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ABSTRACT

Fuzzy Clustering with an Application to Scheduling

SiXin Cheng

Usually, the generation of an optimal schedule is a costly and time-consuming
process. This process requires expensive computational software and hardware.
Scheduling problem modeling using human expert knowledge is promising and flexi-
ble in dealing with real world applications. Unfortunately, human expert knowledge
may not be available in all cases, and human experts may not be able to explain
their knowledge explicitly. A new scheduling decision learning approach is intro-
duced in this thesis. A subtractive clustering based system identification method
is developed to learn the scheduling decision mechanism from an existing schedule.
It is utilized to build a fuzzy expert model. The existing schedule can be an opti-
mal schedule developed using an optimization method or a schedule generated by a
human expert. The fuzzy expert model is then used to generate new schedules for
other problems following the decision mechanism it learned. The implementation of
this method is demonstrated by modeling a single machine weighted flowtime prob-
lem. Furthermore, selective subtractive clustering and modified subtractive clus-
tering algorithms are developed and used to improve knowledge extraction. Those
algorithms can also be used to model nonlinear and spiral systems using the clus-
tering based system identification, such as function approximation applications and

pattern classification applications when the information about the system is scarce.
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Chapter 1

Introduction

1.1 Background and scope of this work

There are a number of applications in which modeling of systems is important. Mod-
eling of systems may include fuzzy system identification and selection of reasoning
mechanism. Conventional models fail to represent the complete behavior of systems
when information is not sufficient. Mathematical modeling becomes more difficult
when there are uncertainties and ambiguities within system. Too many variables and
unpredictable interactions are known factors to modeling failure. Solving real world
problems is computational demanding in general. In some other cases, model could
be developed using expert knowledge about the system. Even though the model
developed by the expert is able to represent the complete behavior of the system,
in some cases, it is still costly to adapt it to changed requirements. An alternative
method to handle this situation is to model the system using input and output data
of the system. The data could be obtained from perfect mathematical modeling,
from expert knowledge, or from experimental analysis of the system. As these data

also have uncertainties and vagueness, an appropriate approach is essential to model



the system correctly.

Zadeh’s [1] proposal of linguistic approach was effective and versatile in mod-
eling ill-defined systems with fuzziness or fully defined systems with realistic ap-
proximations. Zadeh’s approach was later expanded into fuzzy systems modeling
by Tong [2], Pedrycz [3], Trojan et al. [4], Sugeno and Yasukawa [5], Yager and
Filev [6, 7, 8], Mamdani and Assilian [9], Bezdek [10] and Bezdek et al. [11], Emami
et al. {12] and Chiu [13, 14]. To further the above work, this work modeled an
input-output relationship with IF-THEN-ALSO rules using a modified subtractive
clustering technique.

In general, system identification includes function approximation or output
classification. In either case, the system identification has to be automatic in order
to be versatile and amenable for further learning. The clustering technique is used
in this work to generate rules automatically. Each cluster represents a group of
associated data in a data space and a rule in a knowledge base of the system. The
model which is built based on the set of clusters can be used to predict system
behaviors. Identification of fuzzy systems invariably uses fuzzy partitioning or fuzzy
grouping in the data space based on certain measures.

Most real world scheduling problems are usually very complex. Generating a
quality schedule is usually a costly and time-consuming process. To generate an op-
timal schedule using optimization method usually requires expensive computational
software and hardware. In some real world cases, a schedule may be generated
by a human expert. It is also possible to solve scheduling problem by modeling
human expert knowledge (Turksen et al. [15], Caprihan et al. [16], and Ben-Arieh
and Lee [17]). But, modeling human expert knowledge is usually limited by the

availability of human expert and/or their knowledge.



Each schedule has a goal to accomplish. The goal is to find an optimal so-
lution for certain objective functions. In this thesis, a subtractive clustering based
system identification method and the Sugeno reasoning mechanism are developed
and used to solve scheduling problems. These methods can be used to build fuzzy
expert model from an existing schedule. The existing schedule could be a schedule
developed using an optimization method or by a human expert. It could be an
optimal solution for certain scheduling objective functions. The schedule is used to
generate models, and the model is then used to create new schedules when there are
new jobs. These new schedules optimize the same scheduling objective function as
the schedule that the model learned. The Sugeno reasoning mechanism is computa-
tionally efficient in building models and generating new schedules. The fuzzy expert
models can quickly incorporate new jobs into a new schedule. In order to facilitate
the modeling of scheduling problems, a sequential distance measure is introduced.

In this thesis, the subtractive clustering based system identification method is
demonstrated through solving a single machine weighted flow time problem. The
method learns the schedule decision from the input and output of a schedule. The
WSPT sequence optimizes the weighted flow time objective function in single ma-
chine cases. Successful capturing of job sequence means that the method can learn
from a schedule and then generates an optimal schedule. An example of this pro-
cess is to learn a WSPT sequence and to generate an optimal sequence for a single
machine weighted flowtime problem.

The subtractive clustering based system identification method can be used to
model systems with multiple inputs and outputs. For multiple-machine scheduling
models, sub-optimal solution can be obtained by decomposing multiple-machine

models into single machine problems. There are two ways to build models in the



multiple machine cases using the subtractive clustering based system identification
method. One of them is to build a fuzzy expert model for all machines. Another
is to build one fuzzy expert model for each individual machine. In either case, the
model generates a new schedule when new inputs are presented. The new schedule
yields sub-optimal solutions following the existing schedule it has learned.

The successful identification of a system over a data space requires sufficient
representation over the entire range of data space. In general, more data points may
result in a model better representing the system. But in some situations, the model
may have to be built from scarce data without losing the global behavior of the
system. The minimum number of data points required for a perfect identification of
the system is called complete data. When the data space is densely populated like
in the case of complete data, the system behavior at any part of the input domain
could easily be predicted using the system behavior at nearby points. But when
the scarcity of the data increases the data is no longer complete to enable a prefect
identification. It is called scarce data, where the system behavior a point may have
to be modeled using the system response at farther away points. In those cases
of system identification with scarce data, a new strategy of predicting the system
behavior have to be used. A cluster of data in an input-output data space represents
a grouping of data points with related behavior. And hence each cluster represents
a particular system behavior in a phenomenological domain, which is the behavior
of the cluster center. Each cluster is responsible for capturing a particular aspect of
the system behavior. Thus a higher number of clusters may represent a system.

Subtractive clustering algorithm may lead to faulty representation of scarce
data for complex system. In this thesis, modified subtractive clustering and selective

subtractive clustering methods are developed to improve the clustering performance



in modeling systems when the information about the system is scarce. The WSPT
surface is a nonlinear and spiral surface. Successfully modeling WSPT problem with
scarce data indicates that these two algorithms can be used to model nonlinear and

spiral system with scarce training data.

1.2 Organization of the thesis

Scheduling approaches are introduced in Chapter 2. Clustering methods and clus-
tering based system identification methods are discussed in Chapter 3. A clustering
based system identification method is used for scheduling decision learning prob-
lems, and a scheduling sequencing learning application is presented in Chapter 4.
Selective subtractive clustering and modified subtractive clustering algorithms are
discussed in Chapter 5. The training and validation of sequential learning appli-
cation are demonstrated in Chapter 6. Conclusions and possible applications are

discussed in Chapter 7.



Chapter 2

Scheduling

2.1 Scheduling terminology and job attributes

Scheduling has been examined in the operations research literature since the early
fifties (Conway et al. [18]). It has been defined by Baker [19] as “the allocation of
resources over time to perform a collection of tasks.” Many of the early developments
in this field were related to problems in manufacturing. Hence most scheduling
terminology and vocabulary are derived from manufacturing domain.

Scheduling is usually a multi-criteria based decision making process. The
general decisions are sequencing, timing and routing. Specifying the order of jobs
through the resources is called sequencing. Specifying the time, which includes
starting time and completion time on resources is referred to as timing. Specifying
the resource for each job is called routing.

A task, usually called job, can be a single item or a batch of items that needs
processed together on resources. The resources are generally machines, manpower,
and facilities. The processing of a particular job on a particular machine is called

an operation. A task may have more than one operation that requires multiple



resources.

The static attributes of a job are processing times of operations, ready time, due
date, priority, etc. There are also changing attributes such as slack time, remaining
processing time, remaining number of operations, etc. Processing time is the time
required to complete an operation of a job. Ready time is the point of time a
job is available for its next process. Due date is the customer demanded delivery
date of the products. It is usually negotiable between manufacturer and customer.
Priority is the preference of a job. The preference may indicate a job to be processed
earlier than others. Priority of a job may be constant or may change during a
scheduling process. Slack time is the maximum time left for a job before delivery
minus remaining processing ttme. A value smaller than zero for slack time means
that a job is overdue already. Remaining processing time and remaining number of
operations are also changed during scheduling process. Remaining processing time is
the total processing time minus time spent on all completed operations. Remaining

number of operations is the number of unprocessed operations.

2.2 Problem classifications

Classifications of scheduling problems can be done on resources and tasks. A schedul-
ing model may contain one resource, or several resources of one type, or several dif-
ferent types of resources. If it contains one or several resources of one type, tasks (or
jobs) are likely to be single staged. Multi-resource model usually applies to multi-
stage tasks. So a scheduling model can be an one stage single resource model, an
one stage parallel resource model, an multi-stage flow shop model, an muwlti stage job
shop model or an multi-stage open shop model. The models can be static or dynamic,

and deterministic or stochastic. Static model refers to the one that the number of



jobs and their ready time are given and fixed (French {20]). In dynamic model case,
jobs arrive over a period of time. In the deterministic case, all scheduling informa-
tion are predetermined and do not include stochastic factor. In the stochastic case,
scheduling information is random in nature.

Most real world scheduling problems are very complex and far from being
completely solvable due to their combinatorial nature. As a basic component of
complicated scheduling models, single-machine problems help us understand a va-
riety of scheduling issues in a tractable model. It is a basic building block in the
development of understanding of comprehensive scheduling concepts. It facilitates
the modeling of complicated systems. In case of complicated multi-machine prob-
lems, job sequencing may be determined by one highest or most restricted machine,
such as a bottleneck machine or an expensive processor. Modeling a bottleneck ma-
chine or an expensive processor itself as a single machine may approximate the entire
system scheduling. In some case, the level of decision may dictate that the processing
facility should be modeled in the aggregate, as a single resource (Baker [19]). The
modeling methodology presented in this thesis is demonstrated on a single machine
scheduling problem. However the methodology also applies to multiple machine

sequencing problems.

2.3 Scheduling objectives

Scheduling is a decision-making process that has a goal to accomplish. The goal
is usually called objective or performance measure. The objectives or performance
measures vary from manufacturer to manufacturer and sometimes from day to day.

Most scheduling objectives are related to the flow time and the due date. Flow

time of a job is the amount of time between arrival and departure of a job from the



system. Due date is the customer demanded delivery date of the products. They
reflect the cost of storage, materials handling, lost sale, and rejections by missing due
date. Flow based objectives are concerned about reducing turnaround time of jobs
through the shop. The turnaround time is usually reflected in the cost of storage
and materials handling. Due date based objective is to reduce the amount and
frequency by which the individual completion time to the promised time. Tardiness
and lateness, both are due date based objectives. Tardiness ezceeds the due date,
the lateness does not. The promised time is the customer required delivery time,
which is usually negotiable between customer and manufacture. Missing due date
usually causes some penalties. A weight based objective assigns different importance
levels to different jobs. A non-weight-based objective can be considered as a special
case of weight based objective where jobs are of equal importance. The weight is
usually related to the cost. The most common objectives are introduced next.
Makespan is the length of the time to complete all jobs. Flow time includes
both waiting time and processing time. Mean flow time is an important perfor-
mance measure. Minimizing the mean flow time will lower the waiting time of jobs
or work-in-process inventory in a system. Mean flowtime is a special case of weighted
mean flowtime where different jobs are equally importance. Weighted mean flowtime
incorporates both the flowtime and the weight factor into the performance measure.
Lateness is the amount of time by which the completion time of a job has exceeded
its due date. Tardiness is the lateness of a job that fails to meet the due date. Min-
imizing mazimum lateness and tardiness is an important objective when customers
tolerate smaller tardiness but become rapidly and progressively more upset for larger
ones. Minimizing the number of tardy jobs maximizes schedule performance when

missing due date is completely unacceptable. The due date is called the deadline.



Mean tardiness performance measure only considers jobs that miss the due date.
When using this performance measure, there is no benefit driven from early com-
pleting jobs. The multi-criteria objective links different single objective into cost
penalty. The global objective is to minimize the total cost penalty.

Multi-criteria objectives are most often used in real world situations, it is
either explicitly in a mathematical model or implicitly by a human expert scheduler.
Weighted early-tardy objective is a objective where jobs have different penalty factors.
Both early and later completed jobs have penalty. This kind of situation is very
common in just-in-time manufacturing processes. Weighted early-tardy-flowtime is
an objective describing the conflicting objectives of inventory level and customer
satisfaction. Mean flowtime represents work-in-process inventory, and total earliness

represents finished product inventory. Tardiness represents customer satisfaction.

2.4 Scheduling approaches

Approaches to solving scheduling problems include operations research, dispatching

rules, and fuzzy logic approaches.

2.4.1 Operations research approaches

Operations research includes mathematical-analytical methods and heuristic meth-
ods. Mathematical-analytical methods developed in the context of the operations
research can be characterized theoretically and yields optimal solutions. These meth-
ods have their own limitations, particularly in modeling complex real world appli-
cations (Slany [21]). The most famous and efficient methods are dynamic program-

ming and branch and bound. Heuristics search uses all the available information and
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knowledge toward a solution along the most promising path, omits the less promis-
ing ones (Murty [22]). Heuristics methods, which lead to approximate solutions,
may not be the optimal solution. The most famous and efficient methods are beamn
search, tabu search, simulated annealing, genetic algorithm, etc. Many practition-
ers seem to prefer simpler heuristic methods to solving combinatorial optimization

problems because:

e there is no guarantee that special algorithm such as branch and bound will

give the effective performance on all large-scale problems.
e the real world applications are often complex
e the data available often has unknown errors.

Many heuristic methods do involve some type of search to look for a good approx-
imate solution. Sometime the search for a good approximate solution may be slow

and unrewarding (Murty [22]).

2.4.2 Algorithmic and dispatching rules

Scheduling algorithm consists of a set of conditions and rules. If all conditions for a
particular algorithm are met and the rules are applied properly, an optimal schedule
can be generated. These kinds of algorithms are Shortest Processing Time (SPT),
FEarliest Due Date (EDD), Weight Shortest Processing Time (WSPT), Moore’s al-
gorithm for special objectives of single machine problem, and Johnson’s algorithms
deal with the special objective of special of two-machine or three-machine problems.

WSPT algorithm, for example, is a simple algorithm which sorts jobs in an
increasing order according to the ratio of priority (job’s weight) over processing

time. In a single machine problem, WSPT algorithm optimizes the weighted sum of
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Processing time (p;) | Priority (w;) | Ratio (fl) Sequence
2 5 0.4 1
4 8 0.5 2
4 7 0.57 3
6 9 0.67 4
7 10 0.7 5
5 7 0.714 6
8 10 0.8 7
4 5 0.8 7
6 7 0.857 8
6 6 1 9
10 10 1 9
2 2 1 9
9 9 1 9
10 9 1.11 10
) 4 1.25 11
12 9 1.33 12
14 10 1.4 13
15 10 1.5 14
6 2 3 15
14 2 7 16

Table 2.1: An example of WSPT sequence

completion times and the weighted mean flow times. A WSPT sequence is listed in
table 2.1.

For a WSPT sequence, the ratio is generated using processing time and priority
directly. The sequence generated by the ratio is indirectly related to the two input
variables. There is also a nonlinear relationship between the processing time, the
priority and job sequence as it is demonstrated in Section 3.1. WSPT sequence
is a typical sequencing problem with a nonlinear and indirect relationship between
inputs and output. In this work, the WSPT algorithm is utilized to generate training

and validation sets of jobs for scheduling sequence learning.
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2.4.3 Fuzzy logic approaches

Fuzzy control has emerged as an attractive application area of Fuzzy Set Theory
(Zadeh [1]). Fuzzy control, which is found on fuzzy logic, is attractive because fuzzy
logic is able to model the human thinking process. The significant part of fuzzy logic
controller is a knowledge base that contains fuzzy logic rules and a fuzzy database.

An example of fuzzy linguistic rule defined by Ben-Arieh and Lee [17] is as follows:

‘‘IF the Processing time is low AND Queue Length is Long AND
Slack Time is Zero AND Machine Breakdown Rate is Very Small THEN

Select Factor is Medium’’

where Low, Long, etc. are linguistic variables. There are two possible approaches
to using fuzzy theory in the development of scheduling systems. One is subjective
extraction of system behavior knowledge from the experts via protocol interviews
(Turksen et al. {15], Caprihan et al. [16], and Ben-Arieh and Lee [17]). Anocther is
objective extraction of system behavior knowledge from input-output data via fuzzy
cluster analysis (Turksen et al. [23]), neural network, etc.

In subjective approaches, fuzzy knowledge base can be built manually based
on expert knowledge (Turksen et al. [15], Caprihan et al. [16], and Ben-Arieh and
Lee [17]). The fuzzy sets can be defined by discrete event simulation results (Ben-
Arieh and Lee [17]) or by expert knowledge in (Turksen et al. [15], Caprihan et
al. [16]) expressed in a linguistic form. Mamdani model is chosen by Caprihan et
al. [16] and Ben-Arieh and Lee [17] to model the reasoning process. The output is
a fuzzy set and a suitable defuzzification method is used to transfer fuzzy output

to a crisp control value. The fuzzy rule base is built by using all the possible
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combinations of fuzzy linguistic input variables. The input variables selected by
Turksen et al. [15] are priority, slack time and requested start time for job release
decisions; priority, slack time and remaining processing time for job dispatching
decisions. The output variable is the selectability. The input variables selected
by Caprihan et al. [16] are relative opportunity gain, relative work-in-process. The
output variable is switching confidence level. The input variables selected by Ben-
Arieh and Lee [17] are processing time, queue length, slack time and machine break
down rate. The output variable is selected factor. A job releasing decision and
dispatching decision problem in a job shop environment is solved by Turksen et
al. [15]. A part routing decision problem in a job shop environment is solved by
Ben-Arieh and Lee [17]. And a single machine with two queue sequencing problem
is solved by Caprihan et al. [16]. Rule base obtained by subjective approach may
have redundant rules, ineffective rules, conflicting rules and missing rules. Even
without those rules, a desired performance has to be obtained by the tuning of

fuzzy sets.

In objective approaches, system knowledge is extracted via fuzzy clustering
techniques. When input-output dimensions are high, subjective approaches usually
lead to a huge rule base. Eliminating redundant and ineffective rules is impossible
(Turksen [23]). Fuzzy C-means clustering technique is used to minimize number of

rules. The structure of fuzzy rules is:

‘¢IF the lot size is A AND the slack time is B AND the priority
is C, THEN the lateness is D.?”’

where the input variables are lots size, slack time, priority. The output variable

is lateness performance measure. For the same scheduling problem in Turksen et

14



al. [15], the number of rules is reduced to 7, compared with 343 in subjective ap-
proach. Input variables remaining process time and request start time are changed
to lots size. Consequence part of the rules are changed from selectability to lateness

performance measure.

2.5 Summary

Although operations research approaches can solve problems of moderate sizes and
yield optimal solutions for some scheduling problems, they are computationally de-
manding in solving real life scheduling problems. Many heuristic methods, which
involve some type of search, yield good approximate solutions for some large size
scheduling problems. Sometimes, the search for a good approximate solution may
be slow and unrewarding. Dispatching rules quickly generates an optimal schedule
of a special model with particular objective functions. They are not very general
but rather problem specific. Subjective approaches model scheduling problems using
human expert knowledge. These approaches are promising and flexible in dealing
with real world applications. But they are often limited by the knowledge of human
experts. Sometimes human experts may or may not be available, or human experts
may or may not be able to explain domain knowledge explicitly. Compared to these
approaches, modeling a scheduling problem from a schedule itself (input and output
data) is more appropriate. The objective approaches take the objective function as
output data of a schedule.

Clustering based system identification methods are to be discussed in Chapter
3. These methods can be used to learn schedule decision mechanism from input and

output data of an existing schedule. The inputs of a schedule are attributes of a job.
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The outputs are the decisions of each job, such as a sequence decision, a routing
decision or a timing decision. The existing schedule may be an optimal schedule or
a schedule generated by a human expert. Each schedule achieves certain schedule
objective functions. A fuzzy expert model is built by learning the scheduling decision
from an existing schedule. It can be used to generate optimal or sub-optimal schedule

based on the existing schedule it learned.
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Chapter 3

Fuzzy clustering and fuzzy
clustering based system

identification

3.1 Background

System identification based on clustering technique may include structure and pa-
rameter identifications. It is generally that system structure is identified before the
parameter identification (Sugeno and Yasukawa [5], Emami et al. [12]). Depend-
ing on the different clustering techniques and reasoning mechanisms, structure and
parameters of the system can be identified at the same time (Chiu [13, 14}).

In this Chapter, an overview of fuzzy clustering methods and clustering based
system identification methods are introduced. Subtractive clustering based system

identification method and parametric optimization method is also presented. Before
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doing this, two types of fuzzy models are introduced in the next section.

3.2 The structure of fuzzy model

A fuzzy model could be of types of either multi-input and multi-output (MIMO) or
multi-input and single-output (MISO).
The fuzzy model of multi-input and multi-output (MIMO) systems of m inputs

and r outputs defined with n rules can be written as

R! : IF z, is A} AND z is A},---,zm is AL, THEN y; is B AND y, is
B%:"'yyr iSB,].'

ALSO

ALSO
R™ : IF z, is AT AND z; is A3,---.zm is A}, THEN y; is B} AND y; is
BZ,---,yr is B?
But in the case of MISO systems, fuzzy rule base will be
R!:IF z; is A} AND z,is A}, -,z is AL, THEN y, is B}

ALSO

ALSO

R" :IF z; is A} AND z, is A%, ---,zm is A}, THEN y, is B}
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where R' represents #'th rule, z,, T3, - -, Ty, are m input variables and vy, ¥2, - - -,

yr are r outputs. A{ for (i=1,2,---,m;7=1,2,---,n) are linguistic fuzzy sets of
antecedents and Bf for (1 =1,2,---,7;7 = 1,2,---,n) are linguistic fuzzy sets of
consequent.

In these models, both antecedent and consequent parts of the IF-THEN-ALSO
rules consist only of fuzzy sets. The output of the model is a fuzzy set. Thus
a suitable defuzzification method which translates fuzzy output to crisp control
value is required. In other type of models which is the combination of fuzzy and
nonfuzzy modeling proposed by Takagi-Sugeno-Kang [24], called Sugeno model, the
consequent part is expressed as a linear combinations of antecedents as given below
for both MIMO and MISO systems. In the Sugeno model, a MIMO system with n

rules, m antecedents and r consequents can be expressed as

R!:IF z; is A} AND x5 is A}, -+, znm is AL,

THEN y; = Z}y+Z4z1+ - -+ 2} Tm AND, - -+, y, = ZY+ZL o1+ -+ 2} Tm

ALSO

ALSO

R™:IF z, is A} AND z, is AJ,---,zm is A},

THEN y; = Z}+ 2021+ - -+ 20, Zm AND, - -+ yy = Z0+ 20 214+ - -+ 200 Tm

But in the case of MISO systems, Sugeno fuzzy rule base will be

Rl:IF z; is A} AND z5 is A},---,zm is AL, THEN y; = Z{g+ ZL,z1+--- +
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1
ZimTm

ALSO

ALSO

R":IF z; is AT AND z; is A%, -+ ,zm is A}, THEN y; = Z[y+ Z}{iz1+--- +
ZinTm

where Z{‘j i=1,2,---,71;7=0,1,2,---,m;k = 1,2,---,n) are consequent regres-
sion parameters which are optimized by linear least square estimation as given by
Takagi and Sugeno [24]. Both fuzzy and Sugeno model are possible through clus-

tering technique.

3.3 Fuzzy clustering methods

Clustering is a process to obtain a partition G of a set £ of N objects z; (i =
1,2,...,N) using a resemblance or disemblance measure, such as a distance measure
d between z; and z;, where 7,7 = 1,2, ..., N. The measure is generally of distance or
of sequential norms like euclidean, diagonal, mahlanobis, Hamming etc. A partition
G is a set of disjoint or partial overlapped subsets of E and the element G. of G is
called a cluster and the centers of the clusters are centroids or prototypes.

The purpose of clustering is to distill natural groupings of data from a large
data set, such that a concise representation of system’s behavior is produced. Each
cluster essentially identifies a region in the data space that contains a sufficient
mass of data to support the existence of a fuzzy input/output relationship. The

sufficiency of data requires large amount of training data for each system behavior
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in order to build a fine model (Chi [25]). But the real world data is often imprecise
and/or incomplete. Thus effective grouping data to capture system behavior based

on scarce data becomes an important issue.

3.3.1 Fuzzy C-means clustering algorithm

The well known fuzzy C-means (FCM) clustering algorithm is proposed by Dunn
[26] and later developed by Bezdek [10] and Bezdek et al. [11]. FCM enables us to
make flexible partitions of a finite data set. FCM is used in many fields such as data
analysis and image segmentation (Imai et al. [27]).

FCM needs a priori knowledge of the number of clusters. The FCM will
form iteratively a suitable cluster pattern in such a way that an objective function
dependent of cluster locations is minimized. The objective function is defined as

I=35 iz -l (3.1

k=1i=1
where n is the number of data points, ¢ is the number of clusters, = in RP is the
k'th p—dimensional data point, v; € RP is the i'th p—dimensional cluster center, ui
is the degree of membership of k’th data in the i'th cluster, and m is a weight factor

greater than one. The degree of membership p} is defined as

1

—2 "
c (“xk—vi”)(m—l)
7=1 Vjze ~vjll

FCM requires a desired number of clusters ¢ and an initial guess position for

pi = (3.2)

each cluster center v;, (1 = 1,2,---,¢). The FCM output rules depend strongly on
the choice of these initial values. The constraint on membership degree causes the
FCM to generate memberships that can be interpreted as degrees of sharing but not

as degrees of typicality (Krishnapuram and Leller {28]). Thus, the memberships in
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a given cluster of two points that are equidistant from the prototype of the cluster
can be significantly different. Also memberships of two points in a given cluster can

be equal even though the two points are arbitrarily far away from each other.

3.3.2 Mountain clustering method

The autogeneration capability for determining the number and initial location clus-
ter centers through search techniques was introduced by Yager and Filev [6, 7] in
mountain clustering method. This method can provide approximate estimation of
cluster centers based on a search measure called the mountain function. A data
point with the highest mountain function represents a cluster center. In order to
find cluster centers, data space is discretized into grid points and each grid point is
assumed to be a potential candidate for cluster centers. Grid points could be evenly
or unevenly spaced to reflect a priori knowledge. The potential value for each grid
point based on its distance measure to the actual data points is estimated in order to
select those with high potential values as cluster centers. Once a cluster center with
highest mountain function is selected, all the grid points are penalized in proportion
to the distance from the cluster center. Hence, the grid points that are close to the
cluster center are penalized more than the farther ones. This potential penalization
reduces the possibility of forming other clusters close to the previous one. It also in-
creases the possibility of new cluster centers creation away from the previous center
so that the entire data space is represented with minimum clusters. The grid point
with the new maximum mountain function is selected as a new cluster center and
all the grid points are penalized in proportion to the distance from the new cluster
center. This procedure of identifying cluster centers and penalizing all grid points

continue as long as the mountain function falls below a threshold potential value.
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Even though this method is simple, its application becomes limited due to a large

amount of computation involved when the dimensions of data space are large.

3.3.3 Subtractive clustering method

Chiu {13, 14] proposes a subtractive clustering method with improved computational
effort in which data points themselves are considered as the candidates for cluster
centers instead of grid points. By using this method, the computation is simply
proportional to the number of data points and is independent of the dimension of
the problem. In this method, a data point with the highest potential, which is a
function of the distance measure, is considered as a cluster center. The data points
that are close to new cluster center are penalized in order to facilitate the emergence
of new cluster centers.

In subtractive clustering method, the potential of each data point is estimated

by the following equation:

n 2
P = Ze—allrs—rjll , (3.3)
j=1
where
yo X
T2’

P; is the potential of ¢th data point, n is the total number of data points, z; and
z; are data vectors in data space including both input and output dimensions, 7 is
the shape factor of the a cluster. It is a positive constant and is selected as 4, and
T, is a positive constant defining the neighborhood range of the cluster or simply
the radius of hypersphere cluster in data space. The potential is a function of its
distances to all other data points (also includes itself). The more the neighborhood

data points, the higher the potential value is. Each time a cluster center is obtained,
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the revising of the potential is done using the following equation:

P =P — P’:e—Bllzg—z;llz’ (3.4)
where
4
6 - ;6—2,
and
Ty =7 *Tq (3.5)

P¢ is the potential of k'th cluster center, z; is i'th data point being subtracted and
zy is k'th cluster center. A positive constant, r,, defines the efficient subtractive
range. Squash factor n is a positive constant greater than 1. The positive constant
Ty is somewhat greater than r,. It avoids closely spaced cluster centers.

Similar to Yager and Filev’s mountain method, the process of acquiring new
cluster center is based on potential value in relation to an upper acceptance thresh-
old €, lower rejection threshold ¢, and the relative distance criterion. The upper
acceptance threshold € and lower rejection threshold ¢ are ratio between 1 to O.
The upper acceptance threshold € should be a rafio greater than the lower rejection
threshold e. A data point with the potential greater than the upper acceptance
threshold is directly accepted as a cluster center. The acceptance of a data point
with a potential between the upper and the lower thresholds depends on the relative
distance equation, defined as:

dmin = FP¢

>1 3.6
Ta +Pf_ (3:6)

where dn;, is the shortest distance between the candidate cluster center and all
previously found cluster centers. Relative distance function, which tries to balance
between data potential and distance to all previously found clusters, avoids the

emerging of new clusters close to the existing ones. The proportion of P} to Py,

24



where Py’ the maximum potential, may be small. Hence relative distance function
very often positions clusters far away from the previous clusters. After several po-
tential evolutions, relative distance function will improve the distribution of cluster
centers.

Once the clusters are formed in the input and output space. They are projected
into each dimension. Chiu [13, 14] proposes the following equation for assigning

exponential type membership degree in the input space.

'u{ = e"a”Ii—Ijuz’ (3.7)
where
Y
a=—;,
T2

and [z; — z;|| is the distance measure between the ¢'th data point and j'th cluster.
is a positive constant determining fuzziness in the cluster. The value 7 is important
in generating meaningful fuzzy sets. As an initial guess, Chiu [13] uses v = 4 to make
fuzzy sets close to triangular membership functions. The value v = 4 is chosen in
this work. This parameter can also be used to tune the fuzzy sets in order to absorb

small variations in the system after it is identified (Demirli and Muthukumaran [29]).

The subtractive clustering algorithm is summarized below:

Initialize parameters.

Calculate potential for each point using Equation (3.3).

Set the maximum potential as Py

Pick up data point with the current maximum potential P; as the
cluster candidate.

Accepting operation:



if P > éx Py,

Accept z; as a cluster center, subtract potential for

each point using Equation (3.4) and continue.

Rejecting operation:

else if P! <Py

Reject z; and end the clustering process.

Discard operation:

else
Let dnin = shortest of the distances between r; and all
previously found cluster centers.
If dmin 4 2 >
Accept z; as a cluster center, subtract potential
for each point using Equation (3.4) and continue.
else
Reject z; and set the potential at z; to 0. Select
the data point with the next highest potential
as the new z; and retest
endif
endif
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Subtractive clustering has four parameters, accept ratio €, reject ratio €, cluster
radius t, and squash factorn (or rp). These parameters have influence on the number
of rules and error performance measures. Large values of € and ¢ will result in small
number of rules. Conversely small values of € and ¢ will increase the number of
rules. A large value of r, generally results in fewer clusters that lead to a coarse
model. A small value of 7, can produce excessive number of rules that results in
an over-defined system. The optimal parameters suggested by Chiu [13, 14] are

1.25<n<1.5and 0.15 < r, <0.30.

3.4 Fuzzy clustering based system identification

For clustering based system identification, there are two ways that clustering can
be use in extracting system knowledge. The clustering of data space could be done
in output space only or in combined input-output space as explained by Demirli et

al. [30].

3.4.1 Clustering in output space and projection onto input

space (COSPI)

In this approach, clustering is done in output space. Cluster is formed only in output
dimensions. The distance measure for clustering could depend on the density of the
data or the closeness to the required objective function only in the output space
of r dimensions for MIMO type or one dimension in MISO type. The degree of
association of any data point in an output space to a cluster depends on the distance

measure to that cluster center. Once clusters in the output space are formed, they are



projected onto the input space of m dimensions as shown in Figure 3.1. Membership
function of a data point is maintained in its projections onto input space. These
projections transfer the convex fuzzy sets of the output space into non-convex ones
in the input space as shown in Figure 3.1. These non-convex input fuzzy sets need
to be approximated to convex sets for further evaluation. As the cluster formation
depends only on the outputs, the variables in the input space do not influence the
reasoning mechanisms behind the cluster formation. Thus this method ensures that
insignificant input variables do not participate in the reasoning mechanism. On the
other hand, if the significant input variables do not participate in the reasoning
mechanism, a totally faulty model may evolve. This method is ideal for systems of
large dimensions. But it is not as accurate because it does not include the input
space into reasoning process. Hence the fuzzy sets obtained using this method may

require more tuning in the parameter identification phase.

3.4.2 Clustering in input-output space (CIOS)

Clustering of data is done in the combined input-output space of (m + r) dimen-
sions as shown in Figure 3.2. Distance measure used for the association of a data
point to a cluster is a combined distance in input-output space where output vari-
ables are considered as other dimensions in the data space. Once the clusters are
formed in the input-output space, they are projected into each dimension. These
projections transfer convex fuzzy sets in combined space into convex fuzzy sets in
every dimension of input and output spaces. Therefore no further approximation of
fuzzy sets is needed. The CIOS method leads to a more accurate system than using
COSPI method. The fuzzy sets obtained using CIOS method requires less tuning

because input variables contribute equally to the reasoning process, i.e., fuzzy cluster
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Figure 3.1: Clustering in output space and projection onto input space (COSPI)

formation when compared to output variables. The CIOS method have difficulty
when dimensions of the system is very large, because of the high computational
demand. Thus in dealing with system with large dimensionality, CIOS method re-
quires clustering algorithm which is computationally efficient and is independent of

the dimensions of data space.

3.4.3 Elimination of insignificant inputs

Clusters should be formed on the right training data. The training data may contain
noise and insignificant variables. If the whole data space is used to identify a system,

it could lead to a faulty model of the system. Elimination of insignificant variables
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Figure 3.2: Clustering in input-output space (CIOS)

is important and it should be done before system identification. Significance test
needs to be carried out on each dimension of the data space to eliminate insignificant
variables. It ensures the real relevance between the model and the data space. Itis
appropriate to use COSPI method to build models for significant data identification,
because COSPI method is independent of input dimension. Using COSPI method,
different models are built and insignificant input variables are identified and then
eliminated.

In this thesis, the elimination procedure is carried out in two steps. First,
different models (rule bases) were created for various cluster radii. The radii are
chosen so that the model can cover the entire output space. The insignificance tests
are carried out for all of these models. The variables that are insignificant in all the

models are eliminated form further identification of the actual system.
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Different models are built by using COSPI method. The subtractive clustering
method is used to form clusters in the output space only. The quantitative indez =;,
as a measure of insignificance proposed by Emami et al. [12], is used in this work to

identify insignificance of input variables. The quantitative index 7; is defined as:

7r,-=ﬁ%,j=1,2,...,m (3.8)

i=1 1 J
where I';; represents the core of membership function for variable j in rule i, and
'; represents the support of variable j in rule 7. The smaller the quantitative index
7; is, the more significant the variable j is. The selection of significant inputs is
explained in the following section.

Subtractive clustering method partitions output space into several clusters.
Each cluster represents a membership function in output space of a rule. Mem-
bership functions are exponential functions as defined in Equation (3.7). For each
membership function, the core is formed by approximating membership degrees with
value greater than 0.90 to 1. The Support is formed by taking of membership degrees
greater than 0.05. As mentioned in Section 3.4.1, when projecting output clusters
onto input space, the membership functions are not always convex. For variable
identification, only the core I';; and support I'; need to be projected to calculate
quantitative index. The quantitative index calculated for all the input variables of

each models are calculated using Equation (3.8). The input variable which scores

very high in insignificance measure is eliminated from further modeling.
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3.5 Subtractive clustering based system identifi-

cation

In Sugeno and Yasukawa [5], Emami et al. [12], COSPI method is used to identified
system where FCM is used to extract system knowledge from input and output data.
FCM needs a priori knowledge of the number of clusters. Thus an optimal structure
of the model (number of clusters or rules) should be identified before the parameter
identification. Mamdani type model is used. Because the clustering is formed only
in output space, the tuning of fuzzy set is required.

In Chiu [13, 14], a subtractive clustering based system identification method
is introduced. The CIOS method and the linear least square (LSE) method are
used for system identification from input and output data. CIOS method is used
to identified structure (number of rules) and the antecedent parts of the model.
As mentioned in Section 3.4.2, the CIOS method leads to a more accurate system
than using COSPI method, because input variables and output variables contribute
equally to the reasoning process. Subtractive clustering algorithm is used to extract
system knowledge from input and output data. With a given set of parameters
for the subtractive clustering algorithm, the number of clusters is automatically
generated. Each cluster defines a rule. For Sugeno model, after projecting the
clusters into the each input dimension, the antecedent of the model is constructed.
The structure of the model and the antecedent parts of the model are identified at
the same step. The consequent parameters are identified using LSE method. As
pointed out by Takagi and Sugeno [24], given a set of rules with fixed antecedent
parameters, optimizing the parameters in the consequent equations with respect to

training data reduces to a LSE problem. LSE method can solve this problem and
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the solution is always globally optimal. Sugeno zero order and first order models
are investigated in Chiu [13, 14].

In this thesis, the insignificant variable identification is eliminated by using
COSPI method introduced in Section 3.4.3. Subtractive clustering based system
identification method, which includes CIOS and LSE methods, is used to identify
system from input and output data. Both Sugeno ([24]) first order and Demirli and
Muthukumaran ([29]) second order models are investigated. The identification of
consequent parameters of Sugeno first order and second order model are introduced

in the next section.

3.5.1 Consequent identification for Sugeno first order model

by LSE

The Sugeno model is a special model in which consequent parts are linear combina-
tions of antecedents as shown in Section 3.2. The consequent parameter vector Z

for first order model with n rules, two antecedents, and one consequent is defined as

Z=[ZIIO""= ?0:21113"'1Z11132112""7 ?2]T (39)

Once the antecedent part is identified, the output y for the given input vector

(z1,z2) can be predicted using the inference mechanism defined by the following

equation:
?:1 (y")'. /\ F‘é) - SIZ{O _1*. Z;.li . xi + Ziz ) xt‘z) (3.10)
=1 (3 A\ pb)
where firing strength ui = Ai(z,) and pb = AL(z,). This can be rewritten as

y = Zﬁi(Z{o + Z}, - 7} + Z3, - T5)

=1
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= Z(Zio - B + Zix : -’L’i - B + Z{g . xé - B:) (3.11)

i=1

where

P VY
Li=1(pi A )

The intersection operator A takes minimum of x! and ui as the firing strength for

(3.12)

the inputs (z,, z2) of the #'th rule. The §; is the weighted firing strength for inputs
(z1,z2). When enough training data is obtained, the consequent parameter vector

Z is estimated by pseudo-inverse solution given by
Z=(XTX)'XTvy (3.13)

where
Y =y, ym]” (3.14)
Bu. Ba, Bu '33%, Boy - -’U}’ Byt - 1?%, By - 1‘%
X=| : : (3.15)
lBlma ,B2m: ;Blm " x%v ﬁZm * x},: ,Hlm ° 1%7 52771 " x%
By = Y
2; (#llj A llzzj)
The f;; is the weighted firing strength for inputs (z,z2) of j'th rule. The matrix

(3.16)

X is the input matrix of known values obtained using weighted firing strengths and
input parts of training data. It is of the order of (m x 3-n). Vector Y is the known
output vector of training data and is of the order of (m x 1) and the regression

parameter vector Z is of the order of (3 - n).
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3.5.2 Consequent identification for Sugeno second order model

by LSE

The second order Sugeno model uses the same antecedent parameters as the first
order Sugeno model. The difference is in the consequent part which is expressed in

Equation (3.17):

Y=Zio+Z;1 -$1+Z§2'$2+Z{3'$12+Z{4 ’1:22 (3.17)

thus
. - . . . - . - .2 . .2
(W AES) (T + 25 -1+ Zhp - xh + 23 -3y + 21,0 75)

— - : (3.18)
which can be rewritten as
Z ; : : : : . .2 : ;2
y = Y Bi(Zio+Zi -2\ + Zip-h+ Zi3 -7 + 24 2h)
=1
n . . . . . . .2 . .2
= Y (Zlo-Bi+ 2t 74 -Bi+ Ziy-xh-Bi+ Ziz -3y - i+ Z1y - 257 - Bi) (3.19)

i=1

and B; is obtained by using Equation (3.12). Consequent parameter vector is give

by Equation (3.13), where

1 1 1 1 n 1 n 1T
Z=[Zlov"'x ?0:2117"%Z{11v212"“’ ?272137"'7 1372147"'aZ14] (3-20)

B, B2, Pu- 1‘%: Bar - 1?%, B - l'é, Ba1 - 13%,
2 2
511'15} s ﬁzl'l'% ) ,311'1'2 s 521'132
X=| : : (3.21)
.Blma ;62ma ﬁlm ° .’L‘{, ﬁ2m " -T{’ ,Blm ° IL‘%, ,32m ° x%:
12

2 2 2
ﬂlm'x]ia ﬂ2m'${e .‘61171'3%: ﬂ?m'$2

where the f3;; is obtained using Equation (3.16). The matrix X is of the order of

(m x 5-n) and vector Z is regression parameter vector of the order of (5 - n).

35



3.6 System optimization

With a set of parameters, the clusters extracted using subtractive clustering algo-
rithm may not be the optimal representation of training data. Thus the antecedent
part built based on these clusters may not be the optimal either. Although op-
timal consequent parameters are obtained from LSE for the antecedent parts, the
model might just be a local optimal model. Thus optimization of the model requires

searching a set of optimal parameters for subtractive clustering algorithm.

In this thesis, the optimization of the model is carried out by a partial enu-
merated parametric search. The parametric search is performed over accept ratio
g, reject ratio €, squash factor n and cluster radius r,. The enumeration is partial
because there are different step sizes for the cluster radius r,. The different step
sizes are closely related to the error measure. The following heuristic rule is used to

control the step size:

If error is large, make a jump by large step size Else make a small

jump by small step size

The value of the large error, the value of large and small jump step sizes
are determined from simulation results. For different problems, there are different

values of error measures and step sizes of parameters that could be obtained through

simulation.
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3.7 Sugeno reasoning process

Once an optimal model is obtained, it is used to make control actions or decisions.
The reasoning algorithm of the Sugeno model is demonstrated using an example

introduced by Takagi and Sugeno [24] in Figure 3.3.

Fuzzy rule Antecedent Consequent Firing strength ©
Small | Small ;
3 . 1 1 A
' . =1245 o* =0.25 ~0.375
RI ; : i+ =025
“~— 02§ ' 0375
] . 16 o ;8
R2 i L X
/ 02 H
10, 20 H
; :
R3 : ' I
: ; YIS ©=0375
' ¢ 0378
: 2+ 10
X,=12 X,=5

Figure 3.3: Example of Sugeno reasoning process

The example in Figure 3.3 is a Sugeno first order model with three rules:

R! : IF z; is small; AND z, is smally then y = z; + 22

R2?:IF z; is big, then y =2 x zl

R3 : IF x, is bigs then y = 3 x £2

Figure 3.3 shows the reasoning process by each rule when given crisp inputs
1 = 12, zo = 5. The “antecedent” column in Figure 3.3 shows the membership

functions of the fuzzy sets “small,” and “ small,” in the antecedent parts. The

“Consequent” column shows the calculation of y'. The calculation of the firing
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strength w* is shown in the fourth column. The value inferred by the rules is

wxyl+w? x y?+wd x ¢8
w! + w? + wd

0.25 x17+0.2x24+0.375 x 15
0.25+4+ 0.2+ 0.375

= 17.8

3.8 The summary of the modeling method

To summarize the modeling method introduced in this chapter, the steps of modeling
procedures are

1. Eliminate insignificant variables by using COSPI method

2. Initialize parameters for subtractive clustering method

3. Build fuzzy expert model by using CIOS and LSE methods

(a) Form clusters from training data

(b) Project clusters onto the input space and get antecedent

parts of a model

(¢) Identify consequent parameter parts and complete

the model
4. Evaluate model, and then

IF good model is found THEN validate this model with

more data
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5. Change parameters, then GOTO 3.

Subtractive clustering based system identification method is introduced in this

chapter. It can be used to model system based on input and output data.
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Chapter 4

Scheduling decision learning

4.1 Introduction

Two fuzzy logic based approaches to solving scheduling problems are discussed in
Chapter 2. These are: subjective approaches and objective approaches. In sub-
jective approaches, human expert knowledge is used to model scheduling problems.
These approaches are promising and flexible in dealing with real world applications.
But the quality of the schedule is limited by the human expert’s knowledge. Some-
times, human expert does not exist, or may not be available, or an expert may
not be able to explain domain knowledge explicitly. In objective approaches, FCM
is used to extract scheduling knowledge and to optimize the scheduling model. In
these approaches, scheduling problems are solved by modeling input and output
data. The output is a scheduling objective function.

The scheduling objective function is the goal of a schedule to maximize or to

minimize. It is used to evaluate the performance of a schedule. The scheduling
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objective function is achieved by the outputs of a schedule, which are also called
decisions of jobs. The decisions are made based on the inputs of the schedule,
which are also called attributes of jobs. The decisions are used to schedule jobs
to maximize or to minimize certain scheduling objective functions. Thus modeling
scheduling problem to achieve certain objectives from input and output data is to
model job attributes and scheduling decisions.

In this thesis, a general and appropriate approach to solving scheduling prob-
lem is introduced. Subtractive clustering based system identification method is used
to learn scheduling decisions from input-output data of a schedule. It builds a fuzzy
expert model, where the inputs are job attributes and the outputs are scheduling
decisions. Learning from a schedule overcomes the limitation of using human expert
knowledge. A fuzzy expert model built by learning schedule decisions can be used
to generate a new schedule when there are new jobs.

Subtractive clustering based system identification method introduced in Chap-
ter 3 is used to learn scheduling decision mechanism from an existing schedule, and
to build a fuzzy expert model. The fuzzy expert model is then used to generate new
schedules following the decision mechanism it has learned. The existing schedule
can be an optimal schedule generated by an optimization method, or a schedule
generated by a human expert. A decision objective function, sequential distance er-
ror, is introduced for the sequence learning applications. The implementation of this
method is demonstrated by modeling a single machine weighted flowtime problem.

A single machine problem is simple and important because it often is the fun-
damental element of more complex problems. Selecting a single machine weighted

flowtime problem to verify the modeling method is due to the following reasons.

41



Firstly, the WSPT sequence optimizes the single machine weighted flowtime prob-
lem. Learning the WSPT sequencing mechanism is learning from an optimal se-
quence. Success in capturing the WSPT sequencing mechanism shows that an op-
timal schedule can be learned. The model can generate optimal schedule within
certain scopes. Secondly, the fuzzy reasoning expressions of the input and output
relationship can be observed intuitively. The testing data surface of a complete set
of jobs is shown in Figure 4.1, where the x-axis is processing time, the y-axis is
priority and the z-axis is job sequence. The data surface of the complete set of jobs

is a spiral shaped data surface.

T 1 1 071 T 17 ¥ 1 1

Figure 4.1: WSPT surface

Although, a single machine weighted flowtime problem is a simple scheduling
problem, it is not an easy modeling problem. The WSPT surface shown in Fig-
ure 4.1 is a complex surface. There are nonlinear relationships between input and
output. It is a very difficult problem for modeling by using clustering algorithm

when global behavior the system requires to be predicted based on scarce system

42



information. When using this method to learn scheduling decision to solving com-
plicated scheduling problem for complicated objective functions, the level of difficult
of modeling should not increase.

One of the objectives of this thesis is to learn scheduling decision mechanism
from an existing schedule. Subtractive clustering based system identification method
is used to extract and model decision mechanism from the schedule. The scheduling
decisions are made based on the attributes of jobs. All attributes of a job may not
be related to or may not be significant in scheduling decisions. Thus the elimination
of the insignificant input variables introduced in Section 3.4.3 is required before the

identification of the scheduling model.

The scheduling decision learning process includes the following steps:

step 1. Generate training data

1. Project attributes of jobs onto the scheduling
decisions.
2. Eliminate insignificant variables (COSPI)

step 2. Build (Sugeno) model by subtractive clustering based system

identification method.

1. Obtain number of rules and premise parameters using

CIOS method.

2. Identify consequent parameters using LSE method.

A schedule can be a single machine schedule or a multi-machine schedule.

A schedule for a multi-machine case can be decomposed to a schedule for each
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machine. Thus there can be two approaches to solving the multi-machine problem:
A fuzzy expert model for each machine or for all machines. A fuzzy expert model for
each machine makes the sequencing decision more accurate, because the sequencing
decision may vary form machine to machine. The combination of single machine
solutions makes a suboptimal solution. On the other hand, it is time consuming
to build fuzzy expert model for every machine than one fuzzy expert model for all
machines. When the scheduling problems include more than one decision, a model
with multi-input and multi-output or a model with multi-input and single-output
for each decision can be considered. Although subtractive cluster based system
identification method and Sugeno reasoning mechanism can deal with MIMO cases.
In this thesis, only a single machine, sequencing decision learning application is
investigated.

Compared to the other fuzzy logic based approaches, the advantages and dif-

ferences of scheduling decision learning approaches are summarized below:

1. Fuzzy logic based approaches use human expert knowledge to build a fuzzy
expert model. The scheduling decision learning approaches learn a human
expert’s scheduling reasoning mechanism or the reasoning behind an opti-

mization method by using input and output data.

[\

. Fuzzy logic approaches in Turksen [23] utilize special scheduling performance
measures, such as lateness. The scheduling objective function is considered as
the schedule outputs. It is different from the subjective approaches, which use
schedule decisions as the schedule output. The scheduling decision learning
approach is more general. Fuzzy expert model is build based on input and
output of a schedule. The objective function is related to the attributes of

jobs, and the outputs of a schedule are the scheduling decisions.
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3. In objective approaches in Turksen [23], even though the model is built based
on single objective function as an output, several scheduling objective func-
tions are computed in order to evaluate the model. These scheduling objective
functions are "tardiness”, "earliness”, "maximum lateness” and "WIP”. In
scheduling decision learning approach, the fuzzy expert model is evaluated by
its capability in capturing scheduling decision mechanism. Although the mod-
eling is independent of the scheduling objective functions, correctly capturing
the scheduling decision mechanism means the model is capable of generating
optimal or sub-optimal schedule for the same scheduling objective function as

the training schedule.

4. Objective approaches reported by Turksen [23] and scheduling decision learn-
ing approaches both use clustering algorithm. Turksen [23] uses FCM to op-
timize the knowledge base. The scheduling decision learning approach uses
subtractive clustering algorithm to optimally extract scheduling decision mech-

anism.

5. Fuzzy logic approaches optimize fuzzy expert model by tuning the fuzzy sets.
The scheduling decision learning approach optimizes fuzzy expert model through

parametric search.

6. In this thesis, different validation strategies are used. It is shown that the
fuzzy expert model is robust with respect to large number of new jobs. In an
objective approach ([23]), a third of total jobs is used for validation. It is used
as the test data to validate “the goodness of the model”. In verification of
scheduling sequencing learning application, validation is to verify the ability

of the model in capturing the sequencing mechanism.
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An application of the scheduling decision learning, which is a learning of WSPT
sequencing mechanism, is introduced in Section 4.2. A sequential objective function
is presented in Section 4.2.1. The generation of training and validation data is
discussed in Section 4.2.2. And the design of parametric search for WSPT sequence

learning is discussed in Section 4.2.5.

4.2 An application of decision learning:

Learning WSPT sequencing mechanism

4.2.1 Objective function of sequencing decision learning

An optimal sequence optimizes certain scheduling objectives or performance mea-
sures. The modeling of sequence should not miss any job from sequencing and should
maintain right sequence of all jobs. In order to quantify the capability of the model
in capturing sequential mechanism, a sequential error measure o is introduced. It

is defined as

n , (e
o=3 |57 -S;
=1
where n is total number of training jobs, S;-’ is the predicted sequence using the

(4.1)

model output for the j'th job, and S]t- is the target sequence or training or validation
sequence for the j'th job, and a is a penalty factor to be enforced on the difference
in the sequence. The factor a is set to 1 because the model is required to be cap-
tured the training sequence correctly. Sequential measure o = 0 implies that all
the sequences are predicted correctly by the model. Larger value of o corresponds
to many situations, such as many jobs are sequenced incorrectly with small differ-

ences in sequencing, or a few jobs are sequenced incorrectly with large difference in
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sequence, or the combination of both conditions.

There are two sequential objectives in this work, o, and o, where oy is training
sequential error and is related to prediction errors of training jobs. The wvalidation
sequential error is o,, and it is related to the sequential prediction of new jobs.
The smaller the validation sequential error o, is, the more robust the sequencing
model. A small validation sequential error o, indicates that the model has a high
generalization ability. Thus an optimal model should have the smallest validation
error and a small number of rules. Two examples for the calculation of sequential
error o are given in Tables 4.1 and 4.2. The same target sequence number S;
indicates that more jobs has same selectability. For WSPT sequence, these jobs
have same ratio of priority over processing time. The ij is the selectability factor
and the Sf is the sequence decision. The higher the selectability S]f of a job, the
smaller the sequence decision S’;-’ and the earlier the processing of a job are.

These two factors are explained in Section 4.2.6.

Example 1:
J|Si1S | Sf|st
111 0.811 1
212 (1913 |2
312 [1L.7({2 |2
413 12914 |3

Table 4.1: Example of recreating job sequence and sequential error o calculation,
c=40

For the example 1 in Table 4.1, the sequential error ¢ is calculated as:

4 1
. - Sls-s
=t
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= |st-sif s - s +[sp - sy + [z - sy

= i-1'+2-2'+]2-2'+3-3|*

=0
Example 2:
AEAEAELE:;
1|1 (081 |1
212 1912 2
312 264 |3
413 12413 |2

Table 4.2: Example of recreating job sequence and sequential error o calculation,
o=2

For the example 2 in Table 4.2, the sequential error o is calculated as:

o = |st-sif + |- st < lsp- st + |-

= 1-1'+2-2+13-2'+}]2 -3/

= 2

Once a model is built, the training or validation jobs become inputs to the
model. The model gives each job a selectability factor Sf following the reasoning
process introduced in Section 4.2.3. The selectability factor S]f shown in the second
column of Tables 4.1 and 4.2 are real numbers. The sequence decision SJ‘i‘ shown in
the fourth column is calculated based on the increased order of selectability factor
S_{ . The predicted sequence in the fifth column used in the calculation of sequential
error is generated from target sequence S} and sequence decision S;-i. Taking the

example 2 in Table 4.2, at first the SJ‘-‘ is sorted in an increased order. Then the S}
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become 1, 2, 3, and 2 which are the predict sequences S;’ . It can be seen that o = 2

is caused by the wrong sequence order of the third and the fourth jobs.

4.2.2 Training and validation sets of jobs

In order to validate the model, a set of validation jobs is built for each set of training
jobs. Each set of training jobs has three input variables and one output variable.
Three input variables: processing time, due date and priority. Data for these vari-
ables are randomly generated by the ranges using for processing time 1 to 30, for
due date 1 to 1500, and priority for 1 to 10. The output is a sequence of jobs, or-
dered using the WSPT algorithm which minimizes the weighted sum of completion
times and the weighted mean flow times. A sequence decision is made based on the
processing time and the priority. Due date variable has no influence on the WSPT
sequence. The design and the use of due date variable are to check the algorithm of
eliminating insignificant input variables.

Three sets of jobs: complete set, moderate set and scarce set are used in this
thesis. The complete set of training jobs includes 300 non-repeated jobs as shown
in Figure 4.2. Since 300 non-repeated jobs cover the entire training input space,
they are the same for training and validation. The moderate set of jobs includes 200
non-repeated jobs for training and 271 non-repeated jobs for validation as shown in
Figures 4.3 and 4.4, respectively. The scarce set of jobs includes 100 jobs for training
and 214 for validation as shown in Figures 4.5 and 4.6, respectively. It should be
noticed that training jobs are a subset of validation jobs for both moderate set and
scarce set.

The output job sequence varies with the number of jobs. Even though the

number of jobs varies, the relative sequencing of jobs remains consistent if the model

49



..............................

..............................

y - pelority

..............................

..............................

..............................

0 SRR Y S
Figure 4.3: Moderate set of jobs for Figure 4.4: Moderate set of jobs for
training validation

captures the monotonocity of the variation. This monotonocity of sequencing with
reference to all dimensions is the global behavior of the sequencing system. Any
model, which is able to learn the monotonocity of the sequencing system, is an

optimal model for such scheduling problem.
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Figure 4.5: Scarce set of jobs for Figure 4.6: Scarce set of jobs for
training validation

4.2.3 Elimination of insignificant inputs for sequence learn-
ing

The method to eliminate the insignificant input variables is introduced in Section
3.4.3. For the sequence learning data, the elimination is done by the scarce set of
jobs. 10 different models are developed using MISO type clustering as mentioned in
Section 3.2, and using Chiu’s [13] subtractive clustering method and COSPI method.
Parameters are selected such that the accept ratio € = 0.3, the reject ratio ¢ = 0.0
and squash factor n = 2 for different radii r, ranging from 1.0 to 0.1 with a step size
of 0.1. Since the data has been normalized, r, = 1.0 is twice the size of the variable
domain. The quantitative index calculated using Equation (3.8) for all the input
variables of the ten models are given in Table 4.3.

It is shown in the table that the input variable due date scores very high
in insignificance measure and thus are eliminated from further modeling. This is
consistent since the sequence generated using WSPT does no have any relationship
with the due date. The significant inputs are processing time and priority. The
identification of the real system with the input variables of processing time and

priority, and the output result of job sequence is explain in next section.
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T
Te | number of rules | ©; To T3
1 2 0.608374 0.859732 0.296296
09 (2 0.655172 0.859732 0.296296
0812 0.762599 0.868659 0.296296
0713 0.236669 0.813388 0.296296
06 |4 0.193407 0.666535 0.0329218
0514 0.148707 0.677012 0.0564374
04| 4 0.232143 0.666077 0.0658436
0317 0.0391319 0.483559 0.046875
0210 0.00664274 | 0.161088 0
01|14 0.000271792 | 0.00410954 | O

Table 4.3: Quantitative index 7; of various r, for scarce data set at € = 0.3, e = 0.0
and n = 2.0 using subtractive clustering method by COSPI technique

4.2.4 Identification of the actual system

After eliminating insignificant input variables, the actual system is identified by
using processing time and priority as input data and job sequence as the output data.
The system identification process is performed using CIOS method with subtractive
clustering method.

At first, the training data is clustered using subtractive clustering algorithm.
Each cluster represents certain parts of system behaviors. Then the clusters are
projected into each dimension in the input space. In the input space, each cluster
forms antecedent parts of a rule. Thus the premise parameters of the model is
identified. The model is completed by LSE method which identifies the optimal
consequent parameters as explained in Section 3.5. The optimization of the model

is introduced in the next section.
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4.2.5 Design of the parametric search

The parametric search is designed to find the “best” models. The design of the
parametric search is to determine the range of each parameter, the step sizes of
the parameters, and the heuristic control rules for the change of step size. The
parameters are accept ratio €, reject ratio €, squash factor n, and cluster radius 7,.
The heuristic rule is similar to the rule in Section 3.6, where the error measure
is training sequential error o;. They are obtained by the results of several small
simulations. The ranges and searching step sizes are shown in Table 4.4, and the

large sequential error o, is set to 80.

Parameter | Start | End | Step size | Jump step size
7 2.0 1.00 | 0.05 -

Ta 1.0 0.15 | 0.02 0.1

€ 1.0 0.00 | 0.10 -

€ 0.9 0.00 | 0.10 -

Table 4.4: Parameter ranges and changing step size for subtractive clustering

When squash factor 7 is greater than 2, the strong squash cause loss of the
training job. The models are very coarse and can not capture training sequence
correctly. Therefore it is not necessary to consider searching optimal model in squash
factor i greater than 2. Thus squash factor n is set to a range between 2.0 to 1.0, at
the step size of 0.05. The Cluster radius r, is the strongest factor which affects the
performance of model. It is the approximated resolution of the training data space.
The simulation results show that the performance of the model is very sensitive to
cluster radius T, even with a very smaller step changes of 0.002. When Cluster radius
T4 is close to or less than 0.15, the number of rules increases dramatically. This leads

to an over-defined model with the large value of training sequential error o;. Thus
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cluster radius is set to a range of 1.0 to 0.15. When training sequential error o is
larger than 80, the zero training sequential error can not be obtain, even when the
step size changes by 0.1 for Cluster radius. The large training sequential error o, is
set to 80. The large step size for cluster radius r, is set to 0.1, and the small step size
T4 is 0.002. It is observed that the accept ratio € and the reject ratio € do not have
big influence in the performance of model. The whole ranges between 1 to 0 of them
are chosen with both at the step size of 0.1. The parametric search maximizes the
possibility of finding optimal model. It also provides optimal parameter zones for
sequence learning application under different availability of data using subtractive
clustering algorithm.

The parametric search is summarized as follows:
1. Build a model by the method introduced in Section 4.1

2. Calculate decision related objective function, such as training sequential error

o, for sequencing decision.
IF o, = 0, use the validation data set to validate the model.

3. Change parameters and GOTO step 1.

4.2.6 An example of sequencing a set of n jobs by using a

fuzzy model

A model built on moderate set of training jobs is shown in Table 4.5. It has 28
rules. Each row in the table is a rule. The cluster centers ¢} and ¢, in the table
correspond to two inputs. A cluster center cj-, with a constant cluster radius r, of

0.686 and a constant <y of 4 denotes an exponential membership function of the j'th
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R | & | Zig Z1 12 i3 Zi4

R* |19 |4 |-464.068 | 106.681 | -2.75247 | -149.789 | 18.5406
R? |18 | 6 |-1506.75 | 109.267 | -2.44744 | 63.8293 | 1.94465
R° (12| 7 |-580.572 | -4.77163 | 0.47448 228.055 | -18.9729
R* |13 |4 |1171.72 | -30.6327 | 0.252848 | -210.191 | 8.32617
R> |24 |6 | 52.5247 | 49.6784 | -0.357705 | -302.639 | 23.8561
R® |25 |3 |-3340.87 | 295.919 | -5.70899 | -267.819 | 47.2687
R" |22 |8 |-1317.68 | 92.3413 | -1.30168 | -47.2102 | 2.39879
R® 1519 |-1464.35 | -76.9768 | 2.89509 400.78 | -22.0178
R |17 |2 | 159.612 | -62.5559 | 3.14218 241.749 | -56.3247
R 18 |5 |391.65 |-19.9539 | 0.325979 | -102.137 | 4.11916
RYM 7 [8 |2341.22 [ 659094 | -5.00835 | -725.493 | 50.5205
R™ |8 |3 |145.625 | 208.474 |-13.1006 | -511.555 | 89.6537
RBU 1102 |986.636 |-159.752 | 8.3921 191.792 | -97.8135
R¥ {4 |6 |-171.342 | -70.6293 | 7.39875 98.0263 | -11.6443
R [ 23] 1 |-2376.51 | 211.043 | -3.90833 | -278.771 | 72.1845
RI® 129 |8 |1210.02 |-385.935 | 6.75099 1030.66 | -59.8659
R [ 30]5 |2722.76 | -160.332 | 2.1732 81.8658 | -11.454
R* |10 | 10 | -371.554 | 64.9991 | -1.35866 | 118.376 | -12.9243
RY [ 23110 |-2778.8 | -150.628 | 1.91891 1009.44 | -44.6444
RO 14 |3 |-344.224 | 0.909577 | 1.04236 233.688 | -25.6694
R2U 112 |5 |-297.842 | -18.7597 | 1.00216 287.7 -32.6859
R?2 14| 3 |-556.877 | 205.292 | -8.403 -281.138 | 59.2984
R% 2912 |3221.29 | -239.469 | 4.24781 260.087 | -56.6914
R#E |3 [9 |-2119.15 | -21.4475 | 0.18347 589.807 | -34.4994
R*® {2414 | 2669.9 -194.026 | 4.03823 117.558 | -29.1462
RO 1717 |226.49 -9.26089 | 0.313932 | -64.8188 | 6.47827
R?7| 28 | 10 | 5421.97 | 515.985 | -8.37818 | -2701.18 | 136.149
R* 1131 |-992.934 | 111.687 | -5.53212 | -100.351 | 89.678

Table 4.5: Sugeno second order model with 28 rules, 7, = 0.686 and v = 4
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input of R’ of the antecedent part. Linear regression parameters Z%,, Zi,, Zi,, Zi,
and Z}, define the consequent linear equation of rule R*. The example of the rule

R! is shown in Figure 4.7.

Rule 1:
IF processing time x; AND priority x,, THEN
y =-464 + 106.681x,— 2.75247x, ~ 149.789x‘z + 18.5406 xz2

Definitions of Rule 1:
processing time priority
1 19 30 1 4 10

Figure 4.7: The rule R! in Table 4.5

Two jobs are used to demonstrate the reasoning process of sequence prediction
by this model. The Sugeno reasoning mechanism is used. The reasoning process of
these two jobs on rule R! are show in Figures 4.8 and 4.9. In Figure 4.8, the job
1 has a processing time of 2 and a priority of 5. The firing strength w] is 0.0708
and the rule output yi is -504.147. In Figure 4.9, the job 2 has a processing time
of 10 and a priority of 4. The firing strength w. is 0.4761 and the rule output y3 is
—24.9865.

The firing strengths w? and wi, and the rule of outputs yi and y: for these two

jobs are listed in the Table 4.6. For job 1, the sum of firing strength is 6.9384 and
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weight sum of rule output is 53.9406. The selectability factor of job1 is

- n.yi-wi  53.9406
! Th,wi  6.9384

= 7.77422

For job 2, the sum of firing strength is 11.6783 and weight sum of rule output is

671.061. The selectability factor of job2 is

n i i
i=1 Y2 - Wy 671.061
= - = = 462
V2= Tew T T Tieras o 4624

=1

Considering these two jobs only, the predicted sequence number of job1is 1, and
the predicted sequence number of job 2 is 2. This sequencing result is the same as
a WSPT sequence.

A set of 40 jobs sequenced by the model is shown in Table 4.7. The sixth
column is model output, the selectability factor Sf . The seventh column is the

predicted sequence number S¥.

4.3 Summary

A scheduling decision learning approach is discussed in this chapter. Subtractive
clustering based system identification method is used to learn scheduling decision
mechanism from existing schedules. The method successfully captures the sequenc-
ing mechanism of WSPT algorithm from input and output data. It is observed
during the system validation that models built on the scarce data have low gener-
alization abilities. To improve the model, two clustering algorithms are introduced

in the next chapter.
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Example of job I: processing time of 2, priority of §

Fuzzy rule Antecedent Consequent Firing strength ®
processing time x‘zz prioﬁtyxlzs
K 0.5004 y: =-547.147 w©}=00708
R* .
Y " :
1 2 30 P 10
Note: 2 2
y! = =464 + 106.681x 2 - 2,75247x5 - 149.789x 2+ 18.5406 x §
t =-504.147
w? =0.0708 ~0.9004
*=0.0708

Figure 4.8: Example of reasoning process of R! for job 1,
processing time of 2, priority of 5

Example of job 2: processing time of 10, priority of 4

Fuzzy rule Antecedent Consequent Firing strength o
processing time x‘= 10 priority xxg 4
' <= 100
: : y! =249865  w}=04761
Rl 0.€761 Y--- : :
/. :
- T

Figure 4.9: Example of reasoning process of R! for job 2,
processing time of 10, priority of 4

58



R | 4} wi yi-wi | % wh Yp - wh
Rl | -547.147 | 0.0707941 -38.7348 | 24.9865 | 0.476081 | 11.8956
R? |-930.244 | 0.0957882 -89.1064 | -372.389 | 0.556324 | -207.169
R3 | 77.7344 | 0.400014 31.0948 | 27.8128 | 0.49684 13.8185
R* | 268.668 | 0.329998 88.6598 | 183.135 | 0.920845 | 168.639
R° | -766.343 | 0.0118589 -9.08797 | -315.321 | 0.165984 | -52.3384
R° |-2929.24 [ 0.00785194 | -23.0002 | -1267.56 | 0.127253 | -161.301
R’ [ -1314.29 | 0.0256036 -33.6504 | -674.896 | 0.267293 | -180.395
R® | -153.27 | 0.212572 -32.5809 | -693.775 | 0.143271 | -99.3976
RY | -152.301 | 0.127253 -19.3808 | -85.9259 | 0.638288 | -54.8455
R | -54.6578 | 0.71903 -39.3006 | -117.931 | 0.925223 [ -109.112
R' | 88.5541 | 0.49684 43.9972 | 405.835 | 0.288364 | 117.028
R'™ [ 193.739 | 0.71903 139.304 | 308.546 | 0.925223 | 285.474
RY | -785.677 | 0.49684 -390.356 | -569.521 | 0.732799 | -417.345
R4} -83.9808 | 0.925223 -77.701 | 68.0366 | 0.71903 48.9203
R | -1559.3 | 0.0175854 -27.4209 | -617.045 | 0.212572 | -131.167
R'™ | 4121.82 | 0.0012564 5.17865 | 1190.57 | 0.0366008 | 43.5757
R | 2533.77 | 0.000759047 | 1.92325 | 1480.96 | 0.0256036 | 37.9179
R18 ] 21.7824 | 0.143271 3.12078 | 409.286 | 0.0609349 | 24.9398
R | 858.709 | 0.0175854 15.1007 | -769.74 | 0.0609349 | -46.904
R | 188.47 0.732799 138.111 | 293.15 0.71903 210.784
R*11289.999 | 0.400014 116.003 | 242.601 | 0.925223 | 224.46
R%? | -103.134 | 0.267293 -27.5671 | 479.969 | 0.863639 | 414.519
R?% | 2642.49 | 0.0012564 3.32002 | 1384.67 | 0.0366008 | 50.6799
R?* | -74.7544 | 0.288364 -21.5565 | -508.034 | 0.143271 | -72.7863
R%® | 2157.13 | 0.0118589 25.5812 | 1137.36 | 0.165984 | 188.783
R% | 47.087 | 0.127253 5.99197 | 9.65178 | 0.49684 4.79539
R*7 | -3681.77 | 0.00204187 | -7.51769 | 1117.64 | 0.0513716 | 57.4151
R?® | 948.506 | 0.288364 273.515 | 604.169 | 0.49684 300.175

Table 4.6: Rule output y* and firing strength w* for each rules
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sum of 4* - w' | sum of w* | S7 sS4

J | pi|wj 7 i
1 1 7 6.48452 5.9529 1.0893 1

2 2 10 | 7.9529 3.9109 2.03352 | 2

3 2 9 14.3207 4.78682 2.99169 | 3

4 1 4 23.73 5.82837 4.07146 | 4

5 2 7 30.704 6.57874 4.66715 | 5

6 3 9 31.1602 5.21 5.98084 | 6

7 1 3 32.4625 5.20227 6.24008 | 7

8 3 8 43.5255 6.26752 6.94462 | 8

9 2 5 53.9406 6.9384 7.77422 | 9

10 | 3 7 66.1578 7.1158 9.29732 | 10
1114 |9 54.3639 5.65116 9.61996 | 11
1213 6 79.9924 7.37739 10.8429 | 12
1311 2 49.4193 4.5272 10.9161 | 13
1415 9 76.3817 6.04609 12.6333 | 14
1516 10 | 65.7821 5.19159 12.6709 | 15
16 | 3 5 103.11 7.54769 13.6611 | 16
1715 8 103.686 7.15937 14.4826 | 17
18 | 6 9 97.323 6.44182 15.108 18
19 | 4 6 125.346 8.05111 15.5688 | 19
2017 10 | 89.6518 5.46084 16.4172 | 20
2115 7 138.89 8.13839 17.066 21
22 13 4 125.919 7.30334 17.2413 | 22
23 | 7 9 125.273 6.79511 18.4358 | 23
24 1 4 5 155.634 8.17066 19.0479 | 24
25 | 8 10 | 115.871 5.70662 20.3047 | 25
26 | 6 7 177.069 8.64582 20.4803 | 26
27 | 7 8 171.893 8.0214 21.4293 | 27
2819 10 | 132.021 5.90027 22.3755 | 28
2916 6 219.794 9.38944 23.4087 | 29
3013 3 154.79 6.53091 23.7012 | 30
3112 2 120.381 5.07665 23.7126 | 31
3219 9 178.163 7.4508 23.9119 | 32
33110 | 10 | 145.445 6.07872 23.9269 | 33
3411 1 90.8026 3.74733 242313 | 34
35135 5 217.546 8.82949 24.6386 | 35
3614 4 199.12 8.07092 24.6713 | 36
37 |11 | 10 | 160.663 6.2652 25.6438 | 37
3811019 203.392 7.73449 26.2968 | 38
3918 7 260.273 9.5907 27.138 39
40 112 | 10 | 178.53 6.46193 27.6279 | 40

Table 4.7: A set of 40 jobs sequenced by using a Sugeno second order model shown
in Table 4.5
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Chapter 5

Clustering with scarce data

In this chapter, selective subtractive clustering algorithm and modified subtractive
clustering algorithm are introduced. These two algorithms make a clustering based
system identification method applicable to modeling highly nonlinear and spiral

system based on scarce data.

5.1 Clustering analysis

The constraints of scheduling sequencing learning applications are:
e A sequence for each job has to be identified.
e The sequence of all jobs is maintained in a correct order.

After eliminating insignificant variables, clustering is required to identify all training
data. The WSPT training surface is a nonlinear spiral shaped surface shown in
Figure 4.1. Subtractive clustering algorithm has difficulty to model nonlinear and

spiral systems based on the scarce data, when there is constraint that each data
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point has significant contribution to the system identification. The limitations are
due to the following factors. The potential subtraction using remaining maximum
potential P; and a factor n could quickly lower the potential of the entire data
space to a level lower than the lower threshold potential e. Thus there are chances
to ignore data points in subtractive clustering depending upon the lower rejection
threshold and squash factor.

Cluster radius r, is an approximation to the support of the exponential mem-
bership function. It indicates the association zone of a cluster center in the data
space. Each data point in a cluster characterizes a system behavior with a degree
associated to the cluster. The potential penalizing range 7, facilities emerging and
positioning of new clusters. It is characterized by a constraint squash factor of
greater than one. Because r, is greater than r,, the potential penalization is strong
and is extending to the free zone. The free zone is a zone outside the cluster radius
T.. The data points in the free zone are not similar to any cluster centers. Thus,
membership degree of data point is extremely low in a free zone. In order to iden-
tify the data points in a free zone, it is required to form cluster centers in the free
zone or to form close cluster centers to them. The close cluster center is to make
strong association to the data points in the free zone. The introduction of clusters
in subtractive clustering algorithm is graphically displayed in Figures 5.1, 5.2 and
5.3.

The membership function and potential subtraction associated to a cluster
center are demonstrated through a one dimensional case shown in Figure 5.1. The
dashed line in the figure shows the initial potentials. The scarce zone, which is a
zone with low potential is shown in the figure, and may occur in any cases. The zone

of penalty endorses an efficient potential subtraction zone whenever a cluster center
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is found. The 20ne of association is the zone with an efficient membership degree
associated to a cluster center. Zone of penalty is larger than zone of association. A
non-associated zone may have an associated potential penalty. This non-associated
zone is between r, and r.

The remaining potential after the introduction of the first cluster center is
shown in Figure 5.2. The dashed line on the top is the initial potential. The one
on the bottom is the remaining potential after the introduction of the first cluster
center. The second cluster center is positioned based on the maximum remaining
potential as shown in Figure 5.3. The dashed line on the top is the remaining
potential after the introduction of the first cluster center. The one on the bottom
is the remaining potential after the introduction of the first and the second cluster
centers. Two membership functions m; and m, only have a little overlap which is
controlled by squash factor . The remaining low potential values between the first
and second clusters can not form new clusters. Thus system information between
these two clusters is at a low membership representation associated to either closest
clusters.

It is shown in Figure 5.1 that a contradiction exists between zone of association
T. and zone of penalty 7. The value of r, is larger than the value of r,. Zone of
penalty depends on 1 and 7, which makes clusters far apart from each other. A
large r, can quickly squash potential in the entire data space, thus results in a small
number of clusters. It reduces the overlap between the clusters in the entire data
space. Selection of squash factor n depends on the complicated behavior of the

system and the scarcity of the training information.
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5.2 Selective subtractive clustering method

Sequence learning may involve complicated relationships between the job attributes
and the job sequence. Lack of a complete set of training data might hinder the
learning process. A complete set of training data is not always available. Represen-
tation of scarce set of training jobs strongly challenges clustering method. In the
subtractive clustering, jobs in scarce zone have lower potentials. These jobs have no
chance to form new clusters, even though they get less potential subtraction from
the surrounding cluster centers. The exponential membership representation can
only associate the jobs in scarce zone to some far with non-similar jobs. A schedul-
ing model built on low represented or missed jobs may have problems capturing
training job sequences or may lead to some wrong decisions when given new jobs.
To improve the representation in the scarce training zone, an auxiliary factor
called degree of association § is introduced. It is used to decide the closeness of a
data point to a cluster center. The strong members of that cluster are the data points
that have membership degree ,u{ equal to or greater than the degree of association
6. The rest of the data points are the weak members of that cluster. The strongest

member is the cluster center. It is defined as:
pl>6 (5.1)

where j is the j'th cluster center, and p is the membership degree of i'th data point
associated to j'th cluster.

A new strategy that subtracts selectively only from strong members of the
cluster improves modeling of scarce data. This new method, which is introduced in
this thesis, is called selective subtractive clustering method and is explained in this

section.
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The data points in the neighborhood of a cluster center are penalized selec-
tively according to the degree of association they have with respect to that cluster
center. This selective penalization enables these data points, which are not strongly
associated with earlier clusters, to form new clusters. This process assures stronger
representation of regions between clusters with fuzzy sets of high membership degree.
This algorithm could be applied to both COSPI and CIOS modeling. A potential
subtracting operation is carried out whenever a new cluster center is found. The
selective subtractive clustering is different from the subtractive clustering, because
the potential penalization is carried out selectively. The condition for ending the
clustering process is that all data points are associated with at least one cluster with
sufficient degree. The new clustering technique is explained in detail in the following
paragraph.

Selective subtractive clustering method finds clusters from a set of input and
output data. Each cluster center found by the clustering algorithm is a vector
corresponding to the inputs and outputs. Inputs and outputs data are normalized
so that the clustering is done inside a hypercube of p dimensions, where p is the
sum of input and output dimensions. For example of the normalization of the g=2,
where the ranges of the g is of 0 to 10, then the normalized result p, is

2—-0
—_ = 0.2 2
Pa=10-0" " (5-2)

The clusters radius r, is chosen as an initial guess. In line with subtractive clustering
method, each data point is assumed to be a candidate for cluster center. Potential
P; of each data point z; is calculated using Equation (3.3). The data point with
the highest potential is selected as the first cluster center. Each cluster forms an
exponential membership function in each input dimension. Association or closeness

of each data point with this cluster center is represented by membership degree,
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which can be calculated using Equation (3.7). As mentioned in this section, clusters
should be formed by only stronger data points in order to facilitate the formation
of new clusters from weakly associated data point close to the cluster radius r,.
Degree of association, §, is introduced to determine the closeness of a data point
from the cluster center. It can be adjusted according to the complexity of systems
using available training data. When a data point’s membership degree in a cluster is
equal to or greater than the degree of association ¢, then this data point is identified
with that cluster. This process of association is called identification. The data points
identified are strong members of that cluster. The strong members also include the
cluster center itself. The data points not identified by any cluster are free data.
Search for more clusters continues using selective subtraction as long as there are
free data in data space. After a new cluster center and its strong members are
identified, its strong members are penalized in proportion to the potential of that

cluster center. The newly potential of the identified points is given by

-4 ]2
P,=P,— P, xe Tra-mrz I17i =2l , (5.3)

where v is the penalty factor. Even though penalty factor v is analogous to the
squash factor defined by Chiu [13], squash factor results in a penalty zone which
is larger than r, while the penalty factor results in severe penalty in the identified
region that is smaller than r,. With the newly potential distribution of data points
in data space after penalizing only the recently identified data points, a data point

with the largest potential will become the new cluster center.

Once a new cluster center is accepted, the selective subtraction continues to
find all other possible clusters. The clustering technique involves identification and
selective subtraction is used until every data point is identified. Once all the data
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points are clustered, a collection of clusters constitute the fuzzy rule base. The

Algorithm for selective subtractive clustering is given below:

1. Initialize § and a set radius r,
2. Calculate potential F; using Equation (3.3) for all points
3. while free data is available

Pick the point with the maximum potential value
Assign it as a cluster center

Compute a degree of membership to this cluster using
Equation (3.7) for all data points

Label identified data points by comparing membership
degree to ¢

Subtract potential selectively using Equation (5.3)

for the identified data points
4. End clustering process

Selective subtractive increases the level of representation through a degree of
association §. The degree of association § can be adjusted to reflect the scarcity
level and the complexity of training information. It enables to form a cluster in

weekly zone.
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5.3 Modified subtractive clustering

It is observed that the selective subtractive is similar to penalizing with squash
factor n smaller than one. When build a model from weakly represented data space,
the contribution of each point to the system modeling will be made stronger by
the introduction of squash factor n smaller than one, in addition to squash factor n
greater than one as proposed by Chiu [13] in subtractive clustering technique. The
optimum range of squash factor n depends on the relative availability of the data
and complexity of the system behavior. The membership function and potential

subtraction of squash factor n smaller than one is shown in Figure 5.4

zone of
‘ penalty
1

.
zone of
association

Figure 5.4: Degree of association and potential subtraction at n < 1

The clustering strategy of modified subtractive clustering algorithm is the
similar to the selective subtractive clustering algorithm. Selecting squash factor n
less than 1 includes different level of degree of association §. Compare to selective
subtractive clustering algorithm, better models are found by modified subtractive

clustering algorithm. On the other hand, selective clustering algorithm uses less
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parameters (cluster radius r, and degree association §) than it is used in modified
subtractive clustering algorithm (cluster radius r,, squash factor 7, accept ratio € and
reject ratio €). Fewer parameters lower the computation on parametric searching.
Modified subtractive clustering algorithm efficiently extends subtractive clus-
tering algorithm to model the scarce set of training data. The model has higher
generalization abilitedy than subtractive clustering algorithm. Thus it is more suit-
able for sequencing learning applications. The estimation of the optimum ranges of
accept ratio, reject ratio, squash factor and cluster radius for a system behavior will
be very useful for the selection of better models. The parametric search for optimal
model is used for finding optimum ranges of parameters. The parameter ranges,
step sizes and the heuristic control rule are the same as the parametric search of
subtractive clustering method, except the squash factor n extends over smaller than
1. The test of the set of data using modified subtractive clustering algorithm is also

presented in Chapter 6.
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Chapter 6

Experiment results and analyses

6.1 Introduction

A fuzzy modeling method discussed in Chapter 4, includes significant variable iden-
tification which provides a set of training jobs (Section 4.2.3), fuzzy system iden-
tification which builds a fuzzy model on a set of training jobs (Section 4.2.4), and
parametric optimization which finds the best model (Section 4.2.5). This method
is applicable to scheduling decision mechanism learning applications. There are two
cases to which this application is applicable. One is when a sequence is created by a
human expert scheduler. The other is to collect sequence output from an optimiza-
tion algorithm. Both require insignificant variable identification, because system
identification of scheduling application needs a correct set of training jobs. Input
and output of training have equal contributions to the system identification by us-
ing CIOS and LSE method. The modified subtractive clustering method is used to

identify antecedent part of the Sugeno model. Although only the input dimension
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of each cluster is projected, and uses to form antecedent parts of the model, both
inputs and outputs contribute to the form of clusters. LSE identifies consequent
parameters optimally using training jobs and antecedents.

Experimental results of a scheduling sequence learning application are dis-
cussed in this chapter. The ability to extract knowledge using the modified sub-
tractive clustering method is verified. Verification is carried out with three training
sets of jobs. The three sets of training and validation jobs are scarce set, moderate
set and complete set as defined in Section 4.2.2. The verification is done at different
levels of availability of training jobs.

The experiments are designed to compare the modified subtractive clustering
method with the conventional subtractive clustering. Comparisons were made on the
ability of capturing training sequence of jobs; capturing global behavior of training
sequence of jobs; the ideal order of Sugeno model for sequence learning; and the
optimal parameters of the model.

In Section 6.2 of this work, the effect of the parameters on modeling training
job sequences are presented. In Section 6.2.2, the effect of clustering radius and
squash factor on zero modeling error is presented. Analyses and conclusions on
modeling the training sequence are presented in Section 6.2.3. Effect of parameters
on the optimal model are discussed on Section 6.3. A representation factor ¢ is
defined in Section 6.3.2. The efficient representations of optimal models for scarce
training jobs are explained in the same section. The relationship between the optimal
cluster radius and the squash factor, to the system complexity and the data scarcity

1s reviewed in Section 6.3.2.
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6.2 Modeling the sequencing mechanism

Correctly sequencing the training jobs shows that the model has captured sequencing
mechanism. The sequencing mechanism is expressed as a fuzzy sequencing knowl-
edge base. Parameters of both conventional subtractive clustering and the modified
subtractive clustering methods have strong effects on capturing a training sequence
of jobs. The effectiveness of both methods is analyzed and is discussed in this

section.

6.2.1 Effect of squash factor and cluster radius on modeling

The experiment is a parametric search for optimal models for different sets of training
jobs. The insignificant variable identification results is presentedA in Section 4.2.3.
For a set of training jobs, an optimal model requires to fully capture sequencing
mechanism from this set of jobs.

Identifying effect of the parameters on capturing the sequence of training jobs
helps to improve the identification method. Identifying the parameter ranges helps
to reduce the searching space of the optimal model.

Figure 6.1 shows models which are built with constant accept ratio of 0.3 and
constant reject ratio of 0.1. This figure also shows various combinations of cluster
radius T, and squash factor n for complete set of training jobs in the Sugeno first
order model (Section 3.1). This figure illustrates the influence of cluster radius r,
and squash factor n on modeling of the training jobs. The z axis in Figure 6.1
is cluster radius, the y axis is squash factor and the z axis is training sequential
distance error o;. Each grid point corresponds to a parametric search point. The

dark portions in the figure indicate the closeness of the search points. The same
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and 7 for complete set of jobs with € = 0.3.

Figure 6.1: Variation of g; error versus r,
€ = 0.1 for Sugeno first order model



properties as Figure 6.1 are also shown for Sugeno second order models for complete
set is shown in Figure A.5, and Sugeno models for other sets of training jobs are
shown in Figures A.1, A.2, A.3 and A.

In Figure 6.1, the part where squash factor greater than 1 denotes the results of
using conventional subtractive clustering algorithm, and the part where the squash
factor smaller than 1 denotes the results of using modified subtractive clustering
algorithm. This remark also applies to other figures in this chapter and in the
Appendix A and Appendix B.

Figure 6.1 shows that the training sequential error decreases drastically from
7 = 2 to n = 1.0. There is a trend that the decreasing of squash factor leads to the
decreasing of training sequential error. There is small training sequential error o,
when cluster radius r, is large and squash factor n is small. Small sequential distance
error also exists in the case of large n and small r,. Dark portions indicate small
training sequential errors. Most dark portions are in the zone of squash factor n less
than 1. Even though, the set of training jobs is complete and uniformly distributed
in entire training space, a small modeling sequential error model can not be found
at squash factor n greater than 1.4.

There are more small sequential error models in the zone of squash factor less
than 1, than in the zone of squash factor greater than 1. This indicates that a
complete set of training jobs can easily capture the system behavior by using the
modified subtractive cluster method rather than using a subtractive clustering.

Models that are built with various cluster radius v, and squash factor n for
complete set of training jobs are shown in Figure 6.2. Parameters in Figure 6.2 are
the same as in Figure 6.1. The z axis is cluster radius r,, the y axis is squash factor,

and the z axis is the number of rules corresponding to squash factor and cluster



z - Number of rules

v - cluster radius

Figure 6.2: Variation of number of rules versus r, and 7 for complete set of jobs with
€ = 0.3, ¢ = 0.1 for the Sugeno first order model



radius. The dark portions in Figure 6.2 correspond to models with large number
of rules which also corresponding to models with small training sequential errors in
Figure 6.1.

The trend of the increasing of number of rules in Figure 6.2 and the decreasing
of sequential error in Figure 6.1 indicates that small training sequential error models
can be achieved by increasing the number of rules. Small value of cluster radius r,
and large value of squash factor n yield almost the same number of rules as large
value of cluster radius r, with small value of squash factor n. Similar result shown
in Figure 6.2 can also be seen in Figure A.10 for Sugeno second order models for
complete set, and Sugeno models for other sets of training jobs are illustrated in

Figures A.6, A.7, A.8 and A.9 in Appendix A.

6.2.2 Effect of squash factor and clustering radius on ob-

taining models with zero training sequential error

Figure 6.3 through 6.8 are for scarce set, moderate set and complete set of training
jobs of the Sugeno first and second order models. Each point in these figures rep-
resents a zero training sequential error model. In all those figures, the z axis is the
cluster radius, and y is the squash factor. The cluster radius is varied from 1.0 to
0.15 while the squash factor is varied from 2.0 to 0.05. It can be observed that more
zero training sequential error models can be achieved at squash factor less than 1
than at squash factor greater than 1. The ranges of zero training sequential error
models of scarce set shown in Figures 6.3 and 6.4 are larger than that of moderate
set shown in Figures 6.5 and 6.6, and they are also larger than that of complete

set shown in Figures 6.7 and 6.8. So, more training data increases the difficulty of
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modeling. With Sugeno reasoning mechanism and clustering based system identifi-
cation methods, training sequence can always be captured for three different sets of
training jobs. As it is seen in Figure 6.3 through 6.8, compared to Sugeno first order
model, the Sugeno second order model has lager range of zero training sequential
error models. Therefore, the nonlinear relationship between inputs and output is

better identified by the second order model.

6.2.3 Conclusions of modeling on training jobs

Subtractive clustering based system identification with Sugeno reasoning mechanism
successfully captures the training sequencing mechanism as it shows in Figure 6.3
through 6.8. It can also be seen from these figures that modeling of system based
on modified subtractive clustering algorithm provides more zero error models than
that based on subtractive clustering algorithm. An increased number of training
data requires more rules to model the system behavior as shown in Figures 6.1 and
6.2. Squash factor n greater than 1.5 proposed by Chiu [13] reduces the clustering
performance as shown in Figure 6.1. It pushes clusters far away from each other,
which not only leaves a low membership representation of training jobs between
clusters, but also can cause a complete loss of training jobs of in the scarce zone.
Modified subtractive clustering effectively represents training jobs by enlarging the
association representation of each cluster center. It increases the overlap of clusters

by placing clusters reasonable close to each other.

79



6.3 Effect of parameters on optimal model

For sequencing learning applications, validation is to verify a model’s abilities to
capture sequencing mechanism with new jobs. This sequencing mechanism is the
method by which the training job sequence is generated. Each set of validation
jobs contains a number of new jobs. The model that provides the best prediction of
validation jobs (measured by o,) with reasonable small number of rules is the optimal
one. The validation of a model is processed whenever a zero training sequential error

model is constructed.

6.3.1 Effect of squash factor and cluster radius on optimal

model

All the models shown in Figure 6.3 through 6.8 that have zero modeling sequential
error are verified with the corresponding validation set of jobs. The predicted output
from each model is used to calculating the validation sequential distance error, o,.
The clustering parameters of models having the least validation sequential distance
error o, at constant squash factor are plotted in Figure 6.9 through 6.14 for scarce
set of jobs, and Figure 6.15 through 6.20 for moderate set of jobs. The first order
models with the least validation error for each squash factor are shown in Figure 6.9
through 6.14 and second order model in 6.15 through 6.20. Number of rules, optimal
cluster radius and least validation sequential error are plotted against squash factor.

For both, the first order and second order models, and for scarce set and
moderate set of training jobs, number of rules of optimal model varies slightly over
the entire range of squash factor. Cluster radius increases as the squash factor

decreases dependently, this global trend is observed in the mid-range of the squash
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factor. The least validation sequential error is achieved with squash factor n < 1.
Reduced validation sequential error is noticed with small values of squash factors
for the scarce set. The number of rules remains almost constant over the entire
range of squash factors. Validation sequential error of model is small for a large
range of squash factor for the moderate set. Therefore the cluster is insensitive to
the validation sequential error ¢, in a large range of squash factor between 0.3 and

1.9.

6.3.2 Efficient representations by modified subtractive clus-

tering algorithm

The optimal predicted variation of sequences for the validation jobs are shown in
Figures 6.21 and 6.22 with the squash factor n of 1.75 and 0.55, respectively. These
two figures demonstrate the effects of squash factor in sequence learning with the
scarce set of training jobs. These values of squash factor are selected for the com-
parison with 23 rules for both cases. It can be seen that the modeling with squash
factor of 1.75 dose not capture the monotonocity of the sequencing in the approxi-
mate processing time range of between 5 and 15, and the priority range of between
1 and 10. However, the model with squash factor of 0.55 captures the monotonocity
over the entire input space as shown in Figure 6.22.

In order to visualize different representation capability of the models, the fuzzy
sets of the antecedents are shown in Figures 6.23 and 6.24 for squash factor 1.75
and 0.55, respectively. The narrow fuzzy sets in Figure 6.23 show non-uniform
representation of processing time at the squash factor of 1.75. These fuzzy sets

with a small support defined by small cluster radius are not suitable for modeling
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Figure 6.21: Validation surface of sequence in relation to p; and w; at n of 1.75 for
scarce set

scarce set of jobs. The wide fuzzy sets with squash factor of 0.55 result in a uniform
representation of data space. Wide fuzzy set is defined by large cluster radius. Wide
fuzzy set and uniform representation helps sharing of the information over a large
space and the behavior of the scarce points are shared to the farther points. Thus the
modeling with small squash factor helps extracting the global behavior-sequencing
mechanism out of scarce set of training jobs. In order to measure the representation
capability of the fuzzy sets, a representation factor ¢ introduced by Demirli and

Muthukumaran [29] is used. It is defined as follows:

= o

=1
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Figure 6.22: Validation surface of sequence in relation to p; and w; at n of 0.55 of
scarce set

where ¢; is the representation factor of the j'th data point, n is the total number of
rules, w} is the firing strength for input z; of i'th rule.

The representation factors for the squash factor of 1.75 and 0.55 are shown in
Figures 6.25 and 6.26, respectively. In the case of squash factor of 1.75, the large
values of representation factor can be seen only for the zone with dense training jobs
and it is very small for the zone with scarce training jobs. The failed representation
of sequencing mechanism of scarce zone of processing time from 5 to 15 and priority
from 3 to 7 produces large validation sequential error as shown in Figure 6.21. This
indicates that generalization ability of conventional subtractive cluster is very low,

because of its local representation character. The local representation is because
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Figure 6.24: Fuzzy sets of a model at 1 of 0.35 for scarce set of jobs

of the pushes of squash factor. Squash factor greater than 1 contradicts the large
cluster radius.

Modified subtractive clustering is more suitable for these kinds of applications
that require capturing system behaviors with only scarce training data. The rep-
resentation factors of modified subtractive clustering method shown in Figure 6.26
are smoothly increase from the boundary zone towards the more intensive zone in
the middle. System behavior is well predicted in the entire training space. The
values of representation factor of the scarce zone are large. The explanations of this

phenomenon are that modified subtractive clustering encourages data points in the
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Figure 6.25: ¢ at n of 1.75 for scarce set for Sugeno first order model

scarce zone to form new cluster. When the squash factor is less than 1, the potential
subtraction is only effective on the strong members of a cluster.

The advantage of modeling scarce set of training jobs by small values of squash
factor is also shown in Figures 6.27 and 6.28. The average validation sequential
error which is defined as the ratio of g, over the total number of validation jobs is
shown in Figures 6.27 and 6.28 for scarce set and moderate set of jobs, respectively.
The smaller values of squash factor result in better models for scarce set of jobs.
The model is insensitive to squash factor for moderate set of jobs. As the number
of training data increased the performance of conventional subtractive clustering

algorithm becomes closer to the modified subtractive clustering algorithm.
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Figure 6.26: ¢ at n of 0.55 for scarce set for Sugeno first order model

6.4 Parameters for optimal model

Optimal models of different set of training jobs of the Sugeno first and the second
order models are shown in Tables 6.1 and 6.2, respectively. The models with squash
factor > 1 refer to the subtractive clustering, and the models with squash factor
n < 1 refer to the modified subtractive clustering.

Optimal models of scarce set and moderate set of jobs have least validation
sequential distance error o,. For the complete set of training jobs, the same set of
jobs also constitutes the validation set, so the optimal models are obtained with the
minimum number of rules.

As the number of training jobs increase, i.e., as the set of training jobs moves
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moderate set for Sugeno first order model

from the scarce set to the complete set of jobs, for n < 1, optimal squash factor
increases. More training jobs increases the association among training jobs, thus
increase squash factor at n < 1, which reduce the association zone. But for squash
factor n > 1 it stays between 1.05 to 1.30. Once squash factor is greater than 1.3,
the squashing of potential is too strong. More local and separated clusters make it
difficult for the system to capture the sequencing mechanism.

The best models found by using conventional subtractive clustering, modified
subtractive clustering and selective subtractive clustering algorithms are listed in
Tables 6.3 and 6.4. The selective subtractive clustering algorithm improves conven-

tional subtractive clustering algorithm in modeling scarce set of training jobs. For
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the moderate set of training jobs, the best Sugeno first and second models built
by selective subtractive clustering algorithm are the same as the best models of the
conventional subtractive clustering. For the scarce set of training jobs, the first order
model of the selective subtractive clustering algorithm with o, = 156 is better than
the model of conventional subtractive clustering with o, = 241. Compared to the
conventional subtractive clustering and modified subtractive clustering, except for
the first order model with complete set of jobs, the overall performances of these first
order and second order models show that 7 < 1 dominants 7 > 1 in both number of
rules and validation sequential error. The optimal combination of cluster radius and

squash factorleads to a similar number of rules. But, using large clusters yields fewer
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7 € € Ta N | o,
scarce set n>1]|130 (020 ] 0.10 | 0.286 | 22 | 241
n<1]0201|0.70 | 0.60 | 0.964 | 17 | 129
moderate set | 7>1|1.10 | 0.20 | 0.00 | 0.222 | 49 | 77
n<1]085|0.00)]0.00|0.486 {38 54
complete set | n>1|1.15|0.10 | 0.00 | 0.276 | 42 | O
7<1]10.95]|0.00|0.00 0344 |52(0

Table 6.1: Optimal model with the least o, for both subtractive n > 1 and modified
subtractive n < 1 algorithm of the Sugeno first order model

n 3 € Ta N | o,
scarce set n>1]1.051{0.001]0.00|0.666 [ 14 | 189
<1025 1.00f0.70 | 0.812 | 11 | 162
moderate set | 7>1 | 1.10 | 0.00 | 0.00 | 0.416 | 30 | 72
n<1|040 | 0.40 | 0.00 | 0.686 | 28 | 64
complete set | n>1|1.25]0.20 [ 0.00 | 0.252 | 31 | O
n<1(0401}030)]0.00]0762)29|0

Table 6.2: Optimal model with the least o, for both subtractive n > 1 and modified
subtractive n < 1 algorithm of the Sugeno first order model

rules due to their strong representation ability. The Sugeno second order models
are more suitable for weighted flowtime based sequence learning applications. For
the example of moderate set of jobs, optimal second order model results in ¢ = 64
with 28 rules, while for the first order with 38 rules the error is ¢ = 54. The similar
result of the first order model can be achieved by a second order model with 10 less
rules. From the Tables 6.3 and 6.4, both Sugeno first order and second order models
of modified subtractive clustering algorithm are better than the models of selective

subtractive clustering algorithm.
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scarce set | conventional modified - Selective
Sugeno Ist | 2nd | 1st | 2nd | Sugeno | Ist 2nd
n 1.30 {1.05 |0.20 |0.25 |§ 0.9 0.75
€ 0.20 |0.00 |0.70 {1.00 |- - -

€ 0.10 |0.00 {0.60 |0.70 |- - -

Te 0.286 | 0.666 | 0.964 | 0.812 | r, 0.836 | 0.996
N 22 14 17 11 N 26 11
Oy 241 189 129 162 Oy 156 200

Table 6.3: The best models found by using conventional subtractive clustering
method, selective subtractive and modified subtractive clustering method, with
scarce set of jobs

moderate set | conventional modified Selective
Sugeno Ist | 2nd | st 2nd | Sugeno | I1st | 2nd
7 1.10 1.10 | 0.85 040 |6 0.754 | 0.540
€ 0.20 | 0.00 |0.00 |0.40 |- - -

€ 0.00 [0.00 |0.00 |0.00 |- - -

Ta 0.222 | 0.416 | 0.486 | 0.686 | r, 0.836 | 0.996
N 49 30 38 28 N 40 30

oy 77 172 |54 |64 |o, 79 80

Table 6.4: The best models found by using conventional subtractive clustering
method, selective subtractive and modified subtractive clustering method, with mod-

erate set of jobs
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Chapter 7

Conclusions and future work

Subtractive clustering based system identification method is discussed in this thesis.
Firstly, we use the COSPI method to identify significant input variables. Secondly,
we employ CIOS and LSE methods to build a fuzzy model. Finally, we utilize para-
metric search method to find the best model. A new scheduling decision learning
approach is developed to solve scheduling problems. To learn scheduling decision
mechanism from an existing schedule, a subtractive clustering based system identi-
fication method is introduced and utilized. It is also used to build a fuzzy expert
scheduler. Then the fuzzy expert scheduler generates new schedules following the
decision mechanism it has learned from the existing schedule. The existing sched-
ule can be an optimal schedule produced by an optimization method. It can also
be a training schedule generated by human expert scheduler. A decision objective
function, which is sequential distance error, is introduced for the scheduling se-
quencing learning application. WSPT sequencing rule optimizes weighted flowtime
problem in single machine model. The model built through learning the WSPT

sequencing mechanism from the input and output of a schedule can be used to solve
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single machine weighted flowtime problem. The faulty representation of scarce data
zone using conventional subtractive clustering algorithm is identified. Selective sub-
tractive clustering and modified subtractive clustering algorithms are introduced to
improve the performance of the conventional subtractive clustering algorithm.

Fuzzy expert model built by the human expert knowledge is flexible in dealing
with real world scheduling problems. The limitation is that human expert scheduler
may not always be available, or may not be able to explain their knowledge explicitly.
In these situations, scheduling decision learning approach is more suitable. It learns
scheduling decision mechanism from a schedule and builds a fuzzy expert model
to generate new schedules. The experimental results of a WSPT sequence learning
application in Section 6.2.2 show that the models built by this modeling methodology
are successfully capturing the job sequence of complete set, moderate set, and scarce
set of training jobs.

When validating the models which are built on the scarce set of training jobs,
the generalization ability of the models built by conventional subtractive clustering
algorithm is very low. The validation result shown in Figure 6.21 indicates that
the model has faulty representation in the certain zone. The local representation
behavior of subtractive clustering algorithm is shown in Figure 6.25. The constraint
which is squash factor n greater than 1 lower the clustering performance when the
scarcity of training data is high.

Selective subtractive clustering and modified subtractive clustering algorithms
are introduced in Chapter 5 to remedy this situation. Using degree of association
& and selecting squash factor 7 less than 1 improve the identification of scarce data
zone of subtractive clustering algorithm. With the same number of rules for the

model shown in Figure 6.21, a model identified by modified subtractive clustering
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algorithm is able to capture the global behavior of the system as shown in Figure
6.22. The global representation of the training data space can be seen in Figure
6.25.

Sugeno first order and second order models are investigated. For the WSPT
sequence learning application, Sugeno second order model has the same generaliza-
tion ability as the first order model with between 8 and 21 less rules as shown in
Table 6.3.

The WSPT surface in Figure 4.1 shows nonlinear relationship between input
and output. The WSPT surface is a spiral shaped surface. Successful modeling
of single machine weighted flowtime sequencing problem shows that the selective
subtractive clustering and modified subtractive clustering algorithms are applicable
to modeling systems with this kind of complex behavior.

Future research is suggested to focus on solving problems of multiple machines
and multiple decisions using the subtractive clustering based system identification
method. Investigating more complicated performance measures, which can be used
to quantify the capabilities of the models in capturing training schedules, can also
be an interesting work. Applying the selective subtractive clustering and modified
subtractive clustering algorithm in solving the function approximation applications

and pattern classification applications can also be part of future work.
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Appendix A

Effect of cluster radius and squash
factor on modeling of the training

jobs
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Figure A.2: Variation of ¢; in relation to r, and n for
scarce set at € = 0.2, ¢ = 0.1 for Sugeno second order
model
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Figure A.3: Variation of o, in relation to r, and n for
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model

Figure A.4: Variation of o, in relation to r, and n for
moderate set at € = 0.0, ¢ = 0.0 for Sugeno second order
model
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% - Squast: tactor

Figure A.6: Variation of number of rules in relation to r,

and 7 for scarce set at € = 0.2, ¢ = 0.1 for Sugeno first
order model

Figure A.7: Variation of number of rules in relation to r,

and 7 for scarce set at € = 0.2, ¢ = 0.1 for Sugeno second
order model
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Figure A.8: Variation of number of rules in relation to
Te and n for moderate set at € = 0.0, ¢ = 0.0 for Sugeno
first order model

Figure A.9: Variation of number of rules in relation to
T, and 7 for moderate set at € = 0.0, ¢ = 0.0 for Sugeno
second order model
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z - Number of rule

x - Squash factor

Figure A.10: Variation of number of rules in relation to r, and n for complete set at
€ = 0.3, ¢ = 0.1 for Sugeno second order model
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Appendix B

Effect of parameters on optimal

model
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Figure B.1: ¢ at n of 1.60 for scarce set for Sugeno second
order model
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Figure B.2: ¢ at n of 0.55 for scarce set for Sugeno second
order model
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Figure B.3: ¢ at n of 1.5 for moderate set for Sugeno first
order model

Figure B.4: ¢ at n of 0.85 for moderate set for Sugeno
first order model
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Figure B.5: ¢ at n of 1.25 for moderate set for Sugeno
second order model
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Figure B.6: ¢ at n of 0.85 for moderate set for Sugeno
second order model
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Figure B.7: ¢ at n of 1.75 for complete set for Sugeno
first order model
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Figure B.8: ¢ at n of 0.55 for complete set for Sugeno
first order model
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Figure B.9: ¢ at n of 1.75 for complete set for Sugeno
second order model
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Figure B.10: ¢ at n of 0.55 for complete set for Sugeno
second order model
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Figure B.11: Validation surface of sequence in relation
to p; and w; at 17 of 1.60 for scarce set for Sugeno second
order model

Figure B.12: Validation surface of sequence in relation
to p; and w; at n of 0.55 for scarce set for Sugeno second
order model
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Figure B.13: Validation surface of sequence in relation to
p;j and w; at n of 1.55 for moderate set for Sugeno first
order model

Figure B.14: Validation surface of sequence in relation to
p; and w; at n of 0.85 for moderate set for Sugeno first
order model
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Figure B.15: Validation surface of sequence in relation to
p; and w; at n of 1.25 for moderate set for Sugeno second
order model

Figure B.16: Validation surface of sequence in relation to
p; and w; at n of 0.45 for moderate set for Sugeno second
order model
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Figure B.17: Validation surface of sequence in relation
to p; and w; at n of 1.50 for complete set for Sugeno first
order model
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Figure B.18: Validation surface of sequence in relation
to p; and w; at n of 0.60 for complete set for Sugeno first
order model
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Figure B.19: Validation surface of sequence in relation to
p; and w; at n of 1.70 for complete set for Sugeno second
order model

Figure B.20: Validation surface of sequence in relation to
p; and w; at n of 0.50 for complete set for Sugeno second
order model
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