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Abstract

Geometric Approaches to Statistical Defect Prediction and Learning

Nazanin Hazrati

Software quality is directly correlated with the number of defects in software sys-

tems. As the complexity of software increases, manual inspection of software becomes

prohibitively expensive. Thus, defect prediction is of paramount importance to project

managers in allocating the limited resources effectively as well as providing many advan-

tages such as the accurate estimation of project costs and schedules. This thesis addresses

the issues of statistical fault prediction modeling, software resource allocation, and optimal

software release and maintenance policy.

A software defect prediction model using operating characteristic curves is presented.

The main idea behind this predictor is to use geometric insight in helping construct an

efficient prediction method to reliably predict the cumulative number of defects during the

software development process.The performance of the proposed approaches is validated on

real data from actual SAP projects, and the experimental results demonstrate a compelling

motivation for improved software quality.

Contribution in the field of software defect prediction continues by application of Ge-

netic Programming(GP), as the youngest of Evolutionary Algorithm family member, in

field of machine learning. GP is a flexible and expressive tool to build models based on the

minimizing an objective function. GP does not take into account any assumptions since it

is based on no bias as well as no heuristics. This method has been applied on NASA IV&V

defect repository.
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CHAPTER 1

Introduction

Software systems are now being used in many demanding applications. Software defects

cost businesses and the software industry billions of dollars in lost productivity every

year. Software quality impacts development costs, delivery schedules, and user satisfac-

tion. Software quality is directly correlated with the number of defects in software systems.

In other words, increasing software quality means reducing number of defects in the soft-

ware product. Errors and mistakes happened in development process as well as ambiguous,

missing or incorrect requirements will lead to faults in the software product. Software in-

dustry has been seeking effective approaches on finding effective software defect prediction

methods during the past years.

It is well-known that more pre-release development and testing on systems can reduce

future development costs and result in higher software quality. On the other hand, the pres-

sure to deliver an operational product quickly can frequently affect the resource allocation

among development phases or within one of the phases. Unfortunately, nowadays all these

decisions are made intuitionally. However, human’s brain is not able to take into account all

the effecting parameters at the same time. Besides, human judgements are biased. Hence,

there is a high demand for a strategic, mathematically proven approach for these decisions.
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Knowledge about how many defects to expect as well as detecting defect-prone mod-

ules in a software product empower software companies to gauge the expenses related to

verification and validation efforts. It provides essential information for decision making

in many software development activities, such as cost analysis, resource allocation, and

release and maintenance time decision. It is also useful to obtain a software reliability

measure. In addition, having the optimal decisions will result in software quality increase.

The major part of this thesis is devoted to methods for optimal policies in software

development processes. The first problem addressed in this thesis is software defect pre-

diction using operating characteristic curves and Laplace trend statistics. The main idea

behind our proposed technique is to use geometric insight in helping construct an efficient

and fast prediction method to accurately predict the cumulative number of defects at any

given stage during the software development process. Real data from actual SAP projects

is used to illustrate the effectiveness and the much improved performance of the proposed

methods in comparison with existing approaches.

We also propose Genetic Programming (GP)-based approaches for learning defect pre-

dictors. Defect prediction will be carried out through our proposed evolutionary algorithms

in a way that the global structure of the data is preserved. We tested different methods of

reducing the dimensionality of data with the aim of inductive learning. We achieved the

best performance by taking no heuristics into account which is the essential assumption by

evolutionary algorithms. Experimental results have been assessed as significant in terms

of having high detection rate while keeping misdetection rate low. Although additional

research efforts might provide a more detailed analysis of the predicted defects, the results

presented in this thesis provide a compelling motivation for improved software quality.
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1.1 Framework and Motivation

Quality is perceived differently in various domains and different perspectives of quality

have been as follows [1]:

• Quality can be recognized but not defined.

To many people, quality is similar to what a federal judge once said about

obscenity: ’I know it when I see it.’ [2]

• Quality is conformance to specification. Putting the effort to have a well-defined

specification helps a lot to have a quality product. Although sometimes errors made

during the requirement stage account for more than half of the defects found in a

software project [3].

• Fitness for use. Many software products do not meet the user needs and expectations

while they adequately meet the specifications.

• Software Quality attributes or ”-ilities” of software product. Some examples are

reliability, usability, availability, flexibility, maintainability, portability, installability,

and adaptability.

• The monetary value that a customer is planning to spend on it. It is also dependent

on the software application platform.

Software Quality Assurance (SQA) is defined as a planned and systematic approach to the

evaluation of the quality of and adherence to software product standards, processes, and

procedures. It has been widely accepted as a practical, cost effective way to improve soft-

ware quality [4]. SQA includes the process of assuring that standards and procedures are

established and are followed throughout the software acquisition life cycle. Compliance

3



with agreed-upon standards and procedures is evaluated through process monitoring, prod-

uct evaluation, and audits. Software development and control processes should include

quality assurance approval points, where an SQA evaluation of the product may be done in

relation to the applicable standards.

One of the many challenges faced when attempting to build a business case for soft-

ware process improvement is the relative lack of credible measurement data. If a company

does not have the data to build the business case, then it does not have the improvement

project to get the data. It is the classical chicken-and-egg dilemma. The motivation behind

this thesis is to implement statistical models for predicting software defects using available

defect data and use this data to find the optimal strategies in software production. The

practitioners collect software defect data during software development processes but the

decision support power of the collected data is wasted in most of the organizations. These

defect data combined with the data of other features become a well-suited repository for

using Bayesian statistics, machine learning, and evolutionary algorithms based techniques

to predict future defects. We have used defect dataset of a real SAP project for the contri-

bution done in Chapter 2. A master repository of static code metrics which is created and

maintained by NASA Independent Verification and Validation (IV&V) Facility has been

used in Chapter 3.

1.1.1 What are software defects?

A software engineer’s job is to deliver quality products for their planned costs, and on their

committed schedules. Software products must also meet the user’s functional needs and

reliably and consistently do the user’s job. While the software functions are most important

to the program’s users, these functions are not usable unless the software runs. To get the

software to run reliably, however, engineers must remove almost all its defects. Inspection
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team’s objective is to locate problems and decided what issues to be recorded as errors or

defects. Thus, while there are many aspects to software quality, the first quality concern

must necessarily be with its defects.

Some people mistakenly refer to software defects (faults) as bugs. When programs are

widely used and are applied in ways that their designers did not anticipate, seemingly triv-

ial mistakes can have unforeseeable consequences. As widely used software systems are

enhanced to meet new needs, latent problems can be exposed and a trivial-seeming defect

can truly become dangerous. While the vast majority of trivial defects have trivial conse-

quences, a small percentage of seemingly silly mistakes can cause serious problems. Since

there is no way to know which of these simple mistakes will have serious consequences,

we must treat them all as potentially serious defects, not as trivial-seeming “bugs”.

A defect is a problem in a software system or its documentation does not meet defined

requirements and is found beyond the point of origin, e.g. a requirement problem found

during a code inspection [4]. A defect is thus an objective thing. It is something you can

identify, describe, and count. Failure, is when a defect becomes active or in other words

we face that defect.

Simple coding mistakes can produce very destructive or hard-to-find defects. Con-

versely, many sophisticated design defects are often easy to find. The sophistication of the

design mistake and the impact of the resulting defect are thus largely independent. Even

trivial implementation errors can cause serious system problems. This is particularly im-

portant since the source of most software defects is simple programmer oversights and

mistakes. While design issues are always important, initially developed programs typically

have few design defects compared to the number of simple oversights, typos, and goofs. To

improve program quality, it is thus essential that engineers learn to manage all the defects

they inject in their programs.

5



1.2 Software reliability growth models

Achieving highly reliable software from the customers perspective is a demanding job for

all software engineers and reliability engineers [19] summarizes the following four techni-

cal areas which are applicable to achieving reliable software systems, and they can also be

regarded as four fault lifecycle techniques:

1. Fault prevention: to avoid, by construction, fault occurrences.

2. Fault removal: to detect, by verification and validation, the existence of faults and

eliminate them.

3. Fault tolerance: to provide, by redundancy, service complying with the specification

in spite of faults having occurred or occurring.

4. Fault/failure forecasting: to estimate, by evaluation, the presence of faults and the

occurrences and consequences of failures. This has been the main focus of software

reliability modeling.

Fault prevention is the initial defensive mechanism against unreliability. A fault which

is never created costs nothing to fix. Fault prevention is therefore the inherent objective of

every software engineering methodology. Fault prevention mechanisms cannot guarantee

avoidance of all software faults. When faults are injected into the software, fault removal is

the next protective means. Two practical approaches for fault removal are software inspec-

tion and software testing, both of which have become standard industry practices in quality

assurance.

When inherent faults remain undetected through the inspection and testing processes,

they will stay with the software when it is released into the field. Fault tolerance is the last

defending line in preventing faults from manifesting themselves as system failures. Fault
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tolerance is the survival attribute of software systems in terms of their ability to deliver

continuous service to the customers. Software fault tolerance techniques enable software

systems to (1) prevent dormant software faults from becoming active, such as defensive

programming to check for input and output conditions and forbid illegal operations; (2)

contain the manifested software errors within a confined boundary without further prop-

agation, such as exception handling routines to treat unsuccessful operations; (3) recover

software operations from erroneous conditions, such as checkpointing and rollback mech-

anisms; and (4) tolerate system-level faults methodically, such as employing design diver-

sity in the software development. Finally if software failures are destined to occur, it is

critical to estimate and predict them. Fault/failure forecasting involves formulation of the

fault/failure relationship, an understanding of the operational environment, the establish-

ment of software reliability models, developing procedures and mechanisms for software

reliability measurement, and analyzing and evaluating the measurement results. The abil-

ity to determine software reliability not only gives us guidance about software quality and

when to stop testing, but also provides information for software maintenance needs.

Software reliability may be the most important quality attribute of software, due to the

fact that it quantifies software failures during the software development process. Software

reliability models usually make a number of common assumptions, as follows: (1) The

operation environment where the reliability is to be measured is the same as the testing

environment in which the reliability model has been parameterized. (2) Once a failure

occurs, the fault which causes the failure is immediately removed. (3) The fault removal

process will not introduce new faults. (4) The number of faults inherent in the software

and the way these faults manifest themselves to cause failures follow, at least in a statistical

sense, certain mathematical formula. There are essentially two types of software reliability

models:

7



• those that attempt to predict software reliability from design parameters

• those that attempt to predict software reliability from test data

The first type of models are usually called “defect density” models and use code char-

acteristics such as lines of code, nesting of loops, external references, input/outputs, and so

forth to estimate the number of defects in the software. The second type of models are of-

ten called software reliability growth models (SRGMs) since the number of faults (as well

as the failure rate) of the software system reduces when the testing progresses, resulting in

growth of reliability. These models attempt to statistically correlate defect detection data

with known functions such as an exponential function.

Each software defect encountered entails a significant cost for software companies.

Hence the knowledge of the number of defects in a software product during its lifecycle

is a very valuable asset. Being able to estimate the number of defects will substantially

improve the decision processes in software lifecycle like time to release and maintenance

time. In addition, the production process of the software can be considerably improved by

employing a prediction model that reliably predicts the number of defects.

During the development process of software, many defects may be introduced and of-

ten lead to critical problems and complicated breakdowns of computer systems [5]. Thus

there is a high demand for controlling the quality and reliability of software development

process. As an evaluation for software reliability, number of defects can be used. In the tra-

ditional software development environment, software reliability evaluation provides useful

guidance in balancing reliability, time to market and development cost [6]. Therefore, there

is a greater than ever demand for prediction the quality and reliability of software.

Among all SRGMs, a large family of stochastic reliability models are based on a non

homogeneous Poisson process, which are known as NHPP reliability models. These mod-

els have been widely used to track reliability improvement during software testing. These
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models enable software developers to evaluate software reliability in a quantitative manner.

They have also been successfully used to provide guidance in making decisions such as

when to terminate testing the software or how to allocate available recourses. However,

software development is a very complex process and there are still issues that have not yet

been addressed.

Software fault and failure reports are available in three basic forms:

1. Sequence of ordered failure times 0 < t1 < t2 < . . . < tn

2. Sequence of failure times τi where τi = ti − ti−1, i = 1, . . . , n

3. Cumulative number of faults.

The general NHPP software reliability growth model is formulated based on the fol-

lowing assumptions:

• The occurrence of software faults follows an NHPP with mean value function m(t)

and failure intensity function λ(t).

• The software fault intensity rate at any time is proportional to the number of remain-

ing faults in the software at that time.

• When a software fault is detected, a debugging effort takes place immediately.

Let {N(t), t ≥ 0} denote a counting process representing the cumulative number of

faults detected by the time t, and m(t) = E[N(t)] denote its expectation. The failure

intensity λ(t) and the mean value functions of the software at time t are related as follows

m(t) =

∫ t

0

λ(s)ds

and
dm(t)

dt
= λ(t).
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The cumulative number of faults detected at time t follows a Poisson distribution with

time-dependent mean value function as follows

P{N(t) = n} =
m(t)n

n!
e−m(t), n = 0, 1, 2, . . . ,∞

The software reliability, i.e., the probability that no failures occur in (s, s + t) given that

the last failure occurred at testing time s is

R(t|s) = exp[−(m(t+ s)−m(t))]

The mean value function m(t) is nondecreasing with respect to testing time t under the

bounded condition m(∞) = a, where a is the expected total number of faults to be even-

tually detected. Knowing its value can help us to determine whether the software is ready

to be released to the customers and how much more testing resources are required. It can

also provide an estimate of the number of failures that will eventually be encountered by

the customers. The mean value function can be expressed as follows

m(t) = aF (t),

where F (t) is the cumulative distribution function. Hence,

λ(t) = aF ′(t) = [a−m(t)]
F ′(t)

1− F (t)
= [a−m(t)]ρ(t),

where ρ(t) is the failure occurrence rate per fault of the software, or the rate at which the

individual faults manifest themselves as failures during testing. The quantity [a − m(t)]

denotes the expected number of faults remaining. The failure occurrence rate per fault

(also known as hazard function)

ρ(t) =
λ(t)

m(∞)−m(t)

can be a constant, increasing, decreasing, or increasing/decreasing.

Table 2 and Figure 1 show examples of NHPP models with different failure intensity

functions
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Model name m(t) λ(t)

Log-linear
exp(α+ βt)

β
exp(α+ βt)

Exponential (Goel-Okumoto) α[1− exp(−βt)] αβ exp(−βt)
Weibull (Generalized Goel-Okumoto) α[1− exp(−βtγ)] αβγtγ−1 exp(−βtγ)

Power law
(
t

α

)β
β

α

(
t

α

)β−1

S-shaped α[1− (1 + βt) exp(−βt)] αβ2t exp(−βt)

Table 1: NHPP models.

0 2 4 6 8 10 12
0

0.5

1

1.5

2
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λ
(t

)

Log−linear
Exponential
Power law

Figure 1: Illustration of failure intensity functions.

1.2.1 Operating characteristic curves

A statistical test provides a mechanism for making quantitative decisions about a process

or processes [7]. The intent is to determine whether there is enough evidence to “reject”

a conjecture or hypothesis about the process. The conjecture is called the null hypothesis.

Not rejecting may be a good result if we want to continue to act as if we “believe” the null

hypothesis is true. Or it may be a disappointing result, possibly indicating we may not yet

have enough data to “prove” something by rejecting the null hypothesis. A classic use of a
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statistical test occurs in process control studies, and it requires a pair of hypotheses:

H0 : a null hypothesis

H1 : an alternative hypothesis

The null hypothesis is a statement about a belief. We may doubt that the null hypothesis is

true, which might be why we are “testing” it. The alternative hypothesis might, in fact, be

what we believe to be true. The test procedure is constructed so that the risk of rejecting

the null hypothesis, when it is in fact true, is small. This risk, α, is often referred to as

the significance level of the test. By having a test with a small value of α, we feel that we

have actually “proved” something when we reject the null hypothesis. The risk of failing to

reject the null hypothesis when it is in fact false is not chosen by the user but is determined,

as one might expect, by the magnitude of the real discrepancy. This risk, β, is usually

referred to as the error of the second kind. Large discrepancies between reality and the

null hypothesis are easier to detect and lead to small errors of the second kind; while small

discrepancies are more difficult to detect and lead to large errors of the second kind. Also

the risk β increases as the risk α decreases. The risks of errors of the second kind are

usually summarized by an operating characteristic curve (OC) for the test [7].

1.2.2 Bayesian statistics

Bayesian inference is statistical inference in which evidence or observations are used to

update or to newly infer the probability that a hypothesis may be true. The name “Bayesian”

comes from the frequent use of Bayes’ theorem in the inference process [8, 9]. Bayesian

inference uses aspects of the scientific method, which involves collecting evidence that is

meant to be consistent or inconsistent with a given hypothesis. As evidence accumulates,

the degree of belief in a hypothesis changes. With enough evidence, it will often become
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very high or very low. Thus, proponents of Bayesian inference say that it can be used to

discriminate between conflicting hypotheses: hypotheses with a very high degree of belief

should be accepted as true and those with a very low degree of belief should be rejected

as false. However, detractors say that this inference method may be biased due to initial

beliefs that one needs to hold before any evidence is ever collected.

Bayesian inference uses a numerical estimate of the degree of belief in a hypothesis

before evidence has been observed and calculates a numerical estimate of the degree of be-

lief in the hypothesis after evidence has been observed. Bayesian inference usually relies

on degrees of belief, or subjective probabilities, in the induction process and does not nec-

essarily claim to provide an objective method of induction. Nonetheless, some Bayesian

statisticians believe probabilities can have an objective value and therefore Bayesian infer-

ence can provide an objective method of induction. Bayes’ theorem adjusts probabilities

given new evidence in the following way:

P (H0|E) =
P (E|H0)P (H0)

P (E)
,

where

• H0 represents the null hypothesis that was inferred before new evidence, E, became

available.

• P (H0) is called the prior probability of H0.

• P (E|H0) is called the conditional probability of seeing the evidence E given that the

hypothesis H0 is true. It is also called the likelihood function when it is expressed as

a function of H0 given E.

• P (E) is called the marginal probability of E: the probability of witnessing the new

evidence E under all mutually exclusive hypotheses. It can be calculated as the sum
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of the product of all probabilities of mutually exclusive hypotheses and correspond-

ing conditional probabilities:
∑

P (E|Hi)P (Hi).

• P (H0|E) is called the posterior probability of H0 given E.

The factor P (E|H0)/P (E) represents the impact that the evidence has on the belief in the

hypothesis. If it is likely that the evidence will be observed when the hypothesis under

consideration is true, then this factor will be large. Multiplying the prior probability of the

hypothesis by this factor would result in a large posterior probability of the hypothesis given

the evidence. Under Bayesian inference, Bayes theorem therefore measures how much

new evidence should alter a belief in a hypothesis. Bayesian methods aim at assigning

prior distributions to the parameters in the model in order to incorporate whatever a priori

quantitative or qualitative knowledge we have available, and then to update these priors in

the light of the data, yielding a posterior distribution via Bayes Theorem. The ability to

include prior information in the model is not only an attractive pragmatic feature of the

Bayesian approach, but it is also theoretically vital for guaranteeing coherent inferences.

1.3 Machine learning based software defect prediction mod-

els

In order to achieve improvement, quality must be defined and measured. In software indus-

try, quality can be defined simply as lack of ”bugs” in the final product [2]. In the process

of building high quality softwares, developers and testers put their budget toward artifacts

they believe most require quality assurance (QA) activities. This can make a bias to QA

in terms of leaving some blind spots behind. In order to avoid having blind spots, the first

approach that comes to mind is to manually inspect the code and all other aspects of soft-

ware modules. It is highly time and money consuming and is considered impractical in
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large projects. As Menzies [42] suggested, by practicing a ”lightweight sampling policy”

we will be able to explore the rest of the software as well as raising an alert on problematic

parts of the software. In other words, the primary step to address the above problem is

to predict the number of defects as well as defect prone modules to distribute resources

efficiently.

Data mining over static code features is the best known method for building a lightweight

sampling policy. ”Data mining” can be defined as extracting patterns from data sets (ma-

trices) having columns as features and rows as observations (examples). This is considered

as supervised learning in the absence of a background theory.

As the size and complexity of software increases, manual inspection of software be-

comes prohibitively expensive. An effective testing method targets minimizing the number

of defects while using resources efficiently [36]. In order to prevent exhaustive testing

which significantly reduces relevant cost, software defect prediction models have been pro-

posed to allocate testing resources effectively. Thus, defect prediction is of paramount

importance to project managers in allocating the limited resources effectively, and it also

provides many advantages such as the accurate estimation of project costs and schedules as

well as improving product and process qualities. Selecting an appropriate defect predictor

is a key practical issue [52] because many modeling approaches have been proposed in the

literature including reliability growth models [15–18], Bayesian models [12], and artificial

neural networks. Most of these models are built using historical defect data as well as

software metrics and are expected to generalize the statistical patterns for unseen projects.

Thus, collecting defect data from past projects to implement software metrics [1] is the key

challenge for constructing such predictors.

The application of machine learning methods to find patterns in the historical data is

the current century’s trend in the field of software defect prediction. Data miners can learn
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predictors for software quality from code metrics. Since a major part of this thesis is

devoted to application of machine learning methods toward quality, some vital concepts

are described next [34]:

Machine learning believes that there is a process that explains the data we

observe. Though we do not know the details of the underlying processes, we

are able to construct a useful approximation. Application of machine learning

methods on large datasets is called data mining. Learning large volume of

data leads to construct a model that uses small number of valuable data is its

primary application. Machine learning is part of artificial intelligence too since

it gives the learning ability to the changing systems.

1.3.1 K-fold Cross-validation

In order to generate a classifier, we do need to use a classification algorithm

on a dataset. If we run the training once, we will get one classifier and one

validation error. To average over randomness, we use the same algorithm and

generate multiple classifiers [34].

In K-fold cross-validation, the dataset χ is randomly divided into K equal-

sized parts, χi, i = 1, ..., K. To generate each pair, we keep one of the K parts

out as the validation set, and combine the remaining K − 1 parts to form the

training set. Doing this K times, each time leaving out another one of the K

parts out, we get K pairs:

ν1 = χ1, τ1 = χ2 ∪ χ3 ∪ ... ∪ χK

ν2 = χ2, τ2 = χ1 ∪ χ3 ∪ ... ∪ χK
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...

νK = χK , τK = χ1 ∪ χ2 ∪ ... ∪ χK−1

As can be observed, one round of cross-validation involves partitioning a sam-

ple of data into complementary subsets, performing the analysis on (K − 1)

training set, validating the analysis on 1 testing set. As mentioned above, in or-

der to reduce variability, multiple rounds of cross-validation are performed us-

ing different partitions, and the validation results are averaged over the rounds

to produce a single estimation. The advantage of this method over repeated

random sub-sampling is that all observations are used for both training and

validation, and each observation is used for validation exactly once. In other

words, each folds contains roughly the same proportions of the the two types

of class labels [14, 34].

1.3.2 Supervised machine learning algorithm

Supervised learning can be simply defined as learning behaviors based on em-

pirical data to infer a function. Alpaydin [34] defined a sample as

χ = {xt, rt}Nt=1

where all the instances are drawn from the same joint distribution p(x, r). The

parameter t shows one of the N instances, xt is for demonstrating the arbitrary

dimensional input and rt is the associated desired output (which is 0/1 in a

two-class learning as our upcoming case). The goal is to build a good approxi-

mation to rt using model g(xt|θ). Learning model g is denoted as g(x|θ) where

x is the input and θ are the parameters.
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The loss function is defined as

E(θ|χ) =
∑
t

L(rt, g(xt|θ)),

which in class learning, L(.) checks for equality.

Optimization procedure is defined as

θ∗ = argmin
θ

E(θ|χ)

where the argmin returns the argument that minimizes the approximation er-

ror. Other perspective of looking at the above problem is by estimating the

reliability of the system in terms of time to failure.

1.3.3 Metrics

According to Humphrey [1,38], there are four major reasons for collecting data

and implementing software metrics:

• Learning software processes, products and services.

• Evaluating as part of the decision-making process to analyze and study to

see if standards, goals and criteria are being met.

• Controlling variances, control limits and standards.

• Predicting the values of attributes in the future.

Software metrics have been defined in the literature as ”standardize ways of

measuring the attributes of software processes, products, and services in order

to provide the information needed to improve those processes, products, and

services” [1].
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There are a number of metrics that mostly support the software verification ac-

tivities, like Complexity metrics (e.g. McCabe Cyclomatic Complexity Metric,

Halstaed’s software science metrics), defect metrics, product metrics, and pro-

cess metrics [4].

We have applied our proposed approaches based on statistical and machine

learning concepts on two different data repositories. In chapter 2 we are us-

ing SAP’s CRM (Customer Relationship Management) system defect dataset.

This defect dataset from a real SAP project contain monthly software defects

that were recorded for a period of 60 months. The testing process of such a

large software solution generates messages that identify potential software de-

fects [11–13]. These messages are archived, and software companies have a

wealth of historical records about them. In chapter 3, we will learn defect pre-

dictors on NASA IV&V Facility Metrics Data Program repository [44]. This

public-domain defect dataset contains static software metrics and the associ-

ated error data at the module level for NASA software development projects.

The NASA Metrics Data Program Data Repository is a database that stores

problem data, product data and metrics data. Menzies claimed [41] that the

reason behind learning defect predictors from static code attributes is:

• Using static code attributes results in higher detection ability than currently-

used industrial methods such as manual code review.

• Static code metrics (e.g. line of code, McCabe and Halstead attributes)

are cheap to collect in contrast to other methods like manual code inspec-

tion which is labor-intensive.

• They are used widely by researchers and practitioners.
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Static code metrics have some drawbacks too. They are hardly a complete

characterization of internal procedure of a module. The value of using them to

learn defect predictors has been widely debated.

1.3.4 Dimensionality Reduction

In most learning algorithms, the complexity depends on the number of input

dimensions, d as well as on the size of data sample, N . Reduction of data

dimensionality d also reduces memory and computation costs as well as de-

creasing the complexity of the inference algorithm during testing [34]. It is

even claimed that certain features of the original data might even reduce the

performance of the classifier [35]. The reason behind reducing the dimen-

sionality is data analysis activities like classification that can be done in the

reduced space more accurately than in the original space. Finding a subset of

data which does not damage the performance of learned predictor has been

studied previously [41]. The lower the number of dimensions, the easier to

learn a system [47]. There has been researches which apply heuristics to re-

duce the dimensionality of data to gain better prediction performance [35] and

[36]. Applying any heuristic however will lead to a biased search of the final

features. It is possible for this bias to limit the novelty and the creativity of the

found solutions.

Principal Component Analysis (PCA) - the most used linear technique - maps

data to a lower dimension space such that the variance is maximized [36]. PCA

technique tries to linearly transform data to a more meaningful basis. It reduces

the noise by selecting more important components through diagonalizing the

covariance matrix.
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Nonlinear Dimensionality Reduction (NLDR) techniques have been proven

practical in terms of keeping the general structure of data after transformation.

Some of NLDR methods preserve the neighborhood like Maximum Variance

Unfolding (MVU) while others minimize a cost function that measures differ-

ences between distances in the input and output space. A limiting issue with

PCA and other dimensionality reduction methods, either linear or non-linear,

is that they have a constant general model and dimension reduction procedure

would be about estimation of the model’s parameters.

1.3.5 Genetic Programming

Evolutionary Algorithms (EA) are population based. In other words, a whole

collection of candidate solutions will be searched simultaneously in order to

find the best solution. Figure 2 simply depicts how an EA algorithm works [39].

Figure 2: How evolutionary algorithms work!

Genetic Programming (GP), the youngest member of EA family, has been ap-

plied in the field of machine learning successfully [45–50]. Unlike most EA
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strands which are being used in optimization problems, GP can be easily po-

sitioned in machine learning approaches [39]. By having the representation

of chromosomes as tree structures, GP is usually used to seek models with

maximum fit.

GP has been proven capable and flexible in building expressions based on an

objective function. It combines both NLDR approaches by minimizing the cost

function which has the goal of keeping the local neighborhood. GP can select

linear or non-linear operators to build expressions through Parse Trees. That

makes GP a wise choice to construct new lower dimensional features based on

original features. As Figure 3 depicts, the penalty is getting minimized in our

proposed approach.

1.4 Thesis Overview and Contributions

The organization of this thesis is as follows:

o The first Chapter contains a brief review of essential concepts and defi-

nitions which we will refer to throughout the thesis, and presents a short

summary of material relevant to software defect prediction methods, Bayesian

statistics, operating characteristic curves, machine learning methods, soft-

ware metrics, and genetic programming.

o In Chapter 2, we present a software defect prediction model using op-

erating characteristic curves and Laplace trend statistic [30]. The main

idea behind our proposed technique is to use geometric insight in helping

construct an efficient and fast prediction method to accurately predict the

cumulative number of defects during the software development process.
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Figure 3: Penalty in one sample genetic programming run.

Experimental results illustrate the effectiveness and the much improved

performance of the proposed method in comparison with the Bayesian

prediction approaches.

o In Chapter 3, two defect learning methods based on Genetic Program-

ming (GP) concepts are proposed. The first method constructs new fea-

tures based primarily on the geometrical characteristics of the original

data. Then, an independent classifier is applied and the performance of

feature selection method is measured. The second method, on the other

hand, uses a built-in classifier which automatically gets tuned for the con-

structed features.
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o In the Conclusions Chapter, we summarize the contributions of this the-

sis, and we propose several future research directions that are directly or

indirectly related to the work performed in this thesis.
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CHAPTER 2

Predictive Operating

Characteristic Curves

In this chapter, we introduce a software defect prediction model based on the

concept of operating characteristic curve and Laplace trend statistic. The idea

is to use operating characteristic curves in statistical quality control and a geo-

metric approach to construct an efficient, fast, and accurate prediction method

to estimate the cumulative number of software defects during the software de-

velopment process. The experimental results demonstrate the effectiveness

and the improved performance of the proposed method in comparison with the

Bayesian prediction approaches.

2.1 Introduction

Knowledge about the number of expected defects in a software product at any

stage provide essential information for decision making in many software de-

velopment activities, such as cost analysis, resource allocation in testing and re-

lease decision time. The aim of software reliability growth modelling (SRGM)
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is to explain the behavior of software testing process caused by faults. Most

existing SRGMs only model fault detection processes with unrealistic assump-

tions such as perfect debugging. In this report, we use an improved SRGM

with more accuracy and realistic assumptions.

During the development process of computer software systems, many software

defects may be introduced and often lead to critical problems and complicated

breakdowns of computer systems [5]. Hence, there is an increasing demand

for controlling the software development process in terms of quality and reli-

ability. Software reliability can be evaluated by the number of detected faults.

A software failure is defined as an unacceptable departure of program opera-

tion caused by a software fault remaining in the software system [6, 10]. In

the traditional software development environment, software reliability evalua-

tion, which shorten development intervals and reduce development costs, pro-

vides useful guidance in balancing reliability, time-to-market and development

cost [13]. Hence, there is an increasing demand for prediction the quality and

reliability of software.

Several software reliability prediction models have been proposed in the lit-

erature for estimating system reliability, but all these kinds of models make

unrealistic assumptions to ensure solvability [6, 15–18, 21, 27, 28]. These un-

reasonable assumptions have limited the applications of these models [12,52].

Bayesian statistics provide a framework for combining observed data with

prior assumptions in order to model stochastic systems. Bayesian methods

aim at assigning prior distributions to the parameters in the model in order

to incorporate whatever a priori quantitative or qualitative knowledge we have
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available, and then to update these priors in the light of the data, yielding a pos-

terior distribution via Bayes’s Theorem [9]. The ability to include prior infor-

mation in the model is not only an attractive pragmatic feature of the Bayesian

approach, but it is also theoretically vital for guaranteeing coherent inferences.

Motivated by the widely used concept of operating characteristic (OC) curves

in statistical quality control to select the sample size at the outset of an exper-

iment [7], we propose in this chapter a software defect prediction technique

using OC curves in order to predict the cumulative number of failures at any

given time. The core idea behind our proposed methodology is to use geo-

metric insight in helping construct an efficient and fast prediction method to

accurately predict the cumulative number of failures at any given time.

The layout of this chapter is organized as follows. In the next Section, a prob-

lem formulation is stated. In Section 2.3, we briefly review some Bayesian pre-

diction models that will be used for comparison with our proposed approach.

In Section 2.4, we propose a new prediction algorithm based on OC curves.

In Section 2.5, we present experimental results to demonstrate the much im-

proved performance of the proposed approach in the prediction of software

defects. Finally, some conclusions are included in Section 2.6.

2.2 Problem Formulation

Usually the fault reports are available in three basic forms:

1. in the form of a sequence of ordered time of occurrences

0 < t1 < t2 < . . . < tn
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2. in the form of a sequence of interfailure times τi where τi = ti − ti−1 for

i = 1, . . . , n

3. in the form of cumulative number of failures detected by a time N(ti).

Failure(ti) and interfailure (τ(j))times are related by

ti =
i∑

j=1

τj,

The cumulative number of failures defines a non homogeneous Poisson process

(NHPP) with failure intensity or rate function λ(ti) which is a function of time.

The mean value function m(ti) = E(N(ti)) of the process is given by m(ti) =∫ ti
0
λ(u)du. Moreover, the probability of having κ failures in an interval is:

P (N(tj)−N(ti) = κ)

=
(m(tj)−m(ti))

κ

κ!
exp(−(m(tj)−m(ti))).

This is equal to say N(t + s) − N(t) is a Poisson distributed with expected

value ∫ tj

ti

λ(u)du = m(tj)−m(ti).

where λ(t) is the time dependant intensity. Hence, the number of failures in

any interval [ti, tj) defines a NHPP.

According to ANSI, Software Reliability is defined as the probability of failure-

free software operation for a specified period of time in a specified environ-

ment [33]. Although Software Reliability is defined as a probabilistic func-

tion, and comes with the notion of time, we must note that, different from

traditional Hardware Reliability, Software Reliability is not a direct function
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of time. Electronic and mechanical parts may become ”old” and wear out with

time and usage, but software will not rust or wear-out during its life cycle.

Software will not change over time unless intentionally changed or upgraded.

Software reliability R(tj|ti) is defined as the probability that no software fail-

ure is detected in the time interval (ti, ti+tj), given that the last failure occurred

at testing time ti, and it is given by

R(tj|ti) = exp
(
−
(
m(ti + tj)−m(ti)

))
.

It is worth pointing out that if the failure intensity function is time-independent,

then the cumulative number of failures N(ti) defines a homogeneous Poisson

process (HPP).

Note that the interfailure times may have non-exponential distributions, and

hence the cumulative number of failures N(ti) would define a general renewal

process.

The problem addressed in this section may now be concisely described as fol-

lows: Given the historical failure times data D = {t1, . . . , tn} and its corre-

sponding cumulative number of failures data N = {N(t1), . . . , N(tn)}, find

the predicted cumulative number of failures at any given time t.

2.3 Prediction using Bayesian Statistics

Scientific experimental or observational results generally consist of (possibly

many) sets of data. Bayesian statistics uses both prior and sample informa-

tion. Usually something is known about possible parameter values before the

experiment is performed.
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Model name m(t) λ(t)

Log-linear
exp(a+ bt)

b
exp(a+ bt)

Exponential a(1− exp(−bt)) ab exp(−bt)

Power law
(
t

a

)b
b

a

(
t

a

)b−1

Table 2: NHPP models.

We model the failure times using an NHPP with a parameterized failure inten-

sity function λ(t;θ), where θ is a vector of unknown parameters which can

be obtained by historical data. Table 2 shows examples of NHPP models with

different failure intensity functions λ(t;θ), where θ = (a, b).

Bayesian methods aim at assigning prior distributions to the parameters θ is

the model in order to incorporate whatever a priori quantitative or qualitative

knowledge we have available, and then to update these priors in the light of

the data, yielding a posterior distribution via Bayes’s Theorem. The ability to

include prior information in the model is not only an attractive pragmatic fea-

ture of the Bayesian approach, but it is also theoretically vital for guaranteeing

coherent inferences.

2.3.1 Predictive density

Consider the problem of making prediction for a new failure time t without any

measurements on the predictors for any of the individuals so that the dataset

is just given by D = {t1, . . . , tn}. That is, we want to determine p(t|D),

the probability density function of the new failure time conditioned on the

observed failure times. The function p(t|D) is referred to as predictive density
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of a new failure time and may be written in integral form as

p(t|D) =

∫
p(t|D,θ)p(θ|D)dθ,

where p(θ|D) is the posterior distribution of θ given by

p(θ|D) =
p(D|θ)p(θ)

p(D)
=

{
∏n

i=1 p(ti|θ)}p(θ)∫
{
∏n

i=1 p(ti|θ)}p(θ)dθ

and p(θ) is the prior distribution which represents information available about

the unknown parameters. The prior estimate provides a means of combining

exogenous information with observed data in order to estimate parameters of

a probability distribution. It is convenient to choose simple forms of prior

distributions which result in computationally tractable posterior distributions.

Hence, the posterior distribution is found by combining the prior distribution

p(θ) with the probability p(D|θ) of observing the data given the parameters.

The probability p(D|θ) is also called the likelihood function of the data and it

is given by

p(D|θ) =
n∏

i=1

p(ti|θ),

where

p(ti|θ) = λ(ti;θ) exp

(
−
∫ ti

0

λ(u;θ)du

)
assuming that the failure times data are independent and identically distributed

(iid). The likelihood function is the probability of observing the given data as

a function of θ.

Hence, the Bayesian approach consists of three main steps:

1. Assign prior distributions to all the unknown parameters.

2. Determine the likelihood of the data given the parameters.
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3. Determine the posterior distribution of the parameters given the data.

Maximum Likelihood is a statistical estimator that can be used to estimate

a models unknown parameters values from data. The maximum likelihood

estimate (MLE) of θ is that value of θ that maximizes the likelihood function

p(D|θ) or equivalently that maximizes the log-likelihood function:

log(p(D|θ))

and it is the value that makes the observed data the most “probable”.

2.3.2 Bayesian prediction

The Bayesian prediction approach proposed in [11] is based on the power law

model shown in Table 2. The parameter b of the power law model may be

estimated as follows

b̂ =
tn∑tn

t=t1
log[N(tn)/N(t)]

,

and the predicted cumulative number of defects N(t) at time t is given by

N(t) = N(tn)

(
t

tn
F (2t, 2tn; γ)

)1/b̂

, (1)

where γ = P{χ2
n ≤ χ2

γ,n}, and F (2t, 2tn; γ) denotes the γ percentage point of

the F -distribution with 2t and 2tn degrees of freedom.

2.3.3 Bayesian prediction using MCMC

Markov chain Monte Carlo (MCMC) methods (which include random walk

Monte Carlo methods), are a class of algorithms for sampling from probability
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distributions based on constructing a Markov chain that has the desired dis-

tribution as its equilibrium distribution. The state of the chain after a large

number of steps is then used as a sample from the desired distribution. The

quality of the sample improves as a function of the number of steps.

If we draw samples θ(1), . . . ,θ(N) from the posterior distribution p(θ|D), then

the predictive density may be approximated as follows

p(t|D) ≈
N∑
i=1

p(t|D,θ(i))p(θ(i)|D) =
1

N

N∑
i=1

p(t|D,θ(i)).

The samples θ(1), . . . ,θ(N) are draws from the posterior distribution of θ, and

may be obtained using Markov chain Monte Carlo (MCMC) simulation algo-

rithms [8, 29].

For the Bayesian prediction approach using MCMC, the predicted cumulative

number of defects N(t) at time t is also given by Eq. (1) where b̂ is estimated

using the MCMC algorithm [8].

The algorithm of MCMC estimate parameters b̂ consists of the following steps:

1. Using MCMC to simulate each parameter distribution.

2. Estimate the maximal likely value of parameter distribution which gives

us the value of expected parameter.
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2.4 Proposed Method

2.4.1 POC curve

Consider the two-sided hypothesis

H0 : t = tk

H1 : t ̸= tk

where H0 and H1 are the null and the alternative hypotheses respectively.

Define χ2
α,k as the percentage value of the chi-square distribution with k de-

grees of freedom such that the probability that the chi-square distribution χ2
n

exceeds this value is α, that is

P{χ2
k ≥ χ2

α,k} = α = P{rejectH0|H0 is true},

where α ∈ (0, 1) is the probability of type I error (also referred to as the

significance level). In other words we can be 100(1−α)% confident about the

result.

Note that in probability theory and statistics, the chi-square distribution are k

independent, normally distributed random variables.

Suppose t = tk + δ, where δ > 0 (we have the same result for δ < 0) then H0

is false and H1 is true. Hence, the distribution of the test statistic

Z =
χ2
t − tk√
2k

has a mean value equal to δ/
√
2k, and a type II error will be made only if

−χ2
α/2 ≤ Z ≤ χ2

α/2. That is, the probability of type II error β = P{acceptH0|H0 is false}
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may be expressed as

β = Φ

(
χ2

α
2
,t −

δ√
2k

)
− Φ

(
−χ2

α
2
,t −

δ√
2k

)
,

where Φ is the cumulative distribution function of χ2
t .

The function β(t) is evaluated by finding the probability that the test statistic

Z falls in the acceptance region given a particular value of t.

An operating Characteristic (OC) curve is a graph used to determine the proba-

bility of accepting lots as a function of the lots or processes quality level when

using various sampling plans. In other words the operating characteristic (OC)

curve of a test is the plot of β(t) against t. Note that given the OC curve param-

eters β, α, k, and δ, we can derive the predicted cumulative number of defects

at time t as follows

N(t) =

(√
2k

δ

)2 (
χ2
α,δ + χ2

β,δ

)2
. (2)

Figure 4 depicts a plot of the cumulative number of defects using OC curves.

The above method does not take into account the historical data to predict.

To overcome this limitation, we propose a predictive operating characteristic

(POC) curve where the predicted cumulative number of defects at time t is

calculated as follows

N(t) =

(√
2p

δ

)2 (
χ2
α,δ + χ2

β,δ

)2
, (3)

and the parameter p is given by (see Figure 5)

p =


N(t), if t ≤ tn

N(tn), if tn < t ≤ T .
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Figure 4: Illustration of cumulative number of defects using OC curves.

t1 t tn T

p = N(t) p = N(tn)

t

Figure 5: Illustration of the p parameter in the POC curve.

2.4.2 Laplace trend analysis

One of the drawbacks of POC prediction method is its inability to predict ac-

curately the cumulative number of defects when the software is not stable, that

is when the software does not have a reliability growth yet. To circumvent

this limitation, we used a weighted Laplace trend to validate the reliability and

stability of the software before using POC for defect prediction [31].

Suppose we wish to test the following hypotheses:

H0 : HPP

H1 : NHPP
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where H0 and H1 are the null and the alternative hypotheses respectively.

Under the null hypothesis, we define the Laplace trend as:

U =
L(θi)

′

E(−L(θi)′′)

where θi is a component of the vector θ such that its value makes the intensity

function λ(t; θ) time independent.

With type I error probability α, we have the following interpretation of the

Laplace trend value:

• U < −zα: reliability growth (stable system behavior).

• U > zα: reliability deterioration (non-stable system).

• −zα < U < zα: stable reliability (in control behavior).

where zα is the upper α percentage of the standard normal distribution Z such

that P{Z ≥ zα} = α. If H0 is true, the distribution of the Laplace test statistic

approximately follows standard normal distribution N(0, 1).

Note that Laplace trend analysis is used to determine whether the pattern of

defects is significantly changing with respect time or not. To have a better

analysis we may also use a weighted Laplace test statistic as discussed in [32].

However, for simplicity we focus on the standard Laplace test statistic.

Now we try to find a “Laplace trend stopping increase” point (t = ts) as shown

in Figure 6. We can start using the POC curve when Laplace trend starts to de-

crease (t = ts, ..., T ) because at this point the behavior of the system becomes

stable and therefore we have reliability growth.
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Figure 6: Laplace Factor vs. Defect Time.

2.4.3 Improved POC curve

In a real software project, removal of one defect might cause other defects

in the system. In addition, the defect causing the failure cannot be removed

immediately. In the improved POC curve approach, we can incorporate these

assumptions to be able to predict the behavior of the software in a better way.

To overcome the problem of imperfect debugging, we assume that when a

defect occurs and the correction process has been performed the defect is re-

paired with a probability p, in which case the defect rate is reduced by λ(t).

Otherwise the number of defects in the software and the defect rate remains

the same. Therefore, the total number of expected occurrence of a defect in

the system is 1/p. Hence, the predicted cumulative number of defects in the
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system at time t becomes

N(t) =
1

p

(√
2p

δ

)2 (
χ2
α,δ + χ2

β,δ

)2
, (4)

Moreover, if the information of defect detection process and defect correction

process is available, we can model the defect detection process separately from

the defect correction process. On the other hand, due to the fact that a defect

can be removed only after its detection; it is more appropriate if the defect

correction process to be delayed defect detection process. For simplicity we

can assume for each detected defect takes the same amount of time ∆. Hence,

given the defect rate λ(t), the intensity of defect correction is given by

λc(t) =

 0 t < ∆

λ(t−∆) t ≥ ∆

Hence, the predicted cumulative number of corrected defects in the system at

time t is given by

Nc(t) =
1

p
N(t−∆) (5)

With these improvements, we can now describe and predict the software defect

behavior in its life cycle.

2.5 Experimental Results

We tested our proposed method on real software datasets (DS I and DS II) that

were taken from SAP development systems. These datasets contains monthly

software defects that were recorded for a period of 60 and 59 months as shown

in Table 3 and Table 4 respectively.
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Month (ti) N(ti) Month (ti) N(ti)

1 17 31 2,217
2 39 32 2,430
3 53 33 2,586
4 87 34 3,884
5 106 35 4,099
6 140 36 4,385
7 165 37 5,104
8 286 38 8,074
9 359 39 10,120
10 412 40 12,618
11 461 41 16,715
12 555 42 21,606
13 654 43 24,592
14 747 44 27,789
15 836 45 29,739
16 926 46 30,843
17 989 47 32,011
18 1,049 48 32,599
19 1,103 49 33,010
20 1,152 50 33,707
21 1,182 51 34,103
22 1,213 52 34,426
23 1,225 53 34,736
24 1,266 54 34,903
25 1,306 55 35,110
26 1,331 56 35,261
27 1,363 57 35,440
28 1,443 58 35,614
29 1,495 59 35,763
30 1,737 60 35,876

Table 3: Software defect data (DS I).
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Month (ti) N(ti) Month (ti) N(ti)

1 3 31 34,909
2 5 32 35,055
3 19 33 35,129
4 30 34 35,198
5 74 35 35,269
6 115 36 35,339
7 543 37 35,421
8 1,379 38 35,556
9 3,372 39 35,617

10 7,272 40 35,664
11 11,434 41 35,707
12 14,291 42 35,789
13 17,429 43 35,852
14 18,806 44 35,922
15 21,625 45 35,951
16 24,201 46 35,974
17 26,096 47 36,004
18 27,221 48 36,032
19 28,395 49 36,047
20 29,105 50 36,292
21 29,553 51 36,374
22 30,133 52 36,448
23 30,712 53 36,469
24 32,111 54 36,510
25 32,894 55 36,521
26 33,476 56 36,574
27 34,209 57 36,606
28 34,499 58 36,617
29 34,658 59 36,631
30 34,781

Table 4: Software defect data (DS II).
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In all the experiments, we use a probability of type I error α = 0.01. The value

of γ was set to 1-α. Figure 7 and Figure 8 depict the cumulative number of

defects versus defect time (month) during a software life cycle.
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Figure 7: Cumulative Number of Defects vs. Defect Time (DS I)

Figure 9 and Figure 10 displays Laplace factor vs. Defect Time, and it clearly

illustrates after the 45th month for DS I and after the 15th month for DS I, the

Laplace trend starts to decrease.

2.5.1 Qualitative evaluation of the proposed method

In this subsection, we present simulation results where the Bayesian prediction

method [11] and the POC curve algorithm are applied to the software failure

dataset (DS I) and also to the truncated software failure data (DS II). Laplace

trend starts to decrease, meaning that software reliability starts to grow. Based

on our extensive experimentation, we decided to start applying the model from

42



0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Month

C
u
m

u
la

ti
v
e

n
u
m

b
e
r

o
f
d
e
fe

c
ts

Figure 8: Cumulative Number of Defects vs. Defect Time (DS II)

this point. Figure 11 through Figure 14 show the prediction results of the

proposed POC curve in comparison with the Bayesian approaches for both

datasets DS I and DS II. These results indicate that our method outperforms

the Bayesian techniques used for comparison. Moreover, the proposed method

is simple and easy to implement.

2.5.2 Quantitative evaluation of the proposed method

Denote by No(t) and Np(t) the observed and the predictive cumulative number

of failures respectively. To quantify the better performance of the proposed

predictive method in comparison with the Bayesian approaches, we computed

three goodness-of-fit measures: the skill score, the Nash-Sutcliffe model ef-

ficiency coefficient, and the relative error between the observed To × 2 data
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Figure 9: Laplace Factor vs. Defect Time (DS I).

matrix

Do = {(t, No(t)) : t = 1, . . . To},

and the predicted Tp × 2 data matrix

Dp = {(t, Np(t)) : t = 1, . . . Tp}.

Note that the size of observed data matrix Do may not be equal to the size

of the predicted data matrix Dp, and hence an intersection step is necessary

to pair up the observed data to the predicted data. This intersection function

is setup to pair up the first column in the observed data matrix and the first

column in the predicted data matrix. Data values are located in the second

column of both matrices. More precisely, we create a subset of matched data

Dm = {t, No(t), No(t) : t = 1, . . . Tm} that would be used to compute the

following goodness-of-fit measures:

44



0 10 20 30 40 50 60
−200

−150

−100

−50

0

50

100

150

15

Month

La
pl

ac
e 

Fa
ct

or

Figure 10: Laplace Factor vs. Defect Time (DS II).

1. Skill Score: it is a error statistic that is used to quantify the accuracy of

prediction models, and it defined as follows

and the predicted data, and σNo is the sample standard deviation of the

observed data.

SS = 1−

√
1
Tm

∑Tm

t=1

(
No(t)−Np(t)

)2√
1

Tm−1

∑Tm

t=1

(
No(t)−N o

)2 ,
The model prediction is better, when the value of the skill score SS is

closer to one. When SS is less than zero, the model predictions are poor

and the model errors are greater than observed data variability.

2. Nash-Sutcliffe model efficiency coefficient: is an indicator of the model’s
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Figure 11: Comparison of the prediction results for known 46 months history DS I.

ability to predict about the 1:1 line between the observed and the pre-

dicted data, and it is defined as follows

E = 1−
∑Tm

t=1

(
No(t)−Np(t)

)2∑Tm

t=1

(
No(t)−N o

)2 .

The Nash-Sutcliffe model efficiency coefficient is a statistic similar to

the skill score in that the closer to one the better the model prediction.

A value of E = 1 indicates that the model prediction is perfect, and if

the value of E is equal to or less than zero, then the model prediction is

considered poor.

3. Relative error: it measures how close a model is estimated with respect

to the actual data. The relative error(RE) is defined as

RE =
Np(t)−No(t)

No(t)
, t = 1, . . . , Tm

The values of the three goodness-of-fit measures for all the experiments are
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Figure 12: Comparison of the prediction results for known 55 months history DS I.

Skill Score DS I DS II
Bayesian 0.3964 0.4031
Bayesian MCMC 0.5426 0.628
OC curve 0.9377 0.7877

Table 5: Skill score results.

depicted in Figure 15 through Figure 20, which clearly show that the proposed

method gives the best results indicating the consistency with the subjective

comparison.

Nash-Sutcliffe DS I DS II
Bayesian 0.6295 0.6259
Bayesian MCMC 0.7872 0.8547
OC curve 0.9961 0.9527

Table 6: Nash-Sutcliffe score results.
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Figure 13: Comparison of the prediction results for known 20 months history DS II.

2.6 Conclusions

In this chapter, we introduced a new method for software defects prediction

using operating characteristic curves and Laplace trend statistic. The core idea

behind our proposed technique is to reliably predict the cumulative number of

defects during the software development process. The prediction accuracy of

the proposed approach is validated on a real software failure data using several

goodness-of-fit measures. The experimental results clearly show a much im-

proved performance of the proposed approach in comparison with the Bayesian

prediction methods.
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Figure 14: Comparison of the prediction results for known 40 months history DS II.
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Figure 15: Skill score results for DS I.
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Figure 16: Skill score results for DS II.
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Figure 17: Nash-Sutcliffe model efficiency coefficient results for DS I.
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Figure 18: Nash-Sutcliffe model efficiency coefficient results for DS II.
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Figure 19: Relative error results for DS I.
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Figure 20: Relative error results for DS II.
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CHAPTER 3

Defect Prediction via Genetic

Programming

In this chapter, software defect prediction models using Genetic Programming

(GP) are proposed. Inductive learning from examples is a widely known prac-

tice in the field of machine learning that aims at predicting the number of de-

fects in order to allocate resources more efficiently. Feature reduction/transformation

is used extensively to improve the learning capability of the learner machine [36,

41, 46]. Defect prediction will be carried out through our proposed Evolution-

ary Algorithm (EA) method with the aim of preserving the global structure of

the data. Unlike previous approaches, our proposed approach achieves a bet-

ter performance by taking no heuristics into account. We have tried to follow

the baseline experiments on the NASA IV&V static metric dataset [36, 41].

Experimental studies have been assessed as significant in terms of having high

detection rate while keeping mis-detection rate low.
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3.1 Problem Statement

The quality of software before usage is of great concern to software companies.

This issue has been extensively investigated using a variety of statistical meth-

ods over the last three decades. Most of these efforts have focused on predict-

ing the number of defects, that is deviations from specifications or expectations

which might lead to failures in operation in the software system [52]. Predic-

tion outcome which is the number of remaining defects in a software system, is

a critical controlling factor and an important informative measure for software

developer and a gauge for likely delivered quality of software systems [57].

Learning defect predictors has been known as an efficient approach in the field

of Software Quality Assurance (SQA). Applying them can lead to define test-

ing priorities better in order to prevent exhausting testing, the most costly part

of software development life cycle [35]. Numerous defect datasets have been

collected from different projects to study various statistical and machine learn-

ing approaches. Menzies [41] introduced the baseline experiment using NASA

public domain data repository [44] ,leading other researchers to use that repos-

itory in order to create repeatable, verifiable, refutable, and/or improvable pre-

dictive models in software engineering [43, 44]. Reaching that objective can

be considered essential in order to accelerate toward maturity of this research

discipline.

Since publishing different conclusions based on different datasets makes the

comparison among used techniques almost impossible, Menzies [41] defini-

tion of the baseline experiment has been widely followed by the other re-

searchers [35, 36, 59].
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3.1.1 Static Code Attributes

Static code attributes are easy to collect and are good indicators of models that

need to be reviewed and inspected. Verification and Validation (V&V) text-

books like [4] advise using static code complexity attributes to decide which

modules are worthy of manual inspection. It has been stated that at the NASA

IV&V facility, several large government software contractors will not review

software modules unless tools like McCabe predict that some of them might

be defect prone [42]. This fact clearly reveals the importance of static metrics.

They have also been claimed as a trustable source for performing repeatable

experiments like software quality predictors.

NASA IV&V Facility provides public domain access to NASA Metric Data

Program Repository [43, 44]. The goal is to provide project non-specific data

to the software community. Defect predictors can be learned from datasets

containing static code features, whose class label is defective and whose val-

ues are true or false. Depending on the language, rows describe data from a

module, function, method, procedure or files. Columns demonstrate one of the

static code features that can be found on Table 8. The defective column shows

the result of a whole host of QA methods that were applied to that histori-

cal data [42]. The repository contains McCabe, Halstead, Line of Code, error

metrics derived from the association between errors and functions/modules,

and requirement metrics of different projects as depicted in Table 7. Table 8

contains further details on these attributes.
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McCabe vg cyclomatic complexity
iv(G) design complexity
ev(G) essential complexity

locs loc loc total(one line=one count)
loc(other) loc blank

loc code and comment
loc comments
loc executable

number of lines
(opening to closing brackets)

Halstead h N1 num operators
N2 num operands
µ1 num unique operators
µ2 num unique operands

H N length: N = N1 +N2

V volume: V = N ∗ log2 µ
L level: L = V ∗/V where

V ∗ = (2 + µ∗
2) log2(2 + µ∗

2)
D difficulty: D = 1/L

I content: I = L̂ ∗ V where
L̂ = 2

µ1
∗ µ2

N2

E effort: E = V/L̂
B error est
T prog time: T = E/18 seconds

Table 7: Static code features of NASA IV&V dataset

3.1.2 Data preprocessing

Menzies [41] has named three elements to present an experiment: Data to be

processed, a processing method, and a reporting method. Therefore, we need

to perform some activities in order to make the data ready for the processing

phase. These preprocessing activities can be minor like initial dataset modifi-

cations, i.e. removing constant attributes and replacing NaNs (Not a Number),

or can be major like transforming the data representation space. Menzies [41]

and Turhan [36] made small changes to clean the data before applying the loga-

rithmic filter on all numerical values with the hope of improving the predictor’s
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Table 8: Static Metrics of NASA dataset

Static Metrics Symbol
McCabe Software Metrics
Cyclomatic Complexity V (g)
Cyclomatic Density Metric V d(g)
Decision Density Metric Dd(g)
Design Density Metric Id(g)
Essential Complexity Ev(g)
Essential Density Metric Ed(g)
Global Data Density Metric Gd(g)
Global Data Complexity Metric Gdv(g)
Maintenance Severity Module Design Complexity Iv(g)
Normalized Cyclomatic Complexity Metric Norm V (g)
Pathological Complexity Metric Pv(g)
Error Count Metrics
Number of Errors (No. associated problem records)
Error Density (No. errors per 1000 lines of code)
Number of Problem Records in 6 Months
Number of Problem Records in 1 Year
Number of Problem Records in 2 Years
Halstead Metrics
Halstead Length (N)
Halstead Volume (V )
Halstead Level (L)
Halstead Difficulty (D)
Halstead Intelligent Content (I)
Halstead Programming Effort (E)
Halstead Error Estimate (B)
Halstead Programming Time (T )
Line of Code Metrics
Branch Count
Call Pairs
Condition Count
Decision Count
Edge Count
Formal Parameter Count
Modified Condition Count
Multiple Condition Count
Node Count
Number of Lines
Number of Operators
Number of Operands
Number of Unique Operators
Number of Unique Operands
Number of Executable of Lines of Code
Number of Lines of Comment
Number of Lines of Code containing both Code and Comment
Percent of Code that is Comments
Total Number of Blank Lines
Total Number of Lines of Code
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performance. We have also implemented some minor modification steps which

will be described in the next section.

Gray [37] has applied an extensive data cleaning including removing repeated

and inconsistent instances, removing constant attributes, replacing missing

values, balancing the data, normalization, and randomizing instance order.

We strongly believe that manipulating data higher than normal modifications

changes its specific characteristics such as its global structure. Data manip-

ulation can be useful when a learner machine is weak. Having the goal of

proposing a solid model, we have tried to reduce this phase to let evolutionary

algorithm decides its best. We will go through our contribution in the next

section.

3.1.3 Classification

Common prediction models that have been used in previous studies [36,41] are

Quadratic Discriminant, Linear Discriminant, and Naive Bayes. Turhan [36]

validated the assumptions of Naive Bayes in defect prediction context. These

assumptions are Independence of Attributes as well as their Equal Importance.

The results of relaxing independence of attributes assumption in Naive Bayes

shows that it is not harmful for software defect data after Principal Component

Analysis (PCA) pre-processing. Overcoming the other assumption (i.e. equal

importance of attributes) may produce significantly better results than standard

Naive Bayes. It has been shown that subset selection [41] can be outperformed

by other dimensionality reduction techniques like PCA in conjunction with

Naive Bayes classifier.
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Predicted class
Yes No True Class
TP: True Positive FN: False Negative Yes
FP: False Positive TN: True Negative No

Table 9: Confusion Matrix

We have implemented the same three techniques as the classifier functions in

our supervised learning approach. GP does not take into account any assump-

tions since it is based on no bias as well as no heuristics. There will be a 10×10

cross-validation which gives us the defect prediction result based on training

data.

3.1.4 Prediction Performance Assessment

Assessment of learner’s performance is being done based on the Receiver Op-

erating Curve (ROC)’s concept. Using ROC enables us to compare it with

other significant results [41], [36] and [42].

Based on the ROC curve, which is mostly used in signal detection theory, the

performance measures are defined as follows:

• Probability of detection

pd =
TP

TP + FN
(6)

• Probability of false alarm

pf =
FP

(FP + TN)
(7)

• Balance

bal = 1−
√

(1− pd)2 + (0− pf)2√
2

(8)
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pd which is also known as recall or True Positive Rate (TPV) shows the de-

tection ability of predictors. In the ideal case, pd is close to one. pf is the

false alarm for incorrectly detecting non-defective modules and ideally must

be close to zero. With each classification algorithm, it is important to remem-

ber that increasing the number of true positives also increases the number of

false alarms. Decreasing the number of false alarms also decreases the num-

ber of hits (recall) [34]. Since we need to optimize two parameters, pd and

pf , a third performance measure called balance is used to choose the opti-

mal (pd, pf) pairs. balance is equivalent to the normalized Euclidean distance

from the desired point (1, 0) to (pd, pf) in a ROC curve [36]. The ROC curve

concept is depicted in Figure 21.

Figure 21: Balance defines a set of points in the ROC curve.
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Figure 22: The general scheme of an evolutionary algorithm

3.2 Proposed Methods

In order to explain any EA-based method, we need to define Italicized items

shown in Figure 22 [39]. Genetic Programming (GP), the youngest member of

EA family has been selected to be applied in our proposed methods.

The significant feature that separates GP from other EA family members lies

in its representation. By having the particular representation of non-linear tree

structures, GP can be positioned in machine learning field easily while other

EA strands are usually being used to address optimization problems. In other

words, other EAs are trying to find some input realizing maximum payoff while

GP is being used to seek models with maximum fit. Maximization (minimiza-

tion) is the basis of using evolution for such tasks. Table 10 shows a summary

of GP features.
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Representation Tree structure
Recombination Exchange of subtrees
Mutation Random change in trees
Parent selection Fitness proportional
survivor selection Generational replacement

Table 10: GP summary

3.2.1 Dimensionality reduction by genetic programming

Dimensionality reduction can be broadly divided into two general categories:

Feature selection and feature extraction. Feature selection methods seek to

find an optimum subset of features which suffice to solve a problem. Subset

selection, Ranking, filtering, and wrapping are common approaches that can

be named in this field. Since most of the feature selection techniques give

rank/weights to the attributes, in other words taking heuristics into account

before knowing the structure of data, we have argued that this method cannot

be the best candidate as a primary dimensionality reduction method.

Feature Extraction (Construction), on the other hand, can be done by linear

or non-linear projection of D-dimensional vector into d-dimensional vector

,where d < D.

GP is flexible enough to build mathematical models based on an objective func-

tion dynamically. The main advantage of using GP is its expressions are not

bound to any predefined template; expressions can be linear or non-linear with

the goal of satisfying the objective function [47]. This feature of GP makes it

an excellent choice for automatic feature construction.

The whole purpose of feature reduction is transforming the data from a high

dimensional space to a lower dimensional space in which the classifier can effi-

ciently perform its tasks. We are taking the non-wrapper [47] approach toward
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application of GP for feature construction in our first proposed approach. It

means that it acts as a pre-processing step which does not relate to any specific

classifier.

We have experimented with such an approach with the purpose of keeping the

local structure of data which will be explained later.

As shown in Table 10, the following items need to be described in order to

define any EA-based approach fully.

1. Representation: As mentioned earlier, Chromosomes are being shown as

Parse Trees in GP. Each Parse Tree represents an expression according to

some formal grammar. The main differences in representation of GP and

others EA members are:

• Chromosomes are non-linear structure while in other methods they

are typically linear.

• Chromosomes can differ in size, depending on the number of nodes

in each tree while in other methods the chromosome length is usually

fixed [39].

Nodes in Parse tree can be divided into: Root, Branches and Leaves.

In another word, Parents and Children. The minimum and maximum

number of nodes and levels in each tree have been predefined a priori. If

ℓ is the maximum level of each tree, then the number of leaves may vary

from 2ℓ in case of having all parent nodes as binary arithmetic functions

to 1 while having all parent nodes as unary functions.

In general, trees can be either balanced or imbalanced. By having all

parent nodes as a binary function we may have balanced full binary trees
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Figure 23: A sample parse tree in our approach

but in this specific implementation, we let them to be imbalanced for

more generality. A sample parse tree is depicted in Figure 23.

GP selects a random number of nodes in each tree committed to the de-

fined interval. Arithmetic operators have been used as the functions stated

in Table 11.

Arity of operators is 1 or 2 (Unary and Binary operators) as mentioned

earlier. Terminal set or leaves of the tree are features in the original(large)

space. Each tree in an individual will take high dimensionally space di-

mensions as root of tree. Consequently, each tree will make a new di-

mension in the new lower dimension space, therefore number of trees in

final solution is the same as number of dimensions in the new space.

To review the whole step, we can say: Genes are being constructed with

chromosomes in the form of Parse Trees with maximum depth and max-

imum number of features defined. Each tree will make a new dimension

in the new space. It is important to mention that we have tried to avoid

having dimensionality of 2 as the resulted space. It is only being used for
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Function set

+
−
∗
/
log
exp

Terminal set Any feature from NASA IV & V datasets + the constant values 0 and 1

Table 11: Nodes values

presentation purposes and cannot save the data characteristics [58].

2. Initialization:

Each tree structure is created with no heuristics taken into account. The

only defined parameters are depth of the tree and the maximum number

of nodes. Node values are being assigned based on the node type.

If the node type is leaf, a random feature would be placed. If node is

a branch node with arity 2, a binary function from Table 11 would be

selected. If arity is 1, a unary function will be selected from Table 11.

3. Evaluation:

Calculation of some sort of fitting error would be the basis of ”GP’s

fitness calculation”. The relation among operators and operands (tree

leaves) must be mapped. In general, fitness and penalty has an inverse

relation given by:

Fitness = 1/Penalty (9)

Penalty or Cost function will be calculated by picking a pair of points(observations)

randomly in the high dimensional space (i.e. row a and b), measure the

Euclidean distance between them and name it d1.

a = (a1, a2, ...aN) (10)
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b = (b1, b2, ...bN) (11)

d1 =
√

(|a21 − b21|) + (|a22 − b22|) + ...(|a2N − b2N |) (12)

Then, another pair of random points in the high dimensional space(points

c and d) will be picked and distance would be measured like Equations 15

and 16. Therefore the d2 would be calculated as:

d2 =
√

(|c21 − d21|) + (|c22 − d22|) + ...(|c2N − d2N |) (13)

Ratio between two distances in the high dimensional space would be:

dr = d1/d2 (14)

We want to have the same ratio between the first distance and the second

distance in the small space. For this, we find the corresponding four

points in the small space namely a′, b′, c′ and d′. The above formulae in

the new low-dimensional space become:

a′ = (a′1, a
′
2, ...a

′
M), M < N (15)

b′ = (b′1, b
′
2, ...b

′
M) (16)

d′1 =

√
(|a′1

2 − b′1
2|) + (|a′2

2 − b′2
2|) + ...+ (|a′M

2 − b′M
2|) (17)

d′r = d′1/d
′
2 (18)

and we calculate the ratio of the two distances similar to what has been

done in the original space: Since we want to have the same ratio in both

spaces, the difference between these two ratios can be used as a measure

for error:

e = dr − d′r (19)
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However, the error for this specific four points might not represent the

change in the structure of data, as the four points are selected randomly.

For minimizing the effect of random selection of these four points, we

perform this calculation many times and calculate the sum of all repeti-

tions. For practical reasons (avoiding long computation time), the num-

ber of repetitions is set to 50. In order to prevent the partial errors from

cancelling the effect of each other, we use the sum square error:

Error =

√
|d2r1 − d′r1

2) + |d2r2 − d′r2
2 + ...+ |d2r50 − d′r50

2| (20)

In addition, if we want to favor spaces with less number of dimensions

we can also add a coefficient for the number of dimensions in our penalty

(cost function) which needs to be minimized:

Penaltytotal = Error +W ×M, (21)

where W is a coefficient indicating how important the number of dimen-

sions in the new space is, and M is the number of dimensions in the new

space.

We can view this entire process as defining a sample large space with 3

dimensions. 4 points have been selected in Figure 24. Figure 25 shows a

good transformation to a 2-dimensional space, where the approximation

ab
cd

≃ a′b′

c′d′
is valid. Figure 26 demonstrates a bad transformation, in which

ab
cd

≪ a′b′

c′d′
.

4. Parent Selection Mechanism: ”Parent Selection/Mating pool creation”

refers to finding better individuals in order to choose parents of the next

generation. Parent Selection as well as Survivor selection - which will
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Figure 24: 4 points in original 3-dimensional space

Figure 25: 4 points in 2-dimensional space - good transformation

be explained shortly - are in charge of selecting individuals with higher

quality. Here, quality means having less penalty (higher fitness value).

It is important to mention that there is always a chance in our approach

for new/low-quality individuals in order to avoid being stuck in a local

optimum and keep the high diversity. The parent selection method of
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Figure 26: 4 points in 2-dimensional space - bad transformation

our proposed approach is based on ”Tournament selection” method. The

Tournament size is equal to 3, and Parent pool size is usually defined

as half of the population size. More details will be discussed in the ex-

perimental results section. Because Tournament selection is used, Parent

selection is non-deterministic in the course of GP.

5. Genetic Operators (Variation Operators): ”Offspring creation” will be

carried out through the application of two well-known genetic operators:

mutation and crossover.

(a) Mutation: is the unary variation operator. In all EA family, mutation

can be defined as creating new individuals by changing the parent

through slight random variation. Based on representation type of

EA, this genetic operator will be specifically defined.

(b) Crossover (Recombination): Two individual parents are being merged
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to form a new individual. Crossover is done in two forms in Ge-

netic Programming approaches: Shuffle and Fixed point. These ap-

proaches replace a whole tree of an individual with another. In the

fixed point crossover, a point can be selected randomly which in-

dicates the node that the tree must be broken from. In the shuffle

crossover, each tree in a child is copied completely from either first

or second parent. We will gain two children by doing crossover.

In this specific implementation, off spring functions being used are:

• Mutate - Swap nodes within a tree (does not care if you are swap-

ping a non-leaf node with a leaf)

• Mutate - swap internal nodes

• Mutate - swap leaves

• Mutate - cut sub-tree

• Mutate - replace leaf with sub-tree

• Mutate - swap sub-trees within a tree

• Crossover - swap sub-trees between two trees:

– fixed-point

– shuffle

6. ”Survivor selection”: is deterministic and it is based on the lowest penalty

(highest fitness). Keeping the diversity high is a task for a tournament-

based parent selection. To appreciate evolution performance, two best

results will be picked amongst all the others and transferred to the next

generation with no change. In order to keep diversity high, three random

genomes will be added to the population and the remainder of individuals

will be selected deterministically based on their fitness.
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The whole steps above repeat until the optimum solution is found (Penalty =

0) or we reach a maximum number of iterations. More details are provided in

the experimental results subsection.

3.2.2 Prediction using classifiers and machine learning meth-

ods

In the literature, machine learning approaches have been used in order to learn

the data and perform the prediction. As we have stated earlier, data pre-

processing as well as dimensionality reduction techniques have a huge im-

pact on the quality of data that will be handed to classifier. The best result

gained so far belongs to Menzies [41] that other significant contributions like

Turhan [36] could not outperform it yet. The discriminant analysis techniques

are being widely used are: Linear Discriminant Analysis, Quadratic Discrimi-

nant Analysis and Naive Bayes.

In software defect prediction, one aims to separate classes C0 and C1 where

samples in C0 are non-defective and samples in C1 are defective. In this 2-

class problem, it is sufficient to find one discriminant that separates instances

from the two distinct classes. Combining the multivariate normal distribution

and the Bayes rule, followed by using different assumptions results in different

discriminants with different complexity levels. General structure of a discrim-

inant.

P ′(Ci|x) =
P ′(x|Ci)P

′(Ci)

P ′(x)
(22)

Based on normalized evidence, we can replace Eq. (22) with:

gi(x) = logP (x|Ci) + logP (Ci) (23)
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Linear discriminant considers the correlation of the features but assumes the

variances and correlation of features are the same for both classes. This means

classes can have any orientation with respect to axes but aligned to each other.

The number of parameters to estimate for covariance matrix is now indepen-

dent of K.

Quadratic Discriminant considers the correlation of features too. This model

does this differently for each class. It’s assumptions are data samples are

i.i.d(independent and identically distributed)

Naive Bayes does not take into account correlation of the features. It mea-

sures the deviation from the mean in terms of standard deviations. In other

words, Naive Bayes takes two assumptions into the account, Independence of

attributes as well as Equal importance of attributes.

We have applied all mentioned classifiers on the resulted data from GP.

3.2.3 GP constructs features and performs classification

As mentioned previously, GP plays the role of an effective feature extractor.

The number of used features, number of nodes in trees, arithmetic operators

and most of the parameters that GP uses is non-heuristic and are not predefined.

In the second experiment, we use GP to not only reduce the number of features,

but also to perform classification. GP will search for certain feature constructor

to create a smaller number of features, on which a simple linear classifier is

applied. Preserving the structure of data is not important anymore here, and the

new fitness represents the performance of this classifier. Although the classifier

that GP uses is linear, we need however to keep in mind that these features are
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constructed non-linearly, hence the whole process will be non-linear.

A fixed number of new features are constructed form the original data. This

means that a defined number of parse trees are made from the arithmetic oper-

ators listed in Table 11 as internal nodes and a collection of features as leaves.

Each parse tree will input one sample in the original space, and will construct

one single feature (dimension) of the corresponding point in the new small

space. The collection of all parse trees will form a transform of the large space

to the small space. The number of parse trees will define the number of features

in the small space. This step is similar to what we used in the first experiment.

To evaluate a set of parse trees (i.e. a transform), GP simply adds all the values

of all features in the new small space, assigning ”defective” labels to those with

a positive sum and ”non-defective” to those with a negative sum. This will be

up to GP to specialize the parse trees to perform well with this simple linear

classifier.

The label assigned to each sample is compared to its actual defective/non-

defective value for all the samples in the training set. The values for TP, TN,

FP and FN are calculated 9, and pd and pf are calculated from Eq. (6) and

Eq. (7). Balance is then calculated from Eq. (8).

Balance will be used as the fitness value in both parent selection and survival

selection of the GP. Other than the fitness function, all the steps and parame-

ters of the GP stays untouched from the previous section. By comparing the

performance of the overall classifiers found by GP, then we can answer a very

fundamental question: Is keeping the original structure of data beneficial for

feature construction. The results presented in the next section will show that

the answer to this question is not always positive.
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3.3 Genetic Programming Selects Metrics!

McCabe developed some metrics claiming that it would provide insight into

the reliability and maintainability of modules [55]. Cyclomatic Complexity

(v(G)) measures the number of linearly independent paths through a program

flow graph. v(G) is calculated as:

v(G) = e− n+ 2 (24)

where G is a program’s flowgraph, e is the number of arcs in the flowgraph,

and n is the number of nodes in the flowgraph. Many software companies

and even some NASA subcontractors evaluate source code to check the value

of McCabe’s cyclomatic complexity. In NASA IV&V, a value of over 10 is

flagged as a module that will be difficult to maintain and/or debug. Those

metrics are being used the most in industry to detect defect prone modules.

Menzies et al. [40]’s study on the same dataset as us named ”Metrics that Mat-

ter” argued that some widely-known metrics like McCabe Complexity Metrics

are not as good as we think. In fact, he claimed that cheap and easy to collect

LOC metric is the one that performs exceptionally well. It has been suggested

by other researchers that in fact LOC may be a better candidate for evaluating

for error-prone code. Table 12 listed the most selected metrics by our Genetic

Programming based approach (second approach). It endorses Menzies’ idea.

Figures 27, 28, and 29 demonstrate the case when we have ran the GP -2nd

approach- 2,000 times on dataset CM1, with Population size of 1000, Parent

Pool Size 500, Tournament size 3. The number of trees in each individual

varies from 4 to 6.
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Static Metric Group Name Number of appearance
Line of Code Metrics Call Pairs 23

Number of lines of code containing both code and comment 25
Number of lines of comment 61
Edge Count 10
Multiple Condition Count 10
Node Count 9
Number of unique operands 22
Parameter Count 25
Percent of Code that is Comment 35

McCabe Software Metrics Cyclomatic Complexity 11
Design Complexity 25
Design Density 11
Essential Complexity 10

Halstead Metrics Halstead Difficulty 12

Table 12: Selected metrics by GP as shown by Figure 27, 28, 29

3.4 Experimental results

We tested the performance of our approach on CM1, a dataset from Nasa

IV&V facility. It has 505 rows and 37 features.

The maximum number of trees in each individual varies from 4 to 6. It is

based on Turhan’s recommended size. Population size is 1000, Parent pool

size is 500 and number of generation runs are 2000. We started with a very

high number of generations (approximately 10000) but in practice there is not

much improvement after the 2000-th generation. Tournament size was set to 3.

Probability of choosing any of the genetic operators is equal. Also probability

of choosing any of the mutation (or crossover) techniques is equally probable

(i.e. probability of 1/2). Moreover, any mutation technique has the probability

of 1/12 to be chosen and crossover techniques have a probability of 1/4.

As shown in Table 13, the second wrapper application of GP in terms of linear

classification outperforms other methods of data processing by having a high
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Figure 27: Number of appearance in 10 runs and 4 trees in an individual

probability of detection rate and lowering the probability of false alarms. It has

been studied for the case of having 5 trees in each individual (in other words,

having the dimensionality of 5 as a resulting space).

In Figures 30, 31, and 32, the minimum penalty of 10 runs of GP in the

second approach while having 4, 5, and 6 trees in each individual. It clearly

shows that penalty is decreasing during generations. 2000 runs is the number

of generations we usually use while the picture indicates that penalty reaches

its minimum point around generation 200.

3.4.1 Bloating problem

A common issue in GP runs is that chromosome sizes tend to increase. It

is also known as “Survival of the fattest”. It usually happens in crossover
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Figure 28: Number of appearance in 10 runs and 5 trees in an individual

when two large parent individuals are selected to create children. That’s the

place where individuals tend to have larger sizes. Population will soon become

unmanageable because of memory problems and increasing time to evaluate

the solutions. Based on Figures 33, 34, 35, 36, 37 and 38, this problem does

not occur in our GP program. The maximum number of nodes in each tree was

set to 15. It is worth pointing out that, as shown in the above Figures, GP never

reaches this maximum number.
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Figure 29: Number of appearance in 10 runs and 6 trees in an individual

Menzies [41]-subset selection
pd pf bal

CM1

QD 91(15) 50(8) 62(7)
LD 89(16) 54(7) 59(7)
NB 89(19) 31(7) 71(9)

Turhan [36]-PCA

CM1

QD 76(22) 35(9) 70(11)
LD 82(19) 38(8) 71(12)
NB 82(17) 37(9) 71(10)

GP as dimensionality reduction

CM1

QD 71(2.2) 46(3) 56(2)
LD 82(9) 53(4) 59(2.7)

GP as classifier

CM1

QD
LD 83(4) 20(3.7) 81(2.5)
NB

Table 13: Results on CM1
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Figure 30: Minimum Penalty: 4 trees in an individual
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Figure 31: Minimum Penalty: 5 trees in an individual
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Figure 32: Minimum Penalty: 6 trees in an individual
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Figure 33: Average Size of a tree: 2000 Generations and 4 trees in an Individual
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Figure 34: Average Size of a tree: 2000 Generations and 5 trees in an Individual
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Figure 35: Average Size of a tree: 2000 Generations and 6 trees in an Individual
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Figure 36: Average Size of trees: 2000 Generations, 10 runs and 4 trees in an Individual
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Figure 37: Average Size of a tree: 2000 Generations, 10 runs and 5 trees in an Individual
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Figure 38: Average Size of a tree: 2000 Generations, 10 runs and 6 trees in an Individual
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CHAPTER 4

Conclusions

A defect prediction solution provides a valuable guideline to tackle the prob-

lem of defects that might be caused due to programmers inability, failure in

requirements collection or design mistakes. Thus, a defect prediction model

can provide important ideas regarding the erroneous bottlenecks in the soft-

ware development cycle. In particular, efficiency focused software develop-

ment units can benefit from using defect cause information. They can take

necessary precautions in a proactive manner. In other words, a defect focused

prediction solution can also successfully lead to a major change in the develop-

ment methods. Such a solution or systematic approach can affect in a positive

manner to produce less defected software.

An important aspect of a defect prediction solution is that such a solution be-

comes necessary when there is a trade-off between to deliver earlier and to

deliver with fewer defects. In today’s software development industry, all com-

panies and software development houses are in a severe competition that min-

imizing development time decreases the overall project cost [60, 61]. On the

other hand, less development and testing time also increases the defect density
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ratio in the final product. As a result, the executive management of software

companies should require a quantitative indicator to find the correct point in

this balance. Therefore, a defect prediction solution may provide the required

quantitative metric to make a decision on the product delivery. The senior man-

agement of software development companies would be able to decide launch-

ing the product if the defect density level is below a certain threshold.

This thesis has presented statistical tools to predict the cumulative number of

software defects as well as discriminant analysis through application of genetic

programming that can have a significant impact on making the software quality

assurance easier. We have demonstrated the performance of the proposed algo-

rithms on a variety of software defect datasets, and we compared our proposed

techniques with existing methods.

In the next Section, the contributions made in each of the previous chapters and

the concluding results drawn from the associated research work are presented.

Suggestions for future research directions related to this thesis are provided in

Section4.1.2.

4.1 Contributions of the Thesis

4.1.1 Predictive operating characteristic curves for software

defect prediction

We introduced a software defect prediction model based on the concept of op-

erating characteristic curve. The idea is to use Operating Characteristic (OC)

curves in statistical quality control and a geometric approach to construct an

85



efficient, fast, and accurate prediction method to estimate the number of soft-

ware failures at anytime during the software development process. Our model

is getting the information from past and present failure data to be more effec-

tive. In the experimental results, we demonstrate the effectiveness and the im-

proved performance of the proposed method in comparison with the Bayesian

prediction approaches.

4.1.2 Learning defect predictors via genetic programming

We proposed defect prediction learning models based on the application of

genetic programming, which is the newest member of evolutionary algorithm

family. Genetic programming based approaches have recently gained signifi-

cant popularity in the field of machine learning due to ther specific representa-

tion in the form of parse trees. The proposed prediction models addressed the

need of having a robust learner by taking no heuristics into account.

4.2 Future Research Directions

Several interesting research directions motivated by this thesis are discussed

next. In addition to designing robust statistical models for software defect

prediction, we intend to accomplish the following projects in the near future:

4.2.1 Metric-based applications using genetic programming

As discussed in Chapter 3, the first predictor method constructs new features

based primarily on the geometrical characteristics of the original data. Then,
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an independent classifier is applied and the performance of feature selection

method is measured. The second predictor, on the other hand, uses a built-

in classifier which automatically gets tuned for the constructed features.. Our

future efforts will be focused on calculating different distance metrics to reduce

the probability of false alarm that results to increasing balance measure.

4.2.2 Machine learning approaches

There are two major settings in which we wish to learn a function f : supervised

and unsupervised. In supervised learning, we know the values of f for the m

samples in the training set S. We assume that if we can find a hypothesis h

that closely agrees with f for the members of S, then this hypothesis will be

a good guess for f , especially if S is large. Curve fitting is a simple example

of supervised learning of a function. In unsupervised learning, we simply have

a training set of vectors without function values of them. The problem in this

case, typically, is to partition the training set into subsets S1, . . . , Sk in some

appropriate way.

Our future efforts will be focused on evaluating various machine learning mod-

els to develop robust prediction approaches. The performance of each predic-

tion method will be evaluated regarding their precision, recall, robustness and

sensitivity using confusion matrices and simulations. A model’s precision is

defined as the ratio of the number of modules correctly predicted as defective,

or true positive (tp), to the total number of modules predicted as defective in

the set (tp + fp). A model’s recall is defined as the ratio of the number of

modules predicted correctly as defective (tp) to the total number of defective

modules in the set (tp + fn). To perform well, a model must achieve both high
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precision and high recall.
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