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Abstract

Heat Transport in Graphene

Serap Yİğen

Heat transport studies are a powerful tool to obtain information about both the

phononic and electronic properties of materials. Graphene is a two-dimensional

crystal (1-atom thick) where electrons behave relativistically, and which has

tremendous potential for short-term technological applications. We measure the

heat conductivity of graphene, and aim to gather fundamental information about

its phonon modes and their coupling to its Dirac fermions (electrons or holes). Our

measurements can also assess the potential of graphene for technological applications

such as heat management in nanodevices.

We report the first detailed measurements of heat conductivity, κ, and electron

mobility, of graphene versus temperature (6K - 350K) and charge density. We have

fabricated suspended graphene devices. Our suspended devices prevent any undesired

heat leakage and allow a simple modeling of the heat transport. We use these graphene

devices as their own heat sources (Joule heating) and thermometers (resistivity) to

measure their heat conductivity. We observe that thermal conductivity varies by 3

orders of magnitude as a function of temperature, indicating phonon heat transport,

and by more than an order of magnitude as a function of charge density, suggesting

that electron-phonon coupling is important. We observed κ up to 1500 W/m.K.
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Chapter 1

Introduction

Heat transport study is a powerful tool to obtain information about both phononic

and electronic properties of materials, since the thermal conductivity of materials

has contributions from both electrons and phonons. Moreover, it also contains

information about the interactions between phonons and electrons. In this project we

designed and developed an experimental procedure to make precise heat conductivity,

κ, measurements in graphene. We present κ data as a function of temperature, T ,

and charge carrier density, n.

Graphene is a monolayer of carbon atoms packed in a hexagonal lattice. It was

first isolated by A. Geim and K. Novoselov in 2004 from graphite using scotch tape

to cleave atomic planes. This discovery lead them to a Nobel Prize in Physics in

2010. After its discovery, graphene had an enormous impact on many research areas,

not only in condensed matter but also in engineering and chemistry. Thousands of

graphene papers are published every year and as its unusual properties are being
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revealed, it leads to more potential future applications. One of the things that makes

graphene unique is its linear band structure which makes its charge carriers behave

like relativistic particles described by Dirac’s equation. In addition to its electronic

properties, its phononic properties are different than other 2D systems. Since it is

a two-dimensional material free to move in a three-dimensional world, it has out-

of-plane phonon modes. To explore these electronic and phononic properties, we

developed a method to measure the heat conductivity of graphene.

We fabricated suspended graphene devices which prevent undesired heat leakage to

the substrate to provide precise measurements. We developed a self-heating technique

in which we flow a current to heat up graphene and use the resistivity of the graphene

crystal as a thermometer to measure its temperature. Thanks to our device design we

can measure κ at different charge carrier densities and at different temperatures. We

annealed our samples to see the effect of impurities on thermal conductivity. We see a

strong dependence of κ on temperature and impurity concentration. We compare our

results with theory and previous experiments and find that our results are consistent

with literature.

In this thesis, we report detailed measurements of the thermal conductivity of

graphene. In chapter 2, we briefly review the physics of graphene and present the

heat transport model we built. In chapter 3, we explain the fabrication techniques

we used to make our devices, and describe the measurement set-up we used for data

acquisition. In chapter 4, we show how we extract thermal conductivity from our

2



model and present our results.
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Chapter 2

Graphene Basics and Heat

Transport Model

In this chapter we present a theoretical background for heat transport in graphene

before introducing our experimental work in chapter 3. First, we give a brief overview

of graphene’s electrical and mechanical properties and in the following section we

present the heat transport model we built to analyze our data and extract thermal

conductivity.

2.1 Graphene

Graphene is a monolayer of carbon atoms arranged in a honeycomb lattice and is the

2D building material for all other graphitic materials such as fullerenes (0D), carbon

nanotubes (1D) and graphite (3D) (see Fig. 2.1). Graphene had been studied only
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theoretically before 2004, since it was not expected that such a 2D structure could be

thermodynamically stable and it had never been observed experimentally. The story

changed in 2004, when A. K Geim et al. at the University of Manchester [1, 2] could

isolate graphene layers on a silicon substrate and start acquiring data which revealed

the unusual properties of graphene. In this section we will briefly review some of

the physical properties which make graphene special for both fundamental physics

research and applications in electronics.

Figure 2.1: Graphene is the basis of all graphitic forms [3].

After the experimental discovery of graphene, its exceptional mechanical and

electronic properties attracted enormous attention. These properties stem from its

chemical bonding and lattice structure. Each carbon atom in graphene binds to 3

nearest neighbors (see Fig. 2.2b) and is sp2 hybridized. The three sp2 orbitals are

generated by one 2s orbital hybridized with the 2px and 2py orbitals in each carbon

atom. These orbitals form strong σ bonds with the neighboring carbon atoms. The

σ bonds are parallel to the plane of graphene and are responsible for the mechanical
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strength of the sheet. Experiments on the mechanical properties of graphene have

proven that it is the strongest material ever measured with a Young’s modulus of 0.5

TPa [4, 5]. The 2pz orbitals which are not sp2 hybridized and each have one electron

which forms π bonds between nearest neighbors and leads to delocalized π bands.

These half-filled π bands give rise to the conduction and valance electronic bands

in graphene. These energy bands play an important role in the electron transport

properties of graphene. Their dispersion is linear, and the valence and conduction

bands meet at a point called Dirac Point or Neutrality Point (see Fig. 2.2a.). Because

of this structure, graphene is called a zero band gap semiconductor.

Figure 2.2: a. Energy band structure of graphene [7]. b. Honeycomb lattice and
corresponding First Brillouin zone [6].

The lattice structure of graphene can be thought of as a hexagonal lattice with a

basis of two atoms per unit cell with the lattice vectors

a1 =
a

2
(3,

√
3) , a2 =

a

2
(3,−

√
3) (2.1)

The Dirac points are located at K and K
′

in the reciprocal space are (see Fig. 2.2b.)
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K = (
2π

3a
,

2π

3
√

3a
) , K

′

= (
2π

3a
,− 2π

3
√

3a
) (2.2)

The energy dispersion relation which was first calculated by Wallace [8, 9, 10], is

derived from the tight-binding model [6]

E±(q) ≈ ±υF |q| + O[(q/K)2] (2.3)

where q is the momentum and υF is the Fermi velocity. (+) and (−) signs stand for

the conduction and valence band respectively. Eq. 2.3 is the low-energy dispersion

relation (|q| ≪ |K|) and shows that the energy of charge carriers changes linearly with

their momentum, not quadratically as in conventional semiconductors. Hence, low-

energy carriers in graphene can be described by a Dirac-like equation which is linear

in momentum rather than quadratic like the usual Schrödinger equation. This implies

that around the Dirac Points, charge carriers behave like relativistic quasiparticles

with zero effective mass. These so-called massless Dirac fermions move at a velocity of

about c/300 and have a very high mobility. The experimental results show a mobility

up to 15, 000 cm2 V −1 s−1 at room temperature on a SiO2 substrate [3, 11, 12]. The

impurity scattering due to the SiO2 substrate limits the mobility of charge carriers at

this temperature, but it can be improved by suspending the graphene crystal above

the silicon substrate. The reported mobility measurements on suspended samples

revealed that a value > 200, 000 cm2 V −1 s−1 can be achieved [13, 14].
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In intrinsic graphene, the Fermi level sits exactly at the Dirac point and can be shifted

up (down) by doping with electrons (holes). Even though the number of charge

carriers is zero at the Dirac point, graphene has a minimum conductivity thanks to

its linear spectrum. Since the Dirac fermions in graphene mimics relativistic particles,

they experience Klein tunneling [15], by which a relativistic particle can penetrate

through a very high potential barrier with a high probability [16, 17, 18]. This

tunneling results in a predicted quantum conductivity of 4e2/πh [19, 20] and the

measurements show that the conductivity of graphene is close to 4e2/h at the Dirac

point [21, 22].

In addition, massless Dirac Fermions in graphene behave in an unusual manner in

a perpendicular magnetic field. Unlike the traditional 2D systems, graphene has a

quantized Hall conductivity that is shifted by 1/2 and follows the sequence of

σxy = ±4e2

h
(N + 1/2) (2.4)

where N is the number of Landau levels [23]. This is called half-integer or anomalous

quantum Hall effect, since it is neither integer nor fractional quantum Hall effect. The

coefficient 4 comes from the degeneracy, since electrons have two spin states and two

Dirac cones. Moreover the cyclotron energy of electrons in graphene changes with

√
B which causes larger energy spacing between Landau levels. This condition makes

the quantum Hall effect observable at higher temperatures, even at room temperature

[24].
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Figure 2.3: Quantum Hall Effect in graphene [3].

As for its mechanical properties, graphene has 6 phonon modes; 3 acoustic and 3

optical modes. Longitudinal and transverse acoustic modes (LA and TA) have linear

dispersion relation ω ∝ q and are responsible for in-plane translation and stretching

of graphene. Since graphene is a 2D material sitting in 3D space, it can vibrate

in the out of the plane direction. Thus graphene has also out-of-plane phonons or

flexural modes. The acoustic flexural mode (ZA) energy’s disperses quadratically with

momentum ω ∝ q2 and represents the perpendicular displacement of the graphene

sheet. Phonon dispersions in graphene are shown in figure 2.4.

Due to these exceptional electronic and phononic properties, graphene can provide

a very high thermal conductivity and thus is a promising candidate for thermal

management in nanoscale electronics [3]. A non-contact optical measurement of

thermal conductivity on graphene samples suggested that it could be up to 5 × 103

Wm−1K−1 at room temperature [25, 26]. Recent experiments [28, 29] and theoretical

9



Figure 2.4: Phonon dispersions along high symmetry directions in the first Brillouin
zone of graphene [27].

[30] work suggest lower values. However the experimental data is very sparse and

a detailed mapping of κ remains to be done. Heat is carried by both phonons

and electrons and therefore thermal conductivity of graphene has two contributions.

Electronic thermal conductivity depends on the charge carrier density, whereas the

phonon contribution changes with temperature.

We have introduced graphene and some of the properties that make it different from

other 2DEG systems. In this project, we are interested in thermal properties and

we aim to explore how heat is propagating in graphene by measuring the thermal

conductivity as a function of charge carrier density and temperature. In the following

sections, we present a simple theoretical model for heat transport in graphene which

will later help us to analyze our measurements.
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2.2 Heat Transport Model for Graphene

In this section, we present the heat transport model we use to describe our devices

and analyze our data. We have two different designs for our graphene devices. We will

briefly explain the design of our devices and then derive an heat equation model. We

will use values from literature to estimate various material parameters and calculate a

numerical estimate of the expected heat signal. The details of our device fabrication

will be given in Chapter 3.

2.2.1 Joule-Heating Technique

The first device we designed has a suspended flake with two 200 nm-wide electrodes

at each end (see Fig. 2.5). These narrow electrodes serve as heater and thermometer

and are supported by bigger contacts for suspension. This design allows us to use

Joule-heating technique. When we send a current through the thin Au wire, there

will be heat generated by Joule-heating. We can calculate the power dissipated in the

heater wire from its resistance and current (P = I2 × R). The input heat will flow

through graphene and reach the other end where we can use the thermometer wire to

measure the temperature. The temperature will be determined from the resistivity

versus temperature curve for the second wire.

This device design works in theory, but in practise this design is very difficult to

fabricate, especially to suspend. As you will see in the fabrication part, we need large

contacts to support the graphene flake. The thin wires are not resistant to stress and

11



Figure 2.5: Cartoon of the device design for the Joule-heating technique.

likely to collapse. Therefore, we designed a different type of suspended device which

is more suitable for suspension and developed a new heat transport model for this

device configuration.

2.2.2 Self-Heating Technique

The second device design also has a suspended flake, but with 3 µm-wide electrodes

(see Fig. 2.6). We make heat transport measurement by using a self-heating method.

In this technique, we drive a large current which heats up the graphene and causes

a hot spot in the middle of graphene flake (see Fig. 2.6). Heat will flow from the

center towards the electrodes. The determination of temperature is done by resistance

measurement of the graphene for I ≈ 0. To do so, we build a calibration curve of

resistance as a function of temperature. Knowing the resistance of graphene at all

temperatures, we can measure the temperature change that is caused by Joule-heating

(I 6= 0).

12



Figure 2.6: Cartoon of a self-heating device

We model this device using the general heat equation in 1-dimension:

ρmc
∂T

∂t
= κ

∂2T

∂x2
+ Q (2.5)

where ρm and c are the mass density and specific heat capacity of graphene

respectively. Q is the heat power per unit volume deposited in graphene, and κ is the

thermal conductivity which we want to measure. When we apply a DC current, the

temperature of the system will reach a steady state. Therefore, the time-dependent

term is set to zero. Then, the equation reduces to

κ
d2T

dx2
+ Q = 0 (2.6)

where Q = P
V

= I2R
WLh

and W,L and h are width, length and thickness of graphene

respectively. The 2D resistance is R = ρ L
W

and since the resistivity, ρ of graphene

depends on temperature, we can substitute ρ = ρref [1 + α(T − Tref )] where ρref

is the resistivity of graphene at a reference temperature Tref and α is temperature

coefficient of resistivity. Then, Equation 2.6 becomes

13



d2T

dx2
+

I2ρref

κW 2h
+

I2ρrefαT (x)

κW 2h
− I2ρrefαTref

κW 2h
= 0 (2.7)

According to our model, we expect T to be maximum in the middle of the flake due

to Q. While each end will be at fixed temperature set by the gold contacts which are

the cryostat’s temperature (see Fig 2.7).

Figure 2.7: Boundary conditions for Self-heating model

Therefore, to solve Eq. 2.7 we will use the boundary conditions:

T (0) = T0 , T (L) = T0 (2.8)

The solution is found using Mathematica or analytically:

T (x) = (T0+
1

α
−Tref )[cos(

√

I2ρrefα

κW 2h
x)+tan(

L

2

√

I2ρrefα

κW 2h
) sin(

√

I2ρrefα

κW 2h
x)]− 1

α
+Tref

(2.9)

where κ is the thermal conductivity of graphene. Eq. 2.9 gives the temperature T (x)
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at different points along the graphene flake from one contact (x = 0) to other contact

(x = L). In this equation; L is the length of flake which is about 1 µm experimentally,

W is the width which is about 1.5 µm for our devices, h is the thickness which is

0.335 nm and α is the temperature coefficient of resistivity which we extract from our

ρ vs T calibration curve (α=slope of the curve divided by ρ). I is the current flowing

across the flake and which we measure experimentally. Here we will substitute in

different values for ρref , κ, T0 and I to see how the temperature distribution depends

on these parameters.

Numerical analysis for ρref = 5000 W and κ = 3000 Wm−1K−1 :

Here we calculate the temperature distribution along the flake assuming that the

thermal conductivity of graphene is κ = 3000 Wm−1K−1. The resistivity of graphene

can be about as 5000 W in our samples close to the Dirac point. We set the reference

temperature in Eq. 2.9 to Tref = 77 K. Substituting all these variables in Eq. 2.9

will give an equation for T (x) as a function of current I, the temperature of contacts

T0 and x:

T (x) = 1129.63 + (−1129.63 + T0)
[

cos(1.41795 × 109
√
−I2x)

+ tan(708.975
√
−I2) sin(1.41795 × 109

√
−I2x)

]

(2.10)

For different applied currents, we plot the graph of temperature versus x in Fig. 2.8.

15



For various currents, we calculate T (x) for several T0. We select currents of 1 µA,

10 µA, 100 µA, 1000 µA and contact temperatures of T0 = 1.5 K, T0 = 10 K and

T0 = 100 K. We combine the graphs of T
T0

versus x for each current so that we can

see both the effect of current and contact temperature.
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Figure 2.8: T
T0

for ρref = 5000 W and κ = 3000 Wm−1K−1. a. For I = 1 µA at
contact temperatures of T0 = 1.5, 10 and 100 K. b. For I = 10 µA c. I = 100 µA
d. I = 1000 µA.

As seen in Fig. 2.8, we get a peak temperature in the middle of the flake as we

expected from our model. The hot spot in the middle results from the self-heating

and the temperature goes down at the ends of the flake and reaches the temperature
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of the contacts. Therefore the ends sit at the ratio of T
T0

= 1. Evidently, the ratio

is proportional to square of current, since the power is P = RI2. Moreover, if the

experiments are performed at low temperatures, the peak will be higher and thus we

will have a higher signal to noise ratio.

To see the possible signal that we can detect, we calculated the temperature difference

between the middle of the flake and contacts. We subtract the contact temperatures

from the max points of each graph, ∆T = Tmiddle − T0, which gives the results

presented in Table 2.1. Apparently a current of 1 µA is not high enough, since the

difference is very small. When the current is increased, the strength of signal goes

up by the square of current. At 100 µA, the different is about 3 K verifying that we

get a detectable signal from our experiments. However when the current is increased

further, the temperature difference blows up as seen from the result of I = 1000 µA.

This regime should be avoided since we want to measure κ at T ≈ T0

Table 2.1: ∆T = Tmiddle − T0 for ρref = 5000 W and κ = 3000 Wm−1K−1

I = 1 µA I = 10 µA I = 100 µA I = 1000 µA

T0 = 1.5 K 2.8 × 10−4 K 2.8 × 10−2 K 2.8 K 234.23 K
T0 = 10 K 2.8 × 10−4 K 2.8 × 10−2 K 2.8 K 232.46 K
T0 = 100 K 2.6 × 10−4 K 2.6 × 10−2 K 2.6 K 213.78 K

Numerical analysis for ρref = 500 W and κ = 3000 Wm−1K−1 :

We would like to do the same analysis to see the difference if the resistivity of graphene

is lower, which we expect when we dope the graphene using a gate electrode. For this
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purpose we assume the resistivity to be ρref = 500 W at room temperature and we

keep the other variables the same. We substitute the parameters in Eq. 2.9, and we

get the equation

T (x) = 1129.63 + (−1129.63 + T0)
[

cos(4.48395 × 108
√
−I2x)

+ tan(224.198
√
−I2) sin(4.48395 × 108

√
−I2x)

]

(2.11)

We plot Eq. 2.11 using the same currents and contact temperatures as previously.

The plots are shown in Fig. 2.9.

As expected, the shape of T (x) is the same as earlier and the larger the current is, the

higher is the temperature difference between the center and edges. We calculated the

temperature difference ∆T between the middle of the flake and contacts to compare

with the previous results. The results obtained are shown in Table 2.2.

Table 2.2: ∆T = Tmiddle − T0 for ρref = 500 W and κ = 3000 Wm−1K−1

I = 1 µA I = 10 µA I = 100 µA I = 1000 µA

T0 = 1.5 K 2.8 × 10−5 K 2.8 × 10−3 K 0.28 K 27.77 K
T0 = 10 K 2.8 × 10−5 K 2.8 × 10−3 K 0.28 K 27.56 K
T0 = 100 K 2.6 × 10−5 K 2.6 × 10−3 K 0.26 K 25.35 K

Since we decreased the resistivity by a factor of ten, the signal also decreased by ten.
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Figure 2.9: T
T0

for ρref = 500 W and κ = 3000 Wm−1K−1 a. For I = 1 µA at contact
temperatures of T0 = 1.5, 10 and 100 K. b. For I = 10 µA c. I = 100 µA d.
I = 1000 µA.

Numerical analysis for ρref = 5000 W and κ = 1 Wm−1K−1 :

Lastly we will study the effect of low thermal conductivity, which we expect at low

temperature where there are few phonons. We assume that the thermal conductivity

is much lower and we let it be κ = 1 Wm−1K−1. We replace the resistivity by

ρ1 = 5000 W again to compare with our first analysis. When we substitute all the

parameters except for current and contact temperature, we obtain the equation
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T (x) = 1129.63 + (−1129.63 + T0)
[

cos(7.76643 × 1010
√
−I2x)

+ tan(38832.2
√
−I2) sin(7.76643 × 1010

√
−I2x)

]

(2.12)

Using the same current and contact temperatures, we plot the graphs of T
T0

vs x as

seen in Fig. 2.10.
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for ρref = 5000 W and κ = 1 Wm−1K−1. a. For I = 1 µA at contact
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We calculated the temperature difference between the middle of the flake and contacts
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for each one. This provides us the signal range that we will have if the thermal

conductivity is lower than we assumed. The results are presented in the following

Table 2.3:

Table 2.3: ∆T = Tmiddle − T0 for ρref = 5000 W and κ = 1 Wm−1K−1

I = 1 µA I = 10 µA I = 100 µA

T0 = 1.5 K 0.85 K 80.02 K 1081.71 K
T0 = 10 K 0.84 K 79.42 K 1073.56 K
T0 = 100 K 0.78 K 73.04 K 987.26 K

If we compare these results with the Table 2.1, the temperature difference is higher

for lower thermal conductivity. When the thermal conductivity is higher, the heat in

the system is carried more easily from the center to the edges. Hence the temperature

difference between the middle and contacts becomes smaller.

This section allows us to determine the temperature distribution and signal strength

that we expect in our devices. The estimation of signal with different values of current,

resistivity, contact temperature and thermal conductivity proves that our experiments

will give a detectable signal and can be done. Since the measured resistivity of

graphene is the average resistivity over the flake, the detected temperature of the

flake is the average of T (x). Therefore we integrate the temperature distribution

function, T (x) and divide by length, L:

Tavg = (Tref −
1

α
) +

2(T0 − Tref + 1
α
) tan[L

2

√

I2αρref

hW 2κ
]

L
√

I2αρref

hW 2κ

(2.13)
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The signal is ∆Tmeasured = Tavg − T0. Using Eq. 2.13, we will extract the thermal

conductivity of graphene from the measured resistivity and temperature of the flake.
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Chapter 3

Fabrication of Suspended

Graphene Devices and

Instrumentation

In this chapter we describe the microfabrication of our devices. We fabricated

graphene devices in which we can make heat transport measurements. The devices

are suspended so that there is no heat leakage to the substrate. We first present

the fabrication techniques we used and explain each step we followed to prepare our

samples. We then talk about our measurement set-up.
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3.1.2 Photolithography

We make our devices on small chips diced from wafers. Therefore, we need a pattern

on each chip to find the position of the graphene flakes and align the devices on these

flakes. We use photolithography to expose alignment marks on the wafers. The mask

pattern contains 15 of 15×6 mm dies and each die has an alignment mark coordinate

system covering a 4 × 4 mm area. The pattern of alignment marks is designed as a

matrix of letters (A to I) and numbers (1 to 9) with L-shapes 100 µm apart (see Fig.

3.3) The recipe that we use is the following:

1. Clean the wafers with acetone and isopropyl alcohol (IPA).

2. Spin resist S1813 at 4000 rpm for 30 seconds.

3. Bake at 115 � for 60 seconds.

4. Expose for 4 seconds (depends on the intensity of light).

5. Develop with MF319 for 1 minute.

6. Rinse with DI water.

7. Inspect developed wafer. Go back to 5 if necessary.

Exposure time is set after checking the intensity of the light. We calculate the

exposure time according to equation: time × intensity ≈ 40 mJ/cm2. During the

developing step, we stir the beaker lightly so that the developer flows on the wafer

continuously which helps to remove exposed photoresist. After developing, the wafers
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acetone on the wafer during lift-off. After a good lift-off, the wafer is ready to be

diced into chips with dimensions of 5 × 5 mm. An optical image of the alignment

marks on a chip is shown in Fig. 3.4.

Figure 3.4: Optical image of a chip with alignment marks.

3.1.4 Graphene Deposition

Before graphene deposition, the chips are cleaned to remove any kind of contamination

on them. The cleanliness between the graphene flake and the substrate is extremely

important since any disorder will affect the quality of the sample and data. The

recipe for chip cleaning is the following:

1. Etch for 5 minutes in a solution of H2O : H2O2 : HCl (8 : 1 : 1) at 75 �.

2. Rinse with DI water and dry.

3. Bake for 2 minutes at 150 � to remove water on the chip surface.
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3.1.5 Electron Beam Lithography

After locating graphene flakes during the deposition step, we can proceed to making

devices. Electrodes are defined by electron beam lithography. The chips are spun and

then exposed with E-beam lithography followed by a developing step. The recipe for

the spinning is:

1. Spin 11% copolymer MMA at 4000 rpm for 60 seconds.

2. Bake at 170 � for 15 minutes.

3. Spin 2% 950K PMMA at 2000 rpm for 60 seconds.

4. Bake 170 � for 15 minutes.

After spinning the contacts are exposed on the flakes. As mentioned before, we

design two kinds of devices: one with 3 µm-wide electrodes which are 1 µm apart

(self-heating model) and the other one with 200 nm-wide wires at each end (joule-

heating model). The contacts are drawn with an AUTOCAD program and exposed

with a SEM (Scanning Electron Microscope). The procedure for making a device is

shown in Fig. 3.6. After finding a flake, we put a grid on it which provides the exact

position of the flake with respect to the origin at the center of four L-shapes. The

contacts are drawn using the coordinate system defined by the L-shapes. During an

alignment step right before exposure, the pattern is aligned using the L-shapes. After

exposure, the chips are developed using this recipe:

1. Develop in MIBK : IPA (1 : 3) solution for 30 seconds.
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extremely careful about electrostatic discharges. You should ground everything that

is going to touch your device (like tweezers, wire-bonder, even yourself). Otherwise,

the device will be destroyed.

The measurements are performed in a cryostat between 1.5 K - 420 K, where

the temperature is adjusted by an external temperature controller. The cryostat

has a stick with a socket at the end where we mount our chip carriers (see Fig.

3.10b.). While taking measurements, the cryostat is kept under high vacuum. It

is connected with electronics which are controlled by a program we wrote with the

LabWindows/CVI software. Data acquisition is also done with the same program

(see Fig. 3.11).

The software can make individual bias and gate sweeps (1-D sweeps), 2-D bias and

gate sweeps and also 3-D sweeps (temperature, bias and gate sweeps). It can control

the entire circuit (see Fig. 3.12) and temperature of the fridge. The data is recorded

to a specific directory with date and time. While recording data, the graphed data

can also be seen in real time if desired. The ramping up or down parameters for the

applied voltages are set at a safe rate not to destroy the samples. Thanks to this

software our data acquisition is fully automated (The program was written by M.Sc.

student Joshua Island).

The basics circuit for our measurement set-up is shown in Fig. 3.12. It consists of a

Data Acquisition Card (DAQ) that applies bias voltage to the source electrode of the

device and can also read the current from the output of a current pre-amplifier which

is connected to the drain electrode. We have a gate voltage source, which is controlled
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by GPIB via the computer, which applies a voltage to the back gate electrode of the

sample to tune the charge carrier density. For all voltage sources we use either a

voltage divider or a low-pass filter to reduce the noise in the circuit. For bias voltage,

we prefer to use a voltage divider since the DAQ resolution is coarse for mV-range

voltages. The DAQ acquires data and it is recorded by the software. A temperature

controller is also connected to the PC via RS-232 and controlled by the software.

Figure 3.12: Measurement circuit. The Data Acquisition Card (DAQ) applies voltages
and reads the output current from the pre-amplifier. There is gate voltage source
(Keithley) which tunes the carrier density. The entire circuit is controlled by a PC.
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Chapter 4

Measurements and Data analysis

After fabricating graphene transistors, we make both electron and heat transport

measurements. Electron transport properties of our devices are consistent with

previously reported results and prove that we fabricated high quality graphene

transistors. In the first section, we present electron transport measurements and data

analysis on our best suspended graphene 2 pt. device. We measured in some detail two

other suspended graphene transistors and found that their qualitative behavior was

very similar to the data discussed here. However, these other samples had been imaged

in a scanning electron microscope prior to measurements. This reduced significantly

the value of κ due to carbon contamination from the SEM. We therefore focus on

our cleanest device. In the following section, we discuss heat transport measurements

and the details of our results.
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4.1 Electron Transport in Graphene

4.1.1 Measurements

We make two types of measurements on our samples to understand electron transport.

In the first case, we sweep the bias voltage at a constant gate voltage and measure the

current. Alternatively, we can sweep the gate voltage (charge density) at a constant

bias voltage and measure the current. Before presenting our data analysis, let us

present a representative data curve. In Fig. 4.1, we present a I versus Vbias sweep

for different Vgate. Since Vgate tunes the carrier density, the resistance of the device

changes for different Vgate as can be seen from the slope of different I − V curves.
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Figure 4.1: I versus Vbias at different Vgate.

For the I vs Vgate measurements, we sweep the gate voltage while applying a constant

bias voltage for instance 5 mV . This results in a U-shaped graph (see Fig. 4.2) and

the bottom of the graph shows the position of the Dirac point where the charge carrier
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density is zero. For intrinsic graphene, the Dirac point is at Vgate=0 V . However in

this sample it is shifted and sits around Vgate=-1.3 V . This indicates that there are

impurities which dope the crystal with electrons.
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Figure 4.2: I versus Vgate, Vbias=5 mV , T=300 K.

In the following section we will give an example of electron transport data analysis

procedure.

4.1.2 Data Analysis

From electron transport measurements, the first thing we can look at is the resistance

of the sample. This is found by using Ohm’s law. For instance, if we look at the

bottom of the gate sweep graph (Fig. 4.2) where the current is 2.74 µA at Vgate =

VDirac =-1.3 V and bias voltage is 5 mV, the resistance is calculated as

R =
Vbias

I
=

5 mV

2.74 µA
= 1824 Ω (4.1)
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The 2D resistivity can be found from

ρ = R
W

L
= 1824 × 1.95 µm

1 µm
= 3560 Ω (4.2)

where W is the width and L the length of the graphene crystal. The electrical

conductivity is the inverse of resistivity, σ = 2.81 × 10−4 Ω−1≈ 7e2

h
. We can also

calculate the carrier density as a function of Vgate by using the equation

n =
C(Vgate − VDirac)

eA
(4.3)

where C is capacitance and A is the area of the flake which is A = 1.95 µm2, and

VDirac is the gate voltage position of the minimum of the curve in Fig. 4.2. The

capacitance can be found from

C =
εA

d
(4.4)

where ε is the dielectric constant of the insulator between the gate (Si wafer) and

the graphene. For our devices this insulator is vacuum, so ε = ε0 and d is the

distance between the gate and graphene = 300 nm. The capacitance for this device

is C = 6.5 × 10−17 F and using Eq. 4.3, the carrier density at Vgate=0 V is found

to be n = −2.7 × 1010 cm−2. The mobility of the charge carriers at n = −2.7 × 1010

cm−2 is found to be:
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µ =
σ

ne
≃ 65000 cm2/V.s (4.5)

The mobility is a measure of the cleanliness of our graphene, since it is proportional

to the distance a charge carrier can travel without any collision. We now turn to our

heat transport measurements and present an example analysis for our heat transport

data to show how we extract thermal conductivity, κ.

4.2 Heat Transport in Graphene

4.2.1 Measurements

The first step for heat transport experiment is to prepare a R vs T calibration curve

for each sample. This will allow us to use our device as its own thermometer. We

take a current-bias voltage sweep at different temperatures (see Fig. 4.3). We sweep

the voltage between -1 mV and +1 mV . By keeping the voltage range low, we make

sure that there is very little Joule heating and that the temperature of flake does not

change during the sweep. The slope of this graph gives the resistance of the flake at

that temperature.

At several temperatures, we repeat this I vs Vbias sweep to find the resistance of

the flake. Then we combine our results to make a resistance versus temperature

graph. In Fig. 4.4, we present a sample calibration curve prepared between 79 K

and 300 K. We do a fit to this curve to find the relation between resistance and
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Figure 4.3: Current versus bias voltage at T=79 K.

temperature. Thus, from this relation R = 1441 + 1947 × e(−0.00523×T ) we can find

the average temperature of the flake by measuring its resistance. We now have an

accurate thermometer. The slope of this graph at any point is given by the derivative

of the function, and corresponds to the α coefficient we use in our theoretical model

(see Chapter 2). We therefore also have a measurement of α vs T .

After making a calibration curve, we are ready to perform our experiments. We apply

a large bias voltage range to heat up the graphene. As seen in Fig. 4.5, at 79 K we

sweep the bias voltage between -75 mV and +75 mV . The graph has a S-shape

which indicates that the resistance changes and so does the temperature of the flake.

For different temperatures we try different voltage ranges until we see the S-shape in

graph. This confirms that our signal to noise ratio is good enough to make a precise

measurement of κ.
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We would like to note that for each gate voltage applied, we prepare a different

calibration curve and perform a complete set of experiments.

4.2.2 Data Analysis

We are now ready to extract thermal conductivity from our data. We show

an example calculation for one temperature point to explain how we calculate

thermal conductivity and then we will present thermal conductivities at different

temperatures. In Fig. 4.6 the R vs T calibration curve in the temperature range of 6

K - 400 K for a gate voltage of -2.5 V is shown and the points with different colors

(shape) refer to different data sets taken at different times. We combine all of our

data in one graph to see the behavior of resistance both at low and high temperatures.
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Figure 4.6: Resistance versus temperature calibration curve.

The fit for this calibration curve is
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R = 1590 + 2025 × e(−0.00606×T ) (4.6)

and the temperature coefficient α is found by taking the derivative of Eq. 4.6;

Rrefα = (−12.27494114) × e(−0.0060614×T ) (4.7)

We choose Rref = Rmeasured and T = Taverage in our calculations (see Eq. 2.13). Let

us show how to extract thermal conductivity at T = 350 K when the applied gate

voltage is -2.5 V as an example. In the experiment, we sweep the bias voltage between

-525 mV and +525 mV to heat up the flake above 350 K. From our data, we pick a

data point at some Vbias and find the resistance at that point;

R =
V

I
=

393.5 mV

214.4 µA
= 1835.3 Ω (4.8)

To cancel any offset in the measurement, we take the corresponding point at −Vbias

on the negative side, and calculate the resistance from the average of two points:

R =
V

I
=

−393.4 mV

−217.4 µA
= 1809.6 Ω , Ravg =

1835.3 + 1809.6

2
= 1822.5 Ω

(4.9)

According to the calibration (Eq. 4.6), this resistance corresponds to temperature of

T = 357.1 K with the signal ∆T = 7.1 K. As we did here, at each temperature T

we choose a location on the I − V curve where ∆T is around or lower than 10 K.
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This allows us to have a well resolved κ(T ) vs T measurement. From Eq. 4.7, the

temperature coefficient, α(T ) for Rref = 1822.5 W and T = 357.1 K is

α = −7.7318 × 10−4 K−1 (4.10)

In chapter 2, we build a heat transport model for our experiment and derived an

expression for the average temperature of flake measured (see Eq. 2.13). If we

substitute all variables into this equation and solve for κ, we get

κ = 1521 W/m.K (4.11)

To improve our measurements and to see the effect of impurity doping, we annealed

our samples. Annealing is done by baking the samples at 420 K for a few hours.

Before and after annealing we make a gate voltage sweep to see the change in the

quantity of charge impurities on our sample (see Fig. 4.7) which can be seen as a

change in the resistivity of the flake and a shift in the position of the Dirac point

(minimum of curve).

The bottom of the curves shows that the Dirac Point is shifted by the annealing. This

proves that we removed some of the impurities. We calculated thermal conductivity

before and after annealing to see the dependency of thermal conductivity on the

impurity level. To compare them, we plotted them on same graph as shown in Fig.

4.8.

As seen from this graph, thermal conductivity is strongly dependent on the impurity
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level. After annealing, it more than doubles which indicates that with improved

annealing we could reach even higher thermal conductivities.

After a long time anneal, we measured thermal conductivity as described above,

versus temperature and plotted it as a function of temperature as seen in Fig. 4.9:
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Figure 4.9: Thermal conductivity versus temperature at Vgate = −2.5 V , which
corresponds to ncarrier ≃ 0.2 × 1011 cm−2.

We also measured the thermal conductivity at different gate voltages. We plot thermal

conductivity at T = 350 K as a function of Vgate (see Fig. 4.10).

We see a decrease in thermal conductivity with gate voltage and thus with charge

carrier density. In the following section we will discuss our results and compare them

with theoretical predictions and previously published results.
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Figure 4.10: Thermal conductivity versus charge carrier density at T = 350 K.

4.2.3 Discussion

Thermal conductivity has contributions both from electrons and phonons. In our

samples, we have very low charge carrier densities since we do not apply large gate

voltages. Therefore we expect that the thermal conductivity will be dominated by

phonons:

κ = κe + κphonon ≈ κphonon (4.12)

Semi-classically κphonon can be expressed as

κphonon =
1

3

∑

q,s

Cphononυphononlphonon (4.13)

where s is phonon branch index, ~q is the wave vector, Cphonon is specific heat capacity,

υphonon is group velocity of the phonons and lphonon is the phonon scattering length:
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1

lphonon

=
1

lphonon−impurity

+
1

lphonon−e

+
1

lphonon−phonon

(4.14)

According to Eq. 4.14, phonons have interactions with the impurities, electrons and

phonons. Phonon-phonon interaction is important at high temperatures where there

is Umklapp phonon scattering, but we did not explore this regime. Hence in our

system we have pre-dominantly phonon-electron and phonon-impurity interactions.

The impurity density can be tuned by annealing and electron density can be tuned

with the gate electrode.

The other parameters that can affect thermal conductivity are the length of flake,

and its width (edge roughness). According to theoretical calculations, thermal

conductivity decreases with decreasing length [27].

Figure 4.11: Thermal conductivity versus T for different crystal lengths [31].
.

For a 1 µm long flake, the predicted thermal conductivity is
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κ ∝ 1√
L

≈ 4000√
L

= 1260 W/m.K (4.15)

We measured thermal conductivity as κ(300K) = 660± 100 W/m.K for a 1 µm-long

flake. The discrepancy could be due to imperfect annealing and the edge roughness of

the flake. The reported measurement at 300 K, κ(300K) = 4000 ± 800 W/m.K [25]

for a 3 µm-long flake is higher than predicted by theory and seems to be imprecise due

to some poorly controlled parameters (charge density, temperature). A more recent

measurement gives κ(280K) = 190 W/m.K [29].

For the effect of impurity density, we observed that annealing (see Fig. 4.7)

reduced the impurity density by about △nimpurity = 7.5× 1010cm−2 and the thermal

conductivity more than doubled (Fig. 4.8). This suggest that for dirty samples

phonon-impurity scattering is dominant and lphonon ≈ lphonon−impurity.

The interaction between the electrons and the lattice is described by

He−lattice = He−lattice at rest + He−phonon

=
∫

dr(−e)n(r)
∑

l

Vion(~r −~l)

−
∫

dr(−e)n(r)
∑

l

~∇Vion(~r −~l) · ~yl (4.16)

where Vion is the potential, n(r) carrier density, and e is the electron charge

and ~l is the position of ions. The electron-phonon interaction is proportional to
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n(r) and thus we expect that the thermal conductivity decreases with n. In our

measurements, we observed that when we increase the gate voltage, thus the carrier

density, thermal conductivity decreases (see Fig. ??). This suggest that when the

carrier density is increased, thermal conductivity decreases due to electron-phonon

scattering. However, this measurement should be expanded for a more detailed

understanding.

If we look at our thermal conductivity dependence on temperature (see Fig. 4.9), we

see a more than three orders of magnitude increase with temperature. This proves

that thermal conductivity is dominated by phonons as we expected. If we fit the first

data set (6 K - 77 K), we get a T 1.25 dependence. The next data set (100 K - 250 K)

changes with T faster than T 2. For graphene which has a quadratically dispersing

out of plane phonon mode, the low temperature prediction is that κ ∝ T 1.5 (wide

flake) and κ ∝ T (narrow flake) [30]. We can see that our data is consistent with this

prediction. For an infinite 2D system, it is expected that κ(T ) ∝ Cph(T ) ∝ T 2. The

weak T -dependence we observe at low temperatures may come from length and width

of flake (≈ 1 µm) which cut off the phonon spectrum. Also the apparent saturation

of κ at T = 350 K suggests that phonon-phonon scattering is turned on due to a high

number of phonons in the system.
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Chapter 5

Conclusion

In this work, we designed and fabricated suspended graphene devices in which we

can make heat transport measurements. We developed a self-heating technique to

measure thermal conductivity by applying a current to heat up the graphene and used

its resistivity as a thermometer to measure its temperature. For these measurements,

we built a theoretical model by solving a steady state heat equation with the proper

boundary conditions. Before starting the experiments we prepared a calibration curve

(resistance versus temperature) for each sample. At each temperature, we swept a

bias voltage range that is large enough to generate a good thermal signal. From our

theoretical model we derived the relation between the resistivity of graphene and the

average temperature of our graphene sample, and thermal conductivity was extracted

by substituting the measured quantities in this model.

With our model and devices, we made the first detailed measurements of thermal

conductivity in graphene as a function of temperature, charge carrier density and
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impurity density. We observed over 3 orders of magnitude change in resistivity under

various conditions and our results (κ ∝ T 1.25 at low-T and κ = 1500 W/m.K at

T = 350 K) are qualitatively and semi-quantitatively consistent with theoretical

predictions. The dependence of κ on temperature proves that heat transport is

dominated by phonons in our devices. The charge carrier density dependence of

κ indicates that electron-phonon coupling also plays an important role. Annealing

of our samples changes the impurity density and significantly increases their thermal

conductivity.

As future prospects, we would like to measure thermal conductivity at lower

temperatures to observe the thermal conductivity due to electrons. We plan to

improve the annealing procedure to produce higher quality samples. As we collect

more data, we expect to build a detailed understanding of electron-phonon, phonon-

phonon and phonon-impurity interactions in graphene. In addition, we would like

to try samples with different length and width to see the effect of flake’s dimensions

on thermal conductivity. Finally, we would like to learn about heat transport in

the Quantum Hall regime. We will perform our experiments in high magnetic field

and obtain information about the dependency of thermal conductivity on magnetic

field where heat conductivity could be quantized by the presence of 1D electron edge

states.
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