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Abstract

Formal Validation of Security Properties of AMT’s Three-way

Handshake

Ali Salem

Multicasting is a technique for transmitting the same information to multiple receivers

over IP networks. It is often deployed on streaming media applications over the

Internet and private networks. The biggest problem multicast introduces today is

that it is an “all or nothing” solution. Every element on the path between the

source and the receivers (links, routers, firewalls) requires multicast protocols to be

enabled. Furthermore, multicast has a conceptual business model, and therefore is

not an easy case to make. These factors, embedded deep in technology, but ultimately

shaped by economics, led to a lack of multicast deployment. To address this problem,

the AMT (Automatic IP Multicast without explicit Tunnels) specification has been

developed by the Network Working Group at the IETF. This specification is designed

to provide a mechanism for a migration path to a fully multicast-enabled backbone.

It allows multicast to reach unicast-only receivers without the need for any explicit

tunnels between the receiver and the source. We have formally validated the three-way

handshake in the AMT specification using AVISPA against two main security goals:

secrecy and authentication. We have demonstrated that the authentication goal is

not met: an attacker can masquerade as an AMT relay, and the AMT gateway (at

the end user) cannot distinguish a valid relay from an invalid one. Another attack

was also found where an intruder can disconnect or shutdown a valid session for a

valid end-user using a replay attack.
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Chapter 1

Introduction

In IP multicast, applications send one copy of a packet and address it to a group of

receivers (at the multicast address) that want to receive it rather than to a single

receiver (for example, at a unicast address). Multicast depends on the network to

forward the packets to only those networks and hosts that need to receive them,

therefore controlling network traffic and reducing the amount of processing that hosts

have to do. Multicast applications are not limited by domain boundaries but can be

used throughout the entire Internet [21]

The biggest problem multicast presents today is an “all or nothing” solution [27].

Every link on the network, every router and firewall between source and receiver,

requires multicast protocols to be enabled. Additionally, the business model for mul-

ticast is abstract and is not an easy case to make. Multicast is an infrastructure

capability that enables other services. From a business perspective, multicast resem-

bles DNS and BGP, which are vital infrastructure protocols that are generally not

billed directly. Consequently, those service providers who tried to bill for Internet

multicast found disappointing results. Content providers were not interested in pay-

ing extra to transmit multicast streams that could not be received by many end users,

and networks with many end users were unwilling to pay extra to receive multicast

content that did not exist. The result was a chicken-and-egg problem between content
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and audience.

To overcome this problem, a transition strategy was proposed by the Network

Group at The Internet Engineering Task Force (IETF) called Automatic IP Multi-

cast Without Explicit Tunnels (AMT) [31]. This involves setting up relays at peering

points in multicast networks that can be reached from gateways installed on hosts con-

nected to unicast networks. With AMT, multicast control messages are encapsulated

in User Datagram Protocol (UDP) packets and sent to relays, which then transmit

them natively toward the source. This results in moving the replication point closer

to the user, and cuts down on traffic across the transit provider’s network. Thus, the

content owner can more easily see a profitable business model, by avoiding the linear

costs of adding unicast subscribers. The goal of AMT is to foster the deployment of

native IP multicast by enabling a potentially large number of nodes to connect to an

already-present multicast provider network. AMT is an interim solution to help build

scalable video and other multicast services during the transition to multicast-enabled

local service providers.

Our work is to formally validate the AMT specification. All possible events of

protocol communication are examined, and then all the resulting possibilities are

explored systematically against two main security goals between concerned parties:

secrecy and authentication. As no previous attempts have been publicly made to

assess any sort of such validation of AMT, we believe that our work will be regarded

as a useful initiative in this direction.

The organization of the thesis is as follows:

• Chapter 2 gives a brief background of IP Multicasting, and highlights a brief

comparison with Unicast and Broadcast. We also look at the benefits multi-

casting provides to the content providers as well as the end users, in addition

to the main obstacles challenging Internet Service Provider from deploying this

technology in their infrastructure. We also provide an overview of the AMT

specification, its applicability in today’s world, its components, and how it can
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act an interim solution.

• Chapter 3 discusses a protocol analysis tool called AVISPA. This chapter de-

scribes the architecture of the tool and syntax for protocol specification language

called HLPSL. It also gives an example of how a real protocol can be specified

with the HLPSL language and how the output of the AVISPA Tool is analysed.

• Chapter 4 discusses the implementation of formal validation of AMT under

AVISPA. The results of the validation are shown and explained.

• Chapter 5 summarizes the thesis, concludes with comments on the validation

results of the AMT protocol and states some future work directions.
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Chapter 2

Background

2.1 IP Multicast

2.1.1 Definition

The greater part of Internet traffic uses unicast data delivery [20]. In unicast, a client

requests data and a server transmits the data directly to it. Each client requesting

data receives its own copy of the stream from the server. As the number of clients

increases, the cost of unicast delivery increases in a linear fashion accordingly. This

in return requires the server to be powerful enough to transmit a duplicate stream to

every interested client, and the links on the network must have adequate bandwidth

to handle all the duplicate streams.

Standing out against unicast delivery, broadcast data delivery on the other hand

allows a server to send a single stream to the network, which will be received by all

end users on the network, regardless of their interest in the data. For example, a

radio station broadcasts its signal to all radios within a given area regardless of the

number of listeners. The benefit of this, and broadcasting traffic in general, is very

clear for the owner of content - whether there is one interested listener or 1 million

interested listeners, the cost to transmit remains the same. The disadvantage is that

the traffic is sent to all listeners, whether they are interested or not [20].
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By comparing unicast and broadcast side to side, especially when it comes to

suitability of employment over the Internet, we can easily conclude that unicast data

delivery is better suited than broadcast. Unicast delivery is intended for users who

are explicitly requesting it, but not the rest. On the other hand, broadcast will deliver

the content to all users on the network, and in the world of Internet, we could be

tackling about millions and millions of users. Hence, unicast delivery works more

efficiently over the Internet.

Between the two extremes of unicast and broadcast lies a third option: multicast.

In multicast, the source transmits a single stream of data. Unlike unicast or broadcast,

the network intelligently determines where that stream of content is desired and

delivers the stream only to interested users. By delivering a single stream of data, a

multicast source enjoys the same level of efficiency as broadcast with respect to cost

of transmission remaining constant whether the number of receivers is one person or

one million people. Additionally, by delivering that content only to interested users,

multicast enjoys a similar level of efficiency to unicast with respect to traffic not being

forwarded to uninterested users. Multicast enjoys the best of both worlds by grasping

the benefits of unicast and broadcast without enduring their deficiencies.

In multicasting, senders send each data packet once and at most one copy of

each packet flows through the physical links under normal conditions. For example,

assume that a sender, S, wants to send a message to receivers R1 and R2, as shown

in Figure 1. In case of unicast transmission, S should transmit the same data twice

and the bandwidth usage between the sender and the intermediate node is doubled.

In broadcasting, other receivers such as R3 will get the packets although they are not

relevant to R3, causing unnecessary bandwidth consumption. But in multicasting,

only a single copy of the message is transmitted from the sender and it is copied at

the intermediate node to be sent to the multicast group. A multicast group can range

in size from a few nodes to several thousands. In the example given in Figure 1, the

multicast group consists of nodes R1 and R2.
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Figure 1: Unicast, broadcast and multicast transmissions

Some applications that enjoy the benefits of multicast today are:

• Multicast Reflector, at University of Oregon.

• IPTV at Cisco Systems.

• Products at Real Networks.

• Windows Media Technologies, Conference XP at Microsoft.

• MacTV at Apple.

• VideoCharger at IBM.

2.1.2 Challenges with Multicast

As much as multicast looks tempting in theory, it is unfortunately not deployed widely

and actively in reality. The present problems with recognizing a multicast service are

considered multidimensional [24], involving several different players:

• Users simply want to have access to the content and are not interested in the

delivery method, e.g., unicast or multicast.

• Internet Service Providers want to be compensated for delivering extra services.

There has typically been no way of easily monetizing these services. Conse-

quently, turning multicast into a commercial service has been highly impeded.
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• Content Providers love multicast because in reality they pay less money for

delivering more.

Figure 2 demonstrates these problems in high-level terms.

Figure 2: Content delivery in today’s IP environment [20]

2.2 Automatic Multicast without Tunneling

2.2.1 History

The dynamics of content delivery over the Internet have tilted towards the wide scale

use of unicast. Even a content owner with connection to a native multicast-enabled

ISP is required to offer both unicast and multicast content. This has came about since

receivers are classically connected to unicast only last-mile network environments.

This results in high bandwidth costs per stream for the content owner and all service

providers in the delivery chain (see Figure 3).

When hosts need to show interest in receiving multicast content, they send a

message into the network to indicate that they are interested in a particular multicast
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Figure 3: Unicast Only Last Mile Environment [20]

group. This message is called an IGMP membership report. This message is received

by the first hop router next to the receiver. In a unicast-only network, the router will

discard such message since it lacks multicast functionality. As a result, the receiver

application in the host is compelled to send unicast requests instead for the same

content. The output of this behavior was:

• Content owners made more money by reaching more end-users through unicast

content delivery.

• The ISP made more money by allowing the content owner to transmit multiple

copies of the stream.

Consequently, the following resulted:

1. People grew familiar with unicast data delivery (through the likes of Youtube

and BBC iPlayer [24]).

2. Service providers no longer considered the requirement to deploy multicast,

mostly due to lack of business justification.

3. Additional rise of unicast delivery models took place.
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4. Multicast became more and more niche.

All of these factors, embedded deep within technology, but ultimately directed

by economics and business justification, led to a lack of deployment of multicast

technology. As a result, AMT [31] (Automatic IP Multicast without explicit Tunnels)

has been developed.

This specification is intended to offer a migration path to a fully multicast-enabled

backbone and allow multicast to reach receivers in networks with no multicast capa-

bilities, without the requirement for any pre-configured tunnels between the receiver

and the source. It provides the benefits of multicast where multicast is deployed.

More details about the AMT specification are provided in the following section.

2.2.2 Definition

Automatic Multicast Tunneling (AMT) allows multicast communication to take place

among remote multicast-enabled sites or hosts, attached to a network that has no

native multicast support. Without requiring any manual configuration, AMT allows

the hosts to exchange multicast traffic with the native multicast infrastructure. AMT

operates with an encapsulation interface so that no future modification to applications

is required, all protocols (not just UDP) are handled, and there is no extra overhead

in core routers [31].

2.2.3 Components

The following terminology is largely adapted from draft-ietf-mboned-auto-multicast-10

[31].

AMT Site is a multicast network (or host) with an attached / resident gateway

served by an AMT Gateway. It could also be a standalone AMT Gateway.
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AMT Relay is usually a multicast router configured to support transit routing

between AMT Sites and the native multicast backbone infrastructure. The relay

router has one or more interfaces connected to the native multicast infrastructure,

zero or more interfaces connected to the non-multicast capable inter-network, and

an AMT pseudo-interface. This device terminates one end of an AMT tunnel and

encapsulates multicast packets into those tunnels. While usually a router, it may be

a standalone server. Put more simply, an AMT Relay receives AMT Requests from

an AMT Gateway.

AMT Gateway is a host, or site gateway router, supporting an AMT Pseudo-

Interface. It does not have native multicast connectivity to the multicast backbone

infrastructure. This device terminates the other end of an AMT tunnel and de-

encapsulates multicast packets from those tunnels. Put more simply, an AMT Gate-

way sends AMT Requests to the AMT Relay. AMT Gateways are expected to be

implemented in two ways:

• In a network device (home gateway, router).

• In a host (standalone software or built into an application).

AMT Pseudo-Interface is a point logically equivalent to an interface where AMT

encapsulation (of multicast packets inside unicast packets) occurs. Some implemen-

tations may treat it exactly like any other interface and others may treat it like a

tunnel end-point. In most (if not all) AMT implementations, the pseudo-interface

will be a tunnel end-point.

Using these definitions, we can have a better understanding of how AMT works

when we explain it next. Initially, let us assume that the multicast-enabled ISP

provides the AMT Relay service (Figure 4).

In this diagram, the hosts connected to the unicast-only network are acting as

AMT Gateways. Now let us consider the following scenario when some of these hosts
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Figure 4: Multicast Enabled ISP Providing AMT Service [20]

want to request content:

• They first send an IGMP membership report to the first hop router;

• The AMT Gateway process running on the host will seize the IGMP report and

trigger an AMT request towards an AMT Relay;

• An AMT tunnel will be created between the Relay and the Gateway through a

3-way handshake process (explained later in this section in more detail);

• Since an AMT tunnel is now created, the host will encapsulate the IGMP mem-

bership report into it and send it to the AMT Relay;

• The AMT Relay will decapsulate the IGMP message and trigger an upstream

PIM join [19] towards the source;

A migration path for the unicast-only network now exists for it to become multicast-

enabled. It could start by moving the relay into its network domain and creating a

multicast peering with the upstream ISPs. Then, to further minimize the bandwidth
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load, it can gradually push multicast capabilities down through the network, into the

first-hop routers, removing the need for the host-based AMT Gateways.

2.2.4 AMT Relay discovery

This section will explain how the AMT Gateway locates the AMT relay. According

to [31], we need to assign an address to the Relay that is recognized throughout

the Internet. In an IP network, one way of providing this function is via an Anycast

Address. Ultimately, it is anticipated there will be an allocated IANA Anycast address

for the AMT Anycast prefix [24]. Currently the prefix is provided by ISC [1] (via

154.17.0.0/16). Each ISP with an AMT Relay needs to promote this address as

reachable throughout the Internet. To search and locate the unicast address of the

nearest AMT Relay, the AMT Gateway sends a message called AMT Relay Discovery

message destined to the AMT Anycast Address. The message is sent to the reserved

UDP port 2268 and includes a special code (or Nonce), which is used to secure the

set up of the tunnel (Figure 5).

Figure 5: AMT Relay Discovery Message [20]

On receipt of an AMT Relay Discovery message, the Relay will respond to the

Gateway with an AMT Relay Advertisement message, which includes the Relay’s

unique IP address. This unique IP address will then be used by the Gateway for

communication with the Relay with any future AMT message (AMT Requests and

AMT Membership Updates). Once again the reserved UDP port 2268 is used and the
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reply also contains the same Nonce that was originated by the Gateway. As a result,

the Gateway knows that this reply was a reply to its Discovery message (Figure 6).

Figure 6: AMT Relay Advertisement Message [20]

On receipt of the AMT Relay Advertisement Message, the Gateway begins the “3

way handshake” by sending an AMT Request message to the Relay using the relay’s

unique IP address as the destination (again along with a new Nonce) (Figure 7).

Figure 7: AMT Relay Request Message [20]

The Relay responds with an AMT Query that includes the new Nonce from the

AMT Request, as well as an opaque security code (MAC) that it will expect in

any future messages from the Gateway. The AMT query in fact encapsulates the

underlying IGMP membership query and includes the Querier’s Query Interval Code

(QQIC), which specifies the Query Interval used by the querier (Figure 8).

To join any upstream sources, the Gateway responds with an AMT Membership

Update that includes the opaque security code, the original nonce from the AMT

Request, and an encapsulated IGMPv3 packet (Figure 9).
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Figure 8: AMT Membership Query Message [20]

Figure 9: AMT Membership Update Message [20]

By validating the security code and Nonce, the Relay completes the tunnel set up

and starts using it for multicast traffic. The Relay adds the appropriate pseudo/tunnel

interface to the multicast route for that particular stream and begins duplicating and

encapsulating packets to the Gateways (Figure 10).

Figure 10: AMT Multicast Data Transfer [20]

Any further streams will use the same Request/Query/Update “3-way handshake”

(but will not need to use the Discovery/Advertisement process since the tunnel will

14



already have been established). If any Request does not receive a Query in response,

the Gateway will then use the Discovery/Advertisement mechanism to find the next

available Relay. Once the tunnel has been established, the communication is effec-

tively identical to a normal router host IGMPv3 relationship. The Gateway (host)

sends periodic AMT Membership Updates to refresh the state on the Relay (router),

sending the appropriate update to leave the group when the traffic is no longer de-

sired. Once the tunnel is no longer required by any more receivers it is maintained by

the Gateway/Relay for a further time-out period. In that way a new receiver does not

need to build a new tunnel if that receiver becomes active again shortly afterwards.

2.2.5 AMT Benefits

Using AMT, an ISP can benefit by deploying a single AMT relay to provide service

to all its customers. Before that relay becomes overloaded, or if the tunnel traffic it

generates causes an undue load on certain links in the network, the ISP can deploy

additional AMT relays, both to distribute the server load and to lessen the network

load. Other benefits offered by AMT to the IP broadcasting industry for delivering

content are listed below.

Simplicity : To establish the AMT tunnel, the receiving network simply sends

out an AMT Advertisement message to a well known Anycast Prefix. The rest of

the tunnel establishment is done automatically without the need for any additional

configuration or overhead of manual monitoring.

Resiliency : Since the Relay discovery uses an Anycast address, Gateways will au-

tomatically find the closest Relay. Should a Relay become unavailable or unreachable,

the routing table will automatically update itself and use the next closest Relay.

Efficiency : AMT uses UDP encapsulation, providing different source UDP ports

for the encapsulated streams of data, allowing transit routers to perform flow-based
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load balancing for more efficient link utilization.

2.3 Three-way Handshake

The term “three-way handshake” is usually associated with the TCP 3-way handshake

process where it is used to establish and tear down socket reliable connections over the

network. TCP handshake is required for both communicating parties to setup initial

sequence numbers (required to allow the communication to be reliable) and ensure

that they have both understood each other. UDP, which is employed by AMT, on the

other hand, does not involve having a reliable connection between the communicating

parties. According to the AMT specification [31], the 3-way handshake, which is used

to establish the tunnel, is used only to help avoid spoofing and denial of service (DoS)

attacks between the gateway and the relay for each multicast join or leave. However,

our formal validation results helped prove that the 3-way handshake process is in fact

prone to spoofing or impersonation by a third party.

The manner of establishing the tunnel in AMT is different from the ways it is being

established in other security protocols, especially the ones modelled under AVISPA.

The IKEv2 protocol [23], establishes a secure tunnel between its hosts and gateway

using the DHCP-IPSec-tunnel, an exhange that is secured using IPsec, to guarantee

authentication and integrity between participating parties. PEAP [6] and EAP-TTLS

[28] make use of the handshake phase in TLS [28] to establish a secure tunnel where

the identities of the communicating parties are exchanged and authenticated through

this tunnel. TLS uses symmetric cryptography for privacy and a keyed message

authentication code for message reliability.

The IKEv2-MAC protocol [23], a variant of IKEv2, uses an authentication method

which involves exhanging the MAC of a pre-shared secrect that both partcipating

nodes possess. As we will see later, the absence of proper MAC authentication in

AMT leads to a security problem. In Mobile IP networks, a strong authentication

scheme is used for security purposes. Integrity of tunneling and registration messages
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between a mobile node, foreign agent, and home agent [15] are protected with the

help of a preshared 128-bit key. Mobile IP uses a tunneling protocol [15] to allow

messages from the packet data network PDN to be directed to the mobile node’s IP

address.

By closley examining the validation results of the existing models of IKEv2,

IKEv2-MAC, PEAP, and EAP-TTLS, and Mobile IP under AVISPA, and comparing

them with the one of AMT, we notice major differences in the ways tunnels are set up

and secured, in addition to the strong authentication schemes offered by these proto-

cols. AMT’s tunnel establishment and authentication scheme is not followed by any

of the other protocols modelled under AVISPA. By modelling the AMT’s three-way

handshake process under AVISPA and comparing it with other modelled protocols,

we were able to indicate that there is an absence of a proper authentication scheme

between the participating AMT entities, Relay and Gateway, in addition to lack of

proper security in the three-way handshake tunnel establishment.
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Chapter 3

Design & Methodology

3.1 Formal Analysis

When a secure routing protocol is being developed, it is important to be able to

prove that it fulfills the anticipated security properties. This step is a prerequisite

to implementing the solution because it allows us to avoid future problems in the

design level. It is usually carried out with mathematical calculations or using some

specialized tools based on logic calculation such as BAN logic and GNY logic [22].

One of the most used techniques is formal analysis. Formal analysis is based on

a mathematical modeling of the analyzed system [8]. Modeling the system implies

modeling its components. Formal analysis is in fact a formal validation process.

Primarily, the system that needs to be analyzed is first formalized (modeled) according

to previously established assumptions. Afterwards, the anticipated properties of the

system are also formalized. The actual analysis step follows, in which, based on the

assumptions made and on the models of the system and of the properties, the validity

of the properties is established. It is important to note that the results highly depend

on the model under consideration.

Formal validation of security protocols is of great importance before they gain

market or academic acceptance. Some standard and widely used security protocols
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for the Internet have been proved to suffer from critical design flaws that an at-

tacker can exploit to overthrow their security. The reason is that their security goals

were simply informally evaluated, creating potential attack paths as a result. Auto-

mated reasoning techniques are commonly used to evaluate the protocols in a formal

way, increasing the assurance respecting the purported security. Automated or semi-

automated tools were developed such as Casper/FDR, Murö, Athena and AVISPA

[9][17][26][29][3].

We have chosen the model checker AVISPA tool for our formal analysis because it

is powerful, easy to use and open source. It is a project sponsored by the European

Union to validate the security goals of different protocols. Already 85% of the IETF

protocols were proven by this tool, which has demonstrated its capabilities [22]. More

information on AVISPA is provided in the next section.

3.2 AVISPA

To quicken the development of the protocols and enhance their security, it is impor-

tant to have appropriate tools that support the analysis of the protocols and help

to find the vulnerabilities in the early stages of development [32]. Favorably, these

tools should be entirely automated, robust, expressive, and easily usable, so that they

can be integrated into the protocol development and standardization processes to im-

prove the speed and quality of these processes [3]. A number of (semi-)automated

protocol analysis tools have been proposed, e.g., [4][9][17], which can analyze small

and medium-scale protocols such as those in the Clark/Jacob library [16]. However,

scaling up to large scale Internet security protocols is a considerable challenge, both

scientific and technological. As a result, a push-button tool for the Automated Vali-

dation of Internet Security-sensitive Protocols and Applications has been developed,

the AVISPA Tool [32].

The architecture of AVISPA is shown in figure 11. The first step in using the tool

is to present the analyzed protocol in a special language called High Level Protocol
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Specification Language (HLPSL) [13]. We discuss the HLPSL language in more detail

in the following section.

Figure 11: The Architecture of AVISPA[32]

The HLPSL presentation of the protocol is translated into the lower level lan-

guage called Intermediate Format (IF). This translation is performed by the trans-

lator called HLPSL2IF. This step is totally transparent to the user. IF presentation

of the protocol is used as an input to the four different back-ends: On-the-fly Model-

Checker (OFMC), CL-based Attack Searcher (CL-AtSe), SAT-based Model-Checker

(SATMC) and Tree-Automata-based Protocol Analyzer (TA4SP). These back-ends

perform the analysis and output the results in precisely defined output format stating

whether there are problems in the protocol or not. Further explanation of the four

back-ends is provided in Section 3.4.
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3.3 High Level Protocol Specification Language

AVISPA uses High Level Protocol Specification Language (HLPSL) to present the

analyzed protocols. In this section we take a closer look into the structure of HLPSL

language according to the AVISPA tutorial [32]. In order to express the protocols

in HLPSL language, it is easiest to translate the protocols first into A-B format, for

instance:

A -> S: {Kab}_Kas

S -> B: {Kab}_Kbs

The notation above illustrates Wide Mouth Frog (WMF) protocol [2], where end-

points A and B attempt to set up a secure session. First A generates a new session key

Kab and encrypts it by using a key Kas and sends the encrypted key to the trusted

server S. Kas is a key that is shared between A and S. S decrypts the message, re-

encrypts it by using a shared key Kbs and transmits the encrypted message to B. B

can decrypt the message by using the shared secret Kbs and obtains the session key

Kab.

HLPSL language is a role-based language, which means that actions of each par-

ticipant are defined in a separate module, called a basic role. In the case of WMF

example above, the basic roles are: Alice (A), Bob (B) and server (S). Basic roles

describe what information the corresponding participant has initially (parameters),

its initial state and how the state can change (transitions). To continue the WMF

example, the role of Alice would be expressed in following way:

role alice(A,B,S : agent,

Kas : symmetric_key,

SND, RCV : channel (dy))

played_by A def=

local

State : nat,
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Kab : symmetric_key

init State := 0

transitions

...

end role

The role indicates that agents A, B and S are participating to the protocol suite,

A has a shared key Kas with the agent S and A uses channels SND (send) and

RCV (receive) for communication. Currently, the only supported channel model for

communication in AVISPA is Dolev-Yao (dy) [18]. Support for other intruder models

such as algebraic intruder model [11], message-based inspection model [7], and multi-

agent based systems semantics [25], can be integrated with AVISPA’s communication

channel in the future [30]. AVISPA’s selection of this model is supported by the

fact that this model can emulate the actions of an arbitrary adversary [12], and it

is also very challenging because it gives advantage to the intruder as opposed to

other models [12]. Dolev-Yao is a very strong model because it assumes that the

intruder can intercept every message in the channel and can build any message from

the intercepted messages using for that infinite memory and processing capabilities.

It is also based on the perfect cryptography, which means that the intruder cannot

decrypt a message M ciphered with a key K with another key K’ different from K.

The section called local defines the local variables of Alice, which are State that

is described by a natural number (nat) and symmetric key Kab. Initial state of Alice

is 0. The transition section describes received and sent messages and how they affect

the state of the role. For instance the role server has following transition called step1:

step1. State = 0 /\ RCV({Kab’}_Kas) =|>

State’:= 2 /\ SND({Kab’}_Kbs)
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The transition means that if the server’s state is 0 and it receives a message from

its RCV channel containing a key Kab’ that is encrypted with a key Kas, the server

changes its state to 2, encrypts the key Kab’ with the Kbs and sends the encrypted

key to the channel SND. In addition to basic roles the HLPSL language defines also so

called composition roles that are used to combine several basic roles. Combining the

basic roles means that the roles can execute in parallel. The composition roles define

the actual protocol sessions. For instance, in the case of the WMF protocol there are

three basic roles Alice, Bob and Server. The composition role, called session, initiates

one instance of each role and thus defines one protocol run. The composition role

does not define transitions the way basic roles do, instead it initiates basic roles and

defines channels used by the basic roles. The composition role is defined for instance

in the following way:

role session(A,B,S :agent,

Kas,Kbs :symmetric_key) def=

local SA, RA, SB, RB SS, RS: channel (dy)

composition

alice (A, B, S, Kas, SA, RA)

/\ bob (B, A, S, Kbs, SB, RB)

/\ server(S, A, B, Kas, Kbs, SS, RS)

end role

Finally the HLPSL defines a top level role, called here as environment, that con-

tains global variables and combines several sessions. This top level role can be used

to define what information an intruder has and where the intruder can access the

protocol. For example, the intruder may play a role of a legitimate user in a protocol

run. The following role definition shows how a top level environment can be defined.

The letter i in the definition indicates the intruder.
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role environment()

def=

const a, b, s : agent,

kas, kbs, kis : symmetric_key

intruder_knowledge = {a, b, s, kis}

composition

session(a,b,s,kas,kbs)

/\ session(a,i,s,kas,kis)

/\ session(i,b,s,kis,kbs)

end role

Every security protocol has some goals that it is supposed to meet. In order to write

the protocol in HLPSL format, we must know these goals. The analysis is done

against the defined security goals and the results indicate whether the protocol meets

the goals or not.

The security goals of the protocol are presented in an HLPSL language section

called goals. Security goals are actually defined in transition sections of basic roles.

The definitions of security goals in the transition section are called goal facts. The

goals section simply describes which combinations of these goal facts indicate an

attack [32].

Below there is an example of a goal fact. The notation means that Bob allows

that the key K1 can be shared with Alice, but it must remain secret between the two.

The second argument of the secret fact is called protocol id and it simply names the

secret fact and distinguishes the different security goals from each other.

role bob {
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...

local

State : nat,

Nb,Na : text,

K1 : message

init

State := 1

transition

1. State = 1 /\ RCV({Na’}_K) =|>

State’:= 3 /\ Nb’ := new()

/\ SND({Nb’}_K)

/\ K1’:= Hash(Na’.Nb’)

/\ secret(K1’,k1,{A,B})

...

end role

A goal section of the protocol definition can be as follows:

goal

secrecy_of k1

authentication_on bob_alice_nb

end goal

The first statement describes the goal fact above and the second statement describes

another goal fact that was not included in the example. We do not show the syntax in

the transition section for this security goal. However, this statement is used to indicate

the authentication. Notation bob alice nb is simply used to name the corresponding

goal facts in transition sections of basic roles.
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3.4 Back-ends

As Figure 11 shows, AVISPA integrates four different back-ends. Here the word

back-end means an entity that inputs a sequence of IF language statements, does

analysis and produces the analysis output. The four different back-ends used in

AVISPA, OFMC, CL-AtSe, SATMC and TA4SP, are complementary rather than

equivalent. Thus, the output of the back-ends may differ. All back-ends assume

perfect cryptography, which means that an attacker cannot solve encryption without

the knowledge of the whole key. Also, the transmission channel is assumed to be

controlled by a Dolev-Yao attacker. This means that the attacker has basically full

control over the channel [32].

The On-the-fly Model-Checker (OFMC) [5] performs protocol falsification and

bounded validation by exploring the transition system described by an IF specification

in a demand-driven way. OFMC implements a number of correct and complete sym-

bolic techniques. It supports the specification of algebraic properties of cryptographic

operators, and typed and untyped protocol models.

The Constraint-Logic-based Attack Searcher (CL-AtSe) [5] applies con-

straint solving as in [14], with some powerful simplification heuristics and redundancy

elimination techniques. CL-AtSe is built in a modular way and is open to extensions

for handling algebraic properties of cryptographic operators. It supports type-flaw

detection and handles associativity of message concatenation.

The SAT-based Model-Checker (SATMC) [5] builds a propositional formula

encoding a bounded unrolling of the transition relation specified by the IF, the initial

state and the set of states representing a violation of the security properties. The

propositional formula is then fed to a state-of-the-art SAT solver and any model found

is translated back into an attack.
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The TA4SP (Tree Automata based on Automatic Approximations for

the Analysis of Security Protocols) back-end [10] approximates the intruder

knowledge by using regular tree languages and rewriting. For secrecy properties,

TA4SP can show whether a protocol is flawed (by under-approximation) or whether

it is safe for any number of sessions (by over-approximation).

To validate the security properties of the AMT specification using AVISPA, we

discuss three different scenarios in this section that are going to be implemented in

HLPSL using the input file explained in the following section. In our scenario design,

we use an incremental methodology. We start with minimal number of sessions, and

minimal intruder knowledge. Note that, an intruder can impersonate any agent just

by putting the variable ‘i’ instead of the agent and so, he can receive every message

sent to the hacked agent. We make things more challenging by adding information to

the hacker and adding more parallel sessions. Since the OFMC back-end of AVISPA

finds one goal at a time, the number of times we need to run each scenario will

be equal to the number of goals we have. With each run, we choose one goal and

comment the rest out.

After defining the sessions, we define the environment composed of sessions, in-

truder knowledge and the security goals. The Intruder knowledge describes the com-

munication and security parameters known to the hacker besides the channels, the

hash functions, the agent identities and so on. By combining this knowledge with the

message intercepted or received during the protocol validation, the intruder can build

new messages and try to violate the security defined in the section “Goals” of the

HLPSL environment code. The goals often wished are the data confidentiality (se-

crecy of), authentication of agent and detection of replay attack (authentication on,

request, witness).

In our protocol, the goals we need to verify are as follows:

• The authentication of one agent to the other;

• The confidentiality or secrecy of some local parameters.
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• The absence of one or more replay attacks.

28



Chapter 4

Implementation & Experiments

4.1 AMT Three-way Handshake HLPSL Specifi-

cation

In this section, we will be examining the HLPSL input file used to validate the AMT

specification.

4.1.1 Gateway HLSPL

We first define the role Gateway, its parameters, and its transitions. Note that since

the Gateway is not supposed to be aware of the cryptographic hashing function used

by the Relay to create the message authentication code (MAC), there is no need to

define it in the role. The Gateway will simply echo the MAC back to the Relay upon

receiving it in the AMT membership message.

role gateway(

G, R : agent,

SND,RCV : channel(dy))

played_by G def=

29



local

State : nat,

Ng : text, % Nonce created by Gateway

MAC : hash(text.agent.symmetric_key) % Message Authentication Code

% (A crytographic hash created

% by the relay using the IP of

% the Gateway,source port,

% Nonce, and a local secret

% known only to the Relay

init

State := 0

transition

1. State = 0 /\ RCV(start) =|>

State’:= 2 /\ Ng’ := new()

/\ SND(G.Ng’) % Send AMT Relay Discovery

2. State = 2 /\ RCV(R.Ng) =|> % Receive AMT Relay

% Advertisement Message

% Unicast IP of Relay

% is now known to Gateway

State’ := 4 /\ Ng’ := new()

/\ SND(G.Ng’) % Send AMT Request Message

3. State = 4 /\ RCV(R.Ng.MAC’) =|> % Receive AMT Query Message

% includes Gateway

% Nonce and MAC

State’ := 6 /\ SND(G.MAC’.Ng) % Send AMT Membership
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%Update Message

/\ request(G,R,gateway_relay_mac,MAC’) % Security

% Goal: Gateway

% Authenticates

% Relay on

% MAC

end role

4.1.2 Relay HLSPL

role relay(

G, R : agent,

Hash : hash_func,

SND,RCV : channel(dy))

played_by R def=

local

State : nat,

Ng : text, % Nonce created by Gateway

MAC : message, % Message Authentication Code

% (A crytographic hash created by

% the relay using the IP of the Gateway,

% source port, Nonce, and a

% local secret known only to the Relay
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LS : text % A local secret known only to the Relay

init

State := 1

transition

1. State = 1 /\ RCV(G.Ng’) =|> % Receive AMT Relay Discovery

% Message

State’ := 3 /\ SND(R.Ng’) % Send AMT Relay Advertisement

% Message

2. State = 3 /\ RCV(G.Ng’) =|> % Receive AMT Request Message

State’ := 5 /\ LS’ := new() % Create Local Secret

/\ MAC’ := Hash(Ng’.G.LS’) % Create MAC

/\ SND(R.Ng’.MAC’) % Send AMT Query Messasge

/\ secret(LS’,s_ls,{R}) % Security Goal: Local secret

% should only be

% known to Relay

/\ witness(R,G,gateway_relay_mac,MAC’) % Security

% Goal: Gateway

% Authenticates

% Relay on

% MAC

/\ secret(MAC’,s_mac,{R,G}) % Security Goal: MAC

% should only be

% known to Relay & Gateway

3. State = 5 /\ RCV(G.MAC.Ng) =|> % Receive AMT Membership Update

State’ := 7
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end role

4.1.3 Session Role HLPSL

To aid in executing several roles in parallel, we define the role session, which is

basically a composition of both roles Gateway and Relay shown earlier.

role session(

G,R : agent,

Hash : hash_func)

def=

local SND, RCV : channel (dy)

composition

gateway (G,R,SND,RCV)

/\ relay (G,R,Hash,SND,RCV)

end role

4.1.4 Environment Role HLPSL

Our scenarios are going to be similar in all parts of the HLPSL specification except

the environment role. In this role, we can modify the number of parallel sessions and

intruder knowledge.

role environment()
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def=

const

g,r : agent,

relay_gateway_mac,

relay_gateway_ls : protocol_id,

h : hash_func

intruder_knowledge = {g,r,h}

composition

session(g,r,h)

/\ session(g,i,h)

/\ session(i,r,h)

end role

4.2 Problem Classification

Since the desired security properties are usually not mentioned or stated in the original

documents explaining the protocol, the AVISPA team alongside some partners came

up with a deliverable document that lists a set of selected problems that were the

result of rigorous evaluation of approximately 80 protocols [30]. Having come out with

384 problems divided into 33 groups, such a range of problems can be used as a general

framework for classifying problems found with the AMT protocol. Usually, all HLSPL

protocol specifications submitted to the AVISPA project have to classify the security

goals they are validating by referring to the groups mentioned in the deliverable.

Before stating the list of groups of the AMT protocol, it would be useful and fair to

quote the text mentioned under the security considerations section according to the
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recent AMT draft [31]:

The anycast technique introduces a risk that a rogue router or a rogue

AS could introduce a bogus route to the AMT Relay Anycast prefix,

and thus divert the traffic. Network managers have to guarantee the

integrity of their routing to the AMT Relay Anycast prefix in much

the same way that they guarantee the integrity of all other routes.

Within the native MBGP infrastructure, there is a risk that a rogue router

or a rogue AS could inject a false route to the AMT Subnet Anycast

Prefix, and thus divert joins and cause RPF failures of multicast traffic.

As the AMT Subnet Anycast Prefix will be advertised by multiple en-

tities, guaranteeing the integrity of this shared MBGP prefix is much

more challenging than verifying the correctness of a regular unicast

advertisement. To mitigate this threat, routing operators should con-

figure the BGP sessions to filter out any more specific advertisements

for the AMT Subnet Anycast Prefix.

Gateways and relays will accept and decapsulate multicast traffic from

any source from which regular unicast traffic is accepted. If this is for

any reason felt to be a security risk, then additional source address

based packet filtering MUST be applied:

• To prevent a rogue sender (that can’t do traditional spoofing

because of e.g. access lists deployed by its ISP) from making use

of AMT to send packets to an SSM tree, a relay that receives

an encapsulated multicast packet MUST discard the multicast

packet if the IP source address in the outer header does not match

the source address that would be extracted using the rules of

Section 7.2.

• A gateway MUST discard encapsulated multicast packets if the
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source address in the outer header is not the address to which

the encapsulated join message was sent. An AMT Gateway that

receives an encapsulated IGMPv3/MLDv2 (S,G)-Join MUST dis-

card the message if the IP destination address in the outer header

does not match the source address that would be extracted using

the rules of Section 7.2.

Although there is a mention of a consideration that a rogue router could introduce

a bogus route to the AMT Relay Anycast prefix, there is still no guarantee for the

Gateway whether it is addressing an authentic Relay or not. In addition to this,

an intruder can still spoof the IP address of the Relay and impersonate it after the

Gateway learns about the IP address of the Relay it is going to start the three-way

handshake with. The list of suggested problems are mentioned below:

(G1) Entity authentication (Peer Entity Authentication): One party needs

to be certain, through presentation of evidence and/or credentials, of the identity of

a second party involved in a protocol run, and that the second party has actually

participated during execution of the current run of the protocol.

(G3) Replay Protection: One party needs to be certain that an authenticated

message was generated during this session, during a known recent time window, or

had never been accepted before.

(G12) Confidentiality (Secrecy): One party needs to be certain that a particular

data item is not made available to unauthorized individuals such as intruders.

4.2.1 Goals

Security goals are specified in HLPSL by augmenting the transitions of basic roles

with so-called goal facts and by then assigning them a meaning by describing, in the
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HLPSL goal section, what conditions, that is, what combination of such facts, indicate

an attack. A simple example of this is secrecy, where the goal facts assert which

values should be secret between whom, and the goal declaration in the goal section

describes that any time the intruder learns a secret value, and it is not explicitly a

secret between him and someone else, then it should be considered an attack. Now

although the recent AMT draft[31] does not explicitly mention any security goals in

terms of authentication or secrecy between Gateway and Relay, it is quite safe to

assume that we would like the AMT Gateway to identify that it is communicating

with a real AMT Relay, and vice versa, and that is after successfully conducting a

three-way handshake between both. According to our HLPSL validation results, and

given the details of the three-way handshake mentioned in the AMT draft [31], we

have correctly identified one authentication problem where an intruder can present

himself as a relay instead of the real one. Details of this attack will be explained

later in this chapter. The security goals chosen for the three-way handshake to be

validated against are:

• Mutual authentication between Relay and Gateway through the use

of the MAC In this security goal, we validate whether an intruder could be

able to impersonate a Relay or a Gateway in an AMT session. This maps

directly to our problem classification G1, Entity authentication.

• Secrecy of the MAC In this security goal, we validate whether an intruder

could introduce a threat to an existing valid session between an AMT Relay

and Gateway after learning the value of the MAC. In other words, we try to

look for a replay attack. This maps directly to our problem classifications G3

and G12, Replay Protection and Confidentiality.

• Secrecy of the Local Secrect In this security goal, we validate whether an

intruder could introduce a threat to an existing valid session between an AMT

Relay and Gateway after learning the value of the local secret parameter that
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is part of the hashed value of the MAC. This maps directly to our problem

classification G12, Confidentiality.

4.3 Scenarios

As already mentioned, we build our solution according to the following scenarios:

4.3.1 Scenario 1

In this scenario, we are going to compose one session only between Gateway and

Relay, and limit the intruder knowledge only to the identities of Gateway and Relay.

Figure 12 describes the typical protocol flow for this scenario. The following changes

are also made to the HLPSL input file:

session(g,r,h)

intruder_knowledge = {g,r}

The purpose of this scenario is to model an attack, if found, without explicitly

stating that the intruder is impersonating either a Gateway or a Relay, in which case

he can easily replay attacks among different sessions.

4.3.2 Scenario 2

Similar to Scenario 1, except that we increase the intruder’s knowledge with the

cryptographic hashing function. As we show in the results later in this chapter, the

additions in this scenario did not affect the results from the first scenario. Figure 12

also describes the typical protocol flow for this scenario. The following changes are

also made to the HLPSL input file:

session(g,r,h)

intruder_knowledge = {g,r,h}
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Figure 12: Scenario 1 - AMT Three-way Handshake

4.3.3 Scenario 3

In this scenario, we are going to compose four parallel sessions, two of which are

composed of Relay and Gateway, the other two include the intruder impersonating a

Gateway, and then a relay. Intruder knowledge will not be limited. Figure 13 shows

the typical flow of the protocol in this scenario. The following is also reflected in the

HLPSL input file:

session(g,r,h)

/\ session(g,r,h)

/\ session(g,i,h)

/\ session(i,r,h)

intruder_knowledge = {g,r,h}

4.4 Validation Results

For running AVISPA validation, we used a personal computer running Windows 7,

with 4 GB of RAM and an Intel DualCore 2.53 GHz processor. After completing the
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Figure 13: Scenario 3 - AMT Three-way Handshake

specification as described above in three scenarios, we divided the validation process

into two steps. The first step was to validate the specification using the OFMC

back-end tool of AVISPA, and the second step was to use the ATSE back-end. For

both steps we prepared the same input file; the specification listed earlier. OFMC

is the back-end tool of AVISPA that has the highest speed in detecting attacks.

This is the reason why we started the validation with it. AVISPA’s ATSE back-end

tool provides a translation for the protocol specification into a set of constraints. In

particular, each step of the protocol is modeled by using constraints on the adversary’s

knowledge. Then, these constraints are used to find attacks against the specified

security objectives. Details of validation results for each goal are explained in the

following subsections.
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4.4.1 Authentication on MAC

According to [31], the produced MAC is used only for routability purposes by the

respondent, and the originator does not need to know anything about it in terms

of content or hashing algorithm. As a result, if any party impersonates itself as an

authentic relay, the gateway has no way to figure out otherwise. All the scenarios

produced the same results, an attack was found where the intruder pretended to be a

relay and consequently fooled the Gateway. An attack trace from the third scenario is

shown below. Figure 15 shows a visual protocol flow of scenario 3 where the intruder

impersonates a relay. Note than since an intruder can easily impersonate a relay, he

will also be able to easily learn unsecured parameters passed with the gateway.

i -> (g,3): start

(g,3) -> i: g.Ng(1)

i -> (g,3): r.Ng(1)

(g,3) -> i: g.Ng(2)

i -> (g,3): r.Ng(2).x1003

(g,3) -> i: g.x1003.Ng(2)

Figure 14: Intruder impersonating a relay
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4.4.2 Secrecy of MAC

As explained earlier in section 2.2.5, the secrecy of the MAC (message authentication

code) that is created by the AMT Relay is modeled by means of the goal predicate

secret(T,id,A,B) standing for “the value of term T is a secret shared only between

A and B” [30]. This secrecy property is going to be violated only when the intruder

becomes aware of the value T that is considered as secret and that he is not allowed to

know. (According to [30], if in a certain session the intruder plays the role of a honest

agent that is allowed to know the secret value, then the intruder is allowed to know

it and no attack is reported for this value.) The label id (of type protocol id) is used

to identify the goal. In our specification, the secret property is modeled using secret

(MAC,secrecy of s mac,R,G). In all three scenarios, AVISPA found the protocol to

be unsafe with regard to this goal, implying that the intruder was able to learn the

value of the MAC. This gives rise to a scenario where an intruder may be able to

make use of the MAC by sending a Membership update Leave/Done message to the

Relay while spoofing the source IP of the Gateway. This can result in the Relay

disconnecting the unicast stream to the Gateway.

A run by AVISPA produced the following attack trace, showing how the intruder

was able to learn the value of the MAC in the first scenario. Figure 14 supports the

attack trace by showing a visual run of the protocol and how the intruder was able

to learn the value of the MAC.

ATTACK TRACE

i -> (r,3): g.x230

(r,3) -> i: r.x230

i -> (r,3): g.x239

(r,3) -> i: r.x239.h(x239.g.LS(2))

i -> (i,17): h(x239.g.LS(2))

i -> (i,17): h(x239.g.LS(2))
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Figure 15: Intruder learning value of MAC

4.4.3 Secrecy of Local Secret

According to [31], the local secret never has to be shared with the other side, it is

only used to verify return routability of the originator. In the light of this knowledge,

the Gateway does not care what the local secret or MAC produced by the Relay is,

since it simply echoes it back in the AMT membership update message. As explained

in the previous subsection, an intruder cannot figure out the contents of the MAC,

and thus will not be able to learn the value of the local secret. To further confirm

this, the validatation results from all three scenarios showed the protocol as safe with

respect to this goal for a bounded number of sessions.

4.5 AMT Demonstration

A demonstration of AMT’s functionality was carried out in the beginning to help

realize the specification in the real world. It is important to note that we did not

validate our security goals through this experiment, but rather recognize the steps

of the AMT process visually. Juniper Networks has developed a functioning AMT

gateway and relay, which are available as a trial service [27]. They were downloaded

and used to carry out the following experiment explained next. In this experiment, all

used Cisco routers were initially configured with the PIM-SM multicast protocol. For
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building routing tables, OSPF routing protocol was employed. The topology used in

this experiment is shown in figure 12. The VLC player was used to stream MPEG-4

video content on the streaming server, and also used on the end-user side to receive

it. AMT Relay functionality is installed and initially disabled on the Streamer, while

AMT Gateway functionality is installed and initially disabled on Sink2.

4.5.1 AMT Experiment

In the first scenario of this experiment, and while multicast functionality was enabled

on all routers and no AMT functionality was enabled, the outcome was successfully

streaming content from the streamer to the receivers (Sink1, Sink2). In the second

scenario, we disabled the multicast functionality on R3, and hence, Sink2 was no

longer able to receive multicast traffic. Keeping the multicast functionality disabled

on R3, in the third scenario we enable the AMT functionality on the Streamer (AMT

Relay), and the AMT functionality on Sink2 (AMT Gateway). After some duration

taken by the Gateway to discover and set up the tunnel with the Relay, Sink2 was

able to successfully receive multicast content from the Streamer.
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Figure 16: AMT Experiment 1
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Chapter 5

Conclusions and Future Work

In our thesis we presented how the AVISPA formal validation tool can be used to

validate the proposed security properties of the AMT protocol and locate problems.

From our knowledge, and as stated earlier in this thesis, there were no previous

attempts to validate the three-way handshake or any other part of the AMT protocol.

So we consider that our work is an important step forward in using formal validation

for everyone benefiting from the AMT protocol. The major advantage of our approach

is the use of AVISPA toolkit and its HLPSL specification language. The reason is

related to the models that this tool uses for the network and the intruder. The way

these models are implemented assures that a validation process is performed for all

the possible topologies that can exist, being given the number and the type of the

roles specified. We consider this a major improvement of the formal validation of

AMT.

One can observe that ATSE back-end is faster than OFMC. Nevertheless, both

of the two tools should be used together, because they apply different algorithms.

So if both report that the protocol is safe, the probability that the actual system

accomplishes the security objectives is higher. We restricted the validation to a

maximum of four sessions, there was no need to go higher when our goals were

validated successfully.
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The results we obtained for the three scenarios proved to be the same after run-

ning them under AVISPA. The results indicated that regardless of the differences we

introduced to the number of sessions or intruder’s knowledge, the attacks remained

the same.

5.1 Future Work

One scenario that needs to be addressed well in the draft is the one where an AMT

Gateway could be operating behind a Network Address Translation (NAT) server.

A gateway operating behind a NAT can lead it to appear to the Relay as having

different source ports with every connection. One possible outcome of this scenario

is as follows:

• After Gateway learns unicast address of Relay, it begins three-way handshake

and sends an AMT request message and uses a source port SP1;

• Relay replies with AMT Query message containing MAC, Gateway completes

the three-way handshake by replying with a Membership Update message con-

taining the MAC but uses a different source port SP2;

• When Relay attempts to verify the MAC based on the source IP and port of

Gateway, it will get an invalid comparison with original MAC and discard the

packet.

Examining the scenario explained above, we can conclude that the AMT Gateways

may need to use a designated local port, or range of ports, for initiating connections

with the Relay. The gateway must guarantee that it uses the same local port across

its communication with the Relay, otherwise it will be required to send a teardown

message each time the source port changes to reduce the earlier state created with

the Relay.
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With respect to the security goals discussed in subsections 4.4.1 and 4.4.2, we

suggest encrypting the MAC as a step towards fulfilling the goals. The secret key could

be available either dynamically through an intermediate step introduced between the

discovery of the Relay and the 3-way handshake process where the Relay and the

Gateway agree on the key, or having it communicated to them by a trusted third party

in an earlier stage. In all cases, we believe that encrypting the MAC is important in

terms of narrowing down opportunities for the intruder to grasp.
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copo Mantovani, Sebastian Mödersheim, David von Oheimb, Michaël Rusi-
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