Eq.(4.36).
Replacing B by —B in Eq.(4.36) yields Eq.(4.37). a

The combination of Eq.(4.26) with Eq.(4.36) produces the following rank equality
r(I+B)I+A)l=r(I+B)+r(I+A)—m+r[([-4)I-B)]. (4.38)

Theorem 4.20. Let 4, B € C™*™ be two involutory matrices. Then

r(AB —-BA)=r(A+B)+r(4-8B)—m. {4.39)
In particular,

AB=BA = r(Ad+B)+r(4-B)=m. (4.-40)
Proof. Putting P =(/+4)/2and Q = (I - B)/2in Eq.(3.24) and simplifying yields Eq.(4.39). O

Putting the given formulas in Eqs.(4.26)—(4.29), (4.36) and (4.37) in Eq.(4.39) may yield some other

rank equalities for A8 — BA4. For simplicity. we do not list them.

Theorem 4.21. Let 4, B € C™*™ be two involutory matrices. Then

[/ - > A+B)]

- <’&';B> _ -;- =r([—4-B)+r(A+B)-rm. (4.41)
and - ; E
A-B\®> 4-B

. (423) _ 42 =r(I-A+B)+r(4d-B)-m. (442)

In particular,

1

3(:1-}-3) ts idempotent <> r([ —d -B)+r(A+B)=m<r(d+B)=r({+4)-r(]-B).
and

%(A—B)isidempotent(:br(I—A-*—B)+r(.-1—B)=m4=>r(.-l—B)=r([+.—l)—r(1+B).
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Proof. Putting P=(I+ 4)/2 and Q = (I — B)/2 in Eq.(3.36) and simplifying yields (4.41). a
Theorem 4.22. Let 4, B € C™*™ be two involutory matrices. Then

(3l —A-B+AB)=r(2[ -4 - B). (4.43)

Proof. Putting P =([+ 4)/2 and Q = (I — B)/2 in Eq.(3.38) and simplifying yields (4.43). a

Theorem 4.23. Let 4 € C™*™ be an tnvolutory matriz. Then
(a) r(A=A")=2r[I+ 4, IT+A"]-2r(I+A)=r[[-A [ -A"]=2r(1-4).
(b) r(A+4")=m.
(¢) r(d4A* —A"4)=r(4d-4").

Proof. Putting P=(I+4)/2 and Q = (I — B)/2 in Corollary 3.26 and simplifying vields the desired

results. a

Theorem 4.24. Let 4 € C™*™ and B € C**" be two involutory matrices. X € C™*™. Then AN -\B

satisfies the rank equalities

Im+ )X
AN —-XB)=r (fm + ) +r[X([.+B), In+A|=r([n+4)—r(l,+B), (4.-41)
I.+B
FAX = XB) = r[(In + A)X(In = B) ]+ 1{(Im = A)X (L + B)]. (4.45)
In particular,
AN =\XB = ([, +A)X([.-B)=0 and ([, ~-A)X([,+B)=0. (1.46)

Proof. Putting P = ([,+4)/2and Q@ = ([, +B}/2in Eqs.(4.1) and (4.2) vields Eq.(4.44) and (4.45).
The equivalence in Eq.(4.46) follows from Eq.(4.45). a

Theorem 4.25. Let 4 € C™*™ and B € C™**™ be two tnvolutory matrices. Then the general solution

of the matrix equation AX = XB is
X =V + AVB, (4.47)

where V- € C™*"™ is arbitrary.

Proof. We only give the verification. Obviously the matrix .X in Eq.(4.47) satisfies AN = AV +1'B
and XB = VB + AV Thus X is a solution of 4X = XB. On the other hand. for any solution .\g of
AX = XB, let V = Xg/2in Eq.(4.47), then we get V' = AX), B = Xj, that is, Xy can be represented by
Eq.(4.47). Thus Eq.(4.47) is the general solution of the matrix equation AX = X B. O

Theorem 4.26. Let A € C™*™ be an involutory matriz, and X € C™*™. Then
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(a) AX — X A satisfies the rank equalities

(I+4)X
I+ 4
r(AX = XA)=r[([+A)X(L = A) ]+ r[([ - A)X(T+ 4)],

r(AX—X.-‘l):r[ } +r{X(T+A), I+A]=r(T+A)=r([+4).

In particular,
AV =YA<e=a (I+A)X([-4)=0 and (I -4)X([+4d)=0.
(b) The general solution of the matriz equation AX = X A4 is
X=V+ AV

where V- € C™*™ is arbitrary.
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Chapter 5

Rank equalities related to outer inverses of
matrices

An outer inverse of a matrix A is the solution to the matrix equation Y AX = X. and is often denoted
by X = A, The collection of all outer inverses of A is often denoted by A{2}. Obviously, the Moore-
Penrose inverse, the Drazin inverse, the group inverse, and the weighted Moore-Penrose inverse of a
matrix are naturally outer inverses of the matrix. If outer inverse of a matrix is also an inner inverse
the matrix. it is called a reflexive inner inverse of the matrix. and is often denoted by A-. The The
collection of all reflexive inner inverses of a matrix 4 is denoted by A{1., 2}. As one of important kinds of
generalized inverses of matrices, outer inverses of matrices and their applications have well been examined
in the literature (see, e.g., [10], [13], [30], [51], [76], [100], [101]). Ir this chapter. we shall establish several
basic rank equalities related to differences and sums of outer inverses of a matrix. and then consider
their various consequences. The results obtained in this chapter will also be applied in the subsequent

chapters.

Theorem 5.1. Let 4 € C™*" be given, and X, Xy € A{2}. Then the difference X'} — X» satisfies the

following three rank equalities

(X —-Xe)=r v +r{ X, o] —r(X) —r(Xa). (5.1)
(X —Xo)=r(X, —V4X) +r( X 4X - X3), (5.2)
r(X = X)) =r(X - 0AX ) +r(XnAX - X)), (5.3)
-X; 0 X,
Proof. Let M = 0 X, X, [. Then it is easy to see by block elementary operations of matrices
X X
that
-X; 0 0
T’(.“[) =r 0 X5 0 =r{X|) + T(_Yg) +r( X - XL). (2.4)

0 0 Xi—-X»

On the other hand, note that X{AX,; = X| and X3 AX, = X». Thus

I, 0 X4 -X; 0 X, I 0 0 0 0 X
0 I n 0 0 X, 2 ‘Y'_) 0 I m 0 = 0 0 .Y-_g
0 O In Xy X o 0 -4AX, I, X, Y o0
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which implies that
X

[$1}
[}

PaS )

r(M) = ,i jl +r[ X, 2] (

Combining Eqs.(5.4) and (5.5) yields Eq.(5.1). Consequently applying Eqs.(1.2) and (1.3) to the two
block matrices in Eq.(5.1) respectively and noticing that 4 € X;{2} and 4 € X»{2}. we can write
Eq.(5.1) as Eqs.(5.2) and (5.3). a

It is obvious that if 4 = [, in Theorem 5.1, then X, Xs € [,,{2} are actually two idempotent

matrices. In that case. Eqgs.(5.1)—(5.3) reduce to the results in Theorem 3.1.

Corollary 5.2. Let 4 € C™*" be given. and X, Xy € A{2}. Then
(21) R( .\—1 —'.\:[ .'L\’-_g )ﬂR( 4‘([ A '-_) - ’-_) ) = {O} and R[( .\.’[ - .\’l:l.\’;) )']ﬂ R[( _\—] _'-L\'g - _\’-_r )‘1 = {()}

(b) R(.X1 —.X0AX )NR(X2AX, — X, ) = {0} and R[( X — 0 AN, N R[( LAY - Xa )] = {0}
(¢c) If XiAXy =0 or XoAX,; =0, thenr( X; — Xo) =r(Xy) + ().

Proof. The results in Parts (a) and (b) follow immediately from applying Lemma 1.4(d) to Eqs.(5.2)

and (5.3). Parts (c) is a direct consequence of Egs.(5.2) and (5.3). a

Corollary 5.3. Let A € C™*" be given, and X;. X, € A{2}. Then the following five statements are

equivalent:

(a) r(Xp = Xu) =r(X)) - r(Xn), de, Xo <,s Xi.

X
(¢) R(X2) C R(X1) and R(X3) C R(X}).
((l) ‘\’1;1‘\’2 = “\'-_g and ‘Yg“lx\.’l = ‘\’-_).
(e) .\’[ .-L\’-_z:LYl = ‘Yg.

Xy -
(b) li :I = r[‘\’[, ‘Yg] = T(f&[).

Proof. The equivalence of Parts (a) and (b) follows directly from Eq.(5.1). The equivalence of Parts (b).
(¢) and (d) follows directly from Lemma 1.2(c) and (d). Combining the two equalities in Part (d) vields
the equality in Part (e). Conversely, suppose that X; AX>2A4AX, = X, holds. Pre- and post-multiplyving
X4 and AN, to it yields X, AN, 4N, = X1 4YX, = X, AX,. Combining it with X', A, 4N, = X, vields

the two rank equalities in Part (d). a

Corollary 5.4. Let A € C™*™ be given, and X|, X € 4{2}. Then the following three statements are

equivalent:

(a) The difference X; — X, is nonsingular.

X, -
h) r v =r(X, Xo] =r(X)1) +r(Xy) =m.
(c) R(X1)s R(X2) =R(X[)® R(X3)=Cm™.

Proof. A trivial consequence of Eq.(5.1). a
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Corollary 5.5. Let 4 € C™*" be given, and X € A{2}. Then
r(Ad—AXA) =r(4) —r(4X4). fe.. AXA L, A (5.6)

In particular,

AXA =4, e, X € A{l, 2} <= r(4d) = r(X). {3.7)
Proof. It is easy to verify that both 4 and 4.X 4 are outer inverses of Af. Thus by Eq.(5.1) we obtain

r(d—AXA)=r
AX4

J +r[A, AXA] = r(4) — r(4AX4) = r(4) — r(4X 4),

the desired in Eq.(5.6). a

Corollary 5.6. Let A € C™*™ be given, and X € A{2}. Then

M(AX - XA)=r [ ] } +r{X, AX]=2r(X) =r( X4 — XA2X) +r( VA2X - 4Y).  (5.8)

In particular,

AX = XA & R(4AX) = R(X) and R[(AX)"] = R(X"). (5.9)

Proof. It is easy to verify that both AX and YA are idempotent when X € A{2}. Thus we find by
Eqs.(3.1), (1.2) and (1.3) that

AX
MAX —=X4) = r + AN, XA]—r(AX) - r(X4)
XA
X . .
= r +7[X, AX] = r(4AX) —r(X4)
X4

= r(XA-XLX)+r(XAX - AX).
as required for Eq.(5.8). Eq.(5.9) is a direct consequence of Eq.(5.8). a

Corollary 5.7. Let A € C™*" be given, and X, Xa € A{2}. Then

X4
r(AX A - AN Ad) =7 [ \’l | :l +r[AX), AN ] = (X)) = r( D). (3.10)
In particular,
AN A=Ayl &= GAXLGAX, = X, and XoAX AN, = X, (5.11)
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Proof. Notice that Both 4AX,; 4 and 4X,4 are outer inverses of AT when X,. X, € A{2}. Moreover.
observe that r(4.X;4) = r(4X)) = (X, 4) = (X)), and r(4X24) = r(4AXy) = r(Xy4) = r(.\). Thus
it follows from Eq.(5.1) that

[ ax,4 ]
r(AX,A - AX,A4) = r U (AN AL AN A] = r(AXA) - 1 (AN A)
AXoA
[ x4
= r| ' (AN AXL] - () - r(X).
Xod
as required for Eq.(5.10). The verification of Eq.(5.11) is trivial, hence is omitted. O

Corollary 5.8. Let 4 € C™*" be given, and X,, Xs € A{2}. Then the following five statements are
equivalent:

(a) (AN A= AN24) = r(AXA) — r(AXaA4). fe. AXad <, AX, A

w | 1 =r[AX, AXa] = r(X)).

Xod J

(c) R(AX3) C R(AX)) and R[(X24)"] C RI(X 1 4)"].
(d) AN AXNA = AX0A and AXLAX A = AGA.
(e) AN{ALAXN A = 4AX4.
Proof. Follows form Corollary 5.3 by noticing that Both AX, 4 and AX,.A4 are outer inverses of AT

when X, X, € A{2}. a

Theorem 5.9. Let 4 € C™*" be given, and X, X € 4{2}. Then the sum X| + X\, satisfies the rank

equalities
X X X, X
N+ X)) =r| 0 T X = T T C ). (5.11
X, O X 0
(X1 + X)) =r[ ([ — XoA)Xi(Ln — AXL) [+ 7r(X). (5.12)
(N +Xo) =r{([n —X0A) X (L — AX) [+ r(X). _ {3-13)
Xt 0 X,
Proof. Let M = 0 X2 X, |- Then it is easy to see by block elementary operations that
X; Xo O
Xy O 0
r(M)=r 0 X, 0 =r(X) +r(X2)+r( X+ X0). (5.14)

0 0 —(X1+Xy)
On the other hand, note that X; 4X| = X} and X34AX, = X». Thus

I, 0 X;4 Xy 0 X, I, 0 0 2, 0 X,
0 I, L 0 0 .Yz .Y-z 0 I, 0 = 0 0 .\'3
0 o I, X X O 0 -4X» I, Xr X, o
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which implies that

2, 0 X, 2X, O 0
r(M)=r 0 0 X, |=r 0 0 Xo =r l:
X, .Yg 0 0 X, - %.Y[

(5.13)

Combining Eqs.(5.14) and (5.15) yields the first equality in Eq.(5.11). By symmetry. we have the second
equality in Eq.(5.15). Applying Eq.(1.3) to the two block matrices in Eq.(5.11). respectively. and noticing

that 4 € {X[ } and 4 € {X; }, we then can write Eq.(5.11) as Eqgs.(5.12) and (5.13). a

Corollary 5.10. Let 4 € C™*" be given, and X, X» € A{2}.

X
() If Xq1AdAXo = GAX, thenr (X + X)) =7 { \’1 } =r[X;. X1
(b) If X1AXL = XuAX, =0. then r(fX1+X2)= 1'(.\—1) + r(Xs).

Proof. Under X;AX, = X»AX,, we find from Egs.(5.12) and (5.13) that

'I‘( _\.’1 + ‘Y-_), ) = f‘( ‘\’[ - "Y[.-L/Yg ) + 7'(.\.’3) = P(,Yl) + 7'( _\’[:L\’g - _\’~_r )

Note by Eq.(1.2) and (1.3) that

X

X
r [ ! J = T'( 4\’[ - _\’[ :L\’g ) + ‘I'(.\’-_g), and I'[ .\'1, .\,3] = T(.\’l) + I'( ‘\’[ .-L\:g - .\’3 )

Thus we have the results in Part (a). Part (b) follows immediately from Eq.(5.12). O

Corollary 5.11. Let 4 € C™*™ be given, and X|, Yy € A{2}. Then the following five statements are

equivalent:

(a) The sum X, + X» is nonsingular.

(b) r[::z:;]:m and RI:i::}ﬂR':‘\;z:lz{O}.

X; X3
(¢) r[X1, Xoj=m and R[ \'1 :IOR[ 0‘ :l = {0}.

(d) Xz da r| 2 |nr| ™ {0}
C r =71 an = N
X X 0

Xz X
() r[Xa, Xi}=m and R[ \: ]OR[ Ol jl = {0}.
A

Proof. Follows immediately from Eq.(5.11). )
Corollary 5.12. Let A € C'™*" be given, and X € A{2}. Then
r{d+4AXd4) =r(4).

holds for all X € A{2}.



Proof. Notice that Both 4 and AX»A are outer inverses of A" when X € A{2}. Thus Eq.(5.16) follows
from Eq.(5.11). a

Theorem 5.13. Let A € C™*" be given, and X, X2 € A{2}. Then the difference X| — X satisfies

the rank equalities

l'[ (X —X)A(X, -, ) — (X1 — X )] =7([n — AN, +AN)+r( X, - Xu) = m. (5.17)
(N =) AN - X)) (X = X0) ] = r(XAXGAX ) = r(X) + (X — Xa). (5.18)

Proof. Letting .X = X| — X, and applying Eq.(1.10) yields
M XAX - X)=r(lp —AX) +r(X) — .
which is Eq.(5.17). Note that AX, and 4X, are idempotent. It turns out by Eq.(3.19) that
r(lp — AXp + AXY) = r(AX AXLAX) — r(AX)) + = r(NAXLAY) — 1(XY) + e
Putting it in Eq.(5.17) yields Eq.(5.18). mi

Corollary 5.14. Let A € C™*™ be given, and X,, X» € A{2}. Then the following five statements are
equivalent:

(a) X1 — X5 e A{2}.

L) r(ln — A1 +AXy)=m - r(X; -~ Xu).

(c) r( X1 —Xo)=7r(X)) —r(Xn), ie., Xo <5 X1

(d) R(X2) € R(X)) and R(X3) C R(X]).

(e) X ANLAX, = Xo.
Proof. The equivalence of Parts (a) and (b) follows immediately from Eq.(5.17). The equivalence of

Parts (c). (d) and (e) is from Corollary 5.3. We next show the equivalence of Parts {a) and (e). It is easy

to verify that
(X1 - X)X —Xo) = (X - X)) ==X 14X, — LA, #2400,
Thus X — X € 4{2} holds if and only if
Xi4AX, + XoAdAX, =2.X,. (5.19)
Pre- and post-multiplying X 4 and 4X, to it, we get
XiAXAX, = X(AXs and X 4AXL 4N, = 0LAX (5.20)

Putting them in Eq.(5.19) yields Part (e). Conversely, if Part (e) holds. then Eq.(5.20) holds. Combining
Part (e) with Eq.(5.20) leads to Eq.(5.19), which is equivalent to X; — X, € A{2}. o

The problem considered in Corollary 5.14 could be regarded as an extension of the work in Corollary

3.21, which was examined by Getson and Hsuan (1988). In that monograph. they only gave a sufficient
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condition for X; — X» € 4{2} to hold when X, X» € A{2}. Our result in Corollary 5.14 is a complete

conclusion on this problem.

Theorem 5.11. Let A € C™*" be given. and X, Xo € A{2}. Then the sum \| + X1 satisfies the two

rank equalities

.21)

[
(8]

MOXL + X2 ) AKX + Xo) = (X1 + Xo)] = r(Im = AX — AX2) +1( Xy + Xa) — m. (
l‘[ (X1 +.X, ).'1( X +X Y- (X1 + X5 )] =7r(X;4AX, Y+ r(XodX) ) +r( X+ X)) — r(X;)— r(_\fg).(5.22)

Proof. Letting X' = Y| + .\, and applying Eq.(1.10) to XAX — X yields Eq.(5.21}). Note that AX,

and A, are idempotent. It turns out by Eq.(3.8) that
r(l, —AX; - 4X,) = r(X:1 44X, ) + r(XoAX,; )= r(Xy) — r(Xs) + m.

Putting it in Eq.(5.21) yields Eq.(5.22). 0

Corollary 5.16. Let 4 € C™*" be given, and X, Xo € 4{2}. Then the following four statements ure
equivalent:

(a) X1+ Xy e A{2}.

(b) 14X, + 0AX, =0.

(&) r(ln — AN - AXL)=m —r( X + Xu).

(d) X1AXN, =0, and XuAX, =0.
Proof. The equivalence of Parts (a) and (b) follows immediately from expanding (X, + .0, )A( X, +
Xo) = (X[ + X, ). The equivalence of (a) and (c) is from Eq.(5.21). We next show the equivalence of (b)

and (d). Pre- and post-multiplying X; 4 and 4X; to X1 AXy + AN =0, we get
XA + X AXNLAX, =0, and XA AYN, + V45, =0.

which implies that X A\, = X,AX,. Putting them in Part (b) yields (d). Conversely. if Part (d) holds.

then Part (b) naturally holds. 0
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Chapter 6

Rank equalities related to
a matrix and its Moore-Penrose inverses

In this chapter, we shall establish a variety of rank equalities related to a matrix and its Moore-Penrose
inverse. and then use them to characterize various specified matrices, such as, EP matrices. conjugate

EP matrices, bi-EP matrices, star-dagger matrices, and so on.

As is well known, a matrix A4 is said to be EP (or Range-Hermitian) if R(A4) = R(A"). EP matrices
have some nice properties, meanwhile they are quite inclusive. Hermitian matrices and normal marrices
are special cases of EP matrices. EP matrices and their applicarions have well be examined in the
literature. One of the basic and nice properties related to a EP matrix 4 is AAT = AT see. e.g..
Ben-Israel and Greville (1980), Campbell and Meyer (1991). This equality motivates us to consider the

rank of A4 — 47 4 as well as its various extensions.

Theorem 6.1. Let A € C™*™ be given. Then the rank of AAT — AT A satisfies the follounng rank equality
r(AAT — ATy = 2r[ 4, A7) = 2r(A) = 2r( 4 — A%4AY) = 2r( 4 — AT A7), (6.1)

In particular.
(a) Al = dtd = r[d, A" ]J=r(d) = A= LAl = 1= AT &= R(A) = R(A"). ie.. A is EP.
(b) AAT — AT A is nonsingular <= r{A. A" ] =2r(4) = m <= R(4) s R(A") =C™.

Proof. Note that AA" and 4! A are idempotent matrices. Then applying Eq.(3.1). we first obtain

AAf
r(AA -4ty =7 i +r[AAY, AT A = r(AAT) = r(AT ). (6.2)

Observe that r(44%) = r(4t4) = r(4), and

r AAf =7 Af - A Pl AAt ata)=r e .
[-“] ) [-4 J_ L } (44T, ATA]=r{d. AT]=r{d A7)

Thus Eq.(6.2) reduces to the first rank equality in Eq.(6.1). Consequently applying Eq.(1.2) to [ 4. 47]
in Eq.(6.1) yields the other two rank equalities in Eq.(6.1). The equivalences in Part (a) are well-known
results on a EP matrix, which now is a direct consequence of Eq.(6.1). It remains to show Part (b}.
If r[AAT — ATA] = m, then r[d4, 4] = r[44!, AT4] = (44 — AT 4, AT 4] = m. Putting it in
Eq.(6.1), we obtain 2r(A) = m. Conversely, if r[A, 4] = 2r(4) = m, then we immediately have
r(AAT — ATA) = m by Eq.(6.1). Hence the first equivalence in Part (b) is true. The second equivalence

is obvious. a
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Another group of rank equalities related to EP matrix is given below, which is motivated by a work
of Campbell and Meyer (1975).

Theorem 6.2. Let 4 € C™*™ be given. Then
(a) r[AAT(A+ AN = (A + A AAT ] = 2r[ A 47] = 2r(4).
(b) r{ATA(A+ AT) = (A + AT ATA] = 2r[ A, A7 ] = 2r(4).
(€) r{dAT(A+ A" ) = (A + 47 )AAT ] =2r[ 4, A*] = 2r(A).
(@) r[ATA(A+A") = (A+ 4" )ATA) = 2r[ 4, A7] —2r(4).
(e) The following statements are equivalent(Campbell and Meyer, 1975):
) 4 s EP.
) AATA+ AN) = (A + AT )AAT.
(3) ATA(A+AT) = (A + AT)at 4,
) AAT(A+47) = (4 + 47)A4t
) ATA(A+4")=(A+ A7)4af4

Proof. Follows from Eq.(4.1) by noting that A A" and A" 4 are idempotent matrices. O

Replacing the matrices (A + A!) and (A + A*) by (4 — 4f) and (A — A*) in Theorem 6.2. the

results are also true.

In an earlier paper by Meyer (1970) and a recent paper by Hartwig and Katz (1997). they established
a necessary and sufficient condition for a block triangular matrix to be EP. Their work now can be

extended to the following general settings.

4 B
Corollary 6.3. Let A € C™*™, B € C™**, and D € C*** be given. and let M = [ S :I . Then
0

4 A B 0
r(MMY = MIM) =2r —2r(MM). (6.3)
0 B~ D D

In particular,

(a) if both A and D are EP, then

‘ B 4 B
r(MMY -~ MYM)=2r[4, B]+2r ~2r i
D 0 D

(b) If R(B) C R(A) and R(B*) C R(D*), then
r(MMY = MYM)=2r[A, A*]+2r[D. D] - 2r(4) - 2r(D).

(c) (Meyer, 1970, Hartwig and Katz, 1997) M is EP if and only if A and D are EP, and R{(B) C R(A)
AAf 0
and R(B*) C R(D*). In that case, MM =
0 DDt
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Proof. Follows immediately from Theorem 6.1 by putting M in it. O

Corollary 6.4. Let

Ay A - A
Az o Ax

A/[ —_ ) ] € Cm.xn.. -_{'j e Cvu.xn;,
Ak

be given. Then M is EP if and only if Ay, Ass---, Ann are EP, and

R(4y) C R(4x), and R(AL) CR(A3), & j=1 - n.
In that case, MM = diag( A A}, Asdl,, -+, Anndl,).
Proof. Follows from Theorem 6.1(a) by putting M in it. a

A parallel concept to EP matrices is so-called conjugate EP matrices. A matrix A is said to be conju-
gate EP if R(A) = R(AT). If matrices considered are real, then EP matrices and conjugate EP matrices
are identical. Much similar to EP matrices, conjugate EP macrices also have some nice properties. one
of the basic and nice properties related to a conjugate EP matrix 4 is AAf = At (see the series work
[58]. [59]. [60], [61], and [62] by Meenakshi and Indira). This equality motivates us to find the following

results.
Theorem 6.5. Let A € C™*™ be given. Then
r(AAT —At4) =27[4, AT] - 2r(4). (G.4)

In particular.
(a) 44T = At <= r[d, AT =r(4) = R(4) = R(AT). ie.. A is conjugate EP.
(b) AAT — AT A is nonsingular <= r[ A, AT] = 2r(4) = m < R(4) & R(AT) =C™.

Proof. Since 474 and At A are idempotent, applying Eq.(3.1) to A4! — Af 4. we obtain

- [ AAt _ -
r(44T —4t4) = ¢ 1 +r[ 44T, ATA] = r(d4l) — (4T 4)
- e - B
= 7 — | FrfA At =2r(d)
4
F
= r ‘q +r[d, A7) =2r(4) = 2r[A, AT ] = 27 (),
which is exactly Eq.(6.4). The results in Parts (a) and (b) follow immediately from Eq.(6.4). O

4 B
Corollary 6.6. Let A € C™*™, B € C™**, and D € C*** be given, and denote M = [ 0 D J . Then

_ 4 AT B 0
(MM = MM) =2r ] ]
0 BT p DT

42



In particular. M is conjugate EP if and only if A and D are con-EP, and R(B) C R(4) and R(B") C
R(DT).
Proof. Follows from Theorem 6.5 by putting M in it. a

The work in Theorem 6.1 can be extended to matrix expressions that involve the power of a matrix.
Theorem 6.7. Let 4 € C™*™ be given and k be an integer with k > 2. Then

Ak

r( A4t — AT 4ky =1 [
A"

] +r[ A%, AT ] = 2r(4). (6.5)

In particular.
. Ak
(a) AFAt = 4T A = & | =r{d*, 4] =r(d) &= R(A*) C R(A*) and R[(4AF)*] C R(A).

A
(b) AkAt — AT A% 45 nonsingular < r [ J = r[ Ak, A7) = 2r(A) = m = r(4*) = r(4) and
A

RA)s R(A™) =C™.

Proof. Writing A¥AT — AT 4% = —[(AT4)A*—L — 4%-1(14")] and applying Eq.(4.1) to it. we obtain

[ At Ak
r(ARAt — 4taky = L J +r{ A, ATA] = (A4 — 1 (41 4)
Ak K at Ak P
= r ot +r[A%, AT -2r(4) =71 . +r[ A% AT = 2r ().
as required for Eq.(6.5). The results in Parts (a) and (b) follow immediately from Eq.(6.3). C

From the result in Theorem 6.7(a) we can extend the concept of EP matrix to power case: A square
matrix A is said to be power-EP if R(A*) C R(A*) and R[(A¥)"] C R(A). where & > 2. It is believed
that power-EP matrices, as a special type of matrices, might also have some interesting properties. But

we o not intend to discuss power-EP matrices and the related topics in this thesis.

Theorem 6.8. Let A € C™*™ be given and k be an integer with k > 2. Then
AF

Fr[ AR AT AR] = 2r(A45).
Ak 4-

(a) r{A(A5) = (A9t 4] =r [

In particular.
Ak

(b) A(AX) = (4"l e=Tr [ Ak 4

] =r[AF, 47 4F) = r(4*) &= R(4*) = R(A*4*%) and R[(4*)"] =

R[A(45)"].
(¢) A(AR) = (45)1 4 = Ak At = 4t 4k

Proof. It follows by Eq.(2.2) and block elementary operations that

(k)= Ak (AK)» 0 (A%)
rlAAST —(4914] = 0 —(AR) AR (4R (bt | = 2r(ak)
A(A%)" (AF)" 0
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[ (Ak)mAk(Ak) (AR)ARTL(AR)s (4F)"
- r 0 0 (Ak)4 | = 2r(4%)
| AL (Ak) 0
C
= r +r[ A%, AT AR ] = 2r(AF),
Ak 4.

establishing Part (a).Part (b) follows immediately from Part (a) . Combining Theorem 6.7(a) and 6.8(b)

yields the implication in Part (c). (]

A square matrix 4 is said to be bi-EP, if A and its Moore-Penrose inverse A satisfy (4AT)(AfA4) =
(AT 4)(AAT). This special type of matrices were examined by Campbell and Meyer (1975). Hartwig and
Spindelbdck (1983). Just as for EP matrices and conjugate EP matrices, bi-EP matrices can also be

characterized by a rank equality.
Theorem 6.9. Let A € C™*™ he given. Then
rl(AAT)(ATA) — (AT A(AAT) ] = 20[ 4, A7 ]+ 2r(4%) — dr(A). (6.6)

and
(A% — A2(AN2AZ = r[ A, A" ]+ r(A7) = 2r(4). (6.7)
In particular, the following four statemnents are equivalent:
(@) (AAN)(ATA) = (AT 4)(AAY), ie., 4 is bi-EP.
(b) (AN € {(4*)7}.
(¢) r[4d. A% ] =2r(d) - r(4?).
(a) dim[R(A) N R(A")] =r(43).

Proof. Note that both 44! and 4'4 are Hermitian idempotent and R(Af) = R(4*). We have by
Eq.(3.29) that

rl(AAN(ATA) — (AT A)(AAT) ] = 2r[AAT, ATA] 4 27[(AAT)(ATA) ] = 2r(4A41) — 2r (AT )
= 2r[4, A"+ 2r(ATAT) —4r ()
= 2r[A. 47|+ 2r(4?) = 4r(4),

establishing Eq.(6.6). Applying Eq.(2-8) and then the rank cancellation laws (1.8) to A% — A42(AT)2 A%,
we then obtain

A4 AtA4 0
r{A4? — 24242 = 7| 4744" 0 A4 —2r(A)
0 A%A4~ -A4°

A4 AtA4 0
= r| 444~ 4424 0 —2r(4d)
0 0 —-42
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A4 A4 Y
= r ] +r(d7) = 2r(4)
ATA4 AT4%4
[ 44
AAs A .,
= r . +r(A7) - 2r(4)
R

=r (-[ 4, 4774, A7) +r(4%) = 2r4)
= {4, A"]+r(4%) - 2r(4),

as required for Eq.(6.7). The equivalence of (a)—(c) follows from Eqs.(6.6) and (6.7). The equivalence of
(c) and (d) follows from a well-known rank equality [ A, B] = r(d) +r(B) —dim[ R(A)N R(B)]. O

The above work can also be extended to the conjugate case.
Theorem 6.10. Let 4 € C™*™ be given. Then
r(AAN(ATA) — (AT (A4 ] = 2r[ 4, AT+ 2r(4T) — 4r(A).

In particular,

(AAD(ATA) = (AT (44N = (4. AT =2r(4) - r(47).

Proof. Follows from Eq.(3.29) by noticing that both AAf and At A4 are idempotent. a.

A parallel concept to bi-EP matrix now can be introduced: A square matrix A is said to be conjugate
hi-EP if (AAT)(AtA) = (A1 A)(4AT). The properties and applications of this special type of matrices

remain to further study.

We next consider rank equalities related to star-dagger matrices. A square matrix A is said to be
star-dagger if A*A! = AfA*. This special types of matrices were proposed and examined by Hartwig and

Spindelbock (1983), later by Meenakshi and Rajian (1988).

Theorem 6.11. Let A € C™*™ be given. Then
(a) r(A AT — ATA") =r( 44747 - 1247 4).
(b) r(AA AT — AA4T 4" 4) = (44742 — 4247 4).
() r(A*AT — AT 4") =r(A4" - 4=4), if A is EP.

(d) In particular, the following stutement are equivalent (Hartwig and Spindelbick, 1983):
(1) A=At = At 4= de.. A is star-dagger.
(2) AA AT = Ad4T4-4,
(3) AAA% = AZ4-4

Proof. We find by Eq.(2.2) that

—Ar 44" 0 A=
r(AAT —AT4) = 7 0 At44s A4 | —2r(4)
AT A4r A- 0
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[ —44-4 0 A2

0 A474 A4

A 42 0
0 AA=A% - 4244
0 0

A 0

—2r(A)

0

A | —2r(d) =r( A4 47 — 4744,

0

as required for Part (a). Similarly we can show Part (b). The result in Part (c) follows immediately from

Part (a}. and Part (d) follows from Parts (a) and (b).

O

As pointed out by Hartwig and Spindelbéck, 1983, star-dagger matrices are quite inclusive. Normal

matrices. partial isometries, idempotent matrices, 2-nilpotent matrices. and so on are all special cases of

star-dagger matrices, this assertion can be seen from the statement (3) in Theorem 6.11(d}.

The results in Theorem 6.11 can be extended to general cases. Below are three of them. The proofs

are much similar to that of Theorem 6.11, are therefore omitted.

Theorem 6.12. Let 4 € C™*™ be given. Then
(a) r(A"AAAT — AT A4 ) = [ (A47)24% — A2(474)?].
(b) r{(AA7)ATA — AAT (A" 4)? ] = [ (dA7)2 4% — A2(A74)? ]
(¢) A*AA“AT = 4T A4 44 &= (447)24 4 = 4AT(A474)? <= (447)%24% = 12(4"4)2

Theorem 6.13. Le¢t A € C™*™ be given and k be an integer with k> 2. Then
(a) r{(A7)FAT = AT(A)F ] = r( A4 AR — AR+ g4,
(b) r[A(A) ATA — A4T(AT)E A ] = r(Ad=AFFE - 4R+ 4= 1)),
(¢) (AM)F Al = AT (4)F = 4(A7) AT d = 44T (A7) d <= A4 AFF = qk+l g- g,
(d) If AR+ = 4 or AR =0, or A4® = A%, or A4 = A, then (A7)F At = AT( A% holds.

Theorem 6.14. Let A € C™*™ be giverz and k be an integer with k > 2. Then
(a) r[A(AR) = (A8 A" ] = r[AF(AR) ARFL - R+l gk)= 4k
(b) A(AX) = (A*)T 4" = AR (AR)=4kFL = gR+1( gk)= 4k

Next are several results on ranks of matrix expressions involving powers of the Moore-Penrose inverse

of a matrix.

Theorem 6.15. Let A € C™*™ be given. Then
(a) P[In £ AT ) =r(A> £ AL A) -7 (4) +m.
(b) 7T — (AN ] =r( A2 + A4"A) +7( A2 — 44°4) —2r(4) +m.
(¢) rilm £ AT =r(4A£ A4%) —r(4) +m, if 4 is EP.
(d) r[Lm = (AN ] =r(d+ A4") + (A~ AA4") = 2r(4) + m, if 4 is EP.
(e) r[Ipn £ AT =r(A £ A%) —r(A) +m. if 4 is Hermitian.
(E) r[Lm — (AT ] =r(A+ A%2) +7( A =A%) = 2r(4) + m. if 4 is Hermitian.
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Proof. By Eq.(2.1) we easily obtain

A 44 A4
7‘( [m _— ._U' ) _ r — 1'(.‘1)
44- I"Yl
ATdAT - 4740 0 2
- . —r(4) = (A4 A = A7) +m = r(4),
0 In
and
s S U S
,.( [m. + _.U' ) = r - I‘(.’l)
A Im
—,-i‘.-l.‘l. _-4-:{- 0 .
= r } =) = (A + )+ m = ().
0 Im

Both of the above are exactly Part (a). Next applying Eq.(1.12) to [,, — (4A)* we obtain

fl

r(1m+.4f)+r(.rm—.4f)—m
= (A2 + AL L)+ (A% = A4 4) =27 (A) + .

r{ Ly — (4h)?)

establishing Part (b). The results in Parts (c)—(f) follow directly from Parts (a) and (b). O
Theorem 6.16. Let A € C™*™ be given. Then
(a) AT (AN ] =r( A2 44%4) =r[d = A(4AN)2A4].
(b) r[AT — (A1 ] =r(d-A44")=r(A— 4*4), if A is EP.
[

(c) r[AV £ (AN ] =r(A £ A?), if A is Hermitian.
(d) r{At = (4AN2], de., (A1) <y A = r(AN) = 7[(A1)?] = r( 4474 — 42) = r(4) = r(4). ie..
A2 <, AATAL

(€) (AN =AT = 444 = 42 &= 4 = (44N (ATY) = (A2 e {4~}
() (AN = At <= A4" = 4. if A is EP.
(g) (AN = AT <= A% = 4, if A is Hermitian.

Proof. It follows first from Eq.(1.11) that
At = (AN = r( I — AT) +r(4) —m.
rlAT + (AN = (L + AY) +r(4) — .
Then we have the first two equalities in Part (a) by Theorem 6.15(a). Note that
A[AT £ (AN ] = 4 £ 4(AN%4 and AT[A £ (A7)24]4 = At = (4h)2

It follows that
AT £ (A1) ] =r[ 4+ A(4AT)? 4]

Thus we have the second equality in Part (a). Parts (b)—(g) follow from Part (a). |
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Theorem 6.17. Let A € C™*™ e given. Then
(a) r{At = (AN ) =r(A% + 44°4) +r( A2 — 44" 4) — r(A).
(b) r[AT = (AN ] =r(A+ AA*) +r(A = AA") — r(4). if A is EP.
(€) rlAt = (AN ] =r(A+ 4A%) +r(Ad = A2) —r(4) =r(A — 43), if A is Hermitian.
(d) AN =A== r(L2+AL ) +r( A2 —4474) =r(4) &= R(AL A+ 42)NR(AAA-4%) =
{0} and R[( AAA + A%) N R[( A4"4 - 42)°] = {0}.
Proof. Applying Anderson and Styans’ rank equality (1.14)
M(N—=N3)=pr(N+N?)+r(N-N?)—r(N)
to AT — (47)*, we obtain

rlA = (AP =r{ AT + (AT ]+ r[ AN = (4D ] = r(4).

Then putting Theorem 6.16(a) in it yields Part (a). The results in Parts (b)—(d) follow all from Part
(a). a

Theorem 6.18. Let 4 € C™*™ be given. Then
(@) r(AT = A" ) =r(4—-44"4).
(b) r(Al — A<A4") =r(A - AL 44" 4).
In particular.
(¢) AT = 4" &= AA*4d = A, ie., A is partial isometry.
(d) AT = A°44" == A4 44" A=A,
Proof. Follows from Eq.(2.1). O
Theorem 6.19. Let A € C™>*™ be idempotent. Then
(a) r(A—AN) =2r[4, A%] = 2r(4).
(b) (AT — A4TATA) =27[ 4, A"] = 2r(4).
() r(A—AATATA) =7r[A. A"] = r(4).
(d) A=AT <= AT = 44TATd = 4 = 4ATAT Y = 4 = 1-.

Proof. Note that 4, A" € A{2} when A is idempotent. Thus we have by Eq.(5.1) that

r(A—-A4At)y = r ::r +r[d. AT = r(d) = (4D
- | :
= r .- +r[d, AT =2r(4) =2r[4, A7) - 2r(4),

establishing Part (a). Parts (b) and (c) follow from Eqs.(6.6) and (6.7). Part (d) is a direct consequence
of Parts (a)—(c). a

Theorem 6.20. Let 4 € C™*™ be tripotent, that is, 4° = A. Then
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(a) r(A—At) =2r[A, A"] = 2r(4).
(b) r(A2Af — ATA?) = 2[4, 4°] - 2r(A).
(€) r[AAD)T = (AD)T4] =2r[ 4. A7] - 2r(A).
r{(AAN)(ATA) — (ATA)(A4t) ] = 2r[ A, A=] —2r(4).
(e) r[A% — A2(AN)2A2] =r[A, A*] - r(A).
() (47)2Af = AT(A")2
(g) The following five statements are equivalent:
(1) A= Af
(2) A%4F = At 42
(3) A(AH)F = (43T
(4) (AAT)(ATA) = (ATA)(44").
(5) A2 = A42(Af)242,
(6) R(A) = A(A*), ie.. Ais EP.

Proof. Note that 4. A" € 4{2} when A is tripotent. Thus we have by Eq.(5.1) that

r(A-AY) = r :T +r[ 4, ‘{T]—!‘(.-l)—r(;lf)
C
= r| Ll AT -2l = 2l AT - 2r(d),

establishing Part (a). Parts (b)—(e) follow from Eqs.(6.5), (6.6), (6.7) and Theorem 6.8(a). Part (g)

follows from Theorem 6.13(c). Part (f) is a direct consequence of Parts (a)—(e). O

The following result is motivated by a problem of Rao and Mitra (1971) on the nonsingularity of a

matrix of the form I + 4 — AT 4.

Theorem 6.21. Let A € C™*™ and 1 # A € C be given. Then

@) r(Ip +A =AY =7([, + A - AAY) = r(42) = r(4) +m.

(b) ([ —A—=ATA)=r([n—4-44Y) =r(4?) = r(4) + m.

(€ MM +A—ATA)=r(Mpm + A= A4T) =r[ (A~ 1), + 4].

(b) ( Rao and Mitra, 1971) I, + A — 414 is nonsingular <= I, + A — 44! is nonsingular <>
r(A2) = r(4).
Proof. Applying Eq.(2.1) and then Eq.(1.8), we find that

AAAT A4
([ —A—-4At4) = r —r(4)
4= I,+ 4
A4s 1
= r — ()
4 I+ A4
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AA" Iy
4%4° 0 .
= r —r(d)=m+r(47) - r(d).
0 Im

By symmetry, we also get r( I, + 4 — A4") = m + r(4?) — r(A4). Both of them are the result in Part
(a). Similarly we can show Part (c) by Eq.(2.1) and (1.11). Part (d) is a direct consequence of Part(a).
a



Chapter 7

Rank equalities related to matrices and their
Moore-Penrose inverses

We consider in this chapter ranks of various matrix expressions that involve two or more matrices and
their Moore-Penrose inverses, and present their various consequences, which can reveal a series of intrinsic
properties related to Moore-Penrose inverses of matrices. Most of the results obtained in this chapter are

new and are not considered before.
Theorem 7.1. Let A, B € C™*™ be given. Then

A

r(AATB —BATA) =+
A*B

} +r{d. BAT] = 2r(4). (7.1)

In particular.

(a) AAB = BAtA = r [ } =r[d, B4A*] =r(d) & R(BA") C R(4) and R(B*4) C

A*B
R(A™).
. A
(b) AA'B — BAtA is nonsingular < r B =r(d, BA*] = 2r(4d) = m < R(A) =
R(BA®) =C™ and R(AB*) = R(4) <= R(4A*)& R(B~4) =C™ and R(4*B) = R(A*).

Proof. Note that 44" and AtA are idempotent and R(A") = R(A4"). We have by Eq.(4.1) that

[ 4418 ) ,
r(AATB-BAT4) = r A +r[BATA. 44T —r(a4h) — r(4T4)
g ]
= r +r[BA!, 4] —2r(4)
A4
B |
= r +r[BA", A] = 2r(4),
A
establishing Eq.(7.1). Parts (a) and (b) follow from it. |

Clearly the results in Theorems 6.1 and 6.7 are special cases of the above theorem.

Theorem 7.2. Let 4 € C™*", B € C™** and C € C**" be given. Then
(a) r(Adt— BBY)=2r[4, B]-r(4) - r(B).

(b) r(Atd—CtC)=2r { ; } —r(4) - r(C).
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(¢) r(44A'+ BBY) =r[4, B].
(d) r(.'-lf.-1+C'TC)=r[ A } .
C
In particular,
(e) AAt = BBt <= R(4) = R(B).
(f) A'4=C7C < R(4*) = R(C").
(8) r(AA! — BBY) =r(44f) ~ r(BBt) < R(B) C R(4).
(h) r(ATA-C1C) =r(414) - 1(C1C) = R(C*) C R(4").
(i) (44" = BBY')=m <= r[4, B] =r(4) +r(B) = m < R(4) s R(B) =C™.

A
G) (ATA-CiIC)=n<r l: c :l =r(4)+r(C) =n<+< R(A") & R(C") =C".
Proof. Note that 447, AT4. BBT, and C'C are all idempotent. Thus we can easily derive by Eqs.(3.1)

and (3.12) the four rank equalities in Parts (a)—(d). The results in Parts (¢)—(j) are direct consequences

of Parts (a) and (b). O
Theorem 7.3. Let A € C™*", B € C**™ he given. Then

r(AA'BTB — BYBAAY) = 2r[ A, B™] +2r(BA) — 2r(4) — 2r(B). (7.

=1
(1M
—

In particular,
(AAN(BTB) = (B'B)(AA!) <> r[4. B | =r(4) + r(B) — r(BA) <= dim[R(A) N R(B")] = r(BA).

(7.3)

Proof. Note that A4, A"4, BB' and B'B are Hermitian idempotent. Thus we find by Eq.(3.29) that

r((AAN(BYB) — (B'B)(A4A)] = 2r[A4t, BB+ 2r[(4AN)(B!'B)] - 2r(AAY) — 2r(BTB)
= 2r[4d. B*]+2r(B4) - 2r(4) - 2r(B).
as required for Eq.(7.2). The results in Eq.(7.3) is a direct consequence of Eq.(7.2). O

Theorem 7.4. Let A € C™*", B € C¥*™ pe given. Then
(a) r[A"(A4"+BB* )14 - AT4] =r(4) +(B) - r[ 4, B].

(b rfd(4"4+ C*C)tA" - .-L-U] = r(4) +r(C) =1 Ii 2 J '
(¢) r[A(AA"+ BB )fB] =r(4) +r(B) - r[4. B].
(d) rfA(AA+CCYC | =r(A)+r(C)-r |: ; } .

In particular,
() A*(AA* + BB*)1A = AT4d <= A4*(44" + BB*)IB = 0 < r{4d, B] = r(4) + r(B) <
R(4)n R(B) = {0}.

w
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() A(A"4+C*CHYA* = 44l &= A(A4+CC)C =0T I: ; } = r(d) +r(C) =
R(A*) N R(C*) = {0}.

Proof. Parts (a) and (b) are derived from Eq.(2.2). Part(c) and (d) are derived from Eq.(2.1). The

results in Parts (e) and (f) are direct consequences of Parts (a)—(d). O

Theorem 7.5. Let 4 € C™*", B € C™** and C € C'*™ be given. Then

r(BB'A—-ACtC)=r [ B4 ] +r[AC*. B]-r(B) - r(C). (7-4)

In particular,

(a) BBTA = ACIC &= r [ B4 } =r(C) and r[AC~. B] =r(B) &= R(AC") C R(B) and R(A*B) C

R(C™).

(b) BBtA - ACTC is nonsingular <= r [ 4 } =r[AC". B]=7(B) +r(C) = m.

Proof. Follows from Eq.(4.1) by noticing that both BB and C'C are idempotent. m]

[t is well known that the matrix equation BXC = A is solvable if and only if BBTACTC = 4 (see.
e.g., Rao and Mitra. 1971). This lead us to consider the rank of A — BBTACTC.

Theorem 7.6. Let 4 € C™*" B € C™** and C € C'*" be given. Then

A 4C* B
r(A~BB'AC'C)=r| B4 0 0 | -r(B)-r(C). (7.3)
C 0 0
and
4 4C" B
r(24-BB'A-AC'C)=r|{ B4 0 0 | -r(B)-rC). (7.6)
c 0o 0

In particular,

BBYACTC = A < BB'A + AC'C =24 <« R(A) C R(B) and R(A*) C R(C"). (7.

~1
)
~—

Proof. Applying Eq.(2.8) and the rank cancellation law (1.8) to A — BBYACTC produces

r(4 - BBtACTC)
B~AC* B*BB" 0
= r| Cccc* 0 cC | —=r(B)-r(C)
0 BB* —A

%)
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B*AC* BB 0 0 O B4
= r| CcC- 0 C|-r(B)-r(C)=r 0 © C | —r(B)—-r(C).
0 B -4 | AC* B -4

as required for Eq.(7.5). In the same way we can show Eq.(7.6). The result in Eq.(7.7) is well known.
a

4 B
Theorem 7.7. Let A € C™*" B € C™*F and C € C'*™ be given, and let M = { c oo jl . Then
r(4A=BB'A - ACTC) = (M) + r(CA*B) = r(B) — r(C). (7.8}

that is. the block matriz M satisfies the rank equality

r(M)=r(B)+r(C)-r(CA*B) +r( A - BB'4 - AC'C). (7.9)

Proof. Applying Egs.(2.2) and (1.8) to 4 — BBt A — ACTC yields

r(4-BB'A - ACtC)

[ B=BB- 0 B A

= r 0 c=ccr C*C | —r(B) —r(C)
BB* AC A

B*B 0 B4

= r 0o cc- C -7r(B) —r(C)
ACt A
[0 -B*4C* 0O
= r| 0 0 C | —r(B)-r(C)
B 0 4

A}

= r ; 5 +7r(B*AC”) — r(B) - r(C).
as required for Eq.(7.8). a
Theorem 7.8. Let 4 € C™*" B € C™** and C € C'*™ be given, and let M = [ ; B ] . Then
A - A(EgAFc) 4] = r(4) +r(B) + r(C) — r(M), (7.10)
that is, the block matriz M satisfies the rank equality
r(M)=r(A) +r(B) +r(C) —r{4 — A(EgAFc)t 4], (7.11)
where Eg = I — BB and Fc = I — CtC. In particular,

(EgAFc)t € {47} (7.12)
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holds if and only if

r(M) =r(4) +r(B) +r(C), ie, R(A)NR(B)={0}and R(A*)N R(C") = {0}. (7.13)

Proof. Let N = EgAFc. Then it is easily to verify that N*NN* = N*AN~. In that case. applying
Eqs.(2.1), and then (1.2) and (1.3) to 4 — A(EgAF¢c)t A vields

rld — A(EgdAFc)t A =r[4A - ANTA] = -

N*NN* N4
— r(Al)
ANT* A

N*NN* = N*AN* 0 ]
= r —r(N)

0
= r 0 0}—1'(./\")
0 A
= r(d) - r(V)

A +rB) +r(C)—r| > B
= r(: T r -r .
cC 0

as required for Eq.(7.10). The equivalence of Eqs.(7.12) and (7.13) follows immediately from Eq.(7.11).
a

It is known that for any B and C, the matrix (EgAF¢)T is always an outer inverse of A (Greville.

1974). Thus the rank formula (7.11) can also be derived from Eq.(5.6).

In the remainder of this chapter, we establish various rank equalities related to ranks of Moore-Penrose

inverses of block matrices, and then present their consequences.

Theorem 7.9. Let 4 € C™**, B € C™** and C € C'*™ be given. Then

. A7 . .
(a) r ([-l Bt - { Bt :I ) =r[{AA"B, BB~ A].

;
(b) r [{J —[4F, CT] =r[ACC:I.
Cc CA*A

At

. ] [A. B]) =r(A4"B. BB*4].

(c) r ([.4, Bl'[4, B] -

- f ~
(d) r I: A } A ] - A ] (4, C'] | =~ l: ACTC J ;
C C CJ CA=4

In particular,

At

(e) [4, B]f = J <[4, B]'[A4, B]= [Bf }[.—l, B)l<= A"B =0.

[41]
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o2 s [] 2] 2] crmc

Proof. Let M =[A, B]. Then it follows by Eq.(2.7) that

(en-[3]
- (war-[ ][] o)
-() I

[ _MMM* 0 0 Me ]
0 Ard4a- 0 A
= r 0 0 B*BB* B —r(M) —r(A) - r(B)
A- A- 0 0
| B 0 B- 0|
[ _ArMMT 0 0 M*]
—4*44* 0 0 A
= r| =B*BB~ 0 0 B | -r(M)-r(4d)=r(B)
0 A0
i 0 0 B~ 0 |

MMM~ M*
= r| ATA4" A | —r(M)

| BB B
[ MMM AA*A BB'B
= r —-r(M)
M 4 B

M 0 0
= r[A4"A-MM A, BB*B—-MM*B|=r[AA"B. BB~ 4],

[ 0 AA*A-MM-A BB*B-AMM®B
= r — (M)

as required in Part (a). Similarly, we can show Parts (b), (¢) and (d). The results in Parts (e) and (f)

follow immediately from Parts (a)—(d). o

A general result is given below, the proof is omitted.

Al
Theorem 7.10. Let A =[4;, s, ---, Ar] € C™*" be given, and denote M =
AL
F(AT = M) = r(ATA = MA) =r[NN7 AL, NaNSdy, . NeNE AL
where Ny = [Ay, --- Aoy, Aipy, -0 Ax], =1, 2. ---, k. In particular,

A'=M = ATA=MA &= 4,4, =0 foralli#j.
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Theorem 7.11. Let A € C™*", B € C™** and C € C'*™ be given. Then
(@) r([A. B[4, B]t — (A4t + BB')) = r[A. B]+2r(4°B) = r(4) — r(B).

o

¢
(b) r l: A } [ A } — (A4 +CtC)y | =7 [ A J +2r(CA*) — r(4) — r(C).
C C

In particular,
At
(c) [4, B4, B]’r = AA' + BBt <= 4"B =0 < [, B]f = st |

t f
(d) { 4 :l { A } =ATA+CIC = CA =0 = [ . } =[4f, CT].
C o C

Proof. Let M =[., B}. Then it follows by Egs.(2.7). (1.8) and block elementary operations of matrices

that

r(MMY — A4 — BBT)

—M*MM* 0 0 M
0 A4 0 A
= r —r(M) = r(d) —r(B)
0 0 B*BB* B+
MM* AAs BB* 0

MM 0 0 A+

0 A4 0 A=

= r —r(M)—=r(d) —r(B)
0 0 B*B B~
M 4 B 0

0 0 0 0o A
0 0 0 0 B
= r| 4*4 A*B A*4 0 A" | =r(M) = r(4) - r(B)
B4 BB 0 B"B B-
A B 4 B 0

[0 o 0 A ]
0 0 o0 0o B
= r| 0 0 0 4B 0 — (M)~ r(d) - r(B)
0 0 -BA 0 0
A B 0 0 0
= F(M)+2r(A"B) = r(4) —r(B),

as required in Part (a). In the same way, we can show Part (b). We know from Part (a) that

MM' = AA' + BB' <= r[ A, B] =r(4) +r(B) - 2r(A"B).



On the other hand, observe from Eq.(1.2) that

r{A. Bl =r(4) + (B — AAIB) > r(4) + r(B) ~ r(44A'B)
= r(4) +r(B) — r(A"B) > r(4) + r(B) — 2r(A"B).

Thus Eq.(7.16) is also equivalent to A*B = 0. In the similar manner, we can show Part (d). O
A general result is given below, the proof is omitted.
Corollary 7.12. Let A =[4,, s, ---. A ] € C™*" be yiven. Then
0 Ajds -~ Ajde
) t A3, 0 S ASA o
I'[.-L—U—(Al:ll+---+.-lk.-iL N=r ) ) . ) +ri{d)—r(dy)=---=r(Ag). (7.17)
Azd, Azdy -0
In particular.
AT =4 A 4+ Al == 474, =0, foralli# ] (7.18)

Theorem 7.13. Let 4 € C™*", B € C™** and C € C'*" be given. Then

(a) r ([.4. BJt — { 22‘3;;: ]) =r(4) +r(B) —r[A, B].
A

t
(b) r { ; } —[(AFe)t, (CFOY] | =r( ) +7(C) = { ; J .

In particular.
¥
© (4 5] = { (E5:4)

(E.B)t } <> r[4, B]=r(4) +r(B) < R(4)N R(B) = {0}.
A

+
(d) [ ; } =[{(AF). (CF) <=~ l: ; :l =7r(4d) +r(C) &= R(A*)NR(C*) = {0}.

Proof. Let M = [4, B]. Then it follows by Egs.(2.7) and (1.8) and block elementary operations of

matrices that

4 By - (EgA)t
o (E4B)t
= r ([--L Bt - ': ! :l (EgA)t - |: 0 :I (EAB)f)
0 I

MMM 0 0 M-
0 (EgA)"(Eg AN EpA)" 0 (Egd)”
= r 0 0 (EAB)Y (EAB)(EAB)™ (ELB)"

BT b N P



—r(M)—r(EgA) —r(EsB)

[ MMM 0 0 AL
0 (EgA)"A(EgA) 0 (EgA)”
= r 0 0 (EaB)"B(E.B): (E.B)*
A (EgA)” 0 0
B 0 (E4B)" 0
— (M) = r(EgA) = r(E.B) )
[ 0 M-A(Epd)” M=B(E.B)" A
0 (EgA)A(Eg4d)” 0 (EgA)"
= r| 0 0 (EsB)*B(EsB)* (EaB)" | —r(M)—r(Epd) —r(E4B)
A 0 0 0
| B 0 0 0 |
[ M A(EgA)” M*B(E+B)" M-
= r| (Epd)A(EgA)" 0 (EpA)* | =m(Epd) — r(E.B)
L 0 (EaB)*"B(EsB)" (Ea.B)*
[0 0 a-
= r| 0 0 (Egd)* | —r(EpAd)~r(EsB)
0 0 (E.B)"

= r[.f-\'[. EgAd, EAB]—r(Epd) ~r(EsB)
= r[d. B]|-r(Egd) —r(EaB)=r(4)+r(B) —r[4, B].

as required for Part (a). Similarly. we can show Part (b). The results in Parts (¢) and (d) follow

immediately from Parts (a) and (b). O

A general results is given below.

Theorem 7.14. Let A =[A;, As, ---, Ag] € C™*™ be given. Then
(En, Ayt
(En, As)t
rl (A A, ol Ae ] - i =r(A) + () + o+ r(Ae) = r(A).
(E‘t\/,‘-'lk)i>
where Ny = [ Ay, ---. Aoy, Aigr.---, Ak}, £ =1, 2, ---, k. In particular,
(En, A1)
(E,v._,:’lg)f
(A sy o, 4] = . > r(4) =r(d) +r(da) + - + (k).
(E/‘v'x,-'/lk)f

Theorem 7.15. Let 4 € C™*", B € C™** and C € C'*" be given. Then
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(a) r([4, B[4, B]t — A(EgA)t — B(E4B)!) = r(4) + r(B) — r[4. B].

t
w r| | 2| = weta- Ryt | =ray +re) = | P
C C ’ C

In particular,

(c) [4. Bi[A, B}t = A(EgA)t + A(E4B)t < R(4)N R(B) = {0}.

f
(d) [ ; } [ 2 ] = (AF) A+ (CFO)IC &= R(A")N R(C*) = {0}.

The proof of Theorem 7.15 is much similar to that of Theorem 7.13, hence omitted.

Theorem 7.16. Let 4 € C™*", B € C™** and C € C'*" be given. Then

. Af4 0
a) r 4. 4, Bl — = 7(- r(BY —r{ 4. Bl.
(@) ([4 BI'[4. B] [ , BTBJ) (4) +r(B) = [ 4. B]

1
A A AAf 0 A
b) r - =r(4 C)-r -

In particular,

- ;
(c) [4. B]'[4, B]= A4 0 <[4, B]=r(4) +r(B) &= R(A)NR(B) = {0}.
0 B'B
f r .
: i
(d) { 4 } [ 4 } =] 0 = r [ 4 } =r(4d) + r(C) <= R(L")NR(C") = {0}.
c c 0 cct C

4 0
0 B

r ([.4. BI'[A. B] - [ A4 0 J)
U B'B

= (MM - NIN)

Proof. Let M =[4, Bland N = l: } . Then we find by Theorem 7.2(b) that

= o M} — (M) = ()
N
4 B
= 2r{ 4 0 | —r[4. B]—r(d) - r(B)
| 0 B
= r(4) +r(B)—r[4 B]

as required for Part (a). Similarly we can show Part (b). Parts (¢) and (d) are direct consequences of
Parts (a) and (b).
=]

A general result is given below, the proof is omitted.
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Corollary 7.17. Let A =[4;, A2, ---, Ar] € C™*" be given. Then
r{AYA —diag( Al 4y, ATAs, - ALAL)] = r(AL) + r(Aa) + -+ r(dk) = r(A). (7.21)
In perticular,

AtA =diag(Al4y, Alds, -, Aldr) e r(4) =r(4) +r(da) + - + r(Ax)- (7.22)

4 B
Theorem 7.18. Let A € C™*", B € C™** and C € C'*" be given. and let M = ': c o :I . Then

r (.-l - {4, ojM? { ; ]) =r(A) +r(B) +r(C) — r(M). (7.23)
or alternatively
A
r(iMy=r(4)+r(B)+r(C)—-r (-—l -4, O].Mf l: 0 } ) . (7.24)
In particular, .
-A[[’O]l::l B} ,:[}A:_ (7.25)
c 0 0
holds if and only if
(M) =r(A)+r(B)+r(C). ie. R(A)NR(B) = {0}, and R(A")N R(C") = {0}. (7.26)

Proof. It follows by Eq.(2.1) that

A
+ A MMM M=
ri A-[4. 0]M 0 0 —r(M)
[4, 0] M~ A

I
.M‘.MN[‘—.M‘|: }.—1[1. 0]\~ o
0

0

0
= r| M
I:C

= r(d) +r(B) +r(C) —r(M),

I
.

—r(\)
A

.M') +r(d) —r(M)

as required for Eq.(7.23). O

Theorem 7.19. Let A € C™*", B € C™** and C € C**" be given. Then

¢
r| 4+[0, B][g ?] {CO‘:I =r{d, B}-i-r[;]—rl:: ﬁ:l (7.27)
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or alternatively

t
r{'* B}zr[.‘l,B]+r[A}—r A+10, B][A B} [OJ : (7.28)

[ 4 B
C o

r{ A+[0, BJM?! { 0 ])
c

Proof. Let Af = } . Then it follows by Eq.(2.1) and block elementary operation that

i 0
M=MA~ M
= r C —r(M)
| [0, B]M* -4
u [
0 0
M*MM™ — M~ C[I.0]M™ A
= 7 I C —r(M)
L [A, BlM* -4
i [ A A
M*MM* — M~ B M= M*
= c o c | | -ran
L [4. BIM- -4
[ A
0] MT
= r [ C J — I'(./"[)
(4. B MT -4
[ A
0 A
= r ': C:] —r(M) =r[4d. B]-i—l":c jl — r(M).
| {4, B] -4
as requird for Eq.(7.27). O

[t is easy to derive from Eq.(1.6) that

r[; lj} 2r{2}+r[.~1, B~ r(4).

Now replacing 4 by 4 — BXC in the above inequality, where .\ is arbitrary, we obtain

r(A—BXC)Zr[A,B]+r[‘4]—rli‘-l BJ. (7.29)
C C 0

This rank inequality implies that the quantity in the right-hand side of Eq.(7.29) is a lower bound for

the rank of A — BXC with respect to the choice of X. Combining Eqs.(7.27) and (7.29). we immediately
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obtain
A 4 B
mint(4 -BXC) =r[A, Bl+r -r . (7.30)
X C c 0

and a matrix satisfying Eq.(7.30) is given by

t
A 0
(o, I,][* B} [ } a1
cC 0o I

Theorem 7.20. Let A € C™*", B € C™** and C € C**™ be given. Then
— - T i -
1 B [ 4 B } 44t 0

0 D 0 DDfJ

4 B
0 D

[ 1T - [ 4t ] 4 B
by r 4B 4 B - A 0 =r(d) —r(D)+2r b —-r .
0 D 0 D 0 DiD J D 0 D

In particular,

- - T - -
t
(c) 4B [ 4 B ] = 0 < R(B) C R(4).

(a) r =r(D)—r(d)+2r[4. B] —r {

0 D 0 D 0 DDt
- S o N
4 B A B At4 0
() = <= R(B*) C R(D*).
0 D 0 D 0 D'D

A B 4 0
Proof. Let A = l: } and N = [ ] . Then we find by Theorem 7.2(b) that

0 D 0 D
r(MMY' — NNt)y = 2¢[M, N]—r(M) - r(N)
4 B 4 0
= 2 —r(M) = r(d) = r(D)
0 D 0 D

= 2r[4, Bl+r(D) —r(M) —r(4),

as required for Part (a). Similarly we can show Part (b). Observe that

4 B A B
r(D) —r(d) +2r{ 4, B]—r[ J =(r[4, Bj—r(4)) + (r(D)+I‘[.-\, B] “r{ . }) .

0 D
and
B 4 B B B 4 B
r(d) —r T —-r =|r —r(D r{. —-r .
Thus (c¢) and (d) follow. O

A general result is given below, the proof is omitted.
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Theorem 7.21. Let

Ayp A ALk
M= Ao A:zk ecmxn
Ark
he given. and let 4 = diag( Ay, Asa, ---. Agr). Then
(@) r[ MM - diag(AuAl, - AweAl )] =20 ML A] = (A = ().

M

(b) [MfM — diag( Al A1y, -, .q,k_.xkk)] =2 [ . } — (M) — r(4).

[n particular.

() MM? = diag(AyAl, -, Awdl,) & R(M) = R(4) < R(4y) C R(Ai), j = i +
Levoo ky i=1,---, k— 1L

(d) MM = diag(Al 4y, -, Al Aw) & R(M") = R(A*) & R(4ij) C R(4,,). j =
Qoo kdi=1,---. j—1.
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Chapter 8

Reverse order laws for Moore-Penrose
inverses of products of matrices

Reverse order laws for generalized inverses of products of matrices have been an attractive topic in
the theory of generalized inverses of matrices, for these laws can reveal essential relationships between
generalized inverses of products of matrices and generalized inverses of each matrix in the products.
Various results on reverse order laws related to inner inverses, reflexive inner inverses, Moore-Penrose
inverses, group inverses. Drazin inverses, and weighted Moore-Penrose inverses of products of matrices
have widely been established by lot of authors (see. e.g.. [7], [8]. [20]. [27]. [28]. [31]. {32]. [41]. [36].
[87]. [90], [92], [94]. [102], [103], [104]). In this chapter. we shall present some rank equalities related to
products of Moore-Penrose inverses of matrices, and then derive from them various types of reverse order

laws for Moore-Penrose inverses of products of matrices.
Theorem 8.1. Let 4 € C™*™ qnd B € C™*P be given. Then
r(AB — ABBYATAB) =r[A". B} + r(4AB) - r(4) - r(B). (8.1)

In particular, the following five statements are equivalent:
) BYAY € {(AB)™}, i.e.. BT Al is an inner inverse of AB.
) r{d*. Bl =r(Ad)+r(B) - r(AB).
(¢) dim[R(A)N R(B*)] = r(4AB).
) r(B—AtAB) =1r(B) ~r(At4B), ie., ATAB <., B.
) r(A—ABBY) =r(4) - r(ABBY), i.e., ABBT <., A.
Proof. Applying Eqs.(2.8) and (1.7) to AB — ABBT At 4B, we obtain
B4~ B*BB~ 0
r(AB —4ABB'At4B) = r| 4-a4° 0 A"4AB | = r(4) = r(B)
0 ABB* -4B
B*4A* B*B 0
= r| 44" 0 AB —r(d) —r(B)
0 AB  —AB

= r BrA* BB :| +r{AB) —r(4d) - r(B)
AA" AB

= r ({ 1; } (A4, B]) +1(AB) — r(4) — r(B)




= r([A". B][A". B])+r(AB) — r(4) - r(B)
= r[A4°. B]+r(4B) - r(4) - r(B).

Thus we have Eq.(8.1). The equivalence of Parts (a) and (b) follows immediately from Eq.(8.1). The

equivalence of Parts (b) and (c) follows from the simple fact
r(4%, B}l =r(4) +r(B) - dim[R(A") N R(B)].
The equivalence of Parts (b), (d) and (e) follows from Egs.(1.2) and (1.3). ]

The rank formula (8.1) was established by Baksalary and Styvan (1993. pp. 2) in an alternative form
r(AEgF B) =r[A". Bl +r(AB) —r(4) - r(B). (8.1

Observe that

A(I - BBYW(I - A'A)B =-4B + ABBY AT AB.
Thus Eq.(8.17) is exactly Eq.(8.1). Some extensions and applications of Eq.(8.1°) in mathematics statistics
were also considered by Baksalary and Styan (1993). But in this thesis we only consider the application
of Eq.(8.1) to the reverse order law BYAY € {(AB)~}. In addition. the results in Theorem 8.1 can also

be extended to a product of n matrices. The corresponding results were presented by the author in [94].

Theorem 8.2. Let A € C™*" and B € C™*? be given. Then
(a) r[(AB)(AB) —(ABYBTAN ]| =r[B, 4"4B|~r(B) =r(4+ AB - BB'4*4B).

(b) r[(AB)t(AB) — (Bt AN)(4B)] =+ [ —r(d) =r(ABB* — ABB*At4).

ABB*
(¢) (AB)(AB) = (AB)(B'AY) &= A * AB = BB'4"AB < R(A*4AB) C R(B) < BtAt C
{(AB) 231},
(d) (AB)(AB) = (BYAN)(AB) <= ABB* = ABB*A'4 <= R(BB*4") C R(4A") < B'A' C
{ (AB)(L20Y,
(e) The following four statements are equivalent:
(1) (AB)f = BYT AL
(2) (AB)(AB)' = (AB)(BtAY) and (AB)1(AB) = (Bt A1) (AB).
(3) A*AB = BB'4* 4B and ABB™ = ABB~ At 4.
(4) R(AAB) C R(B) and R(BB"4*) C R(A4A").

Proof. Let V = 4B. Then by Eqgs.(2.1), (2.7) and (1.8). it follows that

[ N*NN-= N
(NNt - NBIAY) = ‘ - (V)
NN=  NBtAf

0 N* - N*NBtAt
=T ! — (V)
NN~ 0

= r(N*—=N"NBt4l)
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B*4* B*BB- 0

= r| A 44" 0 A —r(Ad) - r(B)
0 N*NB® =N~

B* A" BB 0

= r 0 0 A | = r(4d) —r(B)
B4 44 N*N 0

[ B4+ BB

= r —r(B)

B*4*44% N=*N

4B AAAB

[ BB B A"AB
= r —-r B)

I
<

([ B; J (B, A‘AB}) —r(B) =r[B. A"AB] - r(B).

as required for the first equality in Part (a). Applying Eq.(1.2) to it the block matrix in it vields the
second equality in Part (a). Similarly, we can establish Part (b). The results in Parts (¢) and (d) are
direct consequences of Parts (a) and (b). The result in Part (e) follows directly from Parts (c) and (d).

a

The result in Theorem 8.2(e) is well known, see. e.g., Arghiriade (1967). Rao and Mitra (1971). Ben-
Israel and Greville (1980), Campbell and Meyer (1991). Now it can be regarded as direct consequences
of some rank equalities related to Moore-Penrose inverses of products of two matrices. we next present

another group rank equalities related to Moore-Penrose inverses of products of two matrices.

Theorem 8.3. Let 4 € C™*" and B € C**P be given. Then
(a) r[ABB' — (AB)(AB) A] =r[B, A*AB] - r(B).

(b) r[ATAB ~ B(AB){(AB)] =r [ A } — r(A).
ABB*

(¢) r[A*ABB' — BBtA*4]=2r[B, A*AB] - 2r(B).

(d) r[ATABB* — BB AtA]=2r [ A } — 2r(4).
ABB-

(e) (4AB)(AB)A = ABB' <= A"ABB!' = BB'A"d < R(A4B) C R(B) < BfAl C
{(AB)128)}
(f) AT4AB = B(AB)/(AB) <= A'ABB* = BB"A'4 < R(BB*A*) C R(4A") < B'Al C
{(AB)120,
(e} The following statements are equivalent:
(1) (AB)t = Bt Af,
(2) (AB)(AB)'A = ABBt and ATAB = B(AB)'(4B).
(3) A~ABB' =BB'A*A and A'ABB* = BB*A'A.
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Proof. We only show Part (b). Note that AA' and (AB)(4B) are idempotent. We have by Eq.(3.1)
that

r[ATAB — B(4B)!(AB)]
AtAB

’ [ (AB)!(AB)

= r(AB)+r[B(AB)", 47| —r(4) — r(4B)

} + [ B(AB)(AB). ATA] = r(AT4) — r[(4AB)T(AB)]

= r[{BB"4%, A™] - r(4),
as required. O

The result in Theorem 8.3(e)} was established by Greville (1966). We next consider ranks of ma-
trix expressions involving Moore-Penrose inverses of products of three matrices, and then present their

consequences related to reverse order laws.

Theorem 8.4. Let A € C™*", B € C™*? and C € C?*" be given, and let M = ABC. Then
(BC)*
r{M - A'[(BC)TB(AB)f.M] =r A B{(AB)*. C] | +r(M) —r(4AB) — r(BC). (8.2)
In particular.

(BC)'B(AB)! € {(ABC)~} &> r ( [ (Bf)‘ } B{(AB)", C]) =r(AB) +r(BC) — r(Al). (8.3)

Proof. Applying Eqs.(2.8) and the rank cancellation law (1.8) to Af — A[(BC) B(AB)' M. we obtain

r{M — M(BC) B(AB)TAM |
[ (BC)*B(4AB)* (BC)*(BC)(BC)" 0

= r| (4B)*(AB)(AB)" 0 (AB)*M | —r(AB) — r(BC)
i 0 M(BC)* M
[ (BC)"B(AB)* (BC)*(BC) 0
= r (AB)(AB)* 0 M | =7(AB) - r(BC)
i 0 M M
= r (BC)B(4B)™ (BC)(BC) } + (M) = r(AB) — r(BC)
(AB)(AB)* M

-, l:(Bf)'}B[(AB)'- 01>+r(r"1)—r<-w)-f‘30’-

Thus we have Egs.(8.2) and (8.3). m|

Theorem 8.5. Let 4 € C™**, B € C**P and C € CP*" be given, and let M = ABC. Then
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(a) The rank of Mt — (BC)'B(AB)! is

r{M' - (BC)'B(4AB) | =+ ( [ (ff){' B[(AB)". CM']) — r(AM). (8.4)
(b) The following three statements are equivalent:
(1) (ABC)f = (BC) B(4AB)'.
MM*M Y *
(2) r M(BCY(BO) | _ 1BC).
(ABY(AB)"M ABB*BC

(3) ABB*BC = AB(BCM'4AB)*BC.
(¢) Ifr(ABC) = r(B), then

(ABC) = (BC)Y B(AB)' and (ABC)' = (B'BC)'BI(ABB')'. (8.5
Proof. Applying Eq.(2.12) to Mt — (BC)TB(AB)f, we obtain
r[M' —(BC) B(AB)']
[ ArMmAMe 0 0 M-
_ 0 (BC)"B(AB)*  (BC)*(BC)(BC)* 0 ML) — r(AB) - rBC)
0 (AB)*(AB)(AB)" 0 (AB)*
s 0 (BC) 0
[ MMMt ~M*(AB)(AB)* 0 0
_ | ~BO*(BCIM: (BC) B(AB)" 0 0 M) — r(AB) - HBC)
0 0 0 (AB)*
] 0 0 (BC)* 0
[ (BC)"B(AB)* (BC)*(BC)M~ J
- r ~ (M)
M*(AB)(AB)" AMMM-
= r [ (BOY” ] B[(AB)", CM']) — (M),
M4

as required for Eq.(8.4). Then the equivalence of Statements (1) and (2) in Part (b) follows immediately
from Eq.(8.4), and the equivalence of Statements (2) and (3) in Part (b) follows from Lemma 1.2(f). If
r(ABC) = r(B), then

MM*M  M(BC)*(BC)
-
(AB)(AB)*M  ABB*BC

:l >r(MM M) =r(M).

On the other hand.

{ MM*M  M(BC)*(BC) } ( { MC*
r =r

} B [A°M. BC]) < r(B) = r(M).
(AB)(AB)*M  ABB*BC AB
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Thus we have

= r(M).

ABB*BC

MMM
-
(AB)(AB)*M

M(BC)*(BC) }

Thus according to Statements (1) and (2) in Part (b), we know that the first equality in Eq.(8.3) is
true. The second equality in Eq.(8.5) follows from writing ABC = ABB!BC and then applying the trst

equality to it. a

Theorem 8.6. Let 4 € C™**, B € C"*P and C € CP*Y be given. and let M = ABC. Then

r{BY — (ABY'M(BC)| =+ [ M (AB)(AB)" } +1r(B) —r(4AB) — r(BC). (8.6)
(BC)*(BC) (BC)*B(AB)"
In purticular,
B = (AB)'M(BC)t < r [ M (AB)(AB)" } =1(AB) + r(BC) - r(B).
(BC)*(BC) (BC)*B(AB)"

Proof. Applying Eq.(2.11) to Bt — (AB)! M (BC), we obtain

r{BY — (AB)' M(BC)']

" B*BB- 0 0 B*
_ . 0 (AB)*M(BC)* (AB)*(AB)(AB)* 0 — (B) — r(AB) - r(BC)
0 (BC)*(BC)(BC)* 0 (BC)*
| B 0 (AB)* 0
[ o 0 0 B-
_ .| 0 (4B)M(BC)  (AB)(AB)(4B)" 0 PR
0 (BC)*(BC)(BC)* (BC)'B(4AB)* 0
Nz 0 0
_ | BYIM(BC)»  (AB)(AB)(AB) } £ 1(B) — r(AB) - r(EC)
(BC)*(BC)(BC)*  (BC)*B(AB)"
= r M (AB)(AB)" ] +7(B) = r(AB) — r(BC).
(BC)*(BC) (BC)*B(AB)"
as required for Eq.(8.6). o

Theorem 8.7. Let A € C™*®, B € C"*P and C € C**Y be given. Then

(a) (ABC)' = (AtABC) B(ABCCH)'.
(b) (ABC)t =[(AB)' ABC|' BI[ABC(BC)']'.
(c)(Cline, 1964) (AB)' = (At AB)t(ABBh'.

(d) If R(C) C R[(AB)*] and R(A*) C R(BC), then (ABC)! = CtBt AT,



Proof. Write ABC as ABC = A(ATABCC')C. Then it is evident that
r(ATABCCY) = r(ABC), R[(ABCCY'C R(C). and R[((A'ABC)')*] C R(A").
Thus by Eq.(8.5), we find that

(4BC)Y = [AtaBechc]t
(AtaBCY AtABCCT(ABCCH!
(AtABCY B(ABCCH!,

I

as required for Part (a). On the other hand, we can write ABC as ABC = (AB)B'(BC). Applying the

equality in Part(a) to it yields
(ABC) = [(4B)BY(BC)|' = [(AB)' ABC}' BF{ABC(BC)'] .

as required for Part (b). Let B be identity matrix and replace C by B in the result in Part (a). Then we

have the result in Part (c). The two conditions in Part (d) are equivalent to
(ABY'ABC =C. and ABC(BC)' = 4.
In that case. the result in Part (b) reduces to the result in Part (d). c

In the remainder of this chapter we consider the relationship of (ABC)! and the reverse order product
CTB' 4!, and present necessary and sufficient conditions for (ABC)t = CtBT AT to hold. Some of the

results were presented by the author in {91} and [93].

Lemma 8.8{93]. Suppose that A, A2, Az, By and B, satisfy the the following range inclusions

R(Bi) € R(dir1), and R(B}) C R(4]), i=1,2. (8.7)
Then ;
0 A Al AlB Al —AlB, AL Al
0 4 B | = A} B Al AL 0 |- (8.8)
A3 By 0 Al 0 0

Proof. The range inclusions in Eq.(8.7) are equivalent to

A Al Bi=B;, and BAlA, =B, i=1, 2.
In that case, it is easy to verify that the block matrix in the right-hand side of (8.8) and the given block
matrix in the left-hand side of Eq.(8.8) satisfy the four Penrose equations. Thus Eq.(8.8) holds. (]

Lemma 8.9. Let 4 € C™**. B € C"*P and C € CP*? be given. Then the product CTBV A can be

written as

t
0 0 -’l-'l- ["I
C'BYAY =[1,, 0, 0] 0 B*BB* B*A" 0 | :=PJiQ, (8.9)
cCc C*B- 0 0
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where the block matrices P, J and Q satisfy

r(J) =r(4) +r(B) +r(C), R(QA)C R(J), and R[(AP)*]C R(J"). (8.10)

Proof. Observe that
R(B*A™) C R(B*BB"), R(4AB) C R(AA4"), R(C*B") C R(C*C), R(BC)C R(BB*B).
as well as the three basic equalities on the Moore-Penrose inverse of a matrix
Nt = NY(N*NN*)IN=, Nt = (N"N)IN~, Nt = N (VN

Thus we find by Eq.(8.8) that

0 0o a4 ] [ (C C)'C* B (BB*B)IBA*(AA") + =
0 B*BB* B4 = * * 0
c-c C-B- 0 | * 0 o0
CtBTAT « «
= * *
L * O
Hence we have Eq.(8.9). The properties in Eq.(8.10) are obvious. a

Theorem 8.10. Let 4 € C™**, B € C**P and C € C**1 be given and let M = ABC. Then

— M-~ 0 c-C
r(M - MC'BTANYM | =r 0 BB*B BC | -7r(4)=r(B)—r(C)+r(M). (S.11)
A4 4B 0

In particular,

-M* 0 c~C
C'B'AT € ((ABC)"} e~ 0 BB*B BC | =r(A)+r(B)+r(C)—~r(M). (8.12)
Ad*  AB 0

Proof. It follows from Egs.(1.7) and (8.9) that

r(M - MC'B'ANM] = r(M-MPJIQM)

= T QA/[ :| - ‘f'(.])
MP M

0 M
= r(J=-QMP)+r(M)-r(J)

J-QMP 0
@ } —-r(J)

72



as required for Eq.(8.11). a

-M 0 44"
r 0 B*"BB* B A | +r(M)—-r(J)
| ¢cCc cC-B* 0
[ —Mm- 0 cC
r 0 BB*B BC | +r(M)—-r(4)~-r(B)-r(C).
| 44° 4B 0

Theorem 8.11. Let A € C™*™* B € C™*P and C € CP*1 be given and let M = ABC. Then

r(MT —Ct'BY Aty =1

In particular,

(ABC) =BT Al =

Proof. Notice that

ctoart 44t =

We first get the following
r(M'—C'BT4l) =

Observe from Eq.(8.10) that

Al A4 — MMM
R CR
Q4 0

Thus we find by Eq.(1.7) that .

ri{CM*, CP] [

-MM*M

= T 0
CAM*

MMM 0 MCC
0 BB*B BC —r(B) —r(M). (8.13)
AAM AB 0
MM M 0 MCC
0 BB*B BC =r(B) +r(ABC). (8.14)
AAM 4B U

MT and C'C(C'BTANAAY = CTBT 4.

r(CMTA—-CCtBTATA)
r(CMT4-CPJtQA)
r(CM(M*MMHMA-CPJIQA)

T
MMM 0
0 J

[CM*. CP] [ M ]
QA |

MMM 0|
0 J )

3} and R([CM". CP]‘)gR(

f
-M*MM* O M4

0 J Q4

0 M*A

7 04 —-M=MM* O

. < =T

0 J

CcP 0



[ MMM 0 0 0 M4
0 0 0 A4 4
= r 0 0 B"BB* B A~ 0 | —r(M)—r()
0 cc c-B- 0 0
oM c 0 0 0 |
[ Mmoo 0 0-M-A4" 0 |
0 0 0 0 A
= r 0 0 B*BB- B~ A 0 | = r(M) = r(J)
-C*CM*~ 0 C*B* 0 0
0 C 0 0 0 |
[ At M 0 — M AA"
= r 0 B*BB* B-A" = r(M) - r(B).
| —c'cM* C"B- 0
The results in Eqs.(8.13) and (8.14) follow from it. O

Corollary 8.12. Let 4 € C™*" B € C"**P and C € CP*7 be given, and suppose that

R(B) C R(A®) and R(B*) C R(C). (8.15)
Then
B
r(M'-CtBtAt) =~ +r{B. A"AB] - 2r(B). (8.16)
BCC™
In particular,
(ABC)' = C'BTA! <= R(4°AB) C R(B) and R[(BCC*)*] C R(B"). (8.17)

Proof. Eq.(8.15) is equivalent to 4T 4B = B and BCC' = B. Thus we can reduce Eq.(8.13) by block

elementary operations to

[ _BCcAM=AB 0 BCC*
r(MY—C'BTAY)y = ¢ 0 BB*B B - 2r(B)
A" 4B B 0
0 BCC-B* BCC-
= r 0 BB*B B ~ 2r(B)
A*AB B 0

0 0 BCC*B
= r 0 0 B - 2r(B)
4*AB B 0

= | B |+iB aaBl-2pB). o
BCC*
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Corollary 8.13. Let B € C™*™ be given, 4 € C™*™ and C € C"*" be two invertible matrices. Let
M = ABC. Then

B
r{(ABC)! —C7'Bt A~ =+ +r[B, AAB] - 2r(B), (8.18)
BCC*
and
M
rl{(ABCY —C'BT 4~ | =1 +r[ M., ALTM] = 2r(M). (8.19)
MCC
In particular,
(ABCY =C~'B'A~! « R(AA*B) = R(B) and R(CC*B*) = R(B~). (8.20)
and
(ABC) = C7'B'A™! «—= R(AAM) = R(M) and R(C*CM™) = R(M™). (8.21)
Proof. Follows immediately from Corollary 8.12. ]

Theorem 8.14. Let B € C™*™ be given, A € C™*™ and C € C"*™ be two invertible matrices. Let
M = ABC. Then
(a) r[MM' - ABBY4~'|=r[B, 4*AB]-r(B).

cc
(¢) MM' = ABBtA~! < R(A*AB) = R(B).
(d) MM = ABBtA~! <= R(CC~B~) = R(B").

(b) r[M'A —C~'B'BC]=r { BB ‘ J _(B).

Proof. Note that
r(MMY— ABB' 4™y = r{ MMT4 — ABB'").

and

r(MIM —C~'B'BC) =r(CM'M - BBIC).

Applying Eq.(4.1) to both of them yields the results in the theorem. C



Chapter 9

Moore-Penrose inverses of block matrices

In this chapter we wish to establish some rank equalities related to the factorizations of 2 x 2 block matrices
and then deduce from them various expressions of Moore-Penrose inverses for 2 x 2 block matrices. as

well as m x n block matrices. Most of the results in this chapter appears in the author recent paper [93].

C 0O

. I Act EgAFc B I, B'4
M:{J‘ B}:{ EgdC }[ BArcC } [ J::PNQ, (9.1

cC o LO I C 0 0 I

4 B
Theorem 9.1. Let A € C™*", B € C™*F and C € C**" be given. and factor M = [ :l as

where Eg = I,,, — BBY and Fr = I, — C'C. Then
(a) The rank of Mt — Q' NTP~! satisfies the equality

(M -Q 'NtP~ Yy =1 { 2 J +r[A. Bl+r(B) +71(C) = 2r(M). (9.2)

(b) The Moore-Penrose inverse of M can be expressed as MT = Q' NTP~t_ that is.

vt = (EgAFc)t Ct —(EgAFc) ACT (9.3)
) Bt — BtA(EgAFc)t —BY'AC! + BYA(Eg AFc )t ACT '
holds if and only if A. B and C satisfy the rank additivity condition
A
r(M)=r li c J +7r(B) =r[4, B]+r(C), (9.4)
or equivalently
A B -
R c N 0 = {0} and R([A, B]I")NR([C. 0]") = {0}. (9.5)
Proof. [t follows first by Egs.(9.1) and (8.19) that
¢ it ool M .
r(MY"—-Q~"N'P~™ ') =r +r[M. PP M] - 2r(M). (9.6)
MQ=Q

The ranks of the two block matrices in (9.6) can simplify to

A B I, EgACt I .
F[M, PP°M] = r : o ] X 1B
c 0 0 I J (EgACH" I, c 0



[ 4 B A+ (EgACH(EACY) A + EgAC'C B
= T
c 0 C + (EgACH)A 0
[ 4 B ACYEpACY) 4+ ACtC
= r
c 0 (EgACH" A
[ 1 B Acic
- r
c o o0
[ 1 B o0
= r =r{d, B]+r(C),
cC 0 -C

and

M
r = r
MQQ [.4 B} [1,1 (Bt 4)- J [ L O J

c 0 0 I Bf4 L
i A B 1
_ c 0
T | 4+ A4BTA)(BTA) + BBIA B+ A(BtA)"
] C +C(B'4)" Bt 4 C(B' A)*
i 4 B
c 0

A+ ABTA) (BTA) ABTA)"
C(BtA)"BtA C(BYA)"

=r ‘: A :l + r(B).
C

Putting both of them in Eq.(9.6) yields Eq.(9.2). Notice that (EgAFc)t Bt = 0 and CHEgAF-)t =0

always hold. Then it is easy to verify that

t
vt [ EgAFc B ] ~ [ (EgAFc)t ! ]

© = O
o o o

C 0 Bt 0
Putting it in Eq.(9.2) and letting the right-hand of Eq.(9.2) be zero, we get Eqs.(9.3)—(9.5). =
Corollary 9.2. Let A € C™*", B € C™** and C € C'*" be given. If

R(A)NR(B) = {0} and R(A™)NR(C) = {0}, (9.7)

-1
-1



then

f |
[ A B } _ [ (EgAFe)t  C' = (EpAFe)tACT J 0s)

Cc 0 Bt — Bt A(Eg AFc)t 0

Proof. Under Eq.(9.7), the rank equality (9.4) naturally holds. In that case, we know by Theorem 7.8
that A(Eg AFc)f A = A. Thus Eq.(9.3) reduces to Eq.(9.8). a

Theorem 9.3. Let A € C™*", B € C™** and C € C'*" be given. Then

t t T
A4 B| |4-vc B A-BX-YC B 1-BX B 9.9
c o | c 0 c 0 C 0|

where X and Y™ are arbitrary. In particular,

|
2 2]-forn:
Cc 0 0

Proof. It is easy to verify that

N m : A - 4"- n 0
1 B :[1 v || a-Bx-vc B |1 — pNO.
c o 0 I c o || X I

L

where P and @ are nonsingular. Then we have by Eq.(8.5) that

+
A B
Cc 0

= (NQ)IN(PN)'.
Written in an explicit form, it is Eq.(9.9). Now let X = BYA and ¥ = AC" in Eq.(9.9). Then Eq.(9.9)

t t f
A B| | 4Fc B A—BBt4—AC'C B Epd B
c ol | ¢ o c 0 c o’

[Afe. B][C. 0]" =0, and l: f } l: Ep J =0.

7
| EpA
— t T
{.4 BB' — ACC B} [C} | 0.10)

C ¢
(5. 0]

becomes

Note that

Then it follows by Theorem 7.9(e) and (f) that

t
{; ﬂ = [[4Fc. BJ', [C. 0]'].

and
i



Thus we have Eq.(9.10). ]

4 B
Theorem 9.4. Let 4 € C™*", B € C™** C € C'*™ and D € C'*" be given, and factor M = |: c D J

. ) . AB
A = A Bl _| Im O 1 BB 4 = PNQ. (9.11)
C D cAt I, CF, S, 0 I

where Sy =D — CAYB. Then
(a) The rank of MT — Q= ' NTP~! satisfy the equality
o 1

) 4 0 B
(MY -Q 'NPYYy=r| 0 C +rl:

] — 2r(AL). (9.12)
0 C D

(a) The Moore-Penrose inverse of M in Eq.(9.11) can be expressed as Mt = Q7' NTP~!_ that is.

t
n T f A Iin 0
amt=| B —YB 4B (9.13)
0 I CF, S, —CcAt L

holds if and only if A, B, C and D satisfy

A 0
4 0 B
rl 0 C | =r(M) and r =r(M), (9.14)
0 C D
B D
or equivalently
A A B A A Ct _
R CR and R CR . (9.13)
0 C D 0 B* D=

Proof. It follows by Eqs.(9.11) and (8.19) that

M

M~ _liVTP—L' =r
AT - Q ) =1 [ Vom0

} +7r{M, PP*M] — 2r(M).

The ranks of the two block matrices in it can reduce to

r[M. PP*M)]

(AP H B

1 B A+ (CAD-C B +(CAYD
= r
C D CATA+(CANCA)'C+C CAB+(CANCA)'D+D
;. (CAt-C (CAND
C D (CANYCANC+C CA'B+(CAYCAN)D
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Similarly we can get

A 0

A
r[ WQ‘Q}Z 0 B
) cC D

Thus we have Eq.(9.12). Eqgs.(9.13)—(9.15) are direct consequences of Eq.(9.12). O

4 B
Corollary 9.5. Let 4 € C™*", B € C™** and C € C'*™ be given, and factor M = l' c :l as
"0

Im A E.B I, A'B
A = 0 A .= PNQ. (9.16)
cAl I, CF, —CA'B 0 I

where Sy =D — CA'B. Then
A
r[MY —Q NP~ =7 { c :l +r[d, B]+r(B) +r(C) — 2r(Al). (9.17)

In particular, the Moore-Penrose inverse of M in (9.16) can be expressed as

t
I, —-AB A E.B I U
Mt =@ 'Ntp-l = + . (9.18)
0 I CF, -CA'B —-CcAl
if and only if 4, B and C satisfy the following rank additivity condition
4
r(M)=r l: c ] +r(B)=r[4d. B]+r(C), (9.19)
Clearly &V in Eq.(9.11) can be written as
4 0] E.B |
N = 10 + 0 A =N + N, (9.20)
0 0 CF. Sa
Then it is easy to verify that
t o] £
E 0 . .
N = 0 + A =N+ N._I. (9.21)
0 0 CFy Sa

Thus if we can find N_;' , then we can give the expression of N1 in Eq.(9.21). This consideration motivates

us to find the following set of results on Moore-Penrose inverses of block matrices.
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Lemma 9.6. Let A € C™*", B € C™*F, C € C'*™ and D € C*** be given. Then the rank additivity

condition

r[A B:l:r[AJ-{-rliB]:r[A, Bl+r[C, D]
C D C D

s equivalent to the two range inclusions

feefen) Aol T

and the rank additivity condition

A

r [ 0 EaB jl =r l: EsB } +7m(CF4) =r[CF4, Sa]+ r(EsB).

CFy 5S4

where S, =D — CATB.

Vo= { A } 15 = { 5 } . Wy=[4. B]. HWy=[C. D]
c D

Then Eq.(9.22) is equivalent to

Proof. Let

R(VI)NR(V:) = {0} and  R(W;)N R(Ws) = {0}.

[n that case, we easily find

W, 0

r [ 4o } =r{ j } +r [ o } =r(V1) +r(V2) = r(AM).
4 0 A 0

r [ - } = (Wi, A]+ e[, 0] = r(W0) + r(1W2) = r(M).

and

both of which are equivalent to the two inclusions in Eq.(9.23). On the other hand. observe that

E — AAf A
AB = B B = B b .’lfB = V.) - ""l .’UB.
Sa D-CA'B D &

[CFy, Sal=[{C-CAAY", D-CAIB] = [C. D]-CA'[4, Bj
= Wy -CAtW,.

and

Thus according to Eq.(9.26) and Lemma 1.4(b) and (c), we find that

E |28
P BB (Vo —ViAIB) =r y =r(Va).
S4 1 ATB
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and
r{CFy, Sa]=r(Wo -~ CAW, ) = r[ Wy, cATW, ] = r(W2). (9.28)

. From both of them and the rank formulas in Eqgs.(1.2). (1.3). (1.3), (9.23), (9.27) and (9.28). we derive

the following two equalities

r [ C;‘ E;‘B ] =r(M)—r(4)=r(V)) +r(B)—r(d) =r [ EsllB :l + r(CFy,),
and
0 E,.B ) )
; { :l =r(M) —r(4) =r(W) +r(W2) —r(A) =r[CFa. Sa]+r(EaB).
CFy Sa

Both of them are exactly the rank additivity condition Eq.(9.24). Conversely, adding r(4) to the three

sides of Eq.(9.24) and then applying Eqgs.(1.2), (1.3) and (1.3) to the corresponding result we first obtain

A E.B A B
r A =r +r Ea =r{d. ExB|+r[CF4. Sa]. (9.29)
CFy Si CF, Sa

On the other hand, the two inclusions in Eq.(9.23) are also equivalent to

4 B 4 B
A B A 4 B 0

r(M) =r =r ,and r(M)=r| C D = C D
C D 0 cC D C

A 0 0 B

Applying Eq.(1.3) to the right-hand sides of the above two equalities and then combining them with

Eq.(9.29), we find

A EsB O
r(M)=r 4 =r{4, EsB]+r[CFa, Sa, C]=r[4d. B]+r[C. D].
CFy Sa C
and
A ELB EL.B
A n A n B
r(M)=r| CFy S, =r +7r| S, =r +r .
CF, C D
0 B B
Both of them are exactly Eq.(9.22). O

Similarly we can establish the following.

Lemma 9.7. The rank additivity condition (9.22) is equivalent to the following four conditions
A 4 B AT A C
R CR . R CR . (9.30)
0 cC D 0 B D

Sp BF,
rl 2P D _r| 5P | 4 r(BFp) =r{So. BFp| +7(EpC). (9.31)
EpC 0 EpC

and
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where Sp = A — BD1C.

Theorem 9.8. Suppose that the block matrix M in Eq.(9.11) satisfies the rank additivity condition

(9.22), then the Moore-Penrose inverse of M can be expressed in the two forms

\t = | B~ H:CA = ATBHy + ATBJHD)CAT  Hy = A1BJY(D) 092
) H; — JH(D)C At JH(D) ' o
and
JH(. Jt Eg,SpFe)t Ep,SgFa )t )
at = | 7 /"(C) _ | (Es.Sp C_). (Ep,SB 'h), _ (9.33)
JYB) .J(D) (EA.ScFp )t (Ec,SaFg)7
where

Sa=D-CA'B, Sg=C-DB'4, Sc=B-AC'D, Sp=A-BD'C,
A = EgA, As = AFe, B, =E.B. B,=BFp.
Ciy = CFa, C» = EpC, D, = EcD. D,=DFg.
Hy = At +CH(S4JH(D)SA - S.4)B].

Hy =C![I-S,JYD)]. Hy=[I-JY(D)S,]BI.

Proof. Lemma 9.6 shows that the rank additivity condition in Eq.(9.22) is equivalent to Eqgs.(9.23)
and (9.24). It follows from Theorem 9.4 that under Eq.(9.23), the Moore-Penrose inverse of A can
he expressed as Eq.(9.13). On the other hand, It follows from Theorem 9.1 that under Eq.(9.24) the

Moore-Penrose inverse of N, in Eq.(9.20) can be written as

N.

1 =y

(9.34)

| clisartD)Sa —Sa1Bf Cf -ci{S.J1(D)
Bl — JH(D)S. B! Jt(D) '

where B, = E,B. C, = CF4 and J(D) = E¢,54Fp,. Now substituting Eq.(9.31) into Eq.(9.21) and
then Eq.(9.21) into Eq.(9.13), we get

At + CH S4JH(D)Ss —S4 |BY Cf - Cls54J1(D)

Mt =Q INtp~ L=t
B! — J1(D)S. B! JY(D)

} Pt (9.35)

Written in a 2 x 2 block matrix, Eq.(9.35) is Eq.(9.32). In the same way. we can also decompose A in

Eq.(9.11) into the other three forms.
I, O EpdA B I, 0
M= .
CcCBY I Sg DFp Bt4A I,

| Inoact || AR sc [ 1. ¢'D
1 = y
0o I C  EcD 0 I
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M= [, BD?! Sp BFp I, 0
0 I EpC D DiC L |
Based on the above decompositions of M we can also find that under Eq.(9.22) the Moore-Penrose inverse

of M can also be expressed as

* .T * * .T *
Mfz[* ]ic);]=[ﬁ(3) *]=[Ii‘4) *}. (9.36)

Finally from the uniqueness of the Moore-Penrose inverse of a matrix and the expressions in Eqs.(9.32)

and (9.36), we obtain Eq.(9.33). a

Some fundamental properties on the Moore-Penrose inverse of M in Eq.(9.11) can be derive from

Eq¢s.(9.32) and (9.33).

Corollary 9.9. Denote the Moore-Penrose inverse of M in Eq.(9.11) by

at=] G G2 (9.37)
GZ! G‘l

where Gy, G, Gy and G4 aren x m, n x|, k x m and k x | matrices. respectively. If M in Eq.(9.11)

satisfies the rank additivity condition (9.22), then the submatrices in M and M1 satisfy the rank equalities

r(Gy) = (Vi) + (W) — r(M) + r(D), (9.38)
r(Ga) = r(Vi) + r(W2) — r(M) + r(B), (9.39)
r(Gs) = r(Va) + (W) — r(M) + r(C), (9.40)
r(Gy) = r(Va) + r(Wa) — r(M) + r(A). (9.41)
HG) +1(Gy) =r(A) +7(D).  r(G2) +1(Gs) = r(B) + r(C). (9.42)

where Vi, Vo, W and W, are defined in (9.25). Moreover, the products of MM and MM have the

formns

w, W 0 | SR SR
t MM =] Ut

MM = s
0 WeW 0 W

(9.43)

Proof. The four rank equalities in Eqs.(9.38)—(9.42) can directly be derived from the expression in
Eq.(9.33) for Aft and the rank formula (1.6). The two equalities in Eq.(9.42) come from the sums of
Eqs.(9.38) and (9.41), Eqs.(9.39) and (9.40), respectively. The two results in Eq.(9.43) are derived from
Eq.(9.22) and Theorem 7.16(c) and (d). O

The rank additivity condition Eq.(9.22) is a quite weak restriction to a 2 x 2 block matrix. As matter
of fact, any matrix satisfies a rank additivity condition as in Eq.(9.22) when its rows and columns are

properly permuted. We next present a group of consequences of Theorem 9.8.
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Corollary 9.10. If the block matriz M in Eq.(9.11) satisfies Eq.(9.23) and the following two conditions

R(C1)NR(S4) = {0} and R(B{)NR(S3) = {0}, (9.44)
then the Moore-Penrose inverse of M can be expressed as
t
4 B _ ot At cl - clis Jt(D) pet
cC D Bl — JY(D)S.B! JH(D)

At — HbCAt — A'BH, + ATBJY(D)CAY  Hy, — ATB.JT(D)
Hy — JH(D)C AT JH(D) '
where C,, By, H,, H3 and J(D) are as in (9.32), P and Q@ are as in (9.13).

Proof. The conditions in Eq.(9.44) imply that the block matrix V. in Eq.(9.20) satisfies the following
rank additivity condition

r(Na) = r(EsB) + r(CF4) + r(Sa4).

which is a special case of Eq.(9.24). On the other hand, under Eq.(9.44) if follow by Theorem 7.7 that
SaJ1(D)S4 = S.4. Thus Eq.(9.35) reduces to the desired result in the corollary. O

Corollary 9.11. If the block matriz M in Eq.(9.11) satisfies £q.(9.23) and the two conditions

R(BSY) C R(4A) and R(C*S.)C R(A7). (9.15)

I 0
-CAY I

At — ATB(EAB)t — (CF4)TCAt + AIBSTC AT (CFy)t - ATBSH }

then the Moore-Penrose inverse of M can be expressed as

i = | 4B AT (CFy)!
‘ 0 L (E+B)" S}

(EaB)t - SHCAt st

where S4 = D — CATB.
Proof. Clearly Eq.(9.45) are equivalent to (E4B)S% = 0 and S3(CF4) = 0. In that case, Eq.(9.24) is

At (CFa)

in Eq.(9.35). o
(E.B)t  Si

satisfied, and Nt = I:

Corollary 9.12 (Chen and Zhou. 1991). If the block matriz M in (9.11) satisfies the following four

conditions
R(B) C R(4), R(C™) € R(47), R(C) C R(Sa), R(B*) C R(S}), (9.40)

then the Moore-Penrose inverse of M can be expressed as

t -
4 B I, —-AB AT 0 Im 0
C D 0 I 0 Sh -c4t

| At+atBsicat —dtBSY
-sheat sk |

L
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where Sy =D — CA'B.

Proof. It is easy to verify that under the conditions in Eq.(9.46). the rank of A satisfies the rank
Af

in Eq.(9.35). c
0 s

additivity condition (9.22). In that case, Nt = l'

Corollary 9.13. [f the block matriz M in (9.11) satisfies the four conditions
R(4)n R(B) = {0}, R(A")NR(C")={0}. R(D)C R(C). R(D7)<C R(B%). (9.47)

then the Moore-Penrose inverse of M can be ezpressed as

t r . .

4 B B I, —-A'B At —cls.Bl ¢! I 0
C D 0 L B! 0 -cAt g
| At=AlBBl —clcAt ~cls.B] C]

B} o |

where S:\ =D — C.-'UB. B[ = E.\B and C[ = CF,\.

Proof. It is not difficult to verify by Eq.(1.5) that under Eq.(9.47) the rank of Af satisfies Eq.(9.22). In
At —c¢ls Bl cf

that case. J(D) =0 and Nt = ;
By

in Eq.(9.35). O

Corollary 9.14. If the block matriz M in (9.11) satisfies the four conditions
R(A) N R(B) = {0}, R(AT)NR(CT) = {0}, (9.48)
R(S.) CN(C"),  R(S3) C N(B), (9.49)

then the Moore-Penrose inverse of M can be ezpressed as

f -
.'1 B _ [r| _-’th .‘1f (CF.\ )T Iy“ 0
C D 0 L (EaB)t  Sh -CAT
_ [ ar-atBEmy -~ (crotcar (cEa
(E4B)t s |7

where Sy =D — CA'B.

Proof. Clearly Eq.(9.49) is equivalent to CtS4 =0 and S4B = 0, as well as SI‘C =0 and BSL = 0.

From them and (9.48). we also find
(CF)'S4 =0 and Si(E.B)f =0. (9.50)

Combining Eqs.(9.48) and (9.50) shows that M satisfies Eqs.(9.23) and (9.24). In that case,

’Vf _ At (C'F\)Ir
' (EsB)t S|,
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in Eq.(9.35). o
Corollary 9.15. If the block matriz M in Eq.(9.11) satisfies the rank additivity condition

r(M) =r(4) + r(B) + r(C) + r(D), {9.51)
then the Moore-Penrose inverse of M can be expressed as

t X
[ 4 B } ) [ (EgAFe)t  (EpCFy)t 0352,

C D (EsBFp)t (EcDFg)t |
Proof. Obviously Eq.(9.51) is a special case of Eq.(9.22). On the other hand. Eq.(9.51) is also equivalent
to the following four conditions
R(A)N R(B) = {0}, R(C)NR(D)= {0}, R(A")NR(C™)={0}, R(B")NR(D)={0}.
In that case,
R(AT) = R(A7). R(42) = R(4), R(A]) = R(A7), R(B») = R(B).

R(Cy) = R(4), R(C3) = R(C"),  R(Dy)=R(D"), R(d:)=R(D),

by Lemma 1.2(a) and (b). Then it turns out by Theorem 7.2(c) and (d) that

Al =44, Al =44t BiB =B'B. BBl =BB".

cct=cct, clea=ctc. DiD, =D'D. D,D}=DD'
Thus Eq.(9.33) reduces to Eq.(9.52) ]
Corollary 9.16. If the block matriz M in (9.11) satisfies r(M) = r(A) + r(D) und

R(B) C R(4). R(C)C R(D). R(C")C R(A™). R(B™)C R(D7),
then the Moore-Penrose inverse of M can be expressed as

.
i B (A—BD'C)t ~A'B(D - cAtB)f
C D| | —(D-cA'B)tCAt (D -CAtB)t

Corollary 9.17. If the block matriz M in Eq.(9.11) satisfies r(M) = r(4) + r(D) and the following

four conditions
R(A)=R(B), R(C)=R(D), R(A")=R(C"), R(B*)=R(D").

then the Moore-Penrose inverse of M can be erpressed as

t .
A B | _|sh sb| _| (4=-BD'C) (C-DB'A)
C D st st (B—-ACID) (D-cA'B)t |’
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The above two corollaries can directly be derived from Eqs.(9.32) and (9.33). the proofs are omitted

here.

Without much effort, we can extend the results in Theorem 9.8 to m x n block matrices when they

satisfy rank additivity conditions.

Let
A 11 -'l-l"
Ao Aan
M = 2 o
'lml Am.!

-'lln

~'L'ln.
(9.53)

-'lm.n.

be an m x n block matrix , where A;; is an s; x ¢; matrix (1 < i <m, 1 < j < n), and suppose that A/

satisfies the following rank additivity condition

r(M)=r(W)+r(We)+---+7(Wp,) =r(V1) +r(13) + - -- + (1)), (9.54)
where
Ay
.-L_gj
Wi =[4da, A2, ---. din], V; = I1<i<m.1<j<n (9.55)
-“Ln.j

For convenience of representation, we adopt the following notation. Let M = (4;;) be given in Eq.(9.53).
where 4;; € >4, 1<i<m, 1 <j<n,and 370, s;=s, Y o, t; =t For each 4;; in M we associate

three block matrices as follows

By = [Aa, -, Aijers Aoyers -0 Al (9.56)
C:_] =["l;j= T "{:—l.j’ A;«}-[.j’ "l:nj}' (9.57)
An A -1 A+ A
Aio A Aoy dicin _
D,’j _ i,l 1.j—-1 Lj+1 L. (9.08)
Aivin Aivrj-1 Airr Aittn
L -"1m.1 -{m.J—l -'lm._)+l A-mn ]
The symbol J{4,;) stands for
J(Aij) = Ea,,; Sp,, Fp,; - 1<i<m, 1<j<n. (9.59)

where a;; = Bi;Fp,;, 8ij = Ep,;;C;ij and Sp,; = Aij; — B,-ijjCi, is the Schur complement of D;; in A{.

We call the matrix J(A4;;) the rank complement of A4;; in M. Besides we partition the Moore-Penrose
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inverse of M in Eq.(9.53) into the form

G“ G['z Tt Glm

. Gy Gan -+ Gap
Mt = S 2 : (9.60)

Gnl Gn'_’ e Gnm

where Gijisat; x s; matrix, 1 <i<n, 1 <j<m.

Next we build two groups of block permutation matrices as follows

r =

0 L,
I,
P =1, P = L., © . (9.61)
[sl’.l
L [s" .
A |
L,
Q. =1, Q=1 I, 0 . {9.62)
[t,-x
- [l" d

where 2 <i < m, 2 <j < n. Applying Eqs.(9.61) and (9.62) to M in Eq.(9.53) and M in Eq.(9.60) we

have the following two groups of expressions

.-'l,'j B,‘J' A B
PMQ; = . 1<i<m, 1<j<n. (9.63)
i Dy |
and 5
T ast pT Gji = ; i
Q;MP = , 1<i<m. 1<j<n. (9.64)
* *

These two equalities show that we can use two block permutation matrices to permute A,, in A and
the corresponding block G;; in M1 to the upper left corners of M and M7, respectively. Observe that
P; and Q; in Eqs.(9.61) and (9.62) are all orthogonal matrices. The Moore-Penrose inverse of P,M@Q; in
Eq.(9.63) can be expressed as (P;MQ;)' = QT Mt PT. Combining Eq.(9.63) with E.(9.64). we have the
following simple result

f
Ai;  Bij | Gu o+

Cij Dij * *
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If the block matrix M in Eq.(9.53) satisfies the rank additivity condition (9.54), then the 2 x 2 block

matrix on the right-hand side of Eq.(9.63) naturally satisfies the following rank additivity condition
Aij By Ay Bi;
J g =r d +r 7 =T‘[Aij, B,‘j]'{‘T[C‘]‘, D,‘]‘], (9.66)

where 1 <& < m, 1 <j < n. Hence combining Eqs.(9.63) and (9.66) with Theorems 9.8 and 9.9. we

obtain the following general result.
Theorem 9.18. Suppose that the m x n block matriz M in Eq.(9.53) satisfies the rank additivity
condition (9.54). Then

(a) The Moore-Penrose inverse of M can be ezpressed as

JH AL I (Aa) - TH(An)
Mt = JH(A) JH(Am) - JT(Ame) (9.67)
JHAwm) I Aw) - T (Amn)
where .J(A;j) is defined in Fq.(9.59).
(b) The rank of the block entry Gj; = J1(Ayj) in M1 is
r(Gji) = r{J(di)] = r(W3) + r(Vy) — r(M) + (D). (9.68)
where 1 <t <m. 1 < j<n, W; and V; are defined in Eq.(9.55).
(¢) MM?' and M*M are two block diagonal matrices
MM = diag(W, W], wawi. ... w,wi). (9.69)
MM = diag(VVi. Vs, -, ViV, ), (9.70)

written in explicit forms, Eqs.(9.69) and (9.70) are equivalent to

wawlh o i=j5
.{,1611 + .—li-lG-_gj + -+ o’{inan = ¢, y=1. 2. .o,
0 L#]
vivi  i=j
Gi[:hj + Gi-_):'l-_)j + -+ Gim:‘lm]‘ = ! J i, y=1.2, ---, n.
0 1#7]

In addition to the expression given in Eq.(9.67) for M, we can also derive some other expressions for

Gij in M from Eq.(9.32). But they are quite complicated in form. so we omit them here.

Various consequences can be derived from Eq.(9.67) when the submatrices in M satisfies some ad-
ditional conditions, or M has some particular patterns, such as triangular forms. circulant forms and

tridiagonal forms. Here we only give one consequences.
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Corollary 9.19. If the block matriz M in Eq.(9.53) satisfies the following rank additivity condition

r(M) =" > r(Ay). (9.71)

=1 y=1

then the Moore-Penrose inverse of M can be expressed as

(Ep,AunFe,)t -+ (EgnAmiFo, )t
Mt = : : : (9.72)
(EBln‘-llnFan)f T (EanA‘"l"FCmn)T
where B;; and Cyj are defined in Eqs.(9.56) and (9.57).

Proof. In fact. Eq.(9.71) is equivalent to
R(A;;) N R(B;;) = {0}, R(A};) N R(C;) = {0}. 1<i<m. 1<j<n.

R(C;j)NR(Dy) = {0}, R(B;)NR(D;)=1{0}, 1<i<m 1<j<n

We can from them .J(4;;) = Ep,; 4ijFc,;. Putting them in Eq.(9.67) yields Eq.(9.72). a
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Chapter 10

Rank equalities related to
Moore-Penrose inverses of sums of matrices

In this chapter. we establish rank equalities related to Moore-Penrose inverses of sums of matrices and

consider their various consequences.

Theorem 10.1. Let A, B € C™*" be given and let N = A + B. Then
[N = N(At+ BY)N] =r(N) + r(AB*4) + r(BA*B) — r(4) — r(B). (10.1)
In particular,

At + Bt € {(A+ B)~} <= r(A+ B) = r(4) +r(B) — r(AB* 1) — r{BA"B). (10.2)

Proof. It follows by Eq.(2.2) and block elementary operations that

[ 4744 0 AN
r[N-NAt+BHN] = ¢ 0 B*BB* B*N | —r(d) - r(B)
| N4 NB* N
[ —A*BA* 0 0
= r 0 —B*AB* 0 | -r(4) - r(B)
| o o N

r(N) + r(AB*4) + r(BA"B) — r(4) — r(B).

Thus we have Egs.(10.1) and (10.2). a
A general result given below.

Theorem 10.2. Let 4;, 4y, ---, 4 € C™*™ be given and let 4 = 4, + 4, + --- + 4. X =
Al + AL+ + AL Then

r(Ad—-AXNA)=r(DD*"D - PA*Q) — r(D) + r(4), {10.3)
where
D =diag( 41, 42, ---, Ax), P*=[A7, A3, -, 48], Q={A1. Ay, - A
In particular,
Xe{A7} <= r(DD'D-PA*Q)=r(D) —r(4), ie., PAQ<,,DD"D. (10.4)
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Proof. Let P\ =[I,, ---, I,]and Q; = [[y, ---, [;,]"- Then X = P,D!Q,. In that case. it follows
by Eq.(2.1) that

r(4—AXA) = r(A-APDIQ,A)

D*DD* D QA

= r @ - (D)
’ AP, D" A

= r

0
= r(D*DD" = D*Q,AP,D") + r(4) — (D)
= (DD"D — DP A*QiD) + r(A) — r(D)

[ *DD* — D*Q AP, D" 0
D QuAP, }_r(D)

as required for Eq.(10.3). [m]

Theorem 10.3. Let 4, B € C™*" be given and let N = A+ B. Then

—NN*N 0 0 N
0 AA4°4 0 A
r(Nt—At - Bty =7 —r(N) = r(4) = r(B). (10.5)
0 0 BB*B B
N A B 0]
In particular.
—-NN*N 0 0 N
. 0 AAA 0 A
Nt=AT+ Bl = =r(N) +r(4d) + r(B). (10.G)
0 0 BB*B B
N A B 0
Proof. Follows immediately from Eq.(2.7). a

It is well known that for any two nonsingular matrices A and B. there always is 4(4~!' + B~ ')B =

A + B. Now for Moore-Penrose inverses of matrices we have the following.

Theorem 10.4. Let 4, B € C™*" be given. Then
4 _
rldA+B—A(A'"+B")B]=r [ B } +r{4, B}—-r(4) - r(B). (10.7)

and

A
r[A'+ Bt — AN(4+ B)Btf| =+ [ 5 J +r[A. B]-r(d) - r(B). (10.8)
In particular,

A(AT+BY)B=A+B <> A'(A+ B)B' = A' + Bt <= R(4) = R(B) and R(A") = R(B"). (10.9)
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Proof. Writing

'
A+B-A(A'+B")B=4+B-[A. .4}[‘4 O} [3}
0 B B

and then applying Eq.(2.1) to it produce Eq.(10.7). Replacing 4 and B in Eq.(10.7) respectively by A’
and B leads to Eq.(10.8). The equivalences in Eq.(10.9) follow from Eqs.(10.7) and (10.8). a

Theorem 10.5. Let A, B € C™*" be given and let N = A+ B. Then
. . _ 4 B B 4
[N = N((EgAFg) +(EsBF.) )N] = r(N) +2r(4) +2r(B) - r B -r o | (10.10)
0

In particular,

(EBAFB)f + (E‘ABF‘_.;)f € {{(d+ B)_} < r(d+B)=r(EgdAFg)+r{E.BF,). (lu.11)

Proof. Let P = EgAFp and Q = E4BF,4. Then it is easy to verify that
P*B=0. BP =0, Q°4=0. 4Q =0

and
P"PP” =P4AP", Q QA" =Q"BQ".
Thus we find by Eq.(2.2) that

[N -=N(PT+ Q)N

[ p-pp- 0 PN

= r 0 Q*QRQ* Q*N | —r(P)-r(Q)
NP* NQ* N

P*4P* 0 P4
= r| 0o @BQ QB |-rP)-rQ
AP BQ~ A+ B

0 0 0
= r|{0 0 0 —7(P) = r(Q) =7(N) = r(P) - r(Q).
| 0 0 A+B
where
r(P)=r [ A B J -2r(B). rQ)=r { B4 } —2r(4).
B 0 40
by Eq.(1.4). Thus we have Eqs.(10.10) and (10.11). o

Theorem 10.6. Let A, B € C™*" be given. Then
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(a) r((A+B)(A+B) —[4, Bl[4, Blt)=r[4, B]-r(A+B).

t
(b) r (.4+B)f(.4+3)-{‘4J [4J =rl:AJ-T(-'1+B)-
B B B

In particular,
() (A+B)(4+B)t =4, Bi[4, Bt <= r[A, Bl]=r(4+B) < R(A) C R(A+B) and
R(B)CR(A+ B).
t
(d) (A+B)(A+B)= { A} I: A
B B

R(B*) C R(A* + B™).

] @r[g} =r(A+B) < R(A*)C R(A*+ B") and

Proof. Let N = A+ B and M =[4. B]. Then it follows from Theorem 7.2(a) that

r(NNT—MMY) = 2r[N, M]-r(N) - r(M)
= 2r[A+B, 4, B]l-r(4A+ B)—-r(4) - r(B)
= r1[d, B]-r(4) -r(B),

as required for Part (a). Similarly we have Part (b). a

In general we have the following.

Theorem 10.7. Let A4,, 4, ---, A € C™*" be given and let A = A; + 4, + --- + Ap. M =
(A, Ao, Ac] and N* =[4;, 45,---, A7]. Then

(a) r(A4T = MMY) =r(M) - r(4).

(b) r(AtA— NTN) =r(N) = r(4).

(¢) AAt = MMt & r(M) =r(4) <> R(A4;) CRM), i=1. 2, ---, k.

(b) ATA=NIN < r(N)=r(4) <= R(A])CR(N*), i=1, 2, ---, k.

Theorem 10.8. Let 4. B € C™*" be given and let N = 4 + B. Then

(@) r(ANTB) = r(NA®) + r(B*N) — r(N).

(b) r(ANTB) =r(d) +r(B)=r(N), if R(4*)C R(N*) and R(B)C R(N).
N

(¢) 7(ANTB -~ BNtA)=r [ J + 7N, AN"] - 2r(N).

NA
In particular,
(d) AN'B=0 & r(NA*)+r(B*N) =r(N).
(e) AN'B =BNt4 <= R(AN*) C R(N) and R(A*N)C R(N™).
(f) ANTB =BN'4, if R(4) CR(N) and R(A*) C R(N™).

Proof. It follows by Eq.(2.1) that

N*NN* N°B
r(ANTB) = r|° - r(N)
AN*
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[ N-AN* + N"BN- N°B
= r —r(N)
AN*
0 N-
. N8B _L(N) = f(VA") + 7(BN) = r(N).
AN® 0

as required for Part (a). Under R(4") C R(N*) and R(B) C R(N). we know that r(NA") = r(4) and
r(B*N) =r(B). Thus we have Part (b). Similarly it follows by Eq.(2.1) that

r(ANTB — BNTA)

t
_ . ["LB]liN OJ [B}
0 —-N A

N*NN~ 0 N*B
= r 0 —-N*NN* N4 | —2r(N)
ANT BN* 0

N*AN- N*BN* N*B

= 1| —=N*"AN* ~N"BN* N4 | =2r({N)
AN BN* 0

0 0 N*B

= r 0 0 N*4 | =2r(N)

AN* BN 0

N*B
= r +r[ANT, BN™] - 2r(N)
N4
F .
N*N . . .
= r +r[AN®, NN*|-2r(N)=r +r[ANT. N = 2r(N).
N4 N4
As required for Part (c). o

It is well known that if R(4*) C R(N*) and R(B) C R(N), the product A( A + B) B is called the
parallel sum of 4 and B and denoted by P(A, B). The results in Theorem 10.8(b) and (f) show that if

A and B are parallel summable, then
r{P(A. B)]=r(d)+r(B)—-r(A+B) and P(4A. B) = P(B. 4).
These two properties were obtained by Rao and Mitra (1971) with a different method.

The following three theorems are derived directly from Eq.(2.1). Their proofs are omitted here.

Theorem 10.9. Let 4, B € C™*" be given. Then

40 A
r ([ } - [ ] (4+B)t[4, B]) =r(4) +r(B) —r( A+ B). (10.12)
0 B B
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In particular,

A

The equivalence in Eq.(10.13) was established by Marsaglia and Styan(1974).

Theorem 10.10. Let 4, A», ---, Ax € C™*" be given and denote
A =diag( 4y, Aa, ---. Ag), N=A, + A +---+ 4.
Then
( [ A
rl A= I NT[AL -, ] | = (A + o+ () - r(V).
Ae
In particular. _ _-
Ay
NTAL o, Ae] = d e r(N) =r(d) + - + ().
A

The equivalence in Eq.(10.14) was established by Marsaglia and Styan(1974).

Theorem 10.11. Let A, B € C™*" be given and let N = 4 + B. Then
(a) r(Ad—ANTA) =r(NB*N) + r(d) - r(V).

(b) r(A—ANTA) =r(A) +r(B) —=r(N), if R(A)C R(N) and R(A*) C R(NT™).

(c) NTe{A™} <= r(NB*N)=r(N)-r(4).
(d) NV e {A7} ifr(N) = r(4) +r(B).

(4+B)[4, B] = [ 40 } = r(A+ B) =r(4) +r(B).
BJ 0 B

(10.13)

(10.14)

(10.15)

In the remainder of this chapter, we present a set of results related to expressions of Moore-Penrose

inverses of Schur complements. These results have appeared in the author’s rescent paper[93].

Theorem 10.12. Let A € C™*™, B e C™*k C € C'*" and D € C**" be given. Then the rank additivity

condition

2 ][] oe e
c D c D

then the following inversion formula holds
(E.SpFc,)t = A + ATBIND)C AN + CI[ 54T (D)S, — S.4]B!
— A'B[I - JY(D)S.1B! - Cl[1 - S,J1(D)]|CAT.

where

Sa=D-CA'B, Sp = A - BD'C, J(D) = Ec,S4Fg,.

B, = EAB, B, = BFp, C, =CF,, C, = EpC.
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Proof. Follows immediately from the two expressions of Mt in Theorem 9.8. a
The results given below are all the special cases of the general formula Eq.(10.17).

Corollary 10.13. If 4. B, C and D satisfy
I i P B B £ ol Rt
and the following two conditions
R(CSp) C R(D), R(B"Sp) C R(D~"). (10.19)
or more specifically satisfy the four conditions
R(C) S R(D), R(B")C R(D7). R(B)C R(Sp). R(C7)C R(Sp). (10.20)
then the Moore-Penrose inverse of the Schur complement Sp = A — BDC satisfies the inversion formula

(A= BD'C)' = AT + ATBJND)CAt + C[SATN(D)S4 - 548!
— A'B[I - JY(D)S4 B! - Cl[I - S.JH(D)]C AT, (10.21)

where Sy, By, C, and J(D) are defined in (10.17).
Proof. It is obvious that Eq.(10.19) is equivalent to (EpC)S}, = 0 and Sp(BFp) = 0. or equivalently
Sp(EpC) =0 and (BFp)'Sp =0. (10.22)

These two equalities clearly imply that Sp, EpC and BFp satisfy Eq.(9.31). Hence by Lemma 9.7. we
know that under Eqs.(10.18) and (10.19), 4, B, C and D naturally satisfy Eq.(10.16). Now substituting
Eq.(10.22) into the left-hand side of Eq.(10.17) yields .JT(4) = (4 — BD'C)?. Hence Eq.(10.17) becomes
Eq.(10.21). Observe that Eq.(10.20) is a special case of Eq.(10.19), hence Eq.(10.21) is also true under
(10.20). o

Corollary 10.14. If 4. B, C and D satisfy Eqs.(10.18), (10.19) and the following two conditions
R(CF4)NR(S4) = {0} and R[(EsB)*]N R(S3) = {0}. (10.23)
then
(A= BD'C)t = A" + ATBJN(D)CAt — A'B[I —~ JN(D)S4|B! — CI[I — S.JH(D)]C AT, (10.24)
where S4, By, C; and J(D) are defined in Eq.(10.17).

Proof. According to Theorem 7.7, the two conditions in Eq.(10.21) implies that S;Jt(D)S4 = S,.
Hence Eq.(10.21) is simplified Eq.to (10.24). a
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Corollary 10.15. If A, B. C and D satisfy Eqs.(10.18). (10.19) and the following two conditions
R(BSY) CR(4) and R(C*S4) C R(A"), (10.23)

then
(A= BDIC)t = 4T + AtBS CAt — AYB(E4B)f — (CF.)CAL (10.26)

where Sqn =D — CA'B.

Proof. Clearly. Eq.(10.25) is equivalent to (E4B)S7% = 0 and S(CF4) = 0. which can also equivalentlv
be expressed as S (E4B)' = 0 and (CF4)'S4 = 0. In that case. .J(D) = E¢, S Fp, = S.. Hence
Eq.(10.21) is simplified to Eq.(10.26). a

Corollary 10.16. If A, B, C and D satisfy E¢s.(10.18), (10.19) and the following two conditions
R(B) CR(A) and R(C*) C R(A"), (10.27)

then

(A-BDtC) = 4t + AtB(D — CcAtB)IC AL, (10.28)

Proof. The two inclusions in Eq.(10.27) are equivalent to £4B = 0 and CF4 = 0. Substituting them

into Eq.(10.21) vields Eq.(10.28). a

Corollary 10.17. If A, B. C and D satisfy the following four conditions

R(4) N R(B) = {0}, R(4%) N R(C™) = {0}, (10.29)
R(C) = R(D), R(B*) = R(D"), (10.30)

then
(A= BDIC) = At - A'B(EAB) - (CF)ICAT + (CF)IS(ELB). (10.31)

Proof. Under Egs.(10.29) and (10.30), A, B, C and D naturally satisfy the rank additivity condition
in Eq.(10.16). Besides, from (10.29), (10.30) and Theorem 7.2 (c¢) and (d) we can derive

BIB, =B'B, Cccl=cct, B,=0. C,=0, J(D)=0.

Substituting them into Eq.(10.17) yields Eq.(10.31). o

If D is invertible, or D = I, or B = C = —D,. then the inversion formula (10.17) can reduce to some

other simpler forms. For simplicity, we do not list them here.
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Chapter 11

Moore-Penrose inverses of block .
circulant matrices and sums of matrices

Let C be a circulant matrix over the complex number field ¢ with the form

Qg a - Qg
Qk—) Qo -~ CQp-2
C= . (11.1)
a (L a9

Then it is a well known result (see, e.g., Davis, 1979) that C satisfies the following factorization equality
U CU =diag( A1, A2, ---, Ar ). (11.2)

where U is a unitary matrix of the form

1 !
U = (upq)kxks Upg = —=wPTII-D) w* =1, and w#1. (11.3)

vk
and

A =ag+aw a2 4 T =k (11.4)
[t is evident that the entries in the first row and first column of U are all 1/vk. and
/\1=a0+al+---+ak_[. (1L.3)

Observe that U in Eq.(11.3) has no relation with agp—ar—; in Eq.(11.1). Thus Eq.(11.2) can directly be

extended to block circulant matrix as follows.

Lemma 11.1. Let

A Ay --- A
A AL oo Ay
4= ) o ) {11.6)
A Az - 4
be a block circulant matriz over the compler number field C, where A, € C™*" t = 1. ---. k. Then A
satisfies the following factorization equality
U','n“lUn =diag(J1, Jz, sty Jk ), (117)

where U, and U, are two block unitary matrices
Up = (qu[m)kxkv Un = (“pq[n)kxk-. (11.8)
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tpy 15 as in Eq.(11.3), meanwhile
Je= A+ AT+ A2 o @R b= -k (11.9)

Espectally, the block entries in the first block rows and first block columns of U, and U, are all scalar

products of 1/Vk with identity matrices, and J, is

Ji=A+ A+ -+ Ak (11.10)

Observe that .J; in Eq.(11.7) is the sum of 4,, A, ---. Ax. Thus Eq.(11.7) implies that the sum
Zle A; is closely linked to its corresponding block circulant matrix through a unitary factorization
equality. Recall a fundamental fact in the theory of generalized inverses of matrices (see, e.g.. Rao and
Mitra, 1971) that

(PAQ)' =QAP*,  if P and Q are unitary. (1L.11)

Then from Eq.(11.7) we can directly find the following.

Lemma 11.2. Let A be given in Eq.(11.6), U, and U, be given in Eq.(11.8). Then the Moore-Penrose
mverse of A satisfies

UpAUm = diag(J{. JI, ---. J§). (11.12)

Proof. Since U, and U, in Eq.(11.7) are unitary, we find by Eq.(11.11) that
(Un AU = U AU,
On the other hand, it is easily seen that
[diag(Ji. Jo -+, Ji) | = diag(J}. J5. -0 Jh).
Thus Eq.(11.12) follows. a

A main consequence of the above result is presented below.

Theorem 11.3(Tian, 1992b, 1998a). Let 4,, A,, ---, A € C™*". Then the Moore-Penrose inverse of
their sum satisfies
t
.'11 .-!.-_) M -‘1k [m
1 -‘lk "Ll o -“-k-—l [m )
(Avt e+t ) =2l Ly oo L] |0 . - (11.13)
.'!.‘_) .‘13 ot -'1[ [m
In particular, if the block circulant matriz in it is nonsingular, then
-1
:11 A-_z s -“1k [m
1 1 A Ay o Ar I
(A + A2+ 4+ A )™ :E[[my Imy -y Im] ) . . . . (11.14)
A A3 - Ay I
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Proof. Pre-multiplying [I,, 0, ---. 0] and post-multiplying [,,, 0. ---. 0]7 on the both sides of
Eq.(11.12) immediately yield Eq.(11.13). a

It is easily seen that combining Eq.(11.13) with the results in Chapter 9 may produce lots of formulas
for the Moore-Penrose inverses of matrix sums. We start with the simplest case—the Moore-Penrose

inverse of sum of two matrices.

Let - and B be two m x n matrices. Then according to Eq.(11.13) we have

i

1 -'1 B [m.

(A+B) =21, I . (11.15)
3! ) B 4 I,

As a special case of Eq.(11.15). if we replace 4 + B in Eq.(11.15) by a complex matrix 4 + /3. wherc

both A and B are real matrices, then Eq.(11.13) becomes the equality

t t
A iB m A -B [m
(A+iB) = 51, 1] ' Im \ _Lep in . (1L.16)
2 B 4 —ilm

iB A I,
Now applying Theorems 9.8 and 9.9 to Eqs.(11.15) and (11.16) we find the following two results.

O] =~

Theorem 11.4 (Tian, 1998a). Let 4 and B be two m x n compler matrices. and suppose that they

satisfy the rank additivity condition

r[.—l BerI::l:l*.rl(B} =7‘[.-L B]-{-I‘[B. .—l}. (11.17)
B 4 B A

R(A) CR(A£B) and R(A™) C R(A™ £ B™). (11.18)

or alternatively

Then

(a) The Moore-Penrose inverse of A + B can be ezpressed as

(A+B) = JHA) + JH(B) = (EB.SaFs) +(E1,SsFa4, ) . {11.19)
. . 4 B
where J(A) and J(B) are. respectively, the rank complements of A and B in B 4l and

Si=A-BA'B, Sg=B-AB'A, A, =EpA., Ay=AFz. B, = E«B. B» = BF,.

(b) The matrices A, B, and the two terms G, = J1(4) and G» = JY(B) in the right-hand side of
Eq.(11.19) satisfy the following several equalities

r(Gy) =r(4), r(G2) =r(B),

(A+ B)(A+ B) = AG, + BG>, (A+B)W(A+B)=G A+ G.B.



AG, + BG, =0, GaA+G B =0.

Proof. The equivalence of Eqs.(11.17) and (1.18) is derived from Eq.(1.13). We know from Theorem
A

} can be expressed as
A

9.8 that under the condition (11.17), the Moore-Penrose inverse of [

t
A B | | JNA) JYUB) | | (EB,SaFB,)! (EsSpFa, )
B A | | JiB) JH4) (EA,SFa ) (E.SaFs )t |

Then putting it in Eq.(11.15) immediately yields Eq.(11.19). The results in Part (b) are derived from
Theorem 9.9. o

Theorem 11.5 (Tian, 1998a). Let A +iB be an m x n compler matriz, where A and B are two real

matrices, and suppose that A and B satisfy

4 - 4 -
r[ 4 B}:r[ J+r[ B]:r[.—{. -B]+r{B. 4]. (11.20)
B 4 B A

R(A) CR(A+iB) and R(A") C R(AT £iB7T). (11.21)

or, equivalently

Then the Moore-Penrose inverse of A + iB can be expressed as

(A+iB) =G| —iGs = [Ep,(A+ BAB)Fg ' —i[Es,(B+ ABTA)Fy, |7, (11.22)
where A, = EgAd, 43 = AFg, B, = E.B and B> = BF,.
Proof. Follows directly from Theorem 11.4. O

Corollary 11.6 (Tian. 1998a). Suppose that A + iB is a nonsingular compler matriz. where A and B
are real.

(a) If both A and B are nonsingular, then
(A+iB) ' =(4+BA™'B)"' —{(B+4B~'4)"L.
(b) If both R(A) N R(B) = {0} and R(A*) N R(B*) = {0}, then
(A+iB)™"' = (EpAFp)! —i(EABF.)".
(¢) Let A = A, where A is a real number such that \,,, + iB is nonsingular. then

(M +iB)™ = M A, + B*)~! —i(A*B + BT B*BT)t.

Proof. Follows directly from Theorem 11.4. O
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We next turn our attention to the Moore-Penrose inverse of the sum of k£ matrices. and give some

general formulas.

Theorem 11.7 (Tian, 1998a). Let Ay, Aa, ---, Ap € C™*" be given. [f they satisfy the following rank
additivity condition

r(d) =kr{dy, -, Al =kr[A]. -, AL (11.23)
where A is the circulant block matriz defined in Eq.(11.6), then
k

(a) The Moore-Penrose inverse of the surm y_,_, A; can be ezpressed as

=1

(A + Ao+ + A = T4 + TT(A2) + -+ T (4. (11.24)

where J(:;) is the rank complement of 4;(1 <i¢ < k) in A.
(b) The rank of J(A;) is

PJ(AD)] = [ Ay, -, Ar]+r[A], --, AL = r(4) + (D). (11.25)

where 1 <i < k. D, is the (k— 1) x (k — 1) block matriz resulting from the deletion of the first block row
and ith block column of A.

(¢) Ar, Ao, ---. A and JH(Ay), JH(Ay), ---, JT(Ar) satisfy the following two cqualities
(A +---+ Ax )(.‘11 +--- +.—lk)t = .‘11JT(-’11) +"’+-'1kJT(-'lk)'

(A4 + AN A+ 4+ ) = T A AL+ -+ T () A

Proof. Follows from the combination of Theorem 9.18 with the equality in (11.13). a

Corollary 11.8 (Tian, 1998a). Let A, Ao, ---, A € C™*". [f they satisfy the following rank additivity

condition
rldy + 4o+ -+ Ap) =7r(4y) +r(da) + - + (k). (11.26)
then
(AL + A+ + A = (B, AL F) + (Ban A2 Fa)t + -+ (Eay AcFa)t. (11.27)
where «; and 3; are
- 4 -
. .
o = (A, - A, A, o0, Ay Bi= .oe=1, 2. k
A
A
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Proof. We first show that under the condition (11.17) the rank of the circulant matrix A4 in Eq.(11.6) is
r(4) = k[r(Ay) +r(A2) + -+ r(Ag) ] (11.28)
According to Eq.(11.7), we see that
r(d) =r(J)) +r(J2) + --- +7(Je).
Under Eq.(11.26), the ranks of all .J; are the same, that is,
r(J;)) =r(A) +r(da) +---+r(de) i=1,2, ---, k.

Thus we have Eq.(11.28). In that case, applying the result in Corollary 9.19 to the circulant block matrix
A in Eq.(11.13) produces the equality (11.27). ]

At the end of this chapter, we should point out that the formulas on Moore-Penrose inverses of sums
of matrices given in this chapter and those on Moore-Penrose inverses of block matrices given in Chapter
9 are. in fact. a group of dual results. That is to say. not only can we derive Moore-Penrose inverses
of sums of matrices from Moore-Penrose inverses of block matrices. but also we can make a contrary
derivation. For simplicity, here we only illustrate this assertion by a 2 x 2 block matrix. In fact. for any

2 x 2 block matrix can factor as

4 0 4 0 0 B
M= = -+ = l\"'[ + .‘\v'-_g.
0 D 0 D C 0

If Al satisfies the rank additivity condition (9.22), then N; and N, satisfy

4 0 0 B
.’\"1 .’\rg 0 C 0 A B .'\"1
r =7 =2r =2r =[N, N
Ny Ny 0 B 0 C D N,
cC 0 D
Hence by Theorem 11.4, we have
Mb = (Ny + Nt = TNV + JHV,), (11.29)
R X ; Lo N N, .
where .J(N,;) and .J(N,) are, respectively, the rank complements of N} and N, in . WTritten
,\’i_r ."\v'[

in an explicit form. Eq.(11.29) is exactly the formula (9.33).

In addition. we shall mention another interesting fact that Eq.(11.16) can be extended to any real
quaternion matrix of the form 4 = Ag + 14, + jA2 + kA3, where dg—A; are real rn x n matrices and
i? =7 =k* = —1, ijk = —1, as follows:

f
Ao+t —(As +ids) Iy

(Ao +idy +ids + kdg) = S[Ln, jIn] . ; (11.30)
2 Ay — 143 Ag — i, =jlm
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and

t
do —Ap —dy —As Im
1 A4 Ag Ay —Ay —il,,
(Ao +idy +ids + kAg)t = [ Ly, iln, jIn, kL] | ° T ‘ . (11.31)
4 A=Ay Ao A4y il
45 A -4, 4o —kI,,

Their proofs will be given in the author’s paper [97]. Furthermore. this work can even be extended to
matrices over any 2"-dimensional real Clifford algebras through a set of universal similarity factorization

equalities established in the author’s recent paper [96].
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Chapter 12

Rank equalities for submatrices in
Moore-Penrose inverses

Let
4 B
M= (12.1)
C D
be a 2 x 2 block matrix over C. where 4 € C™*", B e C™**. C e C"**, D € C'**. and let
A B
V1= , 1y = , Wy =[4, B]. W, =[C, D] (12.2)
C D
Moreover, partition the Moore-Penrose inverse of M as
G, Go
mMt=| 7t TR (12.3)
Gz Gy

where Gy € C"*™. As is well known, the expressions of the submatrices G| —G; in Eq.(12.3) are quite
complicated if there are no restrictions on the blocks in M (see, e.g.. Hung and Markham. 1975, Miao.
1990). In that case, it is hard to find properties of submatrices in M. In the present chapter, we consider
a simpler problem—what is the ranks of submatrices in M, when M is arbitrarily given? This problem
was examined by Robinson (1987) and Tian (1992c). In this chapter, we shall give this problem a new
discussion.

Theorem 12.1. Let M and M1 be given by Eq.(12.1) and (12.3). Then

VLD W, W VLB W, 1
GO =r| 27 7 TNy, rGa)y=r | T TN TN e, (12.4)
W 0 W, 0
vietws v [ v v
MGy =r| 7P ey, r(Go=r| TN | o e, (12.5)
W, 0 Wy 0

where Vi, Vo, W\ and W, are defined in Eq.(12.2).

Proof. We only show the first equality in Eq.(12.4). In fact G, in Eq.(12.3) can be written as
I
G\ =[I,, 0]M? [ 0 } =PMIQ. (12.6)

Then applying Eq.(2.1) to it we find

MMM= M=Q

—r(M)
PM™ 0

r(Gy) = r{
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MMM MP*
= r —r(M)
QM 0
[ 1%
Vi, M= "' | w®
= r Wo —r(M)
i Wi 0
- ’ 0 '
[0, VM~ o VaD"Ws 1)
= r W —r(M)=r - r(M),
h W, 0
| W 0
establishing the first equality in Eq.(12.4). a

Corollary 12.2. Let M and M! be given by Eqgs.(12.1) and (12.3). If

r(M) =r(V1) +r(V2), ie., R(V1)NR(Va2)= {0}, (12.7)
then
A+ B | [B]  B*A BB B
r(Gi)=r -r , r(Ga)=r —r . (12.8)
D-C D*D D C D D
A B | [al [ 11 4B A
r(Gs) =r -r r(Gy) =7 —-r ) (12.9)
c-C C*D C C D C
Proof. Under Eq.(12.7), we also know that R(V}) N R(VoD*W,) = {0}. Thus the first equality in

Eq.(12.4) becomes

VD=1
r(Gy) = r -
1
VoD,
= r
W,
DWW,
= r
Wi
W
= r
D*W,

""[ }
— r(M)
0

J + (V1) = r(M)
— r(‘/'z)

—r(V3).

establishing the first one in Eq.(12.8). Similarly, we can show the other three in Egs.(12.8) and (12.9).

0

Similarly, we have the following.

Corollary 12.3. Let M and M' be given by Eqs.(12.1) and (12.3). If

r{M) =r(Wy) +r(Ws), ie.,
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then

[ 4 BD" | [ 4 BB ]
r(G.)=r —-r[C, D], r(G:)=r -r{A. B], (12.11)
C DD- C DB-
i B ] [ 4a4- ]
r(Gs) =r -r[C, D], r(Gy)=r B_ r(4. B]. (12.12)
cc* D cA* D

Combining the above two corollaries, we obtain the following, which is previously shown in Corollary
9.9.

Corollary 12.4. Let M and M' be given by Eqs.(12.1) and (12.3). If M satisfies the rank additivity

condition

r(M) = (V1) + r(¥a) = r(Wy) + r(H3), (12.13)
then

r(Gy) = r(D) + r(V1) + r(Wy) —r(M), (12.14)

r(Ga) = r(B) + (V1) + r(Wy) — r(M), (12.15)

7(G3) =r(C) + r(V2) + r(Wy) — r(M), (12.16)

r(Ga) = r(A) + (V) + r(Wa) — r(A). (12.17)

Proof. We only show Eq.(12.14). Under Eq.(12.13), we find that

[ WDW. W
-

= r(VaD* W) + r(Vy) + r(W7).
W 0

where
. BD*C BD*D
r(VaD"Wh) =r = r(D).
DDC DD*D
Thus the first equality in Eq.{(12.4) reduces to Eq.(12.14). O

Corollary 12.5. Let M and M be given by Eqs.(12.1) and (12.3). If M satisfies the rank additivity

condition
r(M) =r(A) +r(B) +r(C) +r(D). (12.18)
then
r(G1) =r(4), r(Gx)=r(C), r(Gs)=r(B), r(G1)=r(D). (12.19)
Proof. Follows directly from Eqs.(12.14)—(12.17). O

Corollary 12.6. Let M and M' be given by Egs.(12.1) and (12.3). If

(M) =r(Vy), ie. R(Va)CRW), (12.20)
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then

MG =r(4).  1(Gs) =r(C). (12.21)
e=Cc w a4 15
r(G3)=r -r(V1), r(Gy)=r S = (V). 12.22)
3 ': n 0 ] (V1) (G4) [ c 0 } (V1) {
Proof. The inclusion in Eq.(12.20) implies that
R(V2D™W3) C R(V1), R(V2D"Wy) C R(V1). R(B) C R(4), R(D)C R(C).
Thus the two rank equalities in Eq.(12.4) become
[ Dwn W _ , _
rGy)=r —r(M) =r(Vi) + (W) — (M) = (W) = r(4),
W 0
I WwB*W, V ]
rHGa) =7 ° VT S r (M) = r(W) + H(Wa) = (M) = 1) = #(C).
W 0
and the two rank equalities in Eq.(12.5) become
[ ViC*Wy, |29
r(Gs) = r| 0 T =)
W 0
[ vic'c vic'D W We'C W
= r| ! ! Sl -r)=r| ! 2 — Al
A B 0 0
[ v, v
r(Gy) = 1 —r(M)
W 0
[ V44 VA'B T AT 1
= | ! : erM)=r| 2| = r(A).
C D 0 C 0
Hence we have Eqs.(12.21) and (12.22). a
Similarly, we have the following.
Corollary 12.7. Let M and M1 be given by Eqs.(12.1) and (12.3). If
r(M) =r(Wy), ie., R(WJ)CR(W), (12.23)
then
r(Gy) =r(4), r(G3) = r(B), (12.24)
BB*W, A A4A"W, B
r(G2) =r ! —r(W1), Gy =r ! — (W), (12.25)
W, 0 W, 0

Combining the above two corollaries, we obtain the following.
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Corollary 12.8. Let M and M?' be given by E¢s.(12.1) and (12.3). If

FM) = r(4). (12.26)
then
r(G1) =r(4), r(Ga)=r(C),  r(Gs)=r(B). (12.27)
and
r(Gy) =7 [ Ad7d B } — r(4). (12.28)
cC 0

Proof. Clearly Eq.(12.26) implies that r(M) = r(¥;) = r(W). Thus we have Eq.(12.27) by Corollaries
12.6 and 12.7. On the other hand. Eq.(12.26) is also equivalent to A4A"B = B. CATA=Cand D =CA'B
by Eq.(1.5). Hence

ViAW,
Gy = r| SR g ¥
Wy 0
[ 44w, B
= r| CAW, D | -r(4)
W 0
44°W, B | )
= r - r(W)
W, 0
A4*4 A4A*B B A4*4 B
= r —r(A)=r —r(d).
c D 0 c 0
which is Eq.(12.28). o

Next, we list a group of rank inequalities derived from Eqs.(12.4) and (12.5).

Corollary 12.9. Let M and M' be given by Eqs.(12.1) and (12.2). Then the rank of G, in M satisfies

the rank inequalities

r(G1) <r(D)+r[4d, Bl+r !: 2 J —r(M), (12.29)

r(G1) >[4, B]+r [ ; } — (M), (12.30)
B

r(G,) >r(D)—-r[C, D]-r l: D jl +r(M). (12.31)

Proof. Observe that
VaD=Ws

F(V) + (W) <7 [ g } < (D) + (V1) + r(W7).
W 0
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Putting them in the first rank equality in Eq.(12.4), we obtain Egs.(12.29) and (12.30).

Eq.(12.31), we need the following rank equality

-
4

r(CATB)zr[ B]—r
C o

,: [ ] ( )
7 .’l . B + I( - l .
l ,

which is derived from Eq.(1.6). Now applying Eq.(12.32) to PM'Q in Eq.(12.6). we obtain

r(G1) = r(PM'Q)

v

P 0

[M Q-
r

—r { M } —r[M. Q]+ r(M)
P

B
= r(D)-r[C, D]~ (M),
(D) —r{ ] r{DJ+( )

which is Eq.(12.31). a

To show

(12.32)

Rank inequalities for the block entries Ga, G3 and G, in Eq.(12.3) can also be derived in the similar

way shown above. Finally let D = 0 in Eq.(12.1). Then the results in Eqgs.(12.4) and (12.5) can be

simplified to the following.

Thoerem 12.10. Let

A
."‘/[[ =
C
and denote the Moore-Penrose inverse of M us
G
l‘/[lf = !
Gy

where Gy € C**™_ Then

r(Gy)=r { 4 } +r[4, B]-r(M,),
C

)

r(Gs) =r(C). r(G3) = r(B).

44*4 A4"B B
r(Gi) =1 | CA*4 CA*B 0 | —r(d).

c 0

0

(12.33)

(12.34)

(12.36)

Various consequences of Eqs.(12.35) and (12.36) can also be derived. But we omit them here.



Chapter 13

Ranks of matrix expressions that
involve Drazin inverses

As one of the important types of generalized inverses of matrices, the Drazin inverses and their applications
have well been examined in the literature. Having established so many rank equalities in the preceding
chapters, one might naturally consider how to extend that work from Moore-Penrose inverses to Drazin
inverses. To do this, we only need to use a basic identity on the Drazin inverse of a matrix AP =
AF(AZRFLT AR (see, e.g., Campbell and Meyer, 1979). In that case. the rank formulas obtained in the
preceding chapters can all be applied to establish various rank equalities for matrix expressions involving

Drazin inverses of matrices.

Theorem 13.1. Let A € C™*™ with Ind(4) = k. Then
(a) r(l, £AP) =r( AR+ £ 4k ) — p(45) +m.
(b) r{lm = (AP ] = r( AR+ 4 %) 4 r (AR — 4R = 20(A%) +

Proof. Observe that R(A*) = R(A**!) and R[(A¥)*] = R[(A**1)*]. Thus applying Eq.(1.7) to
L — AP = [, — A (A1) AR yields

r(fm —AP) = L, — AF(42HLT 4k
[ A'.Zk—%-l. .-lk .
= r _ T(.-llk+l)
A¥ Im
[ __,l'_’kq'—l — 43 0
= r - r(4%)
O ["l

= (AP 4%y g~ (AF) = (AR = 4R+ — r( 4.
Similarly we can find 7( [, + AP ) = r( 4¥*! + 4%) — (4*) + . Note by Eq.(1.12) that

M Im = (AP = r(Im + AP) +7([n — AP ) —m.
Thus Part (b) follows from Part (a). a

Theorem 13.2. Let A € C™*™ with Ind(A) = k. Then
(a) 7(A—AdP ) =r(4A - APA) = r(A**! — 4k ) +r(4) — r(45).
(b) r(A—-A4P4) =r(4) — r(4*).
(¢) AAP = 4P 41 =4 = 42=4.
(d) A4P4 =4 < Ind(A4) <1.
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The results in Theorem 13.2(d) is well known, see, e.g., Campbell and Meyer(1979).

Proof. Applying Eq.(1.6) to r( 4 — A4P) yields

I‘( .4__‘_{‘_10) — 7_[‘_1_.4k+l(.42k+l)f‘4k]
i A2k gkt o
= r - ’.(A.’k—f—l )
A A

i A'.’k-{-l _ .-Fk 0 k
= r —r(4%)
0 A

= (AP ) 4or(A) = r(AF) = (AR - 4R + () = (AR,

as required for Part (a). Notice that 4% is an outer inverse of A. Thus it follow by Eq.(5.6) that
(A —A4P4) = r(4) — r(4P) = r(4) = r(4A*).
as required for Part (b). The results in Parts (c) and (d) follow from Parts (a) and (b). a

Theorem 13.3. Let A € C™*™ with Ind(A) = k.
(a) r(Ad—AP) =r(A5+2 = 4k ) 4 r(4) — r(4F5).
(b) r(A = AP) =r(4) —r(AP), e, AP <,y 4 e AR+t = 4F
(¢) AP = 4 = A% = 4.

The results in Theorem 13.3(d) is well known.

Proof. Applying Eq.(1.6) to A — AP yields

r(A=AP) = r[d - AR (4T 4R

[ A2kl gk R

= r — (A%

Ak 4

i A'.!k-é—l — A'.’k—l 0 Y

= r = r(AF) = (AR — AR+ r(4) - (45,

0 A
as required for Part(a). The results in Parts (b) and (c) follow immediately from it. O

Similarly, we can establish the following two.

Theorem 13.4. Let A € C"*™ with Ind(4) = k.
(a) Ifk>2. then r(A? — AP ) = r(A*+3 — 4% ) 4 p(42) — r(4AF).
(b) Ifk =2, then r( A2 — AD) = r( 45 — A2).
(¢) Ifk=1, thent(A* — AP ) =r( 4" - 4).

(d) 422=4P &= A*=Adwhenk=1.

( )

e) 2= AP &= 45 = 4? when k =2.

The two equivalence relations in Theorem 13.4(d) and (e) were obtained by Grass and Trenkler(1997)

when they considered generalized and hypergeneralized projectors.
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Theorem 13.5. Let A € C™*™ with Ind(A) = k.
(@) Ifk >3, then (A3 — AP ) = r(AFH — 4% ) 4 r(43) — r(AF).
(b) Ifk=3, thent( A3 — AP) =r(47 — 43).
(c) Ifk=2, thenr(A* — AP) = r( 45 — 42).
(d) Ifk =1, then r(A4% — AP ) = r( 45 — 4).
(e) A3 =4°P = A" = 4% when k =3.
(F) A% = AP = A5 = 4% when k = 2.
(g) A3 =AP <= A5=4 whenk=1.
A square matrix A is said to be quasi -idempotent if A*¥! = 4* for some positive integer k. In a

recent paper by Mitra, 1996, quasi-idempotent matrices and the related topics are well examined. The

results given below reveals a new aspect on quasi-idempotent matrices.
Theorem 13.6. Let 4 € C™*™ with Ind(A) = k. Then
() r[AP £ (AP)2] = r( AR+ £ AF).

(b) (AP)? = AP, ie., AP is idempotent <> A**! = A¥ ie. A is quasi-idernpotent.
Proof. By Eq.(2.3) and (4P)? = (42)P we find that

r[AP = (4P)?]
= [ AR(ALE g g2h( gkt gk

[ g2k+1 0 n

= r 0 Atk ok | o q2eRly o ik
A* A2k 0

— 432k+L 0 Ak

= r 0 A2 gk~ 2r(AF)
=t Ak 0
0 0 AF
= r| 0 AF2_ g2+l g | _9p( ARy = g ABKFR g2kt = gkl gk
Ak 0 0

Similarly. we can obtain r{ A? + (4P)?] = r( A*+! 4+ 4%). The result in Part (b) follows immediately
from Part (a). a

A square matrix A is said to be quasi-idempotent if 4**! = 4* for some positive integer k. In a
recent paper by Mitra(1996), quasi-idempotent matrices and the related topics were well examined. The
results given below reveal a new aspect on quasi-idempotent matrices.
Theorem 13.7. Let 4 € C™*™ with Ind(A) = k. Then

(a) r[AP — (AP)3] = r( ARl £ AR ) £ r( AR+ — 4k — 1(45).

(b) The following three statements are equivalent:

115



(1) (4P)¥ =4AD, je., AD s tripotent.
(2) r( AU+ 4%) $r( 45T — AR = r(AF).
(3) R(AM! 4 ARy R( AR — 4k ) = {0} and R[( A*+' + A% )N R[( A**! — 4%)*] = {0}.

Proof. Applying Eq.(1.14) and Theorem 6.3(a) to AP — (479)? vields
r[AP = (AP ] = #[AP 4 (AP ] 4+ r[AP — (4P)?] = r(A4P)
= (A £ ARy (AR - 4Ry -k,
as required for Part (a). The equivalence in Part (b) follows directly from (a). m|

Theorem 13.8. Let 4 € C™*™ with Ind(A) = k. Then
(a) r[AAP — (44AD) ] =2r[ 4%, (4F)*] — 2r(A4F).
(b) AAP = (44P) &= R(A*) = R[(4%)"] i.e., A* is EP.

Proof. Note that both A4 and (4.4P)" are idempotent. It follows from Eq.(3.1) that

(4AP)"
2r[ AAP, (44P)*] - 2r(4P)
= 2r[A¥, (4%)7] - 2r(4%),

D
r[AAP — (44P)"] = r[ Ad ]—r[.uD. (AAP)" ] = r(AAP) = r{(44°)7]

]

as required for Part (a). The result in Part (b) follows immediately from Part (a). a

Theorem 13.9. Let 4 € C"*™ with Ind(d) = k. Then
k

(a) r(4F —4P)y =+ [ i' } +r[A%, AT = r(dk) - r(4).

(b) (Al = 4P) = r(Al) = r(AP), ie., AP < Al &= R(A¥) C R(A%) and R[(A%)7] C
r(d), i.e., A is power — EP.

(¢) If Ind(A) =1, then r( Al — A#) = 2r[ 4, 4°] —2r(4).

(d) Al = A% = R(A*) = R(4), ie., A is EP.

Proof. Since both A and AP are outer inverses of A. it follows from Eq.(5.1) that

- n
r(At = APy = } +r[Al AP — (AT - r(4AP)
AP
:1- - 13 k
= r +r[A7, A% = r(4) = r(4%).
Ak
as required for Part (a). The results in Part (b)—(d) follows immediately from Part (a). O

Theorem 13.10. Let A € C™*™ with Ind(A) = k. Then

. 4k
(a) r(AAT — A4P)) =7 ‘4‘ —r(AF).
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(b) r(ATA = APA) =r[4%, A7] = r(4*).

() r(Ad! - A4P) =r(A4") - r(44P) &= R[(4*)"] C R(A).

(d) r(ATA = APA) =r(Al4) - r(4PA) <= R(4*) C R(4").
AF

() r[(-"ik)f-'lk - .-lD.-’l] =7 Ak (A')k] — r(45).

() AH(AH)T = A4P = (49)14F = 4P A = A% is BP.

Proof. Note that both 44" and AAP are idempotent. Then it follows by Eq.(3.1) that

[yt
r(A4f —44P) = r Ad ] +r[ A4, AAP ] - r(44h) — r(44P)
A4P
[ A _ _ A _
= } +r{d, A —r(d) = r( ) =1 [ Iy } - r{4%).

as required for Part (a). Similarly we can get (b). The result in Part (c) follows immediately from Parts

{(a) and (b). similarly we can show Parts (e)—(g). m}

Theorem 13.11. Let A € C™*™ with Ind(A) = k. Then
Ak
A"

(b) ATAP = 4P 4t = R(4*%) C R(A*) and R[(A*)*] C R(4) i.e.. A is power — EP = ATAF =
Ak 4T

(a) r( Af4D _-{D‘-U) =r { } +7-[_4k’ __l'] _27.(__{) = r( At 4k _ 4k 4t ).

Proof. Applying Eq.(2.2) to A7 4P — AD 4t yields

[ 444" 0 A 4P

r(AtAP — 4P4Yy = & 0 Ad4 A —2r(4)
K AD 4. 0
[ A 44 —A*AD g4 4-4D
= r 0 0 A — 2r(4)
A 4P 1 0

0 0 A=AD
= r 0 0 4= —2r(4d)
A~ 4D a- 0

AP AF
= r +r[AP. AT -2r () =7
A" A=

] +r[df 4] = 2r(4).

The second one in Part (a) follows from Theorem 6.4. The result in Part (b) follows immediately from

Part (a). a

Theorem 13.12. Let A € C™*™ with Ind(A) = k. Then
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[ 4k(AA* — 474)4% 0  Aka-
(a) r(A*AP —APA~) =7 0 0 A — 2r(4%).
A4k A5 0
(b) r(A*AP — 4P 4=) = ;( ARFLA= AR — kg gk Ly f R(AAR) € R(A*) and R[A(A%)"] C
R[(A*)"].

k 1=
(¢) r(A*AD — 4P 4=) =1 4 :‘ Fr[ AR, ATAR] = 2r(AR). if ARTL 4T AR = gk 4= gkFL
Ak

(d) A"AP = AP 4" = R(A*4%) C R(A¥), R[A(A*)7] C R[(A%)*] and AR+ A= 4k = 4k = fhrt,

Proof. Applying Eq.(2.3) to A* 4P — 4P 4* yields

,.( _-1'.-10 _ A.D:l‘ ) - 7_[ ‘{-__lk(._,_l‘.’.k-i-l)f.;lk _ ._1k(._12k-:-l )T:'lk.-l‘ ]
B _:1'.’k+l 0 .‘lk
= r 0 AL akgm o _2p( AP
A Ak Ak 0

_‘42k+1 0 .'-lk
= 7| —AktLg=gk 0 4k 4~ | —2r(45)

i A4 Ak Ak 0
0 0 Af
= | AkFg=ARFL _ gkrlg= gk g gk 4= | —2r(48)
i A AF A0
[ Ak (AAd" — 474y g 4k g
= r 0 0 AF | =2r(AF).
A=Ak Ak 0

as required for Part (a). Parts(b) and (c) follow from Part (a). Next applying Lemma 1.2(f) to the rank

equality in Part (a) yields Part (d). a

Theorem 13.13. Let 4 € C™*™ with Ind(4) = k. Then
A AR (4R
(a) rld—-(A49) ] =~ Ak 0 0 — 2r(4%).
(45 0 0
(b) r[A = (APY ] = r(d) = r(4A*), if A is EP.
(¢) (AP = 4 & 4 is EP.
Proof. According to Cline’s identity (AP) = (A*)F 426+ (4%} (see [10] and [22]). we find by Eq.(2.8)

that

rl4—(AP)] = r{d - (4F)T A48t
(.Ak)u.42k+l(Ak)- (__1k)z‘4k(._lk)a 0
= 1| (AR)rAR)” 0 (A | = 2r(4")
0 (AF)- -4
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A'.’k-i-l .—lk(:lk)' 0
= r (Ak)tAk 0 (.—lk)' — 2.,‘(_.1")

0 (A5 -4
.-12k+1 0 ‘_1k+1
= r| (45)74F 0 (ak) | —2r(4k)
0 (A5 -4
[ ¢ 0 qk+1
= r 0 0 (4% | —2r(45)

Ak+L (.-lk)' -4

LI

4 A4k (4%
= r| A* 0 0 —2r(4%).
(4570 0

as required for Part (a). The results in Part (b) and (c) follows immediately from Part (a). a

Theorem 13.14. Let A € C™*™ with Ind(4) = k. Then
3

(a) r[AAPA — (AP ] =+ [ ] +r[ Ak (4%)7] = 2r(4F).

(_41:)-
(b) (AP = 44P 4 & 4A*¥ is EP.
Proof. It is easy to verify that both 442 4 and (4P)! are outer inverses of AP. In that case it follows

from Eq.(5.1) that

D Dyt [ ‘4‘40"1 D Dyt D Dyt
(4424 - (4P = ~ (4Dt +r[A4P 4, (AP ] = r(AAP A) - F[(AP)T)
_ 4D
= r (1D)- +r[AP, (4P)] = 2r(4F)
- "
= 7 k- +r[ A%, (457 ] - 2r(45),

as required for Part (a). The result in Part (b) follows immediately from Part (a). a

Theorem 13.15. Let 4, B € C™*™ with Ind(A) = k and Ind(B) = [. Then
Ak
Bl
(b) AAP = BBP < R(A*) = R(B') and R[(4*)"] = R[(B")"].

(a) r(AAP —BBP)=r I: ] +r[ A*, B'] - r(A*) - r(BY).

A*
(¢) r(A4AAP — BBP) is nonsingular < r l } =r[ 4%, B'] = r(4*) + r(BY) = m <=
B

R(4%) & R(BYY = R[(A*)"] & R[(BY)*] =C™.
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Proof. Note that both 44° and BBP are idempotent. Then it follows from Eq.(3.1) that

[ 440
r(A4P -BBP) = - +r[A4P. BBP | - r(44P) - /(BBP)

BBP
AP D D D D

= r +r[A”, BY] —r(AY) - r(B”)
BD
A% £k pl k i

= r +r[ A%, B'] = r(A%) — r(B'),
Bl

as required for Part (a). The results in Parts (b) and (c) follow immediately from Part (a). ]

Theorem 13.16. Let 4, B € C™*™ with Ind(A) = k. Then

4]
(a) r(AAPB - BAP4) =~ +r{ Ak, BA¥] - 2r(4%).
i¢B
AE ]
(b) r(APAAt — AT 44D ) =1 +r[df, 4] = 2r(d) = (AP AT - 414D,
A=

In particular.
(¢) 44PB = BAP 4 <= R(BA*) = R(A*) und R[(A*B)*] = R[(A4%)"].
(d) APAAt = 41440 = AP At = AT 4D = R(4*) C R(4") and R[(A¥)*] € R(A).

Proof. Note AAP = AP 4 is idempotent. It follows by Eq.(4.1) that

[ 4408
r(AAPB-BAP4) = r 04 } +r[BAP A 4AP] - r(AAP) = r(4P 1)
[ ADB D D
— . — (4D
= r N ]-&-I[B.—l LAY =2r(A)
[ AkB
=l } +r[BA*, 4%] - 2r(4%).

Thus we have Parts (a). Replacing B by A" in Part (a) and simplifying it yields the first equality in Part

(b). The second equality in Part (b) follows from Theorem 13.5(a). |

Theorem 13.17. Let 4 € C™*", B € C™*™ with Ind(B) = k and C € C"*" with Ind(C) = I. Then

B¥4

(a) r(BBPA4A-A4ACPC) =+ { ol J +r{AC!. B*] - r(B*) — r(C").

(b) BBPA = ACPC < R(AC') C R(B*) and R[(B*4)"] C R[(CYH"].
Proof. Note that both BB? and CPC are idempotent. Then it follows from Eq.(4.1) that

BBP4

+r[ACPC. BBP| - r(BBP) - r(CPC)
cbe [ ]

r(BBP4A - ACPC) = r[




D
- } +r[ACP, BP] - +(BP) - r(CP)
CD
[ k 4
= r Bcf ] +r{AC', B*] - r(B*) —r(Ch.

as required for Part (a). a

Theorem 13.18. Let 4 € (™*", B € C™*™ with Ind(B) = k and C € C**" with Ind(C) =!{. Then
(a) r[A, B¥]=r(B*)+r(A - BBP4).

(b) r [ ; } =r(CY) +r(4-ACPC).

A B* ) o 5
(c) r g =r(B*) +r(C"Y +r[( . - BBP)A(I, - CPC)].

Proof. Applying Eq.(1.7) to 4 — BBP 4 yields

r(A-BBP4) = r[A-BY(B*ThiBk4]

i 2k+1 k.'l )

= r B B } —T(B')'k‘;'l)
Bk-H 4

F 0 0

= r ] —r(Bk)=r[.-l. Bk]—r(Bk).

Bk+1 4

as required for Part (a). Similarly we can show Parts (b) and (c). O

Theorem 13.19. Let 4, B € C™*™ with Ind(A) = &k and Ind(B) = 1. Then
A% 4kp!

(a) r(AB — ABBPAPAB) =+ {
B[.-lk B'.’l

J + r(AB) — r(4F) — r(BY).
A% AkB

(b) BP AP ¢ {(4B)"} = l: Bl4k g

} =r(A*) + r(B") - r(AB).

Proof. It follows by Eq.(2.9) that

1'( AB —:lBBD_{D‘{B) - T‘[.‘lB —_4Bk+l(sz.*.l)fBl:lk(:lzk*.l)T:lk+1B]

[ Bl 4k B2+t 0

= r .-l:”“*‘l 0 _—lk+lB —- ,.(A'_’kq-l) _ T(B"'l‘“)
0 AB"! _AB

B! 4% B+t 0
= 7| A42+1  _gk+1pgI+l 0 —r(4%) = r(BY
. O 0 -4AB
[ Bl.‘lk B‘zl-H
= r +1(AB) - r(4*) — r(B')

A2kHL gk i
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Bl A.k B'.!l
= r

126 4k pt ] +r(4B) = r(A%) — r(BY).

Thus we have Parts (a) and (b). =]

Theorem 13.20. Let A. B € C™*™ with Ind(4) = k and Ind(B) = [. Then

Ak
(a) r(AAPBPB -BBPAD ) = , +r[A*, B+ r(A*BY) + r(B' 4%) = 2r(A¥) = 2r(BY).
B
= - 3
(by AAPBPB = BBDP AP 4 «— B =r(A*) + r(B") - r(A*B") and r[ A*. B'] = r(4*¥) +

r(BY) = r(B'4¥).
Proof. Note that both 44? = AP 4 and BB® = BPB are idempotent. Then it follows by Eq.(3.26)

that

r(AAPBPB — BBP 4D 4)

440
= op } +r{APA, BPB]+ r(44PBPB) + r(BBP AP A) — 2r(AAP) — 2r(BBP)

k
= r ( '; } +r[AF, B' ]+ r(A*B') + r(B'4*) - 2r(A*) — 2r(B").

as required for Part (a). a

Theorem 13.21. Let 4, B € C™*™ with Ind( A+ B) =k and denote N = A + B. Then
(a) r(ANPB) = r(ANF) + r(N¥B) — r(NF).
(b) r(ANPB) =r(4) +r(B) - r(N¥), if R(B) C R(N*) and R(A") C RI(NF)"].

rk

N
(¢) r(ANPB - BNP4)=r { ] + r[Nk, BNE] —2r(N¥).
NEB
(d) ANPB =BNP4 R(BN*) C R(N*) and R[(N"'B)‘] - R[(./\*"‘)'].

Proof. It follows by Eq.(1.7), that

r(ANPB) = r[ANK(NEHLINER]
[ A2kt k
= r N N*B _ r(./\/".lk%-l)
ANk 0
B
= r ! — r(VE) = r(AN*) + r(N5B) — r(N¥),
ANE 0

which is the first equality in Part (a). The second equality in Part (a) follows from r( AN*) = r(AND). +(N¢B)
r(NPB) and r(N¥P) = r(N*). Under R(B) C R(N*) and R(A*) C R[(N*)*]. it follows that r(AN*) =
r(4) and r(N*B) = r(B). Thus Part (a) becomes Part (b). Next applying Eq.(2.3) to ANPB - BNP 4



yvields

r(ANPB - BNDP 4)

= r[ANF(WVHHINER - BNE(NHLENE )
[ N+l o NEB
=r 0 NFL O NEA L= op(NFHAY)
| ANk BN 0

~-N¥ANk _NEBN* NEB

= r| NkrANE NEBNE  NEkg | —20(NF)
ANE BNk 0
0 0 NkB

= r 0 0 Nk4 | —2r(NF)

ANk BNk 0

] NF4 ) . ) Nk " " "
= r +r[AN*, BN¥] - 2r(N*¥) = r +r[NFBNF] = 2r(VE).
N*B N B
Thus we have Parts (c¢) and (d). O

Theorem 13.22. Let A, B € C™*™ be given, and let N = A+ B with Ind( A+ B) = k. Then

(a) r (l: 40 J — l: A } (4+ B)P[4, B]) =1(A) +r(B) — r(NFk).
0 B B

(b) [;} (A+B)P[4, B]= [; 103} e Ind(A+B)<1landr(A+ B) =r(4) + r(B).

Proof. It follows by Eq.(1.7) that

(12 8)-La] v

0 B B

= r [ 40 } - { A ] NE(NEFDTNEL g B])
0 B B

B N2+l Nkg NEB
= r| AN* 4 0 | —r(vh)
BNk 0 B

— r(N¥) = 7(4) + r(B) — r(*),

I

-
o C© O
o . O
b ©o o

which is exactly Part (a). Note that r(N*) < (V) = r(A+B) < r(4)+r(B). Thus r(N*) = r(4) +r(B)
is equivalent to Ind(N) < 1 and r(N) = r(4) -+ r(B). O

In general we have the following.
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Theorem 13.23. Let Ay, Ay, ---. 4 € C™*™ with Ind(N) = k. where N = A + 4> +--- + A, and
denote A = diag( A;, Ay, ---, A ). Then

44
(a) ] A~ DO NP[A, -, Ak | =4 -+ r(AR) = r(VF).
Ag
4,
(b) DOINPIAy, e, ] =4 = Ind(V) <1 and 7(N) =r(4;) + - - + r(Ag).
Ag
Theorem 13.24. Let Ay, Ay, ---, Ax € C™*™. Then the Drazin inverse of their sum satisfies the

following equality

D
"'11 "l'.! 1L Im
o 1 A A oo Ak In )
(A + Ao+ -+ Ag) ZE[["" Im, ---. Im] . o ) - (13.1)
.-‘.2 ‘13 .-11 Im
Proof. Since 4; are square, Eq.(11.7) can be written as
U, AU, = diag( Jy, Ja, -, Ji, ).
In that case, it is easy to verify that
(U AUR)P = U APU..,
and
(diag(Jy, Jo, -+, Ji)}P = diag(JP. JP, ---. JP)
Thus we have
I = (Lm0 . OJUAAPUm[ [, O, ---, O]
= _:;[["lv Inn Tt Im ](JY;I-"»DDYm[[m’ [nu SEI IT-
which is Eq.(13.1). a



Chapter 14

Rank equalities for submatrices in Drazin

Inverses

Let

4 B
M=

be a square block matrix over C, where 4 € C™>*™ and D € C**",

C D

V, = { A } . W= [ B } ., Wi=[4, B], W,=[C, D]J.

and partition the Drazin inverse of M as

up = | Gv G2
Gli G‘l

(1+4.1)

(14.3)

where G, € C™*™. It is, in general, quite difficult to give the expression of G;—G,. In this chapter we

consider a simpler problem—the ranks of the submatrices G;—G, in Eq.(14.3).

Theorem 14.1. Let Al and MP be given by Eqs.(14.1) and Eq.(14.3) with Ind(M) > 1. Then the ranks

of Gy —Gy in Eq.(14.3) can be determined by the following formulas

MEJAME MRV

rn(Gy)=r —r(M*).
' W Mkt 0 |
MELAME  ME-LY, &
rGa)=r —r(M").
Wi M1 0 J
[ MEJME Ark-Ly, ] .
r(G3)=r 3 ‘ )

I'Vg]\f[k‘l 0

[ Ark gt A
rGa)=r ‘ 2l k).
WoM k-1 0

- J

where Vi, Vi, W, and W> are defined in Eq.(14.2), and

-4 0 0 B 6 -B A
J= , Jo = \ J3 = S Ji =
0 D -C 0 C 0 0

(14.4)

(14.5)

(14.6)

(14.7)

(14.8)



Proof. We only show Eq.(14.4). In fact G in Eq.(14.3) can be written as

[m 3 e e .
Gy = [In, 0]MP [ } = PLMPQ, = PLMRMP*+YAMRQ, .
0

Im
where P, = [[,,, 0] and Q; = [ } Then it follows by Eq.(1.6) and block elementarv operations
0

that
[ Azt g .
rG) = r|° Qo oarze
P M* 0
1“[2k+[ - Z‘/Ilepl.f‘/[.’L[k - .‘\'[k.v‘"[Q[P[A[k .'\IkQ[ (\f}‘)
= r - (.
P AME 0
MA(M - Q PLM — MQ P )M*  M*Q, ok
= r — (M)
Pl.“/[k
[ MEJME MELY
= r L Py,
Wy M*-1 0
which is exactly the equality (14.4). o

The further simplification of Eqs.(14.4)—(14.7) are quite difficult, because the powers of M uppear
in them. However if M in Eq.(14.1) satisfies some additional conditions. the four rank equalitics in
Eqs.(14.4)—(14.7) can reduce to simpler forms. We next present some of them. The first one is related

to the well-known result on the Drazin inverse of an upper triangular block matrix (see Campbell and

Meyer. 1979).
D
4 B AP x
= ; (14.9)
0 N 0 NP

where
-1 k-1

X = (4P9)2 [Z(.4D)‘Bz\fi] (I, —NPN)+ (I, — A4P) [Z.—l‘B(.’VD)‘J (NPY?2 — APBNP | (14.10)
i=0 =0

and Ind(A) = &, Ind(NV) =1.

Theorem 14.2. The rank of the submatriz X in Eq.(14.9) is

A* Py(B) 0
R A P(B)
r(X)=r| 0 A!'BNt P(B) | - 0 v . (14.11)
0 0 Nt )
_-1 B t_l . . - q r
where t = Ind . P(B) =Y ;2o AT BN'. In particular if AKBN' = 0. then
0 N
. P (B) A% P(B)
r(X) =r[4%, P(B)]+r —-r . 14.12
(X) = r[ 4%, P(B)] [ - o (14.12)
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In particular if R[P,(B)] C R(A*) and R{(P:(B))*] C R{(N")*]. then r(X) = r(A¥BC").

Proof. It is easy to verify that

t
i B At P(B ,
Mt = [ v } = [ ; ‘\(ﬂ) ] . and Py (B) = A1P(B) + P(B)N'T! + A'BN!.

AP X ]

Then applying Eq.(1.7) to X =[1,,, 0] l:
0 NP

0
[ ; } = Py MY AMPHYT Q. we find that

MUFL A,

rX) = r — r(MTY
Pl.M‘ 0
[ A%+ Py, (B) Pu(B)
=r 0 N2+l Nt | = (M)
At P,(B) 0

A'BN' P,(B)
= r| 0 0 Nt — (M%)
At P((B) 0

A% P(B) 0
A% P(B)
= r 0 A*BD* B(B) | - . .
0 Nt
0 0 Nt
Thus we have the desired results. ([

Theorem 14.3. Let M be given by Eq.(14.1) with [nd(M) = 1. Then the ranks of G, —Gy in the group
tnverse of M in Eq.(14.3) can be expressed as

VaDWs V, | v, 1

MGy =r] S0 TH L orMy, HGa)=r | TP TR (M), (14.13)
Wl 0 [V[ 0
[ view, v, ] [ ViAW, 1

r(G3)=r - ! o - (M), r(Gy) =r ! ! T = (M), (14.14)
Wo 0 Wo 0

where Vi, Vo, W and Wy are defined in Eq.(14.2).

Proof. Note that M# = M(M3)'M when Ind(M) = 1. Thus G, in Eq.(14.13) can be written as
Gy = W (M3)TV,. In that case it follows by Eq.(1.7) that
M3 W

r(G) = r }—r(k[:’)
W, o0

[ 0
0, Va]M 1% VDWW,V
- ! [ W } Y =) =r[ 2 0‘ } — r(M).
Wy 0

—
[S]
-1



In the same manner we can show the other three in Egs.(14.13) and (14.14). O
Corollary 14.4. Let M be given by Eq.(14.1) with Ind(M) = 1.
(a) If M satisfies the rank additivity condition
r(M) =r(V1) +r(W) = r(W) + r(112).
then the ranks of G| —G4 in the group inverse of M in Eq.(14.3) can be expressed as
r(Gy) = (Vi) + r(W1) + r(VaDWas) — r(M).
r(G2) = r(Va) + r(W1) + (Vi BW,) — r(M).
r{Ga) = r(Va) + r(W) + r(VaCW) — (M),
r(Gy) = r(Va) + r(Wa) + r(V1 AWY) — r(M).

(b) If M satisfies the rank additivity condition
r(M) =r(4) +r(B) + r(C) + (D),
then the ranks of Gy —G in the group inverse of M in Eq.(14.3) satisfy
r(Gy) =r(A) = r(D) + r(VaDWy), r(G2) =7r(B) — r(C) + r(V1 BIY),

r(Gs) =r(C) — r(B) + r(VaCW)), r(G2) =r(D) — r(4) + r(17Al).
where Vi, V,, W, and Wy are defined in Eq.(14.2).
In addition, we have some inequalities on ranks of submatrices in the group inverse of a block matrix.

Corollary 14.5. Let M be given by Fq.(14.1) with Ind(M) = 1. Then the ranks of the matrices G| —G
in (14.3) satisfy the following rank inequalities
(a) r(Gy) 2 r(3y) +r(W) - r(M).
() (G) < (1) + (W) + F(D) — (M),
(¢} r(Gz) 2 r(Va) + r(Wy) —r(M).
(d) r(G2) £7(Va) +r(W1) +r(B) —r(M).
(e) r(Gs) > r(Vy) +r(Wo) —r(M).
(£) r(G3) <r(V1) +r(Wa) +r(C) — r(M).
(g) r(G4) 2 r(Va) + r(W2) —r(M).
(h) r(Gq) < r(V2) +r(W2) + r(4) — r(M).

Proof. Follows from Eqs.(14.13) and (14.14). a.
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Chapter 15

Reverse order laws for Drazin inverses of
products of matrices

In this chapter we consider reverse order laws for Drazin inverses of products of matrices. We will
give necessary and sufficient conditions for (4BC)P = CPBP 4P to hold and then present some of its

consequences.

Lemma 15.1. Let 4, X € C™*™ with Ind(4) = k. Then X = AL if and only if

AFFLY = 4k X AL = gk, and r(X) = r(4*). (15.1)

Proof. Follows from the definition of the Drazin inverse of a matrix. m]

Lemma 15.2. Let 4. B, C € C™*™ with Ind(4) = k;, Ind(B) = k» and Ind(C) = ky. Then the

product CP BP AP of the Drazin inverses of A, B, and C can be expressed in the form

f
0 0 Akt Ak
CPBPAP = [C*s, 0. 0] 0 B2k=tl  phke 4k 0 | :=PNQ. (15.2)
C?ka+l  Ckapka 0 0

where P. N and Q satisfy the three properties

R(Q) C R(N), R(P")C R(N™), r(N) = r(A%) + 1(B*?) + r(C*s). (15.3)

Proof. It is easy to verify that the 3 x 3 block matrix N in Eq.(15.2) satisfies the conditions in Lemma

8.8. Hence it follows by Eq.(8.8) that

(Czk"""l)fck:’Bk:(sz"'+l)ka3.-lk‘(.—12k‘+l)r:{k‘ * *

Nt = * « 0 |- (15.4)
* 0 0
Thus we have Eq.(15.2). The three properties in Eq.(15.3) follows from the structure of N. a

The main results of the chapter are the following two.

Theorem 15.3. Let A, B, C € C™*™ with Ind(A) = &;. Ind(B) = k; and Ind(C) = ky, end denote
M = ABC with Ind(M) = t. Then the reverse order law (ABC)P = CP BP AP holds if and only if A. B

129



and C satisfy the three rank equalities

[ o 0
0 B'lk'_»-i-l
r C'.’k:;-f—l Ckg Bkg
MFLCks
[ 0 0
0 B'.’,k'_i-f-l
r C2k3+l Ck:x Bk'.'
Ck:z

I B:!kz+l Bkg Akl

| ctapre 0
Proof. Let X = CPBPAD,

2R+l
Btz Ak
0
0
42kl
Bk= Ak
0
0

Ak
0
0
Mt
Ak preet
0
0
M?

= r(4*) 3 r(B*2) + r(C*), (15.3)
= r(A¥) + r(B*2) + r(C*2). (15.6)
(15.7)

r(B*?) + r(M*).

Then by definition of the Drazin inverse. .X

AMP if and only if

ALY = Mt XM = M and r(X) = r(M?), which are equivalent to

r(ME - M*LY) =0,

r(M* — XM*1) =0 and r(X) = r(M").

Replacing X in Eq.(15.8) by X = PNTQ in Eq.(15.2) and applying Eq.(1.7) them. we find that

r(MY = MY ) = (M~ MPTYPNTQ) =7 {

(M — XM7Y =r(M' - PNIQM'™ ) =7 {

Putting them in Eq.(15.8), we obtain Eqgs.(15.5)—(15.7).

Theorem 15.4.

0
0

ks
0

C'_’k3+l

r(X)=r(PNIQM"*TY =r l: .

AY
Q — (V).
.'\'[H'[P .‘\'[t
N M+t
@ - r(N),
P At
N
@ —r(N).
P 0

a

Let 4, B, C € C™*™ with Ind(4) = k;, Ind(B) = ky and Ind(C) = ky. and let
M = ABC with Ind(M) = t. Then the reverse order law (ABC)P = CPBP AP holds if and only if A. B
and C satisfy the following rank equality

0
B'.’kz-f-l

Ck3 Bk'_v

0
0

42,\:1 +1

Btz 4k

0
0
0

Ak 0
0 0
0 0 = r(A*) + r(B*?) + r(C*) — r(ALY). (15.9)
0 M?

Mt ARFL |
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Proof. Applying Eq.(2.3) to (ABC)P — CPBP AP = M{(M2+) Mt — PNTQ, we find that

r{(4BC)P = CPBPAP| = r[PNTQ — MY(M™+ )t ALt
. . 0
= 7| 0 =ML Mt | = r(N) - r(MY
| P ALt 0 |
N o Q ]
= r|l Qg 0 Mt - r(N) - r(MY.
| P OMt At ]

Thus Eq.(15.9) follows by putting P, N and Q in it. a
We next give some particular cases of the above two theorems.

Corollary 15.5. Let A, B, C € C™*™ with Ind(B) = k and Ind(ABC) = t. where A and C are
nonsingular. Then

Bk
(4BC)tA
(b) (ABC)P =C~'BP4-! «= R[C(ABC)!] = R(B*) and R{[(ABC)' A]"} = R[(B*)"].

(a) r[(ABC)P —C-'BPA-']=r [ ] +7[ Bk, C(ABC)t] - r(B*) - r{(ABC)*].

Proof. It is easy to verify that both (ABC)? and C~'BP A~! are outer inverses of ABC. Thus it
follows from Eq.(5.1) that

r[(ABC)P —C~'BP A7)

D
-, c(jf?g)rl ] +r{(4BC)P, C~'BP A~'] - r[(ABC)P] - r(BP)
-7 (IUS)BCli-')t."l J +1[C(4ABC)Y, B*] — r[(4BC)] - r(B").

as required for Part (a). Notice that

k k
r[ b }ZT(B’“), r[ B ]27-[(.480)‘].
(ABC)t 4 (ABC)t A

and
r[B'. C(ABC)'] > r(B*), r[B', C(4BC)'] > r{(4ABC)Y.

Then Part (b) follows from part (a). o

Corollary 15.6. Let A, B, C € C™*™ with Ind(4) = ki, Ind(B) = ks and Ind(C) = ky. and let
M = ABC with Ind(M) = t. Moreover suppose that

AB = BA4, AC =CA, BC =CB. (15.10)

Then the reverse order law (ABC)P = CPBP AP holds if and only if A, B and C satisfy Eq.(15.7).

131



Proof. [t is not difficult to verify that under Eq.(15.10), the two rank equalities in Eqgs.(15.5) and (15.6)
become two identities. Thus, Eq.(15.7) becomes a necessary and sufficient condition for (1BC)P =
CPBP AP to hold. m|

Corollary 15.7. Let A, B € C™*™ with Ind(A) = k. Ind(B) =1 and Ind(AB) = t. Then the following

three are equivalent:

(a) (AB)P? = BD 4D,

0 A'.Zk-i-l Ak 0
B'.’l-?—l Bl‘_lk 0 0
(b) r = r(4*) + r(B") - r[(4B)t].
B 0 0 (AB)! ) ((4B)*]
0 0 (AB)t (AB)**!

(¢c) The three rank cqualities are all satisfied

r{(AB)Y] = r(B' A%).

0 y2k+1 gk
- B+l Bl 4% 0 = r(4*) + r(BY).
(AB)+'B! 0 —(AB)!
0 q2k+1 .—'lk(AB)H'l
r| B+t plgk 0 = r(A*) + r(B").
B! 0 —(4B)

Proof. Letting C = I, in Eq.(15.9) results in Part (b), and letting B = I,, and replacing C by B in

Theorem 15.4 result in Part (c). a
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Chapter 16

Ranks equalities related to weighted
Moore-Penrose inverses

The weighted Moore-Penrose inverse of a matrix 4 € C™*" with respect to two positive definite matrices

Mel™ ™ and N € C™"*" is defined to be the unique solution of the following four matrix equations
AXA =4, XAX =X, (MAX) = MAX, (NYH4)y" =NVXA4, (16.1)

and this X is often denoted by X = .-13,. - In particular. when M = [, and N = [,. .-1_7‘,“\. is
the standard Moore-Penrose inverse A of 4. As is well known (see. e.g.. Rao and Mitra. 1971). the
weighted Moore-Penrose inverse AR,‘ ~ of A can be written as a matrix expressions involving a standard

Moore-Penrose inverse as follows
Al v = NTEMEANTD M, (16.2)
where M2 and N% are the positive definite square roots of M and iV, respectively. According to Eq.(16.2).
it is easy to verify that
R(AY, &) = R(NT'A%), and R[(A}, yv)7] = R(M A). (16.2)
Based on these basic facts and the rank formulas in Chapters 2-~5. we now can establish various

rank equalities related to weighted Moore-Penrose inverses of matrices. and the consider their various

consequences.

Theorem 16.1. Let A € C™*™ be given, M € C™*™ and N € C™*" be two positive definite matrices.
Then

4
(a) r(At =l ) =7 w +r[4, MA]=2r(4).
A

(b) r(A— Al ) =r[4, MA] = ().

4
(¢) r(At—db ) =r { A } —r(d).
(d) Al v = At < R(M4) = R(A) and R[(AN)"] = R(A").

Proof. Note that A! and .-l‘f,w'N are outer inverses of 4. Thus it follows from Eq.(5.1) that

C
r(AT—Aly) = 7 ; +r[Af, Al vl = r(Ah) - (4] )
AMN
A= -
= r (M A) +r{A™. N7 AT = 2r(4)
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A
= r +r{A, MA] - 2r(4).
B
Parts (a)—-(c) follow immediately from it. a

Theorem 16.2. Let A € C™*" be given, M € C™*™ and N € C™*" be two positive definite matrices.
Then

(a) r(AAL, v = AAY) =4 MA] = r(4).
4
(0) (Al yd-Atd) =7 { AN } o

(c) Adl, oy = AAT &= R(MA) = R(4).
(d) Al vA = ATd &= R[(AN)*] = R(47).

Proof. Note that both 4.4 and AATM_N are idempotent. [t follows from Eq.(3.1) that

r(Adt —44f, v) = Adl } +r{Aat, A4l o1 - (Al = r(AAl, )
e S tMN - -l-lf chety AN R SERMLON
SETMUN
A
= r +r[A, A] - 2r(4)
(MA)"

= r[d, MA]-r(4),
as required for Part (a). Similarly we can show Part (b). O
Theorem 16.3. Let A € C™*™ be given, and M, N € C™*™ be two positive definite matrices. Then

(a) r(AAl, v — Al v A) =r[A" MAJ+ (A7, NA] - 20(4).
(b) A4l v =4l A e R(MA) = R(NA) = R(A*) & both MA and NA are EP.

Proof. Note that both 4A" and AA;‘”'N are idempotent. [t follows by Eq.(3.1) that

AAf
7( -4-4R1.N - -‘15\«!,1\1‘4) =T 4 M'z ] + r[AARz,N’ ‘{RI.NA] - r("l"l;t’\l.!\/’) - r(-‘ﬁu..‘v A)
AMN-

[ At
= r "1-1‘ ] +r{d Al v =20

(M A 1
= r N +r[A. N7HAT] - 2r(4).
as required for Part (a). Part(b) follows immediately from Part (a). O

Based on the result in Theorem 16.3(b), we can extend the concept of EP matrix to weighted case:
A square matrix A is said to be weighted EP if both M 4 and N are EP, where both A and N are two
positive definite matrices. It is expected that weighted EP matrix would have some nice properties. But

we do not intend to go further along this direction in the thesis.
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Theorem 16.4. Let A € C™*™ be given, and M, N € C™*™ be two positive definite matrices. Then
(a) r(AAY v — Al vA) =r[AT, MA]+r[AT, NTA] - 2r(4).
(b) A4l v =4l vA = R(MA) = RWNTA) = R(AT) < both MA and NT A are EP.

Proof. Follows from Eq.(3.1) by noting that both AA%, . and AA%, , are idempotent. o
M.N 1YY

Theorem 16.5. Let 4 € C™*™ be given with Ind(4) = 1, and M, N € C™*™ be two positive definite
matrices. Then

(@) (Al v =A%) =r[A", MA]+r[A%, NA]—2r(4).

(b) Al v =A% <= R(MA) = R(NA) = R(A%), i.e., A is weighted EP.

Proof. Note that both 4" and A# are outer inverses of 4. It follows by Eq.(3.1) that

+ [ -4f t - -3
Ay —4%) = r _;;V } +r{ Ay ye AT ] = (Al ) = rAT)
M A)*
= .| C 4) } +r[NTUAT, A= 2r(A)

= r[47, MA]+r[4%, NA] = 2r(4),

as required for Part (a). c

Theorem 16.6. Let 4 € C™*™ be given with Ind(4) = 1, and M, N € C™*™ bhe two positive definite
matrices. Then

(a) r(AAl, v — AA%) = r[ A%, MA] - r(A).

(b) r(Al, yA = A#F L) =r[ 4%, NA]—r(4).

(€) r(Al v —4%) =r(44], v — 44#) +r(4f, v A - 4% 1),
In particular.,

(d) Adl, v = A4# &= R(M ) = R(4*), i.e., MA is EP.

() Al yA =A% & R(NA) = R(A"), i.e., N4 is EP.

() Al ny =A% == A4l v = 44¥ and Al A= 4% 4

Proof. Note that both 44T and 44# are idempotent. It follows from Eq.(5.1) that

[ 4t .
r(AAl v —44%) = ¢ 4:;;” ] +r(Adl, v, A4F] (a4l o) - r(44%)
AR! N
= r ’ +r[A, 4] —2r(4)
A#
M4y
. 4_) :Izr[:l', MA] - r(4),

as required for Part (a). ]



Theorem 16.7. Let A € C™*™ be given with Ind(4) = k, and M, N € C™*™ be two positive definite

matrices. Then

Ak pr-t
(a) r( o‘lfw,zv - 4P )=r1 l: ;)1

(b) r(Al n —AP) =r(dl, v) —r(AP) = R(NA*) Cr(47) and R[(A*M~1)"] C r(A).

:l +r[NAY, A7 ] - r(4) — r(45).

Proof. Note that both AR—!.N and AP are outer inverses of 4. It follows by Eq.(5.1) that

[ 4t .
r( -‘{.Tw N—dAP) = r MDW } + r[At” v AP]= (Al ) = r(47)
MA)"
= | ) ] +r[NTEgt, AR ] - 2r(4)
Ak
AT &
= r + {47, VA¥] = 2r(4),
Akpr-t
as required for Part (a). G

Theorem 16.8. Let A € C™*™ be given with Ind(A) = k. and M. N € C™*™ be two positive definite

matrices. Then

Akpr-t
— r(4%).
4r
(b) r(Al, pAd = APA) = [ NAF A7) = r(4F).
(@) r(Al v —AP) =r(Adl, v — 44P) + (Al v A = APA) + r(A%) = r(A).

(a) r(Adl, v —A4P) =7 {

Proof. Note that both AAR,_N and AAP are idempotent. It follows from Eq.(5.1) that

a4l .
r( -‘1“111‘.’\' —-A4P) = - li!bh } + "[AAT\I.A“ AAP] - "("L‘l.tw..v) — r(A4P)
o
= r :’DN +r[d, AP]=r(d) = r(4H)
M A)* A
= r (MA) —r(d)=r —-r(d)
Ak Akar-t

as required for Part (a). Similarly we can show Part (b). Combining Theorem 16.6(a) and Theorem
16.7(a) yields Part (c). m]
Theorem 16.9. Let A € C™*" be given, M, N € C™*™ be two positive definite matrices. Then

k
AM
(b) Al pyA* = AF4l & R(4%) C R(N™'4") and R[(4%)7] C R(M 4).

(a) 7( AEW,N"U: - .-lkAR,,‘N) =r I: } +r[A*, N7LAT] = 2r(4).

Proof. Follows from Eq.(4.1). a
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Based on the result in Theorem 16.3(b), we can extend the concept of power-EP matrix to weighted
case: A square matrix A4 is said to be weighted power-EP if both R(A*) C R(N~'4") and R{(4*)*] C
R(M A) hold, where both M and N are positive definite matrices.

Theorem 16.10. Let A € C™*™ be given with Ind(4) =k, and M, N € C™*™ be two positive definite

matrices. Then

Ak

A M
(b) Al AP = 4P4h e R(A¥) C R(N~'4%) and R[(A¥)"] C R(MA), ie.. 4 is weighted

power-EP.

(@) r(Af yAP —APAL y) =7 [ ] AR, NTUAT = 20(A) = r( Al AR — 4k 4L, )

Proof. Follows from Eq.(4.1). a

Theorem 16.11. Let 4 € C™*"™ be given, M, S € C™*™ and N. T € C*"*" be four positive definite

matrices. Then

AN
(a) r( Af\[ N -'Us T)=T
' ' AT

(b) Al v = AL <= R(MA) = R(SA) and R[(AN~')"] = R[(AT~Y)"].

] +r[MA, SA]—2r(4).

Proof. Note that both AR,,'N and AL'Q are outer inverses of 4. Thus it follows by Eq.(3.1) that

[ gt
A
r( "“T&I.N - -‘121) = r I:I'N + 7'[-4R1.Nv AL‘.T] - r(‘{f\l.;\') - "(-421)
| s
‘/ y =
= | YT P[N=EA®, TV 4] — 2(A)
(S4)°
I AN
= r ! +r[MA. SA] - 2r(4).
AT

establishing Part (a). a

Theorem 16.12. Let 4 € C™*™ be given, M, S € C™*™ . N, T € C"*" be four positive definite

matrices. Then

(a) r(Adl, v — AL ) =r[MA, SA]-2r(4).

AT!

(©) r(Ahpy = Abr) =r(Ad)y v — A4b ) + (Al vAd = Al ).

ANTE
(b) r(Al yA—ALrd) =7 [ ] —r(4).

Proof. Follows from Eq.(3.1) by noticing that AARL N AR{, N AATS‘T and AL_TA are idempotent

matrices. ]

Theorem 16.13. Let A € C™*™ be an idempotent or tripotent matriz. and M. N € C™*"™ be two
positive definite matrices. Then

(a) r(A—Al y)=r[A", MA]+r[4A", NA] - 2r(A).
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(b) A=Al v < R(MA) = R(NA) = R(A%), i.e., A is weighted EP.

Proof. Note that A, ATU,N € A{2} when 4 is idempotent or tripotent. It follows by Eq.(5.1) that

A
r(A-4Al, ) = r o } +r[A, Al p 1= () = (Al )
*MN
F
= r (N[. e :l +r{d, N7UAT] = 2r(d4)

rlA®, MA]+r[A", NA] = r(4) — r(45).
as required for Part (a). O

Theorem 16.14. Let 4, B € C™*™ be qiven, M, N € C™*™ be two positive definite matrices. Then

A4
a) r(A4l oB-BAl _A)=r Fr{d, BN714*] - 2r(4).
(a) r( M.N M.N ) A*MB } T [ ]
t t AB A -l g= 9
(b) r(AY, vAB - BA4l, ) =r Y +r[BA. N7UAT] = 2r(A).

(¢) AAY, vB=BAl, yAd e R(BN™'A") C R(A) and R(B*MA) C R(A").
(d) Al vAB =BAAl <= R(BA) C R(N~'4*) and R[(AB)*] C R(MA).

Proof. Follows from Eq.(4.1). a

Theorem 16.15. Let A € C™*™ be given with Ind(A) = 1. P. Q € C™*™ be two nonsingular matrices.
Then

(a) r{(PAQ)t —Q~1A*P~ '] =r { } +r[A. QQ=AT] = 2r(4).

A=pp
(b) (PAQ) = Q~'4#¥P~! & R(QQ"A*) = R(4) and R(P*PA) = R(A").

Proof. It is easy to verify that both (PAQ)' and Q' 4# P~! are outer inverses of PA(. Thus it follows
by Eq.(5.1) that

r[(PAQ)T - Q ' a# P!

[ 1O
= (PAQ) } 7 (PAQ)*, Q_l_—l#P_l] _ T[(P.-lQ)f] — F[Q"l.-l#P—ll
Q—[A#P_l
= | (PAP ] +r[QPAQ) . A% ] - 2r(4)
A#
. ‘“:P } +r[QQ7A%, A] - 20(4),
establishing Part (a) and then Part (a). O

Theorem 16.16. Let 4 € C™*™ be given, M, N € C™*™ be two positive definite matrices. Then
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(a) r[(PAQ)t —Q~A}, yP 1=+ } +r{ A MTUPTPAT] - 2r(4).

A
AQQ*N
(b) (PAQ)' = Q~'al, yP~' <= R(M~'P*PA") = R(4) and R(NQQ"A*) = R(A").

Proof. It is easy to verify that both (PAQ)' and Q“AIM'NP‘l are outer inverses of PA@. Thus it
follows by Eq.(5.1) that

r(PAQ)T — Q' 4l v P!

[ (PaQ) } . _ _
=T Q-tal, Pt } +r[(PAQ), Q7' Al v P ] = r(PAQ) ] = r[Q ' A}, v P71
[ (P10)P .
= r ( {fQ) }-&-r[Q(F.—lQ)‘, Al vl =2r(A)
L “t*M.N
= r (4‘[11)13 } +r[QRTA", N7 4] —2r(4)
= r 4 }-{-r[.-l, M™'P PA] - 2r(4),
AQO*N
establishing Part (a). a
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Chapter 17

Reverse order laws for weighted
Moore-Penrose inverses of products of
matrices

Just as for Moore-Penrose inverses and Drazin inverses of products of matrices. we can also consider
reverse order laws for weighted Moore-Penrose inverses of products of matrices. Noticing the basic fact in
Eq.{16.2). we can easily extend the results in Chapter 8 to weighted Moore-Penrose inverses of products

of matrices.

Theorem 17.1. Let A € C™*" B € C***, and C € C*¥*! be given and let J = ABC. Let M € C™*™,
N e ! P eC™ ™, and Q € C*** be four positive definite matrices. Then the following three statements
are equivalent:

(1) (ABCO)\ x =ChnBhoAl p-

(b) (M2ABCN-%H)t = (QiCN-H)(PEBQ-)I(MEAP— %)t

BQ~'B*PB 0 BC
(¢) r 0 ~JIN~L*MJ JNTICQC | =r(B) +r(J).
AB AP-YA=MT 0

Proof. The equivalence of Part (a) and Part (b) follows directly from applying E.(16.2) to the both
sides of (ABC)Y, x = CL yBh oAk, p and simplifying. Observe that the left-hand side of Part (b) can
also be written as

(MTABCN™3)t = [(M3AP 3)(PIBQ %)(QiCN~)]1.

[n that case, we see by Lemma 1.1 that Part (b) holds if and only if

B, B} B, 0 B,C,
T 0 —.]1.]1'J1 J[Cfcl =r(By) +7'('Il)7
A, B; ArATJi 0
where
A =MTAPF, B, =PiBQ~Y, C, =QiCN~%. J =MiABCN™E

Simplifying this rank equality by the given condition that A/, N, P and Q are positive definite. we obtain

the rank equality in Part (c). O

Corollary 17.2. Let A € C™*", B € C™"**, and C € C**! be given and let J = ABC. Let P € C"**"
and Q € C*** be two positive definite matrices. Then the following three statements are equivalent:

(a) (ABC) =Ck BhoAl p.

(b) (ABC)t = (Q*C)N(P*BQ-H)(AP~ ).
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BQ~'B*PB 0 BC

() 0 =JJ*J JC*QC | =r(B)+r(J}.
AB AP-ta~g 0
Proof. Follows from Theorem 2.1 by setting Af and N as identity matrices. o

Corollary 17.3. Let 4 € C™**, B € C***, and C € C**! be given and denote J = ABC. Let
M eCcm*m N e C"! be two positive definite matrices. Then the following three statements are equivalent:
(a) ("LBC)T\!,N = C;.NBTAR!.I'
(b) (M2ABCN-H) = (CN—3)I Bt (M%)t

BB*B 0 BC
() r 0 —-JN~L=AMLJ JN-CC | =1r(B)+r(J).
AB AA=MJ 0
Proof. Follows from Theorem 17.1 by setting P and @ as identity matrices. 0

Corollary 17.4. Let A € C™*", B € C"**, and C € C**! be given with r(A) = n and r(C) = k. Let
Mecm*m N e, PeCr*™, and Q € C**k be four positive definite matrices. Then the following
two statements are equivalent:

(a) (4ABC)\, = Cé.NBI?,QAR!,P'

(b) R(P7'4"MAB)C R(B) and R[(BCN~!'C*Q)*]C R(B").

Proof. The given condition r(4A) = n and r(C) = k is equivalent to A4 = [,. CC' = [. and

r(ABC) = r(B). In that case. we can show by block elementary operations that

BQ~'B*PB 0 BC 0 0 B
0 -JN"YI*MJ INTICQC and 0 U BCN~ICQ
AB AP~tAMT 0 B P~'A*MAB 0

are equivalent. the detailed is omitted here. This result implies that

BQ~'B*PB 0 BC
r 0 ~JN-YI*M.J JIN"'C-QC
AB APV A MT 0
[ 0 0 B
= r| 0 0 BCN™(CQ
| B P~'A"MAB 0
B 1 -
= r +r[B, PT'A"MAB].
BCN~IC*Q
Thus under the given condition of this corollary, Part (c) of Theoremn 17.1 reduces to
B 1 ..
r +r[B, PT'4"MAB] = 2r(B),
BCN-'C*Q
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which is obviously equivalent to Part (c¢) of this corollary. [

Corollary 17.5. Let 4 € C™*™, B € C™*" and C € C™*" be given with A and C nonsingular. Let
M, PeC™ ™ and N, Q € C™*™ lbe four positive definite Hermitian matrices. Then
(a) (ABC)}, v =C 'BLoA™! <= R(P~'A*MAB) = R(B) and R[(BCN~'C*Q)"| = R(B").
(b) (.-lBC)R,vN =C 'BlA™! <= R(A*MAB) = R(B) and R[(BCN-!'C*)"] = R(B").
() (ABC) = C"‘B‘;,'Q.él‘l <= R(P~'4"AB) = R(B) and R[(BCC*Q)"| = R(B~).

In particular, the following two identities hold
, t - - -
(ABC)yyn=C lB(fA-MA).(C‘N-'C')-l"" L (17.1)

(ABC)" = C—IB(fA'A).(CC')“A‘l' (17.2)

Proof. Let - and C be nonsingular matrices in Corollary 17.4. We can obtain Part (a) of this corollary.
Parts (a) and (b) are special cases of Part (a). The equality (17.1) follows from Part (a) by setting
P=A"MA4and Q = (CN~'C=)~L. O

Theorem 17.6. Let A € C™*" B € C™"**, and C € C**! be given and denote J = ABC. Let
Mecmxm N el PeC™n", and Q € CK** be four positive definite matrices. Then the following

two statements are equivalent:

(a) (ABC)| .y = (BCYp yB(4B)}, -

B (AB)"MJ B*PBC
(b) r .].IV—"(BC)' 0 0 =r(B) +r(J).
ABQ-'B- 0 0

Proof. Write ABC as ABC = (AB)BLVQ(BC) and notice that (B;,.Q)g'P = B. Then by Theorem

17.1. we know that

(ABC), v [(AB)BLo(BC) 1}, v

(BC)hn (Bh )b p(AB)Y; g = (BO)b w BIABY,, 4

holds if and only if

BboP~'(Bbg) @Bhg 0 BboBC
r 0 ~JN~'*MJ  JN"YBC)'P(BC) | =r(Bhg) +r(J). (17.3)
ABBL, ABQ™Y(AB)*MJ 0

Note by Eq.(1.5) that
BhoP™'(Bho)"QBhg = Q7 H(PIBQ™H(PIBQ )" (P AQ~¥) PE.

Thus by block elementary operations, we can deduce that Eq.(17.3) is equivalent to Part (c) of the

theorem. The details are omitted. 0



Corollary 17.7. Let 4 € C™*". B € C™** and C € C**! be given and denote J = ABC. Let
MeCmxm, N el PecC™n, and Q € C**F be four positive definite matrices. If

r(ABC) = r(B), (17.4)
then the weighted Moore-Penrose inverse of the product ABC satisfies the following two equalities
(ABC)ly n = (BO)b y B(AB), 0. (17.5)

and

(ABC)RI.N = (BIJ.QBC)I?,NBI’.Q(ABB;).Q)T\I.Q’ (17.6)

Proof. Under Eq.(17.4), we know that
r(AB) =r(BC) =r(B),

which is equivalent to

R(BC) = R(B), and R(B"A*) = R(B").

Based on them we further obtain
R(B*PBC) = R(B"PB) = R[(B*P%)(B*P*)"| = R(B*P*%) = R(B"),

and

R(BQ™'B"A%) = R(BQ™'B") = R[(BQ™*)(BQ~*)"| = R(BQ™*) = R(B).

Under these two conditions, the left-hand side of Part (b) in Theorem 17.6 reduces to 2r(B). Thus
Part (b) in Theorem 17.6 is indentity under Eq.(17.4). Therefore we have Eq.(17.3) under Eq.(17.4).
Consequently writing ABC as ABC = (AB)BLQ (BC) and applying Eq.(17.3) to it vields Eq.(17.6).
a

Some applications of Corollary 17.7 are given below.

Corollary 17.8. Let 4, B € C™*" be given, M € C™*™ N € ("<, P € C®>™*3¥™ gnd Q € C*"**" pe
four positive definite matrices. If 4 and B satisfy the rank additivity condition

r(A+ B) =r(4) +r(B), (17.7)

then the weighted Moore-Penrose of -\ + B satisfies the two equalities

1,
A 40
(A+B), v = { J { } (4, Bl}, o (17.8)
' B 0 B :
PN
Al o4 Al 0
(‘il +B )I‘/[,IV = [ B;”“VB { A(/;'v Bf 4 } [‘4‘459{.1\/’ BB}UJV ]R’[.P' (179)
M.N M. N-
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Proof. Write 4 + B as

40 I
A+ B =(In, In] .= UDV.
0o B|| I

Then the condition Eq.(17.7) is equivalent to r(UDV) = r(D). Thus it turns out that
(UDV)RI,N = (DV)L.ND(UD)RLQ’

which is exactly Eq.(17.8). Next write 4 + B as

Al 0 A
A+B=[4 B]| MY = U, D, V7.
0 B;T\I.N B

Then the condition Eq.(17.7) is also equivalent to r(U; D\ V|) = r(D;). Thus it follows by Eq.(17.5) that
(Ui D1y v = (DiV1)5 ¥ D1 (Ui D1)Yy p, which is exactly Eq.(17.9). a

A generalization of Corollary 17.8 is presented below, the proof is omitted.

Corollary 17.9. Let A;, ---., 4 € C™*™ be given, and let M € C™*™ N € C**", P € Ckm>km_ynd

Q € Cknxkn pe four positive definite Hermitian matrices. If
r{ld;+---+ Ax)=r(d) + -+ 7(dg). (17.10)

then the weighted Moore-Penrose inverse of the sum satisfies the following two equalities

;
A.l .-l[
(A +-+A) =1 (A, s Al (17.11)
A PN e
I8 f
t=1 M.N
i f f
(A )M,N Ay (A )M,N
: (A D o Al Ak v Ty e (17.12)
(Ae) by vk (Al

Q.N

Corollary 17.10. Let 4 € C™*", B € C™*k, C € C'*", A € C'** be given. M. P g C(m+ixtm=i
N, Q € C(n+k)x(n+k) pe four positive definite matrices. If

[ ‘hl B ] '
r =r(4), (17.13)
C D

or equivalently AA'B =B, CA'A = C and D = CA'B, then

t t t
4 B A B 40 40 -
= . (17.14)
[C D} [o 0} [0 0}[0 0}
M.N PN M.Q
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In particular,

t t
4 B A
=[4, B]l A )
2o] 2]
M.N Af.

¢
Proof. Under Eq.(17.13), we see that
4 B | I, O 4 0 I, A'B
C D cAt 0 0 0 Iy
Thus by Corollary 17.6. we obtain
B f
A i
{ C D } = (LN LD}
M.N

which is exactly Eq.(17.14). When P = [,,.; and Q = [,,4. we have

2Ll

= ;’\"_% [ ([

NTE((A BINTH = [4, Bl

Similarly we can deduce

40
L., 0
| ][CO

Putting both of them in Eq.(17.14) yields Eq.(17.15).

4 B
0 ¢

} -

V-

A, B]i\«—_% )t
[0. 0]

} = ULV

)|

["l
0

|
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