
A FRAMEWORK FOR DEVELOPING CONTEXT-AWARE

SYSTEMS

SOFIAN ALSALMAN HNAIDE

A THESIS

IN

THE DEPARTMENT

OF

COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE

CONCORDIA UNIVERSITY

MONTRÉAL, QUÉBEC, CANADA

APRIL 2011

c© SOFIAN ALSALMAN HNAIDE, 2011

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Sofian Alsalman Hnaide

Entitled: A Framework for Developing Context-aware Systems

and submitted in partial fulfillment of the requirements for the degree of

 Master of Computer Science

complies with the regulations of the University and meets the accepted standards with
respect to originality and quality.

Signed by the final examining committee:

 ______________________________________ Chair
 Dr. Bipin Desai

 ______________________________________ Examiner
 Dr. Dhrubajyoti Goswami

 ______________________________________ Examiner
 Dr. Joey Paquet

 ______________________________________ Supervisor
 Dr. Vangalur Alagar

Approved by __
 Chair of Department or Graduate Program Director

__
 Dr. Robin A. L. Drew, Dean

Faculty of Engineering and Computer Science

Date __

ABSTRACT

A Framework for developing Context-aware Systems

Sofian Alsalman Hnaide

In ubiquitous computing the environment constraints are often regarded as static and soft-

ware applications are allowed to function in a mobile ecospace. However, in context-aware

systems the environment attributes of software applications are dynamically changing. This

dynamism of contexts must be accounted for in order to provide the true intended effect

on the application of services. Consequently, context-aware software applications should

perceive their context in a continuous manner and seamlessly adapt to it.

This thesis investigates the process of constructing context-aware applications and iden-

tifies the main challenges in this domain. The two principal requirements are (1) formally

defining what context is and expressing the enclosed semantics, (2) formally defining dy-

namic compositions of adaptations and triggering their responses to changes in the envi-

ronment context.

This thesis proposes a component-based architecture for a Context-aware Framework

that would be used to bring awareness capabilities into applications. Two languages are

formally designed. One is to formally express situations, leading to a context reasoner, and

another is to formally express workflow, leading to timely triggering of reactions and en-

forcing policies. With these formalisms and a component design that can be formalized, the

thesis work fulfills a formal approach to construct context-aware applications. A proof-of-

concept case study is implemented to examine the expressiveness of the framework design

and test its implementation.

iii

ACKNOWLEDGMENTS

It is a pleasure to thank those who made this thesis possible. First and foremost, I would

like to express my sincere gratitude to my supervisor Prof. Vangalur Alagar for his patience

and motivation, his wide knowledge and perspective had profoundly inspired this research.

I would also like to extend my gratitude to Dr. Mubarak Mohammad for his guidance and

support, his help was truly indispensable for this work.

Finally, I would like to dedicate this work to my family. There never-ending love and

unconditional support ever since I was a child is the reason that keeps me going. I can’t

find enough words to express how fortunate I am for being part of their lives.

iv

Contents

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Thesis Contribution . 3

1.2 Thesis Outline . 4

2 Related Work 5

2.1 Domain Specific Studies . 5

2.1.1 Search Engines . 5

2.1.2 Smart Places . 7

2.1.3 Social Networking . 8

2.1.4 Health care . 10

2.1.5 Security . 11

2.1.6 Mobile Phones . 13

2.1.7 Other Domains . 14

2.2 Generic Frameworks for Context Awareness 16

2.2.1 The Java Context Awareness Framework (JCAF) 16

2.2.2 Context-Aware Web (CAwbWeb) 17

2.2.3 Architecture-Based Context-Aware Deployment and Adaptation . . 19

2.2.4 Context Toolkit . 21

2.2.5 Other Studies . 22

v

2.3 Analysis . 23

3 Requirements of Context-Aware Systems 27

3.1 Context . 28

3.2 Sensors . 31

3.3 Actuators . 35

3.4 Adaptation . 36

3.5 Policies . 37

3.6 Summary of Requirements . 38

4 Formal Definition of Context-aware Systems 41

4.1 Sensor Mechanism . 41

4.2 Context Mechanism . 43

4.3 Adaptation Mechanism . 44

4.4 Reactivity Mechanism . 44

4.5 Context-Aware System Formal Model . 45

4.6 Situation Expression Language . 45

4.7 Workflow and Policy Expression Language 50

5 Architectural Design 54

5.1 A Quick Review of Past and Present Architectures for Context-aware Systems 55

5.2 Proposed Architecture . 57

5.3 Architecture . 57

5.4 Sensor Mechanism (SM) . 59

5.5 Context Mechanism . 62

5.6 Adaptation Mechanism . 63

5.7 Reactivity Mechanism . 65

6 Detailed Design 67

6.1 Framework Module Components . 67

6.2 Context Reasoning . 90

vi

6.3 Workflow & Policy component . 95

7 Implementation 99

7.1 Implementation Platform . 99

7.1.1 Requirements and Analysis . 99

7.2 CAF Implementation . 103

7.3 Case Studies . 111

7.3.1 Temperature Control and Cooling System (TCCS) 111

7.3.2 Salesman Case Study . 117

8 Conclusion And Future Work 138

8.1 Summary . 139

8.2 Assessment . 140

8.3 Future work . 141

A Situation Expression Language 143

B Workflow Expression Language 147

Bibliography 150

vii

List of Figures

1 Search Engine Framework Architecture [CJP+08] 7

2 Smart Place Framework Architecture [GCM+07] 9

3 Social Network Framework Architecture [TL09] 10

4 Context Aware Mobile Communication Framework [BSNc07] 12

5 Context-Aware Authentication Framework [GKJ+10] 14

6 Generic Context Aware Mechanism [MCC10] 15

7 JCAF Framework [Bar05] . 18

8 CAwbWeb Framework [ABM10] . 20

9 ACCADA Framework [GFSB11] . 21

10 The Context Toolkit Architecture [Dey00] 23

11 Context Situation . 30

12 The Three-Tiered Formalism of Context-Aware System [WAP06] 56

13 The CAF Architecture . 58

14 The Sensor Mechanism . 61

15 The Context Mechanism . 63

16 The Adaptation Mechanism . 65

17 The Reactivity Mechanism . 66

18 The Sensor Module . 76

19 Context Module . 79

20 Resolving and Reactivity Module . 85

21 Sequence Diagram for Listener Component 87

22 Sequence Diagram for Aggregation and Verification Component 88

viii

23 Sequence Diagram for Context Component 88

24 Sequence Diagram for the Resolving Component 89

25 Sequence Diagram for the Reactivity . 90

26 Irony Grammar Explorer . 92

27 AST Tree Structure . 93

28 Reasoner Component Design . 94

29 AST for Workflow . 97

30 The Workflow & Policy Engine . 98

31 .Net Framework . 104

32 Silverlight Framework . 105

33 Initialization Process . 110

34 Dependency Tree . 110

35 Temperature Control System . 111

36 Framework Process Model . 114

37 Request Information Chain . 115

38 Reasoning Context Information . 116

39 The Adaptation Resolver . 116

40 Salesman Case Study Implementation- Phone and Tablet Applications . . . 135

41 The Framework Tests Results . 136

42 The Framework Unit Tests . 137

ix

List of Tables

1 Comparison Between Context-Aware Approaches Part-1 24

2 Comparison Between Context-Aware Approaches Part-2 25

3 Comparison Between Context-Aware Approaches Part-3 25

4 IConnector Description . 69

5 ITranslator Description . 69

6 INotifyChange Description . 70

7 IData Description . 70

8 IExpression Description . 70

9 IDataProvider Description . 71

10 ILogger Description . 71

11 ISensorListener Description . 72

12 ISensorVerifier Description . 73

13 ISensorVerifiersManager Description . 74

14 IDataSynchronizer Description . 75

15 IContextManager Description . 77

16 IContextReasoner Description . 78

17 ISituation Description . 79

18 IAdaptationResolver Description . 80

19 IAdaptation Description . 81

20 IWorkflow Description . 81

21 IWorkflowExecutor Description . 82

22 IPolicy Description . 82

x

23 IPolicyChecker Description . 83

24 IReaction Description . 84

25 IActuatorController Description . 85

26 IContainer Description . 109

27 Prepare-Shipment-Adaptation . 126

28 Notify Salesman . 126

29 Transfer from Warehouse . 127

30 Transfer from Salesman . 128

31 Recalculate Customer List . 129

32 Suggest Visit . 130

33 Suggest Customer Order . 130

34 Offer Discount . 131

35 Offer Waver . 132

36 Pass . 132

37 Notify Nearby Salesman . 133

38 Notify Manager . 133

39 Framework Test Statistics . 136

xi

Chapter 1

Introduction

Context plays an important role in our lives. It helps us better comprehend the surrounding

environment of a specific situation. It exists in our everyday activities. For example, in

conversations, humans have the ability to go back and forth between different topics that

may seem irrelevant to an observer who lacks knowledge of the context of the conversation

while it sounds perfectly normal to someone who is aware of the context. Unfortunately,

this does not translate optimally in Human Computer Interaction (HCI). When a person

asks a friend about a restaurant, the friend may respond with good answers keeping in mind

the preferences of the requester such as quality of service, price and ambience. Hence, the

answer provided is relevant. On the other hand, the same query when presented to a search

engine would give various results that may or may not match the requester’s preferences.

Enhancing the relevance of the results can be a tedious task without explicitly specifying

the preferences which are mostly subjective in nature.

Context can be defined as the circumstances that characterize an event [Dey00]. It is

hard to capture context due to technology constrains. However, the rapid expansion in com-

puter power which is realized in ubiquitous spectrum of high-connectivity, handheld and

light-weight devices allowed computers to have a greater insight to user’s context. There-

fore, computer applications are expected to implicitly perceive user context and seamlessly

adapt to it.

Perceiving context requires defining how to present it. When we look at context as a

1

set of properties such as time, location and user preferences we lose the essence of context

which is the semantic that lies behind these properties. For example, GPS coordinates may

not bring relevant knowledge about user context, but information such as home, office or

school are more profound even if the accurate physical position is not identified.

Context information are captured using sensors. Sensors are entities that provide mea-

surable responses to changes in an application’s environment. Context-aware applications

are required to interact with sensors. Sensors can be hardware devices such as GPS sensor

or software applications such as authorization provider. Identifying the common character-

istics of sensors helps defining a generic interface and a mechanism to deal with them. One

important issue when dealing with sensors is that their output is not always accurate and

their trustworthiness varies in respect to other environment aspects. For example, GPS data

accuracy is related to the number of satellites in range, weather information and whether

the receiver is placed indoor or outdoor.

Presenting semantics behind the aggregation of atomic properties of contexts is an issue

that has been addressed in other domains as well such as Artificial Intelligence or Semantic

Web [BLHL01]. The added value of using contextual information heavily depends on

defining semantics which requires a technique to explicitly define user intentions and a

mechanism to infer them based on context information.

Adapting to the constantly changing context is equally challenging as perceiving con-

text. Adaptation requires accurately mapping predefined actions to specific context situ-

ations. Moreover, it requires dynamic composition of these actions which underlines the

importance of having a flexible yet formal definition of adaptation. Predefined actions are

implemented using actuators. Actuators represent the parts of a computing system which

perform actions at the last stage. Just like sensors, actuators could be software based such

as database transactions or hardware devices such as door controllers. Context-aware Ap-

plications require a standard mechanism to interact with actuators.

In between perceiving context and adapting to it there is a whole process that should

be governed with business and quality policies that are imposed by application domains.

Context-aware applications need an extendable mechanism to define and enforce policies

2

that govern the behavior of applications to ensure higher quality. The representation of

policies and the interaction with context information and other application resources is an

interesting issue that needs to be addressed.

Therefore, developing context-aware systems requires essentially supporting (1) the

representation and management of context information, (2) management of sensors to ac-

quire context knowledge from user’s environment, (3) definition of semantic information

and inference rules to infer situations based on context information, (4) definition of adap-

tations to contextual situations, (5) management of policies to restrict adaptations and (6)

management of actuators to perform adaptations in user’s environment. Some of these re-

quirements have been addressed by researchers and in software industry during the last two

decades. However, there exists not a single approach that addressed a complete solution

to context-aware system development that involved all the essential requirements. This is

the motivation behind this thesis. We propose a framework for developing context-aware

systems which incorporates all the essential requirements. The framework helps software

developers empower existing and new application with context-awareness and adaptation

management capabilities.

1.1 Thesis Contribution

The major contributions of this work are: (1) introducing a component-based architec-

ture for Context-aware System Development, (2) defining a rich and extendable expression

language to define context situations, (3) implementing an inference engine that is able to

parse and evaluate context situation expressions against atomic context information, (4) for-

mally defining adaptations and policies and introducing a rich and extendable Adaptation

Workflow Language, (5) implementing a workflow executor engine to parse and execute

workflow definitions and enforce defined policies and (6) introducing a generic mechanism

to interact with both Sensors and Actuators.

The minor contributions of this work are: (1) providing a rich library for interaction

with sensors and actuators, (2) providing a platform-independent implementation of the

3

Framework running on different platforms (Phone, Desktop, Web), and (3) a full imple-

mentation of a case study in the sales domain with a phone and desktop interfaces.

1.2 Thesis Outline

The structure of the thesis is as follows: Chapter 2 contains a survey of the related works

on this domain and an analysis of these studies. Chapter 3 presents the main concepts and

requirements in the domain of context-awareness. Chapter 4 presents a formal definition

of context-aware systems (CAS). In Chapter 5 we introduce the main architecture of the

Context-aware Framework. In Chapter 6 we provide a full documentation of the detailed

design. Chapter 7 reviews main implementation aspects and decisions and presents the case

studies used to test this framework. Finally Chapter 8 contains the conclusion and future

works.

4

Chapter 2

Related Work

In this chapter we present related work in the domain of context awareness. In Section 2.1

we present domain specific studies conducted in specific application domains such as health

care and transportation. In Section 2.2 we present generic frameworks designed to address

different application domains. In Section 2.3 an analysis of these studies and a comparison

between them are presented. The comparison is done with respect to different aspects that

are identified as crucial for this research.

2.1 Domain Specific Studies

This section discusses context-aware applications that target specific domains. Studies

surveyed here propose a domain-specific architecture for managing context information.

For example, using users search history to optimize search engines results or real time

traffic information to optimize routing. We briefly present the usage of context information

and the architecture proposed in each domain of interest.

2.1.1 Search Engines

In search engines the ultimate goal is to achieve a higher relevance in search results. That

requires, in addition to good ranking and indexing algorithms, taking into consideration all

possible factors that might affect the quality of search results. Context information is one

5

important factor. A simple example is ‘searching for a seafood restaurant’. While Van-

couver has a great reputation for seafood, searching for such a restaurant from Montreal

reduces the significance of presenting Vancouver restaurants in the search results. Since

restaurant in Montreal are more likely to interest users from Montreal rather than restau-

rants in other cities. Location here is an example of context information that might change

the entire relevance criteria.

In [GGR+09] an architecture for context-aware search engine is presented. The authors

argued that mobile search is gaining more attraction and the traditional search techniques

are not efficient for mobile devices.

This study is proposing an architecture that acts as a mid-tier between mobile search

clients and search engines. This architecture, illustrated in Figure 1, contains the following

modules.

• Context interpreter: It is responsible for interaction with sensors and aggregating

their output.

• Service registry: It keeps track of all registered services that may be used to answer

user queries.

• Service interpreter: It is responsible for interacting with mobile applications and

interpreting their request.

• Context manager: It is responsible for parsing formatted requests and checking if any

service could answer these request. In case this is not possible it directs the request

to the Context-aware Search manager.

• Policy Registry: It contains the policies for managing underlying network communi-

cations.

• Context-Aware Search Manager: It is a search engine capable of taking context in-

formation into consideration.

The term context reasoning was used but without concretely defining what type of reason-

ing is being held. The adaptation capability is limited since reactions are embedded inside

6

Figure 1: Search Engine Framework Architecture [CJP+08]

the relevant algorithm in the search engine. However, from a design perspective there was a

clear decoupling between aggregating sensors reading, managing context information and

searching using this information.

Other context aware studies are conducted on this domain. However, some of them

considered a different aspect of user context. In [CJP+08] context is considered only as

the historic search data, in this study the authors argued that being aware of search history

could help search engines provide a better relevance. However, their approach did not

contain any formalism for context or a specific architecture to model either how to collect

information or how to react upon it.

2.1.2 Smart Places

Smart places are environments empowered with sensors and computer applications that can

anticipate user actions and react by accommodating the surrounding environment to user

need. Consequently, context awareness has a vital part in research and applications of smart

places. This domain is attractive to big companies who have established several projects in

context-aware applications, such as HP R© Cool Town project [BBKK01] and Microsoft R©

Easy Living project [BMK+00].

7

In [GCM+07] a context-aware architecture is proposed. The architecture introduces a

Context Engine (CE). This engine is responsible for reasoning over context information

based on semantic web technologies. The reasoning is done through an ontology reasoner.

This architecture, illustrated in Figure 2, contains the following components.

• Device/User Component - This component contains users and the pervasive devices.

• Reasoner - It is the core engine which contains the reasoning system.

• Context Storage - This module contains the most up-to-date environment informa-

tion.

• Rules Repository - The inference rules stored in this module are used by an ontology

reasoner to draw inferences.

In the process of domain analysis the appropriate ontology is constructed to formally model

the expected output of the device and to define inference rules used in the system. The

adaptation for the changing context is represented using Device Workflow Management

System (DWFMS). The framework’s main contribution is in introducing the semantic web

technology as a suggested solution to uncover the hidden semantics in context information.

However, this approach is not proposing a generic interface to interact with sensors or

actuators. The formalism for context information is heavily dependent on domain analysis

and it’s not reusable in different domains. The adaptation techniques are also not discussed

and completely dependent on (DWFMS).

2.1.3 Social Networking

Social networks are gaining an increased attraction in the IT domain. With more than 500

million users on Facebook 1, social networks are becoming an important part of everyday

life. Social data such as events, friends and interests are packed with context informa-

tion. Appropriate usage of such information could add considerable value to the quality of

service provided to the users.
1http://www.facebook.com

8

Figure 2: Smart Place Framework Architecture [GCM+07]

In [TL09] a platform to detect user events through user context is introduced. The

platform uses mobile phones as sensors that provide information such as location, time,

social networks, phone calls log, voice mail, text messages and others.

The platform, illustrated in Figure 3, contains four modules. The first module is the co-

presence module which is responsible for detecting physical co-presence through detecting

location information for a group of people. The second module is the Social Network.

This module connects to a social network and searches through events or calendars of

people. The social network module identifies events that may be happening at any moment

in time and analyzes social ties between people. It uses social relations, such as friends or

family, in combination with other context information, such as location and time, to detect

events. The planning module is responsible for calling services needed for that event such

as ordering cake for a birthday. The last module is the event module which declares the

event when it is ready.

Services provided in this study could be used to organize social events and other so-

cial services such as suggesting familiar strangers (people who attend same social events,

but not on the friends list). This study suggests some interesting aspects of using context

information. However, the platform targets a very detailed problem and no solution was

provided to address more complicated situations.

It was interesting to see some other studies that used different kinds of context informa-

tion as tagging pictures with contextual information beyond time location and people, such

9

Figure 3: Social Network Framework Architecture [TL09]

as snake rate in [CL07].

Sensors in social networks domain have a unique nature, since basic context informa-

tion is not directly provided by software or hardware components. Context information

needs to be extracted from knowledge base such as calendars or personal notes. Some

studies [LOIP10] tackled this issue by integrating and refactoring sensors output such as

integrating calendar with social networks data to better investigate events.

2.1.4 Health care

Health care is an interesting and rich domain for context awareness research [BSNc07]

whether in managing hospitals or in helping medical staff taking timely decisions. Context

is embedded in almost every little detail in the medical domain. Electronic Patient Records

(EPR) that show all the medical history of patients and devices readings such as temperature

and blood pressure are examples of context-dependent information.

The study in [BSNc07] addresses the issue of communication in hospitals. The ar-

chitecture is proposed as an extension to regular messaging techniques such as SMS text

messages through using context information in determining critical factors in messaging

systems like destination, time and validity period of the message. Context information was

categorized in three main aspects location, time and role.

Location is important in determining what the medical staff is doing. If a doctor is

near a patient bed, the doctor is probably checking on the patient, so it will be helpful to

10

view information on a nearby screen. This information could contain EPR and notes by

the previous doctor on-call. Timeliness is also important in hospital communication, since

a message that was sent a day before may not be valid anymore. The medical condition of

the patient changes and the proposed medication may not be effective anymore. The last

category of context information can be labeled as role. In hospitals there are always roles

regardless of who is filling them, such as nurse on-duty or doctor on-call. This piece of

information is vital to deliver messages. The communication system in role-based system

is all about viewing the right message to the right person in the right place and time.

The architecture proposed in this study is presented in Figure 4 that contains a context-

aware client, context aware agent, messaging server and a hospital agent directory. The

context-aware client is responsible for providing context information and sending and/or

receiving messages. Mobile phones, Personal Device Assistance (PDA) or even monitors

are examples of such devices. Context information can by dynamic, such as location of a

doctor, or static, such as location of a screen. The context-aware agent is the abstraction that

represents the identity of the device on the network. The agent is responsible for contacting

the hospital agent directory that keeps track of all agents and routes the messages through

the messaging server to the appropriate agent.

Research in context-awareness also uses medical data as a testing prototype. In [VSL03]

a context-aware data mining method is proposed. This framework uses context information

in tuning data mining algorithms and the authors argue that contextual information have a

profound impact in the efficiency of the algorithms.

2.1.5 Security

Security is an increasing concern in computer systems. Authentication techniques such as

strong passwords, hardware dangles, RFID cards and their combinations are getting more

complicated and negatively affecting usability. Context information helps systems better

understand user states and situations. Therefore, using context information as additional

tokens provides a more secure, yet less complicated, mechanism for authentication and

authorization.

11

Figure 4: Context Aware Mobile Communication Framework [BSNc07]

In [GKJ+10] the authors propose a Context-aware Authentication Framework for using

contextual information extracted from database and gathered by real-time sensors to help

systems take well-informed decisions. The authors argued that enhancing security should

not involve users explicitly providing additional information. The information collected

from other sources should be sufficient.

The framework suggested QR (Quick Response) barcodes [OPB+99] as an authen-

tication technique since it’s easy to generate and read, it’s also robust compared to other

techniques such as RFID (Radio-frequency identification) and other radio techniques which

expose vulnerability for sniffing. The framework architecture, illustrated in Figure 5, con-

tains the following modules.

• Core Access Management Module (CAMM) - It manages the QR presented to users

and the usage patterns such as logging all login attempts, times and results.

• User Database and Policy Store - It contains user information and policies used to

authenticate users.

• Client Mobile Device - It is a network enabled mobile device equipped with a camera.

It is used to run the framework mobile application.

12

• Authentication Site - This is a place where authentication is needed. It is either

equipped with computer screens viewing dynamically changing QR or static QR

printed on papers.

• Additional Context Cures - This module adds other aspects of context information,

such as detailed location inside buildings and calendar information to include user

events.

They present a case study on a school campus for managing access to rooms based on

context information. Students and staff are admitted to rooms based on their context infor-

mation, such as events and roles. However, the solution suggested here is tied to a specific

technology (QR barcodes) and adaptations are limited only to the authentication operation.

We also reviewed other studies in the Security domain were the security context is

formally defined. In [WA07] a context enhanced security architecture is proposed. The au-

thors formally defined security context based on the box notation introduced in [WAN06].

The suggested multi agent implementation of the architecture enforces self-protection in

Autonomic Computing Systems (ACS) through utilizing context information.

2.1.6 Mobile Phones

Context-awareness is also a hot research topic in telecommunications industry. Research In

Motion Limited (RIM) R© has recently registered a context-aware platform in the Canadian

patent database [MCC10]. This patent introduces a context-aware server and client. Con-

text is abstracted as aspects, which include location and time. Rules and logic are referred

as the techniques to compute context but no further clarification was provided to describe

what type of rules and how to represent them. Policies define how the combination of reac-

tions are presented. The client queries the context-aware server with respect to at least one

aspect.

The architecture, illustrated in Figure 6, shows a generic environment for context- aware

services. The architecture contains mobile phones that connects through the carrier network

13

Figure 5: Context-Aware Authentication Framework [GKJ+10]

to the Generic Platform. The Generic Platform calculates the context through the rules and

instantiates the appropriate service through the policies.

The architecture provided was very generic. No discussion is given on how to repre-

sent logic, policies and context. However, the method is very specific in determining how

connection is established in devices and what network protocols are used.

2.1.7 Other Domains

To expand the horizon of our research we broaden our survey to cover a spectrum of other

domains. We encountered domains where context-awareness is a hot research topic such

as transportation ([RZPM09], [vSPK04], [ZLWX08], [DLP+10]) where context informa-

tion, such as traffic and historical data, has a vita role. Defense is another domain where

context information has important part, as shown by the study in [CM04]. We also en-

countered context-awareness research in domains like agriculture [uRS08] where context

14

Figure 6: Generic Context Aware Mechanism [MCC10]

15

information includes soil condition, weather, water-flow, pesticides and crop. From a soft-

ware engineering perspective, analyzing all different approaches of representing, handling,

and interacting with context information gave us a good starting point to identify the main

requirements for our framework.

2.2 Generic Frameworks for Context Awareness

Generic Frameworks are general-purpose software frameworks built to facilitate the pro-

cess of creating context-aware applications in different domains. It represents the main

motive behind this work. Surveying this area shows that there are not many solutions that

address this specific issue compared to domain-specific solutions. That finding gave us the

confidence to go forward and investigate a generic, flexible, component-based architecture

in this thesis. The thesis work modifies and enriches an early work [WAP06] suggests in

which a three-tiered component-based architecture has been introduced for context-aware

systems.

2.2.1 The Java Context Awareness Framework (JCAF)

This research [Bar05] claims to propose a service-oriented, event-based and secure infras-

tructure suitable for the deployment and development of context-aware applications. The

interface-driven design represents a framework that could be extended by developers.

Context is defined on the three main levels item, entity and context. Context item rep-

resents one piece of contextual information, such as location or time. An entity is a logical

grouping of one or more context items. A Person, as a context entity, contains location,

name and job as context items. Context is the biggest container, which contains all context

entities such as hospital context, work context or home context.

The framework architecture, illustrated in Figure 7, consists of the following layers.

• Context Client layer (CC)- It contains the applications that are using the framework

through subscribing or requesting context information.

16

• Context Service layer- It contains a context service API which provides client appli-

cations with the sensed information. This API is provided through web services.

• Context Monitor and Actuator layer- It contains the entities responsible for commu-

nications with sensors and actuators.

This framework supports both synchronous and asynchronous calls. However, the commu-

nication mechanism is not decoupled from sensors and actuators. Context representation

proposed by this framework does not provide the ability to define other abstractions over

simple context information. The added value of the logical grouping of context information

in entities was not discussed.

The adaptations in this framework support only actuator calls, but do not meet any real-

istic application requirements which often demand for sophisticated adaptation scenarios.

Although a data access policy is supported, no native support exists for any other type of

business policies. Implementation-wise, this framework enforces certain technologies es-

pecially in communication with sensors and actuators which should have been abstracted

to support evolving technologies in future.

2.2.2 Context-Aware Web (CAwbWeb)

This study [ABM10] proposes a framework for context-aware mobile cloud computing.

There is a growing mobile application market (iTunes R© store contains more than 400,000

applications for iPhone R©) and ongoing focus on cloud computing (Amazon EC2 R©, Mi-

crosoft Azure R©, Google Apps R©). These two domains are growing side by side to deliver

an enhanced user experience by providing thin clients with high connectivity. However,

applications should identify cloud services in order to work properly. The framework fa-

cilitates the process of mapping mobile applications with cloud services by providing a

middle layer that matches services with demands.

The methodology proposed in this study divides the problem space into the following as-

pects.

• Intentions: It represents the applications purposes of using the services.

17

Figure 7: JCAF Framework [Bar05]

• Context: It represents the contexts of application executions.

• Action: It represents the appropriate actions that should be taken in a specific context

to meet a specific intention.

• Actuation: It represents the detailed operations of each action.

The framework, illustrated in Figure 8, contains four layers (1) Mobile application, (2)

Contextual lookup Service, (3) Context-aware Intention Compiler and (4) Actuation Pro-

gram Interpreter. The mobile application is responsible for collecting context information

and specifying the application intentions. The mobile application then contacts the contex-

tual lookup service which in its turn maps the appropriate cloud web service to the context.

Afterwards, the intention complier suggests actions in the execution context that meet the

application intentions. Once the action is chosen, the actuation interpreter is responsible

for executing the instructions.

The framework proposes a Context Description Language (CDL) using ontologies [W3C10],

18

an XML based Action Description Language (ADL) and an XML based Actuation Instruc-

tion Language (AIL). However, the main structure of this ontology is not specified. As a

consequence applications are forced to define their own context information. This in turn

might introduce conflicts and inconsistencies in mapping ontologies. For example, if two

applications are using two separate ontologies, in order for them to cooperate they need

to map their ontologies. Ontology mapping is done by matching each concept in the first

ontology with the corresponding concept in the second ontology. This operation is time

consuming if done manually and challenging to automate. The role of ontology reasoner

in defining context was not discussed, and consequently inconsistencies introduced by on-

tology mapping cannot be detected.

The studies made a clear separation of concerns in terms of how to represent context

and how to represent reactions. However, although they mentioned security and privacy

concerns, no actual solution was proposed for representing execution policies.

2.2.3 Architecture-Based Context-Aware Deployment and Adaptation

This study [GFSB11] presents a framework for context-aware development. The frame-

work underlines the importance of runtime in order to capture context information and to

adapt to the changing context. The framework proposes a dynamic run time methodology

to deal with the continuously changing context information.

The architecture, illustrated in Figure 9, contains five main models: (1) Event Monitor,

(2) Adaptation Actuator, (3) Structural Modeler, (4) Context-specific Modeler and (5) Con-

text Reasoner. Event Monitor is responsible for measuring what they described as system

states. It is worth to mention that the term sensor was not used in their paper. Adaptation

Actuator is responsible for communicating with actuators. Structural Modeler is responsi-

ble for managing run time dependency and instantiating the right workflow of components

on runtime. Once the components are ready, the Context Reasoner is responsible for choos-

ing the appropriate Context-specific Modeler that implements the right adaptation based on

the current context.

19

Figure 8: CAwbWeb Framework [ABM10]

20

Figure 9: ACCADA Framework [GFSB11]

The study mentioned multiple types of context reasoners. However, no concrete de-

sign or implementation was suggested. While the concepts of context and adaptation were

introduced, no formal definitions were provided. Consequently, they did not discuss how

“context-specific services” were registering interest on context information. On the other

hand, they discussed thoroughly the dynamic composition of software components.

2.2.4 Context Toolkit

Context Toolkit [Dey00] is a conceptual framework that facilitates the design and imple-

mentation of context-aware applications. They identified the following requirements of the

framework.

• Separation of concerns and context handling (SEP).

• Context interpretation (I).

21

• Transparent distributed communications (TDC).

• Constant availability of context acquisition (CA).

• Context storage (ST).

• Resource discovery (RD).

The component model for the Context Toolkit, illustrated in Figure 10, contains the com-

ponents BaseObject, Widgets, Services, Aggregators, Discoverer and Interpreter.

BaseObject component provides the communication infrastructure used to communi-

cate with widgets, services, aggregators, discoverers and interpreter. As all other compo-

nents are sub-components of BaseObject, the communication mechanism is consistent all

over the framework. Widget is the framework abstraction that separates how context is

acquired from sensors and how it is used. Widgets notify applications whenever contexts

change. Service is the framework component responsible for interacting with actuators, it is

considered as a sub components of Widget. For example, the widget responsible for moni-

toring the light in a room connects with a light sensor and a light actuator through a service.

Aggregator is responsible for notifying interested components with multiple context infor-

mation in oppose single context information like to what widgets do. Discoverer is the

component responsible for detecting interested components in a specific context change.

Finally, Interpreter is! responsible for mapping row context information to meaningful

information, such as translating GPS coordinates to street location.

The Toolkit makes a clear separation of how to communicate with sensors and translate

sensor information. However, context abstraction is discussed but no concrete solution was

provided and no abstraction for adaptation was provided as well.

2.2.5 Other Studies

Other studies in this domain have been surveyed, for time and space constrains we could

not describe them all in this thesis. Some of these studies address specific platforms, such

22

Figure 10: The Context Toolkit Architecture [Dey00]

as Mobile devices [BC], or technology specific approaches, such as targeting specific de-

ployment platforms [RS06].

2.3 Analysis

A comparison of the main criteria behind the different approaches surveyed above is pre-

sented in Table 1, Table 2 and Table 3. The comparison focuses on the following aspects.

• Context Formalism: It represents how context is defined. Since context represen-

tation is not intuitive, the process of formally defining what is context and how to

represent is an important factor in evaluating solutions in this domain.

• Context Abstraction: It represent the mechanism used to uncover the hidden semantic

beyond atomic context information. Presenting context information in a raw level

does not meet the requirements of applications that needs to identify high and abstract

context definitions. For example, while GPS coordinates might mean nothing to

applications, information such as home, work or school have more impact even if it’s

not accurate.

23

Study [WAP06] [GGR+09] [GCM+07] [TL09]
Context Formalism Y X X X
Context Abstraction Y X Y X
Sensors Abstraction X Y Y X
Actuators Abstraction X X X X
Communications Y X X Y
Data Transformers X X X X
Approach Type G DS DS DS
Policies X X X X
Adaptation Formalism Y X Y X

Table 1: Comparison Between Context-Aware Approaches Part-1
X represents that the study did not address the issue, Y represents that it did. DS:

represents Domain-specific, G: represents Generic approaches.

• Sensors abstraction: It represents the abstraction layer for dealing with sensors.

• Actuators abstraction: It represents the abstraction layer for dealing with actuators.

• Communication: It represents the communication mechanism. It is a critical op-

eration since frameworks need to deal with sensors and actuators. Specially that

different sensors may use same communication technique such as Serial Port, USB

or Bluetooth. Abstracting the concept of communication is important factor in this

domain.

• Data Transformers: It represents how different approaches where addressing the het-

erogeneity issue caused by using different software components. For example, while

all GPS sensors provide the same content, there exist different formats for GPS in-

formation which makes it critical to separate content from presentation.

• Approach type: It is either Generic or Domain-Specific

• Policies: It represents the mechanism used for enforcing application constrains.

• Adaptation formalism: It represents the formalization methodology used to present

adaptations.

24

Study [MCC10] [Bar05] [ABM10] [GFSB11]
Context Formalism Y Y Y X
Context Abstraction X X Y Y
Sensors Abstraction Y Y X Y
Actuators Abstraction X Y X Y
Communications Y X X X
Data Transformers X X X X
Approach Type DS G G G
Policies X X X X
Adaptation Formalism Y X Y X

Table 2: Comparison Between Context-Aware Approaches Part-2
X represents that the study did not address the issue, Y represents that it did. DS:

represents Domain-specific, G: represents Generic approaches.

Study [BSNc07] [GKJ+10] [Dey00]
Context Formalism X X Y
Context Abstraction X X Y
Sensors Abstraction Y Y Y
Actuators Abstraction Y X X
Communications Y X Y
Data Transformers X X Y
Approach Type DS DS G
Policies X Y X
Adaptation Formalism X X X

Table 3: Comparison Between Context-Aware Approaches Part-3
X represents that the study did not address the issue, Y represents that it did. DS:

represents Domain-specific, G: represents Generic approaches.

25

Based on the analysis provided in Table 1, Table 2 and Table 3 we can conclude that no

single approach has the features to address all the issues that was identified as crucial for

context-aware modeling. The main focus of this work is the development of a context-

aware framework that provides feasible solutions to ALL the issues that we have discussed.

26

Chapter 3

Requirements of Context-Aware Systems

Context-aware systems (CAS) are the class of computing systems which maintain contin-

uous monitoring of the surrounding environment and adapt their operations based on the

changes in current context without direct user intervention.

In recent years the emergence of ubiquitous computing with a plethora of sophisti-

cated, hand-held, and lightweight devices amplified the importance of the evolving studies

in context-awareness. The environment information provided by cell phones, tablets, mu-

sic players, PDAs and eBook readers can be used in different aspects to provide a seamless

user experience. It facilitates the process of Human Computer Interaction (HCI) with adap-

tive applications that anticipate and react to user context. This transition from stationary

computing to ubiquitous computing made it possible to deliver some of the implicit user

contexts that were hidden in the former mode. As a consequence, the need for a precise

formal definition of what context is and how to interpret and react upon it have become in-

evitable questions. Any application with context-awareness capabilities should have clear

guidelines on these issues.

Context-aware systems are notoriously heterogeneous and complex. Heterogeneity re-

sults from the variety of sensory devices used to perceive the environment of concern,

diversity of context information and adaptations, and the multiplicity of actuators used to

adapt to environmental situations. Complexity results from the diversity of relations and

27

connections between devices, context construction and interpretation, and the dynamic na-

ture of the environment where contexts change requiring new devices to be added and some

old ones to be discarded. Heterogeneity and complexity can be handled by following soft-

ware engineering principles such as separation of concerns which includes modularity and

abstraction, low coupling, generality, and reuse.

This chapter contains the definitions of the main concepts in the domain of context

awareness. We analyze context-aware systems and define their essential requirements.

3.1 Context

According to the Oxford English Dictionary, context denotes “the circumstances that form

the setting for an event”. A circumstance is a condition involving, in general, different

types of entities. As an example, the setting for a “seminar event” is a condition involving

entities speaker, topic, time, and location. When each entity is assigned a value from the

domain associated with that entity, and if the condition is met then the seminar is to be

held. A condition involving n entities needs a n-tuple of values for a total evaluation. In

general, many different n-tuples may satisfy a condition with n entities. So, we can regard

the collection of n-tuples satisfying the condition as a n-ary relation. This is the rationale

for formally defining context as a relation in [WAN06]. The entities are called dimensions

and the values assigned to them are called tag values. Note that the tag values have a type.

For example, the type of tag values assigned to speaker is string. Therefore, context is

a typed relation. If the dimensions in a context are all different then it is called simple

context.

Example 1 The location context of a user (tourist) perceived by a hand held device has

the four dimensions: (1) LPS (geographical position of the user), (2) TIME (local time),

(3) NS (north-south coordinate), and (4) EW (east-west coordinate).

Assume that the tag set for LPS is the value determined automatically by the geographical

positioning system and the tag set for TIME, NS, and EW be finite sets of positive

integers. Thus, the context c = [LPS : NewY ork, TIME : 13, NS : 5, EW : 3] is

28

a reference to the current user location. It may also be interpreted as a characterization

of some event that happens at the intersection of 5th north-south street and 3rd east-west

avenue in New York city at time 13 hours local time. Hence, the definition of context is

independent of what it references.

This formal representation of context does not reflect the underlying semantics. If we

have a user context that contains the GPS coordinates of the user location, this information

alone may not be useful. However, providing the semantics of this context by identifying

if the user is at home or at work is probably more significant for a meaningful decision

making. Therefore, in order to represent semantic information based on context atomic

properties we introduce Context Situation.

Context Situation is a custom state that occurs when predefined environment conditions

are met. Situations are represented as expressions evaluated against context dimensions.

Therefore, an expressive expression language should be used to define sophisticated

context situations.

An application can have one context at any one instant. This context is built from all the

gathered information at that particular moment. Figure 11 shows an example of context. A

set of context situations are defined as follows.

• Context contains a set of key-value pairs, the key is the dimension and the value is

the tag.

• Situation represents a state of interest to an application. Situations can have relations

between each other. For example, a Hot situation is realized whenever the tem-

perature degree and the humidity are higher than a certain level. Moreover, a heat

emergency situation depends on the Hot situation. This means that Heat Emergency

can not happen unless it is Hot.

The following discusses the requirements of context-aware systems for handling context

information.

Context information is the basis on which context-aware systems operate. A context tag

value can be of any data type. Therefore, a context information may have a heterogeneous

29

32

80%

No Response

Temperature
 (T)

Humidity
 (H)

Air Conditioner
 (AC)

 HOT

T> 27 AND H > 75

 AC is down
Response == No Response

Heat Emergency
 HOT AND AC is down

 Situation

Situation Definition

Dimension

Tag

Figure 11: Context Situation

collection of tag value data types. Consequently, there is a need to model context informa-

tion in a generic way that supports heterogeneous data types. The solution should allow

efficient handling of context information. Efficiency involves compact representation that

can take small memory storage of context information, fast lookup and access to tag values

by knowing its dimensions, and ease of adding and updating the context tag values. There-

fore, a context-aware system should provide an efficient solution for representing and

handling context information.

Context-aware systems are concerned mainly with context situations rather than spe-

cific context tag values. There is a dependency relationship between context situation and

context. A context situation is realized if there exists a context whose tag values evaluate

the context situation conditions to true. For example, in Figure 11 the Hot context situa-

tion is realized if in the Temperature context the degree tag value is greater than 27 and

in the Humidity context the tag value is greater than 75. Thus, the Hot situation depends

on the Temperature and Humidity contexts. In order to check if a situation is realized

or not, there is a need for a reasoning mechanism that takes as input contexts and their

30

dependant situations and gives as output the situations that are realized. Internally, the

reasoning engine should extract relevant context tag values and check situation conditions

against context tag values. Therefore, a context-aware system should include a reason-

ing mechanism to infer situations based on other situations and context information.

Context situations are defined using logical conditions over contexts. Therefore, there

is a need for a rich expression language that empowers context-aware systems with the abil-

ity to define context situations. The expression language should contain logical and math-

ematical operators. To enrich the expression language and make it extensible, it should

support also custom user defined functions. These functions can perform complex calcula-

tions and evaluate application-specific and business-related conditions. In order to process

expressions, there is a need for a parsing engine to parse and interpret these expressions.

Also, there is a need for an execution engine that evaluate expressions. Therefore, context-

aware systems should include a powerful situation expression language and evaluation

engine.

3.2 Sensors

Sensors are data providers that produce measurable responses to changes in application’s

environment. There are different kinds of sensors such as physical, chemical, mechanical,

biological, or software-based sensors. Sensors share common characteristics such as input

range, output range, and accuracy. Input range is the maximum measurable range that a

sensor can accurately measure. The input range of a temperature sensor could be between

-30 and 100 degrees Celsius. Output range is also closely related to input range, which

refers to output format such as Fahrenheit or Celsius in case of temperature sensor. Accu-

racy refers to output-specific measures that are related to sensor type. For example, for a

GPS sensor the number of decimal point places for Longitude and Latitude data may be

used to refer to accuracy, whereas for a clock an error threshold could be used to refer to

error data. Sensors can be categorized as either hardware-based or software-based. Exam-

ples of hardware-based sensors are GPS navigation sensors, temperature readers or motion

31

detectors. Examples of software-based sensors are databases and files that reside in storage

mediums. The following examples present the most common types of device sensors that

are used in ubiquitous computing.

• Motion sensor: It is the device used to detect moving objects. It uses a combina-

tion of different technologies such as Passive Infrared (PIR) or Ultrasonic to detect

movements.

• Light sensor: It is the device used to detect light. The capabilities of light sensors

vary between detecting light to detecting specific attributes of lights such as color

and brightness.

• Geographic Position Sensor (GPS): It is the device used to detect geographic loca-

tion. GPS sensor usually uses satellite signals in order to specify the location.

• Accelerometer: It is an electromechanical device that measures acceleration forces.

It is used to detect device orientation with respect to earth or speed of moving objects.

• Optical sensor: It is the device used to detect objects or specific attributes of ob-

jects using lights, photos or video. For example, Photoelectric sensors are used to

detect distance and absence or presence of an object. Video Sensors often are used

in surveillance and facial recognition systems.

• Compass: It is a navigational instrument for determining directions and orientation.

• Temperature sensor: It is used to detect the environment temperature.

• Fingerprint reader: It is used as an authentication technique to augment normal pass-

words with the fingerprint.

• Barcode reader: It is an electronic device that reads printed barcodes. It is widely

used in warehouse management, and in sales and distribution systems.

32

• RFID sensor: It is the device that uses radio waves to read the information printed

on an electronic tag. It is used in different domains, such as transportation and as-

sets management. It is gaining more attention since it is more flexible than barcode

readers which require a clear line of sight in order to work.

In the following we discuss the characteristics of sensors. Then, we derive the essential

requirements of context aware systems that are related to sensors.

Each sensor type uses a different measurement method to respond to a change in the

environment. For example, a GPS sensor locates four or more satellites, figures out the

distance to each one of them, and uses the information to deduce its own location based on

mathematical principles. The measurement method happens internally inside the device.

Software systems interact with sensors as black-box components. Sensors provide public

interfaces to allow software systems consume their readings. The interface defines the data

types of the reading. This helps the software system communicate with the sensor and

consume its data. For example, NMEA 01831, RTCM2, and RINEX are common GPS

formats used by sensors to represent their readings. In order for a context-aware system to

interact with a sensor and consume its data, it should build translation methods to translate

sensor data in different formats into a standard format that can be used by the system. The

translation should support as much data formats as possible so that a system can interact

with a wide variety of sensors. Thus, a context-aware system should be able to use

different sensor types, and it should have a translation mechanism to translate sensor

readings from its native format into a format that can be understood by the system.

Sensors continuously monitor their environment and register new readings. For exam-

ple, a GPS sensor may register a new reading every second. This poses a challenge to

maintain the huge amount of data that result from sensor readings. Therefore, a context-

aware system should contain a mechanism to handle the continuous flow of data.

The accuracy of sensors readings varies according to conditions of the environment in

which a sensor operates. For example, the accuracy of a GPS sensor’s data is affected by

1http://www.nmea.org
2http://www.rtcm.org

33

weather conditions, interferences, and whether or not the device is in closed building or

in an open space. Since sensor readings cause adaptations in the environment, inaccurate

readings can be misleading and cause undesired adaptations. This poses a challenge to

check sensor readings and validate them before using it. Therefore, there is a need for a

validation mechanism that validates the accuracy of sensor readings and selects only

readings with high accuracy.

Different sensor types can have different connection methods to communicate data to

a context-aware system. Examples of connection methods are USB-cable, Bluetooth, In-

frared, Network, Serial and Parallel cables. Each connection method has a different com-

munication protocol. For example, HTTP and TCP/IP protocols can be used to connect to

sensors via networks. Therefore, a software system that is required to get data from

sensors should support different connection and communication methods.

Sensors monitor the environment and communicate their readings to the system. It is

possible that a system requests sensor readings at a specific point in time. In this case

there are two possible scenarios. First, the system will request its sensors to perform mea-

surements and get current readings. Second, the system caches the latest readings of each

sensor and uses the cached value whenever needed. In the later case, the system should

maintain expiration dates to its cashed information and needs to update the cached values

each time a new sensor data is received. Therefore, there is a need to support two way

communications between a system and its sensors, sensors sending data to the system,

and the system requesting data from its sensors. Also, context-aware systems should

provide cashing mechanism for sensor data.

A tag value for a context might come from different sensors. For example, a user’s

location can be figured out using a GPS sensor, or its IP address, or the user address infor-

mation. If many readings that are related to the same context tag value are available then

the system should be able to select one value from the available ones. Moreover, knowing

a tag value of one type it should be able to automatically transform it to an equivalent tag

value of another type. Therefore, a context-aware system should have a mechanism to

aggregate sensors’ data and select only one value for each context tag.

34

Context-aware systems are heterogeneous and flexible. New sensors can be either

added or removed continuously. New sensors should be registered in the system as soon

as they are available. They get registered as sources for context tag values. When a sensor

becomes unavailable, the system should adapt itself and remove the sensor from the regis-

tered sources. Thus, context-aware systems architecture should be flexible. It should

allow sensors to be added in a plug-and-play manner.

3.3 Actuators

Actuators represent the parts of a computing system which perform actions at the last stage

of system processing. End results of system processing are realized at actuators. Monitors,

printers, mechanical locks, and lids are examples of actuator devices. Actuators could

also be software-based. For example, a service responsible for putting user’s account on

hold after a certain number of failed login attempts or a service responsible for closing

all ports when a security hole is discovered can be regarded as actuators. Actuators can

have different behaviors after performing their actions. Some actuators, such as printing

devices, release control after execution is completed. Some others, such as security hole

detectors, may not release control after execution is complete. Actuators are essential parts

of any context-aware system. The actuators are at the other-end of the system in which the

reactions to any change in the context are realized.

The following discussion is on the characteristics of actuators and the requirements of

context-aware systems that are related to actuators.

A context-aware system can interact with different types of actuators. Therefore, it

should build translation methods to translate adaptation results into a format that can be

understood by actuators. The translation should support as much data formats as possible

so that a system can interact with a wide variety of actuators. Thus, a context-aware

system should be able to use different actuator types, and it should have a translation

mechanism to translate adaptation results into formats that can be understood by

actuators.

35

Similar to sensors, actuators are used as black-box components. They expose public

interfaces and perform their actions internally. Different connection and communication

methods and protocols can be used to interact with actuators. Therefore, a system which

requires interactions with actuators should be flexible and support a variety of con-

nection and communication methods.

Context-aware systems are adaptive systems. Adaptations can be performed by differ-

ent actuators. New actuators can be added or removed continuously. New actuators should

be registered in the system as soon as they are available. They get registered as actors which

perform adaptations. When an actuator becomes unavailable, the system should adapt itself

and remove it from the set of registered actors. Thus, context-aware systems architecture

should be flexible. It should allow actuators to be added in a plug-and-play manner.

3.4 Adaptation

Context-aware systems are adaptive systems. They sense their surrounding context and

adapt to contextual changes. An adaptation is a set of reactions that take place in response

to a contextual change and affect the environment. A reaction represents an atomic action,

which could not be split any further. A reaction is defined to do an action through an

actuator with a specific configuration. Therefore a context-aware system should define

adaptations and associate reactions to each adaptation.

Context situations are diverse. Consequently, adaptations could be simple or complex.

A simple adaptation consists of one reaction. A complex adaptation may require a set of

actions either in specific sequence or in parallel. For example, an application could re-

spond to a security threat situation with the following set of actions: (1) setting the fire

alarm, (2) closing the exits for critical areas and (3) calling the emergency. Also, complex

adaptations may require repeating reactions or controlling them using conditions. Thus,

complex adaptations require a workflow expression language. The workflow expressions

should support sequencing, repetition, and conditioning on sets of reactions. In order to

36

process adaptations workflow, there is a need for a parsing and execution engine. There-

fore, a context-aware system should include an expressive workflow language to ex-

press complicated adaptation scenarios required by client applications. In addition, a

workflow execution engine is required.

3.5 Policies

Context-aware systems operate directly in its surrounding environment. Adaptations may

affect directly users and their environment. Therefore, it is important to ensure the safety

and security of adaptations. In order to ensure predictability and trustworthiness of system

adaptations, there is a need to define policies. Policies are business and quality assurance

rules that restrict and control the behavior of a system. Below we define data policies and

execution policies.

Data policies: They are rules that constrain data values in contexts. For example, a tem-

perature sensor may have a data policy stating that the temperature should be between −50

to 50 degrees because this is the sensor output range. This means that any other value is an

error value and will not cause an adaptation. It is crucial to detect errors at an early stage

so the system can ignore bad data instead of carrying unnecessary operations. Context time

span validity could be presented as data policy. Context information can be valid only for

a specific time span. As an example, the GPS coordinates in a navigation system may be

valid only for a few seconds. Some other context information, such as the date context

information in any application, is valid for 24 hours. More complex policies may exist in

applications involving network protocols that employ large integers as cryptographic ses-

sion keys. In general, data policies can be used to express specific time span of validity for

different pieces of context information.

Execution policies: They are related to adaptations. These policies control the behavior

of the system when it responds to a change in the context of an application. These policies

contribute to selecting the proper reactions that should take place, change the sequence of

37

actions, and enable or disable reactions. For example, an application could check user role

to implement different adaptations based on different user authorizations. Another example

is when adaptations depend on resources, such as Internet connection which is not always

available. Execution policies could be used to check if resources, required for a certain

adaptation, are available before execution.

In order for a context-aware system to implement policies and control its behavior,

there is a need to include the following language related features.

• A policy expression language is necessary to specify business and quality assurance

rules. The language should be expressive, extensible, and easy to use. By expressive

we mean that the language constructs should enable designers to express data policies

and execution policies. It should support sequencing, branching, conditions, and loop

rules.

• A parser is necessary to read and interpret policy expressions, and transform them

from their native expression language to constructs that can be understood by a pro-

cessing engine.

• A verifier function is necessary to ensure the syntactic correctness of policies.

• A processing engine is necessary to evaluate policies and execute reactions.

3.6 Summary of Requirements

From the above discussion, the essential requirements of context-aware systems are summed

up as follows.

• data model An efficient data model for representing and handling context informa-

tion is necessary.

• context situation handler This includes an expression language, parser, and an eval-

uation engine.

38

• a reasoning mechanism The ability to infer situations based on context information

is the core of the reasoning system. The reasoning mechanism should be independent

from the situation expression language. This means that the reasoning mechanism

should be able to reason about contexts defined using different expression languages.

• different sensor types The system supports different sensor types and provides a

translation mechanism to translate sensor readings from its native format into a for-

mat that can be understood by the system.

• continuous data flow The system should handle the continuous flow of data.

• validation The accuracy of sensor readings should be validated in order to accept

only readings with high accuracy.

• communication and connection The system should support different connection and

communication methods to sensors. A two-way communication between a system

and its sensors should be provided. A cashing mechanism for sensor data is essential.

Actuators must be supported by a variety of connection and communication methods

to actuators.

• context aggregation A mechanism must exist to aggregate context data from different

sensors and select only one value for each context tag.

• flexible architecture A flexible architecture, that allows sensors and actuators to be

added in a plug-and-play manner, is essential.

• actuator types Different actuator types are to be supported. A translation mechanism

should be provided to translate adaptation results into formats that can be understood

by actuators.

• adaptation Adaptations must be specified and reactions must be associated to each

adaptation. An expressive workflow language should exist to express complicated

adaptation scenarios that may be required by client applications. An workflow exe-

cution engine must be defined.

39

• policy language A policy expression language, a parser, a verifier, and a processing

engine are necessary to support data and business policies which constrain system

behavior.

40

Chapter 4

Formal Definition of Context-aware

Systems

This chapter presents formal definitions of the Context-aware Framework components.

Also, it defines context-free grammars for the Situation Expression Language and the Adap-

tation Workflow and Policy Language. These languages are responsible for generating the

expressions used to define Context Situations and Adaptations.

4.1 Sensor Mechanism

We use the following notation in all subsequent definitions:

• T denotes the set of all data types.

• D ∈ T means D is a data type.

• ν : D denotes that ν is either a constant or variable of type D.

• χν is a logical expression that is defined over the value of ν. If ν is a constant then

χν is true.

An attribute qualifies a semantic information associated with an element. The set of at-

tributes is A = {α = (D, να) | D ∈ T, να : D}.

41

Sensors are data providers. There are many different types of sensors. A sensor type

is characterized by a set of attributes and a measurement reading data type that represents

the language spoken by sensors of a certain type. We define the set of sensor types as

ST = {st = (Ast, Dst) | Ast ⊂ A, Dst ∈ D}, where Dst is the measurement data type

and Ast defines a set of attributes.

A sensor is defined using a sensor type and a set of attributes. Therefore, the set of

sensors can be defined as S = {s = (STs, As) | STs ∈ ST, As ⊂ A}, where STs is the

sensor type such that s : STs and As is a set of attributes.

Connectors transmit data between sensors and listeners. The set of connectors CN

can be defined as CN = {cn = (Acn, CCM, CP) | Acn ⊂ A}, where CCM defines a

connection method and CP defines a communication protocol. The connection method and

the communication protocol are enumeration types.

A translator is responsible for translating data from one data type to another understood

by the system. The list of translators are defined as TR = {tr = (Di, Do, translate) | Di
,Do ∈ D}, whereDi is a source data type andDo is a destination data type, and translate :

Di → Do is a function that translates a data of type Di to a data of type Do.

A Verifier is responsible for verifying the correctness and validity of sensor’s data using

data policies. The list of verifiers is defined as V = {v = (Av, Sv, DSv , χDSv
, verify) | Av

⊂ A, Sv ∈ S, DSv ∈ D}, where DSv denotes the output data of the sensor Sv, χDSv
is a

data policy defined over the sensor’s measurement data, verify : S × χDS
→ Boolean is

a function that validates the correctness of a sensor’s reading using a data policy.

Sensor listeners are responsible for managing sensor communications. It uses a con-

nector and a translator to communicate with sensors. A listener is defined for each sensor

type. The set of sensor listeners is defined as L = {l = (STl, TRl, CNl, Vl, Al) | STl ∈

ST, TRl ∈ TR, CNl ∈ CN, Vl ∈ V, Al ⊂ A}, where STl is a sensor type which the

sensor listener can communicate with, TRl is a translator which is used to translate sensor

data, CNl is a connector used to connect to a sensor, Vl is a verifier which is used to verify

sensor data, and Al is the set of attributes associated with the sensor listener.

A sensor mechanism is defined as SM = (ST, S, CN, TR, V, L).

42

4.2 Context Mechanism

The following formal definition of context is taken from [WAN06]. The set of dimensions

and the domain of values for each dimension are fixed before constructing contexts. Let

DIM = {D1, D2, . . . , Dn} denote a finite set of dimensions, and Xi be the tag set asso-

ciated with Di ∈ DIM . Let C denote the set of contexts such that the concrete syntax

of a context definition is c = [Di1 : xi1 , . . . , Din : xin], where {Di1 , . . . , Din} ⊂ DIM ,

and xik ∈ Xik . Not all dimensions in DIM need to occur in a context, however every

dimension used in constructing the context should be a member of DIM . An important

issue is the choice of dimensions. It is the application that suggest the set of dimensions.

The dimensions that are most common in ubiquitous computing are (1) WHO (to perceive

service requests), (2) WHAT (to denote the type of service), (3) HOW (the service needs to

be provided), (4) WHERE (to provide the service), (5) WHEN (to provide the service), and

WHY (purpose of request). For each dimension, the domain of values are suggested in a

natural manner. For instance, for the dimension WHY we can associate the domain of val-

ues {clinical, textresearch} for providing hospital services. The dimensions, as suggested

above, are neither selective nor exhaustive. The system designer should feel free to choose

as many dimension names as are necessary.

A situation represents a set of contexts which satisfy certain conditions. A situation

expression language SEL is used to specify the valid conditions in which a situation holds.

The language, also, describes the resulting situation information based on context informa-

tion. The set of situations is defined as U = {u = (Cu, SELu) | Cu ⊆ C} where SELu

is an expression specified using SEL. Details of the situation expression language will be

explained later in this chapter.

A context reasoner is responsible for reasoning about situation definitions against con-

text information. It uses a translator to translate situation from one type to another. The set

of context reasoners is defined as R = {r = (C, U, TRr, reason) | TRr ∈ TR} where

reason : PC × PU → PU is a function that reasons a set of situations against a set of

context and returns the set of situations that are satisfied by the contexts.

43

A context mechanism is defined as CM = (C, U, R)

4.3 Adaptation Mechanism

Adaptation is a workflow of actions and policies in response to a non empty set of situa-

tions. The set of adaptations is defined as P = {p = (Up,Wp, Ap) | Up ⊆ U, Ap ⊂ A },

where Up is a set of situations that cause an adaptation and Wp is a workflow expres-

sion that describes the execution of actions. The workflow expression language will be

explained later in this chapter.

We define the function resolve : PU → P that resolves the required adaptation in

response to a set of situations of current context.

Let AN = {Da | Da ⊂ D} denote the set of actions where an action is an event which

denotes an information flow from the system to its environment. An event carries a set

of parameters where each parameter has a data type. We define a policy checker function

check : W → PAN which returns only the actions in a workflow which satisfy execution

policies. We define an adaptation execution function as execute : P → PAN that takes

an adaptation and defines a set of actions.

An adaptation mechanism is defined as AM = (P, AN, resolve, check, execute).

4.4 Reactivity Mechanism

Actuators perform actions. There are many different types of actuators. An actuator type

is characterized by a set of attributes and data parameters that represents the required input

information necessary for performing actions. We define the set of actuator types as AT =

{at = (Aat, Dat) | Ast ⊂ A, Dat ⊂ D}.

An actuator is defined using an actuator type, actions, and a set of attributes. Therefore,

the set of actuators can be defined asAC = {ac = (ATac, AN ac, Aac) |ATac ∈ AT, AN ac

⊂ AN, Aac ⊂ A}, where ATac is the actuator type such that ac : ATac.

Actuator configuration holds setting information for actuators. It is defined using a set

44

of attributes. The set of actuator configurations can be defined asF = {f = (ACf , Af) |ACf
∈ AC, Af ⊂ A}.

Actuator controller is responsible for managing communications with actuators. It

uses a connector and a translator to communicate with an actuator. A controller is de-

fined for each actuator type. The set of actuator controller is defined as O = {o =

(ATo, Fo, TRo, CNo, Ao) | ATo ∈ AT, Fo ∈ F, TRo ∈ TR, CNo ∈ CN, Ao ⊂ A}.

A reactivity mechanism is defined as RM = (AT, AC, AN, F, O, CN, TR)

4.5 Context-Aware System Formal Model

Based on the formal definitions presented in the previous sections, we are able to formally

define a context-aware system as follows.

Definition 1 A context-aware system is defined as CAS = (SM,CM,AM,RM) where

SM is a sensor mechanism, CM is a context mechanism, AM is adaptation mechanism,

and RM is reactivity mechanism.

4.6 Situation Expression Language

The Situation Expression Language defines the syntactic structure of situation expressions.

It allows defining situations based on logical and mathematical operations over dimensions,

tag values and other situations. The language supports the following operations.

• Logical AND, OR, & NOT operations between situations.

• Equal, Not Equal, Bigger, Smaller, Bigger or equal, & Smaller or equal between

dimensions.

• Logical AND, OR, & NOT operation between dimension expressions.

• The basic arithmetic operations, namely Addition, Subtraction, Division, and Multi-

plication defined on numeric tag values.

45

The situation expression language is defined using a context free grammar (CFG) as fol-

lows.

The root grammar in this CFG is called Situation. Situation should be defined between

curly braces {}. Situation can be either a Hybrid Situation which contains a situation

expression over dimensions and other situations, or a Literal Situation which contains a

situation expression over dimensions only. The root grammar is presented as follows.

<Situation> ::= {<SituationRule >}| < LiteralExpression>;

< SituationRule >::= < ANDSituationRule > |

< ORSituationRule > |

< NOTSituationRule > |

< LiteralExpression > |

< SituationToken >

The logical operations used in the situation expression language are AND, OR, & NOT.

The operations are defined recursively over the Situation Rule notation as follows.

< ANDSituationRule > ::=< SituationRule > AND < SituationRule >

< ORSituationRule > ::=< Situation > OR < SituationRule >

< NOTSituationRule > ::= NOT < SituationRule >

Example 2 Nice Weather = { Warm AND Sunny } shows an expression with a logical

operator.

Context Free Grammars contain either terminal or non-terminal rules. Non-terminal rules

contain other rules, whereas terminal rules are rules that match a token presented as a

46

regular expression. All rules eventually end up with terminals. All leafs in the expression

tree are terminals.

As mentioned before, a situation could depend on other situations. In order to repre-

sent that in the Situation Expression Language, situations are identified with their names,

and consequently are referenced by them. SituationToken is an identifier representing a

situation name.

<SituationToken> ::= Identifier

Example 3 Go Out = { NOT Stay Home }, where Stay Home is a SituationToken.

Literal Situation is the mechanism used to define a dimension expression inside a Situation

expression. A situation can be a simple situation which contains only dimension expres-

sions in its definition. For example, Hot Weather situation is defined as { (Temperature >

30) }. This means that Hot Weather is a simple situation. Literal Situations can be used

to define anonymous situations in the body of other situations. In Example 4, { (Role ==

‘Admin’) } is a Literal Situation, however that could be presented differently by explicitly

defining a Role Situation and then referencing it in the Admin definition.

Example 4 Admin = { Authenticated AND { (Role == ‘Admin’) } }

<LiteralExpression> :: ={<Dimension>}

Dimension Root represents the operations on context dimensions. These operations

evaluate to either true or false, which determines if a situation exists in a given context or

not.

<Dimension> :: = (<DimensionRule>)

The purpose of Dimension rule is to make sure that each dimension expression starts with

circle braces () which eliminates any ambiguity when parsing these roles.

The dimension rules contains all the following operations.

1. Logical Operations: AND, OR, NOT, Equal, NOT Equal, Bigger, Smaller, Bigger or

Equal, Smaller, and Equal.

47

2. Mathematical Operations: Addition, Multiplication, Division, and Subtraction.

3. User defined functions: They contain domain specific logic constructed to perform

operations over dimensions. For example, users can define a function to check if a

specific dimension value is a prime number.

< DimensionRule >:: < BraceDimension > |

< ANDDimensionRule > |

< ORDimensionRule > |

< FUNCDimensionRule > |

< NOTDimensionRule > |

< ADDDimensionRule > |

< DIV DimensionRule > |

< SUBDimensionRule > |

< MULDimensionRule > |

< EqualDimensionRule > |

< NotEqualDimensionRule > |

< BiggerDimensionRule > |

< BiggerOrEqualDimensionRule > |

< SmallerDimensionRule > |

< SmallerOrEqualDimensionRule > |

< TokenDimensionRule > |

< DimensionV alue >

The situation expression language includes logical dimensions operations. Logical op-

erators at the dimension level are richer than their counterpart at the Situation level. In

addition to AND, OR & NOT, compare operators can be used over dimensions since they

48

have concrete values. Following is an example of the operations definitions.

< ANDDimensionRule > ::=< DimensionRule >

AND < DimensionRule >

< BiggerOrEqualDimensionRule > ::=< DimensionRule >

′ >=′< DimensionRule >

The situation expression language includes mathematical dimension operations. Math-

ematical operations are used over dimension values or the values supplied by users in the

expression. All the four basic operations are supported.

<DIV DimensionRule> ::=< DimensionRule> ”/” < DimensionRule>

Example 5 Hot Celsius= { (Fahrenheit Temperature - 32) > 30) }

The situation expression language provides an extension point to bring user supplied logic

to the reasoning operation. User defined functions provide a mechanism to extend the situ-

ation expression language. Functions should have one or more parameters which are either

dimension values (tags) or user supplied values. Functions should return a Value. Syntac-

tically, functions should start with an $ sign and the parameters should be in square braces

[]. Users should provide the implementation of the functions in Dynamic Link Libraries

(DLL) that should be deployed in a special directory. The system is able to allocate their

implementations at the run time, without recompilation. The following example illustrates

user defined functions.

Example 6 Even Number = { ($EvenNumber[56, Dimension Name]) }

The situation expression language includes dimension terminals. Terminals, in case of

dimensions, are either dimension name (identifier) or a dimension value (number or string).

The following example shows a situation expression with the dimension name Temperature.

<DimensionV alue> :: = < NUMBER > | < STRING >

Example 7 Freezing = { (Temperature =< 0) }

49

The full documentation of the context-free grammars of the Situation Expression Language

is provided in Appendix A.

4.7 Workflow and Policy Expression Language

Adaptations contain a workflow of reactions that should be executed with respect to a set of

policies. The Workflow and Policy Expression Language is used to define the adaptations.

This language supports the following operations.

• Triggering reactions.

• Checking policies.

• Logical Operations (AND, OR, & NOT). and

• Control constructs (WHILE, IF ELSE, and FOR) to allow rich workflow expressions.

The workflow and policy expression language is defined using context free grammar as

follows.

The root rule for the language is the Workflow rule. The workflow is simply a statement

collection.

< Workflow > ::= < StatementCollection >

The statement collection is a recursive rule (star rule) over the statement rule. Which means

that each adaptation can contain one statement or more.

< StatementCollection >::= < StatementCollection >< Statement > |

< Statement >

The Statement rule is the main bulk of the workflow language. The Workflow Expres-

sion Language supports the following statements.

• IF ELSE Statement,

• While Statement,

50

• For Statement,

• Execute Statement and

• Brace Statement: It represents that a statement can be encapsulated in braces to en-

force operator precedence.

The definition of the Statement rule is presented as follows.

< Statement >::= < WhileStatement > |

< ForStatement > |

< IfElseStatement > |

< ExecuteStatement > |

< BraceStatement >

The Condition Statement is used as a part of the IF Statement and While Statement.

Conditions are either a policy check or a logical expression over other conditions.

< Condition >::= < Condition > |

< ANDCondition > |

< ORCondition > |

< NOTCondition > |

< PolicyCheck >

The logical condition statement is a logical aggregation of other statements. The fol-

lowing shows the definitions of these rules.

< ANDCondition > ::=< Condition > AND < Condition >

< ORCondition > ::=< Condition > OR < Condition >

< NotCondition > ::= NOT < Condition >

51

Example 8 $IsAuthorized[User ID] AND $IsInRole[User ID]

The policy check statement is the mechanism used to check execution policies in the

workflow. Each policy check statement is a call to a user defined function that accepts zero

or more parameters. This function returns a Boolean value to indicate whether the policy

has evaluated to true or false. Policy Name is a Terminal rule that matches string identifier

which starts with an $ sign to eliminate ambiguity when parsing the language.

< PolicyCheck >::= < PolicyName > [< ParamList >]|

< PolicyName > []

Example 9 $IsAuthorized[User ID]

The While Statement is used to repeatedly execute a set of actions as long as a condition

is met. The While Statement contains two parts (1) a condition, and (2) a body which is a

statement.

< WhileStatement >::= while < Condition >< Statement >

The For Statement is used to repeatedly execute a set of actions for a fixed number

of times. The For Statement contains two parts (1) a number indicating the number of

iterations, and (2) a body, which is a statement.

< ForStatement >::= for(< NUMBER >) < Statement >

The If statement is used to execute different branches based on a condition. The IF State-

ment is a typical example of a shift-reduce conflict, the preferred behavior in this case is the

shift (whenever the parser encounters an “else” the parser should shift rather than reduce

52

with the IF rule).

< IfElseStatement >::= < IfStatement > |

< IfStatement > else < Statement > ∗prefered

< IfStatement >::= if < Condition >< Statement >

The Execute Statement is used for triggering reactions. Reactions are user defined func-

tions, and are identified with their names. Each reaction may have zero or more parameters

that are either user supplied value or dimension context information. Reaction Name is a

terminal rule that matches a string Identifier.

< ExecuteStatement >::= Exec (< ReactionName >) ;

< Reaction >::= < ReactionName > [< ParamList >] |

< ReactionName > []

The Param List is a plus closure rule that matches one parameter or more, each parameter

is either a string value in single quotation, or an integer value.

< ParamList >::=< ParamList > , < Param > |

< Param >

The full documentation of the context-free grammars of the Workflow Expression Language

is provided in Appendix B.

53

Chapter 5

Architectural Design

In this chapter the context-aware architecture proposed in [WAP06] is first reviewed. Next,

its merits and inadequacies are discussed. Finally, a new improved component-based archi-

tecture built around the formal trustworthy components [MA11] is proposed for context-

aware systems.

The primary goal of a software architecture is to define software building blocks and

their relationships. It defines the blue-print based on which a system should be devel-

oped. Component-based development methodology (CBD) for developing context-aware

systems promises many advantages including adaptive reuse, containing complexity in-

duced by mobility, and reducing development time. A comprehensive survey in [MA11]

identifies a multitude of advantages of CBD methodology, especially for embedded sys-

tems deployed in safety critical environments. They have shown with case studies how

their formal approach effectively manages complexity and promotes a formal analysis. Be-

cause of its underpinning formalism to construct trustworthy component-based systems, it

is a suitable architectural style to follow for building a context-aware platform. The results

of this chapter come out of significant improvements made to the three-tiered architecture

[WAP06] through extensions, generality, and adaptation of trustworthy component devel-

opment methodology [MA11].

54

5.1 A Quick Review of Past and Present Architectures for

Context-aware Systems

A three-tiered model was introduced in [WAP06] as a solution to contain the complexity

created by the heterogeneity problem in context-aware systems. The model is illustrated in

Figure12. The functionality for each tier and the nature of information flow across the three

tiers were proposed. The architecture was founded on the three-tiered formalism, however

not fully realized.

The three tiers separately dealt with perception, context modification, and adaptation.

Tier 1 is a description of “see, gather, control, and modify” features of perception ab-

stractions. Perception will involve the objects perceived, the devices used for observing

the objects, and the observational measurements. We emphasize that information related

to a user in the environment was assumed to be either conveyed directly by the user to

one of the devices or to be perceived automatically by some devices. This aspect was not

made quite clear. Tier 1, which describes the assembled symbolic representations of the

observations, will notify it to Tier 2. The exact structure of this representation and the

semantics for translating it to the internal representation was not specified. Tier 2, after

receiving the notification from Tier 1, will construct internal context representations that

reflect the current awareness. The formal basis of Tier 2 functionality is the context theory

in [WAP06]. Tier 2 will use context calculus provided by the theory to construct general

contexts, de-construct and modify the contexts as might be demanded by the application.

Tier 2 will notify current context information to Tier 3. Tier 3, after receiving current con-

text from Tier 2 will determine how the system has to adapt itself. The system, modeled

as an Extended State Machine exists only in Tier 3 and is supposed to interact with Tier 1

in order to convey reactions and with Tier 2 in order to exchange modified context infor-

mation. However, no details on the relationship of reactions to adaptations, and adaptation

policies were discussed. However, a model of Anti-lock Braking System was discussed in

Tier 3 to explain a specific adaptation for that application. This work produced a coarse

architecture using components, but failed to describe the architectural elements and their

55

specifications. In fact, the architecture looked like a ‘tightly-coupled’ system, whereas in

practice a context-aware system is supposed to work in distributed and mobile environment.

Yet, the distinguishing features of this approach are their resort to formalism for analysis

and components for design.

The architecture proposed in this thesis emphasizes both formalism, and components,

but lifts the architecture to new heights in which heterogeneity, distributed and mobile

nature of environment, and dynamic application of adaptation policies are seamlessly in-

tegrated. The architecture is portable to different platforms, extendable to new emerging

devices, and can be used for a wide variety of applications ranging from business to defense

systems.

Tier3:

ESM

Tier2:

Context Calculus

Tier1:

Codesign

Verifier3:

Verifier for

Adaptation

Verifier2:

Reasoning with

Context

Verifier1:

Verifier for Codesign

Context Adapter

Transformation

Sensing

Context Toolkit

aware(context) report_change(context)

digital information

Symbolic

information
Symbolic

information

digital information

Figure 12: The Three-Tiered Formalism of Context-Aware System [WAP06]

56

5.2 Proposed Architecture

Figure 13 shows our proposed architecture for context-aware framework. The architecture

retains the spirit of ‘separation of concerns’, and hence the original three-tiered structure is

preserved, while its internals are enriched. A new architectural element Data Store (DS) is

added to the architecture. Essentially T1, the new Sensor Mechanism, corresponds to Tier

1, T2, the new Context Mechanism, corresponds to Tier 2, and T3, the new Adaptation

Mechanism, and Reactivity Mechanism, correspond to Tier 3. This comparison is just to

illustrate the extent of similarity between the new and old architectures. However, they

vary greatly in detail.

In principle, the new architecture should be viewed to consist of four essential modules

Sensor Mechanism, Context Mechanism, Adaptation Mechanism, and Reactivity Mecha-

nism, each implementing an essential mechanism. A module defines a package of com-

ponents that are grouped together. Each module contains a set of components that interact

with each other. Hence, the architecture clearly abstracts, and loosely couples context sens-

ing, building awareness, deciding adaptations, and reacting to the environment. This loose

coupling is more suitable for implementing a wide variety of context-aware applications.

The following sections describe in detail the proposed architecture and its modules, com-

ponents, and the relationships between components.

5.3 Architecture

Context-aware System environment consists of a set of entities, where an entity is a per-

son, place, object, etc. Sensor mechanism is responsible for monitoring the environmental

entities and sensing any changes to their parameters, dimensions that are of interest to the

system. The parameters are scalar or structured data values such as temperature, position,

and identity of a person. Context mechanism is responsible for combining related events

and data, once they are sensed, to build awareness, which will assist the system to per-

form the appropriate adaptation. Adaptation mechanism is responsible for analyzing the

collected knowledge about the environment and triggering the appropriate reactions. In the

57

proposed architecture the analysis is based on predefined rules and policies. The resulting

reactions are regulated by policies. Reactivity mechanism is responsible for performing

the reactions and adaptations in the environment by controlling physical devices, actuators,

or displaying results on hardware interfaces. For example, raising or lowering the temper-

ature by adjusting the thermostats controller in a room is a possible reaction to the event

“person entering a room”. A detailed discussion of the architectural elements is provided

below. To sum up, the novel features are separation of concerns, isolating the interaction

of components for achieving a specific task, allowing interactions between different types

of functionalities subject to context relations, and regulating adaptations based on specific

policies. To the best of knowledge, no previous work has achieved all these results.

T1T2T3

 Sensor
Mechanism

 Context
Mechanism

 Adaptation
Mechanism

 Reactivity
Mechanism

Data Store

Sensor 2

Sensor 1

Sensor N

Actuator

 2

Actuator

 1

Actuator

 M

Figure 13: The CAF Architecture

58

5.4 Sensor Mechanism (SM)

The sensor mechanism SM, illustrated in Figure 14, comprises sensor, connector, listener,

translator, verifier, and data synchronizer elements. An entity in an environment can be-

have as an event source. A stimulus is an instantaneous event, fired by an entity, that

triggers the system processing. There are two ways to create a stimulus: the occurrence

of an external event and a change to a parameter in the environment. For example, when

a person enters the room, a stimulus event is created. Also, when the value of the current

temperature in the room changes then a stimulus is created. A stimulus may come with data

parameters. For example, the identity of the person is a data parameter associated with the

event of entering the room. A parameter is modeled as a dimension, a typed data value. A

stimulus may be associated with one or more dimensions. Also, the dimension can be car-

ried by one or more stimuli. For every stimulus there is a sensor that detects the occurrence

of the event and collects its dimensions. The sensor is a subsystem that contains hardware

and software components. In this thesis, we consider a sensor as a black-box architectural

unit, such as image recognition unit or a smart card reading device. A sensor can be asso-

ciated with an environmental dimension to detect any change to its value. For example, a

measuring unit can be used to detect the current quality of air in a room. When the value

changes, the sensor triggers a stimulus and associates the value as a data parameter to it.

For every sensor, the system defines a listener. Listeners form a level of abstraction

between sensors and context-aware systems. Listeners are software components that mon-

itor continuously the activities of sensors and subscribe to any event triggered by sensors.

Listeners may use different connection and communication methods to interact with sen-

sors. A connector implements the communication method through which the data will be

communicated from its source to the context mechanism. There are many possible im-

plementations to connectors such as method call, remote procedure call, SOAP, etc. The

selection of the appropriate implementation depends on the deployment specification of

a system. For example, if a sensor and a context mechanism are deployed on the same

machine and loaded into the same application domain, normal method invocation could be

59

used. However, if a sensor is deployed on another application domain on the same ma-

chine or on another machine then there is a need to establish a communication channel

using a protocol such as TCP or HTTP. Therefore, there is a connector defined for every

sensor-listener relationship.

Sensors collect raw data which may need interpretation and translation into formats

understandable by the system. Therefore, a translator is used to perform the translation

process. When a listener receives a sensor’s raw data, it looks up the appropriate translator

for sensor’s data type and performs translation. Then it passes the data to a verifier. A

verifier could be assigned to verify the correctness of sensory readings using data policies.

Data policies are constraints on sensors’ data. For example, a range constraint such as “a

temperature should not be less than -60 degrees and not more than 70 degrees” could define

a data policy. Another type of data constraint is data validity. For example, weather forecast

information could be valid for up to one day and GPS information could be valid for only

a few minutes. Every type of sensors can have one defined verifier. The associations

between sensors and verifiers are defined in a system configuration setting that is stored

and managed in the data store DS.

A tag value for a dimension of a context might come from different sensors through

different listeners and verifiers. Data synchronizer aggregates dimension information from

all sensors that are associated with a dimension and keeps only the latest received value.

Associations between sensors and dimensions are defined in a system configuration setting

that is stored and managed in the data store DS. The data synchronizer informs the context

mechanism whenever a new sensor data is received. Also, whenever the context mecha-

nism requires sensor data, it requests it from the data synchronizer. Therefore, the data

synchronizer is the interface component of the sensor mechanism.

In summary, the sensor mechanism is responsible for the following.

1. Communicating with sensors,

2. Translating output of sensors to a format that can be understood and processed by a

system,

60

3. Requesting data on demand from sensors and informing interested entities when new

readings are submitted by any sensor,

4. Verifying sensor data using data policies,

5. Aggregating sensor data from different sources. Rules should be specified to help

choose the best tag value in case there are multiple sources, and

6. Caching the latest value of every context dimension and providing it to the context

mechanism upon request. Thus, it serves like a buffer in which the simple context tag

values are stored. When any sensor sends a new gathered data then this component

will replace the value after validating it.

Sensor-2

Sensor-1Listener
 1

Listener
 2

Connector
 1

Connector
 2

Translator
 1

Translator
 2

Verifier
 1

Verifier
 2

Data
Synchr-
onizer

 Sensor
Mechanism

Figure 14: The Sensor Mechanism

61

5.5 Context Mechanism

The context mechanism, illustrated in Figure 15, consists of dimension, context, situation,

context manager, context translator, and reasoner elements. Since the environment is in

constant change, the context manager rebuilds contexts every time there is a change to

one of the dimensions. Information about new changes come from the sensor mechanism.

Therefore, continuously, the sensor mechanism triggers the context manager to rebuild

contexts.

The context manager builds and updates contexts by aggregating sensors’ readings.

Then, the context manager uses the reasoner to identify the context situations that are

applicable to the current context. The reasoner uses situation expressions that are stored in

a data store and tries to evaluate each expression against the current context. Consequently,

the reasoner generates a set of situations that are inferred by the current context.

In the proposed architecture context situation can be implemented based on different

theories. One possible way to implement a context situation is the Box notation [WAN06].

Another way to represent context situation is Ontology using Description Logic (DL). In

this case a standard Ontology reasoner could be used to infer situations for a given context.

Therefore, the context manager can use different types of reasoners. This is a significant

improvement over previously known architectures. A context translator is used for each

context theory to translate contexts from its native formats to a format that can be under-

stood by a reasoner. Thus the operations of the context manager are independent from the

way context is specified or represented.

In summary, the context mechanism is responsible for the following.

1. Defining context and context situation,

2. Translating contexts and situations from different context theories, and

3. Evaluating contexts and reasoning about situations.

62

Context

Dimension 1Context Manager

TranslatorReasoner

Situation 2

 Context
Mechanism

Dimension 3

Dimension 2

 Data Store-
Context Situations
 DefinitionSituation 1

Figure 15: The Context Mechanism

5.6 Adaptation Mechanism

The adaptation mechanism, illustrated in Figure 16, includes adaptation resolver, adapta-

tion, workflow executer, policy checker, and reaction elements. It is responsible for deter-

mining suitable reactions for context situations. When a situation is realized, its relevant

adaptation is searched and selected by the adaptation resolver. Associations between sit-

uations and adaptations are defined and managed in the data store. A situation can have

one or more possible adaptations. By knowing the situation, the adaptation resolver scans

the list of adaptations to see which adaptation is related to the current situation. An adap-

tation is defined using a workflow expression language. The expression language defines a

set of reactions that form the adaptation and define the sequencing in which the reactions

63

should be executed. Also, the expression language defines execution controls over the set

of reactions. The execution controls include loops and conditions. Execution policies are

used as conditions to control reactions. A policy is a constraint defined over the situation

information that is associated with an adaptation. A policy is checked before selecting a

reaction.

The workflow executer is an engine that is used to execute adaptations’ workflow. It

contains implementations for every construct in the workflow expression language. It takes

as input a situation and an adaptation. Then it uses the policy checker to evaluate policies

and control execution of reactions. The policy checker takes as input a situation and a

policy condition. It evaluates the condition using the context information available in the

situation definition. The result controls whether or not an action should be triggered.

Reactions are atomic system actions that could not be split any further. Reactions have

the following properties.

• It should be executed with no dependencies on other reactions.

• It should perform one and only one functionality.

• It communicates with the outside world actors, namely the actuators.

• It may have execution parameters which depend on context information. These pa-

rameters are passed to actuators. For example, if an action aims to display a message

on a screen then the message should be passed from the reaction to the screen actua-

tor.

In summary, the adaptation mechanism is responsible for the following.

1. Determining an appropriate adaptation for a special situation,

2. Verifying the execution polices of adaptations before executing,

3. Executing the corresponding workflow of reactions for a determined adaptation, and

4. Communicating with actuators and passing any necessary context information.

64

Situation
 2

Situation
 3

Situation
 1

Situation
 4

 Adaptation
 Resolver

Adaptation 2 Workflow
 Executor

 Reaction 1

 Adaptation
Mechanism

 Policy
Checker

Data Store-
Adaptations
 Definition

Adaptation 1

 Reaction 2

Figure 16: The Adaptation Mechanism

5.7 Reactivity Mechanism

The reactivity mechanism, illustrated in Figure 17, consists of actuator controller, actua-

tor configuration, translator, connector, and actuator. Once reactions are decided, their

corresponding actuators are determined. Associations between reactions and actuators are

defined and managed in the data store. It is possible to associate multiple actuators with

each reaction. For each actuator, an actuator controller is defined. It provides a level

of abstraction between the system and actuators. Each controller is implemented for a

specific actuator. A controller knows how to communicate to its corresponding actuator.

The actuator configuration is used to specify any necessary configuration for an actuator.

Configuration are abstracted from controllers. This allows using the same actuator to im-

plement different actions based on different configurations. The door actuator can perform

65

open, close, lock and unlock actions through different configuration.

A connector is used to transmit an adaptation reaction and its relevant context infor-

mation to actuators. It implements a connection method and a communication protocol. A

translator is used to translate the command and its information into a format suitable for

actuators. A translator is implemented for each type of actuators.

In summary, the reactivity mechanism is responsible for the following.

1. Communicating with actuators,

2. Managing actuator configurations, and

3. Translating reaction information into formats that can be understood by actuators.

Reaction
 Actuator
Controller

ConnectorActuator

 Reactivity
Mechanism

 Actuator
Configuration

Translator

Figure 17: The Reactivity Mechanism

66

Chapter 6

Detailed Design

In this chapter the detailed design of the framework is presented. The Framework design

is interface-driven, and the decision of constructing the main architecture as interfaces is

taken to abstract the entities’s properties and responsibilities from the actual implementa-

tion. This abstraction allows a greater flexibility in implementation. Below we review all

the implementation components that comprise the modules described in Chapter 5. For

each component all the interfaces and their subsequent properties and operations are dis-

cussed. The specific mechanisms used to parse expressions defined for context situations

and adaptations workflow are also discussed.

6.1 Framework Module Components

The Framework contains the Sensor Module (illustrated in Figure 18), the Context Module

(illustrated in Figure 19), and the Reactivity Module (illustrated in Figure 20). These mod-

ules consists of components, some of them shared across different modules. The design is

an interface-driven design, where interfaces are used to allow maximum flexibility and to

increase decoupling and modularity. Below, each component design and its responsibilities

are discussed.

67

Core Component

The core component contains all general-purpose interfaces that are shared between dif-

ferent modules. All the interfaces in the core component are generic and can be used for

different purposes. The elements in core component design are discussed below.

1. IConnector Interface: This defines the interface methods used to connect asynchronously

to an external entity such as sensor or actuator. There are multiple possible imple-

mentations for IConnector, such as Database connector, or a Web service connector,

or a Serial port connector, or an OS registry connector. The connector does not care

WHO, WHY or WHAT it is connecting to, but rather it implements asynchronously

methods to connect to a specific external entity. The interface IConnector imple-

ments the interface INotifyChange. The fields and methods that are part of IConnec-

tor definition are explained in Table 4.

2. IConnectorConfigArgs Interface: It is an empty interface which represents objects

responsible for holding a specific configuration to connect to a specific type of con-

nectors.

3. ITranslator Interface: It defines a method to translate data from one format to an-

other. The interface is described in Table 5.

4. INotifyChange Interface: Following Observer design pattern [GE95], this interface

is the standard mechanism used to notify observers with any data change. This in-

terface has two basic usages. First, sensors can proactively inform the framework

with a new reading. Second, it is used to enable asynchronous calls all across the

framework. The interface is described in Table 6.

68

Field Type Description

Data Property The result data

of the connection

(Object)

Connect Operation, input:

IConnectorCon-

figArgs, output:

void

To establish the

connection and get

the result back,

returns void.

Logger Property ILogger value.

Table 4: IConnector Description

Field Type Description

Translate <From, To> Operation, input:

an object from

a generic type

From, output:

an object from a

generic type To

a generic method to

translate data from

one format to an-

other

Logger Property ILogger value.

Table 5: ITranslator Description

5. IData Interface: It is the data type that holds sensors’ data, which is a collection of a

key-value pairs in which the key is a string, and the value is an object. The interface

is described in Table 7.

6. IExpression Interface: This interface represents any generic expression that may be

used in this framework. A generic expression is used to express objects such as

workflow, policy, and situation. The interface is described in Table 8.

7. IDataProvider Interface: It represents the object responsible for interacting with a

69

generic data source. This data source can be either a situation data source or an

adaptation data source. The interface is described in Table 9.

8. ILogger Interface: It represents the object responsible for logging the events in the

framework. The logger can be either a console logger or file logger. The interface is

described in Table 10.

Field Type Description

NotifyChange<T> Operation, input:

an object from a

generic type T,

output: void

Translate data from

one format to an-

other

Table 6: INotifyChange Description

Field Type Description

Data Property Key-Value List

(Disctionary), key

is string, value is

object.

Table 7: IData Description

Field Type Description

Expression Property String value

Table 8: IExpression Description

70

Field Type Description

List Items<T> Property List of items from

type T

GetItemsAsync Operation, input:

void, output: void

Get data from the

data source asyn-

chronously

Logger Property ILogger value.

Table 9: IDataProvider Description

Field Type Description

Log Operation, input:

string message,

output: void.

Used by clients to

log messages.

Table 10: ILogger Description

Listener Component

The Listener component contains the interface responsible for communicating with sensors.

The elements of this component are discussed below.

1. ISensorListener: It represents the framework abstraction of sensors, and contains the

properties of the sensor and its output. It implements the interface INotifyChange.

The interface is described in Table 11.

2. SensorType: It is an enumeration type that represents all types of sensors. The reason

why sensor type is hard-coded and not just simply a string is because we need to be

aware of all sensor types in the design time to be able to implement a type-specific

verifier.

71

Field Type Description

Data Property IData Value, the sensor’s out-

put

Type Property SensorType value, the type of

the sensor that will be verified

Translator<object, IData> Property A translator responsible for

translating data from object

formate to IData which is

the generic way of represent-

ing context information in the

framework.

Connector Property IConnector value, the connec-

tor used to connect to the sen-

sor.

ConnectorConfig Property IConnectorConfigArgs value,

represents the connector spe-

cific configuration

Name Property String value.

GetDataAsync Operation, input:

void, output: void

To ask the sensor listener for

an updated data.

Logger Property ILogger value

Table 11: ISensorListener Description

Aggregation and Verification Component

The Aggregation & Verification Component is illustrated in Figure 18. It is responsible

for verifying sensors’ output and aggregating the output of all sensors to generate the most

up-to-date and consistent context. The component consists of the following elements.

72

1. ISensorVerifier: This represents a type-specific sensor verifier. Verifiers are respon-

sible for executing data policies over sensors’ data to make sure that the data is valid

and up to date. Examples of possible verifiers are for weather monitoring, and loca-

tion verification. Ideally, location verifier should be able to deal with different types

of location sensors such as GPS, and IP address. Sensor Verifier implements the

interface INotifyChange. The interface is described in Table 11.

2. ISensorVerifiersManager: This interface represents the objects responsible for map-

ping a collection of sensors to a collection of verifiers. The mapping is done by

matching sensor types with verifiers types. The interface is described in Table 13.

Field Type Description

Data Property IData Value, the

sensor’s output

SensorType Property SensorType value,

the type of the sen-

sor

Name Property String value.

GetDataAsync Operation, input:

void, output: void

To ask the sensor

listener for an up-

dated data.

Logger Property ILogger value.

Table 12: ISensorVerifier Description

3. IDataSynchronizer: This unit is the facade interface for the Aggregation and Verifi-

cation Component. It is responsible for interacting with all sensor verifiers. The main

responsibility of this unit is to keep track of the verifiers in order to make sure that

data is aggregated and synchronized before the context component is notified about

the context change. The interface IDataSynchronizer is used as a buffer for sensors’

73

reading. Whenever a new context is constructed, this object is responsible for veri-

fying that the cached value is up-to-date, otherwise it asks the sensor to provide an

updated value. It implements the interface INotifyChange. The interface is described

in Table 14.

4. SensorAccuracy: It is an enumeration data type that represents the accuracy of the

sensor.

Field Type Description

SensorListeners Property List of Sensor Lis-

teners

SensorVerifiers Property List of Sensor Veri-

fiers

GetRequiredVerifiers Operation: input:

void, output:

List of verifiers

mapped to their

corresponding

sensors

For mapping each

sensor with a veri-

fier

Logger Property ILogger value.

Table 13: ISensorVerifiersManager Description

74

Field Type Description

Data Property IData Value, the aggre-

gated sensor’s output

Buffer Property IData Value, the tempo-

rary buffer used to aggre-

gate sensor’s output

SennsorVerifiersManager Property ISensorVerifiersManager

value

Verifiers Property List of IVerifier

GetDataAsync Operation: input:

void, output: void

To ask the sensor verifiers

for an updated data.

Logger Property ILogger value.

Table 14: IDataSynchronizer Description

75

 Aggregation & Verification Component

 Listener Component

Core Component

+Translate(in Input : object) : object

«interface»

ITranslator

+Data() : object

+GetDataAsync()

«interface»

IConnector
+NotifyChange()

«interface»

INotifyChange

+Data() : IData

+Type() : ISensorType

+Connector() : IConnector

+Name() : string

+GetDataAsync()

«interface»

ISensorListener

+List<String,Object>()

«interface»

IData

+SensorListener() : ISensorListener

+Data() : IData

+GetDataAsync()

+SensorType()

+Name()

«interface»

ISensorVerifier

+Data() : IDataProvider

+GetDataAsync()

+SensorVerifiersManager()

«interface»

IDataSynchronizer

+GetRequiredVerifiers() List() : ISensorVerifier

+SensorListeners<ISensorListener>()

+SensorVerifiers<ISensorVerifier>()

«interface»

ISensorVerifiersManager

«enumeration»

SensorType

+1...10

«enumeration»

SensorAccuracy

Figure 18: The Sensor Module

Context Calculus Component

Context component is responsible for inferring context situations which requires loading

situation definitions and activating the reasoner whenever a new context in constructed.

The component receives the context from the Aggregation component and notifies the Re-

solving component with the situations in the current context. The component interfaces are

described below.

1. IContextManager: It is responsible for observing notification when a new context is

calculated, loading the definition of situations from a Data Provider, activating the

reasoner to reason against the predefined situations and notifying the Resolving com-

ponent with the situations that exists in the current context. It is the facade interface

76

for the Context calculus component and it implements the interface INotifyChange.

The interface is described in Table 15.

Field Type Description

DataSynchronizer Property IDataSynchronizer

value

List<ISituation> Property The Situation exists

in the current con-

text

DataProvider Property IDataProvider

value.

ContextReasoner Property IContextReasoner

value.

GetSituationAsync Operation, input:

void, output: void

To ask the reasoner

to evaluate the cur-

rent context

Logger Property ILogger value.

Table 15: IContextManager Description

2. IContextReasoner: It is responsible for discovering existing situations in the current

context. The reasoner evaluates the calculated context against a set of predefined situ-

ations. Context reasoners can be based on different theories. Consequently, different

formats may be needed to present both context and situations. To serve that purpose

the interface IContextReasoner uses ITranslator to translate context and situations

from the framework generic format to the reasoner specific format. Reasoning is a

time consuming operation, some technologies can take minutes and even hours to

complete reasoning, such as ontology reasoners. In order to support all types of rea-

soners in our framework IContextReasoner implements the interface INotifyChange

to enable asynchronously performing the reasoning operation. That would prevent

reasoners from blocking other tasks done by the framework and would also provide

77

a better error handling mechanism.

3. ISituation: This interface is used to represent context situation in a generic way so it

can be used across different reasoners. The interface is described in Table 15.

Field Type Description

List<ISituation> Property The Situation exists

in the current con-

text

ReasonAsync Operation, input:

IData value repre-

sents context and

List of ISituation

represents the

list of predefined

situations, output:

void

To reason simple

context against pre-

defined situations

ContextTranslator Property ITraslator value. To

translate context to

the reasoner spe-

cific formate

SituationTranslator Property ITraslator value. To

translate Situations

to the reasoner spe-

cific formate

Logger Property ILogger value.

Table 16: IContextReasoner Description

78

Field Type Description

Name Property Situation Name

Expression Property IExpression value.

That will be evalu-

ated when testing if

this situation exists

in a given context

Table 17: ISituation Description

 Core Component

Aggregation &

Verification

Component

Context Calculus Component

+List<ISituation>()

+ReasoneAsync(in Situations : ISituation, in Context : IData)

+SituationTranslator() : ITranslator

+ContextTranslator() : ITranslator

«interface»

IContextReasoner

+NotifyChange()

«interface»

Sensors::INotifyChange

+GetData()

«interface»

IDataProvider

+Translate(in Input : object) : object

«interface»

Sensors::ITranslator

+DataSyncronizer() : IDataSynchronizer

+List<ISituation>()

+DataProvider() : IDataProvider

+ContextREasoner() : IContextReasoner

+GetSituationsAsync()

«interface»

IContextManager

+Name() : string

+IExpression() : IExpression

+Required()

+Disjoined()

«interface»

ISituation

+Expression() : string

«interface»

IExpression

+Data() : IDataProvider

+GetDataAsync()

+SensorVerifiersManager()

«interface»

IDataSynchronizer

Figure 19: Context Module

79

Resolving Component

The Resolving Component is responsible for resolving the appropriate adaptations that

should be taken in response to existing context situations. It is also responsible for imple-

menting the workflow for these adaptations and enforcing the policies defined in them. The

component consists of the following interfaces.

1. IAdaptationResolver: It is responsible for coordinating the process of resolving re-

quired adaptations. The resolver activates the data provider to fetch the definition of

adaptations, resolves the required adaptations in response to the situations that exist

in context, and activates the workflow executor to execute the required adaptation.

The interface is described in Table 18.

Field Type Description

ContextManager Property IContextManager value.

DataProvider Property IDataProvider value. To get

the definitions of adaptations

WorkflowExec Property IWorkflowExecutor value, the

object responsible for execut-

ing workflow.

PolicyChecker property IPolicyChecker value, the ob-

ject responsible for verifying

policies.

React Operation, input:

void, output: void

This operation is used when

the client wants to force

reevaluation of the context,

and the adaptation

Logger Property ILogger value.

Table 18: IAdaptationResolver Description

80

2. IAdaptation: It is responsible for representing adaptation in our framework, The in-

terface is described in Table 19.

3. IWorkflow: It represents the workflow of an adaptation, which contains an execution

plan of reactions. The interface is described in Table 20.

4. IWorkflowExecutor: It represents a workflow executor, which is responsible for re-

alizing the workflow. The interface IWorkflowExecutor is implementing the visitor

design pattern [GE95] to isolate the functionality of executing the workflow from the

actual representation of the workflow. The interface is described in Table 21.

Field Type Description

Name Property The adaptation

identifier

List<ISituation> Property The list of situation

this adaptation will

react against

Workflow Property IWorkflow value,

the work flow of

the adaptation

Policy Property IPolicy Value, the

policies governing

the execution of

this workflow.

Table 19: IAdaptation Description

Field Type Description

Expression Property IExpression value.

That will represent

the workflow.

Table 20: IWorkflow Description

81

Field Type Description

Execute Operation, input:

IWorkflow value,

output: Boolean

value represents

whether the

operations was

successful or not

The method for

executing a given

workflow.

Table 21: IWorkflowExecutor Description

5. IPolicyChecker: It represents policy checker, which is responsible for verifying that

the conditions defined by policies are met before execution. Just like in workflow,

the IPolicyChecker interface implements the visitor design pattern [GE95] to isolate

the functionality of verifying the policy from the actual representation of the policy.

The interface is described in Table 23.

6. IPolicy: It represents a policy that constrains an adaptation. The interface is described

in Table 22.

Field Type Description

PolicyName Property This represents the

unique name of the

policy.

Params Property This represents an

array of input items

needed to evaluate

the policy.

Table 22: IPolicy Description

82

Field Type Description

Name Property This represents the

unique name of the

checker.

Check Operation The method re-

sponsible for

verifying a given

policy.

Logger Property ILogger value.

Table 23: IPolicyChecker Description

Reactivity Component

The Reactivity Component is responsible for implementing predefined system reactions.

Each reaction has an Actuator Controller to control the actuator responsible for executing

the reaction. The component consists of the following interfaces.

1. IReaction: It is responsible for representing a specific reaction. The interface is

described in Table 24.

2. IActuatorController: It is responsible for interacting with actuators. It uses the

ITranslator to translate the data from the framework generic type to the actuator spe-

cific type. The controller uses IConnector to connect with actuators. The interface is

described in Table 25.

3. IActuatorConfigArgs: It is an empty interface to represent the specific configuration

used in the actuator. An actuator responsible for controlling a door would have the

configuration to open, or close, or lock the door. These actuator-specific configura-

tions are presented in IActuatorConfigArgs.

83

Field Type Description

Name Property The Reaction iden-

tifier

ActuatorController Property IActuatorController

Value, represents

the object responsi-

ble for dealing with

the actuator.

ActuatorConfig Property Represents the con-

figuration for the

corresponding ac-

tuator

Result Property The result of the ac-

tion.

DoWorkAsync Operation, input:

an array of input

object items, out-

put: void

The method for ac-

tivating the action.

Logger Property ILogger value.

Table 24: IReaction Description

84

Field Type Description

Connector Property IConnector Value, the con-

nector responsible for dealing

with the actuator.

Result Property The result of the operation.

DoWorkAsync Operation: input:

IActuatorCon-

figArgs value,

output: void

The operation responsible for

doing the action.

Logger Property ILogger value.

Table 25: IActuatorController Description

 Core Component

Resolving Component

«interface»

IWorkflowExecutor

«interface»

IPolicyChecker

+ContextManager() : IContextManager

+DataProvider() : IDataProvider

+WorkflowExec()

+PolicyChecker()

+React()

«interface»

IAdaptationResolver

+Name() : string

+List<ISituation>()

+Workflow()

+Policy()

«interface»

IAdaptation

+Expression() : IExpression

«interface»

IPolicy

+Expression() : IExpression

«interface»

IWorkflow

+GetData()

«interface»

IDataProvider

+Expression() : string

«interface»

IExpression

Context Calculus

Component

+DataSyncronizer() : IDataSynchronizer

+List<ISituation>()

+DataProvider() : IDataProvider

+ContextREasoner() : IContextReasoner

+GetSituationsAsync()

«interface»

IContextManager

+NotifyChange()

«interface»

INotifyChange

Reaction Compoent

+Name ()

+ActuatorController()

+Result()

+DoWorkAsync()

«interface»

IReaction

+Connector() : IConnector

+Result()

+DoWorkAsync()

«interface»

IActuatorController

«interface»

IActuatorConfigArgs
+Translate(in Input : object) : object

«interface»

ITranslator

Figure 20: Resolving and Reactivity Module

85

Inner-and-inter communication in components

The design of interaction between components is all based on the observer design pattern

[GE95]. The observer design pattern was chosen because (1) we need a support for both

events and asynchronous calls, (2) some operations could be either time consuming (rea-

soning) or could include interaction with the outside world (reading sensors data). The

Observer design pattern allows us to prevent blocking operations and provides a standard

mechanism to deal with communication exception handling.

The interaction between system components is event driven. Once the system is up and

running, the operation of context reasoning and consequently triggering adaptations could

happen in one of two cases.

1. Either the client asked for it, say to update its current context, or

2. New data have been detected.

The components inner and inter communication is illustrated in the form of UML Sequence

diagrams.

Listener component interaction The interaction is illustrated in Figure 21. When the

Connector receives new data it notifies the Sensor Listener which in turn translates the data

through a Translator, and then notifies the corresponding Verifier with the new data.

86

IConnectorISensorListenerITranslatorISensorVerifier

Notfiy New Data
Translate

Notify

Figure 21: Sequence Diagram for Listener Component

Aggregation and Verification component interaction The interaction is illustrated in

Figure 22. When the Verifier receives information from the Sensor Listener the Verifier no-

tifies the Data Synchronizer, which in turn asks all other sensor verifiers to get the updated

data. A Sensor Verifier has a buffer that saves the last sensor reading. If this reading is

valid and up to date the verifier returns the value, otherwise the verifier asks the sensor for

an up-to-date information. When data is updated, the Context Manager is notified.

Context calculus component interaction The interaction is illustrated in Figure 23.

The Context Manager receives a notification when context data are ready. The Context

Manager uses a data provider to connect to the data source and get situation definitions.

Following that, the Context Manager activates a Reasoner to reason about context against

the predefined situations. The Reasoner uses two translators to translate the context and the

situations. Then, the Reasoner calculates and infers the situations that exist in the current

context. The Adaptation Resolver is activated once situations in context are calculated.

87

ISensorListenerISensorVerifierISensorVerifierIDataSynchronizerIContextManager

Notfiy
Notfiy

Notfiy

Update

Wait for other verifiers until data is synchronized

Figure 22: Sequence Diagram for Aggregation and Verification Component

IDataSynchronizerIContextManagerIDataProviderIContextReasoner

Notfiy Change
Load Situations

Reason

ITranslatorIAdaptationProvider

Translate

Notify

Figure 23: Sequence Diagram for Context Component

Resolving component interaction The interaction is illustrated in Figure 24. Once the

Context Manager notifies the Adaptation Resolver with the situations in context, the Adap-

tation Resolver loads adaptation definitions from the data source through a Data Provider

88

(situation may also be cached), and then resolves the appropriate adaptations by match-

ing adaptation definition with the situations in context. The result is a set of adaptations.

Each adaptation has a workflow and a set of policies, the adaptation resolver uses the pol-

icy checker to enforce the policies, and if all policy’s constrains are met, the adaptation

resolver activates the workflow executor to implement the reaction defined in the proper

sequence.

IContextManagerIAdaptationResolverIDataProviderIWorkflowExecutor

Notfiy
Load Adaptation

Execute Required Adaptations

IPolicyCheckerIReaction

Verify Policies

Execute

Resolve
Adaptations

Figure 24: Sequence Diagram for the Resolving Component

Reactivity component interaction Once a Reaction is instantiated, the Reaction acti-

vates the Actuator Controller passing the appropriate configuration arguments. The Actu-

ator Controller then translates the input data from the framework data type to the actuator

data type through a Translator. Then, the Actuator Controller uses a Connector to connect

to the actuator. The interaction is illustrated in Figure 25.

89

IReactionIActuatorControllerITranslatorIConnector

Activate(IActuatorConfigArgs)
Translate

Connect

Figure 25: Sequence Diagram for the Reactivity

6.2 Context Reasoning

Presenting context information as a set of dimension-tag pairs hides the semantics that lies

behind. In order to express the semantic information resulting from the aggregation of

context information we have to present context in a yet more abstract mean. We introduce

Context Situation as an abstraction that is presented as expressions of Situation Expression

Language defined in 4.6. Context Situations needs to be parsed and evaluated against con-

text information. The detailed description of how this operation was conducted is presented

here.

Situation Representation and Parsing

A Situation is defined based on the box notation introduced in [WAN06]. Each Situation

contains an expression, which identifies the conditions over context information and over

other situations as well. For that purpose we defined the Situation Expression Language in

Chapter 4.6.

90

Situation Parsing Push Down Automaton (PDA) is a proven technique for parsing Con-

text Free languages [Har78]. Since the Situation Expression Language is a Context Free

language, using a PDA is an efficient technique to parse those expressions. PDA tools give

us great flexibility for both defining and parsing languages. In addition, it enables checking

the grammars for ambiguity and making sure that expressions are accurate.

We explored different tools for that purpose. We finally decided to use Irony1. Irony is

an open source tool built using .Net to parse Context Free Grammars (CFG). Unlike most

of the other tools, Irony’s grammars are not provided as plain text, they are written using C#

in a compiled grammar class. This give us the privilege of writing grammars in a compiled

environment taking advantage of Visual Studio and using IntelliSense.

In Addition, Irony provides a tool to read grammars and verify it for any conflicts

(shift-reduce and reduce-reduce). This tool also provides a graphic user interface (GUI),

illustrated in Figure 26, to test expressions against the grammars. The graphic experience

is enhanced with syntax highlighting and visualized Abstract Syntax Tree (AST).

Abstract Syntax Tree Abstract Syntax Tree (AST) is the object model of parsing a

context free language. The tree represents the corresponding expression defined in the

language. This tree is used to perform operations over the defined expression such as

Semantic Checking, Code Optimization or Code generation. In our case we are using it for

reasoning.

Irony provides a default implementation for an Abstract Syntax Tree (AST) that corre-

sponds to the defined grammars. Also, it provides the ability to define custom AST types

through passing the AST Node to the parser.

We decided to use Irony’s default AST and then use a converter that will navigate

through the tree and generate our own expression tree. This decision was made to decouple

our AST from Irony’s. In Irony, to be able to make its parser create an application specific

AST one should either inherit from a base class or implement an interface. In both cases a

static dependency is bounded. For that reason we decided to keep our AST decoupled from

1http : //Irony.codeplex.com

91

Irony’s AST. So if we decided in the future to move to another tool our logic in terms of

the structure of the tree and behavior, i.e. the reasoning, will not change.

Figure 26: Irony Grammar Explorer

Situation AST Design The Expression tree corresponds to the language defined in Chap-

ter 4.6. Each node in the tree represents an operation or a terminal. An operation node is

held between the node children. For an OR operation the node holds the value resulting

from conducting logical OR on the children nodes. The Situation exists in context if the

expression root node evaluates to true. The tree structure is closely related to the way we

designed our grammars.

The Situation Tree Structure is illustrated in Figure 27. Bold edged squares represent ter-

minals in the tree, whereas, normal edged squares represent non terminals.

92

Figure 27: AST Tree Structure

Bold squares represent terminals, others are non terminal

Reasoner Component Implementation

The Reasoner component, illustrated in Figure 28, is responsible for (1) loading the Situ-

ation Expression Language grammar definitions, (2) parsing the situation definitions, and

(3) evaluating the defined situations against context information. This is done through in-

corporating the framework component with Irony’s. The component contains Irony AST

Converter, Situation Translator, Expression Evaluator and Reasoner.

Irony AST Converter The converter, as we described earlier is responsible for convert-

ing the AST from the parser-specific format to the reasoner-specific format.

93

Figure 28: Reasoner Component Design

Situation Translator The Situation translator encapsulates Irony’s parser. The Translator

that implements ISituationTranslator is responsible for translating the textual expression

of Situation into the reasoner-specific format which is in this case the Situation AST. The

situation translator execution workflow instantiates an instance of Irony Parser, feeds the

parser with the grammars, passing the Situation Expression string to the parser, converts

the AST from Irony’s format to the reasoner format, and returns the result to the reasoner.

The Expression Evaluator Building the Expression tree was for the purpose of verifying

an expression against a specific context. Design-wise, to do that we had two options. The

first option is to define a virtual method “Verify” which should be implemented by each

class that inherits from Situation Expression. Then each class can implement its own logic

for verification. The second option is to create a visitor (visitor design pattern [GE95]) to

group specific application logic of verifying the nodes in a single visitor class. For example,

94

instead of separating the logic of evaluation among different classes one class is allowed to

contain all the logic necessary for all verifications.

Each option has its own advantages and drawbacks. We chose to go with the visitor

design pattern to decouple the behavior from the structure of the tree. Since the structure

is related to the way we defined our expression and somehow, to the way we parse them.

However, the actual reasoning or verifying mechanism is indifferent to all that. That is the

main motivation to decouple the structure from the behavior. By using the visitor design

pattern we are still taking advantage of the polymorphism in the design since the navigation

is done through the tree but the actual action is outsourced to the visitor.

The Reasoner The reasoner implements IContextReasoner defined in the framework.

The reasoning operation is asynchronies. First, the reasoner uses the translator to translate

the situation to the reasoner specific format. Then it uses the evaluator to travel through

(visit) the tree and evaluate each expression in the given context. Then the reasoner informs

the Adaptation Resolver with the discovered situations.

6.3 Workflow & Policy component

The Adaptation is a set of governed system reactions in response to a changing context.

They constitute a critical part of any context aware system. The system reacts by firing

automatic reactions. In order to assure the trustworthiness and predictability properties

of such actions these actions should be accurate, precisely defined and most importantly

governed by execution conditions that we call polices. To meet all these conditions, an

adaptation is presented as a logical grouping of yet a finer system tasks that we have called

reactions. Each adaptation also has policies that should be checked before triggering the re-

actions. The reactions and policies are constructed using the Adaptation Workflow expres-

sion language defined in Chapter 4.7. In this section we present the workflow component

detailed design, and illustrate how workflows are parsed and executed.

95

Workflow Representation and Parsing

The Adaptation Workflow Language, described in Section 4.7, is also a context free lan-

guage. Therefore, we need a Push Down Automaton (PDA) tool to parse the workflow

expressions. Consequently, we used the same tool Irony, described earlier in Situation

parsing, for parsing the workflow language.

Workflow Abstract Syntax Tree The same approach chosen for building the AST for

Situation is used here. We use a Converter to convert Irony’s AST workflow into our own

AST. The driving motivation for that is to decouple the tool’s logic from our own. The

workflow tree corresponds to the language grammar presented in Section 4.7. The AST

architecture is illustrated in Figure 29. Nodes with bold edged squares represent terminal

rules, whereas nodes with normal edged squares represent non terminal rules.

Workflow & Policy Engine implementation

The Workflow & Policy Engine is responsible for implementing the defined workflows.

The engine first parses the workflow definitions. The parsing is done through Irony parser.

Then the AST is converted to our framework object model. Once our AST is constructed,

the workflow executor navigates through the tree and implements the reactions after check-

ing the policies. The component, illustrated in Figure 30, contains in addition to the frame-

work abstractions Irony Workflow AST Converter, Workflow translator and the Workflow

Executor.

Irony Workflow AST Converter The converter converts the parsed AST from Irony’s

default format to the framework format. The converter traverses through the tree and con-

verts each node to its counterpart in the framework.

96

Figure 29: AST for Workflow

Bold squares represent terminals, others are non terminal

Workflow Translator It is responsible for translating the workflow expression into our

AST object model. The translation is done using Irony’s parser to parse the expression into

Irony’s default AST format, and then translating the AST into our framework format. This

translator implements the interface IWorkflowTranslator.

The Workflow translator instantiates an instance of Irony Parser, feeds the parser with

the grammars, passes the expression string into the parser, and converts the AST from

Irony’s format to the framework workflow executor format.

Executor It implements IWorkflowExecutor, which is responsible for executing the cor-

responding workflow using the visitor design pattern [GE95]. Depending on the AST deign

of the framework the executor implements the logic behind each node type. For While node

97

the executor checks the condition before executing the body. As for the Exec node, the ex-

ecutor allocates the appropriate reaction and instantiates it.

Figure 30: The Workflow & Policy Engine

98

Chapter 7

Implementation

In this chapter a synopsis of the Context-aware Framework (CAF) implementation is given.

The reasons behind the choice of the implementation framework (IF) and specific technolo-

gies for realizing the CAF implementation are discussed. Two example case studies are

explained. The first example is taken from reactive systems domain and the second exam-

ple is taken from business domain. Since the second example is more complex, a thorough

description of implemented elements and their mechanisms are given. Finally, test results

on the implemented prototype are shown.

7.1 Implementation Platform

The minimum set of requirements for developing the CAF are first identified. Based on

that set and the available technology the implementation platform that best suits the re-

quirements is chosen.

7.1.1 Requirements and Analysis

The four essential aspects to be considered are a faithful implementation of the component-

based design, the communication need between components, need for dynamic changes

and portability. From this we extract the following set of requirements for an efficient

implementation of CAF.

99

1. Support for Object-Oriented design The framework architecture is component-based,

and an Object-Oriented platform is acceptable for its implementation. Many aspects

including but not limited to inheritance, polymorphism and interfaces are useful for

CAF implementation.

2. Support for asynchronous method calls Inner-component calls and interactions with

outer world, such as Sensors, Actuators and Reasoners, should be done asynchronously

to prevent interface blocking and for exception handling.

3. Support for code reflection and dynamic code invocation The abstraction proposed in

CAF offers privileged developers with the ability to inject the right implementation

in the run time without the need to recompile the whole application. For example, in

case the developer wants to change the Context Reasoner then that should be done

easily in a Configuration file without the need to change the code or recompile it.

4. Support for cross platform environment It is intended to deploy CAF on different

platforms such as mobile phones, desktop and web.

With respect to the aforementioned requirements we had the chance to choose between two

development platforms: Microsoft .Net or Java based platform. Both platforms provide a

rich Object-Oriented experience and support for asynchronous calls. Reflection capabilities

are mostly similar in providing the same functionalities of loading classes, attributes and

invoking methods at run time. As for portability, Java is supported on Mac machines,

several UNIX flavors and Microsoft Windows. No formal support exists for .Net in any

platform other than Windows (Windows 7, Vista, and XP). However, with the introduction

of Silverlight1 a big portion of the .Net framework is supported on the mentioned platforms.

In addition, with the mono project2 the .Net code is supported in a various other platforms

such as UNIX, Mac, iOS (iPhone and iPad) and even Android. That have been said, the

same code could be reused to write applications for desktop in Silverlight and for phones

1http://www.silverlight.net
2http://www.mono-project.com/

100

in Windows phone, Android based phones and iPhone. On the other hand Java is only

partially supported in Android and not supported on either Windows Phone or iPhone.

Another aspect we had to take into consideration when choosing the development plat-

form is the integrated development environment (IDE) used in CAF development. While

eclipse3 is providing a rich development experience in Java compared to other IDEs such

as NetBeans4 and JBuilder5, Visual Studio6 is far superior when compared in integration

with other platforms such as Database and phone.

In respect to all the requirements previously identified, we conclude that both .Net and

Java are suitable for the development of the Context-aware Framework (CAF). However,

minor aspects such as IDE and integration with other services (maps) made us prefer to use

Visual Studio 2010 with C#, .Net 4.0, & Silverlight 4 as the development platform.

.Net Framework (NF) Characteristics

The software framework NF, developed by Microsoft, supports the development of ap-

plications using different programming languages. The Base Class Library (BCL) in NF

provides a reach set of tools that support developers in implementing applications which re-

quire Graphic User Interface (GUI), data access, database connectivity, cryptography, web

application or data structure.

The decoupling between the language capabilities and the framework capabilities is

provided through a Common Language Interface (CLI). Which is a technique to provide

the main framework functionalities including the NF Base Class Library (BCL) through a

language-neutral interface. Microsoft .Net Implementation of CLI is called the Common

Language Runtime (CLR). There exist other implementation for CLI such as Silverlight

CLR and Mono CLR.

Different language Compilers in NF (C#, Visual Basic, J#, etc...) compile high level

3http : //www.eclipse.org/
4http : //netbeans.org/
5http : //www.embarcadero.com/products/jbuilder
6http : //www.microsoft.com/visualstudio

101

code to a common intermediate language formally known as Microsoft Intermediate Lan-

guage (MSIL). The MSIL then interpreted by a Just-In-Time complier (JIT) to machine

level code. The process is illustrated in Figure 31. Therefore, developers don’t have to

write a platform-specific code or explicitly targeting specific hardware architectures, such

as 32bit or 64bit, since the CLR generates the right machine code at runtime.

Silverlight

Although the NF was designed to work on different platforms, Microsoft only provides

the NF on Microsoft Windows OS. However, a portable version of NF, called Silverlight,

was introduced. Silverlight7 is an application Framework that was first intended to target

web application with heavy multimedia, graphic and animation content. Later, it evolved

(especially in version 3.0 and 4.0) to be a full application framework for business type

applications.

Silverlight Framework, starting from version 2.0, implements the Common Language

Interface (CLI) with a different Common Language Runtime (CLR) than the one shipped

with NF. The Silverlight framework design is illustrated in Figure 32. Silverlight runs

as a power plug-in inside web browsers, such as IE, Firefox and Safari. Consequently,

Silverlight runs on different platforms, namely Windows, Mac, and Unix flavors. The Sil-

verlight framework uses an XML based annotation language, namely the eXtensible Ap-

plication Markup Language (XAML), for representing the application interfaces. XAML

was first introduced in Windows Presentation Foundation (WPF) as a part of NF version

3.0.

Version 4 of Silverlight introduced an out-of-browser experience, which allows users to

install applications on their desktops and run them outside the web browsers. This brought

Silverlight to a whole new level to act as a full portable application Framework. However,

for security concerns Silverlight is still running inside a sandbox which limits the acces-

sibility of Silverlight applications. Although many workarounds exist to safely pass these

security concerns, future versions of Silverlight are believed to provide more flexibility. In

7http://www.silverlight.net

102

this aspect Silverlight applications are evolving to be business applications with ability to

connect to client resources, such as Barcode readers, GPS, and Printers.

7.2 CAF Implementation

CAF is implemented using C# on .Net 4.0. The components described in 6.1 are imple-

mented with seven projects as follows.

1. CAF.Framework: It contains the framework core, which includes all the generic in-

terfaces and data types. This project is the only dependency for all the other projects

which are mutually independent. This is due to the abstraction made in design phase

which allows us to group all shared parts in one component. This structure pro-

vides flexibility in the implementation and clear separation of concerns, increasing

the testability of the whole framework and thus the trustworthiness.

2. CAF.Aggregation It contains the framework default implementation of Verifier Man-

ager and Data Synchronizer and the exceptions thrown from this component.

3. CAF.Context It contains the framework default implementation of Context Manager

and defines the exceptions thrown from this component.

4. CAF.Adaptation It contains the framework default implementation of Adaptation Re-

solver and defines the exceptions thrown from this component.

5. CAF.SituationReasoner It provides the implementation of the suggested technique

proposed by this framework for reasoning over context information. As described

in Chapter 6.1 the framework may support different kinds of reasoners. By default

we implement one type of Reasoners, called SituationReasoner, based on the Situ-

ations Expression Language defined in Chapter 4.6. The SituationReasoner, as any

reasoner, parses the definitions of Situations defined by the client application, then

converts it into its own format, and finally returns Situations that exist in the current

context.

103

Figure 31: .Net Framework

104

Figure 32: Silverlight Framework

6. CAF.Workflow: It contains the framework default implementation of Workflow Ex-

ecutor. The Workflow Executor parses the workflow defined in Chapter and then

implements the actions with respect to the defined policies that are appropriate for

situations in the current context.

7. CAF.Tools: It contains a set of Connectors, Actuators, Translators and other tools

that may be used in different projects such as Serial Connectors, and GPS Sensors.

Framework Bootstrapping

Framework initialization is a challenging problem, since it’s intended to wire all abstrac-

tions with there concrete implementation. It is like solving a puzzle by putting each piece

in its appropriate position. All the abstractions exist in one component as interfaces, yet

105

the right implementation needs to be wired with the corresponding interfaces in order for

the framework to function properly.

In computer science the entity that is responsible to address the previous issue is called

BootStrapper, which is responsible for the initialization of the applications that contain

multiple components. The two techniques used by BootStrapper to initialize software ap-

plications are static strapping and dynamic strapping.

Static Bootstrapping At compile time interfaces are wired with the concrete implemen-

tation, which means any change will cause a complete recompilation. Although the changes

in the code are minimal, recompilation may not be possible at all times.

Dynamic Bootstrapping At run-time interfaces are wired with the right implementation.

This could be achieved through a configuration file that maps each interface with the right

implementation or through other techniques such as code annotation.

One of the requirements of CAF is to be able to dynamically add sensors and actu-

ators and furthermore dynamically plugging and unplugging reasoners and workflow

executors. Hence, we decided to use Dynamic Bootstrapping. In order to do that we wrote

our own entity Container which is responsible for instantiating objects based on Reflection

and C# Code Attributes. This provides the ability to annotate code with specific attributes

that could be used by compilers or through reflection. The IContainer interface described

in Table 26 provides the ability to retrieve two types of entities, objects and classes. While

the framework contains entities with only one possible implementation such as Reasoner

and Workflow Executors, it also contains entities with possible multiple implementations,

such as Sensor Listeners and Actuators Controllers.

The Container is asked to retrieve a specific object, the Container loads the assembly

using reflection and then searches for dependencies, dependencies are identified through a

customized code attribute, called “Dependency”. This attribute has one of the two follow-

ing types.

• Item This attribute is set when the dependency contains one item. For example, any

106

entity in CAF needs one logger to report activities or possible errors.

• List This attribute is set when the dependency contains multiple items. For example,

the Sensor Aggregator needs to hold references of all Sensor Listeners in the frame-

work, and the Workflow Executor needs to hold references for all Reactions. Sensor

Listeners and Reactions are List dependencies.

The BootStrapper feeds the Container with all the concrete implementation of the CAF

component interface based on a configuration file. Then the container is asked to resolve

an abstraction, resolving an abstraction means returning the right implementation of an in-

terface and resolving all the dependencies of the interface. Example 10 shows the definition

of the IWorkflowExecutor interface. The interfaces declares three dependencies described

as follows.

• Logger: Every entity in CAF depends on a logger in order to register all event hap-

ping, the logger is an example of an item dependency since there exist one logger in

all the framework.

• Reactions: The workflow executor holds a reference to all Reactions in order to

call the reactions when specified in a workflow. Since CAF contains more than one

Reaction, reactions are declared as list dependency to inform the container that there

may exist multiple possible implementation of the Reaction interface.

• Checkers: The workflow executor holds a reference to all Policy Checkers in order to

execute the workflow. Just like Reactions, Checkers are declared as list dependency

for the same reason.

For example, the container returns a reference of CAFWorkflowExecutor (which is CAF

default implementation of IWorkflowExecutor) when asked to resolve IWorkflowExecutor.

Resolving IWorkflowExecutor requires resolving ILogger and IReaction.

107

Example 10

public interface IWorkflowExecutor

{

[Dependency(DependencyType = DependencyType.Item)]

ILogger Logger { get; set; }

[Dependency(DependencyType = DependencyType.List]

List<IReaction> Reactions { get; set; }

[Dependency(DependencyType = DependencyType.List]

List<IPolicyChecker> Checkers { get; set; }

List<ISituation> Situations { get; set; }

bool Execute(IWorkflow Workflow);

}

The framework was designed to cause a domino effect when resolving objects. If the

container was asked to resolve IAdaptationResolver all the dependencies of the Framework

is resolved at once. The Figure 34 shows a sample of the Framework dependency tree.

108

Field Type Description

RegisterInstance Operation To register an instance

with a specific type

Ex: GPSSensor − ISen-

sorListener

RegisterType Operation To register a type with a

specific type

Ex:

SituationReaosner −

IReasoner

Resolve Operation To resolve a specific type

by returning the right im-

plementation

GetAllinstances Operation To resolve a specific type

by returning all imple-

mentations.

ILogger Property Event Logger

Table 26: IContainer Description

109

Client Application

BootStrapper Container

.Net Reflection
 Service

<xml>
<Configuration>
...

...

...

...
</Configuration>
</xml>

1- Initialize
Framework

2- Read configuration file

3- Register all instances/ types

4- Resolve IAdaptationResolver

5* - Get type
from assembly

6*- Resolve Dependency

Figure 33: Initialization Process

IAdaptation Resolver

IContext Manager

IData Synchronizer

- ILogger
- IWorkflow Executor
- IReaction

- ILogger
- IContext Reasoner

- ILogger
- IListeners
- IVerifiers
- IVerifier Manager

Figure 34: Dependency Tree

110

7.3 Case Studies

Two case studies were developed using the CAF and implemented according to the method-

ology described above. The first case study is chosen from the domain of ‘reactive systems’

and the second case study is chosen from ‘business services’ domain. The first example is

simple enough to be done thoroughly, whereas the second example is complex enough to

be adequately handled.

7.3.1 Temperature Control and Cooling System (TCCS)

A naive temperature control system is modeled in CAF. The system is required to increase

the temperature when the environment’s temperature is below a certain level and to decrease

the temperature when the environmental temperature is above a certain level. The actuators

used are a heater and a cooler. The architecture of TCCS is shown in Figure 35.

Figure 35: Temperature Control System

System Design

Modeling applications using the CAF requires defining the main entities that represents the

application environment and intentions. The following client applications are defined.

111

1. Sensor Listener A thermometer listener is defined. It is responsible to connect to a

thermometer that provides temperature degrees in Fahrenheit.

2. Sensor Translators Since the sensor reading of the temperature is in Fahrenheit, a

translator that translates the temperature from Fahrenheit to Celsius is provided.

3. Sensor Verifiers The sensor verifier applies the data policies, which in this case is

making sure that the sensor’s reading is reasonable. Any reading, less than -70C or

more than 70C indicates an error, and is filtered out by the verifier.

4. Actuator Controllers We have two actuators in this case, a heater actuators and a

cooler actuator.

5. Context Information The context in this example has one dimension which is tem-

perature (Temp).

6. Situations and Extenders Situations defined here reflect the state when the temper-

ature is less than 10C or more than 30C. For that purpose we defined two situations

Cold and Hot. The Cold situation refers to the state when the temperature degree is

less than 10C. It is presented in the Situation Expression Language as follows.

Cold : { (Temp < 10) }

This Hot situation refers to the state when the temperature degree is more than 30C.

It is presented in the Situation Expression Language as follows.

Warm : { ($IsHot [Temp]) }

‘‘IsHot” is a situation extender that provides the ability to extend the reasoning capa-

bility of the framework by triggering custom user defined functions that takes context

information as an input and returns a boolean value. Since the situation expression

language is limited, situation extenders are used whenever the user could not express

its intentions using the predefined operations. For our situation, the extender checks

112

the value of temperature and returns true if it’s more than 30. The Situation Expres-

sion Language does supports the (>) operation. However, this example is presented

as an extender just for illustration purpose.

7. Adaptation & Policies We define the following two adaptations to adapt to each of

the defined situations.

(a) The adaptation in response to the Cold situation is Adapt to Cold Weather.

This adaptation increases the temperature by triggering the reaction to increase

temperature. The workflow of this adaptation is presented using the Workflow

Expression Language described in Section 4.7 as follows.

if ($IsHeatingSystemWorking[])

Exec (IncreaseTempAction[]) ;

(b) The adaptation in response to the Warm situation is Adapt to Warm Weather.

This adaptation decreases the temperature by triggering the reaction decrease

temperature. The workflow of this adaptation is presented using the Workflow

Expression Language described in Section 4.7 as follows.

Exec (DecreaseTempAction[]) ;

The IsHeatingSystemWorking is a policy to check if the heating system is working

before sending an order. The policy checker for this policy is provided by the user.

8. Reactions As we previously mentioned the two reactions are increase temperature

and decrease temperature, which respectively encapsulates the interaction with the

heater and cooler actuators.

System Process Model

The system process model of TCCS is illustrated in Figure 36. It contains the sequence of

steps (1) activation, (2) requesting information, (3) aggregating sensor’s information, (4)

reasoning over context information, (5) resolving adaptations, and (6) reacting.

113

Activation

Reasoning over context information

Aggregating Sensor's readings

Requesting information

Resolving Adaptation

Reacting

Figure 36: Framework Process Model

Activation The system can be activated either when the client asks explicitly to check

the context and react upon it or a new context data is constructed. The second scenario is a

subset of the first scenario, so we describe here only the first scenario.

Requesting information The user request causes the following chain effect: (1) the

Adaptation Resolver asks the Context Manager for the updated situations that exists in the

context, (2) the Context Manager asks the Data Synchronizer for the aggregated context

information, (3) the Data Synchronizer asks all sensor verifiers for their verified readings

and (4) Sensor Verifiers asks Sensor Listeners for the latest readings if applicable. The

request flow is illustrated in Figure 37.

114

Figure 37: Request Information Chain

Aggregating sensor’s information Once the sensor’s listeners receive the readings, the

verifiers verify the data and then notify the Data Synchronizer which waits until all sensor’s

responded and then notifies the Context Manager.

Reasoning over Context Information When the context is ready and synchronized, the

Data Synchronizer informs the Context Manager. Then the Context Manager activates The

Reasoner to discover situations in the current context.

115

Context

 Situations
 Definition

 Situations
 In
 Context

Reasoner

Figure 38: Reasoning Context Information

Resolving Adaptations When the Context Manager receives the Situations in Context

from the reasoner, it informs the Adaptation Resolver with the discovered situations. The

Adaptation Resolver resolves the appropriate adaptations for the discovered context. Then

executes each adaptation. The process is illustrated Figure 39.

Situations
in Context

 Adaptations
 Definition

 Required
Adaptations

Resolver

Figure 39: The Adaptation Resolver

116

Reacting The Adaptation Resolver determines appropriate adaptations, and calls the Work-

flow Executor to execute each adaptation. The Workflow Executor allocates reactions and

activates them based on the execution path. Reactions connect to actuators through Actua-

tor Controllers and implement the actions after checking the required policies.

7.3.2 Salesman Case Study

A salesman goes around different cities, visiting customers, collecting information and or-

ders, and distributes products to customers. The products themselves are loaded from a

warehouse by the salesman before the tour begins everyday. The tours vary from day to

day and are largely driven by context and knowledge extracted from Decision Support Sys-

tems. Context information is not only limited to the salesman, the notion of context could

be much wider. Statistical data and knowledge extracted from Decision Support Systems

(DSS) is a potential candidate of a different source of context information. Such infor-

mation would help to detect and react upon highly abstracted business situations that affect

strategic planning and have long term adaptations. The mobile nature of the salesmen’s tour

provides a dynamic distributed environment in which contexts change dynamically, which

in turn requires real-time reactions and adaptations. Context information also includes con-

straints in the environment, such us road traffic, and the personal health condition of the

salesman. Appropriate reactions, if taken at the right time, could produce a remarkable

business value and directly affect the productivity of the salesmen and consequently pro-

mote the business. This problem, although not fully stated, was investigated at some depth.

Below, a summary of the investigation and how an implementation was arrived at are given.

The CAF architecture, being a flexible design, several extensions to the implementation de-

scribed below are possible. These are outlined at the end.

Review of Context for this Domain

Salesmen start their days at some warehouse, and load goods based on the customers they

may visit at the same day. Salesmen then start visiting their customers and supply them

117

with their needs, collect payments and collect returns. Warehouse management is a key

factor for business success. Thus, there is always a need to increase the productivity of

the warehouse through optimizing loading, storing and serving customers. Some sensors

technologies such as Radio Frequency IDentification (RFID) are used now by sales and

distribution companies [Lex07] to help count, check-in and check-out items. The same

technology could also be used to identify salesmen when they enter a facility and further-

more to prepare shipment if information is available.

Some context information, such as weather and road conditions, that affects deeply the

salesmen work must be tracked. Salesmen schedule could be altered completely due to an

accident on a highway. Context awareness could assist salesman in the everyday activity

by identifying customers when approaching a neighborhood, viewing information about

them, suggesting sales, reminding them with payments, and the sales. At the system level,

context information is on the scope of the whole application. Domain knowledge that may

be gained through DSS could be used as context information. They could be aggregated

and manipulated to construct situations and define adaptation to deal with these situations.

Sensors

This problem requires many types of sensory data to be collected. A sample list of sensor

types and the information perceived through them are listed below.

Date & Time Sensor The context variables defined by this sensor type are current Date

and Time.

Salesman GPS Sensor The Global Positioning System (GPS) sensor could be a stan-

dalone device or integrated in the salesman tablet or cell phone. This device is responsible

for providing updated information about the geographic location of the salesman. The

context variables defined by this sensor type is salesmanGPS.

118

RFID Readers Salesman’s vehicle contains Radio Frequency IDentification (RFID) sen-

sor that is used to identify objects with special tags. This sensor could be used to discover

goods checked in or out from the vehicle and for statistical purposes as well. The context

variables defined by this sensor type are shipmentLoaded and shipmentUnloaded. Ware-

houses have RFID readers that identify salesmen and goods. The context variables defined

by this sensor type is warehouseRFIDReader.

Warehouse Loading Manager The context variables defined by this sensor type is ship-

mentisReady. The warehouse loading manager uses this sensor variable to notify the system

that items are ready to be loaded. A workstation computer, handheld device or a cell phone

could be used for such purpose.

Traffic & Weather Condition Sensors For a specific set of roads and weather conditions

a subscription to these types of service deliver information identified through sensor vari-

ables. The context variables defined by these sensor types are respectively roadCondition,

and weatherCondition.

Salesman Status Salesman status is a sensor type responsible for determining whether

or not the salesman is on duty. The context variables defined by this sensor type are sales-

ManID, callingSick, onVacation or carIsBroken.

Business Locator This sensor type is to notify the system with newly opened business

nearby a specific location. The context variables defined by this sensor type are newCus-

tomerinRange and newCustomerAddress.

System Database The sensor type at the system database is associated with context vari-

ables itemsOnSale and averageSalesmanSales. They are used for reasoning and require

Reasoner Extenders, as defined in the next section.

119

Data warehouse This sensor type provides information helpful for identifying system

level situations. The context variables defined by this sensor type are suggestedSale, sug-

gestedCut. They are used for reasoning and require Reasoner Extenders, as defined in the

next section.

Reasoner Extenders

Reasoner extenders are user defined functions that provides extension mechanism for rea-

soning over contexts. Often such functions provides the ability to test customer conditions

related to the application domain. Using Reasoner Extenders enriches the Situation Ex-

pression Language with dynamic extensions. Following is part of the reasoner extenders

used in this case study.

Salesman Sales This function accepts a salesman ID and returns the volume of sales for

the identified salesman.

Item Sales This function accepts item ID and returns the number of items sold.

Is On Debt This function accepts Customer ID and returns whether or not the customer

is on debt.

Is Good This function accepts Customer ID and returns whether or not this customer is

in good standing, as categorized by the decision support system.

Situations

Several situations can be created from sensor readings. These include the situations (1)

Salesman in Warehouse, (2) Shipment Ready, (3) Shipment Loaded, (4) Salesman on Road,

(5) Environment Changed, (6) Salesman plan affected, (7) Potential Customer, (8) Sales-

man on Customer, (9) Shipment unloaded, (10) Items on Sale, (11) Good Customer, (12)

Customer on Debt, (13) Good Customer on debt, (14) Bad Customer in debt, (15) Salesman

120

Not Working, (16) Outstanding Salesman, (17) Bad Salesman, (18) Good Selling Item, (19)

Bad Selling Item, (20) Suggest Sale and (21) Suggest Cuts. Their semantics are specified

as shown below.

Salesman in Warehouse

Salesman in Warehouse = { ($IsSalesman[warehouseRFIDReader]

OR $IsWarehouse[salesmanGPS])}

Shipment Ready Shipment Ready = { Salesman in warehouse AND (shipmentisReady)

}

Shipment Loaded Shipment Loaded = { Salesman in Warehouse AND (shimpment-

Loaded) }

Salesman on Road

Salesman on Road = {(NOT $IsWarehouse[salesmanGPS] AND

NOT $IsCustomer[salesmanGPS])}

Environment Changed Environment Changed = { ((weatherCondition !=Previous Value)

OR (roadCondition !=Previous Value)) }

Salesman plan affected Salesman plan affected = { Environment Changed AND Sales-

man on Road AND ($IsAffected[salesmanID, weatherCondition, roadCondition]) }

Potential Customer

Potential Customer = { (newCustomerInRang AND

$IsNewCustomer[newCustomerAddress]) }

Salesman on Customer Salesman on Customer = {($IsCustomer[salesmanGPS])}

121

Shipment unloaded Shipment unloaded = { Salesman in Customer AND (shimpmen-

tUnloaded) }

Items on Sale Items on Sale = { Salesman in Customer AND (itemsOnSale != NULL) }

Good Customer Good Customer= { Salesman on Customer AND ($IsGood[salesmanGPS])

}

Customer on Debt Customer on Debt= { Salesman on Customer AND

($IsOnDebt[salesmanGPS]) }

Good Customer on Debt Good Customer on Debt= { Good Customer AND Customer

in debt}

Bad Customer on Debt Bad Customer on Debt= { NOT Good Customer in debt}

Salesman Not Working Salesman Not Working= { (callingSick OR onVacation OR carIs-

Broken) }

Outstanding Salesman Outstanding Salesman = { ($SalesmanSales[SalesmanID] > 2 *

averageSalesmanSales) }

Bad Salesman Bad Salesman = { ($SalesmanSales[SalesmanID] < averageSalesman-

Sales /2) }

Good Selling Item Good Selling item = { ($ItemSales[ItemID] > 2* averageItemSales)

}

Bad Selling Item Bad Selling item = { ($itemSales[ItemID] < averageItemSales / 2) }

Suggest Sale Suggested Sale = { (sugesstedSale != NULL) }

122

Suggest Cuts Suggested cuts = { (sugesstedCut !=NULL) }

Reactions

Four basic reactions are implemented, namely Notify, Check in, Check out and Recalcu-

late list. These reactions encapsulate the interaction with actuators and are used by the

adaptations which will be described later in this chapter.

• Notify: This is a general purpose reaction that is used across many adaptations. The

reaction is responsible for sending a specific message to a specific destination. This

reaction accepts two input parameters (1) Destination which represent the recipient

of the message and (2) Message which represent the actual message. The Notify

reaction can be implemented using SMS Text messages, emails, or method invoca-

tion depending on the underlying actuator. The messaging infrastructure is chosen

based on the client application. The precondition for this reaction is having a valid

connection with the destination, which is related to the underlaying actuator. Say

we are using an email client actuator, the precondition is checking if there is a valid

Internet connection. The postcondition is either confirming a successful delivery of

the message or notifying the sender of the failure to send the message.

• Check in: This reaction is responsible for triggering a database transaction that check-

in items in a specific account. This reaction accepts two input parameters (1) Account

Name which represents the account the items are checked into, and (2) the actual

Items need to be checked into this account. The precondition is having a valid con-

nection with the database. The postcondition is either confirming that the operation

was successfully completed or notifying the system of the failure to conduct this

operation.

• Check out: This reaction is responsible for triggering a database transaction that

check-out items from a specific account. This reaction accepts two input parameters

(1) Account Name which represents the account the items are checked out from, and

123

(2) the actual Items need to be checked out from this account. The precondition is

having a valid connection with the database. The postcondition is either confirming

that the operation was successfully completed or notifying the system of the failure

to conduct this operation.

• Recalculate list: This reaction is responsible for recalculating the customers list for a

salesman based on specific traffic and weather condition. The reaction accepts three

parameters (1) Salesman ID which identifies the salesman in need for this service, (2)

Weather which represents the weather condition and (3) Traffic represents the traffic

condition. There are no preconditions for this reaction, however the postcondition is

either confirming the successful competition of this process or notifying the system

of the failure to conduct this operation.

Policies

In this section we present the polices defined for this case study, namely (1) Salesman

Status Policy, (2) Customer Financial Standing Policy, (3) Customer List Recalculation

Policy and (4) Salesman Authorization Policy. These policies are used in the adaptations

defined later in this chapter. The policies are defined as follows.

• Salesman Status Policy: This policy enforces that reactions should be held against

active salesmen only. For example, reactions should not be held against salesmen on

vacation, or retired salesmen. This policy is implemented through a policy checker

that defines Is Active method. The method accepts Salesman ID as parameter and

returns whether the salesman is currently active or not.

• Customer Financial Standing Policy: This policy enforces that certain actions are not

executed when the customer has an outstanding balance. For example, a salesman

can not check items in a customer account with an outstanding balance. The policy is

implemented through a policy checker that defines Is on Dept method which accepts

Customer ID and returns whether the customer is on dept or not.

124

• Customer List Recalculation Policy: This policy enables customers list recalculation

only under certain conditions. In order for the recalculation to be worthy the context

information change should exceed a certain threshold. Also, recalculation needs an

Internet connection which may or may not be available. This policy makes sure that

all conditions are met before executing the recalculation. The policy is implemented

through a policy checker that defines Is Necessary method that accepts Salesman

ID, Weather Condition and Traffic Condition as parameters and returns whether a

recalculation should be held or not.

• Salesman Authorization Policy: This policy enforces that only authorized salesmen

can perform certain activities. In some situations special offers can be made to cus-

tomers in good standing. Such offers may be made only by authorized salesmen. This

policy is implemented through a policy checker that defines Is Authorized method

which accepts a Salesman ID as input and returns whether the salesman is authorized

or not.

Adaptation

Many adaptation policies are implemented using the Workflow Expression Language. The

implemented adaptations are (1) Prepare Shipment, (2) Notify Salesman, (3) Transfer from

Warehouse, (4) Transfer from Salesman, (5) Recalculate Customers List, (6) Suggest Visit,

(7) Suggest Customer Order, (8) offer a discount, (9) Offer a waver, (10) Pass, (11) Notify

Nearby Salesman and (12) Notify Manager. An adaptation is associated with a situation.

Prepare Shipment This adaptation is triggered in a warehouse when a salesman ap-

proaches it. The adaptation notifies the system which prepares the shipment either manu-

ally or automatically depending on the infrastructure. This adaptation is illustrated in Table

27.

125

Adaptation Name Prepare Shipment

Situations Salesman In Warehouse

Adaptation Workflow Exec(Notify [WarehouseID, Sales-

manID]) ;

Adaptation Policies N/A

Adaptation Reactions Notify

Table 27: Prepare-Shipment-Adaptation

Notify Salesman This adaptation is to send a message to a salesman. One instance is

to notify the salesman to load the shipment when the shipment is ready in the warehouse.

This adaptation is illustrated in Table 28.

Adaptation Name Notify Salesman

Situations Shipment Ready

Adaptation Workflow Exec(Notify [SalesmanID, Message]);

Adaptation Policies N/A

Adaptation Reactions Notify

Table 28: Notify Salesman

Transfer from Warehouse This adaptation is triggered once the loading is completed in

the warehouse. The items and the number of each item loaded from the warehouse should

be checked out from the warehouse account and checked into the salesman account. The

adaptation is illustrated in Table 29.

126

Adaptation Name Transfer from warehouse

Situations Shipment Loaded

Adaptation Workflow If ($IsActive[SalesmanID])

{

Exec(CheckIn [SalesmanID, Goods]);

Exec(CheckOut [WarehouseID, Goods]

);

}

else

{

Exec(Notify[SalesmanID, “Your ac-

count is not active”]);

}

Adaptation Policies Is Active

Adaptation Reactions Check in

Check out

Notify

Table 29: Transfer from Warehouse

Transfer from Salesman This adaptation is triggered once the shipment is unloaded at

the customer’s place. The items and the number of each item unloaded should be checked

out from the salesman’s account and checked into the customer account. The adaptation is

illustrated in Table 30.

127

Adaptation Name Transfer from Salesman

Situations Shipment Loaded

Adaptation Workflow If ($IsActive[SalesmanID])

{

If (NOT $IsIndebt[CustomerID])

{

Exec(Checkin [CustomerID, Goods]);

Exec(CheckOut [SalesmanID, Goods]);

}

}

else

Exec(Notify[SalesmanID, “Your account

is not active”]);

}

else

Exec(Notify[SalesmanID, “The Customer

is on debt”]);

Adaptation Policies Is Active

Is in debt

Adaptation Reactions Check in

Check out

Notify

Table 30: Transfer from Salesman

Recalculate Tour Each salesman has to recalculate the tour map for visiting customers,

based on road conditions and/or business to be conducted. This adaptation is illustrated in

128

Table 31.

Adaptation Name Recalculate Customer List

Situations Salesman Plan affected

Adaptation Workflow If ($IsActive[SalesmanID])

{

If ($IsNecessary[SalesmanID, Weather-

Cond, RoadCond])

{

Exec(Recalc[SalesmanID, Weather-

Cond, RoadCond]);

Exec(Notify[SalesmanID, “Your plan is

changed”]);

}

}

Adaptation Policies Is Active

Is Necessary

Adaptation Reactions Re calculate list

Notify

Table 31: Recalculate Customer List

Suggest New Visit This adaptation is triggered when new customer is discovered on a

nearby location. This adaptation is illustrated in Table 32.

129

Adaptation Name Suggest Visit

Situations Potential Customer

Adaptation Workflow If ($IsActive[SalesmanID])

{

Exec(Notify[SalesmanID, “Visit nearby

customer”, NewCustomerAddress]);

}

Adaptation Policies Is Active

Adaptation Reactions Notify

Table 32: Suggest Visit

Suggest Customer Order This adaptation is triggered when the system is aware of the

customer currently visited by the salesman. The adaptation suggests to the salesman an

offer a specific order to the customer. This adaptation is illustrated in Table 33.

Adaptation Name Suggest Customer Order

Situations Items on sale

Adaptation Workflow If ($IsActive[SalesmanID])

{

Exec(Notify[SalesmanID, salesItems]);

}

Adaptation Policies Is Active

Adaptation Reactions Notify

Table 33: Suggest Customer Order

130

Offer Discount A discount could be offered by a salesman to customers with good stand-

ing. This adaptation is illustrated in Table 34.

Adaptation Name Offer Discount

Situations Good Customer

Adaptation Workflow If ($IsActive[SalesmanID] AND

$IsAuthorized[SalesmanID])

{

Exec(Notify[SalesmanID, “Offer a

discount”]);

}

Adaptation Policies Is Active

Is Authorized

Adaptation Reactions Notify

Table 34: Offer Discount

Offer Waver This adaptation is in response to the situation when a customer is in a good

standing and also on debt. The salesman can offer a waiver to this customer and thus the

customer can get more items. This adaptation is illustrated in Table 35.

131

Adaptation Name Offer Waver

Situations Good Customer on debt

Adaptation Workflow If ($IsActive[SalesmanID] AND

$IsAuthorized[SalesmanID])

{

Exec(Notify[SalesmanID, “Offer a

waver”]);

}

Adaptation Policies Is Active

Is Authorized

Adaptation Reactions Notify

Table 35: Offer Waver

Pass This adaptation is triggered in response to a customer whose standing is only aver-

age and is on debt. The salesman is instructed by this adaptation to ignore this customer.

This adaptation is illustrated in Table 36.

Adaptation Name Pass

Situations Bad Customer on debt

Adaptation Workflow If ($IsActive[SalesmanID])

{

Exec(Notify[SalesmanID, “Pass, no of-

fer should be made”]);

}

Adaptation Policies Is Active

Adaptation Reactions Notify

Table 36: Pass

132

Notify Nearby Salesman This adaptation is triggered by the system to notify a salesman

on duty to cover the work of another salesman who is disabled. A nearby salesman is

chosen based on location and time parameters. This adaptation is illustrated in Table 37.

Adaptation Name Notify Nearby salesman

Situations Salesman not working

Adaptation Workflow Exec(NotifyNearBySales-

man[SalesmanID]);

Adaptation Policies N/A

Adaptation Reactions Notify Near By Salesman

Table 37: Notify Nearby Salesman

Notify Manager This adaptation may be triggered for many situations. This adaptation

is illustrated in Table 38.

Adaptation Name Notify Manager

Situations Item is selling

Item is not selling

Suggest Sale

Suggest Cut

Adaptation Workflow Exec(Notify [Manager, Message]);

Adaptation Policies N/A

Adaptation Reactions Notify

Table 38: Notify Manager

Actuators

The actuators needed for this case study are Account Actuator, System Functions Actuator

and Messaging Actuator.

133

Account Actuator It is responsible for managing account transactions for customers,

salesmen and warehouses accounts. This actuator uses a database connector.

System Functions Actuator This actuator is responsible for invoking predefined system

functions. They can be implemented as database stored procedures, web services or as code

libraries. Consequently, different connectors can be used to communicate with the actuators

such as Database Connector, Remote Procedure Call (RPC) Connector, Web Service (WS)

Connector, or Remote Method Invocation (RMI) Connector.

Messaging Actuator This actuator is used by the Notify reaction defined previously.

The connector used for this actuator depends on the type of messages, such as email, text

message, etc. . .

Case Study implementation

This case study, with all details given above, was implemented on Windows phone 7 and

Silverlight 4 as shown in Figure 40. We omit the specific details on programming.

Some Test Results

In order to verify the correctness of the code a test driven methodology was followed. We

approached testing CAF from a white box perspective. The unit test cases for each compo-

nent were implemented right after the component is implemented and before implementing

other parts of the system. For that reason, we created stubs to mock the functionality of

other component and that allowed us to focus more on each component functionality as an

isolated unit of development. The test cases chosen for each component corresponds to the

component responsibilities and failure scenarios.

After implementing all components and their subsequent test cases, we created integra-

tion tests to verify that all the components functions properly when interacting with each

other and also to verify the bootstrapping operation. During testing phase we discovered

134

Figure 40: Salesman Case Study Implementation- Phone and Tablet Applications

design problems, thus we iterated back and forth to optimize our design. That highlights

the testing role in verifying design in addition to functionality.

In software testing there are multiple measurements to measure the confidence of the

software. One important measure is code coverage which indicates the percentage of code

covered. Table 39, Figure 41 and Figure 42 shows the results of code coverage we achieved.

In total we had 88.92% code coverage for the whole framework which contains more than

7,000 line of code.

However, CAF testing remains limited since testing and verification is outside the scope

of this work. Future tests should take into consideration quality and stress tests and also

should put more focus on integration tests. As a future work, we are looking forward to

conduct a formal design verification on CAF to assure the trustworthiness and dependabil-

ity of this work.

135

Project Coverage Rate
Adaptation 91.92%
Aggregation 81.55%
Context 100%
Framework Project 91.79%
Situation Reasoner 86.16%
Workflow 100%
Overall 88.92%

Table 39: Framework Test Statistics

Figure 41: The Framework Tests Results

136

Figure 42: The Framework Unit Tests

137

Chapter 8

Conclusion And Future Work

The essence of this thesis work is in defining a component based methodology for con-

structing a Context-aware Framework on which any context-aware application can be im-

plemented. This CAF can be used by software developers to empower existing and new

applications with awareness capabilities. The methodology introduces a formal process to

perceive context and consequently adapt to it. The process consists of (1) identifying Sen-

sors, (2) defining Context, (3) defining Context Situations, (4) identifying Actuators, (5)

defining Reactions, (6) defining Policies, and (7) defining Adaptations.

An analysis presented in Chapter 2 has revealed the inadequacies in the existing ap-

proaches for constructing context-aware applications. Given the current trend in pervasive

and mobile computing applications there is a definite need for a generic architecture for

CAF. The introduction of Situation Expression Language to express sophisticated context

situations, and the introduction of Workflow Expression Language to formally define the

execution flow of adaptations and the domain constraints defined as policies are novel, new

and quite powerful to deal with dynamic contextual changes.

The component based architecture for CAF proposed in Chapter 5 is based on the ab-

stract three-tiered architecture of [WAP06]. A detailed design of the proposed architecture

has been explained in Chapter 6. A full implementation of the suggested CAF has been

done and its expressiveness is illustrated with two case studies in Chapter 7. In particular,

the framework implementation includes a full implementation of the Situation Expression

138

Language and the Workflow Expression Language, the two key features that distinguish

this thesis work from the rest. The implementation of the former is accomplished through a

reasoner to construct context situations based on their definitions and context data, and an

implementation of the later is achieved through an execution engine for triggering reactions

and enforcing polices.

We followed a strict test driven methodology for implementing the framework. In ad-

dition, the implementation was tested from a white box perspective.

8.1 Summary

In this section we evaluate the Context-aware Framework CAF with respect to the require-

ments stated in the summary of Chapter 3.

• Defining context data model: In Chapter 4 we provided a formal definition of atomic

context information based on [WAN06] Box notation.

• Defining context situation handler: In section 4.6 we defined the Situation Expression

Language to uncover the semantics behind the aggregation of context information.

• Defining Reasoning Mechanism: In Chapter 6 we provided the detailed design of

the Situation Reasoner. This CAF component is responsible for inferring situations

that exist in a given context. The situations are defined in the Situation Expression

Language.

• Supporting different sensors & Actuators types: The Sensor Listener, Actuator Con-

troller and Translator defined in Chapter 5 provide CAF with the ability to deal with

different types of sensors and actuators, and to translate data between different for-

mats.

• Verification: The Sensor Verifier, proposed in Chapter 5, provided CAF with the abil-

ity to verify sensor’s reading. Additionally, the execution policies expressed in the

139

adaptation’s workflow verify that reactions are always taken with respect to certain

rules.

• Context Aggregation: The Data Synchronizer, defined in Chapter 5, empowers CAF

with the ability to aggregate sensors readings and to insure that context information

are always synchronized and up to date.

• Communication and Connection: The communication between all CAF components

is asynchronous and all based on the Observer Design Pattern. The communication

with the sensors and the actuators are done thorough a Connector, defined in Chapter

5, to support different methods and protocols of communications.

• Adaptations and Policy: In Chapter 4.7 a formal definition of the Workflow Expres-

sion Language is provided. The language supports the introduction of execution

policies as workflow constraints.

8.2 Assessment

In this section, we verify the architecture and design of the proposed Context-aware Frame-

work (CAF) with respect to the three quality attributes Reusability, Testability, and Scala-

bility.

• Reusability: The Component-based Architecture (CBD) chosen for designing CAF

allowed us to define each component separately as an autonomous unit of deploy-

ment. That privileged us with the ability to reuse CAF component in other systems

to perform similar tasks. A prime example is the Workflow language which can be

reused or adapted for several applications, whether or not they are context-dependent.

• Testability: The components in CAF have a well defined input and output, which

allows defining independent unit tests for each component with stubs or proxies to

simulate the functionality of other components. Integration testing of CAF will re-

quire both incremental testing and formal verification.

140

• Scalability: The design of CAF is scalable in different aspects.

– CAF design is interface-driven design which separates the architecture from

the implementation and allows developers to introduce an enhanced implemen-

tation of specific components without affecting the overall process.

– The Situation Expression Language provides Reasoner Extender as extension

points to the language capabilities.

• Performance: The distributed nature of the Context-aware Framework allowed us

to address performance issues that raise in environments with restricted resources.

For example, due to the limited battery and computing power of handheld devices

all compute bound tasks, such as replanning, are done in a dedicated server. The

handheld device communicates with the server whenever context changes.

8.3 Future work

Enriching software with context-awareness increases human dependability on computers.

Therefore, studying the trustworthiness of context-aware systems is an interesting issue,

which could include identifying their unique verifiable attributes and projecting current

approaches of building dependable systems on context-aware applications. Incidentally

this aspect will require formal analysis at both design and deployment phases.

The issues of presenting the semantics behind context is always a moving target and

introducing more effective and expressive means of semantic presentation should bring a

remarkable contribution in many domains.

While systems are providing services empowered with context-awareness, context-

awareness is never the main motive of building applications. It is always a secondary

feature that can be added to enhance the major service provided by any system. Thus,

studying Self-awareness, which can be defined as the internal monitoring of the system

resources and the relation between context-awareness and self-awareness is a challenge to

address. An investigation of self-awareness and context-awareness will take us into the

141

realm of autonomic systems design [KC03], a challenging area of research.

142

Appendix A

Situation Expression Language

This appendix contains the full documentation of the Context-Free Grammars (CFG) of

the Situation Expression Language. The grammars are provided in the BackusNaur Form

(BNF).

<Situation> ::= "{" < SituationRule > "}" |

<LiteralSituationRule>

<SituationRule> ::= <ANDSituationRule> |

<ORSituationRule> |

<NOTSituationRule> |

<LiteralSituationRule> |

<TokenSituation>

<ANDSituationRule> ::= <SituationRule> "AND"

<SituationRule>

<ORSituationRule> ::= <Situation> "OR"

<Situation>

<NOTSituationRule> ::="NOT" <Situation>

143

<LiteralSituationRule> ::= "{" <Dimension> "}"

<Dimension> ::= "(" <DimensionRule> ")"

<DimensionRule> ::= <BraceDimension> |

<ANDDimensionRule> |

<ORDimensionRule> |

<FUNCDimensionRule> |

<NOTDimensionRule> |

<ADDDimensionRule> |

<DIVDimensionRule> |

<SUBDimensionRule> |

<MULDimensionRule> |

<MULDimensionRule> |

<EqualDimensionRule> |

<NotEqualDimensionRule> |

<BiggerDimensionRule> |

<BiggerOrEqualDimensionRule> |

<SmallerDimensionRule> |

<SmallerOrEqualDimensionRule>|

<TokenDimensionRule> |

<DimensionValue>

<ParamList> ::= ", " <Param> |

<Param>

<Param> ::= <TokenDimension> | <DimensionValue>

<BraceDimension> ::= "(" <DimensionRule> ")"

<ANDDimensionRule> ::= <DimensionRule> "AND" <DimensionRule>

144

<ORDimensionRule> ::= <DimensionRule> "OR" <DimensionRule>

<FUNCDimensionRule> ::= <FunctionName> "[" <ParamList> "]"

<NOTDimensionRule> ::= "NOT" <DimensionRule>

<ADDDimensionRule> ::= <DimensionRule> "+" <DimensionRule>

<DIVDimensionRule> ::= <DimensionRule> "/" <DimensionRule>

<SUBDimensionRule> ::= <DimensionRule> "-" <DimensionRule>

<MULDimensionRule> ::= <DimensionRule> "*" <DimensionRule>

<NotEqualDimensionRule> ::= <DimensionRule> "!=" <DimensionRule>

<BiggerDimensionRule> ::= <DimensionRule> ">" <DimensionRule>

<BiggerOrEqualDimensionRule> ::= <DimensionRule> ">="

<DimensionRule>

<SmallerDimensionRule> ::= <DimensionRule> "<" <DimensionRule>

<SmallerOrEqualDimensionRule> ::= <DimensionRule> "=="

<DimensionRule>

<EqualDimensionRule> ::= <DimensionRule> "==" <DimensionRule>

<DimensionValue> ::= <NUMBER> | <STRING>

145

Operator precedence is in the following order.

*, /, Not,

+, -, AND,

>, <, =>, =<, ==, OR.

146

Appendix B

Workflow Expression Language

This appendix contains the full documentation of the Context-Free Grammars (CFG) of

the Workflow Expression Language. The grammars are provided in the BackusNaur Form

(BNF).

<Workflow> ::= <StatementCollection>

<StatementCollection> ::= <StatementCollection> <Statement> |

<Statement>

<Statement> ::= <WhileStatement> |

<ForStatement> |

<IfStatement> |

<IfElseStatement> |

<ExecuteStatement> |

<BraceStatement>

<BraceStatement> = "{" <Statement> "}"

<WhileStatement> ::= "while" <Condition> <Statement>

147

<ForStatement> ::= "for" "(" <NUMBER> ")" <Statement>

<IfElseStatement> ::= <IfStatement> |

<IfStatement> "else" <Statement> *prefered

<IfStatement> ::= "if" <Condition> <Statement>

<ParamList> ::= ", " <Param> |

<Param>

<Param> = <TokenDimension> | <DimensionValue>

<PolicyCheck> ::= <PolicyName> "[" <ParamList> "]" |

<PolicyName> "[" "]"

<Condition> ::= "(" <Condition> ")" |

<ANDCondition> |

<ORCondition> |

<NOTCondition> |

<PolicyCheck>

<ANDCondition> ::= <Condition> "AND" <Condition>

<ORCondition> ::= <Condition> "OR" <Condition>

<NOTCondition> ::= "NOT" <Condition>

<Reaction> ::= <ReactionName> "[" <ParamList> "]" |

<ReactionName> "[" "]"

148

<ExecuteStatement> ::= "Exec" "(" <ReactionName> ")" ";"

Operator precedence is in the following order.

Not AND OR

149

Bibliography

[ABM10] Richard Han Aaron Beach, Mike Gartrell and Shivakant Mishra. Cawbweb:

Towards a standardized programming framework to enable a context-aware

web. Technical report, Department of Computer Science, University of Col-

orado at Boulder, 2010.

[Bar05] Jakob E. Bardram. The java context awareness framework (jcaf) a service in-

frastructure and programming framework for context-aware applications. In

Hans W. Gellersen, Roy Want, and Albrecht Schmidt, editors, Pervasive Com-

puting, volume 3468 of Lecture Notes in Computer Science, pages 98–115.

Springer Berlin / Heidelberg, 2005.

[BBKK01] John Barton, John J. Barton, Tim Kindberg, and Tim Kindberg. The cooltown

user experience. Technical report, 2001.

[BC] G. Biegel and V. Cahill. In Pervasive Computing and Communications, 2004.

PerCom 2004. Proceedings of the Second IEEE Annual Conference on, title=A

framework for developing mobile, context-aware applications, year=2004,

month=march, pages= 361 - 365, doi=10.1109/PERCOM.2004.1276875.

[BLHL01] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web.

http:www.scientificamerican.comarticle.cfm?id=the-semantic-web; 20 May

2009, 2001.

[BMK+00] Barry Brumitt, Brian Meyers, John Krumm, Amanda Kern, and Steven Shafer.

Easyliving: Technologies for intelligent environments. In Peter Thomas and

150

Hans-W. Gellersen, editors, Handheld and Ubiquitous Computing, volume

1927 of Lecture Notes in Computer Science, pages 97–119. Springer Berlin

/ Heidelberg, 2000.

[BSNc07] Nathalie Bricon-Souf, Conrad R. Newman, and Health care. Context aware-

ness in health care: A review. International Journal of Medical Informatics,

76(1):2 – 12, 2007.

[CJP+08] Huanhuan Cao, Daxin Jiang, Jian Pei, Qi He, Zhen Liao, Enhong Chen, and

Hang Li. Context-aware query suggestion by mining click-through and session

data. In Proceeding of the 14th ACM SIGKDD international conference on

Knowledge discovery and data mining, KDD ’08, pages 875–883, New York,

NY, USA, 2008. ACM.

[CL07] Vlad Coroama and Marc Langheinrich. From sensors to semantics: Intelligent

context for situated computing, oct 2007.

[CM04] Grindle Charles and Lewis Michael. Automating terrain analysis: Algorithms

for intelligence preparation of the battlefield. Human Factors and Ergonomics

Society Annual Meeting Proceedings, 48, 2004.

[Dey00] Anind K. Dey. Providing Architectural Support for Building Context-Aware

Applications. PhD thesis, 2000.

[DLP+10] Mikael Desertot, Sylvain Lecomte, Dana Popovici, Marie Thilliez, and Thierry

Delot. A context aware framework for services management in the transporta-

tion domain. In New Technologies of Distributed Systems (NOTERE), 2010

10th Annual International Conference on, 31 2010.

[GCM+07] E. Goh, D. Chieng, A.K. Mustapha, Y.C. Ngeow, and H.K. Low. A context-

aware architecture for smart space environment. In Multimedia and Ubiquitous

Engineering, 2007. MUE ’07. International Conference on, pages 908 –913,

2007.

151

[GE95] JONSON Ralph VLISSIDES John GAMMA Erich, HELM Richard. Design

Patterns : Elements of Reusable Object Oriented Software. 1995.

[GFSB11] Ning Gui, Vincenzo De Florio, Hong Sun, and Chris Blondia. Toward

architecture-based context-aware deployment and adaptation. Journal of Sys-

tems and Software, 84(2):185 – 197, 2011.

[GGR+09] Feng Gui, M. Guillen, N. Rishe, A. Barreto, J. Andrian, and M. Adjouadi. A

client-server architecture for context-aware search application. In Network-

Based Information Systems, 2009. NBIS ’09. International Conference on,

pages 539 –546, Aug. 2009.

[GKJ+10] Diwakar Goel, Eisha Kher, Shriya Joag, Veda Mujumdar, Martin Griss, and

Anind K. Dey. Context-aware authentication framework. In Ozgur Akan,

Paolo Bellavista, Jiannong Cao, Falko Dressler, Domenico Ferrari, Mario

Gerla, Hisashi Kobayashi, Sergio Palazzo, Sartaj Sahni, Xuemin (Sherman)

Shen, Mircea Stan, Jia Xiaohua, Albert Zomaya, Geoffrey Coulson, Thomas

Phan, Rebecca Montanari, and Petros Zerfos, editors, Mobile Computing,

Applications, and Services, volume 35 of Lecture Notes of the Institute for

Computer Sciences, Social Informatics and Telecommunications Engineering,

pages 26–41. Springer Berlin Heidelberg, 2010.

[Har78] M. A. Harrison. Introduction to Formal Language Theory. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1978.

[KC03] J.O. Kephart and D.M. Chess. The vision of autonomic computing. Computer,

36(1):41 – 50, January 2003.

[Lex07] Lexar. Lexar gets clear snapshot of warehouse inventory with alien rfid, 2007.

[LOIP10] Tom Lovett, Eamonn O’Neill, James Irwin, and David Pollington. The cal-

endar as a sensor: analysis and improvement using data fusion with social

152

networks and location. In Proceedings of the 12th ACM international con-

ference on Ubiquitous computing, Ubicomp ’10, pages 3–12, New York, NY,

USA, 2010. ACM.

[MA11] Mubarak Mohammad and Vangalur S. Alagar. A formal approach for the spec-

ification and verification of trustworthy component-based systems. Journal of

Systems and Software, 84(1):77–104, 2011.

[MCC10] MARTIN-COCHER GAELLE SHENFIELD MICHAEL MCCOLGAN,

BRIAN. Method and system for a context aware mechanism in an integrated or

distributed configuration. Patent, Canadian Intellectual Property Office, 2010.

[OPB+99] E. Ouaviani, A. Pavan, M. Bottazzi, E. Brunelli, F. Caselli, and M. Guerrero.

A common image processing framework for 2d barcode reading. In Image

Processing and Its Applications, 1999. Seventh International Conference on

(Conf. Publ. No. 465), volume 2, pages 652 –655 vol.2, 1999.

[RS06] Anca Rarau and Ioan Salomie. Adding context awareness to c-sharp. In Paul

Havinga, Maria Lijding, Nirvana Meratnia, and Maarten Wegdam, editors,

Smart Sensing and Context, volume 4272 of Lecture Notes in Computer Sci-

ence, pages 98–112. Springer Berlin / Heidelberg, 2006.

[RZPM09] P. Raphiphan, A. Zaslavsky, P. Prathombutr, and P. Meesad. Context aware

traffic congestion estimation to compensate intermittently available mobile

sensors. In Mobile Data Management: Systems, Services and Middleware,

2009. MDM ’09. Tenth International Conference on, pages 405 –410, May

2009.

[TL09] David Pollington James Irwin Tom Lovett, Eamonn ONeill. Event-based mo-

bile social network services. In MobileHCI, 2009.

153

[uRS08] Aqeel ur Rehman and Z. A. Shaikh. Towards design of context-aware sensor

grid framework for agriculture. In Fifth International Conference on Informa-

tion Technology, pages 244–247, Rome, Italy, 2008. XXVIII-WASET.

[VSL03] Pravin Vajirkar, Sachin Singh, and Yugyung Lee. Context-aware data mining

framework for wireless medical application. In Database and Expert Systems

Applications, volume 2736 of Lecture Notes in Computer Science, pages 381–

391. Springer Berlin / Heidelberg, 2003.

[vSPK04] Mark van Setten, Stanislav Pokraev, and Johan Koolwaaij. Context-aware

recommendations in the mobile tourist application compass. In Paul De Bra

and Wolfgang Nejdl, editors, Adaptive Hypermedia and Adaptive Web-Based

Systems, volume 3137 of Lecture Notes in Computer Science, pages 515–548.

Springer Berlin / Heidelberg, 2004.

[W3C10] W3C. Ontologies. http://www.w3.org/standards/semanticweb/ontology, 2010.

[WA07] Kaiyu Wan and Vasu Alagar. Security contexts in autonomic systems. In

Yuping Wang, Yiu-ming Cheung, and Hailin Liu, editors, Computational In-

telligence and Security, volume 4456 of Lecture Notes in Computer Science,

pages 806–816. Springer Berlin / Heidelberg, 2007.

[WAN06] Kaiyu WAN. LUCX: LUCID ENNRICHED WITH CONTEXT. PhD thesis,

2006.

[WAP06] Kaiyu Wan, Vasu Alagar, and Joey Paquet. An architecture for developing

context-aware systems. In Thomas Roth-Berghofer, Stefan Schulz, and David

Leake, editors, Modeling and Retrieval of Context, volume 3946 of Lecture

Notes in Computer Science, pages 48–61. Springer Berlin / Heidelberg, 2006.

[ZLWX08] Yu Zheng, Like Liu, Longhao Wang, and Xing Xie. Learning transportation

mode from raw gps data for geographic applications on the web. In Proceeding

154

of the 17th international conference on World Wide Web, WWW ’08, pages

247–256, New York, NY, USA, 2008. ACM.

155

