INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bieedthrough, substandard margins, and improper alignment
can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
nght in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA

®

800-521-0600

THE DESIGN AND IMPLEMENTATION
OF
COMPONENT-BASED GRAPHICS FRAMEWORK
FOR
DATA VISUALIZATION

Ming Dai

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

April 1999

© Ming Dai, 1999

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services
395 Waellington Street

Ottawa ON K1A ON4
Canada

Bibliothéque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4
Canada

Your hle Votre relérence

Our file Notre reférence

The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la

National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-43553-9

Canadi

ABSTRACT

The Design and Implementation
of
Component-Based Graphics Framework
for
Data Visualization

Ming Dai

This thesis focuses on the design of interfaces and the implementation of a component-
based data visualization framework for the Win32 platform. This framework consists of
eleven libraries. A component based object-oriented design and implementation approach
is presented for building this data visualization framework. The design and
implementation are based on the Microsoft COM concepts, which provide a way for
software components to communicate with each other and reuse of binary code without
“implementation inheritance” problems, from which the traditional object-oriented design
methodologies suffer. The methods and properties of a component object are exposed
through its interface(s). Any component object that implements a new visualization
algorithm can be added into this framework as a “black box”. And any new library, which
can run on a different platform as long as that platform supports COM and it follows
COM rules, can be added into this framework. Due to using COM technologies, a
visualization applica.tion can be built easily and quickly by using this framework and any

programming language that supports arrays of function pointers.

iii

ACKNOWLEDGMENT

I would like to thank sincerely my supervisor Dr. Peter Grogono for his encouragement,
for his invaluable suggestions and comments, for his generous help and support.

I am grateful to him for everything he did for me during the past few terms. This work
could not have been completed without Dr. Peter Grogono.

[wish to take this opportunity to say, “Thank you, Dr. Grogono.”

iv

DEDICATION

To my wife

To my son

List Of Figures........ccoeveererurrennne

Chapter 1

1.I The Application Visualization System (AVS)
1.2 The IBM Visualization Explorer
1.3 VolVis sotereesntsnnessenessessessssesnsstessisessrntentesansssnasesses
1.4 VISAGE & The Visualization Toolkit (VTK)

Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6

Table Of Contents

INTTOAUCHION ..ccueeievieeneeecnnneecsssnsssnesessnsessnssesnes

oooooo

Motivation..

oooooooooooooooooooooooooo

.....

ose

Design GOalscueeceeeeerenerrenenerernrenneensrenesensesseronses

Related Work

ooooooooo

Overview Of COM

.....

Architecture Design........coeeeerereerneenernenreciorerseesneenes

Chapter 7 Object Model Design

......

.....

7.1 The General Data Visualization Scenario

.

7.2 Definitions Of Abstract Objects

..........

oooooooooo

7.3 Refinement Of Abstract Objects

7.3.1 Reader-Writer Objectcoeeurerrerenrververunnn.
7.3.2 Data Object (Raw Data Object & Rendering Data ObjCCt)

7.3.3 Filter Object..
7.3.4 Factor Object....................

ooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooo

7.3.5 Renderer Object........ccceerererruerrrerrerncenees

..........

7.3.6 Image Object.....
7.3.6 Scene Object

Chapter 8 Component Objects Design

8.1 CVLAmay Library (DLL)

8.2 CVLPoint Library (DLL)

8.3 CVLCells Library (DLL).......ccooeerermreererrereensnsnenes

8.4 CVLDataSets Library (DLL)

8.5 CVLAttributes Library (DLL)
8.6 CVLReaderWriter Library (DLL)

8.7 CVLFilter Library (DLL)

ooooooo

8.8 CVLFactor Library (DLL)
8.9 CVLRenderer Library (DLL)

8.10 CVLImaging Library (EXE)

8.11 CVLSource Library (DLL)

Chapter 9 Interfaces Design And Implementation
9.1 Conventions

9.2 Programming Language

9.3 Interfaces

9.3.1 Class Identifier And Interface Identifier

9.3.2 Marshalling Code

9.3.3 Threading Model........ccouurereererernresrenreens 59

9.3.4 CompOonent ODJECESccvcereremrrerrsrercrmssessarensseasessssseseseresesssarenes ..59
9.3.3.1 Array Component Objects 60
9.3.3.2 Basic Data Structure Objects .63

9.3.3.2.1 Data Attribute Objects cresssnronses 63
9.3.3.2.2 Point Objects......coeeverrerererennee . cesensasssssens .66
9.3.3.2.3 Cell Objects crcssessnesaaees 67
9.3.3.2.4 Dataset ODJECLS........cccrvrerernrerrrererieesesesraenesesssenssesssssssssssressssssssssossens 68
9.3.3.2.5 Other Helper Objects................... - .70
9.3.3.3 Factor Objects reesessesteatianre s ne et b st R e e b e s e b sbs b s R e b s e e s eaesaenares 71
9.3.3.4 Filter Objects........coeeeervererenruenians . 72
9.3.3.5 2D IMAgINg ODbJECLS....ouecrrerererrercreressesserenmessssesminsssnsssssssesssessasessssessesossens 74
9.3.3.6 ReNdEriNg ODbjJECES......c.oucurruerererecrrnrrsresrernesessenesesssesesessarssssssssassessnnsassens 76
9.3.3.7 Reader/Writer ObjJects........cccovveerreererrenseeserererenes 78
9.3.3.8 Data SOUICE ODJECLS ...oucuvnerereeerercnrserereresereresererenssenesesssssssssssessessssssasssens 80
9.4 Some Approaches Used In The Implementation............ccceeueereereerenrererersnnsesenses 81
Chapter 10 How To Reuse Our Component ObJECLS..........ccovuerrererererermnssorssessesesssens 85
10.1 Create A Dataset Object In Visual C++ Language.........ccceeererreernererrerenecsennns 85
10.2 Create A Dataset Object In Visual Basic Language.........cccceeveemvererereresenrnsennene 87
10.3 How To Call A Method Provided By The CVLDataSet Object In Visual C++
Languagecceeevermrererenrernreernenneseensenannens 88
10.4 How To Call A Method Provided By The CVLDataSet Object In Visual Basic
Languagecceerereeenurnnnnes 88
10.5 How To Call A Property Provided By The CVLDataSet Object In Visual C++
LANGUAGE ce.eeertenencrensetsiennecsennsinesnssessseesssssesssessssssessssssssssssassssesssesssesssssnsssssssssnss 89
10.6 How To Call A Property Provnded By The CVLDataSet Object In Visual Basic
LANGUAGE c..oeereeercrrcntiternesseenennessscsesesesssenenesssesessessesensenssnssens 89
10.7 How To Add A Library To Our Framework .90
10.8 How To Add A New Object To One Of Our Existing berarles 90
Chapter 11 Future Work 91
Chapter 12 ConCIUSION......c.ceereerrieererereenrureesesesensrssesassersanssseseseess . .92
References . 94
Appendix A: The Interface File Of The CVLSource.DLL Library 96
Appendix B: List Of Objects Of The Framework..... . 98
Appendix C: Examples Of APIs . 110
Appendix D: Sample Code .. 136

List Of Figures

Figure 1: The System Architecture Diagram. ressesesasntaitsasste st e s bsn e tentsbnbsssensrrane 19
Figure 2: The General Data Visualization Object Model Diagram.......cccceceiernvsccnnresnenes 22
Figure 3: The Reader-Writer Object Diagram...........ceeceerereereneerensrereenersvessenessressenserenneses 23
Figure 4: The Data Object Model Diagram..........ecoecceereeeneereererenssessesesiessersaesesssssassssens 24
Figure 5: The Attribute Object Diagramccocvueereererensersacnensresesssassesessssessressesseressnns 26
Figure 6: The Point Object Diagram..... rressesseesise et s sesae bt s e s sas e et s be s a s e assanes 27
Figure 7: The Cell Object DIagram.........ccceeerererrseessecreressessneseresesesesnssesssesssssrsssossansessenes 30
Figure 8: The Dataset Object Diagram tesresieaeisnsbeae b asrss b e s R s s R b e bt besbs b e aes 32
Figure 9: The Filter Object Diagram ceereeresasnesasnnanes rereeesrenresissraeneas 34
Figure 10: The Factor Object DIagramcccveverereerersrenesseressssesesessenasessassesasssssseressesens 35
Figure 11: The Renderer Object DIagram.........cocceevreeerereresreeersesesressenesssnssssssssessaeressseses 36
Figure 12: The Interface Declarition Of The CVLFloatArray Object.....c.ccecereerevererernnnen 62

Chapter 1 Introduction

Since mid-eighties, visualization systems have become powerful tools for scientists and
engineers to exploit and manipulate two-dimensional (2D) and three-dimensional (3D)
data sets. In general, the term visualization can be divided into three categories. The first
category is scientific visualization, which is the formal name in computer science and
encompasses user interface, data rcpresentation and processing algorithms, visual
representations, and other sensory presentations such as sound or touch [1]. The second
category is data visualization, which encompasses data from science and engineering, as
well as information from business, finance, geography, and other fields [2]. The third
category is information visualization, which is related to visualize abstract information
such as hyper-text documents on the web sites, file system on a computer or abstract data
structures (3]. A number of commercial and academic visualization systems or toolkits
have been developed, such as AVS [4], IBM Data Explorer (5], Iris Explorer (6], VISAGE
(7], VolVis (8, 9], VTK [10, 11], etc. For portability reasons, all of these visualization
systems were based on one or more 3D graphics software including OpenGL [12], SG/
GL, SUN XGL, or HP Starbase. Some visualization systems provide a visualization
programming environment, while others provide APIs for visualization programming.
The earlier visualization systems were usually limited by machine and data dependencies
and were typically not flexible or extensible. To overcome these limitations, the majority
of visualization systems mentioned above take a data-flow approach [9, 11, 13] and use

object-oriented methodologies. The data-flow approach specifies a visualization network,

in which a series of process objects and data objects join together to form a data
visualization pipeline. The following subsections give brief overviews of the visualization

systems mentioned above.

1.1 The Application Visualization System (AVS)

The AVS (4] is a data-flow visualization system with a user interface to create, edit, and
manipulate visualization networks. It can run distributed and parallel visualization
applications by using an explicit executive to control execution of visualization networks.
It is extensible by allowing new filters (which are process objects that take at least one
input and generate at least one output) to be added into the system. The AVS data model
consists of primitive data and aggregate data. The most important data type in the AVS
data model is field, which is an n-dimensional array with scalar or vector data at each
point. The field array can have any number of dimensions with any size. It plays a role
like a2 mapping function between the computational space of the field data and the

coordinate space, which is typically the global coordinate system.

1.2 The IBM Visualization Explorer

The IBM Visualization Data Explorer is a general-purpose client-server structured
software package for data analysis and visualization [13]. The client part is the graphics
user interface and is implemented in C++. The server process is implemented in C and

operates as a computational “engine”, which is controlled via a data-flow executive. The

client process generates a well-defined protocol (a scripting language) as input to the
server process. The IBM Visualization Data Explorer takes a uniform data model which
is different from the AVS model. This data model is also a field data model, but the field
is an object composed of a base data (such as size, number of dimensions, scalar, vector,
tensor, type, etc.) and dependent data (such as mesh dependency data, nodes or cells,
user-defined metadata or aggregation, etc.). An important consequence of the unified data
model handling is that operations are polymorphic, interoperable and appear typeless to

the user.

1.3 VolVis

VolVis is a volume visualization system [9] implemented in C. It provides a volume
visualization environment, which is windowing-independent, input device-independent
and algorithm or data independent. The system is supported by an abstract model which
defines world volume and light source properties. Based on this abstract model,
algorithms are developed for data manipulation, navigation, quantitative analysis, and
rendering in the environment [8]. The system consists of several components, such as
Modeling, Filtering, Measurement, Manipulation, Rendering and Input Device, forming
the VolVis visualization pipeline. The data model used in VolVis is very different from
that used by other visualization systems. In VolVis, Position, Vector, Matrix, Data Cut,
Data Color, Coordinate System, Plane, Color, Local Shade, Segmentation, Texture,
Light Source and Volume Data are abstracted as data types and are used as basic blocks

of the abstract model [8].

1.4 VISAGE & The Visualization Toolkit (VTK)

The VTK is a big brother of the VISAGE. They are both object-oriented visualization
systems based on the data flow paradigm. But VISAGE is implemented in C, while the
VTK is implemented in C++. The VTK added several new types of data structures into the
system and reorganized the object model of the VISAGE. In conventional object-oriented
design. each object encapsulates its own data structures and methods. But in the VTK
design, algorithms and datasets are encapsulated separately in order to avoid repeating
code of an algorithm for different data types [10, 11]. In the V7K, the data models are
more concrete than other data models used by other visualization systems. Data objects in
the VTK are called datasers. There are six types of datasets in the VTK: Structured
Points, Rectilinear Grid, Structured Grid, Unstructured Points, Polygonal Data, and
Unstructured Grid. A dataset consists of one or more cells. In the VTK, cells are defined
as types in terms of the primitives of Vertex, Polyvertex, Line, Polyline, Triangle,
Triangle Strip, Quadrilateral, Pixel, Polygon, Tetrahedron, Hexahedron and Voxel. Also,
the VTK provides a series of wrappers around the VTK objects for Tcl/Tk and Java, so
that a visualization system can be quickly developed using these two languages or C++

language.

Chapter 2 Motivation

The above visualization systems are powerful for visualizing data, but they require that
users of the system invest a large amount of time understanding the capabilities of each
computational module and the data flow approach the system takes. Although these
visualization systems were designed using object-oriented methodologies and
implemented using OO programming language such as C++, they still make it hard for
visualization researchers and programmers to add new functionality to the existing system
or reuse the objects provided by these visualization systems. For example, if a system
doesn’t provide source code or wrap routines for other programming languages like VTK
does, but you want to use their mature algorithms to develop your own visualization
application using other languages outside the visualization system environment, you will
find that it is very difficult to develop a new visualization application. Perhaps you have
to work from scratch if you do not have any source code of one of the visualization
systems. This limitation is caused by the standard C++ source code reuse mechanism that
the above visualization systems are based on. Thus the C++ objects built by the above
visualization systems can only be reused directly in their own “language”. One solution
for this problem is to provide a dynamic link library (DLL) with one or more header files
that declare the functions and structures used. This solution also results in some
problems. We know that C++ provides function overloading, which is the way for C++ to

export big numbers of functions. At compile time, the C++ compiler combines all the

information it has about a member function (e.g., return types, class, parameter types,
public or private, etc.) into one big name as an identifier of the member function. This
results in the name mangling and makes it difficult to use dynamic loading. Since name
mangling is not standardized and each compiler decorates functions differently, a DLL
compiled by one compiler cannot be used by another. Another problem related to the
DLL solution is memory allocation. If the memory allocation scheme used by a DLL is
different from that used by a executable program, even if the memory between the DLL
and the executable program is completely shared, the logic for managing memory
allocation may conflict. Also, there are two kinds of binary representations for characters:
Unicode and ASCLIL. An object built in Unicode cannot communicate with an object built
in ASCII code. This limits the interoperability between two objects. Traditional software
development requires application executables to be compiled and linked with their
dependencies. Every time a developer wants to utilize different processing logic or new
capabilities, he or she needs to modify and recompile the primary application to support
them. But if two or more DLLs export the same functions, a single application could not
use both of them. We know that in OOP languages the use of abstract base classes is a
powerful technique for source code reuse and extensibility. It takes advantages of
implementation inheritance to reuse source code and of polymorphism to extend
functionality. However, implementation inheritance can create many problems in a
distributed and evolving object system. The problem with implementation inheritance is
that the relationship between objects in an implementation hierarchy is implicit and
ambiguous. When the parent or child object changes its behavior unexpectedly, the

behavior of related objects may become undefined. The implementation inheritance is

very powerful for managing source code in a project. However, it is not suitable for
creating a component-based system, where the goal is to reuse components implemented
by other systems without knowing any internal structures of the other objects.
Implementation inheritance violates the principle of encapsulation, the most important
aspect of an object-oriented system. This is why so many visualization systems cannot
provide their mature binary objects or components to other visualization researchers and
developers for facilitating them to develop a new visualization application or system by
combination of reusing existing achievements. Therefore, it is necessary to develop a
component-based data visualization framework for visualization researchers and
programmers, so that they can reuse the binary component objects provided by this
framework. or mix them up with other component objects provided by other libraries

implemented in different languages, to build a new visualization application or system.

Chapter3 Design Goals

Based on the above considerations, the following design goals were chosen for this
component-based data visualization framework:
1. Object-Oriented
The framework design must follow the object-oriented design paradigm [14] so as
to reach the goals of being easy to maintain, extend and reuse.
2. Component-Based
In order to facilitate combining visualization techniques and favor binary code
reuse, it should be possible to organize class objects into component(s) and to
allow other visualization components developed by other people to aggregate
them into other component(s). The advantages of organizing class objects into
component(s) are that the final user does not need intimate knowledge of the
component to be used. And the component exposes only its interface(s) to the user
and provides services like a “black box™. This goal will be reached by using the
Microsoft Component Object Model (COM). For more details about COM, see
Chapter S.
3. Data Type
In order to favor data reuse, our data visualization framework should support as
many data types as possible. Thus each supported data type must be treated as a

data object. Also the framework should support user defined data types.

4. Distributed Visualization
The framework should support distributed computing, so that a visualization
application using our components can take advantage of distributed computing
and data servers. This goal will greatly favor web-based visualization
applications.

5. Ease Of Use
The methods and properties of objects provided by the framework should be
visible to visualization programmers at design time. This means that a
visualization programmer can use an interface viewer tool like Microsoft
OLE/COM Object Viewer or Microsoft Visual Basic to see or copy the declaration
of a method or property of an object while he or she is coding. This will greatly
reduce the possibility of misusing a method or property provided by the
framework.

6. Extensibility
The component objects provided by the framework should work well with other
component objects residing in other graphics libraries. This means that if a
visualization programmer built a new graphics library with new functionality, the
component objects could still be used to build a visualization application with the
component objects in this new library no matter whether this library was
implemented on the same or different platform. Also the component objects in the
framework should be interchangeable. This means that an application can
dynamically switch between two or more components which provide the same

interfaces.

7. Diversity
The framework should provide wide range of mature visualization algorithms.
This goal will help visualization researchers or programmers to test or compare

the performance of a new visualization algorithm with an existing algorithm.

10

Chapter 4 Related Work

Different object oriented design methods for visualization have been presented and
implemented by a number of visualization researchers [7, 8, 10, 11, 16, 17]. This work
focuses on how to create data object classes. They have different opinions about what
information should be encapsulated in a data object and what should not. One opinion
(16] is that each data class should encapsulate both data extraction and rendering
operators, since data to be visualized has its own data type and the rendering algorithm is
usually specific to one data type. Jean M. Favre and James Hahn [16] took this design
approach. This results in a very excessively large single object, but it obeys OO design
principles. W.J. Schroeder er al. [7, 10, 11] and Ricardo Avila er al. [8, 9] took an
approach in which datasets and algorithms are encapsulated separately. They thought
there are at least three reasons for doing so. First, combining complex algorithms and
datasets into a single object would result in very large objects. This would compromise
the simplicity and modularity of the resulting design. Second, encapsulating algorithms
and datasets into objects would result in repeating code, since the implementation of an
algorithm for different data types often differs only in regions of data access. Third, users
naturally view algorithms as processes that operate on data objects. Although this
approach violates OO design principles, it is practicable in data visualization and suitable
to the component concept. In our design, we will take this design approach for data

modeling. Our design will be based on the Microsoft Component Object Model (COM)

11

and part of works mentioned above, but more emphasis will be put on the creation of data
component objects interfaces, algorithm component objects interfaces and high-level

abstract framework.

12

Chapter5 Overview Of COM

As we will employ Microsoft COM technology to the design and implementation of our
data visualization framework, it is necessary to summarize COM technology here so that
the readers can understand our design and implementation, which is different from the
traditional OO design. Further details about COM technology are available in the
references of [18, 19, 20, 21].

The Component Object Model (COM) is a software architecture that allows applications
to be built from binary software components. It is an extremely elegant and efficient
methodology for inter-process communications. Different stand-alone component servers
(DLLs or EXEs) are allowed to be pre-built in COM.

Clients of COM servers can use this pre-built functionality in server objects without
intimate knowledge of the server object during development. At design time, instead of
creating a link to a reused component’s functionality or providing a path to the reused
components in the source code, the developer needs only to provide class [Ds and
interface [Ds of components to be reused. At run time, the COM library provides services
for creating instances of the requested component objects according to the provided class
[Ds and interface IDs, which are stored in the operating system registry database. If the
requested components are located on other machines, the COM library would ask the
DCOM (Distributed COM [20, 21]) library to create instances of the remote component

objects. This is achieved by using DCE RPC (Remote Process Call) and marshaling data

13

techniques. Data marshaling is a process of packing up the data so that when it is sent
from one process to another, the receiving process can decipher the data.

A COM object can have any number of interfaces to expose its different sets of
implemented properties and methods. Since each COM object has unique class ID and
each interface in the COM object has its own unique interface ID, different COM objects
can be interchanged in an application even if these COM objects have same function
interface name or function signatures. The ability of interchanging component objects in
an application is guaranteed by a COM rule which specifies that if you derive an interface
from an existing interface, you need to implement all its methods, because interface
declarations in the application contain only pure virtual functions. This implies that the
developer has to implement all of the methods to override these virtual functions if he
wants to change the behavior of the existing component or add new functionality to the
existing component. If the application is implemented using a programming language that
supports inheritance and polymorphism, then the interfaces of the existing component can
be inherited without having to re-implement all the methods. In order to inherit interface
implementation from one binary code to another without re-implementing the original
interface, the new C++ class must be derived from a CCmdTarget class, which is the
root of MFC. In this new class, an interface with methods that call virtual member
functions in the C++ class will be implemented. Most importantly, instead of
implementing the derived class in the same DLL, this new interface will be built in a
distinct DLL with its own unique interface ID.

COM defines a binary standard that describes how cooperating objects communicate with

one another. This includes the details of what an “object” looks like, including how

14

methods are dispatched on an object. COM also defines a base class, from which all COM
compatible classes are derived. This base class is IUnknown. Although the IUnknown
interface is referred to as a C++ class, COM is not specific to any one language — any
programming language that can create structures of pointers and explicitly or implicitly
call functions through pointers can create and use COM components. A COM obiject is a
reusable software unit that encapsulates or packages the manufacturing of a specific class
of COM object. A COM object class specifies an open-ended set of behaviorally identical
COM objects that is uniquely identified for all programs and all time by its unique class
D.

COM objects are housed in a COM server. A COM server may be an in-process server
implemented as a DLL that runs in the process space of the client or an out-of-process
server implemented as an executable (.EXE) application, which runs outside the process
of its client. The server is registered (or published) in a system registry to act as the
creation agent for COM object instances of the COM component object. The server
contains one or more class factories used for the creation of COM objects. Class factories
are themselves COM objects that expose the IClassfactory (without a license
requirement when the object is created) or IClassfactory2 (with a license requirement
when the object is created) interface. However, as an integral part of the server housing,
class factories are typically not full-fledged COM objects. COM objects are the building
blocks in COM and ActiveX programming. COM objects are combined to make some
portion of an application. The running behavior of the application is often determined by,
and evidenced in, the COM objects that were instantiated (i.e., that were manufactured in

the class factories of the various COM objects that were combined in the application).

15

The COM Library is a system component that provides the mechanics of COM. The COM
Library provides the ability to make [Unknown calls (QueryInterface(), AddRef() and
Release()) across processes; it also encapsulates all the “legwork™ associated with
launching components and establishing connections between components. To use a COM
server in a COM client program, a client needs only a class and interface [Ds definitions
file and the interface definition file of the server, and does not need to include the header
file of the COM server or link to COM library. A COM client of the COM server obtains
access solely through its components’ class IDs and COM services. A unique class ID is
important in distinguishing a component from the in-process or out-of-process COM
objects. The class [Ds are like tickets to the servers. By presenting a class ID to COM
library, a client can get the interface pointer to the corresponding component object from
the COM server that house it. Subsequent use of the COM objects by the client is solely
through COM interfaces on the objects themselves.

Because of the “implementation inheritance™ problem [18] in the traditional OO design
and implementation, COM provides two mechanisms to achieve black-box reusability,
through which one COM component may reuse another. One reusability mechanism is
Containment/Delegation. By using this mechanism, an outer object containing one or
more inner objects behaves like an object client to the inner object(s). When the outer
object wishes to use the services of the inner object(s), the outer object simply delegates
implementation to the inner object's interfaces. In other words, the outer object uses the
inner object's services to implement some (or possibly all) of its own functionality.
Another reusability mechanism is Aggregation. Through this mechanism, when the outer

object wishes to expose interfaces from the inner object(s) as if they were implemented

16

on the outer object itself, it would always delegate every call to one of its interfaces to the
same interface of the inner object. Aggregation is a convenience to allow the outer object
to avoid extra implementation overhead in such cases. In C++ implementation, these two
reusability mechanisms are realized by using the nested class technique. Another
powerful technology used in COM/DCOM is connection points, which allow an interface
pointer to be passed from a client application to a COM server so that the COM server
can call functions in the client application to process any data it receives (just like C-style
call back function). This means real-time data delivery from server to client but no more
polling or timers in the client to trigger a query. We will use these powerful technologies

in the design and implementation of our component-based data visualization framework.

17

Chapter 6 Architecture Design

In general, data visualization is a time-consuming and memory-consuming process. This
is due to both the large size of data to be visualized and the long time is required by
rendering algorithms. If we put everything into one big in-process or out-of-process
library, the visualization application using this library would have poor performance,
since the application cannot take advantage of distributed computing and the library will
occupy a large amount of memory after it is initialized. This approach violates our design
goals. If we evolve our library by adding new algorithms from time to time, the size of
our library will grow quickly and we need to rebuild our library from time to time. In
order to reach our design goals, we split one big data visualization library into several
smaller libraries, which consist of in-process libraries and out-of-process libraries. Thus,
a visualization application built using objects provided by these libraries would have
good performance. In general, our data visualization framework has a multi-tiered client-
server architecture. The visualization applications using our framework are clients located
on the top tier. Between clients and servers are COM/DCOM libraries. They coordinate
communications between clients and servers or between servers. Our framework consists
of component object servers, which are located on the third tier. Some component servers
may be based on the OpenGL graphics library, for example, servers for rendering. Thus
the OpenGL graphics library is located on the bottom tier. Figure 1 illustrates this

architecture. This approach has several advantages. First, the middle level component

18

servers can be distributed over a network so that visualization applications can take
advantages of distributed computing. This also favors web-based visualization
applications and collaborative visualization applications [15]. Second, we do not need to
rebuild existing component servers if we want to add new objects (we can build a new
library containing these new objects), or just rebuild some related servers if we evolve
part of existing objects they contained. Third, the framework can consist of component
servers running on different platforms and the visualization application can be built on
the platform different from that which the servers are running on. These benefits come
from COM techniques, since we have decided to build our libraries using COM
techniques (more details are given in Chapter 8). Due to the COM techniques we will use,
users can add their own new visualization libraries, which are implemented on different
platform, into our system as long as they follow COM binary standard. Also we don't care
whether there are naming conflicts between libraries that are located on the same

machine.

Visualization Application Clients

. COM Libraries and DCOM Libraries

Visualization Visualization
Component Component
Objects Server Visualization Objects Server Visualization
1 Component n-1 Component
Objects Server Objects Server
2 Other n
OpenGL .
Graphics Graphics
lerary ubfary
Operating Systems

Figure 1: The System Architecture Diagram

19

Chapter 7 Object Model Design

The system object model of our framework was built based on the COM concepts
mentioned in Chapter 5 and the general data visualization scenario. The object model
diagrams were presented using OMT notation [14]. Based on the general scenario of data
visualization, we abstracted a high-level data visualization object model as the basis of
the framework. From this high-level abstract object model, we refined each abstract
object until we found the corresponding or appropriate primitive object. In the following
subsections. we will describe the general data visualization scenario and the definitions of

each abstract object.

7.1 The General Data Visualization Scenario

The data to be visualized may have different dimensions and structures. It may be stored
in a data file and read into memory by a data reader, or generated by an equation in the
memory or generated by one or more filters, but it cannot be displayed on the screen
directly. The data is manipulated by one or more filters using filter algorithm(s) to
generate one or more new output data, which can be rendered by a renderer using
rendering algorithm(s) in one or more render windows. The result of rendering is called
an image and its effect is affected by rendering environment factors (such as lights,
cameras, transform, color and shading, etc.) All images in a render window form a data

visualization scene. This scene can be saved into an image file by an image writer.

20

7.2 Definitions Of Abstract Objects

Based on the above scenario, we can abstract objects related to data visualization as

follows:

1.

-
s

Data File object — Any format file used to store data to be visualized.

. Raw Data object - Any type of data which cannot be rendered directly to

display desired image on the screen. It may be the data read by a Reader object
from a Dara File object, or the data generated by equation(s) or the

intermediate data generated by a Filter object.

. Rendering Data object — Any type of data generated by Filter object(s) can be

rendered by a Renderer object to generate desired image on the screen.

Filter object - An object used to transform one type of Raw Data object into
another type of Raw Data object(s) or Rendering Data object(s).

Renderer object — An object used to render Rendering Data object(s) on the
screen.

Factor object — Any object (such as lights, transform matrices, cameras,
shading styles, etc.) that affects the eventual effect of an /mage object
generated by a Renderer object.

Reader object — An object used to read a Raw Data object from a Dara File
object into memory, or load an /mage object from an Image Data File into

memory.

21

8. Writer object — An object used to write /mage object(s) into an Image Data
File object.
9. Image object - An object generated by a Renderer object or loaded by a
Reader object.
10. Scene object — A Scene object is a render window. It contains Image object(s)
generated by a Renderer object.
I'1. Image Data File object — An object used to store /mage object(s).
Here we didn’t treat filter algorithms and render algorithms as objects, because a specific
Filter object or Renderer object must use at least one specific algorithm to manipulate
data.
In order to clearly illustrate the data visualization pipeline in the general object model
diagram, we just use these abstract objects to show the relationships between the abstract
objects, even though we can combine the Reader object, Writer object, Data File object
and Image Data File object into one abstract object (see Section 7.3.1). The general data

visualization object model diagram is shown in Figure 2.

———

| DamFie ——<>— 1 RawOaa v————?—
! Read '__..'___.J —

Figure 2: The General Data Visualization Object Model Diagram

22

7.3 Refinement Of Abstract Objects

The above abstract objects were further abstracted. In the following subsections, we

provide the definitions of refined abstract objects and corresponding sub-object models.

7.3.1 Reader-Writer Object

Currently there exists more than one hundred data file formats used by various
visualization systems. A specific format data file can only be read or written by a specific
Reader or Writer object. Hence, we create a more abstract object named as Reader-Writer
object, which is a Reader object or a Writer object, to represent the Data File object,
Reader object, Writer object, and Image File object mentioned above. This Reader-
Writer object diagram is shown in Figure 3. A concrete Reader or Writer object may be
specific to a specific format file. But for our framework level, this abstraction is enough.

The supported data file formats will be given in later sections.

Reader-Writer

A

[|

Reader Writer

Figure 3: The Reader-Writer Object Diagram

7.3.2 Data Object (Raw Data Object & Rendering Data Object)

We abstract Raw Data object and Rendering Data object from the Data object. In our
design, a Raw Data object means that its data cannot be rendered directly to get desired
image on the screen, and a Rendering Data object means that its data can be rendered
directly to get desired image on the screen. The Data object is treated as a Dataset object,
which is a composite object containing one or more Cell objects. Each Cell object
consists of one or more Poinr objects, which is also a composite object aggregating one or
more objects called Arrribute. There are two kinds of dataset objects in our system. One is
Equation-Based Dataset object. It is generated by using one or more equations. Another
one is Non-Equation-Based Dataser object. This kind of object is read from a data file or
generated by one or more Filter objects. The relationships between these abstract objects

are depicted in Figure 4.

Data 5

A S

s — , |
. ' Equation-Based | . Non-Equation- 3
' Dataset ‘ | Based Dataset ' |

: : —

J

Figure 4: The Data Object Model Diagram

24

We borrow the definitions of dataset, cell and attribute from [11] and use these
definitions with appropriate modifications to define Artribute object, Point object, Cell
object, and Dataset object.
1. Attribute Object
The Antribute object is associated with a Point object. One Point object may
associate with more than one Attribute objects. The Attribute object can be one
of the following concrete objects:
(1) Scalar Object
Scalar object is a single valued data object at each location in a Dataser
object. The scalar data can be an integer data, a floating point data or a
double data.
(2) Vector Object
Vector object is a data object with a magnitude and direction. It is
represented as a triplet of values (u, v, w).
(3) Normal Object
Normal object is a direction vector data object with magnitude of one.
(4) Texture Coordinate Object
Texture Coordinate object is used to map a Point object from Cartesian
space into a 1-, 2-, or 3-dimensional texture space.
(5) Tensor Object
Tensor object is a complex mathematical generalizations of Vecror objects

and Matrix objects. A tensor of rank k can be considered as a k-

dimensional table. In our implementation only real-valued symmetric 3 x 3

tensors are supported.

(6) User-Defined Attribute Object

In our framework the user-defined attribute object is a container of field

data objects. A field data object is an n-dimensional array with scalar or

vector data at each point.

The Antribute object diagram is shown in Figure 5 on next page.

Altribute

JAN

) Texture
Scalar Vector o Normal Coordinate Tensor

User-Defined
Altnibute

Figure 5: The Attribute Object Diagram

2. Point Object

The Poinr object aggregates a Coordinate object and one or more Attribute

objects. A Coordinate object is used to store 1-, 2-, or 3-dimensional

coordinates of a point.

The Point object diagram is shown in Figure 6 on next page.

26

Point

-

J

Coordinates |

Coardinate Attribute
1-Dimensional 2-Dimensional 3-Dimengional
Coordinate Coordinates |

b

Figure 6: The Point Object Diagram

3. Cell Object

A Cell object consists of one or more Point objects. There are twelve types of

Cell objects in the system:

(1) Vertex Object

It contains a single Poinr object. It is a primary zero-dimensional Cell

object.

(2) Polyvertex Object
It contains an arbitrarily list of Point objects. It is a composite zero-

dimensional Cell object.

(3) Line Object

It contains two Point objects. It is a primary one-dimensional Cell object.

The direction along the line is from the first Point object to the second

Point object.

27

(4) Polyline Object
It is defined by an ordered list of n + 1 Point objects, where n is the number
of lines in the polyline. Each pair of Point objects (I, I + 1) defines a Line
object. It is a composite one-dimensional Cell object consisting of one or
more connected Line objects.

(5) Triangle Object
It is defined by a counter-clockwise ordered list of three Point objects. The
order of the Point objects specifies the direction of the surface normal using
the right-hand rule. It is a primary two-dimensional Cell object.

(6) Triangle Strip Object
It is defined by an ordered list of n + 2 Point objects, where n is the number
of Triangle objects. The ordering of the Poinr objects is such that each set
of three Point objects (i, i + I, i + 2) with 0 < i < n defines a Triangle
object. It is a composite two-dimensional Cell object consisting of one or
more Triangle objects.

(7) Quadrilateral Object
It is defined by an ordered list of four Point objects lying in a plane. The
Quadrilateral object is convex and its edges must not intersect. The Point
objects are ordered counterclockwise around the quadrilateral, defining a
surface normal using the right-hand rule. The Quadrilateral object is a

primary two-dimensional Cell object.

28

(8) Pixel Object
It is defined by an ordered list of four Point objects. Each edge of the Pixel
object lies parallel to one of the coordinate axes x-y. The normal to the
Pixel object is also parallel to one of the coordinate axes. It is a primary
two-dimensional Cell object.

(9) Polygon Object
It is defined by an ordered list of three or more Poinr objects lying in a
plane. The polygon normal is implicitly defined by a counterclockwise
ordering of its Point objects using the right-hand rule. It is a primary two-
dimensional Ceil object.

(10) Tetrahedron Object

It is defined by a list of four nonplanar Point objects. The Tetrahedron
object has six edges and four triangular faces. It is a primary three-
dimensional Cell object.
(11) Hexahedron Object
It is defined by an ordered list of eight Point objects. The faces and edges
of a Hexahedron object must not intersect any other faces and edges, and
the Hexahedron object must be convex. It has six faces, twelve edges, and
eight vertices. And the faces are not necessarily planar. It is a primary
three-dimensional Cell object.
(12) Voxel Object
It is defined by a list of four nonplanar Points objects (totally eight point

objects). It has six faces and each face is perpendicular to one of the

29

coordinate axes. Its shape is topologically equivalent to the hexahedron
with additional geometric constraints. It is a primary three-dimensional
Cell object.

The Cell object diagram is illustrated in Figure 7.

-
I can |
! i '
’ | J ; ? T !
Vi i P i -— T { —_
vertex Line i Triangle || | Quadrilstersd ' | Poygon ' || Hexshedron | Voxet
T [
) ! | .
. { |
[‘ - | 1 d
' Polyvertex " Polyline . TnangleStip ; | Pixel Tetahedron

Figure 7: The Cell Object Diagram

4. Dataset Object

Here we abstract two Kinds of dataset objects mentioned above as one general
Dataser object. A Dataset object is composed of one or more Cell objects. The
Dataser object is classified by the types of topologies as regular or irregular
Dataser object. Regular Dataser object is a structured Dataser object, which
can be implicitly represented and has a single mathematical relationship within
the composing Cell objects. Irregular Dataset object is an irregular structured
Dataset object, which must be explicitly represented.

There are five types of Dataset objects supported in the system:

30

(1) Structured Points
This type of Dataset object consists of Line Cell objects (1D), Pixel Cell
objects (2D), or Voxel Cell objects (3D), which are represented implicitly
by specifying the dimensions, data spacing and origin. The topology of the
object is defined by the dimensions and the geometry of the object is
defined by the data spacing and origin.

(2) Rectilinear Grid
This type of Dataset object consists of Pixel Cell objects (2D) or Voxel Cell
objects (3D). It has a regular topology and a “semi-regular” geometry. The
topology can be implicitly represented by specifying data dimensions along
the x, y, and z coordinate axes. The geometry is defined by the three
coordinate values along these axes.

(3) Structured Grid
This type of Dataser object consists of Quadrilateral objects (2D) or
Hexahedron objects (3D). It has regular topology and irregular geometry.
The topology is represented implicitly by specifying a 3-vector of
dimensions. The geometry is explicitly represented by Point objects’
coordinates.

(4) Polygonal Data
This type of Dataset object consists of Vertex Cell objects, Polyvertex Cell
objects, Line Cell objects, Polyline Cell objects, Polygon Cell objects and

Triangle Strip Cell objects. The topology and geometry of this type Dataset

31

object is unstructured. Both the topology and geometry of the dataset object
must be explicitly represented.

(5) Unstructured Grid
This type of Dataset object consists of an arbitrary combinations of any
type of Cell objects. Both the topology and geometry of the dataset object
are completely unstructured.

The Dataset object diagram is shown in Figure 8.

Dataset
[[] 1 |
Structured Rectilinear Grid i Structured Grid g Polygonal Data Unstructured
! Points Dataset Dataset | Dataset | | Dataset : Grid Dataset
| J

Figure 8: The Dataset Object Diagram

7.3.3 Filter Object

The Filter object is an important object in the data visualization pipeline. The major task
of the Filter object is data transformation. This means a Filter object takes an algorithm
on the input data object to generate a new data object for a purpose. There are four kinds
of transformations affecting respectively the geometry, topology and attributes of an input

data object [11]:

32

l. Geometry transformations
Geometry transformations do not change the topology of the input data object,
but change the point coordinates of the input data object, and therefore change
the geometry of the input data object. These kind of transformations are
translation, rotation, and/or scale.

2. Topological transformations
Topology transformations do not change the geometry and attribute data of the
input data object, but alter the topology of the input data object. These
transformations are conversion transformations that convert a dataset type to
another dataset type.

3. Attribute transformations
These transformations keep the structure of the input data object unaffected but
convert data attributes of the input data object from one form to another or
create new attributes from the input data object.

4. Combined transformations
These transformations change both the structure and attribute data of the input
data object.

Since each Filter object operates on a data object using an algorithm, we define four types
of abstract filter objects as follows:

1. Scalar Filter Object
Scalar Filter objects take scalar algorithms operating on scalar data.

2. Vector Filter Object

Vector Filter objects take vector algorithms operating on vector data.

33

3. Tensor Filter Object
Tensor Filter objects take tensor algorithms operating on tensor data.

4. Modeling Filter Object
Modeling Filter objects take modeling algorithm- to generate Equation-Based
Dataset objects.

The Filter object diagram is shown in Figure 9.

[.
|
| Filter

T | | !

‘ I(Scalar Filter Vector Filter Tensor Filter Modeling Filter

Figure 9: The Filter Object Diagram

7.3.4 Factor Object

The Factor object is a render environment object, which affects a Renderer object
rendering a Data object in a render window. A Factor object can be one of the following
objects:
1. Light Object
There can be at most eight Lighr objects in a data visualization pipeline. Light

objects will illustrate Dara objects in a Scene object.

34

2. Camera Object
The Camera object encapsulates camera characteristics such as view position,
focal point, view direction, etc.
3. Property Object
The Property object encapsulates a Data object’s rendered attributes. These
rendered attributes are as follows:
¢ object color
e lighting (e.g., specnlar, ambient, diffuse) and lighting color
¢ drawing style (e.g., wireframe or shaded)
e shading style (e.g., flat, gouraud, phong)
® texture map (e.g., intensity, color, alpha)
4. Transformation Object
The Transformation object encapsulates a 4 x 4 transformation matrix and
methods to modify the matrix. It specifies the position and the orientation of
other objects (e.g., Data object, Camera object and Light object) .

The Factor object diagram is shown in Figure 10.

Factor

A
— E—

Light Camera Property Transform

Figure 10: The Factor Object Diagram

35

7.3.5 Renderer Object

The Renderer object also takes various rendering algorithms to convert a Rendering
Dataset object into an Image object. The Renderer object is divided into two kinds of
objects. One is Texture Mapper object. Another one is Volume Renderer object. A
Texture Mapper object is used to add detail to the surface of an Image object [11]. A
Volume Renderer object is used to operate on a volumetric dataset object to produce an

Image object [11]. The Renderer object diagram is shown in Figure 11.

i | Renderer

{ |

?

| /
_—

| | Texture Mapper RVolume
[S —

enderer

Figure |1 1: The Renderer Object Diagram

7.3.6 Image Object

The /mage object is an elementary object of the Scene object. It is produced by a

Renderer object or loaded by a Reader object.

36

7.3.6 Scene Object

The Scene object is a rendering window object, which contains one or more Image
objects. The relationships between a Scene object and Image objects have been shown in

Figure 2.

37

Chapter8 Component Objects Design

In Microsoft Component Object Model, a component is an object that exposes its
properties and methods through its interface(s) to the calling component. In Chapter 6, we
have described the architecture of our data visualization framework. In fact, our data
visualization framework consists of visualization component servers. One server may
contain one or more component objects. Because there is a trade-off between the number
of component servers and the number of component objects in a server, we apply the
following design principles to the component object design:
I. keep the server size as small as possible;
2. put objects that take time-consuming algorithms and objects that take non-
time-consuming algorithms in different servers;
3. organize servers according to the functionality of component objects and their
relationships
The following subsections describe briefly component objects that our data visualization
framework provides. A more detailed discussion of each component object will be given
in Chapter 9. In order to distinct the libraries of our framework from other libraries
provided by other visualization toolkit, we prefix our library name with *CVL" (which

means component-base visualization library).

38

8.1 CVLArray Library (DLL)

In our framework, an array is a basic data structure used to build other component objects
such as Dataset objects, Cell objects, etc. In this library, each array object represents a
data type of array. Since COM objects must be OLE Automation compatible, we only
provide array objects for the following data type:

e double

e float

¢ long integer

e short integer

¢ unsigned char

e VARIANT
Each array object encapsulates an array data structure and related properties and methods.

These array objects are aggregatable objects.

8.2 CVLPoint Library (DLL)

This library houses three component objects which represent points in a data set object.
These objects are as follows:
1. ID List Object
This object aggregates a long integer array object. It is used to store point [Ds
or cell [Ds of a dataset object. It provides services to manage these IDs. It is a

primitive object for Dataset object.

39

2. Points Object

3.

Points component object is used to store point coordinates in a data set. This
object aggregates all array objects and will actually create one of array objects
as an inner aggregated object depending on the object creator's request. This
component object is a primitive object for Dataset objects.

Neighbor Points object

This object is a helper object used to quickly determine neighbor points of a

point.

8.3 CVLCellis Library (DLL)

This library houses one cell abstract object and twelve concrete cell objects. These twelve

cell objects are as follows:

1.

2.

8.

9.

Vertex

Polyvertex

. Line

. Polyline

. Triangle

. Triangle Strip

. Quadrilateral

Pixel

Polygon

10. Tetrahedron

11. Hexahedron

12. Voxel
The definitions of the above Cell objects have been given in the previous chapter. A Cell
component object aggregates a Points object and an /D List object. Some Cell objects
may aggregate other simple Cell object(s) (e.g., a Polyline object aggregates a Line
object.). Each Cell object encapsulates specific methods for manipulating the Cell object.
In order to efficiently manage above cell objects, the following helper objects are also
provided in this library:

1. Cell Array object

(8%

. Cell Links object

W

. Cell Types object

8.4 CVLDataSets Library (DLL)

In our framework, we provide six types of Dataser component objects. These Daraset
objects are as follows:

1. Structured Points Object

2. Structured Grid Object

3. Rectilinear Grid Object

4. Polygonal Data Object

5. Unstructured Grid Object

6. Point Set Object

41

Each Dataset object aggregates two DataAttribute objects (see the next section) for
storing point values and cell values respectively, one Points object for storing point
coordinates and one /D List object for storing point IDs or cell [Ds. The Point Set object
is a primitive Dataser object. It is aggregated by Unstructured Grid object, Structured
Grid object, and Polygonal Data object. It encapsulates common operations to these three
types of dataset objects. For previous five Daraset objects, each Dataset object aggregate
one or more related Cell objects. All inner Cell objects will be automatically created as
needed when the outer Dataser object is filled data. For quickly locating a point in a
Dataser object, a Point Locator object is designed for the purpose. This object is

aggregated by the Poinr Ser object.

8.5 CVLAttributes Library (DLL)

This library is an in-process component object server. It houses all basic aggregatable
attribute data components used by the framework. These basic data component objects
aggregate or contain at least one array object provided by the CVLArray.DLL library.
These attribute objects are as follows:
I. Scalars object
This component object aggregates array objects and a color lookup table
object. Depending on the request, the Scalars object creates an inner array
object (which represents an n-dimensional array of specific data type and the
inner lookup table object. The array object is used to store scalar values at the

corresponding coordinate(s). The lookup table object is used to store RGBA

42

color values, which correspond to the scalar values. The lookup table object
aggregates a 4-dimensional unsigned char array object. Thus the scalars object
is a composite object used to store various scalar values at each point in a
dataset. It encapsulates related properties and methods that operate on the
inner objects.

. Vectors Object

Vectors component object aggregates all array objects provided by the
CVLArray.DLL library. Depending on the request of creation, it creates a 3-
dimensional array object, which represents a specific data type array. It
encapsulates related properties and methods that manipulate the inner array
object. It is used to store vector values.

. Normals Object

Similar to the Vectors object, the Normals component object aggregates all
array objects and will create one of these array objects as inner 3-dimensional
aggregated object depending on the request of creation. [t encapsulates related
properties and methods that are used to manipulate normal data. All normal
data of a dataset will be stored in this Normals object.

. Texture Coordinates Object

Texture Coordinates component object also aggregates all array objects and
will create one of array object as inner aggregated object depending on the
request. This object is used to store 1-, 2-, or 3-dimensional texture
coordinates data. It encapsulates related operations used to manipulate texture

coordinates data.

43

5. Tensors Object
Tensors component object is very different from the previous objects. This
object is a containment of smaller Tensor objects. Each Tensor object

encapsulates a 3 x 3 floating point array which is used to store tensor values.

Thus any number of Tensor objects can be added to or removed from this
Tensors object.

6. Field Data Object
In our framework, the Field Data Object is used as a user defined data
structured. It is designed as a containment object used to contain any type of
objects. In fact, it stores only pointers to objects. It encapsulates related
operations on these pointers.

7. Attribute Object
Anribute component object is a container object. It contains the above six
attribute objects. This container object is used to represent a point data or a

cell data in a Dataser object.

8.6 CVLReaderWriter Library (DLL)

The CVLReaderWriter library is an in-process component object server. It houses two
kinds of component objects. One is Reader component object. Another one is Writer
component object. The Reader and Writer component objects encapsulate all the file
systems operations. The Reader objects read data set data from the data files the client

object specified and generate appropriate Dataser objects. They also can fill data into the

44

Dataset objects the client object provided. Thus the Reader objects are located at the head
of the visualization pipeline. While the Dataser objects are the carriers of data to be
visualized and will be passed through the visualization pipeline. The Writer component
objects read data from the provided Dataset objects and write the data to a specific format
file. The objects contained in this library are as follows:
1. BYU Reader Object
This object aggregates a Polygonal Data dataset object. It reads polygonal data
from the specified MOVIE.BYU polygon files (these files consist of a
geometry file (.g), a scalar file (.s), a displacement or vector file (.d), and a 2D
texture coordinate file) and fills data into the inner dataset object. A client
object can pick this inner data object out of this BYU Reader Object and put the
dataset object into the visualization pipeline.
2. BYU Writer Object
The BYU Writer object is responsible for writing polygonal data to the
specified MOVIE.BYU polygon files. The client object passes a valid
polygonal dataset object to this writer object first, then calls the specific
method provided by this Writer object to write data.
3. Cyber Reader object
This object is a specific reader object used to read data from a specified
Cyberware laser digitizer file to the inner aggregated Polygonal Data object. If
the client of this Reader object didn’t pass a polygonal dataset object to this

Reader object, the Reader will create a Polygonal Data object.

45

4. Marching Cubes Reader Object
Marching Cubes Reader object is a specific Reader object used to read binary
marching cubes data from a specified marching cubes format file. It aggregates
two inner objects: one is Point Locator object and another one is a Dataset
object. The Point Locator object is used to determine the location of a point
data in the Dataset object.

5. Marching Cubes Writer Object
This object aggregates a Poly Data Writer object (which will be described
bellow). It is used to write a Polygonal Data set object to a specified marching
cubes format file.

6. Plot3D Reader Object
This object is used to read data from the specified PLOT3D formatted files and
fill data into a Structured Grid dataset object. PLOT3D is a computer graphics
program (designed by NASA Ames Research Center, Moffett Field CA.) to
visualize the grids and solutions of computational fluid dynamics. This object
aggregates a Structured Grid dataset object. After reading data, this dataset
object can be put into the visualization pipeline.

7. VTK Data Reader Object
VTK Data Reader object is a primitive object used to read the VTK [11] data
file header, dataset type, and attribute data (point and cell attributes such as
scalars, vectors, normals, etc.) from the specified VTK [11] data file. It
aggregates a Dataset object and will be aggregated by other specific Reader

objects.

8.

10

I,

12.

VTK Data Writer Object
This object is used to write the VTK [11] header and point data (e.g., scalars,
vectors, normals, etc.) to a specified VTK data file. It reads data from a passed

Dataser object. It will be aggregated by other Writer objects.

. Poly Data Reader Object

Poly Data Reader object aggregates a VTK Data Reader object. It is used to
read VTK polygonal data from a specified VTK data file. The polygonal data is
read into the Polygonal Data set object, which is stayed in the inner VTK Data

Reader object.

. Poly Data Writer Object

Poly Data Writer object aggregates a VTK Data Writer object. It passes a
Polygonal Data set object to the inner object and delegates all write operations
to the inner object.

Rectilinear Grid Reader Object

This object is used to read rectilinear grid data from a specified V7K file. It
aggregates a VTK Data Reader object. It is responsible for passing a
Rectilinear Grid dataset object to/from the inner object and delegates read
operation to the inner object.

Rectilinear Grid Writer Object

This Writer object is used to write Rectilinear Grid dataset object to a
specified VTK file. It aggregates a VTK Data Writer object, which will

perform all the write operations.

47

13.

Structured Grid Reader Object

This Reader object is responsible for reading structured grid data from a
specified VTK file to a Structured Grid dataset object. Like other VTK data set
reader objects, it aggregates a VTK Data Reader object. Its task is to fill read
data to a specified Structured Grid dataset object and pass this dataset object

to the visualization pipeline.

14. Structured Grid Writer Object

15.

16.

Structured Grid Writer abject is used to write a Structured Grid dataset object
to a specified VTK structured points data file, It aggregates a VTK Data Writer
object. Its task is to decompose the Structured Grid dataset object and passed
dataset data to the inner Writer object.

Structured Points Reader Object

This Reader object reads VTK structured points data from a specified data file
to a Structured Points object. It aggregates a VTK Data Reader object and
delegates the read task to the inner object. It is responsible to pass a Structured
Points object from the inner object to the visualization pipeline.

Structured Points Writer Object

Structured Points Writer object is responsible to pass a Structured Points
dataset object from the outside to the inner aggregated VITK Data Writer
object. The passed dataset object will be written to a specified file by the inner

VTK Data Writer object.

17. Unstructured Grid Reader Object
This Reader object is used to read VTK unstructured grid data from a specified
file to a Unstructured Grid dataset object and pass this dataset object to
outside. It aggregates a VTK Data Reader object, which will perform all read
operations.

18. Unstructured Grid Writer Object
Unstructured Grid Writer object is used to write a Unstructured Grid data set
object to a specified file. It decomposes the data set object and passes the data
to the inner aggregated VTK Data Writer object.

19. Data Set Reader Object
This Data Set Reader object is a general VTK dataset Reader object. It
aggregates a VTK Data Reader object.

20. Other Specific Reader/Writer Object
There exists lot of other format dataset files used for data visualization. In this
version of our framework, we didn’t design specific Reader/Writer objects for
other format dataset files. In future, we will add specific Reader/Writer objects

to our libraries.

8.7 CVLFilter Library (DLL)

The CVLFilter library is an in-process component object server. A Filter object will
process a large amount of visualized data. Usually, this process takes a long time. This

server will contain various Filter objects which take an input Dataset object from the

49

visualization pipeline and generate a new Dataser object for the visualization pipeline.
Each Filter object implements a specific algorithm used to process the input Daraset
object. Since Filter objects only process the input Dataset object and/or generate a new
output Dataser object, we specified that the data process methods of each Filter object
should take at least one Dataset object as an input argument. Otherwise, a Filter object
must provide two helper methods to set or get a dataset object.
Right now this library only contains several filter objects used to test the visualization
pipeline. In near future, we will add more specific Filter objects to this library. The
objects contained in the current version of this library are as follows:
1. Geometry Filter Object
This object is used to extract geometry data from the input Dataset object.
2. Elevation Filter Object
This object is used to generate scalar data based on the input Daraser data.
3. Data Set Mapper Object
This Mapper object contains a Geometry Filter object and a Polygonal Data
Mapper object. If the input dataset is a polygonal data set, it will pass the input
dataset to the inner Polygonal Data Mapper object. Otherwise it passes the
input dataset data to inner Geometry Filter object first to generate geometry
data, and then passes the input dataset data to the inner Polygonal Data

Mapper object.

50

4. Polygonal Data Mapper Object
Polygonal Data Mapper object is a major interface to the OpenGL graphics
library. It converts the input dataset data to a special data sequence and then

inputs the converted data into OpenGL commands.

8.8 CVLFactor Library (DLL)

The CVLFactor library is an in-process component object server. It houses components
that will affect the eventual render effect of a Renderer object. It contains nine
aggregatable component objects. These component objects are as follows:
. 4 x 4 Matrix Object
This object represents a 4 x 4 matrix, which is frequently used by a rendering
algorithm. This object contains a 4 x 4 float array and encapsulates all related
operations on the matrix.
2. Transformation Object

Transformation component object encapsulates a 4 x 4 Matrix object as an
inner identity matrix. It encapsulates a stack for 4 x 4 transformation matrix

objects. It provides a variety of methods for manipulating the translation, scale,
and rotation of a matrix. Methods operate only on the matrix at the top of the
stack. All operations are in a right handed coordinate system with right handed

rotations.

51

3. Light Object
Light component object encapsulates all properties and operations of a light.
These properties and operations are the light type, the location of the light, the
intensity of the light, the color of the light, turn on or off the light, etc. It is an
interface to the OpenGL graphics library.

4. Camera Object
Camera component object encapsulates all the properties and operations of a
camera. These properties and operations are the position of the camera, the
orientation of the camera, the focal point of the camera, the method of camera
projection, and the location of the camera clipping planes. It contains two
Transformation objects to perform necessary transform operations.

5. Property Object
Property component object represents rendering environment attributes and
surface properties of the Data object being rendered. The information
encapsulated in a Property object includes ambient lighting (color and
intensity), diffuse lighting (color and angle of incidence of the light onto a
Data object), specular lighting (color, reflection angle and specular power).

6. 2D Property Object
2D Property object contains methods and properties to render 2D images.

7. Volume Property Object

This object contains properties used to render a volume dataset.

52

8. Color Transfer Function Object
This object is used to map a property to an RGB color value. It defines a
transfer function for this purpose.

9. Piecewise Function Object

This object provides a linear mapping function for rendering a volume.

8.9 CVLRenderer Library (DLL)

This in-process library houses component objects used to create a rendering window and
render data on the screen. The major objects contained in this library are as follows:
1. OpenGL Renderer Object
This object is a major interface to the OpenGL graphics library. It is also an
interface to the users’ specific rendering algorithms. It encapsulates methods to
manage objects used to render an input dataset in a rendering window. The
related objects are as follows:
(1) a Dataset object for storing rendering data;
(2) a Camera object used as the active camera;
(3) a Light object for rendering lights;
(4) a Viewport object for coordinates transformation;
(5) a Render Window object for managing rendering window.
2. Render Window Object
Render Window object is used by OpenGL Renderer to create and manage

rendering window. It is an interface between the final user and the OpenGL

33

Renderer object. It encapsulates properties and methods for a rendering
window.

. Actor Object

Actor object is used to represent an entity in a rendering scene. It provides
methods related to the actor’s position, and orientation. It maintains a reference
to a Mapper object which maps input dataset data to image data.

. Volume Object

Volume object is used as a volume renderer to render a volume data object. It is
aggregated by the OpenGL Renderer object. It represents a volumetric entity in
a rendering scene. This object encapsulates methods related to the volume's
position, orientation and maintains a reference to the volumetric data and a
reference to a volume property which contains all common volume rendering

parameters.

8.10 CVLImaging Library (EXE)

The CVLImaging library is an out-of-process component object server. It houses

component objects used to process 2D images in a rendering scene. Right now this library

Just contains some necessary objects used to provide methods related to basic image

processing. These objects are:

1. Viewport Object
Viewport object is an object used to control the rendering process for objects. It

performs coordinate transformation between world coordinates, view

54

coordinates (the computer graphics rendering coordinate system), and display
coordinates (the actual screen coordinates on the display device). This object is
aggregated in the OpenGL Renderer object. It is also a container of 2D Actor
objects.

2. 2D Actor Object
2D Actor object represents a 2D image. It aggregates a 2D Mapper object to
render the image.

3. 2D Mapper Object
This object is just an abstract interface for objects which render two
dimensional actor objects.

4. Plane Object
Plane object is a helper object. It provides methods for various plane
computations. These include projecting points onto a plane, evaluating the

plane equation, and returning plane normal.

8.11 CVLSource Library (DLL)

This in-process library contains objects used to generate dataset data for rendering. Right
now it contains only one data source object named as CVLSphereSource for testing the
framework. This CVLSphereSource object can generate polygonal data based on the
settings of sphere size and image resolution. The generated polygonal data represents a

required sphere and is stored in a CVLPolygonalData object.

55

Chapter 9 Interfaces Design And Implementation

A component object is like a “black box”. A client object calls a method provided by a
component object through an interface the component object exposes. A component
object can have more than one interface. Each interface exposes more than one properties
and/or methods. In the following subsections, we will describe the implementation of
interfaces for component objects of our framework and some problems we encountered.
As the data visualization framework were built based on our component object model and
the C++ classes given in [11], we focused on the interface design and implementation of
component objects instead of the related object dynamic model and functional model
design, which is part of traditional object-oriented design. Will Schroeder er al have
discussed the object dynamic model and functional model of data visualization in detail

in their book [11].

9.1 Conventions

In order to make the interfaces easy to understand and use, we adopt some naming
conventions in our design and implementation. These naming conventions are as follows:
l. Interface Class Names

All interface class names begin with the prefix I.

56

. C++ Class Names

All C++ classes used in the framework are named with the prefix C.

. Component Object Class Names

All component object class names use the names of definitions in Chapter 8
without space if the names of definitions consist of more than one word and
with the prefix CVL, which means Component-Based Visualization Libraries.

. File Names

File names are the same as the name of the C++ class or the component object
class they contain. The suffix .h is used for all header files and the suffix .cpp
is used for all source files.

. Class Member Data Names

All class member data names are named using long descriptive names, which
have prefix m_, beginning with a lower case letter that indicates the data type,
followed by a capital letter and case change to indicate word separation.

. Automatic Variables

All automatic variables are named using long descriptive names beginning with
a lower case letter that indicates the data type, followed by a capital letter and
case change to indicate word separation.

. VTK Naming Conventions

If the classes or the functions are borrowed from [11], we keep their names

intact.

57

9.2 Programming Language

We chose Microsoft Visual C++ with Microsoft Interface Definition Language, MFC and
Active Template Library (ATL) to implement the data visualization framework for the

Win32 platform.

9.3 Interfaces

In the following subsections, we provide all the interfaces design and implementation
details. In the Appendix A, we list an interface file of CVLSource.DLL library as an

example. All design and implementation details about VTK classes please refer to [11].

9.3.1 Class Identifier And Interface Identifier

In our design and implementation, all component objects and associated interface(s) have
their own unique identifiers. Each class identifier can be referenced by a reference
variable named as CLSID_XXXXXX, where XXXXXX is class name. For interfaces,
each interface identifier can be referenced by ID_IXXXXXX, where IXXXXXX is the
interface name associated with class XXXXXX. For each library (in-process or out-of-
process), all definitions of class identifiers and associated interface identifiers are
predefined in the file named as XXXX_i.c, where XXXX is the library name. For any
client of our visualization framework should include this file if the client application is

coded in C or C++.

58

9.3.2 Marshalling Code

In our implementation, all marshalling code is generated by M/DL compiler according to
the interface file named as XXXX.idl, where XXXX is the corresponding library name.
We didn’t implement an independent marshalling library. Instead, we merged the

marshalling code into the appropriate component object code.

9.3.3 Threading Model

In order to have a good performance, we choose free threading model and free threaded
marshaler when we create a component object. This implies that all of component object
classes are derived from ATL template class CComMultiThreadMode!l and our

framework is multi-threaded.

9.3.4 Component Objects

For research purpose, we implement all component objects as non-licensed component
objects. In our design and implementation, there are two kinds of component objects. One
is atom component objects, the other is composite component objects. A composite
component object may be a container of atom component objects and other composite
objects, or aggregate other atom component object(s) or composite component objects.

Each component object has at least one default interface. We put component objects into

59

different in-process or out-of-process libraries according to the functionality they provide.
In Chapter 8, we have briefly described these libraries. In the following subsections, we
provide more details about implementations of component objects contained in these

libraries.

9.3.3.1 Array Component Objects

Array is a basic data structure in data visualization. We use MFC template array class
CArray to implement m x n arrays of various data types. In our framework, all arrays are
in column-major order. In fact, we just create 1-dimensional array and logically treat the
I-dimensional array as n-dimensional array depending on the request of creation. Since
the OLE Automation supports the number of data types less than that C++ language

supports, we only implement the following basic array component objects in our

framework:

Data Type Component Class Name Interface Class Name

VARIANT CCVLVariantArray ICVLVraiantArray

unsigned char CCVLUnsignedCharArray ICVLUnsignedCharArray
CCVLBitArray ICVLBitArray

float CCVLFloatArray ICVLFloatArray

double CCVLDoubleArray ICVLDoubleArray

long integer CCVLLongArray ICVLLongArray

short integer CCVLShortArray ICVLShortArray

60

These component objects are housed in CVLArray.DLL library and have very similar
interfaces.
For indicating the data type used by above array objects, we predefine an enum data type
of CVLDATATYPE in the CVLArray.idl interface file as follows:
typedef [vI_enum, public] enum {

VARIANT_TYPE =0,

BIT_TYPE = I,

UNSIGNED_CHAR_TYPE = 2,

SHORT_TYPE = 3,

LONG_TYPE = 4,

FLOAT_TYPE = §,

DOUBLE_TYPE = 6
} CVLDATATYPE; // Component-Based Visualization Data Type
CVLDATATYPE is available for all component objects in our framework.
Each array component has only one default interface derived from [Disparch interface,
which is derived from /Unknown interface. The properties and methods of each array
component are exposed through its own interface. All array component objects are
declared as aggregatable so that they can be aggregated by other component objects.
These array components have a very similar set of properties and methods. These set of
properties and methods provide basic operations on different data types of arrays. After
they are instantiated, the “Create” method must be called before calling other methods in

order to initialize the created objects and allocate memory. All interface classes of array

61

component objects are declared in the CVLARRAY.idl file. In Figure 12, we list the

interface declaration of the CVLFloatArray object as an example.

)
{

*p

|3

interface ICVLFloatArray : [Dispatch

*pVal);

INumberQfComponents);

object,

uuid(4C2E95D6-ATEQ- 1 1 D2-BCYF-444553540000),
dual,

helpstring("ICVLFloatArray Interface'),
pointer_default(unique)

[propget. id(1), helpstring("property DataType (READ ONLY)")] HRESULT DataType({out, retval] CVLDATATYPE *pVal);
[propget. id(2), helpstring("'property DataTypeStnng (READ ONLY)")} HRESULT DataTypeString([out, retval) BSTR *pVal);
{propget, id(3), helpstring("property ObjectName (READ ONLY)")] HRESULT ObjectName({out, retval) BSTR *pVai);
[propget. id(4), helpstring("'property Rows (READ ONLY) -- Number of wples)]JHRESULT Rows([out. retval] long *pVal);
[propget. id(5), helpstring("'property Columns (READ ONLY) —~ Number of components")} HRESULT Columns({out. retval] fong

[propget. id(6). helpstring(“property ArmaySize (READ ONLY)")) HRESULT ArraySize([out, retval] long *pVal);

{propget. id(7), helpstring("'property MaxIndex (READ ONLY)")] HRESULT MaxIndex([out, retval} long *pVal);

{propget. idi8), helpstring("property ModifiedTimeStamp (READ ONLY)")] HRESULT ModifiedTimeStamp([out. retval] long
Val);

{propget. id(9), helpstring(“property SaveUserArmayFlag")] HRESULT SaveUserArrayFlag([out, retval] BOOL *pVal);
[propput. id(9). helpstring("property SaveUserArrayFlag")) HRESULT SaveUserArmayFlag({in} BOOL newVal);

(id(10), helpstring(“method Create™)] HRESULT Createt{in] long IRows, {in] long iColumns, [in} long IGrowBy);

[id(11), helpstring("method Compact"}] HRESULT Compact();

{id(12), helpstring("method Reset”)] HRESULT Reset();

[id(13), helpstring("method GetPointerToTuple")] HRESULT GetPointerToTuple((in} long IRow, [in, out] float® pfTuple);
{id(14), helpstring("methed GetTuple™)] HRESULT GetTuple((in) long IRow. {in, out, ref] float* pfTuple);

(id(15), helpstring("method SetTuple™)] HRESULT SetTuple(lin] long IRow, {in, ref] float* pfTuple):

[id(16). helpstring("method InsertTuple™) HRESULT InsertTupk([in] long IRow, (in, ref] float* pfTuple);

{id(17), helpstring(“method InsertNextTuple”)} HRESULT InsertNextTuple([in, ref] float* pfTuple);

(id(18), helpstring("method GetElement')] HRESULT GetElement([in] long IRow, [in] long IColumn, (out, retval) float* fVal);
[id(19), helpstring("method SetElement”)] HRESULT SetElement([in] long IRow., [in] long [Column, (in] float {Val);

(id(20). helpstring("method InseriElement")) HRESULT InsertElement([in] long IRow, [in} long IColumn, [in] float fVal).
(id(21), helpsiring("method Resize’)] HRESULT Resize({in] long INewRows, [in] long INewColumns, [in] long INewGrowBy);
[id(22), helpstring("method DeepCopy'] HRESULT DeepCopyt(lin] long IRows, [in] long IColumns. [in, ref] float* pfArray);
(id(23), helpstring(“method GetAmayPointer”)] HRESULT GetArrayPointer((in, out] float® pfAmay);

[id(24), helpstring("method AppendElement")] HRESULT AppendElement([in] float fVal);

{id(25), helpstring("method Empty")) HRESULT Empiy();

[id(26), helpstring("method DeepCopy2")) HRESULT DeepCopy2([in] ICVLFloatAmay** objCVLFloatAmay);

[id(27), helpstring("method SetNumberOfTuples™)] HRESULT SetNumberOfTuples([in] long INumberOfTuples);

{id(28), helpstring("method SetNumberOfComponenis)] HRESULT SetNumberOfComponenis([in] long

CO

Figure 12: The Interface Declaration Of The CVLFloatArray Object

The interface file will be compiled by the interface compiler to generate marshaler code

for the objects of the library. The functionality of methods and properties of our array

mponent objects are equivalent to the functionality of VTK array classes [11], but our

implementation is OLE Automation compatible, and the user can view these properties

62

and methods in an OLE Automation Controller (e.g., Microsoft Visual Basic) or using
OLEICOM Object Viewer. In Chapter 10, we will introduce a way to reuse a component
object in Visual C++ and Visual Basic.

In CVLArray.DLL library, we provide an abstract array object named as CVLDataArray.
This abstract array object can take one of above array objects as inner object by calling an
appropriate method. In Section 9.4, we will explain why we have to implement such

abstract object.

9.3.3.2 Basic Data Structure Objects

In our framework, all basic data structure component objects (such as Points object, Cell
objects, Daraser objects, Attribute objects and Id List object) are housed in the DLLs
CVLPoint.DLL, CVLCells.DLL, CVLDatasets, and CVLAttributes.DLL. These objects are
used to build complicated dataset objects. In the following subsections, we introduce

these objects in detail.

9.3.3.2.1 Data Attribute Objects

In our framework, data attribute objects include the following objects:
1. CVLDataAttribute object
2. CVLLookUpTable object
3. CVLFieldData object

4. CVLNormals object

63

5. CVLScalars object

6. CVLTextureCoordinates object

7. CVLVectors object
These seven objects are used to store values at each point in a data set object.
CVLDataAntribute is a container object. It contains the last five objects as its inner
objects. By calling set interface pointer methods, these five smaller objects can be put
into this container object. The inner objects can also be taken out by calling get interface
pointer methods. This object is usually used as a Point Data object or a Cell Data object
in a Dataset object.
CVLLookUpTable object provides color map functionality for data visualization. It
aggregates an atom object of CVLUnsignedCharArray as internal color lookup table. The

CVLUnsignedCharArray object is instantiated as a NumberOfColors x 4 array. Each

tuple of this array contains rgba values. So each tuple can be treated as an array with four
elements. The methods provided by this component are related to insert, set, or delete a
rgba tuple or an element of a tuple. After it is created, the “Create” method must be called
immediately to allocate memory for the lookup table. Or the “Build” method can be
called to build a default lookup table according to properties settings.

CVLFieldData object is a special data object. It contains a pointer array to hold pointers
to the user defined arrays for each point in a Dataser object. This pointer array was
implemented using MFC CPtrArray class. After it is created, the method of “Create”
must be called in order to allocate memory for this object. It encapsulates methods for
manipulating field data in this pointer array. The “GetArray” method has a special

argument list. Usually the CPtrArray class converts any type of pointer to “void” type

64

before storing pointers. When a pointer is fetched from the pointer array, the pointer type
must be casted appropriately. The Microsoft interface compiler doesn’t support “void™
type pointer. Thus we use IlUnknow double pointer as output argument instead of “void™.
The correct type of the obtained pointer is stored in another output argument named as
“pcdDataType”. Since this argument is a reference type of pointer, an address of a
“CVLDATATYPE" variable must be passed to this method.

CVLScalars object is another special object used to store scalars at each point. It stores
any dimensional scalars, but usually it is used as a one dimensional array corresponding
to an active component (or column) of the array. Thus the active component of the array
must be specified before a scalar is manipulated. The default active component is 0" (the
first column of the array). This value can be set through property of “ActiveComponent”.
This object also aggregates a CVLLookUpTable object as its inner default color lookup
table. The method of “"CreateDefaultLookUpTable™ is used to create this inner object and
a default color lookup table. The “Initialize” method must be called before calling other
scalar methods. This method will create an array object and allocate memory according to
the specified data type of scalars and the dimensions of scalars.

CVLNormals and CVLVectors objects have similar internal data structure. CVLNormals
object is used to store 3D normals, while CVLVectors is used to store 3D vectors. The
“Create” method must be called before calling other methods.

The major difference between these objects and corresponding VTK class objects is that
the values you get through exposed methods are stored in the provided array, not just a

pointer to a tuple of the inner array. Thus when you want to get a normal tuple, a vector

65

tuple, or a scalar tuple, you have to pass an array, which has been allocated memory, to

the method to be called.

9.3.3.2.2 Paint Objects

There are three point objects used to manipulate and/or store point coordinates. These
objects are as follows:

I. CVLIdList object

2. CVLPoints object

3. CVLNeighborPoints object
The CVLIdList object is a primitive object for dataset objects. It provides services for
managing point IDs or cell IDs in a dataset. This object aggregates a CVLLongArray
object. It doesn't implement any array operation, instead it delegates these operations to
the inner CVLLongArray object.
The CVLPoints object is used to store 3D point coordinates in a dataset. It aggregates all
array objects and creates a concrete inner array object when the “Create” method is
called. This component object exposes methods and properties through its default
interface. The exposed methods and properties are related to manage point coordinates of
a dataset object. We have implemented two methods to perform deep copy operation. The
“DeepCopy” method takes a long integer type of pointer as an input argument. The
DeepCopy2 method takes a double interface pointer as an input argument. The input

double interface pointer must point to the address of an /CVLPoints type pointer variable.

In Visual Basic, a CVLPoints object variable can be used as this argument. This is very
different from that in C++ language.
The CVLNeighborPoints object is used to determine a point’s neighbors. This small

object is aggregated by CVLPointLocator object.

9.3.3.2.3 Cell Objects

In Chapter 7, we have defined twelve types of cells. In CVLCells.DLL library, we provide
corresponding objects to represent these cells. These cell objects will be aggregated by
Dataser objects. These cell objects are as follows:

I. CVLHexahedron object

2. CVLLine object

3. CVLPixel object

4. CVLPolygon object

5. CVLPolyLine object

6. CVLPolyVertex object

7. CVLQuadrilateral object

8. CVLTensors object

9. CVLTetrahedron object

10. CVLTriangle object

1. CVLTriangleStrip object

12. CVLVertex object

67

These twelve cell objects are the concrete implementation of the abstract CVLCell object.
The reason we provide this abstract object will be explained in Section 9.4.

These objects have very similar methods. These methods are used to initialize the created
object, and manipulate cells such as clip, contour, intersect, insert/get cell points, etc. The
“Initialize™ or “Initialize2" method must be called after a cell object is created. These two
methods take different argument list. The first method has three arguments. The first
argument indicates the number of points will be inserted into the cell object. The second
argument is a pointer to a point id array. The last argument is a double interface pointer to
a CVLPoints object. These three arguments are used to initialize the inner aggregated
object of the Cell object, copy IDs and point coordinates to the inner aggregated objects.
The second method takes one argument which indicate how many points will be inserted.
This argument is used to initialize two inner aggregated objects: CVLIdList and

CVLPoints objects. Thus the second method just creates inner empty objects.

9.3.3.2.4 Dataset Objects

Dataser objects are basic objects for data visualization pipeline. They contain data to be
visualized and are passed through visualization pipeline. There are six types of Dataset
objects in the CVLDatasets.DLL library:

1. CVLPointSet object

2. CVLPolygonalData object

3. CVLRectilinearGrid object

4. CVLStructuredGrid object

68

5. CVLStructuredPoints object

6. CVLUnstructuredGrid object
These objects have similar interfaces, but have different inner aggregated objects. In order
to conveniently set/get point/cell data in a Dataser object, we implemented a series of
helper methods to set/get inner objects’ interface pointers and pointers to themselves. In
Section 9.4, we will explain why we need a helper method of *SetSelfPointer” to set an
interface pointer to the object itself. This method must be called immediately after a
Dataser object is created. The “Initialize” method of a dataset object must be called
before other methods of the dataset object can be called. This “Initialize” method will
automatically create inner objects and allocate memory for the created objects.
Since the object CVLPointLocator is frequently used by a Dataser object, we put this
object in the CVLDatasets.DLL library. This object provides methods to efficiently locate
a point in a provided Dataser object. It aggregates a CVLNeighborPoints object. This
aggregated object is automatically created after the CVLPointLacator object is created.
Some methods need a double interface pointer to a CVLPoints object or CVLPointSet
object as input argument. Some methods need a pointer of a data type as an input or
output argument. The interface files have indicated whether the pointer argument is a
reference pointer or a full pointer. If a pointer is indicated as “ref” pointer, this pointer is
a reference pointer. Otherwise it is a full pointer. For a reference pointer argument, the

address of a variable must be used. This situation is true for all objects in our framework.

69

9.3.3.2.5 Other Helper Objects

In CVLCells.DLL and CVLDatasets.DLL libraries, we also provides some helper objects
for efficiently managing or finding a point or a cell in a Dataset object. These objects are
as follows:

1. CVLCellArray object

2. CVLCellLinks object

3. CVLCellLinkStructure object

4. CVLCellTypes object

5. CVLCeliTypeStructure object

6. CVLPriorityQueue object

7. CVLStructuredData

8. CVLCell object

9. CVLDataSet object
The first seven objects will be automatically created and initialized by cell objects or
Dataser objects. They provide computational services to Cell objects and Dataser objects.
The last two objects are abstract objects. The CVLCel! object is used as a container object
of a concrete Cell object. The CVLDataSet object is a container object used to take a
concrete Dataset object going through the visualization pipeline. We will explain the

reason of creating these two abstract objects in Section 9.4.

70

8.3.3.3 Factor Objects

There are six factor objects housed in the CVLFactor.DLL library. These six objects are
as follows:

1. CVLCamera object

2. CVLLight object

3. CVLMatrix4x4 object

4. CVLProperty object

5. CVLProperty2D

6. CVLTransformation object
The CVLCamera object aggregates two CVLTransformation objects. It is used for 3D
rendering. It encapsulates methods used to position and orient the view point and focal
point. Also it provides methods to manipulate graphics including view up vector, clipping
planes, and camera perspective.
The CVLLight object encapsulates some OpenGL functions related to lights in its Render
method. It is used as a light source object in a rendering window.
The CVLMatrix4x4 object encapsulates a 4 x 4 floating point array. It provides 4 x 4
matrix operations through its exposed interface. This object is frequently used by Mapper
object, Transform objects and other Renderer objects. After it is created, the “Create”

method can be called to initialize the inner 4 x 4 floating point array as an identity matrix.

71

The CVLProperty object represents lighting and other surface properties of a geometric
object. It encapsulates properties and methods to set colors (overall, ambient, diffuse,
specular, and edge color), specular power; opacity of the object, the representation of the
object (points, wireframe, or surface), and the shading method to be used (flat, Gouraud,
and Phong). Also, some special graphics features like backface properties can be set and
manipulated with this object. It encapsulates an OpenGL function (gIMaterialfv) in the
“BackfaceRender” method. This object is frequently used by other Mapper objects.

The CVLProperty2D object is similar to the CVLProperty object, but it contains
properties used to render 2-dimensional images.

The CVLTransformation object is used to maintain a stack of CVLMatrix4x4 objects. It
encapsulates methods to manipulate the translation, scale, and rotation components of the
CVLMatrix4x4 object which sits at the top of the stack. Many objects use this object for
performing their matrix operations. This object performs all of its operations in a right

handed coordinate system with right handed rotations.

9.3.3.4 Filter Objects

There are two kinds of Filter objects housed in the CVLFilter.DLL library. One kind of
Filter object processes the input Dataset object and generates a new Dataser object for
output. The data processed by this kind of Filter object cannot be used to draw a picture
on the screen directly. Another kind of Filter object is called a Mapper object. The
Mapper objects convert the input data objects to a form that OpenGL functions can

recognize, and call appropriate OpenGL functions to draw a picture on the screen. Right

72

now only two Filter objects and two Mapper objects were implemented for testing our
framework. The implemented Filter objects are as follows:

1. CVLGeometryFilter object

2. CVLPolyDataMapper object

3. CVLDataSetMapper object

4. CVLMapper object

5. CVLElevationFilter object
The CVLGeomerryFilter object is a general-purpose Filter object used to extract
geometry (and associated data) from any type of Dataser objects. It encapsulates methods
to extract OD, 1D and 2D Cell objects. It also provides methods to extract 2D faces used
by a 3D Cell object.
The CVLPolyDataMapper object is used to convert a CVLPolvgonalData object to
OpenGL data formats and call appropriate OpenGL functions to draw polygonal data in a
rendering window. It encapsulates OpenGL functions in “Render” and “Draw” methods.
The CVLDataSetMapper object encapsulates the previous two objects to map a dataset
object. It provides methods to convert 0D, 1D and 2D cells into points, lines, and
polygons or triangle strips, and then mapped to the graphics system.
The CVLMapper object is an abstract object used to create a concrete Mapper object. The
user application should create an instance of this abstract object first then call “Initialize”
method to create a concrete Mapper object. In Section 9.4, we will explain the reason of
creating such abstract objects in our libraries.
The CVLElevationFilter object is used to generate scalar values from a dataset. The scalar

values lie within a user specified range, and are generated by computing a projection of

73

each dataset point onto a line. The line can be oriented arbitrarily. It is typically used to
generate scalars based on elevation or height above a plane.

The “Setlnput” methods of all Filter objects must be invoked before calling other
methods. This method takes a double interface pointer to an abstract object of
CVLDataSet object as an input argument. The real input dataset type can be checked by

calling “GetDataSetType” method.

9.3.3.§ 2D Imaging Objects

2D Imaging objects are housed in CVLImaging.EXE library. These objects are used to
process 2D images in a rendering window. There are eleven basic imaging objects were
implemented. These objects are:

1. CVLWindow object

2. CVLViewport object

3. CVLPlane object

4. CVLTexture object

5. CVLActor2D object

6. CVLImageCache object

7. CVLImageData object

8. CVLImageSource object

9. CVLImageToStructuredPoints object

10. CVLStructuredPointsTolmage object

11. CVLCoordinates object

74

The CVLWindow object is a small object used to store properties of a rendering window.
It provides properties and methods to set/get properties of a rendering window. It is
aggregated by the CVLViewport object.

The CVLViewport object controls the rendering process for objects. Rendering is the
process of converting geometry, a specification for lights, and a camera view into an
image. This object also provides methods to perform coordinate transformation between
world coordinates, view coordinates (the computer graphics rendering coordinate
system), and display coordinates (the actual screen coordinates on the display device).
Certain advanced rendering features such as two-sided lighting can also be controlled. It
is used by a Renderer or a Mapper object.

The CVLPlane object provides methods for various plane computations. These include
projecting points onto a plane, evaluating the plane equation, and returning plane normal.
This is a small helper object used by a data object.

The CVLTexture object exposes methods through its default interface to handle properties
associated with a texture map. It encapsulates some OpenGL texture functions in its
“Render” method and "Load” method.

The CVLActor2D object is used to represent a two dimensional image. It is similar to the
CVLActor object which represents a 3D graphic in a rendering window. This object
aggregates a CVLProperty2D object and a CVLCoordinates objects. It is an interface
between CVLOpenGLRenderer object and 2-dimensional Mapper object.

The CVLCoordinates object represents a location or position of a 2D image. It provides

methods to convert an image point between different coordinate systems (e.g., display

75

coordinate system, world coordinate system, view coordinate system, etc.) and relative
positioning.

Other objects were partly implemented. These objects are used to cache image data,
convert image data to a structured points dataset or vice versa. They provide an interface

to a Dataset object.

9.3.3.6 Rendering Objects

The CVLRenderer.DLL library contains major objects used to render an input Dataser
object. In this library, only the following basic objects have been implemented:

!. CVLACctor object

2. CVLOpenGLRenderer object

3. CVLRenderWindow object

4. CVLVolume object

5. Some Collection objects used by CVLOpenGLRenderer and

CVLRenderWindow objects

The CVLActor object represents an entity in a rendering scene. It aggregates CVLProperty
object, CVLMapper object, CVLTexture object, CVLMatrix4x4 object and
CVLTransformation object, which are used to manipulate an object in a rendering
window (e.g., scale, rotate, translate). In fact, it is an interface between a Renderer object
and a Mapper object. In the “Render” method, it passes itself and its outer object (which

is a CVLOpenGLRenderer object) to the inner Mapper object through two double

76

interface pointers (one points to itself and the other points to its outer object). In Section
9.4, we will describe an approach to get an interface pointer to the object itself.

The CVLOpenGLRenderer object contains CVLActor object, CVLCamera object,
CVLRenderWindow object, CVLViewport object, etc. It is responsible for managing Actor
objects in a rendering window, allocating rendering time to each Actor object, setting
rending Light objects and other Factor objects. It has a connection point for connecting a
specific Renderer object called as “CVLRendererSink” to run a specific rending method
provided by this specific object. This CVLRendererSink object will be implemented by
the user to provide specific rendering methods to this CVLOpenGLRenderer object. In the
CVLRenderer.DLL library we only predefine the default interface class of this
CVLRendererSink object. At the runtime, the CVLOpenGLRenderer object will inquires
the connection point. If the user has implemented the CVLRendererSink object and this
object has connected to the connection point, then the CVLOpenGLRenderer object will
run the methods provided by the connected CVLRendererSink object.

The CVLRenderWindow object is used by the CVLOpenGLRenderer object to create a
rendering window. In our framework, one CVLRenderWindow object represents one
rendering window. A nested class derived from the ATL template class CWindowimp
implements a real rendering window. Since a window handle cannot be directly passed to
a method or other objects, we implement this window class as a nested class of the
CVLRenderWindow object so that the window handle is actually passed to other objects
when the interface pointer to the CVLRenderWindow object is passed to other objects.
This is very useful for debugging objects that only run in the background. In our

approach, we didn’t implement an interface class for this nested window class. Only

77

necessary message handlers are implemented in this nested window class. These handlers
will call appropriate methods provided by the CVLRenderWindow object. Thus the
CVLRenderWindow object exposes only its properties and methods instead of these
message handlers implemented in the nested window class, while a user can interact with
the CVLRenderWindow object through the rendering window (in fact through the inner
nested window class). This approach greatly favors the development of interactive data
visualization application.

The CVLVolume object represents a volumetric entity in a rendering scene. It provides
methods related to the volume’s position, orientation and origin. It is used by the
CVLOpenGLRenderer object to render the volumetric data.

Some Collection objects (such as CVLActorCollection, CVLLightCollection,
CVLCameraCollection and CVLRendererCollection) are intemally used by
CVLOpenGLRenderer and CVLRenderWindow objects. These Collection objects only
implement several methods to add, get and remove an appropriate object from the
Collection object. In this version of our framework, these Collection objects were
implemented by using MFC CPtrArray class. All stored objects (in fact interface

pointers) can only be released by the Collection objects.

9.3.3.7 Reader/Writer Objects

The CVLReaderWriter.DLL contains objects used to read dataset data from a specified
file into a Dataset object, or write a dataset data to a specified file. These objects are the

interfaces to the underlying file system. By setting up related file names and input/output

78

dataset interface pointers, these objects will finish the rest of works. The read/write objets
that have been implemented are as follows:
1. CVLVTKDataReader object
2. CVLVTKDataWriter object
3. CVLDataSetReader object
4. CVLPolyDataReader object
5. CVLPolyDataWriter object
6. CVLRectilinearGridReader object
7. CVLRectilinearGridWriter object
8. CVLStructuredGridReader object
9. CVLStructuredGridWriter object
10. CVLStructuredPointsReader object
11. CVLStructuredPointsWriter object
12. CVLUnstructuredGridReader object
13. CVLUnstructuredGridWriter object
14. CVLFieldDataReader object
15. CVLFieldDataWriter object
16. CVLBYUReader object
17. CVLBYUWriter object
18. CVLCyberReader object
19. CVLMarchingCubesReader object
20. CVLMarchingCubesWriter object

21. CVLPlot3DReader object

79

The CVLVTKDataReader object is a kemnel Reader object that reads data from a VTK
format data file and stores data in a Dataset object. This Reader object is aggregated by
CLDataSetReader object, CVLPolyDataReader object, CVLRectilinearGridReader
object, CVLStructuredPointsReader object, CVLStructuredGridReader object, and
CVLFieldDataReader object. These Reader objects are used to read data from a specific
VTK format data file to the corresponding Dataset object. These objects automatically
create a Dataset object to store dataset data or use the Dataser object set by the user to
store data. The Dataser object can be taken out using a helper method to get the interface
pointer to the Daraser object.

Similar to the CVLVTKDataReader object, the CVLVTKDataWriter object is a kemel
object for the corresponding Writer objects. These objects are: CVLPolyDataWriter,
CVLRectilinearGridWriter, ~ CVLStructuredGridWriter, CVLStructuredPointsWriter,
CVLUnstructuredGridWriter, and CVLFieldDataWriter. These Writer objects write the
input Dataset object to the corresponding VTK format data file. What the user needs to do
is just to specify a file name and set the input Dataser object interface pointer.

The other Reader/Writer objects are used to read data from or write data to a specific

format data file other than VTK format data file.

9.3.3.8 Data Source Objects

Data source objects are housed in the CVLSource.DLL library. The objects in this library
are another kind of visualization data source. These objects can generate dataset data for

rendering. Right now we implemented only one data source object named as

80

CVLSphereSource object for testing our framework. This object exposes methods to set
up data generation conditions. Based on these conditions, it generates the corresponding

sphere points data and normals data.

9.4 Some Approaches Used In The Implementation

The implementation of our framework is another style of object-oriented programming. A
component object has a very clear boundary. It is a real object that completely
encapsulates its internal variables and functions no matter whether these variables and
functions are declared as public or private. It exposes its methods or properties through its
one or more interfaces (implemented by interface classes), while the properties or
methods in tumn invoke its internal variables or functions. Between component objects
there is no class inheritance relationships. One component object can inherits other
objects’ interfaces so that the object has other objects’ behaviors. However, the inherited
interfaces are not explicitly exposed to the other objects. For example, each component
object inherits /Unknown interface which exposes three well-known methods:
Querylnterface(), AddRef() and Release(). But each component object doesn’t expose
these three methods through its interface explicitly. Since Visual Basic is an Automation
Controller, it will execute these three methods automatically when an object is created or
set, in Visual Basic Integrated Development Environment these three methods are not
displayed as member methods of a component object.

Each component object must be explicitly created using the function of

“CoCreatelnstance” (or CComObject template class) in VC++ or declare an object

81

variable in VB before the object can be used. The created object is an uninitialized object.
The relationships between component objects are clear. A component object can create
other objects as aggregated or contained objects. Only the outer object (the creator)
knows the interface pointers to its inner objects. However, a component object doesn’t
know its interface pointer at all. A component object has no way to get an interface
pointer to its exposed interface by calling a system function. This problem is very serious
for data visualization applications. We know that in C++ language there is a “rthis”
pointer to the class object itself. A class object can use this pointer as a “hook” to pass
itself to other class objects. This greatly simplifies the programming work. Unfortunately,
the “rhis™ pointer doesn’t work for component objects because only an interface pointer
can be passed between component objects. An interface pointer is not a class pointer. It
can only be obtained through “CoCreatelnstance™ function call or “Querylnterface”
function call. To solve this problem, we provide a helper method named as
“SetSelfPointer” for the component object that needs to pass itself to other objects. This
method is invoked by an outer object after it creates an inner object. By calling this
method, the outer object passes the inner object’s interface pointer to the inner object, so
that the inner object can use this interface pointer to pass itself to other objects. Thus in
our framework a component object can take data going through visualization pipeline by
itself.

“Polymorphism” is a powerful technique in traditional object-oriented programming. An
abstract class can declare the necessary virtual or pure virtual functions for its subclasses.
Thus an abstract class object can represent any of its subclass objects to communicate

with other class objects. However, there is no “implementation inheritance” relationships

82

between component objects. We cannot directly use *“polymorphism”™ technique in our
implementation. To efficiently create visualization pipeline, we need this powerful
technique. To get around this problem, we treat an abstract component object as a
container object and let the container object create a concrete inner object automatically
depending on the initializing request. This abstract object exposes its inner objects
interfaces through its default interface. It delegates an operation to the appropriate inner
object. When this abstract object is passed through the visualization pipeline, the inner
concrete object is automatically passed through the pipeline. But the behavior of the
abstract object is that of the inner concrete object indeed. In our framework,
CVLDataArray, CVLCell, CVLDataSet, and CVLMapper are such abstract objects.
Another technique can be used to take the advantage of “polymorphism™ in the
component object implementation. This technique utilizes the fact that all interface
classes must derive from the “*/Unknown” class. Thus an /Unknown interface pointer can
be used to represent any type of interface pointer (like a void pointer can represent any
type of pointer). In our framework we did not use this technique for polymorphism
purpose, because this technique is not efficient due to the fact that the /Unknown class
only declares three basic virtual functions. But we frequently use [Unknown interface
pointer in method declarations in order to avoid interface compiler problems.

Dynamic binding is another powerful technique in traditional C++ programming. This
technique allows the user of an object setting a specific function for the object at run
time. This technique is frequently used to create and maintain a data visualization
pipeline by VTK [11] people in their source code. However, this technique is not suitable

for our case due to the “void™ type of pointer is not compatible with OLE Automation and

83

the Microsoft interface compiler doesn’t support “void” data type. We use “connection
point” to solve this problem. For example, in the CVLOpenGLRenderer object, we create
a connection point and predefine a pure virtual object named as CVLRendererSink. In the
“Render” method of the CVLOpenGLRenderer object, we call the method provided by
this CVLRendererSink object. The user of the CVLOpenGLRenderer object can
implement a real CVLRendererSink object and connect this object to the connection point
created by the CVLOpenGLRenderer object at run time. At run time, the “Render”
method of the CVLOpenGLRenderer object inquires this collection point. If it found a
real CVLRendererSink object is connecting to the collection point, it would call the
specific rendering method of this real CVLRendererSink object before it invokes its
standard rendering method. Before the end of the rendering process, it would inquire the
collection point again to find a specific end rendering method. Thus the
CVLOpenGLRenderer object can dynamically use different rendering method to render

the input dataset data.

84

Chapter 10 How To Reuse Our Component Objects

Although the framework was implemented in Visual C++, all components of the
framework can be reused in Visual C++, Visual Basic and other programming languages
that support OLE Automation or call functions through pointers. The interfaces exposed
by the implemented objects can be browsed and copied to a source code through
Microsoft OLEICOM Object Viewer. In Visual Basic these interfaces can be seen directly.
As the interfaces exposed in Visual C++ and Visual Basic are different, in the following
subsections we give some examples to show how to reuse our component objects in
Visual C++ language and Visual Basic language. In the Appendix C, we list two typical
objects” APIs in VC++ and VB form. In the Appendix D, we illustrate a source code in

VB of a simple data visualization application.

10.1 Create A Dataset Object In Visual C++ Language

Before a Dataset component object can be reused, the file named as “CVLDataSets _i.c"
must be included in the application’s header file. In this “CVLDataSets_i.c” file, we have
predefined all class IDs and interface IDs of component objects housed in
CVLDATASETS.DLL library. In the following examples, we assume that the
CVLDATASETS.DLL library has been successfully registered on the machine.

In the source code, declare an interface pointer variable as follows:

85

ICVLDataSet* pDataSet;
or declare a variable as
CComPtr<ICVLDataSet> pDataSet;
We recommend that it is better to use CComPtr template class, because this class is
designed to manage COM interface pointers. It can automatically perform reférence
counting and uses overload operators to handle related operations. Otherwise, the
AddRef() function has to be called explicitly when referencing an object.
Then use the following function to create an instance of CVLDataSet object:
HRESULT hr = CoCreatelnstance(CLSID_CVLDataSet, NULL, CLSCTX_ALL,
OD_ICVLDataSet, (void**)&pDataSet);
If this function call is successful, it returns S_OK and sets the pointer variable.
Otherwise, an error code is returned and the pDataSet variable is set to NULL.
The meaning of the parameters in the above function are as follows:
1. CLSID_CVLDataSet
This argument stores the class ID of CVLDataSer object, which is predefined in
the CVLDataSets _i.c file.
2. NULL
This argument is a pointer to an outer object’s interface. If the created object is
aggregated in the outer object, the pointer to the /Unknown of the outer object

has to be passed. For a non-aggregated object, just pass NULL to the function.

86

3. CLSCTX_ALL
This argument stores a context code for running the COM object. For different
type of server (in-process, out-of process, local or remote), this argument can
be different value. We use CLSCTX_ALL to cover every case.
4. [ID_ICVLDataSet
This argument stores interface ID of CVLDataSer object, which is predefined in
the CVLDataSets _i.c file.
5. (void**)&pDataSet
This argument is a double pointer to the variable pDataSet, which will store a
pointer to the interface of a CVLDataSer object.
After creating an instance of the desired object, the obtained interface pointer can be used
at any time until the Release() function is called, which will decrement the reference
count of the object. When the reference count reaches zero, the COM library will delete

the object. This is different from the delete operator in C++.

10.2 Create A Dataset Object In Visual Basic Language

Before our component object libraries can be referenced, the libraries must have been
registered and the reference settings must be correct.
In Visual Basic, a component object can be declared as follows:
Dim MyDataSet As New CVLDataSet
This declaration command will set an interface pointer to the CVLDataSet obiject in

“*MyDataSet” variable.

87

10.3 How To Call A Method Provided By The CVLDataSet Object In Visual

C++ Language

After creating an instance of a component object, the methods of the object can be
invoked immediately as the following examples:
pDataSet->SetSelfPointer(&pDataSet); / set an interface pointer to itself
pDataSet->Initialize(POLY_DATA); // Create an inner concrete polygonal dataset
I/ object
In Visual C++ programming environment, the OLE/COM Object Viewer can be launched

to browse and copy methods and properties provided by a component object.

10.4 How To Call A Method Provided By The CVLDataSet Object In Visual

Basic Language

In Visual Basic, the above two C++ calls can be issued like this way:
MyDataSet.SetSelfPointer MyDataSet
MyDataSet.Initialize POLY_DATA

In Visual Basic, the methods and properties provided by a component object can be seen

immediately if a dot is put after an object variable.

88

10.5 How To Call A Property Provided By The CVLDataSet Object In

Visual C++ Language

In C++, each readable property has a prefix of “get_" before the name of the property.
While each changeable property has a prefix of “put_" before the name of the property.
For retrieving a property, a readable property can be called as:
long INumberOfPoints; // declare a long integer type variable
pPoints->get_NumberOfPoints(&INumberOfPoints); // get the property’s value
The above example assumes that pPoints is an interface pointer to a CVLPoints object.
For setting a changeable property, a changeable property can be called like this way:
pPoints->put_NumberOfPoints(INumberOfPoints);

/i Suppose the variable INumberOfPoints stores an integer value.

10.6 How To Call A Property Provided By The CVLDataSet Object In

Visual Basic Language

In Visual Basic, the properties of an object can be used more easily than in C++:
Dim NumOfPoints As Long

Dim MyPoints As New CVLPoints

NumOFPoints = MyPoints.NumberOfPoints ° retrieve the property

MyPoints.NumberOfPoints = 10 * set the property

89

10.7 How To Add A Library To Our Framework

A new library can be easily created in Visual C++ using ATL COM AppWizard. The
“"XXXXXX _i.c" (where XXXXXX represents a name of a library in our framework) files
come with our framework must be included in the new library’s .cpp file if this new
library will reuse component objects provided by our framework. Also a new library can
be created using Visual Basic. If an object in the new library will reuse the interface class
declarations of our implemented objects, the related interface file (*.idl) must be imported

into the interface file of the new library.

10.8 How To Add A New Object To One Of Our Existing Libraries

Adding an object to one of our existing libraries is easy if ATL wizard is used. Select a
project file of one of our libraries and open it in Visual C++. Using ATL object wizard to

create a new object and fill code into it.

Chapter 11 Future Work

In this version of the data visualization framework, we have created eleven libraries for
COM-based data visualization applications (see Appendix B). The implementation of the
system design is just focused on creating basic component objects which represent basic
dada structures for data visualization.

We have a number of component objects of our initial design left to implement and
several challenging problems left to solve. The CVLFilter.DLL library, the
CVLImaging.EXE library, the CVLRenderer.DLL library and the CVLReaderWriter.DLL
library need to be completed. More component objects which implement special filter
algorithms, rendering algorithms, image processing algorithms and read/write specific
format dataset data will be implemented and added to the existing libraries. Some
ActiveX control objects will be added to the CVLRenderer.DLL library. These control
objects will provide event handlers to handle various interactive events in a rendering
window. Also they will allow users to draw a rendering window easily on a form in
Visual C++, Visual Basic or on a web page. The challenging problem of communication
between objects which are operating on a same Dataser object (this problem is related to
collaborative visualization [15]) will be researched and the corresponding objects will be
developed. A new data structure for data visualization and a new mechanism of passing
data through the visualization pipeline need to be developed so as to reduce the overhead
of passing data between different objects in the data visualization pipeline. In future, we

will also add an animation library to the framework.

91

Chapter 12 Conclusion

We have introduced an approach to create component-based data visualization
framework. By taking the advantage of visible interfaces of component objects, a data
visualization application can be more easily and quickly developed. Since component
objects have their interfaces visible and very clear boundaries, a data visualization
researcher or programmer can easily reuse the existing objects to build new objects and/or
new visualization pipeline, even if the researcher or the programmer has no our source
code and header files. A new user of our component objects does not need to spend a lot
of time to figure out the relationships between component objects, because there is no
inheritance relationships between objects and each object is highly encapsulated. The
majority of our design goals have been met. A number of component objects are left to
implement so as to meet other design goals. Although the component-based programming
is more object oriented than the traditional object oriented programming, it has some
disadvantages over traditional object-oriented programming. These disadvantages can be
summarized as follows:

1. The overhead of creating an object is higher since a COM library function
needs to be called and the COM manager has to query the system registry
database to determine whether the object can be created or not.

2. It is difficult to debug a component object. A component object can only run in

a client environment (client object or application). When an error has occurred,

the error source must to be determined and the client environment must have a
means to display error message. In most situations, the error message does not
correctly represent a real error in the source code. Debugging a component
object is time-consuming work.
3. The workload of implementation is higher than traditional object-oriented
programming. Because a component object cannot implicitly inherits its inner
objects’ methods and properties. While in a traditional C++ programming a
subclass can implicitly inherit public or protected functions and variables of its
superclass(es).
4. Cannot take advantage of “polymorphism” directly. This disadvantage we have
discussed in Section 9.4,
From the point of view of facilitating the development of visualization applications, our
component-based data visualization framework is more flexible and extensible than
existing data visualization libraries or toolkits. It will greatly favor a visualization
researcher or developer to reuse existing achievements in his’her favorite programming
language and platform, even without our source code. By using our framework, a
visualization researcher or developer can focus on histher own new visualization idea
without worrying about whether his/her idea would conflict with the framework or be

limited by the framework.

93

References

oW

10.

11.

12.

13.

14.

B. H. McCormick. T. A. DeFanti, and M. D. Brown. “Visualization in Scientific
Computing.” Report of the NSF Advisory Panel on Graphics, Image Processing
and Workstations, 1987.

L. Rosenblum et al. “Scientific Visualization Advances and Challenges.” Harcourt
Brace & Company, London, 1994.

“The First Information Visualization Symposium.”, IEEE Computer Society Press,
1995.

C. Upson, T. Faulhaber Jr., D. Kamis, D. aidlaw, D. Schlegel, J. Vroom, R.
Gurwiz, A. van am. "The Application Visualization System: A Computational
Environment for Scientific Visualization." IEEE Computer Graphics and
Applications, Vol. 9, No. 4, July 1989, pp. 30-42.

“Data Explorer Reference Manual.” INM Corp, Armonk, NY., 1991.

“IRIS Explorer User’s Guide.” Silicon Graphics Inc., Mountain View, CA, 1991.
W.J. Schroeder, W. E. Lorensen, G. D. Montanaro and C. R. Volpe. “VISAGE:
An Object-Oriented Scientific Visualization System.” Proc. Of Visualization '92,
pp. 219-225, IEEE Computer Society Press, October 1992.

Ricardo Avila, Lisa Sobierajski, Arie Kaufman. “Towards a Comprehensive
Volume Visualization System.” Proc. Of Visualization 92, pp. 13-20, [EEE
Computer Society Press, October 1992.

Ricardo Avila, Taosong He, Lichan Hong, Arie Kaufman, Hanspeter Pfister,
Claudio Silva, Lisa Sobierajski, Sidney Wang. “VolVis: A Diversified Volume
Visualization System.” Proc. Of Visualization '94, pp. 31-38, [EEE Computer
Society Press, October 1994.

William J.Schroeder, Kenneth M. Martin, William E. Lorensen. “The Design and
Implementation Of An Object-Oriented Toolkit For 3D Graphics And
Visualization.” Proc. Of Visualization '96, pp. 93-100, IEEE Computer Society
Press, October 1996.

Will Schroeder, Ken Martin, Bill Lorensen. “The Visualization Toolkit: An
Object-Oriented Approach to 3D Graphics.” 2™ Edition, Prentice-Hall Inc., Upper
Saddle River, New Jersey 07458, 1998.

J.Neider, T. Davis, Mason Woo. “OpenGL Programming Guide.” Addison-Wesley,
1993.

Greg Abram, Lloyd Treinish. “An Extended Data-Flow Architecture for Data
Analysis and Visualization.” Proc. Of Visualization 95, pp. 263-269, IEEE
Computer Saociety Press, October 1995.

J Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. “Object-
Oriented Modeling and Design.” Prentice-Hall, Englewood Cliffs, New Jersey,
1991.

9

15.

16.

17.

18.

19.

20.
21

Jason Wood, Helen Wright, Ken Brodlie. “Collaborative Visualization.” Proc. Of
Visualization *97, pp. 253-259, IEEE Computer Society Press, October 1997.

Jean M. Favre and James Hahn. “An Object Oriented Design for the Visualization
of Multi-Variable Data Objects.” Proc. Of Visualization '94, pp. 318-325, [EEE
Computer Society Press, October 1994.

Donald L. Brittain, Josh Aller, Michael Wilson, Sue-Ling C. Wang. “Design of an
End-User Data Visualization System.” Proc. Of Visualization '90, pp.323-327,
[EEE Computer Society Press, October 1990.

“The Component Object Model: Technical Overview.” Dr. Dobbs Journal,
Microsoft Corporation, 1996.

Charlie Kindel. *“Designing COM Interfaces.” Microsoft Technical Paper, October
20, 1995.

“DCOM Technical Overview.” Microsoft White Paper, 1996.

“DCOM Architecture.” Microsoft White Paper, 1998.

95

Appendix A: The Interface File Of The CVLSource.DLL Library

// CVLSOURCE.id! : IDL source for CVLSOURCE.dII
Il

/! This file will be processed by the MIDL tool to
/1 produce the type library (CVLSOURCE.tlb) and marshalling code.

import "CVLDATASETS.id!",

[
object,
uuid(B968F4E2-CB7F-11D2-B8D9-0000C0E655EF),
dual,
helpstring("ICVLSphereSource Interface"),
pointer_default(unique)
]
interface ICVLSphereSource : [Dispatch
{
import "oaidl.id!";
import "ocidl.idl",
#pragma midl_echo("#define MAX_SPHERE_RESOLUTION 1024")
[propget, id(1), helpstring("property ObjectName (READ ONLY)")]
HRESULT ObjectName([out, retval] BSTR *pVal);
[id(2), helpstring("method Create')] HRESULT Create({in] int
iResolution);
[id(3), helpstring("method SetRadius')) HRESULT SetRadius([in] float
iRadius);
(id(4), helpstring("'method GetRadius")] HRESULT GetRadius([out,
retval] float* pfRadius);
[id(5), helpstring("'method SetCenter")] HRESULT SetCenter([in, ref]
float* pfCenter);
[id(6), helpstring("method GetCenter")] HRESULT GetCenter([in, out,
ref] float* pfCenter);
[id(7), helpstring("method SetThetaResolution')] HRESULT
SetThetaResolution([in] int iThetaResolution);
(id(8), helpstring("method GetThetaResolution')] HRESULT
GetThetaResolution([out, retval] int* piThetaResolution);
[id(9), helpstring("method SetPhiResolution')] HRESULT
SetPhiResolution([in] int iPhiResolution);
(id(10), helpstring("'method SetStartTheta')] HRESULT SetStartTheta([in]
float fStartTheta);

96

(id(11), helpstring(*'method GetStartTheta')] HRESULT
GetStartTheta([out, retval] float* pfStartTheta);

[id(12), helpstring("'method SetEndTheta')] HRESULT SetEndTheta([in]
float fEndTheta);

(id(13), helpstring("method GetEndTheta')] HRESULT
GetEndTheta([out, retval] float* pfEndTheta);

[id(14), helpstring("'method SetStartPhi')] HRESULT SetStartPhi([in]
float fStartPhi);

[id(15), helpstring("'method GetStartPhi")] HRESULT GetStartPhi([out,
retval] float* pfStartPhi);

[id(16), helpstring(*'method SetEndPhi'")] HRESULT SetEndPhi([in] float
fEndPhi);

(id(17), helpstring("'method GetEndPhi'")] HRESULT GetEndPhi([out,
retval] float* pfEndPhi);

[id(18), helpstring("'method Execute')] HRESULT Execute();

[id(19), helpstring("method GetOutput")] HRESULT GetOutput([out]
ICVLDataSet** ppOutput);

%

uuid(B968F4D3-CB7F-11D2-B8D9-0000COE655EF),
version(1.0),
helpstring("CVLSOURCE 1.0 Type Library")
]
library CVLSOURCELIb
{
importlib("stdole32.tib");
importlib("stdole2.tlb");

[
uuid(B968F4E3-CB7F-11D2-B8D9-0000COE655EF),
helpstring("CVLSphereSource Class")

]
coclass CVLSphereSource

{
[default] interface ICVLSphereSource;

3

97

Appendix B: List Of Objects Of The Framework

Library Name Object Name
CVLArray.DLL

CVLBitAmay

CVLDataArray

CVLDoubleArray

CVLFloatArray

98

Remarks

Provides methods through its exposed
interface for insertion and retrieval of
bits, and will automatically resize
itself to hold new data.

Abstract object. It can contain one of
array object as inner array object. It is
used for “polymorphism”.

Provides methods through its exposed
interface for insertion and retrieval of
double numbers, and will
automatically resize itself to hold new
data.

Provides methods through its exposed
interface for insertion and retrieval of
float pointing numbers, and will
automatically resize itself to hold new

data.

CVLAttributes.DLL

CVLLongArray

CVLShortArray

CVLUnsignedCharArray

CVLVariantArray

CVLDataAttribute

Provides methods through its exposed
interface for insertion and retrieval of
long integer numbers, and will
automatically resize itself to hold new
data.

Provides methods through its exposed
interface for insertion and retrieval of
short integer numbers, and will
automatically resize itself to hold new
data.

Provides methods through its exposed
interface for insertion and retrieval of
unsigned char character, and will
automatically resize itself to hold new
data.

Provides methods through its exposed
interface for insertion and retrieval of
VARIANT type of numbers, and will
automatically resize itself to hold new

data.

Represent and manipulate attribute

CVLCells.DLL

CVLFieldData

CVLLookUpTable

CVLNormals

CVLScalars

CVLTensor

CVLTensors

CVLTextureCoordinates

CVLVectors

100

data in a dataset object.

Represents and manipulates fields of
data.

Maps scalar values into colors or
colors to scalars; generate color table
Represents and manipulates 3D
normals.

Represents and manipulates scalar
data.

It is a floating point representation of
an 3x3 tensor. It provides methods for
assignment and reference of tensor
components.

CVLTensors represents 3x3 tensors.
The data model for this component is
an array of interface pointer of 3x3
matrices accessible by (point or cell)
id.

It is used to represent and manipulate
ID, 2D, or 3D texture coordinates.

It is used to represent 3D vectors.

CVLCell

CVLCellArray

CVLCellLinkStructure

CVLCellTypes

CVLCellTypeStructure

CVLHexahedron

CVLLine

CVLPixel

CVLPolygon
CVLPolyLine
CVLPolyVertex
CVLQuadrilateral

CVLTetrahedron

101

An abstract object. It can contain one
of concrete cell object.

Represents cell connectivity.
Represents a single cell link structure
corresponding to a point.

It is a supplemental object to
CVLCellArray to allow random
access into cells as well as
representing cell type information.
CVLCellTypeStructure provides
methods to manage different types of
cells in a data set object.

It represents a 3D rectangular
hexahedron cell.

It represents a 1D line cell.

It represents an orthogonal
quadrilateral cell.

It represents an n-sided polygon cell.
It represents a set of 1D lines.

It represents a set of 0D vertices.

It represents a 2D quadrilateral.

It represents a tetrahedron.

CVLDataSets.DLL

CVLTriangle
CVLTriangleStrip
CVLVertex

CVLVoxel

CVLCellLinks

CVLDataSet

CVLPointLocator

CVLPointSet

CVLPolygonalData

CVLPriorityQueue

102

It represents a triangle.

It represents a triangle strip

It represents a 3D point.

It represents a 3D orthogonal

parallelepiped.

It is a supplemental object to
CVLCellArray and CVLCellTypes. It
enabling access from points to the
cells using the points.

An abstract object. It can contain one
of concrete dataset object.

It is a spatial search object to quickly
locate points in 3D.

It is an abstract component that
specifies the interface for datasets
that explicitly use "point" arrays to
represent geometry.

It is a concrete dataset represents
vertices, lines, polygons, and triangle
strips.

It is a general object for creating and

CVLFactor

CVLRectilinearGrid

CVLStructuredData

CVLStructuredGrid

CVLStructuredPoints

CVLUnstructuredGrid

CVLCamera

CVLColorTransfer

Function

103

manipulating lists of object ids (e.g.,
point or cell ids).

It is a dataset that is topologically
regular with variable spacing in the
three coordinate directions.

It is an abstract object that specifies
an interface for topologically regular
data.

It is a topologically regular array of
data.

It represents a geometric structure
that is a topological and geometrical
regular array of points.

It is a dataset represents arbitrary

combinations of all possible cell

types.

It provides methods to position and
orient the view point and focal point.
It defines a transfer function for
mapping a property to an RGB color

value.

CVLLight

CVLMatrix4x4

CVLProperty

CVLPiecewiseFunction

CVLProperty2D

CVLTransformation

CVLVolumeProperty

CVLFilter.DLL

CVLDataSetMapper

104

It is an interfaces to the OpenGL
rendering library.

It represents and manipulates 4x4
matrices.

It represents surface properties of a
geometric object.

It defines a piecewise linear function
mapping. It is used for transfer
functions in volume rendering.

It contains properties used to render
two dimensional images and
annotations.

It is used to maintain a stack of 4x4
transformation matrices. A variety of
methods are provided to manipulate
the translation, scale, and rotation
components of the matrix.

It represents the common properties

for rendering a volume.

It is a mapper to map data sets to

graphics primitives.

CVLImaging.EXE

CVLElevationFilter

CVLGeometryFilter

CVLMapper

CVLPolyDataMapper

CVLCoordinate

CVLImageCache

CVLImageData

CVLImageSource

CVLPlane

CVLViewport

CVLWindow

105

It generates scalars along a specified
direction.

It extracts geometry from data (or
convert data to polygonal type).

An abstract object. It can contain one
of concrete mapper object.

It maps polygonal data to graphics

primitives.

[t represents a location or position.
It is the primitive component of all
image caches.

It is the basic image data structure
specific to the image pipeline.

It is the basic component for all
sources and filters.

It provides methods for various plane
computations.

It provides an abstract specification
for viewports.

It is an abstract object to specify the

behavior of a rendering or imaging

CVLPoint

CVLRenderer.DLL

CCVLIdList

CVLNeighborPoints

CVLPoints

CVLActor

CVLActorCollection

CVLLightCollection

CVLOpenGLRenderer

106

window.

It is used to represent any type of
integer id, but usually represents
point and cell ids.

It is used as a hash table to speed up
the search of neighbor points in the
CVLPointLocator object.

It is used to represent 3D points.

It represents an object (geometry &
properties) in a rendered window.

It is used by the
CVLOpenGLRenderer object to store
interface pointers to CVLActor
objects.

It is used by the
CVLOpenGLRenderer object to store
interface pointers to CVLLight
objects.

It represents a renderer in a rendering

window.

CVLSource.DLL

CVLReaderWriter.

DLL

CVLRendererCollection

CVLRenderWindow

CVLVolumeCollection

CVLVolume

CVLSphereSource

CVLBYUReader

CVLBYUWriter

CVLCyberReader

CVLDataSetReader

107

It is used by the CVLRenderWindow
object to store interface pointers to
CVLOpenGIRenderer objects.

It represents a rendering window.

It is used by the
CVLOpenGLRenderer object to store
interface pointers to CVLVolume
objects.

It represents a volume (data &

properties) in a rendered window.

It is used to generate a sphere points

data and normals data.

It is used to read MOVIE.BYU
polygon files.

It is used to write MOVIE.BYU
polygonal files.

It is used to read Cyberware laser
digitizer files.

It is used to read any type of vtk

CVLFieldDataReader

CVLFieldDataWriter

CVLMarchingCubes
Reader
CVLMarchingCubes
Writer
CVLPlot3DReader
CVLPolyDataReader
CVLPolyDataWriter
CVLRectilinearGrid
Reader
CVLRectilinearGrid
Writer
CVLStructuredGrid
Reader
CVLStructuredGrid
Writer
CVLStructuredPoints

Reader

108

dataset.

It is used to read ASCH or binary
field data files in vtk format.

Itis used to write ASCII or binary
field data files in vtk format.

It is used to read binary marching
cubes file.

It is used to write binary marching
cubes files.

It is used to read PLOT3D data files.
It is used to read vtk poly data file.
It is used to write vtk poly data file.
It is used to reads vtk rectilinear grid
data file.

[t is used to write vtk Rectilinear
points data file.

It is used to read vtk structrued grid
data file.

It is used to write vtk structured
points data file.

It is used to read vtk structrued points

data file.

CVLStructuredPoints

Writer

CVLUnstructuredGrid

Reader

CVLUnstructuredGrid

Writer

CVLVTKDataReader

CVLVTKDataWriter

109

It is used to write vtk structured
points data file.

It is used to read vtk unstructured grid
data file.

It is used to write vtk unstructured
grid data file.

It is used to read the vtk data file
header.

It is used to write the vtk header point
data (e.g., scalars, vectors, normals,

etc.) from a VTK data file.

Appendix C: Examples Of APIs

There is not space to list APIs of all component objects in our framework in this thesis. In
this appendix, we list two typical objects’ APIs in VC++ form and VB form as examples.
These two APIs covers all invoking cases of our framework. All APIs of our framework
can be viewed through Microsoft OLE/COM Object Viewer. For C++ language form API,
open “interface” folder in the viewer. For VB form API, open “coclass” folder in the
viewer. In Chapter 10, we have explained in detail how to use our framework in VC++

and VB.

1. CVLTransformation Object’s API

¢ Properties
I. ObjectName
VC++ form: HRESULT get_ObjectName(/*[out, retval]*/ BSTR* pVal);
VB form: ObjectName As String
Purpose: Get the object’s name.
Return Value:
For VC++: If successful, the return value is S_OK and the object name is stored in
the pVal variable in BSTR format. To convert the BSTR string to an ASCII string,
use OLE2A conversion function. If failed, the return value is an error code.

For VB: The object name is directly returned as a text string.

110

2. MaxIndex
VC++ form: HRESULT get_MaxIndex(/*[out, retval]*/ long* pVal);
VB form: MaxIndex As Long
Purpose: Get the number of CVLMatrix4x4 objects in the internal matrix stack.
The return value represents the first available slot number in the intemnal array that
implements the internal matrix stack.
Return Value:
For VC++: If successful, the return value is S_OK and the Max/ndex is stored in the
variable pointed to by the input pointer.
For VB: The MaxIndex is directly returned as a long integer number.

e Methods

3. Identity
VC++ form: HRESULT Identity();
VB form: Identity
Purpose: Generate an identity matrix (4 x 4).
Return Value:
For VC++: S_OK if successful, or error code otherwise.
For VB: nothing if successful, or error message box.

4. Pop
VC++ form: HRESULT Pop();
VB form: Pop

Purpose: Pop up and release a 4 x 4 matrix object from the internal matrix stack.

111

Return Value:

For VC++: S_OK if successful, or error code otherwise.
For VB: nothing if successful, or error message box.

. PostMultiply

VC++ form: HRESULT PostMultiply();

VB form: PostMultiply

Purpose: Set up an internal multiply flag.

Return Value:

For VC++: S_OK if successful, or error code otherwise.
For VB: nothing if successful, or error message box.

. PreMultiply

VC++ form: HRESULT PreMultiply();

VB form: PreMultiply

Purpose: Set up an internal multiply flag.

Return Value:

For VC++: S_OK if successful, or error code otherwise.
For VB: nothing if successful, or error message box.

. Push

VC++ form: HRESULT Push();

VB form: Push

Purpose: Generate a 4 x 4 matrix object and push it onto the internal matrix stack.
Return Value:

For VC++: S_OK if successful, or error code otherwise.

112

For VB: nothing if successful, or error message box.
. Concatenate
VC++ form: HRESULT Concatenate(/*[in]*/ ICVLMatrix4x4** ppMatrix);
VB form: Concatenate objMatrix As CVLMatrix4x4
Purpose: Concatenate the input 4 x 4 matrix object with the current 4 x 4 matrix
object which is at the top of the internal matrix stack.
Parameters:
For VC++: a double interface pointer to a 4 x 4 matrix object.
For VB: an object variable declared as new CVLMatrix4x4.
Return Value:
For VC++: S_OK if successful, or error code otherwise. The result matrix object is
at the top of the internal matrix stack.
For VB: nothing if successful, or error message box. The result matrix object is at
the top of the internal matrix stack.
. Multiply4x4
VC++ form: HRESULT Multiply4x4(/*[in]*/ ICVLMatrix4x4** ppMatrix |,
/*[in]*/ ICVLMatrix4x4** ppMatrix2, /*[in, out]*/ ICVLMatrix4x4**
ppResultMatrix);
VB form: Multiply4x4 objMatrix! As CVLMatrix4x4, objMatrix2 As
CVLMatrix4x4, objResultMatrix As CVLMatrix4x4

Purpose: Multiply two 4 x 4 matrix object.

113

10.

Parameters:

For VC++: three double interface pointers to the three 4 x 4 matrix objects
respectively.

For VB: three object variables declared as new CVLMatrix4x4.

Return Value:

For VC++: S_OK if successful, or error code otherwise. The third argument stores
the result of the multiplication.

For VB: nothing if successful, or error message box. The third argument stores the
result of the multiplication.

RotateX

VC++ form: HRESULT RotateX(/*[in]*/ float fAngle);

VB form: RotateX Angle As Single

Purpose: Creates an X rotation matrix and concatenates it with the current
transformation matrix.

Parameters:

For VC++: a float type variable specified in degrees.

For VB: a single type variable specified in degrees.

Return Value:

For VC++: S_OK if successful, or error code otherwise. The result matrix is stored
at the top of the internal matrix stack.

For VB: nothing if successful, or error message box. The result matrix is stored at

the top of the internal matrix stack.

114

1.

RotateY

VC++ form: HRESULT Rotate Y(/*[in]*/ float fAngle);

VB form: RotateY Angle As Single

Purpose: Creates an Y rotation matrix and concatenates it with the current
transformation matrix.

Parameters:

For VC++: a float type variable specified in degrees.

For VB: a single type variable specified in degrees.

Return Value:

For VC++: S_OK if successful, or error code otherwise. The result matrix is stored
at the top of the internal matrix stack.

For VB: nothing if successful, or error message box. The resuit matrix is stored at

the top of the internal matrix stack.

. RotateZ

VC++ form: HRESULT RotateZ(/*[in]*/ float fAngle);

VB form: RotateZ Angle As Single

Purpose: Creates a Z rotation matrix and concatenates it with the current
transformation matrix.

Parameters:

For VC++: a float type variable specified in degrees.

For VB: a single type variable specified in degrees.

115

13.

Return Value:

For VC++: S_OK if successful, or error code otherwise. The result matrix is stored
at the top of the internal matrix stack.

For VB: nothing if successful, or error message box. The result matrix is stored at
the top of the internal matrix stack.

RotateWXYZ

VC++ form: HRESULT RotateWXYZ(/*[in]*/ float fAngle, /*[in]*/ float fX,
/*[in]*/ float fY, /*[in]*/ float fZ);

VB form: RotateWXYZ Angle As Single, X As Single, Y As Single, Z As Single
Purpose: Creates a matrix that rotates angle degrees about an axis through the
origin and x, y, z. It then concatenates this matrix with the current transformation
matrix.

Parameters:

For VC++: four float type variables specified in degrees and the coordinates along
three axes.

For VB: four single type variables specified in degrees and the coordinates along
three axes.

Return Value:

For VC++: S_OK if successful, or error code otherwise. The result matrix is stored
at the top of the internal matrix stack.

For VB: nothing if successful, or error message box. The result matrix is stored at

the top of the internal matrix stack.

116

14.

1S.

Scale

VC++ form: HRESULT Scale(/*[in)*/ float fX, /*[in]*/ float fY, /*[in]*/ float fZ);
VB form: Scale X As Single, Y As Single, Z As Single

Purpose: Scales the current transformation matrix in the x, y and z directions. A
scale factor of zero will automatically be replaced with one.

Parameters:

For VC++: three float type variables specified the coordinates along three axes.
For VB: three single type variables the coordinates along three axes.

Return Value:

For VC++: S_OK if successful, or error code otherwise. The result matrix is stored
at the top of the internal matrix stack.

For VB: nothing if successful, or error message box. The result matrix is stored at
the top of the internal matrix stack.

Translate

VC++ form: HRESULT Translate(/*(in]*/ float fX, /*[in]*/ float fY, /*[in]*/ float
fZ);

VB form: Translate X As Single, Y As Single, Z As Single

Purpose: Translate the current transformation matrix by the input vector.
Parameters:

For VC++: three float type variables specified the coordinates along three axes.

For VB: three single type variables the coordinates along three axes.

117

16.

Return Value:

For VC++: S_OK if successful, or error code otherwise. The result matrix is stored
at the top of the internal matrix stack.

For VB: nothing if successful, or error message box. The result matrix is stored at
the top of the internal matrix stack.

Transpose

VC++ form: HRESULT Transpose();

VB form: Transpose

Purpose: Transposes the current transformation matrix.

Return Value:

For VC++: S_OK if successful, or error code otherwise. The result matrix is stored
at the top of the internal matrix stack.

For VB: nothing if successful, or error message box. The result matrix is stored at

the top of the internal matrix stack.

. GetTranspose

VC++ form: HRESULT GetTranspose(/*[in, out]*/ ICVLMatrix4x4**
ppTranspose);

VB form: GetTranspose objTranspose As CVLMatrix4x4

Purpose: Obtain the transpose of the current transformation matrix.
Parameters:

VC++ form: a double interface pointer to a CVLMatrix4x4 object.

VB form: an object variable declared as new CVLMatrix4x4.

118

18.

Return Value:

For VC++: S_OK if successful, or error code otherwise. The result matrix is filled
into the object pointed to by the input double interface pointer.

For VB: nothing if successful, or error message box. The result matrix is stored in
the input matrix object.

Inverse

VC++ form: HRESULT Inverse();

VB form: Inverse

Purpose: Invert the current transformation matrix.

Return Value:

For VC++: S_OK if successful, or error code otherwise. The result matrix is stored
at the top of the internal matrix stack..

For VB: nothing if successful, or error message box. The result matrix is stored at

the top of the internal matrix stack.

19. Getlnverse

VC++ form: HRESULT GetInverse(/*[in, out]*/ ICVLMatrix4x4**
ppinverseMatrix);

VB form: Getlnverse objInverseMatrix As CVLMatrix4x4
Purpose: Obtain the inverse of the current transformation matrix.

Return Value:
For VC++: S_OK if successful, or error code otherwise. The result matrix is stored

in the object pointed to by the double interface pointer.

119

For VB: nothing if successful, or error message box. The result matrix is stored in

the input matrix object.

20. GetOrientation

21.

VC++ form: HRESULT GetOrientation(/*[in, out, ref]*/ float* pfOrientation);

VB form: GetOrientation pfOrientation(0) As Single

Purpose: Get the x, y, z orientation angles from the transformation matrix as an
array of three floating point values.

Parameters:

VC++ form: a reference pointer to a floating point array with three elements.

VB form: the first element of a single type array with three elements.

Return Value:

For VC++: S_OK if successful, or error code otherwise. The result is stored in the
array pointed to by the reference pointer.

For VB: nothing if successful, or error message box. The result is stored in the
array.

GetScale

VC++ form: HRESULT GetScale(/*[in, out, ref]*/ float* pfScaleXYZ);

VB form: GetScale pfScaleXYZ(0) As Single

Purpose: Get the x, y, z scale factors of the current transformation matrix as an
array of three float numbers.

Parameters:

VC++ form: a reference pointer to a floating point array with three elements.

VB form: the first element of a single type array with three elements.

120

22.

23.

Return Value:

For VC++: S_OK if successful, or error code otherwise. The result is stored in the
array pointed to by the reference pointer.

For VB: nothing if successful, or error message box. The result is stored in the
array.

GetOrientationWXYZ

VC++ form: HRESULT GetOrientationWXYZ(/*[in, out, ref]*/ float* fWXYZ):
VB form: GetOrientationWXYZ fWXYZ(0) As Single

Purpose: Get the WXYZ quaternion representing the current orientation.
Parameters:

VC++ form: a reference pointer to a floating point array with four elements.

VB form: the first element of a single type array with four elements.

Return Value:

For VC++: S_OK if successful, or error code otherwise. The result is stored in the
array pointed to by the reference pointer.

For VB: nothing if successful, or error message box. The result is stored in the
array.

GetPosition

VC++ form: HRESULT GetPosition(/*[in, out, ref]*/ float* fPosition);

VB form: GetPosition fPosition(0) As Single

Purpose: Get the position from the current transformation matrix as an array of
three floating point numbers. This is simply retumning the translation component of

the 4 x 4 matrix.

121

24.

25.

Parameters:

VC++ form: a reference pointer to a floating point array with three elements.

VB form: the first element of a single type array with three elements.

Return Value:

For VC++: S_OK if successful, or error code otherwise. The result is stored in the
array pointed to by the reference pointer.

For VB: nothing if successful, or error message box. The result is stored in the
array.

SetMatrix

VC++ form: HRESULT SetMatrix(/*[in]*/ ICVLMatrix4x4 * * ppMatrix);

VB form: SetMatrix ppMatrix As CVLMatrix4x4

Purpose: Set the current matrix directly

Parameters:

VC++ form: a double interface pointer to a CVLMatrix4x4 object.

VB form: an object variable declared as new CVLMatrix4x4.

Return Value:

For VC++: S_OK if successful, or error code otherwise. The input object is pushed
onto the internal matrix stack.

For VB: nothing if successful, or error message box. The input object is pushed
onto the internal matrix stack.

GetMatrix

VC++ form: HRESULT GetMatrix(/*[in, out]*/ ICVLMatrix4x4 * * ppMatrix);

VB form: GetMatrix ppMatrix As CVLMatrix4x4

122

Purpose: Get the current transformation matrix.
Parameters:
VC++ form: a double interface pointer to a CVLMatrix4x4 object.
VB form: an object variable declared as new CVLMatrix4x4.
Return Value:
For VC++: S_OK if successful, or error code otherwise. The elements of the
current transformation matrix are filled into the CVLMatrix4x4 object pointed to
by the input double interface pointer.
For VB: nothing if successful, or error message box. The elements of the current
transformation matrix are filled into the input CVLMatrix4x4 object.

26. MultiplyPoint
VC++ form: HRESULT MultiplyPoint(/*{in, ref}*/ float* pfPointIn, /*{in, out,
ref]*/ float* pfPointOut);
VB form: MultiplyPoint pfPointIn(0) As Single, pfPointOut(0) As Single
Purpose: Multiply a point to the current matrix.
Parameters:
VC++ form: two reference pointers to two floating point array with three elements.
VB form: two first elements of the two single type arrays with three elements.
Return Value:
For VC++: S_OK if successful, or error code otherwise. The result is stored in the
array pointed to by the second reference pointer.
For VB: nothing if successful, or error message box. The result is stored in the

second single type array.

123

27. MultiplyVectors

28.

VC++ form: HRESULT Multiply Vectors(/*[in]*/ [Unknown** ppInVectors, /*{in,
out]*/ [Unknown** ppOutVectors);

VB form: MultiplyVectors ppInVectors As Unknown, ppOutVectors As Unknown
Purpose: Multiplies a list of vectors (ppInVectors) by the current transformation
matrix. The transformed vectors are appended to the output list (ppOutVectors).
This is a special multiplication, since these are vectors. It multiplies vectors by the
transposed inverse of the matrix, ignoring the translational components.
Parameters:

VC++ form: two double [Unknown interface pointers to two CVLVectors objects.
VB form: two object variables declared as new CVLVectors.

Return Value:

For VC++: S_OK if successful, or error code otherwise. The result vectors are
stored in a CVLVectors object pointed to by the second double [Unknown interface
pointer.

For VB: nothing if successful, or error message box. The result vectors are stored
in the second CVLVectors object.

MultiplyNormals

VC++ form: HRESULT MultiplyNormals(/*[in]*/ [Unknown** ppInNormals,
/*[in, out]*/ IUnknown** ppOutNormals);

VB form: MultiplyNormals ppInNormals As Unknown, ppOutNormalsAs

Unknown

124

29.

Purpose: Multiplies a list of normals (ppInNormals) by the current transformation
matrix. The transformed normals are then appended to the output list
(ppOutNormals). This is a special multiplication, since these are normals. It
multiplies the normals by the transposed inverse of the matrix, ignoring the
translational components.

Parameters:

VC++ form: two double [Unknown interface pointers to two CVLNormals objects.
VB form: two object variables declared as new CVLNormals.

Return Value:

For VC++: S_OK if successful, or error code otherwise. The result normals are
stored in a CVLNormals object pointed to by the second double [Unknown
interface pointer.

For VB: nothing if successful, or error message box. The result vectors are stored
in the second CVLNormals object.

GetPoint

VC++ form: HRESULT GetPoint(/*{in, out, ref]*/ float * pfPoint);

VB form: GetPoint pfPoint(0) As Single

Purpose: Get the result of multiplying the currently set Point by the current
transformation matrix. Point is expressed in homogeneous coordinates. The setting
of the PreMultiplyFlag will determine if the Point is Pre or Post multiplied.
Parameters:

VC++ form: a reference pointer to a floating point array with three elements.

VB form: the first element of a single type array with three elements

125

Return Value:

For VC++: S_OK if successful, or error code otherwise. The result is stored in the
array pointed to by the reference pointer.

For VB: nothing if successful, or error message box. The result is stored in the

array.

30. MultiplyPoints

31

VC++ form: HRESULT MultiplyPoints(/*[in]*/ [Unknown** ppInPoints, /*[in,
out]*/ [Unknown** ppOutPoints);

VB form: MultiplyPoints ppInPoints As Unknown, ppOutPoints Unknown
Purpose: Multiplies a list of points (ppInPoints) by the current transformation
matrix. Transformed points are appended to the output list (ppOutPoints).
Parameters:

VC++ form: two double [Unknown interface pointers to two CVLPoints objects.
VB form: two object variables declared as new CVLPoints.

Return Value:

For VC++: S_OK if successful, or error code otherwise. The result points are
stored in a CVLPoints object pointed to by the second double I[Unknown interface
pointer.

For VB: nothing if successful, or error message box. The result vectors are stored
in the second CVLPoints object.

SetPoint

VC++ form: HRESULT SetPoint(/*(in, ref]*/ float * pfPoint);

VB form: SetPoint pfPoint(0) As Single

126

Purpose: Set the Point for multiplication. Point is expressed in homogeneous
coordinates.

Parameters:

VC++ form: a reference pointer to a floating point array with four elements.

VB form: the first element of a single type array with four elements

Return Value:

For VC++: S_OK if successful, or error code otherwise.

For VB: nothing if successful, or error message box.

2. CVLIdList Object’'s API

o Properties

1. ObjectName
VC++ form: HRESULT get_ObjectName(/*[out, retval]*/ BSTR* pVal);
VB form: ObjectName As String
Purpose: Get the object’s name.
Return Value:
For VC++: If successful, the return value is S_OK and the object name is stored in
the pVal variable in BSTR format. To convert the BSTR string to an ASCII string,
use OLE2A conversion function. If failed, the return value is an error code.
For VB: The object name is directly returned as a text string.

2. ModifiedTime

VC++ form: HRESULT get_ModifiedTime(/*[out, retval]*/ long* pVal);

127

VB form: ModifiedTime As Long
Purpose: Get the number of modifications properties of the object.
Return Value:
For VC++: If successful, the return value is S_OK and the ModifiedTime is stored
in the variable pointed to by the input pointer.
For VB: The ModifiedTime is directly returned as a long integer number.
e Methods

3. Create
VC++ form: HRESULT Create(/*[in]*/ long INumberOflds, /*[in]*/ long
IGrowBYy);
VB form: Create INumberOflds As Long, IGrowBy As Long
Purpose: Create an Id list.
Parameters: two long integer variables: INumberOflds represents the size of the
list to be created, IGrowBy represents the extend size of the list.
Return Value:
For VC++: S_OK if successful, or error code otherwise.
For VB: nothing if successful, or error message box.

4. DeepCopy
"VC++ form: HRESULT DeepCopy(/*[in]*/ long INumberOflds, /*[in, ref]*/ long *
plArray);
VB form: DeepCopy INumberOflds As Long, plArray(0) As Long

Purpose: Copy an id list by explicitly copying the internal array.

128

Parameters:

For VC++: the first argument is a long integer variable representing the number of
[Ds in the array to be copied, the second argument is a long integer type reference
pointer to the array to be copied.

For VB: the first argument is a long integer variable representing the number of IDs
in the array to be copied, the second argument is the first element of a long integer
type array to be copied.

Return Value:

For VC++: S_OK if successful, or error code otherwise.
For VB: nothing if successful, or error message box.

. DeepCopy2

VC++ form: HRESULT DeepCopy2(/*[in]*/ ICVLIdList * * ppCVLIdList);
VB form: DeepCopy2 objldList As CVLIdList

Purpose: Copy an id list from another CVLIdList object.

Parameters:

For VC++: a double interface pointer to a CVLIdList object to be copied.
For VB: an object variable declared as new CVLIdList.

Return Value:

For VC++: S_OK if successful, or error code otherwise.

For VB: nothing if successful, or error message box.

. Deleteld

VC++ form: HRESULT Deleteld(/*[in]*/ long lId);

129

VB form: Deleteld 1Id As Long

Purpose: Delete specified ID from the ID list.

Parameters: a long integer variable representing an ID to be deleted.

Return Value:

For VC++: S_OK if successful, or error code otherwise.

For VB: nothing if successful, or error message box.

. Getld

VC++ form: HRESULT Getld(/*[in]*/ long lIndex, /*[out, retval] long * 1Id);

VB form: Getld (lIndex As Long) As Long

Purpose: Get the ID at location IlIndex.

Parameters:

For VC++: the first argument is a long integer variable representing the index of the
ID to be found in the internal array, the second argument is a long integer pointer to
a variable that will store the result ID.

For VB: only one argument that is a long integer variable representing the index of
the ID in the internal array.

Return Value:

For VC++: S_OK if successful, or error code otherwise. The result ID is stored in
the variable pointed to by the long integer pointer.

For VB: the result ID if successful, or error message box otherwise.

. GetNumberOflds

VC++ form: HRESULT GetNumberOflds(/*[out, retval] long * 11d);

VB form: GetNumberOflds() As Long

130

Purpose: Get the number of id’s in the list.

Parameters:

For VC++: a long integer pointer to the variable that will store the result.

For VB: nothing.

Return Value:

For VC++: S_OK if successful, or error code otherwise. The result is stored in the

variable pointed to by the long integer pointer.

For VB: the result it successful, or error message box otherwise.

9. GetPointerToElement
VC++ form: HRESULT GetPointerToElement(/*[in]*/ long lIndex, /*[out]*/ long
* plElement);
VB form: not available
Purpose: Get a pointer to a particular ID at location of lIndex.
Parameters:
For VC++: the first argument is a long integer variable representing the index of
the ID, the second argument is a long integer pointer to the ID.
Return Value:
For VC++: S_OK if successful, or error code otherwise. The result pointer is
stored in the second argument.
10. Insertld

VC++ form: HRESULT Insertld(/*[in]*/ long lIndex, /*[in]*/ long 1Id);
VB form: Insertld lIndex As Long, lId As Long

Purpeose: Insert the ID at location lIndex.

131

Parameters: the first argument is a long integer variable representing the index of

the ID, the second argument is a long integer variable storing the ID to be inserted.

Return Value:

For VC++: S_OK if successful, or error code otherwise.

For VB: nothing if successful, or error message box otherwise.
11. InsertNextld

VC++ form: HRESULT InsertNextId(/*[in]*/ long l1d);

VB form: InsertNextld IId As Long

Purpose: Add the ID to the end of the list.

Parameters: a long integer variable storing the ID to be inserted.

Return Value:

For VC++: S_OK if successful, or error code otherwise.

For VB: nothing if successful, or error message box otherwise.
12. InsertUniqueld

VC++ form: HRESULT InsertUniqueld(/*(in]*/ long IId);

VB form: InsertNextld 1Id As Long

| Purpose: Insert the ID if it is not already in list.

Parameters: a long integer variable storing the ID to be inserted.

Return Value:

For VC++: S_OK if successful, or error code otherwise.

For VB: nothing if successful, or error message box otherwise.
13. IntersectWith

VC++ form: HRESULT IntersectWith(/*[in]*/ ICVLIdList** objCVLIdList);

132

VB form: IntersectWith objCVLIdList As CVLIdList
Purpese: Intersect this ID list with another ID list. Updates current list according
to the result of intersection operation.
Parameters:
For VC++: a double interface pointer to a CVLIdList object to be intersected with.
For VB: an object variable declared as new CVLIdList.
Return Value:
For VC++: S_OK if successful, or error code otherwise.
For VB: nothing if successful, or error message box otherwise.
14. Isld
VC++ form: HRESULT Isld(/*[in]*/ long IId, /*[out, retval]*/ BOOL * bVal);
VB form: Isld(lld As Long) As Long
Purpose: Check whether the specified ID is in the ID list.
Parameters:
For VC++: the first argument stores a long integer ID, the second argument is a
pointer to the BOOL variable.
For VB: a long integer variable storing the ID to be checked.
Return Value:
For VC++: S_OK if successful, or error code otherwise. Value TRUE will be
stored in the variable pointed to by the BOOL pointer if the ID is in the Id list.
Otherwise value FALSE will be stored in the variable pointed to by the BOOL

pointer.

133

15.

16.

17.

For VB: a nonzero value if successful and the ID is in the Id list, or a zero value if
the ID is not in the Id list.

Reset

VC++ form: HRESULT Reset();

VB form: Reset

Purpose: Reset the Id list, release the allocated memory.

Return Value:

For VC++: S_OK if successful, or error code otherwise.

For VB: nothing if successful, or an error message box.

Setld

VC++ form: HRESULT Setld(/*[in]*/ long lIndex, /*[in}*/ long 11d);

VB form: Setld lIndex As Long, lId As Long

Purpose: Set the ild at location IIndex.

Parameters: the first argument is a long integer variable storing the index of the
ID, the second argument is a long integer variable storing the ID to be set.
Return Value:

For VC++: S_OK if successful, or error code otherwise.

For VB: nothing if successful, or an error message box.

Squeeze

VC++ form: HRESULT Squeeze();

VB form: Squeeze

Purpose: Compact the Id list.

134

Return Value:
For VC++: S_OK if successful, or error code otherwise.

For VB: nothing if successful, or an error message box.

135

Appendix D: Sample Code

In this appendix, we list a sample source code in VB as an example to show how to use

our framework. This sample just draws a color sphere in the rendering window.

Source code;

*Declare our object variables and other variables
Option Explicit

Dim MyRenderer As New CVLOpenGLRenderer
Dim MyRenderWindow As New CVLRenderWindow
Dim MyFilter As New CVLElevationFilter

Dim MyMapper As New CVLMapper

Dim MyActor As New CVLActor

Dim MyDataSetIn As CVLDataSet

Dim MyDataSetOut As CVLDataSet

Dim MyLowPoint(0 To 2) As Single

Dim MyHighPoint(0 To 2) As Single

Dim MyMapperType As CVLMAPPERTYPE

Dim MySphere As New CVLSphereSource

136

*Method to render a color sphere
Private Sub Render()
‘Set up interface pointers to the COM objects
MyRenderer.SetSelfPointer MyRenderer
MyRenderWindow.SetSelfPointer MyRenderWindow
*Set relationship between the renderer object and the rendering window object

MyRenderWindow.AddRenderer MyRenderer

MySphere.SetRadius 0.2 *Set sphere radius
MySphere.Create 120 *Create a sphere with
MySphere.SetPhiResolution 120 ‘resolution 120
MySphere.SetThetaResolution 120

MySphere.Execute ‘Generate sphere data
*Take out a dataset object which stores the sphere data

MySphere.GetOutput MyDataSetIn

MyFilter.Initialize ‘Create inner output dataset object
MyFilter.Setinput MyDataSetIn ‘Pass sphere data to the filter object
MyLowPoint(Q) = 0 *setup filter

MyLowPoint(1) = |

MyLowPoint(2) = -1

137

MyHighPoint(0) = 0
MyHighPoint(1) = 0

MyHighPoint(2) = |

MyFilter.SetLowPoint MyLowPoint(0)

MyFilter.SetHighPoint MyHighPoint(0)

MyFilter.Execute *Generate interpolated data
"Take out the output dataset object that stores new generated data

MyFilter.GetOutput MyDataSetOut

*Create concrete mapper object
MyMapperType = DATA_SET_MAPPER
MyMapper.Create MyMapperType

MyMapper.Setinput MyDataSetOut *Pass dataset object to the mapper object

*Setup the relationship between the mapper object and the actor object
MyActor.SetInnerMapperinterfacePointer MyMapper

MyActor.SetSelfPointer MyActor

*Setup the relationship between the actor object and the renderer object

MyRenderer.AddActor MyActor

138

*Setup the background color
MyRenderer.SetBackground 1, I, 1
*Set up the rendering window size

MyRenderWindow.SetSize 450, 450

*Setup the rendering window title

MyRenderWindow.SetWindowName "COM-based data visualization: Color
Sphere"

*Create the desired rendering window

MyRenderWindow.Start

MyRenderWindow.Render *beging to render

‘Release memory

Set MyRenderer = Nothing

Set MyRenderWindow = Nothing

Set MyRenderWindowInteractor = Nothing

Set MySphere = Nothing

Set MyFilter = Nothing

Set MyMapper = Nothing

Set MyDataSetIn = Nothing

Set MyDataSetOut = Nothing

Set MyActor = Nothing

End Sub

139

The generated image is shown as follows:

140

