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Abstract

Extending the Knowledge Discovery Metamodel to Support

Aspect-Oriented Programming

Parisa Mirshams Shahshahani

Software engineers often have to resort to various program analysis tools to analyze

the structure and sometimes behavior of a system before they can make changes

that preserve system reliability and other quality attributes. The Knowledge Discov-

ery Metamodel (KDM) is an OMG standard which specifies a language-independent

representation of the programs to be analyzed. The advantages of using KDM are

numerous including an increase in productivity and a cut in overall costs during main-

tenance, as it allows for a reuse of available KDM compatible tools and expertise.

Currently, KDM supports a number of procedural and object-oriented programming

languages. However, no support currently exists for aspect-oriented programming

languages. This thesis aims at filling this gap, by extending KDM to support As-

pectJ, perhaps the most popular aspect-oriented language. We show an application

of the extended model to an aspect-oriented application.
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Chapter 1

Introduction and Motivation

In order to gain comprehension of source code, program analysis is a collective term

used to refer to various methods and techniques, normally supported by automation

and tools, deployed to obtain knowledge of the structure or the behavior of source

code, thus distinguishing between static and dynamic program analysis. Currently,

a wide variety of tools exist which read the structure (source code) or the behavior

(execution traces) of programs, each one exhibiting its own strengths and weaknesses.

However, most tools tend to be language specific, and as a result maintainers some-

times cannot combine them to utilize automation and tool support and achieve their

maximum benefits.

The Knowledge Discovery Metamodel (KDM) [36] is a standard by the Ob-

ject Management Group (OMG) [41] to support Architecture-Driven Modernization

(ADM) [15]. This standard provides a specification at a level of abstraction higher
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than source code in order to specify a language independent representation of pro-

grams. The KDM currently supports a wide collection of programming languages

[36].

The KDM is an intermediate representation of software artifacts and its opera-

tional environment. The KDM specification can be used as a language and platform

independent representation for analyzing software systems. This allows the incre-

mental analysis of a software system, where each tool reads and analyzes the KDM

representation, extracts precise knowledge and if required adds more knowledge to

it. The ultimate benefit of KDM is to provide interoperability among different tools

for various maintenance and evolution tasks. It enhances the maintenance of a soft-

ware system due to the existence of a uniform representation of programs that can

be read by all KDM-compatible analysis tools. This way, we do not need to provide

a point-to-point transformation of program representations to allow the compatibil-

ity of analysis tools. As a consequence, we can use several individual analysis tools

where each one provides one specific type of analysis that maintainers would need at

a time. This allows the reuse of available technologies and expertise while reducing

costs associated with maintenance which is reported to consume a high proportion

of the overall costs during the software life cycle.

An alternative to KDM is to rely on abstract syntax trees (AST) to represent

the source code. Although both AST and KDM are middle representations an AST

model differs from one programming language to another, whereas the KDM forms a
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common representation for every programming language it supports, enabling sharing

and reusing of data among analysis tools.

Despite the success of object-orientation in the effort to achieve separation of con-

cerns, certain properties in object-oriented systems cannot be directly mapped in a

one-to-one fashion from the problem domain to the solution space, and thus cannot

be localized in single modular units [16]. Their implementation ends up cutting

across the decomposition of the system. Examples of these crosscutting concerns

(or aspects) include persistence, authentication, synchronization and contract check-

ing. Aspect-Oriented Programming (AOP) [24] explicitly addresses those concerns

by introducing the notion of an aspect, which is a modular unit of decomposition.

Currently there exist many approaches and technologies to support AOP. One no-

table technology is AspectJ [28], a general-purpose aspect-oriented language, which

has influenced the design dimensions of several other general-purpose aspect-oriented

languages, and has provided the community with a common vocabulary based on

its own linguistic constructs. In the AspectJ model, an aspect definition is a unit

of modularity providing behavior to be inserted over functional components. This

behavior is defined in method-like blocks called an advice. A pointcut expression

is a predicate over well-defined points in the execution of the program called join

points. Even though the specification and the level of granularity of the join point

model differ from one language to another, common join points in current language

specifications include calls to and execution of methods and constructors. When the
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program execution reaches a join point captured by a pointcut expression, the as-

sociated advice block is executed. Most aspect-oriented languages provide a level of

granularity which specifies exactly when an advice block should be executed, such as

executing before, after, or instead of the code defined at the associated join point.

Furthermore, several advice blocks may apply to the same pointcut. The order of

execution can be specified by rules of advice precedence specified by the underlying

language [29].

The KDM supports a number of procedural and object-oriented programming lan-

guages (like C++ and Java). However, no support currently exists (or has been pro-

posed) for the AspectJ programming language; currently the most popular general-

purpose aspect-oriented language with an increasing community of researchers and

practitioners in academia and industry. The objective of this thesis is to extend the

KDM metamodel in order to provide support for AspectJ.

1.1 Thesis Outline

The remainder of this thesis is organized as follows: In Chapter 2 we provide the

necessary background to Knowledge Discovery Metamodel (KDM), aspect-oriented

programming (AOP), model transformations, and at the end we discuss related work.

In Chapter 3 we discuss our overall approach. Later in this Chapter we describe

our methodology: how we integrate AspectJ constructs into the KDM metamodel by

4



introducing the AspectKDM metamodel. Additionally, we describe a model-to-model

transformation for mapping aspect models. In Chapter 4 we describe a case study

to demonstrate how the proposed metamodels can be applied in an AspectJ project.

We present our conclusions and recommendations in Chapter 5.
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Chapter 2

Background

2.1 Knowledge Discovery Metamodel (KDM)

The Knowledge Discovery Metamodel (KDM) is a standard defined by the Architecture-

Driven Modernization (ADM) Task Force in OMG. The KDM is defined via the

Meta-Object Facility (MOF) [40], a standard by OMG to write metamodels, and uses

XML Metadata Interchange (XMI) [35] model interchange format, an OMG standard

for exchanging metadata information via Extensible Markup Language (XML). The

KDM defines its KDM XMI schema, that each KDM instance should conform to. The

KDM is a metamodel for representing information about an existing software system,

its elements and its operational environment. The KDM specification [36] groups the

information about an existing system into different architectural view points called

domains. Each domain corresponds to one KDM model and one package, with the
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exception of Code model which is split between Code and Action packages. KDM

consists of four different layers of abstraction, each level is based on the previous one

[36].

The KDM layers and their packages are represented in Figure 1. Figure 2 il-

lustrates the layers and the dependencies between KDM packages in different KDM

layers.

1. Infrastructure Layer: It is the lowest abstraction level, which consists of a

small set of common metamodel elements (such as entity and relationship) used

through entire KDM levels. This layer consists of three packages: Core, KDM

and Source.

2. Program Elements Layer: It represents the code elements and their asso-

ciations. It consists of a broad set of metamodel elements common between

different programming languages to provide a language-independent represen-

tation. There are two packages in this layer: Code and Action. They both use

the Code model.

3. Runtime Resource Layer: It represents higher-level knowledge (such as op-

erational environment) about existing software systems. This kind of knowledge

cannot be extracted from the syntax at code level but rather from the runtime

incremental analysis of the system. There are four packages in this layer: Data,

Event, UI and Platform.

7



Figure 1: Knowledge Discovery Metamodel layers, packages, and separation of con-
cerns. (Adopted from the KDM specification [36])

4. Abstractions Layer: It defines a set of metamodel elements for representing

domain and business-specific overview of the system. Extracting this kind of

knowledge involves input from experts and analysts. Conceptual, Structure

and Build are the three packages in this layer.

2.2 Aspect-Oriented Programming (AOP)

In 1974, Edsger W. Dijkstra in his paper ”On the role of scientific thought” [14] dis-

cussed Separation of Concerns (SoC). It states that a complex system has different

kinds of concerns that should be identified and treated separately. Using the SoC
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Figure 2: Structure of KDM packages. (Adopted from the KDM specification [36])

can lead to better quality factors such as robustness, adabtability, maintainability,

and reusability [12]. Various programming paradims allow us to achive separation of

concerns at the code level. Despite the success of object-orientation in the effort to

achieve separation of concerns, certain properties in object-oriented systems cannot

be directly mapped in a one-to-one fashion from the problem domain to the solution

space, and thus cannot be localized in single modular units [16]. Their implementa-

tion ends up cutting across the decomposition of the system. Figure 3 represents an

initial picture of the crosscutting concerns. Persistence, authentication, synchroniza-

tion and contract checking are all examples of crosscutting concerns. Crosscutting

imposes two symptoms on software development which are represented in Figure 4:

1. Code scattering: Implementation of some concerns not well modularized but

9



Figure 3: Croscutting concerns can affect system components both horizontally as
well as vertically.

cuts across the decomposition hierarchy of the system.

2. Code tangling: A module may contain implementation elements (code) for

various concerns.

Aspect-oriented Programming (AOP) [24] provides a new unit of decomposition

(aspects), that explicitly captures the crosscutting concerns (see Figure 5). Cur-

rently there exist many approaches and technologies to support AOP. One notable

technology is AspectJ [28], a general-purpose aspect-oriented language, which has

influenced the design dimensions of several other general-purpose aspect-oriented lan-

guages, and has provided the community with a common vocabulary based on its own

10



Figure 4: Illustration of scattering and tangling as two symptoms of crosscutting.

Figure 5: Initial picture of separation of concerns. Ideally one would want to move
from the picture of Figure 3 to the one shown here, where a compelete separation of
concerns is achieved.
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linguistic constructs. In the AspectJ model, an aspect definition is a unit of modu-

larity providing behavior to be inserted over functional components. This behavior

is defined in method-like blocks called an advice. A pointcut expression is a predicate

over well-defined points in the execution of the program called join points. Even

though the specification and the level of granularity of the join point model differ

from one language to another, common join points in current language specifications

include calls to and execution of methods and constructors. When the program exe-

cution reaches a join point captured by a pointcut expression, the associated advice

block is executed. Most aspect-oriented languages provide a level of granularity which

specifies exactly when an advice block should be executed, such as executing before,

after, or instead of the code defined at the associated join point. Furthermore, sev-

eral advice blocks may apply to the same pointcut. The order of execution can be

specified by rules of advice precedence specified by the underlying language [29].

2.2.1 The Aspect Bench Compiler for AspectJ (abc)

The Aspect Bench Compiler for AspectJ (abc) is an extensible AspectJ Compiler

which is freely available under the GNU LGPL. The abc compiler is designed to

provide a workbench for aspect-oriented programming research and investigation that

facilitates adding new features to the AspectJ language. In addition, the abc compiler

has suggested a grammar for AspectJ [2] as an extension to Java grammar. The

compiler is based on Polyglot [34] as its frontend and Soot [51] as its backend. Figure

12



Figure 6: The abc compiler simple design. (Adopted from [1])

6 illustrates a simple design for the abc compiler.

Figure 7 illustrates the abc compiler architecture. Polyglot is an extensible com-

piler framework for Java. It uses Java as the base language and adds the extensions

as a collection of separate files to it. The Polyglot frontend parses AspectJ source

code into an abstract syntax tree (AST) and then runs a number of passes to perform

type checking and to separate AspectJ specific construct information. The output of

this phase is a pure Java AST and the AspectJ constructs called Aspect Info. The

Java AST is the AspectJ program with the AspectJ constructs completely removed,

but it has some placeholders for these constructs to be filled in the weaving phase by

the Soot backend.

Soot is a framework for analyzing and transforming Java bytecode. Soot uses an

intermediate representation called Jimple which is a typed, stack-less, three address

code. Deploying Soot enables the abc compiler to provide optimization of AspectJ
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code after weaving is completed. In the abc compiler, Polyglot is used as the frontend

and provides Soot with the AST of the program. Then Soot translates the AST into

Jimple intermediate representation (IR). After processing, the abc compiler uses the

Jimple IR and the Aspect Info construct and weave them to make bytecode. More

information on the abc compiler can be found in [5].

2.3 Model Transformations

Model Driven Engineering (MDE) refers to a range of development approaches that

are based on the use of software modeling as a primary form of expression. Model

transformations plays an important role in MDE, since models are the main devel-

opment artifacts which drive the process of MDE. A model transformation is an

automated process that maps a source model to a target model according to a set of

rules. Both source and target metamodels conform to specific metamodels. Figure 8

illustrates the four-layer metamodel architecture by OMG. In the four-layer meta-

model architecture, M3 represents the metametamodel layer which defines a small set

of concepts for defining and manipulating the models of metamodels. This allows new

metamodels and modeling languages to be defined. The Object management Group

(OMG) proposes Meta Object Facility (MOF) to be the standard metametamodel.

M2 is the metamodel layer, which defines the structure, semantics, and constraints for

a family of models. In other words, it specifies the concepts of the language used to

14



Figure 7: The abc compiler architecture. (Adopted from [5])15



Figure 8: The four-layer metamodel architecture.

define a model. An example of the metamodel is the UML metamodel. Metamodels

that are defined using the same metametamodel can exchange information. M1 is

the model layer and finally M0 is the object layer. The relation between the models

expressed in a language and the metamodel of that language is called conformsTo

(model conforms to a certain metamodel) [31].

The Model Transformation pattern as shown in Figure 9 is a common pattern

followed by model transformations in MDE: the Tab is the transformation program

which needs Ma as the source model and provides Mb as the target model. The Ma,

Mb and Tab are all models conforming to MMa, MMb, and MMt metamodels respectively.

The MMM is the corresponding metametamodel for all of the metamodels MMa, MMb and

MMt. In the context of OMG, MMM is the MOF.
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Figure 9: The model transformation pattern. (Adopted from [25])

2.3.1 The ATLAS Transformation Language (ATL)

The ATLAS Transformation Language (ATL) is a transformation language developed

as a part of the AMMA (ATLAS Model Management Architecture) platform [25].

ATLAS deploys the model transformation pattern illustrated in Figure 10. In this

pattern mma2mmb.atl is the transformation definition written in the ATL language

to automatically transform Ma model to Mb model. The transformation definition

mma2mmb.atl is a model which conforms to the ATL metamodel. The MMa, MMb and

ATL all conform to the MOF.

The ATL is inspired by Query/View/Transformation (QVT) by OMG [39]. In

17



Figure 10: Overview of the ATL transformational approach. (Adopted from [26])

fact, this is the reason why ATL is compatible with Model Driven Architecture

(MDA) standards like UML, OCL [37] and MOF. The ATL metamodel is compatible

with XML Metadata Interchange (XMI) [35] and therefore the source and the target

metamodels can be presented in XMI format. ATL is able to perform all QVT trans-

formation scenarios where the transformation definitions are based on MOF, and it

is applicable in the transformation scenarios beyond the QVT context [27].

The ATL is a hybrid transformation language which provides both declarative

and imperative language constructs. The declarative style is encouraged [25] because

it is closer to the way programmers think so it hides complex tasks such as selecting

the source and target elements, rule triggering, and defining traceability links behind

a simple syntax. On the other hand, some of the transformation problems can be

solved by imperative programming. Based on the problem at hand, a programmer

18



has the option to choose between declarative and imperative styles.

The ATL transformations are unidirectional. To initialize a bidirectional rule,

two individual transformations must be implemented, one transformation for each

direction.

An ATL transformation is defined by modules. The module is composed of the

following three elements:

1. header

2. helper

3. rule

The header section defines the name of the module (which should correspond to

a file name) and the source and target metamodels.

The term helper comes from the Object Constraint Language (OCL) specification

[37]. The ATL helpers can be considered as equivalent to the Java methods, since

they are used to avoid code redundancy and they can be called from any point in the

ATL transformation. In ATL the helpers can be specified only on OCL types and

source metamodel element.

The rules express the transformation logic in ATL. The ATL rules describe how an

output element is generated from an input element. The ATL rules can be declarative

or imperative. The ATL can have the following rules:

• Matched rule : declarative.

19



• Called rule : imperative.

The matched rule is the core of an ATL declarative transformation. They are the

answers to the two following questions:

• For which kinds of source elements, target elements must be generated.

• How the generated target elements have to be initialized.

Note that a source element should not be matched in more than one transformation

rule.

We have chosen ATL as the transformation language in this thesis for the following

reasons:

• It is a standardized language that enjoys wide acceptance.

• There are some tools that support this language, currently the ATL Integrated

Development Environment (IDE) is built on top of the Eclipse platform. It

provides syntax highlighting, error reporting and debugging features as well.

• It can provide complete model transformations while its expressions are based

on OCL and are not complex.
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2.4 Related Work

2.4.1 Knowledge Discovery Metamodel

Dehlen et al. [13] propose an extension for KDM to model the interoperability be-

tween legacy systems. With the help of Interoperability Knowledge Discovery Meta-

model (IKDM), they show how the Model-Driven Engineering (MDE) approach can

be used to provide solution in interoperability context, and how to provide modeling

for different interoperability patterns.

Gerber et al. [21] discuss the aspects of the legacy system that should be modeled

to interest both the modeling community and the people involved in modernization

of the legacy systems. They discuss the system attributes and key aspect that should

include in Knowledge Discovery Metamodel for Architecture-Driven Modernization

(ADM). They conclude that by using Model-Driven Architecture (MDA) approach it

is possible to evolve legacy systems (with the use of QVT to abstract KDM models

to platform-specific models (PSM) and platform-independent models (PIM)).

Moyer [33] discusses the legacy systems and introduces KDM as a software mod-

ernization solution. He then describes what KDM is and discusses the different layers

of KDM and whether they can be made automatically or not. For example, existing

tools can build the moel for Infrastructure and Program Element layers by scanning

the code, but not for the Resource and Abstractions layers. Ulrich [50] also discusses

the importance of modernization for legacy system and the need for a standards for
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the modernization process. He then introduces KDM as a modernization standard,

a part of OMG’s ADM task force, that can be used as a common metamodel to ex-

change information independent to language and platform across tools for analyzing

and refactoring the existing systems and transforming them into new ones.

The Model-Driven Engineering (MDE) goals, solutions, and application scope are

discussed by Bezivin et al. [9]. The authors suggest that the KDM standard should

be used when we need to extract more specific information from a system along with

the UML diagrams.

Castillo et al. propose a modernization approach for recovering business processes

from legacy systems (MARBLE) [43, 42]. MARBLE has four layers of abstraction.

They have used KDM metamodel as their platform independent model (PIM) in L2

level, therefore the analytic tools can use this model and generate new knowledge

and add it to this model. Finally they deploy QVT to transform the KDM models

into the business process models. In [44], Castillo et al. claim that using MDD and

specially KDM is one of the main highlights of their work and make it stand out from

the other works done to recover the business processes.

2.4.2 Modeling Crosscutting Concerns

Reina et al. [45] provide an overview of some works for modeling aspects in UML. In

this survey they discuss the contributions of each work, the level of abstraction and

the language the metamodel is proposed for.
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Before UML 2.0, the extension mechanism in UML was not integrated with meta-

models, many of the extensions were partially text based, and the base metamodel

and the extension were not fully separated. For example in [8] they deploy text based

format for pointcuts. In [19] and [48] the extension is not fully separated from the

base metamodel.

To extend UML 2.0 there are two options: heavyweight and lightweight extension

mechanism. Heavyweight extension is introducing new meta-classes for UML. This

requires new tool support for the proposed metamodel, thus it cost a lot. [22] is

an example of heavyweight extension to UML. Building a UML profile [23] is the

lightweight extension mechanism which defines stereotypes and tagged values for a

subset of the current UML metamodel elements. This way modeling with the new

profile can be done through well-known UML tools and developers are familiar with

the notation and the concepts which reduces the costs. [14] and [7] are examples of

proposing a UML profile.

In this work, we deploy the CoreAOP profile proposed by Sharafi et al. [46] as

a base metamodel for AspectJ representation. The most important characteristic of

the proposed UML profile is the language independence property, which can be used

to provide metamodels for other aspect-oriented languages. Moreover, our proposed

domain model for AspectJ is partially similar to Everman’s [17] proposed AspectJ

profile for UML. Our approach has been different, since in KDM the language con-

structs are more general to able other like languages modeled with the use of same
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constructs. Therefore, our proposed metamodel for KDM can be extended easily in

order to support any additional feature. Everman models join points by defining

different kinds of pointcuts. In contrast, we model join point constructs separately

from pointcuts.
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Chapter 3

Methodology

In this chapter we first discuss our overall approach. Then we discuss our AspectInfo

metamodel. Later in this Chapter we disscuss how we integrate AspectJ constructs

into the KDM metamodel by introducing the AspectKDM metamodel. Additionally,

we describe a model-to-model transformation for mapping aspect models.

3.1 Overall Approach

There is currently no Aspect Oriented support in KDM. Our objective is to fill this

gap. In this Section, we discuss our research proposal.

Figure 11 represents the big picture for creating KDM representation from an

AspectJ project. Figure 12 is the activity diagram for the steps we have to follow

to create KDM representation. An AspectJ project contains Java and AspectJ files.
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Figure 11: Creating the KDM representation from an AspectJ project (the big pic-
ture).

Figure 12: Creating the KDM representation from an AspectJ project.
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We use MoDisco [6], [32] to discover the KDM representation for the class representa-

tion. MoDisco is an extensible open source project [10] for reverse engineering legacy

systems. MoDisco is a MDE framework so it gives different kind of models (such as

KDM representation) as the result of reverse engineering. To create a KDM model for

AspectJ files we include the following steps:

1. We deploy the abc compiler to extract the information on crosscutting con-

cerns. The abc compiler is provided as a Java stand-alone project and can be

downloaded from the abc group website [2].

2. Converting the information we extract from AspectJ files into a model which

conforms to the AspectInfo metamodel. Producing the AspectInfo meta-

model is done using Eclipse Modeling Framework (EMF) [11]. In the previous

section, we mentioned how a metamodel represented in EMF can be instanti-

ated to create an instance model.

3. We apply ATL transformation on the AspectInfo model to generate AspectKDM

representation. Using EMF, we provide the AspectKDM metamodel. Addition-

ally we use ATL Eclipse plug-in for writing and execution ATL transformations.

The proposed procedure (see Figure 12) can be performed automatically using

two Eclipse plug-ins (ATL and EMF) together with the abc compiler java project.

Along with the MoDisco tool we can provide a complete KDM representation for an

AspectJ project automatically.
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Figure 13: The proposed AspectInfo metamodel.

3.2 Proposing an AspectInfo Model

The AspectBench Compiler (abc) separates the aspect-specific information from the

standard Java code in a given project, it generates in the frontend an AST from the

plain Java code and an information construct from the AspectJ information. This

aspect information construct is called AspectInfo, which we used as the base of the

information we need from an AspectJ project. We propose a simple metamodel called

AspectInfo metamodel for the information we get from the abc compiler. Figure 13

displays the AspectInfo metamodel.
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3.2.1 The proposed AspectInfo metamodel in XMI Format

As we discuss in Section 3.3, we need to represent the proposed metamodel in a model

interchange format in order to use it. We also discuss how we deploy the Eclipse

Modeling Framework (EMF) to represent the metamodels as the Ecore files in the

XML Metadata Interchange(XMI) [35] format. The XMI is an standard proposed

by OMG for manipulating metadata information using Extensible Markup Language

(XML).

To represent AspectInfo metamodel as an Ecore model, we use the Ecore Diagram

Eclipse plug-in. With the help of this plug-in, we display the metamodel as a class

diagram while the Ecore and Genmodel files are automatically generated from this

class diagram.

Figure 14 represents the Ecore model for the AspectInfo metamodel.

3.3 Modeling Crosscutting Concerns for KDM

3.3.1 Extending KDM

In this section, we present and discuss our proposed AspectJ KDM profile that can

support the development and maintenance of applications written in AspectJ.

There are two ways to extend the KDM metamodel:

1. Framework extension metamodel pattern.
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Figure 14: The AspectInfo metamodel in XMI format (Ecore).
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Figure 15: The KDM Framework class diagram. (Adopted from [36])

2. Lightweight extension mechanism.

We discuss these extension mechanisms in the following sections.

Framework Extension Metamodel Pattern

All KDM packages deploy this pattern to extend the KDMFramework. The KDM

Framework class diagram is shown in Figure 15. The KDMFramework and the KDMModel

are abstract classes. The KDMModel is the key unit of KDM instances. Each concrete
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Figure 16: Foo model as an extension to KDM model. Shaded elements correspond
to our proposed extensions.

KDM model instance deploy the framework extension metamodel pattern. By de-

ploying this pattern, one can add a new KDM model in a new package to the KDM

metamodel [36]. The framework extension mechanism has a naming convention; this

means that the model inheriting from KDM model, KDM relationship and KDM el-

ement must change the word KDM with the name of the model they want to add to

KDM metamodel. The following example (Foo example) from the KDM specification

[36] specifies the framework extension pattern step by step and it also represents how

naming convention works. Figure 16 illustrates the Foo model as an extension to

KDM model and Figure 17 shows the Foo inheritance class diagram.

• We define a new package named Foo which contains the metamodel elements

of Foo.
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Figure 17: The Foo inheritance class diagram. Shaded elements correspond to our
proposed extensions.

• In the Foo package, we define the FooModel as a subclass of KDMModel.

• In the Foo package, we define the AbstractFooElement as a subclass of KDMEntity

class to be the abstract parent for all entities of the Foo model.

• In the Foo package, we define the AbstractFooRelationship as a subclass of

KDMRelationship class to be the abstract parent for all relationship of the Foo

model.

• FooModel owns AbstractFooElement. AbstractFooElement owns zero or more

AbstractFooRelationship. These associations are subsets of the associations

between their parent classes: KDMModel, KDMEntity, KDMEntity and KDMRelationship.

Lightweight Extensions Mechanism

This mechanism is defined in the KDM Extensions class diagram. The lightweight

extension mechanism allows the introduction of stereotypes. The stereotype provides
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Figure 18: The KDM Extensions class diagram. (Adopted from [36])

additional semantics to the base metamodel element but it does not change the

semantics of the base metamodel. Figure 18 shows the KDM Extension class diagram.

The following sequence of steps describes how to use the lightweight extension

mechanism:

1. Define a set of stereotypes.

2. Define tag definitions which are the attributes of stereotypes.

3. Use the extended elements the same way as the base metamodel elements.

The Knowledge Discovery Metamodel supports the lightweight extension mech-

anism using Generic Element metamodel pattern. Generic metamodel elements are

those which, through subclassification, can be used as extension points. In addition
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to all the generic elements, each KDM model defines two generic elements that can be

used as extension points: the generic entity and the generic relationship. Extension

points with the most specific semantics (closer to the bottom of the class hierarchy)

should be used as stereotypes.

The KDM program element layer contains a set of metamodel elements to repre-

sent the common constructs in programming languages (such as Java). As AspectJ

is an extension to Java, its set of linguistic constructs is a superset of that of Java.

Therefore, we use the lightweight extension mechanism to introduce stereotypes and

extend the KDM metamodel with AspectJ elements.

3.3.2 The KDM AspectJ metamodel specification

The following steps describe how to deploy the KDM lightweight extension mechanism

to support AspectJ concepts:

1. Adopt a domain model for AspectJ.

2. Mapping domain model elements to the KDM elements.

Adopting a Domain Model for AspectJ

The domain model contains a set of language constructs that capture the concepts

of our domain. For aspect modeling, these concepts are aspect, advice, pointcut and

join point. In this paper, we deploy the CoreAOP profile proposed by Sharafi et al. [46]
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Figure 19: The Core AOP domain model. (Adopted from [46])

as a base metamodel for AspectJ representation (see Figure 19 for CoreAOP domain

model). The most important characteristic of the proposed Unified Modeling Lan-

guage (UML) profile [38] is the language independence property, which can be used to

provide metamodels for other aspect-oriented languages. The detailed description of

this profile can be found in [46]. Moreover, our proposed domain model for AspectJ

is partially similar to Everman’s [17]. Everman modeled join points by defining dif-

ferent kind of pointcuts. In contrast, we model join point construct separately from

pointcuts.

In the following section, we describe how we map constructs presented in this

domain model to KDM elements and extend KDM elements if necessary [36].
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Figure 20: The Code Model class diagram. (Adopted from [36])

Mapping Domain Model Elements to KDM Elements

In this section, we discuss the mapping between AspectJ concepts and the KDM

metamodel. Figure 20 shows the CodeModel class diagram from the KDM specifi-

cation, which will be used during the mapping. Table 1 contains CodeModel class

diagram elements and their specifications. We use elements from the CodeModel class

diagram and extend them to add AspectJ constructs. The elements of the AspectJ

KDM profile are presented in what follows while the descriptions of the stereotypes are

listed in Table 2.

Aspect: An aspect is a unit of modularity that encapsulates static and dy-

namic features of a concern similar to the class definition. An aspect contains point-

cuts (static feature) and advice blocks (dynamic feature). Additionally an aspect
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Figure 21: The AspectUnit in KDM metamodel. Shaded elements correspond to our
proposed extensions.

definition can be inherited and much like a class, an abstract aspect can be de-

ployed to enforce inheritance. These characteristics are close to the KDM meta-

model ClassUnit so the meta-class AspectUnit extends the meta-class ClassUnit.

Since the AspectUnit is a subclass of ClassUnit, it can have instances of the

ComputationalObject like MethodUnit and MemberUnit. We believe that this way

we can have the introduction in AspectJ as well. Figure 21 illustrates the AspectUnit

in KDM metamodel.

Advice: An advice block encapsulates behavior. It indicates what happens when-

ever the program reaches specific points during its execution. There are three kinds

of advice: before, after and around which can run before, after or in place of the
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join point it operates over. We model advice as the AdviceUnit Class that is a

ControlElement which represents the behavioral features of the ClassUnit, such as

MethodUnit and CallableUnit. An advice is not semantically a method and it is

not invoked explicitly. According to the KDM specification [36], the MethodUnit

”represents member functions owned by a ClassUnit.” Also the MethodUnit con-

tains the MethodKind (constructor, destructor, virtual ...) as an attribute, which is

not applicable to the advice. An advice is not a CallableUnit since CallableUnit

has an enumeration called CallableKind (regular, external, and operator) as an

attribute which is not applicable to the advice. Since the ControlElements are

owned by the ClassUnit, the AdviceUnit does not need to be associated with the

AspectUnit. The ControlElement is a superclass of this element. Figure 22 illus-

trates the AdviceUnit in KDM metamodel.

Pointcut: A pointcut is a predicate of join points. A pointcut can be given a

name and it can be reused. Figure 23 illustrates the PointcutUnit and Joinpoint

in KDM metamodel. We model pointcut as a PointcutUnit and we suggest that

PointcutUnit extends the MemberUnit class because the MemberUnit class can be

owned only by ClassUnit. By extending MemberUnit class the PointcutUnit class

can be owned only by ClassUnit and AspectUnit as the result. Also the PointcutUnit

has the same ExportType (visibility of the member such as public, private and pro-

tected) that the MemberUnit has. Since there is no association between subclasses

of ComputationalObject, we have to add one between the AdviceUnit and the
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Figure 22: The AdviceUnit in KDM metamodel. Shaded elements correspond to our
proposed extensions.

PointcutUnit. An advice must have a pointcut expression, and a pointcut may

belong to more than one advice (this way pointcut definition makes reuse possible.)

Only ClassUnits that are stereotyped as AspectUnits can have MemberUnits stereo-

typed as PointcutUnits and ControlElements stereotyped as AdviceUnit.

Composite Pointcut: We use the composite pattern [20] to illustrate the

relation between join point and pointcut. Figure 24 illustrates the composite pattern

structure. A pointcut can be composed by possibly many join points. This way we

may have any number of join points we want in a specific pointcut. The PointcutUnit

conforms to the Component, the JoinPoint to the Leaf, the CompositePointcut

to the Composite and the AdviceUnit to the Client in the composite pattern.
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Figure 23: The PointcutUnit in KDM metamodel. Shaded elements correspond our
proposed to extensions.
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Figure 24: The composite pattern structure. (Adopted from [20])

CompositePointcut has an attribute CompositeType. The PointcutUnit is the

superclass of this element.

Join point: A join point is a well-defined point in the execution of a program.

The set of join points supported by AOP programming languages is referred to as

the join point model. In AspectJ, method calls and method executions are common

examples of join points. Supported join points can extend the JoinPoint Class.

Figure 25 shows the KDM metamodel which includes the aspect-oriented constructs.

3.3.3 The proposed metamodel using a Model Interchange

Format

To use the proposed metamodel we need a format to represent it. Sharing the meta-

models between different tools and users requires a widely used, standard model
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Figure 25: Adding aspect-oriented constructs to the KDM metamodel. Shaded ele-
ments correspond to our proposed extensions.
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interchange format. St-Denis et al. [47] provide a list of model interchange for-

mats (such as XMI [35], RDF [30] and RSF [52]) along with their advantages and

disadvantages.

We adopt the XML Metadata Interchange (XMI) format in this project. The

XMI format can be used to express any metamodel which is based on MOF. This

format is based on XML. The XMI model interchange format fulfills most of the

requirements for a good model interchange format such as transparency, simplicity

and scalability [47]. The choice of using MOF and XML standards make XMI a

flexible and evolvable solution. The XMI format also enjoys a wide industry support.

The Eclipse Modeling Framework (EMF) is a Java framework and code generation

facility for standard models, representing the metamodels as Ecore files in XMI

format. After specifying the AspectInfo and AspectKDM metamodels in EMF, we

can define transformations and generate Java code for them.

There is a number of ways for specifying a metamodel in XMI format for EMF:

• Using an XML editor to write the metamodel in XMI format.

• Using Java annotation with model properties.

• Importing the XMI format made by a modeling tool such as IBM Rational

Rose.

• Using XML schema (XSD) [18] to describe the metamodel.
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The XML schema file for KDM metamodel is available at OMG KDM website [36].

The basic mapping from the XML schema constructs to the Ecore constructs are:

• A schema maps to an EPackage type.

• A complex type maps to an EClass type.

• A simple type maps to an EData type.

• An attribute maps to an EAttribute or an EReference depending on its

type.

To generate the KDM Ecore from the KDM XML schema in Eclipse, we first

should create a new EMF project and choose the XML schema as the model importer.

An Ecore model (KDM.ecore) and a generator model (KDM.genmodel) is created

after specifying the location of KDM XML schema file. To monitor the exact mapping

from the XML schema to the Ecore, the KDM.xsd2ecore is created by selecting the

”Create XML Schema to Ecore Map” in the process. The KDM Analytics and the

MoDisco have generated the KDM Ecore model which can be found in their websites

[3, 32].

To make the Aspect KDM metamodel from the KDM metamodel, we have to add

the Aspectual elements to the KDM Ecore. The KDM metamodel elements that

we use as base classes are all parts of the Program Element Layer in the KDM and

belong to the Code package in the KDM Ecore. By choosing the Code package, we

can find the ”add new child” options which can be:
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• EAnotation

• EClass

• EData Type

• EEnum

• EPackage

As illustrated in Figure 25, the new metamodel elements are all EClasses or

EEnums:

• EClass: AspectUnit, AdviceUnit, PointcutUnit, CompositePointcut, Joinpoint,

CallJoinpoint, ExecutionJoinpoint.

• EEnum: AdviceType, CompositePointcutType.

For each EClass, we can specify the ESuperType attribute. This attribute deter-

mines whether the class is abstract or it is an interface in the property view or not.

For example, the AspectUnit is neither an abstract class nor an interface so we set

these attributes to false, and the ClassUnit is its ESuperType.

To add the relationships and attributes between the Ecore elements, we choose a

specific class and then ”add a child” options. The following options are available:

• EAnnotation

• EOperation
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• EAttribute

• EReference

After adding an EReference, we can specify its name, multiplicity, whether it

represents a composite relationship or not, and the EClass at the other end of the

relationship. The attribute type can be specified for an EAttribute. For exam-

ple, we add hasPointcut to the CompositePointcut, which is a composite rela-

tionship and PoincutUnit is the EClass at the other end of the relationship. The

CompositePointcut has an attribute called compositeType which is of the type

CompositePoincutType EEnum.

Figure 26 illustrates the Ecore model for the AspectKDM metamodel.
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Figure 26: The Aspect KDM metamodel in XMI format (Ecore).48



Figure 27: ATL transformation module.

3.4 Model transformations

In this Section, we describe the transformations used to map the AspectInfo model

to the KDMAspect model. The name after keyword module is the transformation

name and it should correspond to the file name of the transformation. The module

name here is fileAspect2kdmAspect. The target and source models are introduced

by create and from keywords. The declaration of the target and source models

must conform to the form model name : metamodel name. For example in our case

(see Figure 27) the target model name is OUT and the target metamodel name is

KDMAspect, and the source model name is IN and the source metamodel name is

FileAspect.

A matched rule is introduced by the keyword rule. Each matched rule has two

mandatory parts called source and target patterns which come after the keywords

from and to. The source pattern specifies which elements from the source model are

matched and the target pattern specifies which element(s) should be generated after

a source element is matched.

The PAspect2AspectUnit rule (see Figure 28) is the most important rule of

the transformation, since aspect is the most important element that owns other
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Figure 28: Aspect transformation rule.

Figure 29: Advice transformation rule.

information about crosscutting concerns like the pointcuts and advice. This rule

aims to generate AspectUnit of the KDMAspect metamodel from the PAspect of the

FileAspect. The name of the AspectUnit is the same as the name of the PAspect.

After that, the corresponding list of elements in KDMAspect should be generated

from the lists of pointcuts, advice, and method and field declarations. In the tar-

get metamodel, the KDMAspect, since elements like PointcutUnit and AdviceUnit

are subclasses of the CodeItem metaclass then their relationship with AspectUnit

is through codeElement, the relationship of the metaclasses CodeItem and Class.

In PAspect2AspectUnit, it is enough to specify the name of the relationship that

the AspectUnit metamodel has with PointcutUnit and AdviceUnit, and etc. ATL

itself matches and calls the appropriate rules for matching the specified lists.
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Figure 30: Method declaration transformation rule.

Figure 31: Field declaration transformation rule.

The PAdvice2AdviceUnit (see Figure 29) transforms PAdvice into AdviceUnit

by mapping the name and the advice type.

The method and the field declarations are examples of Introduction in AspectJ.

We have decided to model the introduced method and field by an aspect, like a

regular one in the KDM metamodel, only with the difference that their owner is

an aspect. In the MethodDeclaration2MethodUnit (see Figure 30) the declared

method in the FileAspect is mapped into the MethodUnit in the KDMAspect. In the

FieldDeclaration2MemberUnit (see Figure 31) the declared field in FileAspect is

mapped into the MemberUnit in KDMAspect. The method and field are declared as

the members of a class, this class is declared at the last line of each transformation.

In the PPointcut2CompositePointcut (see Figure 32) each pointcut is mapped

into a CompositePointcut.
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Figure 32: Pointcut transformation rule.

Figure 33: Call join point transformation rule.

Figure 34: Execution join point transformation rule.
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Figure 35: Class transformation rule.

In the source metamodel, each join point has a type which indicates the type of

join point; for example the call, the execution and etc. On the other hand, in the

target metamodel JoinpointUnit is a class which has different type of join points

as its subclasses (for example CallJoinpoint, ExecutionJoinpoint, etc). To map

one class in the source metamodel to its multiple corresponding classes in the target

metamodel, we use the guard in the source pattern part of the transformation. In the

PJoinpoint2CallJoinpoint (see Figure 33) and PJoinpoint2ExecutionJoinpoint

(see Figure 34) the guard in the source pattern specifies the join point type in the

source metamodel. If it is of type call then it will be mapped to a CallJoinpoint

and if it is of type execution, it will be transformed into the ExecutionJoinpoint.

The last rule is the PClass2ClassUnit which maps the class in the source meta-

model into the ClassUnit in the target metamodel.

3.5 Summary

The objective of this Chapter was to create KDM representation from an AspectJ

project. In this chapter we have proposed:
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1. AspectKDM metamodel.

2. AspectInfo metamodel.

3. A set of model-to-model transformation from AspectInfo to AspectKDM.

The AspectKDM metamodel is a KDM metamodel for AspectJ family of AOP

languages. The AspectInfo metamodel represents the information we need from the

AspectJ project. If we change the compiler the output of the compiler should be an

instance of this metamodel. For using the AspectKDM and AspectInfo metamod-

els we need to capture them in a specific, formal and persistent format. We have

deployed XMI format for this purpose. Finally, we define a set of model-to-model

transformations from AspectInfo to AspectKDM.
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Table 1: The definition of the elements of the CodeModel class diagrams.
Class name Specification

CodeModel It is a specific KDM model and the only model of the Program
Elements Layer. It owns some information about the software
system such as code.

AbstractCode
Element

It is an abstract class representing any generic elements a
programming language contains.

AbstractCode
Relationship

It is an abstract class representing any relationship a pro-
gramming language contains.

CodeItem It represents the named elements of a programming language.

Computational
Object

It represents a computational object at runtime (such as pro-
cedures and variables).

Datatype It represents datatypes of a programming language.

It represents the user-defined classes in object-oriented
languages.

ClassUnit Attributes:

• isAbstract:Boolean - The indicator of an abstract class.

Associations:

• codeElement:CodeItem [0..*] - The list of class mem-
bers.

ControlElement It is a common superclass for callable code elements such as
methods and functions.

DataElement It is a common superclass for storable data items such as
global and local variables.

It represents a member of a class type.

MemberUnit Attributes:

• export: ExportKind - Represents the visibility of the
member such as public, private and protected.

Constraint:

• MemberUnit can be owned only by a ClassUnit.
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Table 2: KDM AspectJ metamodel stereotype specification.
Class name Base

metaclass
Specification

Attributes:

• isPrivileged:Boolean

AspectUnit ClassUnit Associations:

• precedes:AspectUnit[0..1] Indicates whether
an aspect has an immediate precedence over
another aspect.

• precededBy:AspectUnit[0..1]
Indicates whether another aspect has an im-
mediate precedence over this aspect.

Attributes:

• isPrivileged:Boolean

Associations:

• has: PointcutUnit [1] - Association to the
pointcut.

AdviceUnit Control
Element

Constraint:

• The name of AdviceUnit should be the same
as the name of the PointcutUnit it is at-
tached to.

• The AdviceUnit can only be owned by the
ClassUnits stereotyped as AspectUnit.

Attributes:

• isAbstract:Boolean

PointcutUnit MemberUnit Associations:

• belongTo: AdviceUnit [0..*] A pointcut may
belong to zero or more advice.

Constraint:

• A pointcut must have a name.

Composite
Pointcut

PointcutUnit

JoinPoint PointcutUnit
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Chapter 4

Case Study

Prior to discussing a case study, we disscuss how to set up an AspectJ project to

discover its KDM representation.

4.1 The XMI Representation of an AspectJ project

The activity diagram in Figure 36 describes how the proposed metamodel for AspectKDM

and AspectInfo can be used to model an AspectJ project using XMI format. We

describe in Chapter 3.2 and Chapter 3.3 how to generate the Ecore files from the

AspectKDM and AspectInfo metamodel. A genmodel file is created automatically

from the Ecore file and it can be used to provide the three Eclipse plug-ins: the

Model code, the Edit, and the Editor. By generating the Model Code plug-in, the

interfaces for classes are created. It also creates two packages called impl and util
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Figure 36: Using the proposed metamodels to model an AspectJ project in XMI
format in EMF.
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which include the implementation for the interfaces and some utility classes. The

Edit plug-in provides a flexible layer between the Model code and the EMF Editor.

It provides a structured view by using adaptors and it also provides support for

command-based editing of a model. The Editor plug-in provides additional model-

specific UI for the editor and wizards. Together the Edit and Editor plug-ins can

provide a fully functional Eclipse editor for any model.

By running the generated plug-ins together, the proposed metamodels are added

to the models that are provided by EMF. By opening a new EMF project, it is

possible to create a new instance model of AspectKDM and AspectInfo metamodels

by using the model wizard in Eclipse. The newly created instance model is opened

in the main view in Eclipse and it is possible to add the model elements from the

AspectKDM or AspectInfo to it.

4.2 Case Study: Telecom

To demonstrate the applicability of our proposal, we choose a telecommunications

simulation as a case study, Telecom, is provided as part of the Eclipse AspectJ

Development Tools package [49]. The program simulates local and long distance

connections between two customers in a telecommunications system. Telecom is an

AspectJ Benchmark in the literature with three interesting aspects; it also deploys all

the elements defined in the metamodel. Figure 37 illustrates the UML class diagram
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for this system. This system contains the following classes:

• Customer: The customer is the caller or receiver of a call. It is known by its

name and the area code. The customer manages the call with the protocols

such as call, pickup, and hang up.

• Connection: The connection is the circuit between two customers which can

be local or long distance.

• Call: The process in which a customer tries to connect to another customer is

a call. A call is held between two customers by creating a connection between

them.

• Timer: The timer simulates a simple timer for calculating the time of each

connection.

• Abstract Simulation: It is responsible for executing the system, connecting

customers, and providing a complete report of all customers’ activities. The

Abstract Simulation has three subclasses:

1. Basic Simulation: It simulates the execution of a program by imple-

menting the AbstractSimulation.run(..) method.

2. Billing Simulation: It provides the bill which contains connection time

for each customer by implementing the AbstractSimulation.report(..)

method.

60



Figure 37: The telecom system class diagram. (Adopted from [46])

3. Timing Simulation: It prints a report of the connection time by imple-

menting the AbstractSimulation.report(..) method.

This system contains three aspects to provide billing service for customers and

logging the activities:

1. The Timing aspect calculates the time of each call for each customer.

2. The TimerLog aspect logs the Timer class activities.
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3. The Billing aspect provides a complete bill for each customer including the

expenses based on type of connection and time of the calls.

We work through the case study as follows: we deploy the abc compiler to extract

AspectJ elements from the three .aj files. Then, using EMF, we instantiate the

AspectInfo metamodel to provide models of these three aspects.

Figures 38, 39, 40 illustrate respectively the Timing, Billing, and TimerLog

aspects as AspectInfo models.
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Figure 38: The Timing aspect modeled as an AspectInfo model.
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Figure 39: The Billing aspect modeled as an AspectInfo model.
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Figure 40: The TimerLog aspect modeled as an AspectInfo model.

65



Figure 41: The Timing aspect modeled as an AspectKDM model.

Finally we apply ATL transformation to map AspectInfo model to AspectKDM

model. Figures 41, 42, 43 represent the AspectKDM model for Timing, Billing, and

TimerLog aspects respectively.

The Telecom example is an AspectJ Benchmark in the literature. It has deployed

every elements defined in the metamodel. The KDM representation of this case study

has the elements from the AspectKDM metamodel with the correct use of syntax and

semantics. It can be used by the KDM-compatible tools for different purposes such

as analysis and maintenance.
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Figure 42: The Billing aspect modeled as an AspectKDM model.

Figure 43: The TimerLog aspect modeled as an AspectKDM model.
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Chapter 5

Conclusion

The Knowledge Discovery Metamodel (KDM) provides a common representation of

programs written in a number of programming languages. This representation can

utilize the deployment of maintenance tools. In the literature, research work has

defined a support for crosscutting concerns in UML either through heavyweight ex-

tensions (extending the UML profile) or lightweight extensions (defining a profile for

crosscutting concerns). No support has been proposed in the literature for crosscut-

ting concerns in KDM.

In this thesis we proposed an extension (a metamodel) to the KDM to support

the integration of the AspectJ programming language into the model specification.

Moreover, we proposed a AspectInfo metamodel for the information we need from

the AspectJ code and set of ATL model transformations to map AspectJ constructs

to KDM elements.
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It is important to note that the two releases of AspectJ (abc and AJDT) are

not fully compatible (see for example the study in [4]). Because of this, a possible

limitation of our work is that it is confined to the language grammar of abc.

We have provided automation and tool support through a collection of Eclipse

plug-ins and Java projects, and we demonstrated the applicability of our approach

through a case study.

As is, our proposal supports those AspectJ constructs that correspond to concepts

that are necessary and sufficient to describe a system as aspect-oriented, namely

join points, pointcuts and advice, all three of which are provided by most aspect

systems. The choice of AspectJ has been based on the rationale that it is a general-

purpose language with high popularity, tool support and an increasing community of

researchers and practitioners.

Our proposal defines a proof of concept and our tool support is rather prototypical.

For an industrial-strength automation and tool support, possible future developments

should include the provision of support for other AspectJ constructs such as parent

declaration and aspect precedence rules, as well as the improvement of automation

and tool support through an integrated environment.

The KDM representation for AspectJ projects can be used the same as any other

KDM representation for analysis purposes. As we mentioned earlier the ultimate

benefit of KDM is to provide interoperability among different tools for various main-

tenance and evolution tasks. It enhances the maintenance of a software system due
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to the existence of a uniform representation of programs that can be read by all

KDM-compatible analysis tools.
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A case study on business process recovery using an e-government system. Soft-

ware: Practice and Experience, 2010.

[45] A.M. Reina, J. Torres, and M. Toro. Towards developing generic solutions with

aspects. In Proceedings of the 5th International Workshop on Aspect-Oriented

Modeling (AOM) at the UML 2004 Conference, Lisbon, Portugal, 2004.

[46] Z. Sharafi, P. Mirshams, A. Hamou-Lhadj, and C. Constantinides. Extending the

UML Metamodel to Provide Support for Crosscutting Concerns. In Proceedings

of the 34th ACIS International Conference on Software Engineering Research,

Management and Applications (SERA’10), Montreal, Canada, pages 149–157.

IEEE, 2010.

[47] Guy St-Denis, Reinhard Schauer, and Rudolf K. Keller. Selecting a model in-

terchange format: The spool case study. Proceedings of the 33rd Annual Hawaii

International Conference on System Sciences, Los Alamitos, CA, USA, 2000.

[48] D. Stein, S. Hanenberg, and R. Unland. Designing aspect-oriented crosscutting

in UML. In Proceedings of International Workshop on Aspect-Oriented Modeling

(AOM) with UML at AOSD’02 Conference, Enschede, Netherlands, 2002.

78



[49] AspectJ Development Tools. http://www.eclipse.org/ajdt/.

[50] W. Ulrich. A status on OMG architecture-driven modernization task force.

In Proceedings EDOC Workshop on Model-Driven Evolution of Legacy Systems

(MELS), Monterey, USA. IEEE Computer Society Digital Library, 2004.

[51] Raja Valle-Rai, Etienne Gagnon, Laurie Hendren, Patrick Lam, Patrice Pom-

inville, and Vijay Sundaresan. Optimizing java bytecode using the soot frame-

work: Is it feasible? In Proceedings of the 9th international conference on Com-

piler construction, volume 1781 of Lecture Notes in Computer Science, pages

18–34. Springer Berlin / Heidelberg, 2000.

[52] K. Wong. Rigi users manual, version 5.4. 4. The Rigi Group, University of

Victoria, Victoria, Canada, 1998.

79


	Titlepage
	signaturepage9276351
	withoutTitle

