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Abstract

Blending State Differences and Change Operations for Metamodel

Independent Merging of Software Models

Stephen C. Barrett, Ph.D.

Concordia University, 2011

A typical model merging session: requires a great deal of knowledgeable input; does

not provide rapid feedback; quickly overwhelms the user with details; fails to properly

match elements; performs minimal conflict detection; offers conflict resolution choices

that are inadequate and without semantics; and exhibits counter-intuitive behavior.

Viewing model merging as a process, this research defines a hybrid merge work-

flow that blends the best of the main approaches to merging, expressing its phases

as algebraic operators for performing transformations on model and relationship data

types. Normalization and denormalization phases decouple models from their orig-

inating tool and metamodel. State-based phases capture model differences in the

model itself, establish element correspondence using multiply matching strategies,

and extract change operations. Operation-based phases then partition and order the

changes prior to the detection and automatic resolution of conflicts.

The work has culminated in a prototype that validates the workflow, while realizing

several novel model merging ideas, which are evaluated with simple and involved test

cases. Combining the hybrid merge approach with the semantic expressiveness of

decision tables—open to user modification—and an interactive and batch mode of

operation allows the tool, named Mirador, to successfully address, to varying degrees,

all of the previously cited shortcomings.
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Chapter 1

Introduction

The dual conceptions of model-driven engineering (MDE) and model-driven develop-

ment (MDD) are attempts to shift the emphasis in software construction away from

languages in which code may be written, to models from which code may be gener-

ated. This is a logical continuation of the trend towards more abstraction—the chief

weapon in combatting the complexity inherent in software development, something

models are better suited for than code [Lennhamn, 2007]. Through this change in

focus, MDE and MDD aspire to increase developer productivity, and consequently

reduce product time to market [Sendall and Kozaczynski, 2003].

Cooperative engineering as well, by way of collaborative development, aims at

increasing productivity. Inevitably, work proceeding in parallel on the same system

leads to artifact divergence, and when brought back together, to conflicts, which can

require a great deal of effort to resolve. For models specifically, it has long been

recognized that their highly structured data present a special problem for merging,

“Synchronization: This one word sums [up] the largest challenge to Model Driven

Development” [Haskins, 1997]. And further, that tools are essential for reconciling

models undergoing continual coevolution. Indeed, to a great extent, the success of

model-driven development depends on the exploitation of automation [Selic, 2003].

Consequently, there is a great need for further research into and development of tools

that perform the synchronization and merging of models [Schmidt, 2006].
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1.1 Problem Statement

Ideally, model merging should be capable of automatically bringing together the mod-

els of a software system sharing the same viewtype into a single, coherent, and con-

sistent model without incurring corruption or suffering information loss. However,

empirical studies of the state of model merging demonstrate that this ideal has not

yet been fully met. Typically, a model merging session:

• requires a great deal of knowledgable human input specific to the models being

merged, and much effort to obtain meaningful results [Barrett et al., 2008];

• does not provide quick feedback, nor offer a mode suitable for script or batch

processing [Bendix et al., 2010];

• can quickly overwhelm the user with non-relevant information that can lead to

confusion [Barrett et al., 2008];

• fails to properly match elements across models, or only does so at a coarse level

of granularity [Kolovos et al., 2006a], with no provision for making corrections;

• performs only minimal detection of merge conflicts [Pierce and Vouillon, 2004],

[Pierce et al., 2004];

• offers inadequate choices for conflict resolution [Xing and Stroulia, 2005];

• cannot use semantics for conflict resolution [Cicchetti et al., 2008]; and

• exhibits counter-intuitive behavior [Barrett et al., 2008].

Merge tools vary in the degree to which they are susceptible to these shortcomings,

and their outcomes are often very different from one another. At the very least, the

range of tool responses would suggest that there is no common set of expectations to

which tool vendors conform. Seen in a more pessimistic light, it suggests that the

consistent delivery of experiences as portrayed above, by tools as a whole, may be

taken as evidence that the problem of model merging is as yet unsolved.

This research takes the stance that merging can be more properly understood as

a process than as a discrete activity. The process of merging actually encompasses a

2



range of activities including model differencing, model comparison, operation record-

ing or extraction, element or operation selection, and conflict detection and resolu-

tion, each of which comes with its own issues. This process view is used to frame an

approach that addresses, to varying degrees, all of the points raised above.

1.2 Research Objectives

The overall goal of this research is to increase the viability of software model merging

in its role as a critical component of model-driven engineering. Central to this goal

is understanding, defining, and improving the merge process itself. Contrasting an

imaginary ideal merge session with what is typical of today’s tools leads directly to

the following objectives:

a. Express the merge process. It is desirable to have a way to document what

transpires during a merge as an aid for communication and understanding.

b. Enhance model merging usability. The amount of information requested from,

and presented to users should be minimal. Moreover, some feedback concerning

the merge outcome should be obtainable with no user input.

c. Open model element matching. How elements of the models are matched should

be dictated by the models—not the tool—and be amenable to user suggestions.

d. Decouple from the modeling tool. The process should be capable of merging

models produced by a variety of tools, irrespective of their metamodels.

e. Configure the merge. A merge should be configurable to the model types in-

volved, the domain being modeled, and even the special needs of a project.

f. Identify troubling merges. Situations that signal poor merge results should be

cataloged for use in creating and evaluating merge algorithms and tools.

g. Improve merge results with patterns and semantics. Patterns known to be trou-

blesome should be handled properly, and semantics added to strengthen results.

h. Extend merge knowledge. A mechanism should exist for extending merge accu-

racy with the addition of information on troubling patterns, or specific domains.

3



Though accepting of its importance, the community is divided over how best to

accomplish model merging. Where one camp maintains that an approach based on

model state will be most effective, the other insists that correctness requires making

use of change operations recorded over the course of a modeling session. Of course,

both claims have their merits, and as with many dichotomies, the differences between

the two approaches are less than they might at first appear. By declining to take

sides, the thesis is arrived at:

Thesis Statement. At different phases in the merge process, one approach is more

suitable than the other. A process that blends its use of the approaches as appropriate

can thus take advantage of the best aspects of each to come closer to the ideal merge.

Scope of Work. The proposed hybrid process is concerned only with merging,

which creates a new artifact from those being merged; not synchronization, which

results in existing artifacts becoming identical if at the same level of abstraction, or

equivalent if at different levels. Furthermore, no attempt is made to formally defined

just what constitues a merged model, nor which of it properties should be preserved

by the process.

To demonstrate the feasibility of a hybrid merge process, a model merging proto-

type has been implemented. Being a proof of concept, the tool has several limitations:

1) Though separate from Eclipse, the tool uses Ecore for representing models inter-

nally, necessarily restricting its input to class diagrams; 2) Decoupling interfaces have

been created for only two modeling tools: Eclipse and Fujaba; 3) Three element

matching evaluators have been coded; the rest are merely placeholders; 4) No means

for ensuring that the rules used to drive merging are consistent and complete has

been devised, though limited checking, via assertions, is available; 5) The graphical

user interface for displaying the models and change conflicts is not fully developed;

6) The merging of diagram views has not been pursued; and 7) Performance was not

a design consideration.

In principle, the proposed approach can be used to merge any kind of models,

albeit without behavior preserving semantics. But because the implementation is

limited to class diagrams, this work focuses exclusively on the merging of these.
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1.3 Research Contributions

The primary contribution resulting from this research is a complete process for the

merging of software models, irrespective of the tool used to create the models and

any recorder used to capture changes made to them. The best of the two main

approaches to merging have been blended to create a process that does not suffer

from the inadequacies of either. The addition of abstracting front- and back-ends, a

decision table mechanism, and a text-based, command line-driven mode allows us to:

1. Merge models independent of metamodels—even across metamodels.

2. Decouple operation-based models from their recorder of change operations.

3. Perform model comparisons and establish element correspondence with multiple

matching strategies.

4. Automatically detect and resolve change conflicts, opening the way to incorpo-

rating model semantics into merge decisions.

5. Reduce human decision-making, and provide a mode of operation for rapid

feedback or automated processing.

In addition to these procedural contributions, the research also makes the following

conceptual and practical contributions:

6. Clarifies the definitions of synchronization and merging.

7. Provides a visual means for reasoning about merging, complete with the effects

of model element matching strategies.

8. Presents a change operation partitioning and ordering scheme that observes

change dependencies, eliminates change cycles, and preserves merge context.

9. Collects primitive merge cases for the purpose of evaluating merge tools.

The contributions enumerated above have culminated in a model merging tool

named Mirador. Mirador integrates the related but usually disconnected activities

of model differencing, model element comparison and matching, and model merging

into a smoothly functioning whole capable of conducting software models through the

entire merge process—from initial artifact divergence to final merged outcome.
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1.4 Organization

The background material of Chapter 2 looks at the differences between the opera-

tions of synchronization and merging, and examines those aspects of the software

development process that drive the need for them and influence how they work. The

types of merging, the approaches to it, and the errors that can result are also covered.

The chapter concludes by exploring the idea of treating model merging as a model

transformation.

In Chapter 3, the view of software development as recurring cycles of merge ses-

sions is discussed. Next, the manifestation of some of the problems associated with

model merging is demonstrated in a selection of current MDE tools. The problems are

then generalized and summarized, and recommendations for addressing them made.

This notion of the merge as a model transformation is taken up again in Chapter 4.

In it, a three-dimensional space in which the merging of transformations can occur

is built up from a transformation grid proposed by Lippe and van Oosterom [1992].

Along with their grid comes the notion of a conflict free region, bordered by nodes

hosting two or more models that they term the frontier set. We separate these nodes,

which signify conflicts, into two types. We also clarify the semantics of the predicate

they use to populate the grid and detect conflicts.

Also presented, is a matrix for noting change dependencies and conflicts, and

a scheme for partitioning the changes for ordering purposes [Lippe and van Oost-

erom, 1992]. We make the matrix suitable for tracking both same-side and cross-side

changes, and show how to break the cycles that may occur in partitioning.

Chapter 5 develops the thesis statement. It describes a workflow for model merging

that is a hybrid of the two main approaches to the problem. This hybrid workflow

forms the core around which we build a proof of concept prototype, the architecture

and design of which are described in Chapters 6 and 7, respectively. In Chapter 5, the

eight phases of the workflow are depicted in a pipe and filter system, and described

using algebraic operators that transform model and relationship data types. Each

phase and the contribution it makes to model merging is briefly introduced here.

The workflow decouples the merge process from the models’ originating tools with

its initial input and final output filters. These normalization and denormalization ac-

tions are unique to the workflow. Subsection 6.3.1 details their architecture and 7.2.1
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their design. A comparison phase then establishes correspondence between elements

of the models to be merged. An added control interface allows the implementation to

intervene in the matching process, something no other tool supports. Another novel

aspect of the implementation is the use of multiple strategies to effect this matching.

The filter’s architecture is discussed in Subsection 6.3.2, and its design in Section 7.3.

A differencing phase determines what model elements have changed and how. The

architecture is given in Subsection 6.3.1. Unique to the workflow, the deltas are cap-

tured in models conforming to a difference metamodel, which is explained, along with

the phase’s design, in Subsection 7.2.2.

These phases constitute a state-based front-end. The next two phases, working in

tandem, transition the workflow to operation-based activity. This is the most critical

contribution of the hybrid workflow. The transition begins with the extraction of

change operations from the difference models of the previous phase; subsections 6.3.3

and 7.4.2 expand upon this action. The extracted operations are ordered and checked

for contradictions in the next phase, thereby effecting the merge, albeit with conflicts.

Ordering is added for useability purposes, and is new: state-based tools make no

use of change order, and operation-based models, being essentially change logs, are

implicitly ordered. Details of the filter are given in Subsections 6.3.3 and 7.4.2.

The prototype drives this phase with decision tables, which bring semantics to the

merge process, a valuable contribution in itself, since it is exceedingly rare in merge

tools [Saito and Shapiro, 2002], but also, because the rules have been made change-

able. The design of the decision table mechanism is covered in Subsection 7.4.3. The

conflicts are resolved in the next phase, again using decision tables. Its architecture

and design are found in Subsection 6.3.3 and Subsection 7.4.2, respectively. The last

phase before workflow output, executes the change operations of the preceding phase

against the base model, to produce the conflict-free, merged model (Subsection 6.3.3).

Validation of our contributions is done in Chapter 8; related work is given in

Chapter 9; and the conclusion of Chapter 10 summarizes our contributions, points

out its limitations, and makes suggestions for future work.

7



Chapter 2

Background

Model merging is at the confluence of three broad practices in software development

which drive the need for it, shape its issues and concerns, and influence its realization.

First, model-driven engineering has been the impetus behind models moving to the

center of the development process; second, the collaborative environments fostered

by cooperative engineering ventures create a demand for artifact synchronization and

merging; and third, the closely related fields of data replication and configuration

management have given hints as to how model merging might best be carried out.

Before discussing the significance each of these practices has for model merging,

the nature of synchronization and merging—terms that are often used interchange-

ably, but which have distinct meanings—are explored, and working definitions for

the two arrived at. Then models and model-driven engineering are examined in the

context of cooperative engineering.

Much of the work that has been done on the managing of artifacts undergoing

parallel changes has been conducted in the areas of data replication and configura-

tion management. Although not fundamentally concerned with models, both have

grappled with some of the same challenges that face model merging, and as such can

provide insight into the problem, as well as a language for reasoning about it.

The remaining sections of this chapter focus on merging, which is introduced

through the conveyance of a model merging session. The main approaches to merging

are explained, merge types and errors defined, and lastly, the act of merging is looked

at in the light of model transformations.
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2.1 Synchronizing versus Merging

The need for reconciliation during software development stems primarily from parallel,

or concurrent, development [Haskins, 1997]; the norm for modern software engineering

processes. Reasons not related to concurrency include reuse, and the integration of

constituent subsystems or modules. Neither of which actually changes the nature of

the reconciliation, just the motivation for undertaking it: whenever the content of

workspaces that have been changed independently are to be brought back together,

they must be somehow reconciled.

Reconciliation is accomplished through the operation of either synchronization or

merging. The literature can be frustratingly vague about the distinction between the

two terms, often using them in ways that suggest they are interchangeable. They are

regularly used to paint a picture of bringing different datasets or parts of them into

agreement, or alignment—the word we adopt to describe the condition of synchro-

nized or merged datasets.

When alignment pertains to resources of a physical storage device, such as file

systems or personal digital assistants, the operation mentioned most often is synchro-

nization. When addressing the logical entities contained within these resources, like

files or programs, synchronization and merging seem to get equal billing. And when

the context is the individual elements that make up such logical entities, e.g., pages

and code blocks, merging seems to be the overwhelming favorite—especially if there

is a possibility of some sort of conflict occurring between elements.

Buried within the concept of synchronization is the notion of wholeness—entire

resources or entities are synchronized. Merging, on the other hand, embodies the

assumption of parts—constituent elements, or logical partitions of the whole. What

is considered the whole, and what the part, is a relative matter. For example, the

synchronization of two directories would treat them as wholes and their files as the

parts, while at a lower level, two files would be thought of as wholes and their con-

tained records as parts. Additionally, synchronization can be either “horizontal”

(i.e., between entities at the same level of abstraction, or models conforming to the

same metamodel), or “vertical” (i.e., entities at different abstraction levels, or models

conforming to different metamodels) Xiong et al. [2007]. This work concentrates on

horizontal synchronization.
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Figure 1: Synchronize operation versus merge operation

Both operations work with originals and replicas. When the scope is data, a

replica is in all respects an exact copy of an original. Replicas can originate from a

common source or from each other, or in the limiting case, from an empty or null

dataset. If a replica is changed, it becomes a new version of the original. We often

write replica-version as shorthand for expressing the idea of an initially exact copy

of some original that has since been changed.

The major phases of synchronization are “update detection and reconciliation”

[Pierce and Vouillon, 2004]. In general, the synchronization of storage devices ends

with the devices having identical content. The number of unique resources does

not grow, but existing resources may be duplicated and, in some cases, deleted.

Synchronization by itself does not create any new versions. In contrast, merging takes

a mix of originals and replicas and weaves them together to create a new version.

The line between the two operations tends to blur, because a merge is often

launched as a result of performing a synchronization operation [Letkeman, 2005b],

[Pierce et al., 2004]. Where synchronization can initiate a merge, the act of synchro-

nizing replicas can appear to create a new version. Figure 1a shows an unspecified

algorithm synchronizing two replicas by overwriting one with the other, or incorpo-

rating the independent updates made in one replica, into the other (via a merge) such

that they are made identical. By contrast, the merge in Figure 1b clearly portrays

the creation of a new version out of two replica-versions, which themselves remain

unchanged. There is slight lose in generality in considering only two replicas in these

operations, but not enough to be considered important.

The observations of this section lead to working definitions for synchronization

and merging to be elaborated on in the later sections of this chapter:

The process of bringing two or more work spaces or repositories of data, or

replicated work items into alignment by making all corresponding replicas
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identical will be called synchronization.

The act of aligning corresponding work item replicas by the creation of

a new version, preserving all non-conflicting replica updates along with

updates that resolve the conflicts, will be called merging.

2.2 Models and Model-Driven Engineering

Constructing, analyzing, and communicating in terms of models is at the heart of

science and engineering: a characteristic that software engineering has in general, up

to now, not shared with other engineering disciplines. This is something that MDE

aims to change.

A model is an abstraction of some reality. A model or collection of models

represents—to some level of accuracy—a system under study. It yields a set of state-

ments, or propositions, about the system it represents. There are two possible ways of

interpreting the proposition set: a model is said to be correct if all of its propositions

about the system are true; conversely, a system is considered to be valid if it does

not contradict any of its model’s propositions [Seidewitz, 2003].

These last two statements reflect the ways in which models are used in practice,

either as a description or as a specification. In science, a model is usually created in

order to describe a system. The model is accepted as being correct if the statements

the model makes correspond to observations made of the actual system. If this is the

case, it becomes legitimate to analyze the system by reasoning about the model. To

reason about a model, however, requires a theory, along with a means for mapping

between model and system elements, and for relating the deductions made from the

model back to the system. Newtonian physics, for example, provides the theory and

mappings for modeling and reasoning about the solar system.

Engineering typically inverts the notion of a descriptive model, making it instead

prescriptive, so as to specify a system. The as-built system is valid relative to its

specification if it does not contradict any of the model’s propositions. Once again, a

theory and mappings are required to relate elements, specifications and constraints

between model and system. An electrical schematic is an example of a model that

uses a defined notation to map diagram symbols to system elements, and an electronic
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theory to prescribe how a circuit must behave.

Models possess the following desirable qualities:

• Abstraction. A model hides irrelevant details and may only provide a limited

view of some aspect of a system.

• Understandability. A model should have an intuitive form and be expressive.

• Accuracy. For the system under study, a model provides a true-to-life represen-

tation of its features of interest.

• Predictiveness. Non-obvious properties about the system under study can be

drawn out of its model, either through experimentation or formal analysis.

• Inexpensive. To be worthwhile, a model must be considerably cheaper to con-

struct and analyze than the system being modeled.

In its simplest terms, model-driven engineering is the notion that the model or

models that specify a system can be readily transformed into that system. For soft-

ware systems, this means transforming the model into the actual source code of the

system [Mellor et al., 2003]. From the point of view of software model merging, it is

of little importance whether the transformations operate under the rubric of MDE,

MDD or MDA. In each case, “model” is the key word: each proposes describing a

software system with formal models from which its code may be generated (Figure 2).

As the nuances of the various technologies are inconsequential for our purposes, we

will continue to refer to all model-driven methodologies under the generic heading of

model-driven engineering, unless there is a reason to distinguish between them.

When modeling, the proposed solution to a real-world problem is represented by a

model that captures the essence of the solution’s structure and behavior. If software

is the proposed solution, then its model can be used to automatically generate some

portion of the actual solution, through one or more model transformations. While

code itself might be considered to be a model of sorts, since it must be transformed

by a compiler or interpreter in order to run, its level of abstraction is rather low.

A steady consequence of software research and development over the past five

decades has been the continual raising of abstraction levels. All in an effort to help

us program more in terms of our design intent, rather than in terms of whatever
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Figure 2: Schematic of code generation and reverse engineering

computing technologies happen to be used. Unfortunately, the complexity of to-

day’s platforms—increasingly layered with middleware and enterprise applications—

threatens to impede this historic trend. The great hope of MDE is to circumvent

such impediments and continue the steady upward march in abstraction.

Not only does model-driven engineering seek to further raise the level of abstrac-

tion at which we do our work, it also proposes to push the last remnants of low-level

constructs, still being fashioned in the solution space of the underlying computing en-

vironment, into the problem space of the system under design [Schmidt, 2006]. The

goal being to rid our system descriptions, once and for all, of any “computer-oriented”

concepts. In short, MDE promises to lift us above the complexity of technological

detail by enabling us to precisely describe a system through its models.

2.3 Cooperative Engineering

Cooperation occurs when a group of people pursue the same goal for the group’s

benefit. In engineering groups, the outcome of cooperative work almost always in-

volves the construction of some sort of system. Cooperative engineering attempts to

support this constructive goal by defining a process and controlling the movement

of work items through it. The most brute-force strategy is to serialize the work,

allowing only one person at a time to change the state of the system. An obvious
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improvement is to divide the system into smaller pieces to allow two or more persons

to make changes to different parts of the system in parallel.

The number of divisions a system can undergo is ultimately limited: either a

point of diminishing returns is reached, or it becomes plainly impossible to go further.

Also, because the parts of a system must, by definition, interact, they cannot exist

in isolation. Any walls thrown up to ward off extraneous changes will at some point

have to be breached in the name of getting work done—something any cooperative

work process must anticipate and deal with. Provisions for synchronizing or merging

work artifacts, then, is a requirement of any cooperative engineering endeavor.

When the cooperative venture is general software engineering, the goal becomes

one of moving a software system from some initial state, say conception, to some new

state, say deployed. When the venture is model-driven software engineering, the goal

is refined to become one of moving incomplete, or abstract models to more complete,

or more concrete models.

People making modifications to the same system in parallel will inevitably step on

each other’s work, requiring that the tainted artifacts eventually be brought back into

alignment. Modeling, even more so than programming, needs sophisticated support

for reconciling diverging replicas if it is to avoid corruption of its work items [Letke-

man, 2005b]. Without viable merging, models will be unable to play their intended

role in the development process, “[i]n particular, sophisticated support for merging

model versions is urgently needed” [Westfechtel, 2010]. If merging takes too much

effort, is questionable, or cannot be trusted, a cooperative MDE project will be in

danger of descending into a code-centric one—the difficulty of keeping the models

up-to-date outweighing the benefit of using them for specification.

2.3.1 Cooperative Copies and Workspaces

Most software development activities require exclusive access to at least some portion

of the total system data, for some arbitrary amount of time. Thus, parallel software

development needs a process that supports multiple replicas, so-called cooperative

copies [Estublier and Garcia, 2005] of the software modules under development. How

these cooperative copies are to be created and later reconciled is of primary concern

for cooperative processes.
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In some environments, such as Computer Supported Cooperative Work (CSCW)

systems, concurrent changes may be propagated “instantaneously,” thereby keeping

all replicas continuously synchronized. This blackboard metaphor is not workable for

software engineering environments, however. This is because most software changes

are made in the context of a single task (e.g., new function, algorithm update, bug

fix, etc.), and the series of partial modifications necessary to accomplish a given

task are best made and tested independently of any other tasks. Interleaving partial

modifications from all concurrent tasks would leave the system in a confusing and,

in all likelihood, inconsistent state, preventing compilation and testing until after all

work had been completed, clearly an unworkable situation.

What is needed in such circumstances is a separation between the originating

work item source and its cooperative copies—a concept known as workspace isolation

[Estublier and Garcia, 2005]. Workspaces allow development activities to proceed si-

multaneously and independently by hosting isolated software replicas over arbitrarily

long periods of time. Contrary to the way CSCW systems synchronize continuously,

the synchronization of workspaces is initiated explicitly on an as-needed basis. Syn-

chronization usually involves complete and consistent units of work, which are defined

by the intended purpose of the workspace, and the policies of the associated develop-

ment process.

2.3.2 Process Policies and Correctness

While tools can create and manage private workspaces for cooperative engineering,

until relatively recently, no tools provided for the coordination of developers working

concurrently [Estublier, 2000], but this is slowly changing [Estublier et al., 2005]. In

the meantime, workplace policies must be established to fill the gap. A process policy

identifies between which workspaces synchronization is to take place and when. It

is an organization’s collection of process policies that clarifies just what “complete

and consistent” means with regard to units of work, and the schedule by which these

units are to be kept synchronized.

There is no adequate global criteria, such as serialization, for enforcing the cor-

rectness of concurrent software modifications. This makes reconciling software work

items fundamentally an issue of merge control, which in the end must concern itself
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with two questions:

• Data consistency. Does the alignment of a pair of changed units of work yield

consistent results?

• Process. Are modifications to a unit or units of work being made by the right

person, on the right unit(s), at the right time?

Without any other criterion, merging then becomes a substitute for serialization,

the only well-known consistency criteria. A rule of thumb for judging the consistency

of a code merge is that the operation results in “a source file that compiles (syntactic

merging) and exhibits the intended behavior of each of the merged changes (semantic

merging)” [Estublier et al., 2005]. More mechanically, a correctness-preserving merge

of two replica-versions derived from the same source will produce a single result, which

is the same as the result that would be produced by applying the change operations

in the proper sequence to the originating source. While this definition certainly has

intuitive appeal, it leaves unanswered, “What is the ‘proper’ sequence?” Moreover, it

is essentially a restatement of the difference between the state-based and operation-

based approaches to merging, to be covered in Section 2.7.

How successful a merge can be depends on the nature of its data: for sets, a merge

function exists that will always produce the correct result; for lists, only approximate

merge functions exist, but they can often produce the right result; and for complex

data structures, only specialized algorithms that take semantics into account can

perform correct, or even meaningful, merges.

In the final analysis, Estublier and Garcia [2005] note that cooperative engineering

is a balance between: 1) maintaining isolation until all work is completed, and 2)

merging as often as possible. It is the policies of the development process, and not the

workings of a tool, that should define and control that balance. They also recommend

that policymakers keep the following rules of thumb in mind when trying to achieve

this balance:

• Permit concurrent activity on only unrelated units of work, to reduce the prob-

ability of conflict.

• Merge as often as possible, thereby reducing both the number and range of

conflicts, and making them easier to resolve.
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• Give the merge task to the person who has the most intimate knowledge of the

units to be merged, and thus the person most likely to do the job properly.

Though all good recommendations, the practicality of the first point is somewhat

questionable for the early stages of most phases of any software project, when changes

are occurring at their most rapid, and “units” may exist only fleetingly.

2.4 Data Replication and Synchronization

The act of data replication propagates the changes made to an item, using synchro-

nization (with or without merging) to update all out-of-date replicas of the item

to make them again identical. With replication, the label of “original” loses its

meaning—being identical, replicas cannot be distinguished from one another, or from

their originating source. To retain the notion of an original, one of the replicas must

be held constant, while the others are allowed to change, as is the case with merging.

How a process interacts with its replicas implies a relationship that can be used to

make a stronger distinction between synchronization and merging: data replication,

as its name suggests, produces identical replicas, via synchronization; while config-

uration management, to be discussed in the next section, produces a string of new

originals, or historic versions, via merging.

2.4.1 Traditional and Optimistic Replication

Replication maintains replicas of critical data at multiple, potentially connected com-

puters or sites while allowing for access to any one of the replicas. Such systems face

a tradeoff between availability and consistency. The increasing appearance of dis-

tributed data sharing systems, accompanied by issues of time-zone differences and

network latencies, serves to complicate this balance.

Traditional data replication is pessimistic in nature. It offers the illusion of having

a single, highly available, up-to-date copy of data. Pessimistic algorithms must rely

on synchronous replica coordination to maintain this illusion. The basic concept is

denial of access to data unless the data are provably up-to-date (Figure 3). The

algorithms tend to update all replicas at once, possibly blocking read requests while

17



Synchronization
create / update,
propagate, schedule
conflict detection &
resolution (merge),
commitment

Sites

propagate~~~~~~~
• ~~~~~~~~~
• ~~~~~~~~~

pr
op

ag
at

e

pr
op

ag
at

e

propagate

Replicas
(artifacts)

Figure 3: Schematic of data replication with synchronization capability

an update is underway. Thus, pessimistic systems keep replicas strictly consistent at

the cost of sometimes making them inaccessible.

While suitable for many applications, the pessimistic “blackboard” approach to

data sharing is not sufficient for cooperative engineering. We want to be able to work

concurrently with copies of the same data. It is preferable to allow for concurrent

updates in relative isolation, repairing the conflicts after they happen, than to lock

data during editing. A key technology for enabling uncoordinated updates to data is

optimistic data replication [Saito and Shapiro, 2002]. It allows for the divergence of

replica content in the short term, only to reconcile the updated content in the long

term, thus supplying the flexibility necessary for effective concurrent work.

Divergent replicas carrying and presenting inconsistent data, which must be fixed

after the fact, is optimistic in the sense that conflicts are thought to be relatively

rare, necessitating only the occasional repair. Even if this is not always the case,

some human activities—among them cooperative engineering—inherently demand

optimistic data sharing [Saito and Shapiro, 2002].

An optimistic approach guarantees any-time access at the expense of letting replica

content diverge temporarily. The overall goals of an optimistic replication system can

be stated as providing continual access to “sufficiently fresh” data, while at the same

time minimizing user confusion that might arise due to replica divergence. Optimistic
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Figure 4: Replica uniformity by optimistic replication [Saito and Shapiro, 2002]

algorithms allow direct reads or writes of any replica most of the time, propagate

updates in the background, and reconcile any update conflicts only after they occur

(i.e., upon synchronization).

Optimistic replication couples the high availability of data with the ability to

upgrade it while disconnected, to provide the workspace isolation required to host

the cooperative copies necessary for concurrent and distributed software development.

To be workable, data replication must be able to synchronize the updates made in

isolation with the shared data under its charge. Hence, support for this kind of data

alignment is often called synchronization technology [Pierce and Vouillon, 2004], and

the resulting tools, synchronizers.

Under optimistic replication, a site, while being isolated from others, accumulates

changes as they are issued (Figure 4a) until such time as the site detects it can (or

should) communicate with another site. The eventual convergence, or uniformity, of

content across all replicas is then established by a combination of the four mechanisms

illustrated in Figure 4: update propagation (4b), update scheduling (4c), update

conflict detection and resolution (4d), and update commitment (4e).

Reliable update propagation involves a site detecting when it can (or should)

communicate with another, computing the set of changes to be transferred to make the

two replicas consistent, and then transferring the changes quickly. In most optimistic
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replication systems, updates are eventually propagated to all sites. Since different

sites may receive the changes of the same update in a different order, some sort of

ordering policy is needed. Update scheduling establishes and enacts this policy. The

scheduling algorithm must apply the updates quickly to reduce latency and increase

concurrency, while trying to respect user intentions and avoid user confusion—goals

that are somewhat contradictory.

Update conflict detection and resolution rely on merging. Many systems offer no

conflict handling and will only propagate non-conflicting updates, and yet manage to

deliver fair results. This can only work well if replica owners arbitrate their accesses

to avoid conflicts in the first place—whether voluntarily or by policy. Fine-grained

partitioning of data greatly aids in this regard [Magnusson et al., 1993]. Automatic

conflict detection is desirable in that it frees users of having to mold their work pat-

terns around the synchronizer or to partition designs unnaturally. Once a conflict is

found, it must be resolved by reconciling the conflicting updates. Resolution strate-

gies include the simple policy of “last write wins” and computing a semantic union

of conflicting updates—not a trivial task.

The final stage of replication is update commitment. It is a mechanism for ob-

taining agreement of the sites on the scheduling and any conflict resolutions. Once

obtained, committed updates can be applied to artifacts without fear of future roll-

back. Any logs and data structures associated with the update may be deleted at

this time as well.

2.4.2 Replication Granularity

A replication system must work at the level of some minimal granule of update. File

synchronizers typically synchronize directories composed of files, or files composed of

records, while groupware systems regard a file as a document composed of elements

such as sections, lines and characters. A system’s conception of what constitutes its

minimal granule is referred to as an atom.

Hence, exactly what constitutes an atom is relative to the particular kind of

replication system. Furthermore, because systems can move between granule levels

depending on the nature of their current task, what an atom is can vary over time.

Some means of identifying an atom must also exist, e.g., path and file names for
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files, and line numbers for lines. Identification itself may be relative, which can add

greatly to a system’s complexity. This occurs when identity is context-dependent,

as in a collaborative text editor where the location of a line might be numbered

differently based on the context.

While tracking what is and is not an atom is expected of tools, users should not

be burdened with this detail. People are much better at dealing with units of work

or artifacts, these might be considered a person’s minimal granule of shared data.

Accordingly, the term atom is used when speaking of a minimal granule of update in

some shared data, and artifact is used when considering a minimal amount of shared

data. From the standpoint of a tool, atoms may be more important, but ultimately

a tool must satisfy its users.

The relationship between atom, artifact, replica, and site is a hierarchical one.

Namely, an atom is an updateable piece of an artifact; an artifact is stored at a site;

a replica is a copy of an artifact that resides at some other site; and a site is some

location in a repository, workspace, PC, PDA, etc. [Saito and Shapiro, 2002]. Since

most optimistic replication algorithms manage each atom independently, focusing

almost exclusively on them, the terms replica and site are sometimes treated with

less care and used interchangeably.

2.5 Configuration Management and Merging

Configuration management (CM) is concerned with managing the evolution of large

complex systems. The goal of CM is to “manage and control the numerous corrections,

extensions, and adaptations that are applied to a system over its lifetime,” and its

objective is to “ensure a systematic and traceable software development process in

which all changes are precisely managed” [Estublier et al., 2005].

When the systems are software, the concept is known as software configuration

management (SCM), or in its earlier guise, version control [Grinter, 1995]. SCM is

concerned with coordinating work and facilitating the interactions of multiple devel-

opers. What has set SCM apart from other applications of CM has been its emphasis

on managing files and directories. Little has changed in this regard—the file system

view is still heavily relied upon by most current software engineering tools in general,

and it remains a core underpinning of SCM systems in particular [Estublier et al.,
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2005].

Concerned originally only with source code, SCM systems have grown to manage

large data repositories that store all the kinds of artifacts that make up a software

system. Over time, three key functionalities have come to be integrated into SCM

systems: 1) the management of files involved in the creation of a software product,

2) the tracking of changes to these files as versions of the originals, and 3) support

for the building of an executable system out of the managed files.

The tracking of historic versions of the entities under management, the so-called

configuration items, gives SCM a strong dependency on merging. A merge is invoked,

thus creating a new version, wherever corresponding replicas have undergone changes

that result in their having conflicts.

2.5.1 Configuration Management Support

The support SCM provides to cooperative software projects may be divided into

three major areas: product, tool, and process [Estublier et al., 2005]. This is a useful

partitioning for looking at the history of SCM, and for understanding its successes

and challenges.

Product support has been, from the beginning, a core function of SCM. The man-

aging of the many files that comprise a software system, and the accumulation of

changed versions breaks down along two technical dimensions:

• Versioning. The fundamental building block for all of SCM has substantial

ramifications for merging and will be explored in the next subsection. A version

is considered to be a set of changes, and each change in turn is considered to

be a sequence of change operations. As system artifacts undergo modification,

versioning maintains a historical archive of uniquely identified versions.

• Configurations. SCM systems support the aggregating of versioned items into

higher-order configurations (which themselves may be versioned). Configura-

tions keep item relations and properties clear, enforcing project consistency.

Exactly which items of what versions are to make up a particular configuration

are under user control.
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Tool support facilities make configuration items available to other software engi-

neering tools for interaction and manipulation. With this support, the SCM system

becomes an abstraction layer on which other tools can operate and integrate their

results. Two lines of major impact have been:

• Workspace control. As seen earlier, workspaces are a requirement for concurrent

software development. They are also the primary mechanism by which access to

configuration items is gained. SCM systems implement workspaces as isolation

zones where developers can perform their day-to-day activities free from the

interference of work being carried out at the same time in other workspaces,

which may be distributed, or even disconnected. How the disparate workspace

items are eventually integrated back into the SCM repository is an important

consideration and almost always involves merging.

• Building. The build tools used to construct an executable program from a set

of source files were initially developed independently of SCM systems. Today’s

SCM systems however, integrally support the building of the final software

product. Obtaining the correct configuration items for a build requires precise

control over the source items, which relies on the availability of accurate change

information.

Process support has begun to make its way into SCM. Its responsibilities have

evolved from managing only project files to managing of teams of collaborators en-

gaged in software development and maintenance. Two areas of focus are:

• Change control. Restriction of developer access to configuration items (both

read and update) is the root of all change control in SCM systems. Initial

strategies were pessimistic and locking-based, but quickly gave way to optimistic

and merging-based approaches. At some point, the capture of change rationale

became a standard SCM feature.

• Process control. Originally, process control did not figure into what constituted

an SCM system. The process was predefined by virtue of the way configuration

items could be manipulated within the system, which was usually fixed. The

push for process support has resulted in high-end SCM systems that allow

organizations to design and enforce their own general development processes.
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2.5.2 Software Versioning

Software configuration management’s answer to managing system lifecycle artifacts

was to capture them as related configuration items, with access controlled through

the classic revision/variant/merge version model [Estublier et al., 2005]. The first

SCM tools supported software development with only source code versioning and a

time line that tracked the evolution of a module through the code versions.

Configuration management procedures focused on controlling developers’ abilities

to alter code—the familiar check-out and check-in library metaphor [Grinter, 1995]:

a new version of a module would be created whenever it was checked-out; the original

would stay in the protected repository while changes were made to the copy; and

finally, upon check-in, the original would recede down the time line while the altered

copy became the new most current version of the module (Figure 5). This worked

well and is still the basis of modern configuration management systems, but it did

not take long for the limitations of the checked-out state to become apparent; the

control was too rigid in that it prevented others from changing the same module at

the same time, thereby slowing down the overall progress of work.

Later systems allowed for parallel development by not locking a developer out

of a checked-out module, but instead by creating a new version for them from the

last checked-in version. Whenever the inevitable collision of differing versions being
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returned to the repository occurred, a merge session was initiated. Performing the

merge was usually a manual, and often painful, affair. Declining to do the merge

would create a fork in the time line at that point. In theory, a fork could always be

folded back into the main line by merging with the latest version of the module.

With accumulated practical experience and the advent of better visualization

tools, the merging of simple textual artifacts has become more automated and less

arduous. Still, the complexity of performing a merge rises significantly when the same

lines of code or the same algorithm have been modified. Then, arriving at a resolu-

tion depends on an understanding of how the module works, and the merge session

inevitably degenerates into a manually intensive process.

A form of versioning that has found only limited acceptance is called change-set

versioning. In classic versioning, configuration items are first-class objects that are

manipulated directly; the changes made to an item must be derived indirectly (e.g., by

issuing a “diff”). Change-set versioning inverts this relationship, making changes the

first-class objects and configuration items the indirectly derived ones. The approach

stores each change as a delta, independent of all other changes. A new version of a

configuration item is then constructed by applying a specified change-set or group of

change-sets to the baseline version of the item.

The idea behind change-set SCM systems is the same as behind operation-based

merging (Section 2.7)—the combining of change operations into an operational trace,

which is then run against a baseline item to create a new (merged) version. The lack of

interest in these systems is primarily due to the overabundance of choices they present:

organizations find the systems overly complicated and too flexible for their needs

[Estublier et al., 2005]. For a project with thousands of artifacts, the full flexibility

of change-sets becomes unwieldy. Only a fraction of change-set combinations are

actually useful—some combinations may not even parse or compile—and for certain

item classes (e.g., binaries), there is no sensible way to combine deltas.

It was eventually understood that change-set functionality can be approximated

by leveraging the difference and merge capabilities of classic SCM systems. Based

on this insight, a hybrid approach proposed by Weber [1997] called change-packages

offers a more practical alternative to change-sets. With change-packages, standard

versioning technology, which is mature and efficient, powers the change management

engine, while the flexibility of the change-set approach is held in reserve for those few
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cases where it is actually needed.

2.6 Merging Defined

The historic emphasis of SCM systems on files and directories sets a precedence that

allows us to dispense with some generality. We assume, from this point forward, that

merging will involve only files—in our case, models or change logs—and further, as

commented on earlier, that only two files will be merged at a time.

To perform a merge is to somehow combine two replica-versions into a third ver-

sion that takes into account the changes made to each. The third is created from

contributions drawn potentially from both sides, i.e., the “left” and “right” inputs

to the merge. Merging attempts to decide what to keep, what to leave behind, and

what to replace, based on insights gathered from its inputs. Failing that, it must be

able to garner and present enough information to elicit meaningful responses from a

person asked to make the decision.

Two types of errors can result when performing a merge: inconsistencies and

conflicts. An inconsistency occurs if an applied change fails because of an unmet

precondition (e.g., changing a nonexistent element). A conflict is a contradictory pair

of change operations, i.e., the two operations do not commute (e.g., giving different

names to the same element). The detection and the resolution of conflicts go to the

heart of the merge problem and are examined in more detail in Section 2.8.

In general, the algorithms used for text merging are simple heuristics that make no

guarantees about correctness. Nevertheless, they have been found to usually produce

reasonable results and to be very useful in practice [Conradi and Westfechtel, 1998].

Since the emergence of traditional line comparison techniques for the differencing and

merging of ASCII text, research has sought to supply better functionality by rooting

techniques in strong theoretical foundations. Research has followed two tracks: in-

corporating semantics for more accurate and wide-ranging differencing and merging,

and extending differencing and merging to handle binary artifacts.

Despite many desirable characteristics, semantics-based merging has had almost

no impact on SCM systems [Estublier et al., 2005]. Virtually all leading SCM systems,

however, can detect block moves and compress any kind of file, giving them the ability

to difference and merge binary artifacts. It remains to be seen whether interest in
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model-driven engineering will precipitate investigations along the other track.

2.6.1 Merge Types

All merges can be categorized as one of three fundamental types: raw, two-way, or

three-way merges [Conradi and Westfechtel, 1998]. Figure 1 provides a schematic

representation of each.

Raw merging applies a change to a context different from the one in which it

was made. In Figure 1a, change c1, and at a later time, change c2 are executed

independently of each other on replicas of base version vB to produce, respectively,

versions v1 and v2. To effect a raw merge, changes are applied to an evolving merged

version in the order of their original executions. Since the first change was c1, its

replica-version v1 becomes the base for future changes. The second change c2, is then

applied to this new base to produce the final merged version vM .

If c1 alters something that c2 depends on, the merge may fail with an inconsistency.

In raw merging, no thought is given to reordering changes to avoid such eventualities,

so failures are common. Conflicts, however, do not arise. Where there are any

contradictions, the last applied change of a conflicting pair simply overwrites what

has gone before it.

A two-way merge as shown in Figure 1b compares the state of two, perhaps un-

related, versions v1 and v2, and combines them in some fashion into a single version

vM . While a two-way merge can automatically avoid inconsistencies by rearranging

change operations, it can detect, but not resolve, except arbitrarily, a whole class of

add-delete conflicts. The problem occurs when an element present in one version is

not found in the other. Without the originating source it is impossible to tell if the
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element was added to one version, or deleted from the other. This is the fundamental

difficulty with two-way merges: lacking baseline data or a historical trace of changes,

there is insufficient information for deciding how to resolve a conflict [Mens, 2002].

The fact that three-way merging can resolve the add-delete problem is why almost

all present-day merge tools use it. The only difference from two-way merging is access

to a baseline version that is the common ancestor of the versions to be merged. Now

when there is an added or missing element, the base vB in Figure 1c may be consulted

to determine if the causal change was made in v1 or v2. Conflicts caused by changes

made to both replicas, however, can still arise and are resolved just as in a two-way

merge: heuristically, arbitrarily, or by seeking user input.

2.6.2 Merge Level

Besides type, merges may be further characterized by level. Level gives an indication

of what knowledge of the product space a merge must possess in order to carry out the

operation successfully [Conradi and Westfechtel, 1998]. In other words, it declares at

what semantic level the merging is to be performed. The levels, in order of increasing

difficulty of implementation are: textual, syntactic, and semantic.

Textual merging is used for merging character-based files. The algorithm’s working

element is usually a file line, or record. This limited view means that file comparison

works on a line-by-line basis when detecting conflicting characters or strings. As there

is little basis for deciding the resolution of a conflict, the results of the merge can

appear somewhat arbitrary, but in practice, textual merging works quite well. This is

not because of any algorithm, but mainly due to policies that reduce the possibility of

conflicts by enforcing a fine granularity of work items, and the coordination of changes.

There are, however, well-known limitations to textual merging [Mens, 2002].

Syntactic merging exploits knowledge of the syntax of the language that the files’

content is expressed in to make more intelligent choices when resolving conflicts be-

tween the files being merged. Thus, the merge algorithm is required to know the

grammar of the artifacts to be merged in detail. For this reason, it is usually restricted

to working with one language or family of related languages. Additionally, the results

can be guaranteed to be syntactically correct only if the grammar is context-free.

In addition to syntax, semantic merging takes the semantics of the items to be
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merged into account, which involves dealing with language-level conflicts. Not only

would this be quite helpful for text-only merges, it would prove beneficial for highly

structured data, like models, too. A semantic merge tool must perform a sophisticated

analysis in order to detect and decide how to resolve conflicts. Unfortunately, for most

domains, coming up with a definition of semantic conflict that is neither too strong

nor too weak, yet decidable, is a hard problem [Conradi and Westfechtel, 1998].

2.7 Merging Approaches

Approaches taken to merging fall into two broad categories: those that are state-based

and rely on a static view of the replicas being merged; and those that are operation-

based and analyze a dynamic trace of user actions, or change operations, gathered

during replica modification. Both categories have been touched upon: two-way and

three-way merging were explained in terms of state; and consistency criteria, change

set SCM systems, and raw merging in terms of operations.

2.7.1 State-based Merging

If it relies solely on a comparison of the final states of replica-versions, a merge tool is

said to be state-based. It makes no use of information concerning the actual evolution

of an artifact, but relies only on the difference in state between representations of that

artifact. The schematic of Figure 7a depicts the merging of left and right versions of

a common source after extraction of their differences.
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Figure 7: State-based and operation-based three-way merges
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These differences comprise the changes made to the replicas. They are selected for

their contributions to a more complete merge, forming an update set that is eventually

applied to the source version. As many of the changes as possible are assimilated by

the set, with those that induce inconsistencies or conflicts being omitted. For these,

special algorithms are invoked to remove the merge errors, or, as a last resort, to ask

the user to do so. State-based merging:

• Uses simpler algorithms, making tools easier to implement.

• Has no need for a change recording, or logging, unit.

• Requires no knowledge about how a version may have reached its final state.

• Works at high levels of change granularity.

• Provides fewer options for resolving merge errors.

• Does not need to handle redundant changes.

• Has complete state information.

• Has good performance.

Due mainly to easier implementation, tools for merging have been predominantly

state-based, though interest in operation-based merging is growing [Bartelt, 2008],

[Koegel et al., 2009].

2.7.2 Operation-based Merging

Rather than having to reconstruct its updates from artifact difference as a state-

based tool must do, a history, or operation-based, tool has access to the historical

traces of change operations executed in modifying the replica-versions to be merged.

The operations are of a finer grain than those produced by a straightforward “diff”

of artifact states.

The operations from two sequences of model changes are being intertwined in the

schematic of Figure 7b to create a merged operational trace. To avoid or eliminate

merge errors, operations may be included or omitted from the final trace, kept in

order, reordered, or interleaved with changes from the other side. The resulting
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merged trace is then run against the common source to generate the merged version

of the inputs. Operation-based merging:

• Uses more complicated algorithms, making tools harder to implement.

• Requires tight coupling with a change recording unit (which may not exist).

• Can use knowledge of operation execution to reason about changes.

• Works at low levels of change granularity.

• Provides more options for resolving merge errors.

• Results in more intuitive merge session interaction.

• Must deal with redundant changes.

• Has incomplete state information.

• May suffer from performance issues.

The proposed distributed versioning model for the OMG’s metaobject facility

[Hnětynka and Plášil, 2004] holds promise for making change history more readily

available to designers of operation-based merge tools.

2.8 Merging Errors

Merging works by applying a series of updates in the form of differences (for state-

based) or change operations (for operation-based) to the version that is to be gradually

transformed into the merged outcome. As already alluded to, an applied update can

fail, either because one of its preconditions is not met (an inconsistency), or because

it contradicts a previous applied update (a conflict).

Inconsistencies are detected either beforehand by a dependency analysis of the

pending updates or after the fact by an actual failure. A merge algorithm that

experiences a failure after application of an update can backtrack to a point before

the failure in order to make a repair. Repairs consist of reordering application of the

updates so as to satisfy the failing update’s preconditions. Unless there is a cycle in

the dependency graph, an inconsistency can always be repaired in this fashion.
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No such simple solution exists for conflicts, however. The taxonomy of Figure 8

presents the known techniques for handling conflicts, grouped by overall strategy:

avoid, detect, or repair. Nothing is found under the avoid strategy, because avoidance

is a question of process, not technique. The techniques under the other two strategies

are further broken down into resolution types.

Syntactic conflict detection is not particularly suited to the highly structured data

of models. The techniques of two timestamps and version vectors both use the notion

of a happened-before relation, a means of ordering in concurrent systems based on the

causal relationship of event pairs. A conflict is flagged if an update violates the

happened-before relation it has with a prior update (i.e., it is applied out of order).

Semantic conflict detection, by considering the meaning of an update, filters out

those syntactic conflicts that, according to the semantics of the item being updated,

are not actually in conflict. Being difficult to implement, synchronizers and mergers

that offer semantic conflict detection are rare. The detection techniques pictured

under the semantic category are concerned with the scheduling of update operations;

that is, given a log or trace of updates to be performed, they try to recognize problems

in the update ordering.

Canonical ordering presumes a standard order for the kinds of updates being

applied (e.g., lexicographic order for strings) or the policies under which they are

being applied. This is of limited use in collaborative settings, because most processes

cannot define such an ordering for the changes that modify their work items.

Operational transformation (OT) technology supports a range of functionalities
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for consistency maintenance and concurrency control in the collaborative editing of,

primarily, documents. The basic idea is to transform (or adjust) the parameters of

a later operation, based on the effects of previously executed concurrent operations,

such that the transformed operation can achieve the correct effect and maintain doc-

ument consistency. Detection involves knowing what operations can occur and how

they interact, so effects of earlier operations can be countered by transforming the cur-

rent operation. OT works well in groupware applications where updates are restricted

to text-based edits of documents. Again, highly structured data are problematic.

The last technique, commuting operations, is a viable way of detecting contradic-

tory pairs of updates. If the outcome of applying two updates to an item is dependent

on their order, then the operations are not commutative and, hence, conflict. In ad-

dition to its intuitive appeal, the technique is fairly straightforward to implement. It

is taken up again in the next section in the context of model transformations.

Any type of conflict detection is predicated on correctly matching up, or map-

ping, elements from one artifact to another. If a tool fails to realize that a pair of

elements from corresponding artifacts represent the same thing, then it will not be

able to detect when updates made to both are contradictory. This problem is most

notorious in tools that rely solely, as many do, on unique identifiers for matching,

and is considered in detail in Section 5.2.2.

Once detected, a conflict can be ignored or repaired. Tools that ignore conflicts

may simply halt with an error or produce inconsistent outcomes, which must then

be fixed with some sort of post-processing. Though not entirely desirable, this may

be workable for some domains. Normally, however, a repair will be attempted, more

often than not, by eliciting the manual intervention of the user.

An automatic overwrite applies one change of a contradictory pair, chosen either

arbitrarily—usually the last made—or from a predefined default, or “master,” side

of the merge, over the top of the other. Semantic merging, of course, tries to bring

meaning into the repair process, but if semantic detection is rare, semantic merging is

even more so. Enabling semantic detection and repair with decision tables has been

a major focus of this research and is the topic of Subsection 7.4.3.
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2.9 The Merge as a Model Transformation

If we now consider only models, and the changes that may be applied to them: each

change applied to a given model can be thought of as a function, or an operation, on

that model that yields a new model. Or, alternately, as a transformation that takes

the model and transforms it into another version of itself. A sequence of such oper-

ations then, may be functionally composed into a single transformation T . Applying

T to some initial model MI conforming to some metamodel MMI will then produce

a final model MF conforming to some metamodel MMF :

TMI = (T1 ◦ . . . ◦ Tn−1 ◦ Tn)MI = MF ,

where Ti is one in a sequence of subtransformations of T . Individual pairs of subtrans-

formations may or may not commute. If MMI = MMF , then the transformation is

endogenous, otherwise it is an exogenous transformation.

A three-way merge involves two transformations: one that it is convenient to

think of as being on the left TL, that transforms a replica of the initial base model

MI into model ML; and one on the right TR, that transforms another replica of the

base into model MR. An operation-based merge of models then, can be considered

as a particular path traced out on a grid of subtransformations (Figure 9) of the left

and right models [Lippe and van Oosterom, 1992].

The paths of this transformation grid that respect the original ordering of the

involved subtransformations (e.g., TLi
comes before TLi+1

, even if interleaved by TRj
)

are known as weaves. Those paths which are a permutation of the union of subtrans-

formations are full weaves, while those composed of fewer subtransformations are
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partial. To trace a path from the origin to another node is to execute the sequence of

elementary operations that lie on the path, and thus transform MI into a new model.

The discussion on commuting operations in the last section lets us conclude that

if two subtransformations do not commute, they are in conflict. All weaves that

lead to a particular node contain the same subtransformations and differ only in

their interleavings. Any non-commuting pairs in those weaves will thus cause the

models produced to be different. More generally, if the subtransformations T1 and

T2 commute globally, i.e., T1 ◦ T2 = T2 ◦ T1, then they do not conflict. However,

transformations that do not commute globally may commute locally when operating

on disjoint sections of a model, that is, (T1 ◦ T2)M = (T2 ◦ T1)M , and consequently

will not conflict when transforming M . To test for commutativity, Lippe and van

Oosterom [1992] define a before predicate for precedence. Briefly, if operation a must

come before operation b, then before(a, b) will evaluate to true. If before(b, a) also

evaluates to true, then a conflict exists between the pair of operations.

In the context of transformations, then, the essence of merging becomes to blend

TL and TR into a single transformation that will transform initial model MI into a final

merged model MF . In the absence of conflicts, the transformations may be combined

in whole tip-to-tail fashion—as is done with vectors—otherwise they must be cobbled

together piecemeal, subtransformation by subtransformation, which is precisely what

operation-based merging attempts to do.

The topic of “the merge as a model transformation” is taken up again in Chapter 4,

where the notion is repeatedly put to work on the surface of a plane in order to build

up a merge space. But first, as a means of gaining an appreciation for the difficulties

and problems with model merging, an examination of its operation in a selection of

current MDE tools is made.
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Chapter 3

Model Merging and

State-of-the-Art Tools

Committing programmer source code changes to a common repository is such an

ingrained, day-to-day part of software development that it rarely elicits comment.

Even when updates clash and conflicts must be resolved there is little complaint.

This is enhanced by workplace policies that avoid many conflicts in the first place.

The clear mapping of code modules to files and our awareness of their text-based

nature lead us to accept demands for human input, and less than perfect merges as

being perfectly reasonable.

While our source code experiences may prepare us to some extent, there are sur-

prises to be had in the merging of models. This section affords a look at merging

through the eyes, so to speak, of a small selection of current modeling tools. It

demonstrates some of the issues raised in the Problem Statement (Section 1.1) and

gives a better appreciation of the difficulties facing model merging.

3.1 Merging in Practice

A full MDE merge cycle can be reduced to three high-level steps: replicate, elaborate,

and merge. Assuming that the merging will be three-way and, again, that we need

only concern ourselves with two replicas, then a pair of developers will, in the roles of

Modelers : 1) replicate a copy of a common base model for themselves, 2) elaborate

their respective replicas in isolation creating new versions of the base model, and 3)
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Figure 10: Merging two replicas derived from a common base model

then take on the role of Merger—most likely jointly—to bring the replica-versions

into alignment, producing a merged version of the three models.

The merge diamond in Figure 10 is a schematic of the merge cycle, representing

one merge session of potentially many. A portion of a chain of such sessions that

emerge over the course of development is pictured in Figure 11a, where the merged

output MMn of a replicate-elaborate-merge cycle becomes the base MBn+1 input of

the cycle immediately following it. This is an idealized view, because it incorporates

all of the changes of both Modelers. More realistically, due to conflicts, the Modelers

will find themselves acting as the Merger, and having to spell out to the tool details

of the models’ structure and semantics of their changes.

The truncated cycles of Figure 11b reflect the partial nature of automatic merging

in an environment conducive to conflicts. If M ′
Ln

and M ′
Rn

are at the limit of conflict-

free merging in cycle n, then M ′
Mn

is as far as automatic merging can proceed with full

confidence. From here, a human merger must conceptually spring from the partially

merged model M ′
Mn

to assist the merge in bridging the gap to MMn , in order that a

new cycle n + 1 can be started off the newly formed base MBn+1 . The more solid and

complete the tool can make the partial model, the narrower the gap and the easier it

will be to bridge.
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Figure 11: Merge workflow of repeating replicate-elaborate-merge cycles

3.2 Merge Capabilities of Select Modeling Tools

To identify merge shortcomings, an evaluation of the capabilities of three state-of-the-

art modeling tools was done. The tools were selected for differences in their merging

approaches, as well as in their merge and conflict presentations. Two of the choices

are Eclipse-based and partially rely on its Compare Facility [EMF Compare, 2010].

Not surprisingly, they have a similar look and feel, but their outcomes do differ. And

though two are from the same vendor, they are quite different in operation and results.

The tools all support modeling with UML 1.4 or later, and were set up to run

under Sun’s Java Runtime Environment SE 5.0. What a tool displays and how it is

displayed act to constrain what merge decisions can be made: The “granularity” of

a tool’s display determines exactly what a Merger has control over, while the layout

and the amount of UI “noise” generated affect their comprehension of the merge. In

what follows, we adopt the convention used by many tools: referring to one of the

replica-versions input to the merge process as the left model, and the other as the

right model; visually laying them out side by side, in the corresponding positions.

3.2.1 IBM Rational Software Architect

We investigated model merging with IBM Rational Software Architect 7.0.0.2 (RSA)

running as a plug-in of Eclipse 3.1 on top of Java 5.0. RSA is capable of both two-
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Figure 12: Model conflicts in Rational Software Architect

and three-way merges, but we only evaluated three-way merging.

Merging in RSA follows a compare, resolve, and (optionally) validate cycle. First,

the three models are compared against each other. The tool then notes differences

between the replica-versions. Lastly, any conflicts between the left and right models

brought about by the changes are displayed in a Conflict Pane. The changes of a

conflicting pair are displayed as leaves on their own branch in a tree of conflicts. In

Figure 12 the right change is attempting to delete a class that the left change is trying

to rename. To resolve a conflict, the Merger can accept or reject either side’s change

(implicitly choosing the opposite action for the other change), or ignore both (i.e.,

keep the base’s original state).

To better understand a conflict, it is often helpful to view the two sets of conflicting

changes within the context in which they were made. Therefore, RSA shows the

changes made to the models in a pair of Change Panes, one dedicated to either side

(Figures 13 and 14). The information given in the conflict pane and in the two change

panes overlaps, but fortunately they are linked, so that resolution actions taken in

any one of the panes are reflected in the other two.

The Right Change Pane (Figure 14) illustrates the somewhat confusing distinction

that RSA insists on enforcing between model and view (even as it refers to both as

Figure 13: Left model changes in Rational Software Architect
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Figure 14: Right model changes in Rational Software Architect

a “View”). Observe that the fact a Modeler has added a class B to the right model

is noted in three separate places in the same pane, two of them having to do with

the view (“Add [View] B”). If this change had also resulted in a conflict, the class

addition would have been captured at least once more in each of the other two panes.

This level of cognitive noise can, as we will see, lead to some undesirable results.

Once all conflicts have been resolved, the merged outcome can be saved and val-

idated. Unfortunately, validation cannot be done before saving; overwriting one of

the replica-versions in the process.

3.2.2 IBM Rational Rose

Though also offered by IBM, Rational Rose 7.0.0.0 (Rose) follows in the footsteps of

Rational’s classic line of modeling tools. The Rose Modeler and its Model Integrator

are stand-alone tools running on Java 5.0 in our installation. The Integrator allows

for specifying an n-way merge, but again, we only considered three-way merging.

The first model specified to the Integrator is assigned the role of base (i.e., the

common ancestor) and given the name Contributor 1. The left and right models

(when input in that order) become Contributors 2 and 3, respectively (right side of

Figure 15). In Compare Mode, Rose only shows the differences between the partic-

ipants, while in Merge Mode it produces a merged outcome named Recipient. The

Merger is free to alter the choices made by the tool for Recipient by overriding them
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Figure 15: Model changes and conflicts in Rational Rose

with individual contributions from among the input models.

Like RSA, Rose also maintains a distinction between model and view. The high-

lighted item in Figure 15 shows model attributes for class B; selecting items from

under the “Main” branch in the tree will reveal class B’s associated view layout de-

tails (Figure 16). The icons in the left margins indicate model changes (column ‘C’)

and merge conflicts (column ‘M’). The display is less intuitive than RSA’s. For ex-

ample, some investigation is required to uncover that the flagged conflict is caused by

the left and right both having added a class named B. That being said, RSA misses

this potential conflict altogether.

Rose follows the same compare models, resolve conflicts, and (optionally) validate

cycle that RSA does. Everything is presented in the two panes of the main window.

Item changes, additions, deletions and conflicts are presented hierarchically in the

left pane, while contributor details about the selected item are presented in the right.

Making no decisions with regard to an item, implicitly accepts Rose’s merge choices

for that item. Conflicts, however, must be manually resolved by the Merger. This

Figure 16: View changes and conflicts in Rational Rose

41



involves choosing one of the contributions: selecting Contributor 1 will restore the

element to the base model’s original state, while selecting Contributor 2 or 3 will take

the contribution from (in our setup) the left or right model, respectively.

3.2.3 Sparx Enterprise Architect

Sparx System’s Enterprise Architect 6.5 (EA) is also a stand-alone tool that requires

Java 5.0 to run. Unlike the other tools, EA is only capable of two-way consolidation.

Models may only be synchronized in EA. Once started, synchronization proceeds au-

tomatically, resolving conflicts as needed without input from the Merger. As expected

with synchronization, after the operation, the participating models will be identical.

The synchronization follows two simple rules: additions are cumulative—anything

added to one model will end up in both; and deletions prevail over modifications—

common elements deleted from one model are removed from both, even if modified

on the other side. The tool appears to make no distinction between model and view.

Because it stores discarded changes, EA has the potential to let the Merger resolve

conflicts differently than the synchronizer might. However, it is up to the Merger to

inspect the Resolve Conflict Dialog after synchronization to see how any conflicting

situations have been acted upon. A conflict in EA can only arise in the context of

the second synchronization rule—when an element has been deleted. This means

that adding the same element on both sides will produce duplicate elements in the

outcome.

3.3 Simple Merges

The tools overviewed in the last section are evaluated here with scripts of hypothetical

merge sessions that typify situations that can easily arise in any real-world, collabo-

rative modeling effort. Using extremely simple models, the primitive evaluation cases

uncover interesting and, in some cases, questionable behavior on the part of the tools.

The cases are primitive in the sense that each one packages a single concept into a

unit that aims to minimize distractions and side effects. Each merge evaluation case

strives to isolate some aspect of real-world models that, upon merging, can lead to

surprising and even counterintuitive outcomes.
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An evaluation case describes a collection of possible paths through a merge session.

Each path—referred to as a merge script—details the changes to apply to the two

replicas before they are to be merged, and then the merge actions to take with respect

to each change within the tool doing the merge. It is the primitive scripts that do

not deliver the expected outcome (i.e., those that exhibit counterintuitive behavior)

that are described here.

Only three-way merges are investigated. For Enterprise Architect, a three-way

merge is “simulated” via two, two-way merges—base with left, and merged base with

right. Although this work-around does not solve the add-delete problem, it does

involve all three models in the merge.

3.3.1 Vendor Tools

The tools investigated make different assumptions and operate from different frames

of reference. If execution of a merge script is to be comparable across all the tools, a

common specification must be adopted.

An evaluation case is documented using an initiating figure and a family of exe-

cution figures—one for each tool tested. The initiation part (e.g., Figure 17) shows

the three input models with which to set up the merge session. The base model

(Contributor 1 in Rose parlance) is placed at the top of the figure, and the left and

right models (Contributors 2 and 3) at its bottom left and right, respectively. This

pyramid arrangement reflects the relationships between the models.

The execution part (e.g., Figure 18) details how the hypothetical merge session is

to proceed. It lists the left and right replica changes on their respective sides, along

with the merge actions to be taken with regard to each change. A list of such change-

action pairs forms a merge script. Beneath the script is the merge outcome obtained

from the tool in question, as rendered by that tool. Again, the layout visually echoes

the relationship between the left and right models.

Merge actions are expressed using the operations and arguments of Table 1. In

RSA, reject is directly available, but must be accomplished in Rose by explicitly

accepting the pre-change state of the base model. The sync operation applies only

to Enterprise Architect—the only operation the tool is capable of. Recall that syn-

chronization results in the participating models becoming identical. For simplicity’s
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Table 1: Tool merge actions
Operation Arguments Description Notes
accept model, view Accept specified component Not EA
reject model, view Reject specified component Not EA, Rose #1
ignore Do nothing about change Not EA
sync Base, Left, Right Synchronize specified models EA only

sake, all of the merge actions appearing on the left are performed before any of the

actions on the right.

Most modeling tools are concerned with the model and its views. When this

crosses over into merging, it complicates the operation. If we assume that there is

one model component and one view component, then a merge action can be applied

to none, either, or both. The arguments m for model and v for view indicate which

component(s) an operation is to act upon. Similarly, an argument to the sync op-

eration specifies which model is to be synchronized with the model that invokes the

operation: B, L and R being the base, left, and right model, respectively.

Ultimately, the choices presented, the conflicts identified, and the corresponding

actions that are allowed to the Merger are determined by the tool’s capabilities and its

merge philosophy. Consequently, in order to satisfy the intent of a particular merge

script, the script’s realization will necessarily vary from tool to tool.

Add Same Class

In the first primitive, as seen in Figure 17, both Modelers add an empty class B to

their replicas of the ancestor, which consists of a single empty class A. The RSA script

of Figure 18 instructs the Merger to accept the added class from each side. Since RSA

insists on carrying its notion of model and view from its design environment into the

base (#1)

left (#2) right (#3)

Figure 17: “Add same class” common base and evolved replica-versions
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add B: accept(m,v) add B: accept(m,v)

Figure 18: “Add same class” script and outcome in Rational Software Architect

merge process, the script makes sure to include the effects of the change as manifested

in both components by passing the m and v arguments to the accept operations.

The resultant model is rather counterintuitive. It is unlikely that, when accepting

both additions, the Merger was envisioning a model containing two classes with the

same name. Not only did the tool fail to raise any red flags, a post-merge model

validation by the tool found no problems with this state of affairs. This so-called

duplicate element problem is a common one with merge tools that rely exclusively on

ID for element matching.

Enterprise Architect suffers from the same deficiency, as revealed by Figure 19.

Here, two different scripts yield the same outcome. Both scripts attempt to mimic a

three-way merge: the first synchronizes the left model with the base (making them

identical), then that result with the right model. The second script shortcuts this

double sync by directly synchronizing the left model with the right. In either case,

the tool detects no conflicts.

Rose takes effort to preclude having two classes with the same name appear in

the merged model. Instead the classes are considered to be the same model element,

even though they have different IDs. The tool resolves the logical class duplication

automatically by defaulting to the right’s version (this can be overridden), but it

finds a conflict in the view of the merged model: where should the surviving class B

be placed? Where left’s class was, or where right’s class was? Though trivial from

the standpoint of a complete and consistent model, this predilection for burdening

model merging with view details is a frequent source of confusion. To keep things

add B: sync(B) add B: sync(B)
or

add B: sync(R) add B: ignore

Figure 19: “Add same class” scripts and outcome in Enterprise Architect
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add B: accept(m) add B: accept(v)

Figure 20: “Add same class” script and outcome in Rational Rose

interesting, the script accepts the left’s idea of the model and the right’s idea of its

view. This results in the left model’s class B (as determined by its ID) taking the

position previously occupied by the right model’s class B (Figure 20).

Add Different Classes

Due to RSA’s separation of the model from its view, the second primitive presents

a pitfall for the inattentive. It starts with the same ancestor model as the last, but

this time adds a different class to each side—L on the left, and R on the right, as

depicted in Figure 21.

Consider what happens if the Merger accepts the entire left contribution and only

the right’s model component, then later, for whatever reason (time between actions,

UI clutter, etc.), rejects the right’s view component. The outcome model will appear

to lack class R (left half of Figure 22), even though it was actually accepted. An

examination of the project explorer tree (right half of Figure 22) will reveal, however,

that class R is indeed still part of the model. No harm is done, provided that any

remaining merge actions are predicated on the whole model, as shown in the explorer,

rather than on the partial model presented by the view.

It could be argued that a change’s model component should never be accepted

without accepting its view component. While probably good advice, it raises the

question: Why is the capability to do exactly the converse present at all? Though

base (#1)

left (#2) right (#3)

Figure 21: “Add different classes” common base and evolved replica-versions
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add L: accept(m,v) add R: accept(m), reject(v)

Figure 22: “Add different classes” script and outcome in Rational Software Architect

base (#1)

left (#2) right (#3)

Figure 23: “Rename class” common base and evolved replica-versions

linkage in RSA, from view to model, prevents accepting an element’s view compo-

nent without also accepting its model component, there is no linkage in the opposite

direction that would avert this problem. Rose, however, provides linkage in both

directions, and thus does not suffer from this particular idiosyncrasy. EA, because

it does not impose any distinction between model and view, manages to avoid this

issue altogether.

Rename Class

Depending on how a tool handles detection, acceptance and rejection of conflicting

changes, even something as simple as renaming a class can catch the Merger unawares.

The “rename class” primitive illustrates the potential for more model, view confusion.

Starting once again with a single class A for the ancestor model, the left Modeler

renames the class to AL, while the right changes its name to AR (Figure 23).

The merge script of Figure 24 directs the Merger to accept the model component

of the change from the left, and the view component from the right. Under Rose, the

outcome is a class named AR (left side of Figure 24). Because this is a rather curious

result, a closer look is warranted. Digging into the tree of the project explorer reveals

rename A to AL: accept(m) rename A to AR: accept(v)

Figure 24: “Rename class” script and outcome in Rational Rose
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Figure 25: “Rename class” conflicts in Rational Software Architect

that the class is actually named AL (right side of the figure). As it turns out, AR is

merely a label—a class property that Rose gives no apparent way of correcting—and

not the element’s name.

We get the same outcome in EA, but for a different reason. EA does not separate

the model from the view, and a three-way merge has to be mimicked with two syncs.

Synchronizing the left model with the base model changes class A to AL, after which

synchronizing the right model with the base model changes the newly renamed AL

class to AR. The sync action is not commutative—reversing the order of the actions

will result in a class named AL.

Two Modelers trying to rename the same class does not cause these tools concern.

RSA, however, flags the event as a conflict. For this reason, the two modifications are

displayed linked in a mutually exclusive fashion in the Left Change Pane, as pictured

in Figure 25. The complementary pane shows the same relationship, but from the

perspective of the right Modeler, with the placement of the changes reversed. While

there is sense in linking conflicting changes in this way, the upper script in Figure 26

shows what happens when the class renaming on the left is rejected—the renaming

rename A to AL: reject(m) rename A to AR: ignore

rename A to AL: accept(m) rename A to AR: ignore
rename A to AL: reject(m)

Figure 26: “Rename class” script and outcome in Rational Software Architect
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base (#1)

left (#2) right (#3)

Figure 27: “Delete same class” common base and evolved replica-versions

on the right is automatically accepted. Not only is this “acceptance by rejection”

somewhat unexpected, the behavior is not consistent, as explained next.

Observe the lower script of Figure 26. Here, the Merger at first accepts the

renaming on the left, which, due to the mutually exclusive linkage of conflicting

changes, automatically rejects the renaming on the right. So far so good, but what

if, on second thought, the Merger decides to reject the renaming after all? Based on

the previous script, one might expect the change on the right to then be accepted by

rejection; but as can be seen in the figure, this is not the case. Instead, an “implicit

ignore” of the right side occurs, so no class renaming takes place whatsoever.

Delete Same Class

The intention of the set-up in Figure 27 is to test the removal of the same class from

both sides. The surprise in the case of RSA is not the outcome, which is as expected,

but the noise-laden presentation (Figure 28) generated by such a minor modification,

and that deleting the same class from both sides is considered a conflict.

The tool’s Left Change Pane (mirrored by an unshown Right Change Pane) por-

trays the two deletions as linked: If the Merger rejects the left deletion, the one on the

right is accepted by rejection, and the class is deleted anyway—another disconcert-

ing example of automatic acceptance winning over explicit rejection. If the Merger

accepts the deletion on the left, a more appropriate rejection by acceptance occurs

on the right, one that does not offend the intuition.

3.3.2 Textual Tools

Comparable Java representations of the models in the merge scripts of the primitive

evaluation cases that are executed under CVS yield the following observations (similar
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Figure 28: “Delete same class” conflict and left change panes in Software Architect

results are obtained under Subversion):

1. Add same class : Files for class A and class B coexist in the repository; any

attempt to add a second class B causes a conflict.

2. Add different classes : Files for classes A, L and R coexist in the repository; no

conflicts are raised.

3. Rename class : Files for classes AL and AR coexist in the repository; class A

is shown as having been removed from the project; no conflicts are raised.

4. Delete same class : The deletion of the file for class B is propagated to other

workspaces upon update; no conflicts are raised.

All of the favorable outcomes rest to some degree upon the fact that Java forces

file names to be the same as the classes they define. The results for C++ would be

quite different if the same convention were not followed. Be that as it may, the file

and text-based nature of both configuration management systems, along with our

awareness of that nature, dispose us to accept these results as perfectly reasonable.

In general, practitioners are satisfied with the state of textual merging. So much so

that measurements of textual merging in an industrial setting place the success rate

of automatic merging at around 90% [Perry et al., 2001].

50



3.3.3 Research Alternatives

Several groups are pursuing model management issues that touch on model merging.

Comparing vendor tool outcomes to those obtained by running the same evaluation

cases in research tools has proved instructive. Out of the box, Epsilon was the only

alternative considered that fared better than the vendor tools, so it is the only one

covered here.

Epsilon is relatively mature, easily available, and offers solid documentation and

an active newsgroup. It is now a component of the Eclipse Generative Modeling Tech-

nologies (GMT) project [Kolovos et al., 2006b]. It provides a collection of metamodel

neutral, task-specific, model management languages. Of most interest here are its

rule-based comparison and merging languages (ECL and EML), and by extension,

the Epsilon object language (EOL).

Model comparison with the ECL produces a file that consists of two models:

one containing all elements that were matched between the contributions with the

matched elements melded into a single element, and the other containing any remain-

ing unmatched elements. The EML is constrained in ways similar to EA: merging

proceeds automatically with no user input, and there is no three-way merge capabil-

ity. This latter constraint means it cannot double check changes against a common

base, as required for the “rename class” and “delete same class” cases.

3.4 Expectations and Counterintuitive Behavior

Until such time as a formal definition of model merging becomes widely accepted

(e.g., [Brunet et al., 2006], [Westfechtel, 2010]), precisely how a model merging tool

should behave will largely be determined by developer expectations. These expecta-

tions have, to a large extent, been shaped over many years by the merge capabilities

of textual diff -like tools and version control systems. Developers thus, have been

steadily instilled with an “intuitive” sense for how merging should proceed.

It is from a developer’s intuitive point of view that Table 2 offers a qualitative

comparison of each tool’s performance on the primitive evaluation cases with regard

to merge effectiveness (merge), and presentation and control of the merge (usage).

Admittedly, the sample size is small, and the results are somewhat subjective, being
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Table 2: Qualitative summary of tool outcomes for evaluation cases
Add Same Add Diff Rename Del Same

merge usage merge usage merge usage merge usage
RSA U U S U S U S U
Rose S U S U U U S U
EA U n/a S n/a U n/a S n/a
CVS S S S S U S S S
SVN S S S S U S S S
Epsilon S n/a S n/a n/a∗ n/a n/a∗ n/a

S=satisfactory, U=unsatisfactory, *=requires 3-way merging

dependent on evaluator expectations. Still, some broad conclusions may be drawn:

• If the merge results obtained are not largely unsatisfactory, then usually the

interactions with the tool are.

• Proper matching is required for satisfactory merge outcomes. Failure to do so

is at the root of many failures. Matching solely on ID is not sufficient.

• The performance of textual merging is misleading—source code is not a high-

level model—and, in the case of Java, accidental, with success being attributable

to the direct mapping between class and file names.

• Epsilon succeeds where the others fail, because it has more sophisticated match-

ing capabilities and can take some semantics into account.

• The tools considered, perform state-based merging. The conclusion regarding

other approaches is that most tools do not attempt to use them.

Routine, poor execution of a task as central to cooperative MDE as model merging

is, does little to convince practitioners of the value of models, or management of the

productivity gains intrinsic to model-driven engineering. Better model merging tools

are essential. The recommendations for improving their capabilities and design that

follow are made in this light, and the guidance proffered by them has been used in

the advancement of this work.
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3.5 Recommendations for Model Merging Tools

Before proceeding with recommendations it must be noted that experimentation, and

not documentation, is the basis for many of our generalizations regarding the behavior

of the evaluated tools. This is a situation that is good for neither the investigator nor

the user. Vendors should strive—and this may be taken as the first recommendation—

to make the logic that drives their tools explicit and, ideally, accessible to inspection

and even open to modification. This is particularly important for the tasks of model

element matching and conflict resolution.

Improve Model Element Matching

More effort is needed to establish correspondence between model elements. Element

ID works well for matching elements in the base model to elements in its evolved

replicas, but not across replica-versions. When a pair of IDs are identical, it is almost

always safe to consider the elements as matched. However, when they differ, nothing

at all can be said about the elements as a pair without taking other criteria into

consideration.

Element identity confusion is the root cause of RSA and Rose producing opposing

results for the “add same class” case. RSA uses only identifiers to match elements and,

hence, misses that the B classes on both sides of the merge may be the same class.

Not wanting to miss any changes, the merged outcome ends up with two classes with

the same name. Rose recognizes that the Modelers have both added a class B and

matches them, but then silently and somewhat arbitrarily takes up one and discards

the other. It thus avoiding duplicate elements, at the risk of throwing away a valid

change.

Both outcomes may be correct in different circumstances. Though the Rose merge

is apt to be more right than wrong, it will be more difficult to fix than the RSA

outcome if the match is incorrect. The deciding factor should be modeler intent. If

this cannot be discerned, the tool should make it possible to review and alter the

matching, or perhaps even rename one of the classes. As it stands, if the Merger does

want to do a renaming, the only option is to abort the merge—a steep price to pay

if a great deal of time has been spent merging prior to reaching this point.

In general, overreliance on element identifiers is pervasive and is the source of
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many difficulties encountered by model merging tools. The match rules of the Epsilon

Comparison Language shine here, since they are able to bring semantics to bear on

the problem. Unfortunately, this solution is not perfect, because it entails either

finding a pre-written set of rules for the models or model domain at hand, or writing

one’s own set.

Widen Conflict Detection

Trivial as it is, none of the modeling tools detected a conflict in the “add same class”

evaluation case when one should have been reported. EA, which only tracks database

records of model elements and not structure, does not detect most conflicts, so its

outcome is to be expected. RSA and Rose, however, do consider structure to some

extent, and yet neither flags two model elements of the same name as worthy of

scrutiny. CVS and Subversion, on the other hand, do force the Merger to deal with

the situation by signaling a conflict.

With a little insight into their workings, a logical explanation for each tool’s fail-

ings can usually be found. Still, undesirable behavior is undesirable, even if a reason

is at hand. The question remains: Should a developer have to base expectations

of model merging on how a particular tool is implemented? This particular pair of

changes should be flagged as a conflict: either because they are adding the same

element, in which case the classes should be melded into one, with an appropriate as-

sumption of properties and dependencies; or because keeping both classes will create

an invalid model, in which case the opportunity to perform a rename should be made

available.

Enhance Conflict Resolution

Besides invalidating a model, careless or incorrect conflict resolution can wipe out

entire contributions, as when Rose discards one class in the “add same class” evalua-

tion case. To avoid doing likewise, and since its global synchronization rules offer no

insight into model structure, EA necessarily follows a conservative strategy of accu-

mulation in which its outcome is the union of its two input models, less any deletions

made by either Modeler. EA thus has little need to detect conflicts, except in those

cases where one Modeler is deleting an element the other has modified.
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However, even tools that do detect conflicts and which do consider model struc-

ture follow a similar strategy when it comes to deletion. They generally make the

assumption of the competent Modeler. In other words, if a Modeler deletes an element

that is in both models, there is probably a good reason for this; and further, that the

model will be better off for it, and the other Modeler will not object. Still, it is an

assumption, and one that most tools make no effort to verify.

When a conflict is raised, the choice of possible actions in most merge tools is

limited to accepting or rejecting one of the changes in total. That is, there is no way

to retain or discard only a portion of a change. Imagine a tool that considers the

addition of two classes with the same name to be a conflict, and that the Merger

accepts one of the changes (implicitly rejecting the other). The tool should provide

a way to transfer remnants of the rejected class to the accepted class. This comes

down to issues of change granularity and element containment.

Lastly, for models of any real size, meaningful resolution mandates three-way

merging. The extra insight gained from the base model eliminates ambiguity and

overly conservative strategies by enabling a tool to pick changes from the correct

contribution with greater precision [Letkeman, 2005a]. Of the evaluated tools, only

EA was unable to perform a three-way merge.

Simplify Conflict Presentation

Rational Software Architect and Rational Rose both have sophisticated graphical

interfaces to solicit feedback from the Merger during a merge session. Enterprise

Architect lacks such a GUI, because it only supports synchronization, but it does

provide a dialog for undoing individual actions after the fact.

Model merging is a complex undertaking requiring well-informed user input; con-

sequently, tool presentations of changes tend to be very information-rich. However,

a screen cluttered with model, conflict and view data can generate enough cognitive

noise to overwhelm comprehension. Tools need to make judicious use of all this in-

formation, preferably presenting it over multiple levels. A big picture is invaluable

for grasping the change context, while change-element relationship details are vital

for appreciating the impact of a change’s acceptance or rejection. The Merger should

be able to move between these levels at will, without being inundated with graphics.
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Redundancy needs to be ruthlessly slashed, while keeping related data visually close.

To advance user understanding of the merge, and to enable more prescient merge

decisions on their part, it should be possible to trace out and determine just what

merge actions run against which contributions have gone into creating the merged

model in progress. Additionally, the user should be able to view the information

relevant to any one conflict in isolation—one merge decision at a time. This kind of

conflict management interface could also form the basis for a merge undo facility—a

feature that would enable exploratory merging.

As a counter example to the above, in the “add same class” case, Rose produces

a default outcome with no input from the Merger. In order to determine from which

model the accepted change came, one has to manually find and match element IDs.

Since the tool already knows which elements go with these identifiers and what action

have been taken in regard to the elements, it could make this connection explicit with

little effort.

Graphical linking is one way to emphasize the relationship between related changes

while reducing their visual distance. RSA does this quite well, and almost gets it

right. Its linkage toggles the related changes from the two sides between acceptance

and rejection in a mutually exclusive fashion. For acceptance, this is exactly what a

conflict demands. Only one change can become part of the outcome model. The other

must be rejected—what we have termed “rejection by acceptance.” The converse,

“acceptance by rejection,” is problematic. It makes it possible for a change that is

explicitly rejected to end up in the merged model anyway, as happens in the “rename

class” evaluation case.

The same case produces an “implicit ignore” in RSA. Accepting a change on one

side rejects its conflicting counterpart on the other. Subsequently rejecting the same

change will not toggle the automatically rejected change back to accepted. Instead,

both changes will be rejected (i.e., ignored). This runs counter to expectations set up

by the “acceptance by rejection” behavior observed in other cases. Here, our prior

experience is contradicted, which is probably as good an example of counterintuitive

behavior as one could want.
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Separate Model Issues from View Issues

Closely related to presentation issues is the tying of the model to its logical view(s).

While maintaining such ties during modeling in general may be useful, its benefit

during model merging is questionable, as the “add different classes” test makes clear.

In this test, the merge hides one of the added classes due to the interplay of merge

actions—one modeling operation (add a new class) requires two merge actions (accept

the model change and the view change).

A modeling tool rightfully needs to be concerned with views, but its merging

should concentrate, first and foremost, on the models, not on its graphical represen-

tations of those models. Even for small models, the mental bookkeeping required to

shift through the sand of view details for relevant modeling nuggets can be boggling.

An argument can be made for being able to move between a model and its view

during merging, but this should be at the discretion of the Merger, not the tool. A

tool that updates its views based on a merge should perform merging in two steps:

first completely merge the models and only then the models’ views, using whatever

information has been gathered in the first merge. This way, there will be no need for

the user to consider both perspectives at the same time.

By the same token, the model should be the source of all human-readable names,

not the view. Recall, in the “rename class” case under Rose, how the left class became

labeled with the name of the right class, because the tool gave precedence to a view

label in its conflict display, over the model element’s actual name. The fact that the

class that ended up in the model was really from the left model was obscured.

Perform Post-Merge Model Validation

Tools should do a cursory validation of the model after merging and before the out-

come is saved. Even better, if at all possible, the model should be validated at each

merge decision. Current integrated MDE toolsets take a decidedly non-integrated

approach when it comes to merging. While most tools have verification capability,

their stance seems to be that model validation can wait until code generation. But

inconsistencies and conflicts need to be uncovered when they originate—when the

facts that gave rise to them are fresh in mind.

For instance, a quick check immediately after the “add same class” case would
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have alerted the Merger that their model now had two classes named B. If the dupli-

cation were revealed at that time, a decision as to which of the contributions to keep,

eliminate, or rename would be easy to come by.
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Chapter 4

The Merge Space

That a model change operation can be thought of as a subtransformation of a larger

model transformation was recognized in the background (Section 2.9). If the transfor-

mation is endogenous, then when used to patch a model M , conforming to metamodel

MM , the transformation will “grow” M , one subtransformation at a time, into a new

version of itself M ′, that also conforms to MM . Only endogenous transformations

are considered in this work.

Building on the notion of change operation as subtransformation, this chapter

introduces a conceptual space in which the merging of transformations can occur.

A second device used for tabulating the dependencies and conflicts that can arise

between the subtransformations of that space is also presented.

4.1 Model Operations and the Change Plane

In Figure 29, we orient the transformation grid of Lippe and van Oosterom [1992] to

resemble the classic merge diamond (Figure 10), with nodes representing models and

edges change operations, or subtransformations. The changes along the axes comprise

the transformations TL and TR, which transform the base model MB into left and

right versions of itself. To follow a path from MB to another node is to execute the

sequence of changes that lie on the path, transforming MB at each step. Hence, each

node hosts the set of models produced by all paths that reach it. We term this surface

of subtransformations and potential models the change plane.

Interactive merge tools provide for implicit control over what transpires on the
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Figure 29: Change operations projected as subtransformations onto change plane

change-plane when they seek input during a merge session, whereby the user accepts

or rejects model changes with the intent of merging changes. From a transformational

point of view, to move forward (i.e., out from the origin) over an edge is to accept

the change that the edge represents, while to avoid traversing an edge is to reject its

change. To move backward—though disallowed for constructing a weave—is to undo

an edge’s change.

Rejecting a change poses a problem if, in order to maintain rigor, we stipulate that

all movement between nodes must take place along connected edges. In Figure 30a,

the Merger has rejected TL3 , TR3 , and TR4 , essentially ripping a gash across the

plane that the merge process must somehow “leap.” Reordering the changes, as in

Figure 30b, or simply discarding the rejected ones, mends the plane, thereby satisfying

the connected edge movement stipulation.

4.1.1 Conflict-Free Region and the Frontier Set

All weaves for a particular node consist of the same operations and, hence, differ

only in their ordering. Every node on the plane hosts the set of models produced

by all the weaves that terminate at that point (disallowing backward travel). A
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Figure 30: Mending change-plane discontinuities induced by merge decisions

node that hosts the same model for every one of its weaves (i.e., all of the involved

operations commute) is conflict-free and said to be single-valued. In contrast, a node

that hosts more than one model (i.e., at least one pair of the involved operations

does not commute) is in conflict and said to be multiple-valued. The first conflict

encountered will lay out a border of multiple-valued nodes across the change plane

called the frontier set [Lippe and van Oosterom, 1992]. This is the boundary at

which conflict-free subtransformations can no longer be acquired, and heuristics or

user action will be called for. Clearly, the further the frontier set can be pushed out

from the origin, the fewer decisions the user will need to be confronted with.

The example in Figure 31 serves to clarify. Consider a simple class model consist-

ing of classes A and B. In part a of the figure, the base model is modified by the left

transformation to initialize a member of A and B to 0, while the right transformation

sets A.x to 1 before deleting B. All of the points along the axes are single-valued,

since there is only one path by which any one of them can be reached (disallowing

backward travel).

Since A.x← 0 and A.x← 1 do not commute, the two weaves that terminate at the

center node produce different models, making this node multiple-valued. The other

nodes are multiple-valued for the same reason. The two nodes along the bottom right

border host additional models due to another conflict—modifying B.y and deleting

class B do not commute. For this structuring of transformations, the frontier set

consists of those multiple-valued nodes in Figure 31a marked with an ‘F’. Some of

the paths going to the outermost node also suffer from an inconsistency, because
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attempting to access B after it has been deleted violates a precondition of assignment,

namely, that the target exist.

Swapping the positions of the right-hand subtransformations, as is done in part b of

the figure, delays confronting the conflict, turning two nodes into single-valued points.

The frontier set has thus been expanded slightly: whereas the first structuring could

only incorporate two changes that came from the same side ({A.x← 0, B.y← 0}, or

{A.x ← 1,−(B)}), the second can incorporate one entire side and half of the other

({A.x ← 0, B.y ← 0,−(B)}). This comes at the expense of another inconsistency,

which is ordinarily of negligible cost, since operation commutativity can usually be

taken advantage of to find another path in which the circumstance that causes the

inconsistency does not occur.

4.1.2 Direct and Indirect Conflicts

The simple merge illustrated in Figure 32 will serve as an example for the remainder

of the chapter. The figure’s change plane has been populated with the operations

from the lists appearing on either side of the plane. The operations make up the

subtransformations of the two transformations TL and TR, which in turn transform

replicas of base model MB into the left and right versions ML and MR, respectively.

The nodes drawn as solid black dots are single-valued—the same model is pro-

duced by whatever path is followed to reach them and, hence, the operations that lie

on these paths are without conflict. The rest are multiple-valued—different models

are produced by at least two of the paths the lead to them, and therefore contain

operations that are in conflict. But not all conflicts are created equal, prompting us

to make a distinction between direct and indirect multiple-valued types.
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Figure 32: Change plane overlaid with subtransformations of left and right versions

If the subtransformations that terminate at a node do not commute, we say that

the node is a direct multiple-valued type and it has a direct conflict. When the

terminating subtransformations at a node do commute, but at least one pair of sub-

transformations in the path taken to reach the node do not commute, the node is an

indirect multiple-valued type and it has an indirect conflict. Suppose model matching

determines that changes L2 and R3 create the same element. If the added classes are

not identical, the operations will not commute and will be in direct conflict. Then

the L3, R3 “downstream” node, in spite of the fact that its terminating operations

do commute, will be (indirectly) multiple-valued.

In fact, every node reached by a path that passes through a direct conflict node

will suffer from its conflict. This spillover is what produces the frontier set—the

upper tier of multiple-valued nodes running across the plane. A direct conflict is

analogous to that of the keystone in an arch: pull the keystone, and the other stones

fall; resolve a direct conflict, and its indirect ones vanish. This analogy tells us that,

instead of resolving all 14 conflicts that lie in the plane, we need only resolve the two

key conflicts.
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Figure 33: Model element matching strategies for “add same class” example

4.2 The Matching Dimension

This section takes a closer look at the issue of model element matching across the

replica-versions of a merge session. The “add same class” primitive evaluation case

of Subsection 3.3.1 is used to explore matching in more detail. The set up for the

evaluation case in which a new class B is added to both sides, is repeated in the

upper portion of Figure 33. As already seen, Rational Software Architect will decide

that the classes are different and thus succumb to the duplicate element problem,

producing a model with two B classes (lower right), while Rational Rose will draw

the opposite conclusion and combine the new classes into one (lower left).

The incongruity of the results stems from the different ways in which the tools

match the elements of one model to those in the other, i.e., their differing matching

strategy. Two strategies are contrasted: one based on entity ID and the other on

entity name. Other strategies are possible, for instance, ones based on structural

similarity or on model dependencies. Most tools, however, support only one strategy

no matter the circumstances, a shortcoming that will concern us later.

Matching strategies of a merge session can be visualized as representing a third

dimension, orthogonal to the change plane, with each strategy occupying, in effect,

its own change plane. The conflicts created by the weaves on a particular plane are

those that result due to that plane’s matching strategy. The family of parallel planes

thus formed (Figure 34) defines a three-dimensional solution space, or merge space,

of strategies, subtransformations, and transformed models that is applicable to the

models of the given merge session.
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Figure 34: Matching strategies spread across a family of change planes

4.2.1 Matching Strategy Conflicts

Ideally, a merge should not be confined to one matching strategy, but instead be free

to use the strategy that gives the best measure of similarity for each element pairing.

Thus, a merge should be able to move in the third dimension of the merge space to

search for the most appropriate strategy for the model elements under consideration.

However, this freedom comes at the cost of potential conflicts across strategy planes.

Consider again the example of Figure 33, in which both Modelers add a class B

to their respective replicas. The Merger can accept one, both, or neither of these

changes. These merge choices yield five possible outcomes of the merge for each

strategy. The permutations of choices are enumerated in the first column of Figure 35,

and the resulting outcomes for two matching strategies in the adjacent columns, where

strategy id matches by entity ID, and strategy en by entity name.

Taken in isolation, all the nodes of both strategy-specific change planes are single-

valued: the models produced at every node are the same irrespective of the path

traveled to reach that node. However, if we look across the two planes, the node

reached by the fourth and fifth weaves is multiple-valued. In Figure 36, a miniature
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Entity ID (id) Entity Name (en)

1) {}

2) {TL1}

3) {TR1}

4) {TL1 , TR1}

5) {TR1 , TL1}

Figure 35: Merge decision permutations for “add same class” example

representation of the outcome produced by each weave has been placed alongside the

terminating node for the weave and adorned with the number(s) of the permutation

from Figure 35 that produced it.

Reasoning by analogy, we can conclude that in the same way that multiple-

valued nodes in two dimensions indicate conflicts over the plane of change operations,

multiple-valued nodes in three dimensions signify conflicts across the space of change

operations and matching strategies. To “resolve” such strategy conflicts, a merge tool

that offers multiple matching strategies must come up with some criteria, or method,

by which the best strategy can be selected for any given pair of model elements.
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Figure 36: Cross matching strategy conflict for “add same class” example
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Figure 37: Conflict matrix after application of before predicate to all change pairs

4.3 Change Ordering and Partitioning

The change plane uncovers conflicts, but not the dependencies needed to order the

changes. The techniques of this section are intended to establish the order of the

change operations in the merged operational trace (i.e., merged transformation).

4.3.1 Visualizing Relations with the Conflict Matrix

A tabular layout of the relations between change operations is helpful for settling

change execution order. Applying the before predicate of Section 2.9 to the changes

of the change plane in Figure 32 yields the resulting conflict matrix of Figure 37

(which also reproduces the changes). A < or ∧ points to which of a matrix cell’s

operations has precedence, or positional preference (explained below), over the other,

as determined by the before predicate. It is easiest to read against the wedges, so

going across the third row reads, “L3 is preferred to L4,” as does going down the

third column. The notation makes the symmetry along the diagonal of the matrix

evident. A careful comparison reveals that the conflicts of the matrix (marked with

a ‘×’) coincide with the direct conflicts of the change plane.

Quadrants II and IV depict same-side changes, and quadrants I and III, cross-side

ones. Since same-side changes of a consistent model cannot be in conflict, there is no

ambiguity over what before means in quadrants II and IV: An operation must come

before another when required to satisfy preconditions. For example, change R4 will
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fail for lack of the targeted superclass, if R3, which creates the class, has not yet been

executed.

Across models, the meaning is not so clear. For instance, if we assume single

inheritance, changes L1 and R4, which attempt to give class C3 different superclasses,

obviously clash. However, there is no a priori reason for L1 to come before R4, or R4

before L1, and, since this is an overwrite situation, every reason for it to come after.

Thus, if interpreted strictly in terms of precedence, before will not detect a conflict

in this case. Therefore, it is more proper to think of the predicate as establishing

positional preference, rather than precedence, and to write the cross-side version of

before to take a selfish “me first” (or “last,” as the case may be) attitude.

To relate the theoretical discussion here to the pragmatics of our prototype, we

take a small detour to explain the operation of before in terms of the decision table

rules to be introduced in Subsection 7.4.3. First, consider the L3 and L4 pair of

same-side changes. Change L3 deletes the parameter to_add from operation add,

which is in turn deleted by L4. This is a delete-delete change-pair in which one of

the elements, the parameter, is contained by the other, the operation. The pattern

matches rule 3 of the before_same decision table (Figure 63), which stipulates that

the inner delete operation (L3) must be done before the outer one (L4).

Next consider the cross-side changes L1 and R4, which try to give class C3 dif-

ferent superclasses. In this case, rule 7 of table before_cross (Figure 64) fires, no

matter the order of the operands. The rule claims priority for L1 in one direction

of comparison, and for R4 in the reverse, thus flagging a conflict between the two

changes. The other cross-side pair, L2 and R3, are not in conflict, unless, they are

deemed by element matching to add the same C1 class (albeit with different IDs) to

their respective sides, in which case, rule 1 will find them in conflict. If no conflict

were raised after such a match, the model would end up with two classes of the same

name—the duplicate element problem.

Some tools might consider L5 and R2 to be in conflict, but a condition of table

before_cross, called alter_same_property, recognizes that the operations actually

alter different properties of the same element and therefore do not conflict. If no

decision table rules are asserted for a given change-pair, there are no preconditions

to satisfy and the operations may be performed in any order.
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Figure 38: a) Change dependencies, b) partitioned into mutually exclusive blocks

4.3.2 Breaking Cycles with Conflict Partitioning

The conflict matrix is essentially a graph of change dependencies (e.g., Figure 38a).

Determining the execution order of change operations directly from the graph can

be difficult if conflicts are present or, if cycles are involved, impossible. To remedy

this, conflict partitioning gathers conflicting changes into collectively exhaustive and

mutually exclusive blocks.

This is accomplished by: 1) putting non-conflicting operations into their own

block, 2) putting each pair of conflicting operations into a block, with a double-headed

arrow between them, and 3) adding single-headed arrows between blocks to reflect

the ordering of the contained changes of each block as a whole, as dictated by the

conflict matrix. Following this procedure for the graph in Figure 38a results in the

partitioning shown in part b.

Dependency cycles, like the one in Figure 39a, require some additional steps.

Partitioning by conflict produces the blocks of Figure 39b. The arrows emanating

from block L1, R1 signify that the other blocks are dependent on the outcome of that

conflict—they require either L1 or R1 as a target for their operations. The transitive

R1–R3–R2 relation makes the L1–L2 relation superfluous, so it is discarded.

Though exhaustive, this partitioning is not mutually exclusive (L2 is in two

L1

b) c) d)

L1 R1 L1 R1 L1 R1

L2 R3

L2 R2

L2

R3

R2

L2

R2

R3

a)

R1

L2 R3

R2

Figure 39: a) Change dependencies, b) non-exclusive conflicts, c) exclusive conflicts
using a composite block, d) with conflicts collapsed
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blocks). Putting the changes of the troubled blocks into a single composite block

(Figure 39c) fixes the non-exclusivity at the expense of reconstructing the cycle. This

can be broken by collapsing the conflicts between individual operations of the cycle

into a single conflict between same-side dependency chains. In Figure 39d, the R3–

R2 chain is now treated as a single operation—the two individual conflicts with L2

have been collapsed into one conflict with the chain as a whole. Collapsing conflicts

lowers merge complexity at a slight loss in resolution choices: the closed nature of

dependency chains precludes selecting certain combinations of operations. Usually,

however, the choices lost are illegal (e.g., accepting L2 over R3, and R2 over L2), and

will not be missed.

The merge workflow to be described in the next chapter makes heavy use of

the duality of changes and transformations to move freely between state-based and

operation-based techniques. It also conducts its merging in the merge space, as weaves

of subtransformations, using the before predicate to detect conflicts. And the change

operations that eventually go into making up the final merged transformation are

ordered using the technique of conflict partitioning.
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Chapter 5

The Hybrid Merge Workflow

The last chapter provided the means and techniques for visualizing and carrying

out a merge in a space of transformations and matching strategies. These concepts

are general purpose in that they apply regardless of the type of the artifacts being

merged and the merge approach being taken. This is true because any merge has to

determine what changes have been made to its artifacts, and because any change can

be abstracted into a transformation on those artifacts.

This observation leads to a fundamental insight: if one has state, one can get

operations, and if one has operations, one can get state. To be sure, there are still

differences between the two, and they are not inverses of each other—the state-based

approach has less information available to it, and can be seen as a simplification of

the operation-based approach. Or, if looked at from the opposite direction, as being

“enhanced” by the operation-based approach [Koegel et al., 2010].

With this understanding, we propose the solution foreshadowed by the thesis

statement; namely, that the problem of model merging can be best addressed by

taking a tack that employs the most appropriate merge approach for the task at

hand—creating, in effect, a hybrid workflow for model merging. The proposed work-

flow is premised on the above insight relating artifact state to change operations,

which must, however, be qualified: change operations derived from state are neither

complete nor ordered, and state obtained from change operations may be incomplete

or missing. Both qualifications will be treated after first giving an overview of the

approach in the next section. Screenshots of the prototype using the workflow are to

be found in Chapter 7.
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5.1 Workflow Overview

The proposed solution starts out conducting preparatory work in a state-based mode,

transitions to operation-based activity for the merge itself, and returns to state-based

techniques to produce the final merged model. The workflow is broken into eight

phases. This section outlines each phase in brief, with more detailed descriptions to

follow. Mention of the technologies employed and any implementation features have

been avoided. Details for the most important of these are given in Chapter 7, and

implementation notes for each phase in Appendix A.

The phases of the workflow have been diagrammed in Figure 40 using a pipe and

filter architecture style, augmented with control interfaces to allow filters to receive

user input [Shaw and Garlan, 1996]. The transformation function for a given filter

is explained in the detailed description of that filter’s phase. The ordering of the

phases is not completely determined—the Model Comparison and Model Differencing

phases may be swapped, and indeed are in the prototype—but here, to facilitate

understanding, the order involving the fewest complications has been chosen.

The overview is written as if the user were playing the role of Merger and actively

engaged at two points in the process. This is the case for the interactive mode of

operation, but another, in which there is no involvement, called batch, or script,

mode, is also available. In batch mode, all information required by the merge session

comes from the command line, a configuration file, or a combination of both. Both

modes produce a merged model, but since no manual conflict resolution occurs in

batch mode, its model is more likely to be partial. In addition, both modes generate

an in-depth report of how the session progressed.

Model Normalization

Input to the workflow is three models (two for a two-way merge). The artifacts are

normalized to conform to a common metamodel. This normal-form is state-based,

regardless of the original type(s) of the artifacts. The internal working models are

thus decoupled from their originating MDE tool or change operation recording unit.
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Figure 40: Phases of the hybrid merge workflow as a modified pipe and filter system

Model Comparison

This phase establishes element correspondence between the state-based normal-forms

of the left and right models. The models are compared so as to match, or map,

the elements in one model to those in the other. Matched, or paired, elements are

considered to be the same element, and their changes must be assessed for conflict.

Model Differencing

A state-based difference is taken between the normal-forms of the common base

model, and its left and right replica-versions. The two resulting difference, or delta,

models conform to the normal-form extended by a difference metamodel (MMD). This

allows the evolution of the replica-versions to be captured in the difference models

themselves, rather than as separate artifacts.

Operation Extraction

Having turned initially to state-based models, the workflow now moves into the

operation-based realm. For each delta model, this phase assembles a set of change

operations that accounts for that model’s changes of state with respect to the base

model. These change sets provide the raw material for the operation-based merge.
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Conflict Detection

The extracted sets of change operations may now be combined, but their dependencies

must be discovered before a full merge can be achieved. By assessing operation de-

pendencies, this phase uncovers change precedence (e.g., one change is a precondition

for another) and contradiction (e.g., one change undoes, or overwrites, another). The

first imposes a partial ordering on the changes, while the second identifies conflicts

between them that must be reconciled.

Conflict Resolution

Resolving a conflict entails picking one operation of a contradicting pair over the other,

or rejecting both. Ideally, conflicts are resolved automatically ; failing that, manually

or, in the worst case, from the standpoint of correctness, arbitrarily. Making a conflict

choice can alter change operation dependencies and, consequently, force a reordering

of the changes. Once the extracted change sets are combined, their conflicts resolved,

and elements ordered, a merged operational trace is outputted from the phase.

Model Patching

The changes of the merged operational trace are next executed against the base model

to produce the merged outcome. Applying change operations to a model in the

normal-form results in a transformed model, also in the normal-form. The merged

result is thus state-based and will contain no difference metamodel elements, since

there were none in the base model to begin with, and no operations in the merged

trace create any MMD elements. Patching, then, is the means by which the workflow

is returned to the state-based approach.

Model Denormalization

This phase effectively reverses the work of the input phase, transforming the merged

model expressed in normal-form into the format(s) of the original input—one merged

model being outputted for each type of input artifact. This means the originating

tool(s) of the replica-versions will be able to pick up the newly merged version and
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manipulate it like any other artifact it may have created, even if the original models

came from different (state- and/or operation-based) tools.

5.2 Workflow Phase Details

In this section, the phases of the hybrid merge workflow outlined above are detailed

with the help of a basic set of algebraic operators for performing model management

tasks, as proposed by Brunet et al. [2006], and extended by us where needed. The

basic data types of the algebra are the model, the relationship between models, and

the transformation of a model. The overall merge operator is defined as:

merge : model ×model × relationship→ model

The operator assumes that the models to be merged are of the same type (e.g., the

same kind of UML model) or of compatible subtypes. A model’s subscript indicates

its metamodel, with no subscript understood to be the normal-form. The relationship

operand gives a mapping between elements of the two model operands, not how the

models relate to each other as a whole. Knowledge of that sort becomes important if

there are different ways of putting together an arbitrary pair of models, a possibility

that falls outside the scope of this research.

The output of the merge operator and the end goal of the hybrid merge workflow

are one and the same—a merged model. In what follows, each workflow phase intro-

duces a new operator that achieves its function, and indirectly supports the overall

goal of model merging.

5.2.1 Model Normalization: Decouple from Environment

Until now, a major drawback of the operation-based approach to merging has been

overly tight coupling between the tool performing the merge and the change recording

mechanism tracking the model changes. The intent of this phase is to break this

coupling through a tool-independent means of representing the models. This allows

models from a variety of modeling tools, whether state-based or operation-based, to

be read in and merged—conceivably, even merging those from different tools.
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Since the workflow does three-way merging, the expected input is three models:

a common base, its left replica-version, and its right replica-version. The base model

is not strictly necessary; if it is null, the merge becomes effectively a two-way merge.

The path of execution through the workflow is the same regardless.

Operator normalize converts modeltool, a tool-specific model conforming to the

tool’s metamodel, into model, a tool independent model conforming to the metamodel

of the normal-form.

normalize : modeltool → model

The operator is overloaded to accept the models produced by different modeling

tools. The unnormalized form of the input models may be state-based or operation-

based, while the normalized form of the output is state-based.

An advantage to being state-based for the early phases of the workflow is that,

because the complete state is at hand, two problems of the operation-based approach

are avoided: missing comparison and missing state [Westfechtel, 2010]. The first

problem can result in unnoticed, duplicate operations, and the second can lead to

undetected conflicts.

Change operations obtained from state, however, are usually incomplete, because

one change of state can encompass many change operations. But this is not a serious

detriment, since many changes executed by a Modeler are of no importance for merg-

ing. It is how the models have changed and not the exact path by which they were

changed that matters. The benefit is, changes extracted from state exhibit no redun-

dancy. This results in fewer operations overall, and saves downstream processes a

great deal of bookkeeping—two reasons state-based analyses and manipulations tend

to be easier.

5.2.2 Model Comparison: Match Elements

The intent of model comparison is to find commonalities between models with which

to establish correspondence between elements of the models [Treude et al., 2007].

The relationship thus divined is used as a basis for conflict detection, resolution, and

model merging. The match operator as defined by Brunet et al. carries out this

matching, or mapping, of elements.
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match : model ×model→ relationship

Most tools rely on unique identifiers to accomplish matching, but this can only

partially determine correspondence, because elements added separately to the left

and right versions will not possess comparable IDs, though they may play the same

role. Hence, the relationship between the models will usually be under-determined,

with only elements having identical IDs being matched exactly. This conservative

method of matching can leave a majority of elements without a match.

Using a different matching strategy, or multiple strategies, is a viable way of im-

proving the quantity and quality of matches—something few tools provide for. Fur-

ther, since no strategy is perfect, human intervention in the match process is often

called for—something even fewer tools allow for. The approach used in this work is

to employ several strategies and then either select the best one for each candidate

pairing or use a weighted measure of similarity drawn from all the strategies. The

matching that is done with these measures can be accomplished automatically or

under human guidance.

5.2.3 Model Differencing: Capture Model Evolution

Given two models, it is common to determine how they are unlike one another by

calculating the difference between their states. In the workflow, differencing of the

models to be merged occurs after all models have been inputted and decoupled from

their native environments. The diff operator as defined by Brunet et al. is:

diff : model ×model→ transformation

The returned object is a transformation from the first model operand to the sec-

ond, so the operator is not commutative. We break diff into two steps: a delta

operator and an extract operator. This is done in order to better reflect progress

through the workflow and to highlight that the deltas between the models are first-

class artifacts in their own right. The delta operator is defined here, and extract in

the next phase.

delta : model ×model→ model∆
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The operator determines how the two models differ from one another, identifying

which elements and properties have changed and in what way. This information

is captured in a delta model conforming to a difference metamodel that is used to

extend the metamodel of the normal-form. One delta is calculated between the base

model and its left replica-version, and another between the base and its right replica-

version. This is in preparation for transitioning back to operation-based activity, and

is in contrast to the classic state-based approach, which performs a difference between

the two replica-versions.

The delta models will contain instances of MMD classifiers detailing which ele-

ments have been added, which deleted, and which altered. Finding these differences

from state-based model representations is relatively straightforward. Since most mod-

eling tools assign an ID to their elements, and because the left and right versions begin

life as replicas of the base model, a continuity of identity exists from common base

model to its changed replicas. Thus, ID is sufficient to relate the elements in the

replica-versions to their counterparts in the original, and a direct comparison can be

used to determine their differences.

5.2.4 Operation Extraction: Transition to Operation-Based

With the relationship between the two replica-versions, and the deltas from their

common base in hand, the hybrid workflow transitions from the state-based to the

operation-based approach. Making this transition requires somehow gaining access

to the change operations that were executed in modifying the base model replicas.

Unfortunately, any information that could be used to directly construct such an

ordered list of change operations, or operational trace, has since been obliterated by

the decoupling that takes place at the front of the workflow. While it is not possible

to reassemble the exact series of operations that went into causing a specific change

of model state, it is possible to determine one operation that subsumes the exact

series, while effecting the same change in state. At some later time, a partial ordering

of these subsuming operations can be worked out by examining the dependencies

between them.

This situation is not the terrible thing it may at first seem to be, since even in

operation-based merging there is seldom any need to know the exact chain of change
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operations executed against a model element before arriving at its final state (e.g.,

names given to a class before its final name are, except perhaps for matching pur-

poses, unimportant to the merge). That the normalizing step results in fewer change

operations can actually be viewed as an advantage, because it makes it computation-

ally easier to reorder operations, and being able to vary execution order (e.g., to avoid

an inconsistency) is one of the strengths of the operation-based approach.

To construct a list of change operations (in the form of a transformation), we

define an extract operator:

extract : model∆ → transformation

Given the difference between some initial model state and some final model state

expressed as a delta model conforming to the difference metamodel, the operator

produces a transformation that will take the model in the initial state to the final

state. The delta model is of course obtained using the delta operator, such that:

extract(delta(mi, mf )) = diff (mi, mf ) ,

with mi and mf being the initial and final models, respectively.

The transformation thus produced is actually a composition of subtransforma-

tions, or change operations, as explained in Section 2.9. The difference metamodel

makes the extraction of the operations a fairly straightforward process. Each Added

and Deleted class found in the delta model results in one add and one delete oper-

ation, respectively. The Altered classes, however, require an in-depth comparison

of the updated element with its original to see exactly how they differ, and then the

creation of a change operation for each difference noted.

The order of the operations in the transformation produced by extract is deter-

mined solely by the order in which the elements of the difference model are visited,

and has no significance as of yet. Once a transformation has been constructed for

each side of the merge, the workflow proceeds in operation-based fashion. It is up to

the next phase to impose the necessary ordering on the constructions.

5.2.5 Conflict Detection: Test Operation Commutativity

We define the detect operator to take two conflict-free transformations, in any order,

along with a relationship (which may be empty). The relationship is the result of
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applying match to the models that are produced by transforming the base mode with

the two transformation operands.

detect : transformation× transformation× relationship→
transformation

The operator results in another transformation composed of all the subtransfor-

mations of its operands. Conceptually, the operator applies the before predicate

described in Section 2.9 to every pairing of different change operations (i.e., mirror

pairs are ignored) in the two transformation operands. This exhaustively identifies

all the conflicting pairs of operations. Pairs of conflicting atomic operations are then

composed into single compound operations.

Predicate testing also imposes a partial ordering on the operations. Being partial,

the operator has the freedom to move conflicts, respecting their dependencies, as close

as possible to the terminating end of the resulting transformation. This has important

ramifications for conflict resolution (Subsection 4.1.1). Of course, since a transfor-

mation is a functional composition, it must be totally ordered, so any operation not

already placed by before must be given some arbitrary position.

For changes made to the same model, i.e., same-side changes, the input trans-

formations are identical, and the relationship is a perfect one-to-one mapping. The

resulting output will have order, but no conflicts, which is another advantage of the

state-based approach: changes extracted by state from a consistent model can never

be in conflict. This is because any particular change of state only ever results in

one operation, and it takes two operations to make a conflict. For changes made to

opposite models, i.e., cross-side changes, the transformations are different. Here, the

relationship operand is used to determine if a particular pair of change operations in

fact affect the same model element, and therefore could be in conflict.

5.2.6 Conflict Resolution: Eliminate Contradictions

The merged transformation from the previous phase may contain conflicting pairs of

change operations, which this phase resolves. We use the resolve operator to represent

this action:

resolve : transformation→ transformation
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How the conflicts are to be dealt with is not stipulate by the operator—only

that they will be resolved. After any automatic resolution, the change operations of

the transformation are arranged one last time in an attempt to push any remaining

conflicts further back. This will allow the most complete merge attainable, with as

much context as possible to be presented to the user for manual resolution of the

remaining conflicts. Once this is accomplished, the change operations are composed

into the final merged transformation.

5.2.7 Model Patching: Execute Merged Operations

To return to the state-based world, the change operations of the merged transforma-

tion are executed against the normal-form base model to produce the merged model,

also in the normal-form. Brunet et al. define a patch operator for this purpose.

patch : model × transformation→ model

If the transformation still contains conflicts, the leading subtransformations up to,

but not including the first conflict are run against the model operand. Earlier phases

moving conflicts as near to the end of the transformation as they can, ensures that

patch will be able to produce the most complete merge possible before encountering

a conflict.

5.2.8 Model Denormalization: Restore to Environment

The last phase of the workflow transforms the final merged model back into its original

form. This is the function of the denormalize operator, which we define as:

denormalize : model→ modeltool

The operator takes a model expressed in the tool-neutral normal-form and trans-

forms it into one conforming to the metamodel of the original tool’s inputs to the

workflow. If models of more than one tool were inputted, denormalize is executed

once for each tool type, producing multiple but logically equivalent models (within

limits of the involved metamodels).

That completes the theoretical description of the proposed hybrid merge workflow

and its phases. The next two chapters give overviews, and some of the details for the

architecture and design of a prototype that implements the workflow.
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5.3 Workflow Summary

Though we have incorporated several new implementation features into them, most

of the phases described in the preceding two sections are not unique to the hybrid

workflow. This section will serve to clarify these aspects, and to provide pointers to

the specific phase details.

Model Normalization and Denormalization

These two phases are unique to the workflow. They decouple the models to be merged

from their originating tools, allowing the workflow to deal with (initially) state-based

models, expressed in the same format, and conforming to the same metamodel. Their

architecture is described in Subsection 6.3.1, and their design in Subsection 7.2.1.

Model Comparison

All merging tools have to relate the model elements on one side of the merge to

those on the other. The control interface of this phase enables what no existing tool

allows—influence of this mapping by the user. Also novel, is the use of multiple

matching strategies in the implementation. Subsection 6.3.2 and Section 7.3 detail

the comparison phase’s architecture and design, respectively.

Model Differencing

Finding the difference between models is an important step in state-based merging,

but not operation-based. Representing these differences as models appears to be

unique to the hybrid workflow: we know of no other merging tool that can make

a similar claim. Subsection 6.3.1 covers the architecture, and Subsection 7.2.2 the

design, and includes a description of the difference metamodel.

Operation Extraction

Again, this phase is a standard step in state-based merging, where the extracted

entities form two sets of updates. The workflow, in anticipation of transitioning to

operation-based behavior, considers them to be subtransformations, out of which it
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composes two transformations. Architecture of the extraction phase is covered by

Subsection 6.3.3 and its design by Subsection 7.4.2.

Conflict Detection

Conflict detection is a requirement for merging. Several techniques were presented

in Section 2.8, but the phase does not prescribe any particular one. While order is

implicit in the operation-based approach, classic state-based merging does not make

use of it. The workflow, uniquely uses detection to double as a way of ordering the

operations of its input into one merged transformation. The order established by

the phase is generally only partial, and is exploited to move conflicts towards the

end of the output transformation, which has benefits for useability. Subsection 6.3.3

discusses the architecture, and Subsection 7.4.2 the design of this phase.

Conflict Resolution

All merge tools must resolve conflicts, and most provide only a manual means for

doing so. This phase adds nothing new in this regard. Any uniqueness is confined to

the implementation, which uses decision tables to enable semantic conflict detection

and resolution. The phase’s architecture is found in Subsection 6.3.3, and its design

in Subsection 7.4.2. Details of the decision table mechanism and its rules are part of

Subsection 7.4.3.

Model Patching

Patching is a common model management task. It is executed in one form or another

by both merging approaches. Subsection 6.3.3 of the architecture touches on patching,

but it is not specifically covered in the design.
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Chapter 6

Mirador Architecture

Mirador is a model merging tool that has been built as a proof of concept to vali-

date the proposed hybrid merge workflow of Chapter 5. How Mirador’s architecture

supports the workflow is the subject of this chapter. The fact that it is a vehicle for

describing an existing system, rather than a design document, allows us some latitude

in selecting a perspective for explaining the architecture. Accordingly, the perspective

switches freely between being structural in nature and taking a runtime point of view,

as needed. Since Mirador is a prototype, the implementation is naturally somewhat

limited in scope. These limitations are pointed out in the course of the presentation.

6.1 System Purpose and Environment

This section gives an overview of Mirador’s intended usage through its primary use

case. It also sets the operational expectations the system has of, and the impact it

has on, its environment.

6.1.1 System Context

Mirador is a stand-alone application for merging software models. Because it is stand-

alone, the tool is independent and self-contained; as such, its interactions are limited

to one user at a time. The system boundaries—“what is in, and what is out,” in

the words of Clements et al. [2003]—are clarified by the system context diagram of

Figure 41. The environment depicted consists of two human actors, as well as the
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Figure 41: Top-level system context diagram delineating Mirador’s boundaries

many file types consumed and produced by the application at different stages of its

execution.

6.1.2 System Interfaces

Mirador interfaces with no external systems other than the Java virtual machine

on which it runs. In addition to supplying the runtime platform, Java provides

Mirador with interfaces for accessing services of the file system and a character-based

terminal, and for creating and interacting with an event-driven graphical front-end

that supports the tool’s interactive mode of operation.

6.1.3 User Interfaces

In interactive mode, Mirador works with a single user through a graphical user in-

terface consisting of three panels: Model Input, Element Match, and Model Merge.

The panels roughly correspond to important subsystems of the tool and may be seen

in Figures 51, 56 and 58 of Chapter 7.

The first panel inputs the models to be merged. Options for the new merge session

may also be set with this panel. Besides the models, the panel also may read in a
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configuration file, files containing model element matches, match strategy classes, and

decision table definitions. The second panel is concerned with matching the elements

of one replica-version model with those of the other. The panel provides the user-

access point into the Model Comparison phase of the workflow. The last panel uses

these pairings to merge the changes and resolve any resulting conflicts. It provides

the Conflict Resolution workflow assess point.

In non-interactive, or batch, mode, all inputs are specified on the command line,

or through a configuration file. This mode is useful for running group or unattended

merges from a script, or as a means of getting early feedback on a merge with minimal

effort. Unlike the interactive mode, this mode has no provisions for manually affecting

element matching or conflict resolution.

The output from the interactive and batch modes is a merged model. The model

that is output from batch mode however, is more likely to be only partial, due to

conflicts that could not be resolved automatically. In addition, both modes also

generate a textual merge report.

6.1.4 Software Interfaces

Mirador interfaces to other software through character-based files. In the case of

models, this is usually some variant of XMI exported by an application (e.g., .ecore

model files from the Eclipse Modeling Framework), or files in an application-specific

format (e.g., .ctr model files created with Fujaba).

The formats of the textual configuration (.cfg), element matching (.elm), and

decision table definition (.ddf) files are all specific to Mirador. To help with element

matching, Mirador can also load user-defined Java modules (.class) and scripts written

in the Epsilon Comparison Language (ECL) for use as similarity evaluators.

6.2 System Functionality

While this is not a requirements document, for purposes of traceability, we have

elected to express application functionality with use cases that interact with domain

model entities. A useful dimension of refinement for use cases is goal detail, which

may be at one of three levels, from highest to lowest: summary-level goal, user-level
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Figure 42: Mirador domain model

goal, and subfunction-level goal [Cockburn, 2001]. For this work, the only use case

details that will concern us will be those at the user-goal level.

6.2.1 Domain Model

Actors interact with use cases, and use cases, in turn, access and manipulate objects

from the problem domain, i.e., the universe of entities specific to the application. The

classes for these objects and the relations that may exist between them are captured

by the domain model that appears in Figure 42.

The domain model shows how the central notion of a Model is composed of many

model Elements that are placed on a ChangePlane within a ChangeSpace. Mul-

tiple ChangePlanes, each having its own MatchingStrategy, occupy the Change-

Space, and each ChangeNode on a plane hosts one or more Models.

A source model is changed into a target model by transforming the source with a

Transformation. A transformation may be an individual ChangeOp, which starts

at one node and ends at an adjacent one, or a composition of change operations,

known as a Weave, representing a path on the change plane.

A ChangeOp targets one model Element that it changes in some way. A bidi-

rectional match association between elements on opposite sides of the merge, is used

to indicate those that have been identified as being the same, and should always occur

in reciprocal pairs, i.e., if one element is matched with a second, the second should

be matched with the first.
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6.2.2 Mirador Use Cases and the Primary Actors

The summary-goal use cases for Mirador are shown in Figure 43, along with the user-

goal use cases they encompass (through include associations). Summary use cases

provide the context in which the lower level use cases operate and serve as an index

into them. Most of Mirador’s notable behaviors and features are illustrated with the

“Run Interactive Model Merge” user-goal use case. The scenario, which touches upon

the most salient design points of the tool, has been written out below in full use case

prose. The text of the “Run Batch Model Merge” use case is given in Appendix B.

The system’s user-goal use cases and primary actors are pictured in Figure 44.

Primary actors are those actors with a goal that requires the system’s assistance to

achieve. In general, primary actors are the initiators of use cases. Each user-goal use

case consists of a set of paths (scenarios) that move its primary actor from a trigger

event that starts the use case to the goal (success scenarios) and other scenarios that

move the actor toward the goal but fall short of reaching it (failure scenarios).

Actor: Merger

The Merger is responsible for bringing two model versions into alignment and, in the

process, producing a new merged version of the model. Besides interacting directly

with the tool, the Merger may also need to analyze merge reports to learn how best

to execute a particular merge.
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Figure 44: Mirador user-goal use cases

Use Case: Run Interactive Model Merge

Goal: To merge models with input from the user.

Primary Actor: Merger

Precondition: none

Main Success Scenario

1. Merger invokes Mirador, specifying desired arguments and any options.

2. System displays Model Input Panel, populated with argument and option values.

3. Merger enters/alters session parameters, and advances to Element Match Panel.

4. System sets up session based on passed arguments and options, and loads specified models.

5. System displays models to be merged and their matched elements.

6. Merger selects matching strategy, and adjusts weights and threshold.

7. Merger inspects, matches or unmatches elements, and advances to Model Merge Panel.

8. System displays base model and an ordered list of change operations and conflicts.

9. Merger selects changes to apply, resolves conflicts and applies the change set.

10. System patches base model with change set and updates display with merged model.

11. Merger advances to merge finish.

12. System outputs the (partially) merged model in the format(s) of the original1.

Use case ends successfully.

1Not yet supported. Currently, all models are output as Ecore XMI files regardless of input type.
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Extensions

1a. A configuration file is specified on the command line.

1a1. System parses configuration file arguments and options.

Use case continues.

3a. A specified file is not found, or cannot be parsed.

3a1. An error is displayed and logged.

Use case ends unsuccessfully.

3b. The model format is not supported, or the model is not well formed.

3b1. An error is displayed and logged.

Use case ends unsuccessfully.

7a. Only two models were loaded.

7a1. A 3-way merge using a null base model is performed.

Use case continues.

10a. An error is encountered while applying a change.

10a1. Change application halts, and the change is flagged as being in error.

Use case continues.

Postcondition: Merged model and merge report have been stored.

6.3 Architecture Highlights

The use case of the preceding section disclosed the major aspects of Mirador’s func-

tionality. In presenting its architecture, the focus will be on communicating this

functionality in intellectually manageable pieces, which can then be refined to convey

more details. With this in mind, the description makes use of the module viewtype,

specifically, the module decomposition style, to provide a top-down presentation of the

system’s responsibilities [Clements et al., 2003]. Details of the tool’s implementation

and runtime behavior are presented in Chapter 7.

The activity diagram of Figure 45 models the logic of the “Run Interactive Model

Merge” and “Run Batch Model Merge” (Appendix B) use cases. The tasks performed

by the system in the course of merging two models have been divided into three

partitions, corresponding roughly to the application’s chief subsystems and exactly

to the panels of its graphical user interface. Each partition has an iconic key in the

upper right that highlights the phases of the hybrid merge workflow that its activities
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Figure 45: Activity diagram for interactive and batch model merging in Mirador
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relate to. The partitions are reproduced separately, in a larger size and with added

annotations, in the immediate subsections.

Input to Mirador for a three-way merge is the base model and its left and right

replica-versions. If the base model is null, the merge is still three-way with the process

proceeding in exactly the same manner. There will be no add-delete problems if the

base model is truly null, as opposed to being unknown, or if the versions really share

no common ancestor, as when two disparate subsystems are being merged.

6.3.1 Model Input

The topmost partition of the activity diagram in (Figure 46) decouples the input

models from their modeling tool in the case of state-based models, or from their change

recorder in the case of operation-based models (i.e., change logs). The decoupling is

effected by an Input subsystem that has an interface through which a Decoupler

class for any supported type of model or change log may be reached. The proper class

is chosen based on characteristics of the model being inputted.

As Figure 47 indicates, the decouplers reference a metamodel in transforming an

input model or change log into an equivalent state-based model in the normal-form.

Using the services of tool-specific classes of the Repository package, the elements

of a state-based model are mapped to the correct representations, while the changes

of operation-based logs are essentially executed to create the equivalent elements. In

this way, the inputted models/logs are normalized to a common metamodel. After

decoupling Mirador operates exclusively with state-based artifacts until the middle

phases of the hybrid workflow.

Class DifferenceCalculator is used by the decouplers to compute the difference

between the base model and its left version, and between the base model and its right
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version. Two difference models, conforming to the MMD extended normal-form, are

constructed in the process. These are stored in a nonpersistent class of the repository.

The User Interface package supplies the models to be merged for normalization

to the Input subsystem through a facade interface. The input may come indirectly

from the Graphical Interface subsystem, or directly from the Command Line

Interface subsystem, on which the former relies. The two avenues are the same

as far as the Input subsystem is concerned. The subsystem also depends on tool-

specific variants of the ChangeOp, Element and Model classes that are part of

the Domain package.

6.3.2 Element Match

The middle lane of the activity diagram (Figure 48) addresses the matching of ele-

ments between the two difference models. It corresponds to the Match subsystem

seen in Figure 47. If the system is being run in batch mode, there is no interaction

between the subsystem and the User Interface. However, running in interactive
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mode results in a great deal of communication between the two.

The first thing the Match subsystem does is to measure the similarity between

all pairs of like elements across the difference models. The models themselves are

obtained from the Repository package. Each loaded MatchStrategy of the do-

main model is associated with a SimilarityEvaluator class, which is responsible for

actually conducting the similarity measurement for its strategy. A measure of overall

similarity is also made. This is the weighted sum of the individual measures for a

given model element pair. The weighting for each strategy may be set from either

the graphical or command line interfaces.

Model elements are paired automatically based on the selected strategy and a

minimum threshold value. The graphical interface allows for the automatic matching

to be refined by the user as much as desired. Any manually made or unmade matches

will not be undone by automatic matching, but must be explicitly released by the

user. The final pairings that result from the cycles of automatic and manual matching

are preserved with the match link of the domain model’s Element class.

6.3.3 Model Merge

It is the last partition (Figure 49) that manages the transition from state-based

to operation-based activity and back again. The front transition occurs with the

extraction of one set of change operations from each of the two difference models found

in the Repository. The extracted operations, along with the matching strategies

selected for the session, are used to populate the ChangeSpace of the domain model.

Testing for same-side commutativity with the decision table-driven before predicate

then imparts a partial order, based on their dependencies, to the changes. Recall that

change operations extracted from a well-formed, state-based model never conflict.
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The outcome of the extraction is two partially ordered operational traces of change

operations—one trace for each side. Application of the before predicate to the changes

of both of these traces produces yet another trace. This one is made up of cross-side

operations, partially ordered by their interdependencies, which may be contradictory.

The result is actually a merged transformation, because it is an ordered composition

of subtransformations from both sides. Change partitioning and ordering, as covered

in Subsection 4.3.2, along with table-driven resolution, are then used to automatically

reduce the number of conflicts and move any unresolved ones to the end of the trace.

Eliminating all conflicts usually requires manual resolution, which in interactive mode

is accomplished through the Graphical Interface subsystem.

Patching the base model with the operations of the merged transformation pro-

duces the final merged model. The product is a state-based model in the normal-form

and transitions the workflow back to the use of state-based artifacts. No MMD ele-

ments will be present in the merged model, because none exist in the base model, and

none are produced by execution of change operations—only by model differencing.

After patching, a textual report of the merge session is written out. Then the

Decouplers of the Abstraction subsystem are used in reverse to transform the

normal-form merged model into its equivalent in the original tool-specific form(s).
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This activity is drawn in the diagrams with a dashed line to indicate that Mirador

does not yet fully support this feature. Currently, all merged models are outputted

as Ecore models in an XMI format. While not ideal, this has nevertheless proven

sufficient for validating the idea of a hybrid merge workflow (Chapter 8).

With Mirador’s primary behavior expressed and key portions of the system ar-

chitecture explained, there is now sufficient context for giving some details of the

system’s design—the topic of the next chapter.
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Chapter 7

Mirador Features and Design

Highlights

This chapter functions as an abridged technical user’s guide by using scenarios of the

“Run Interactive Model Merge” (Subsection 6.2.2) and “Run Batch Model Merge”

(Appendix B) use cases to illustrate the runtime behavior of Mirador and introduce

several of its features. Over the course of the presentation, select design aspects

are also highlighted. Because they are loosely associated with the tool’s primary

subsystems, and reflect their internal workings, the main panels of the GUI will serve

to frame the discussion. Not having a GUI, batch mode is addressed separately.

The tool runs stand-alone on the Java 6, Standard Edition platform. When run-

ning in interactive mode, it is a graphical event-driven application that houses its

three main panels in a tabbed dialog. In batch mode, it runs as a command line-

driven application. Mirador may also be run interactively as a plug-in of the Fujaba

MDD tool suite [Fujaba, 2009].

7.1 A Running Merge Example

To better illustrate tool operation, a more involved and complete example than the

one given in Chapter 4 is defined here. It is a simplified version of the “HTML

Document” example used in [Cicchetti et al., 2007]. The class diagrams for the base,

left and right models to be input for merging are arranged in Figure 50 in the usual

configuration. The base model was created in Fujaba, after which the model file was
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Figure 50: Three-way merge of “HTML Document” running example

twice replicated, and the replicas, again using Fujaba, then modified. A Fujaba model

is, in reality, a change log maintained by the CoObRA (Concurrent Object Replication

frAmework) versioning software [Schneider et al., 2004] that tracks model changes as

a sequence of file records, grouped into transactions. So a Fujaba model is, in fact,

an operation-based artifact.

A comparison of the models in the example shows that the left Modeler has, in

no particular order:

• inserted class HTMLDocElem between the three original classes;

• made this new class the superclass for HTMLForm and HTMLList;

• pulled the name attribute and one of the add methods up into the new class;

• deleted all three associations and added two new ones; and

• renamed attribute sz to size.
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Meanwhile, the right Modeler has, also in arbitrary order:

• made class HTMLList a subclass of HTMLDoc;

• pulled up attribute name into the superclass;

• deleted name from both of the other classes—likely a mistake;

• changed association a3 to reference HTMLDoc;

• changed the type of script and removed the URL data type; and

• altered the lower bound of sz to 1.

What Mirador does with these three models when asked to merge the left and

right replica-versions is taken up in the remaining sections of the chapter.

7.2 Model Input Panel

When following the “Run Interactive Model Merge” scenario, Mirador opens up its

tabbed interface to show the panel of Figure 51. The interface suggests a linear

traversal order, but it is possible to move freely among the panels as long as their

preconditions are met (e.g., models must be loaded before moving off this panel).

Command line arguments and options, or a configuration file may be used to pre-

populate fields and set controls on the panels. The syntax is detailed in Appendix C.

The Merger enters or alters information in four sections of the panel. The topmost

section is where the file names and paths of the models to be merged are specified.

The names filling the fields in the screenshot are all operation-based Fujaba models.

Thanks to its decoupling, Mirador can actually load models of different MDE tools

into the same merge session.

The next panel section allows for selecting which matching strategies will be used

for establishing model element correspondence. This lets the Merger limit the com-

putational costs of matching to only those strategies that they wish to pay for. The

Merger may additionally elect to supply up to two of their own matching strategies

in the form of Java class files.
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Figure 51: Mirador Model Input Panel

The third section of the panel lets the Merger name a file containing match in-

formation saved from a previous merge session. The intent of this file is to impart

information about model matching circumstances that the Merger is aware of, but

which the tool is not. This will help Mirador to make match decisions that are more

likely to be correct, thereby streamlining the match process for the Merger.

The fields at the bottom of the screen let the Merger specify three decision table

definition files1 None are required, since Mirador has default versions, but they do

open up much of the tool’s operation to customization should that become desirable.

This capability gives organizations that deal primarily with models of a specialized

domain the opportunity to essentially create a custom model merging tool for their

domain by defining the rules that apply in that environment.

Pressing the Forward button will, assuming no errors are encountered, advance

the Merger to the next panel. Behind the scenes, the event also triggers a number of

actions: normalized equivalents of the named models are built; configuration files are

1The element matching table is not currently supported.
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read in and parsed; decision tables are constructed; and similarity evaluators for the

selected and user-supplied matching strategies instantiated.

7.2.1 Decoupling Models from their Originating Tools

Before starting work with the input models, Mirador converts them to conform to

Ecore [EMF Ecore Package, 2011], the state-based metamodel of the Eclipse Modeling

Framework. This corresponds to the Model Normalization phase of the hybrid work-

flow (Subsection 5.2.1). Ecore was chosen as the defining metamodel for Mirador’s

normal-form due to its widespread usage and relative simplicity. All models internal

to Mirador are instances of the normal-form, except for the difference models, which

instead conform to an extended normal-form. This form is extended in the sense that

it allows changes to a normal-form model to be represented within the model itself,

thus becoming first-class artifacts in their own right. The extended normal-form is

based on a difference metamodel that is described later. In the code, models of both

forms are created as objects of the type MiradorModel.

Model decoupling is accomplished by the Input subsystem (Figure 47). The

subsystem requires a dedicated module to do the conversion to normal-form for every

model type of interest. So far, two interfaces have been coded: one for EMF, a

state-based model type, and one for Fujaba, an operation-based model type. The key

classes for both interfaces are shown in the class diagram of Figure 52. More details

about the decouplers may be found in [Barrett et al., 2010b].

Instances of the ModelRepository hierarchy classes on the left side of the dia-

gram act as converters for the input models of the merge, and caches for its working

models. The abstract root has data members to hold six models: the normal-form

versions of the base, left, and right input models (names have been shortened to save

space); the left-minus-base and the right-minus-base difference models; and the yet

to be merged final model. The changes data member holds the change operations

that will be eventually extracted from the difference models.

The specialized classes of the hierarchy do the actual conversion of their model

types to the normal-form. For the EMFModelRepository, since its models are

already in normal-form by definition, this simply entails loading the model with its

loadEmfModel method, which essentially does a one-to-one mapping from elements
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ModelRepository
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Figure 52: EMF and Fujaba interfaces of the decoupling Input subsystem

of the model to classifiers of the metamodel. Other state-based interfaces would have

more complicated mappings.

The FujabaModelRepository has a much harder time of it. Its conversion

method, buildNormalModel, must first read and parse the lines of the Fujaba

model into Fujaba ChangeRecords and group them into ChangeTransactions

(Fujaba log record syntax is described in Appendix F). Then it must determine what

effect the action of each change record has on its targeted element, and, finally, map

these modified targets to the proper classifiers of the Ecore metamodel. This work is

supported by the Fujaba specific classes appearing to the right of the repositories in

Figure 52. A FujabaChangeRepository object functions as a scratchpad and an

intermediary between change records and the repository.

Many of the transactions in a Fujaba model have straightforward mappings. Take

the two CoObRA records shown here:

1 t;qHgwp#;inplace editing;1292857493253;-;;

2 c3;;i:DJJ3S#961;name;v::size;v::sz;-;i:qHgwp#;

The literal ‘t’ in the first, semicolon-delimited field of line #1 marks it as a trans-

action record. The second field contains its unique ID. The records that follow, up
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to the next transaction record or file end, belong to the same transaction. Line #2

is a change record (a leading ‘c’) that alters a field (a type ‘3’ change). It alters the

“name” field of element “DJJ3S#961,” which a search through the log file reveals

to be the UMLAttr metamodel object “sz” belonging to class HTMLList. The

record thus carries out the renaming by the left Modeler of attribute sz to size.

The mapping for the next transaction is a bit more challenging. The listed records

create the a2 association between HTMLDoc and HTMLList:

1 t;YXqW0#4F1;editAssoc;1287176266254;-;;

2 c1;;v::de.uni_paderborn.fujaba.uml.structure.UMLRole;i:YXqW0#5F1;-;i:YXqW0#4F1;

3 c1;;v::de.uni_paderborn.fujaba.uml.structure.UMLRole;i:YXqW0#6F1;-;i:YXqW0#4F1;

4 c1;;v::de.uni_paderborn.fujaba.uml.structure.UMLAssoc;i:YXqW0#7F1;-;i:YXqW0#4F1;

5 c3;;i:YXqW0#5F1;name;v::doc;-;-;i:YXqW0#4F1;

6 c3;;i:YXqW0#6F1;name;v::lists;-;-;i:YXqW0#4F1;

7 c3;;i:YXqW0#7F1;name;v::a2;-;-;i:YXqW0#4F1;

8 c3;;i:YXqW0#5F1;revLeftRole;i:YXqW0#7F1;-;-;i:YXqW0#4F1;

9 c3;;i:YXqW0#7F1;leftRole;i:YXqW0#5F1;-;-;i:YXqW0#4F1;

10 c3;;i:YXqW0#6F1;revRightRole;i:YXqW0#7F1;-;-;i:YXqW0#4F1;

11 c3;;i:YXqW0#7F1;rightRole;i:YXqW0#6F1;-;-;i:YXqW0#4F1;

12 c3;;i:YXqW0#5F1;adornment;v::2;v::0;-;i:YXqW0#4F1;

13 c3;;i:YXqW0#5F1;card;i:WnHJn#491;-;-;i:YXqW0#4F1;

14 c3;;i:qyd2E#E2;roles;i:YXqW0#5F1;-;-;i:YXqW0#4F1;

15 c3;;i:YXqW0#5F1;target;i:qyd2E#E2;-;-;i:YXqW0#4F1;

16 c3;;i:YXqW0#6F1;card;i:WnHJn#591;-;-;i:YXqW0#4F1;

17 c3;;i:qyd2E#E3;roles;i:YXqW0#6F1;-;-;i:YXqW0#4F1;

18 c3;;i:YXqW0#6F1;target;i:qyd2E#E3;-;-;i:YXqW0#4F1;

19 c3;;i:YXqW0#6F1;sortedComparator;v::;-;-;i:YXqW0#4F1;

20 c3;;i:YXqW0#5F1;sortedComparator;v::;-;-;i:YXqW0#4F1;

21 c3;;i:YXqW0#6F1;sortedComparator;-;v::;-;i:YXqW0#4F1;

22 c3;;i:qyd2E#B2;elements;i:YXqW0#7F1;-;-;i:YXqW0#4F1;

23 c3;;i:YXqW0#7F1;diagrams;i:qyd2E#B2;-;-;i:YXqW0#4F1;

After the transaction record in line #1, there are three create object change records

(type ‘1’ changes). The entities created are the Fujaba metamodel objects needed to

define an association. In order, they are: a left UMLRole, a right UMLRole, and a

UMLAssoc to link them. The records in lines #5-6 give these objects their names.

Most of the remaining records go into building the structure of metamodel objects

pictured on the left side of Figure 53. Intermixed with these records about the model,

are records about the model’s view in Fujaba. This is a common confounding source

of trouble for merge tools, as was brought out in Subsection 3.5.

To convert this operation-based transaction into its state-based normal-form, the

Fujaba interface of Mirador must map the Fujaba metamodel construct of Figure 53a
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UMLRole

-id : String = YXqW0#5F1
-name : String = doc
-adornment : Integer = 2

UMLAssoc

-id : String = YXqW0#7F1
-name : String = a2

UMLRole

-id : String = YXqW0#6F1
-name : String = lists

UMLClass

-id : String = qyd2E#E2
-name : String = HTMLDoc

UMLClass

-id : String = qyd2E#E3
-name : String = HTMLList

UMLCardinality

-id : String = WnHJn#491
-value : String = 0..1

UMLCardinality

-id : String = WnHJn#591
-value : String = 0..*

0..*

1..1

roles

target

0..*

1..1

roles

target

leftRole

revLeftRole

rightRole

revRightRole

card card

EReference

-id : String = YXqW0_5F1
-name : String = doc
-containment : Boolean = true
-upperBound : Integer = -1

EReference

-id : String = YXqW0_6F1
-name : String = lists

EClass

-id : String = qyd2E_E2
-name : String = HTMLDoc

EClass

-id : String = qyd2E_E3
-name : String = HTMLList

eType

eOpposite

eOpposite

eType

a) Fujaba b) Ecore

Figure 53: Mapping a Fujaba association to Ecore references

into the structure of Ecore metamodel objects in Figure 53b. The decoupling interface

must handle many such mappings, but that of association to reference is probably

the most complex. A limitation of using Ecore is that not everything can be mapped.

One example is visibility—Ecore has no means for expressing the concept.

7.2.2 Differencing Models and the Difference Metamodel

Once the models to be merged are expressed in the normal-form, it is possible to

calculate the difference of state between any two models of whatever origin. This

is the Model Differencing workflow phase. Its postions here in the application is a

result of GUI concerns, while its position in the workflow overview was driven by

considerations of reader comprehension.

Mirador takes differences between the left model and the base model, and the right

model and the common base. In a two-way merge, the base model would be empty.

Regardless, the results are two difference models expressed in the extended normal-

form. The extended normal-form is the Ecore metamodel (MM) augmented by a

slightly updated version of the difference metamodel (MMD) proposed by Cicchetti

et al. [2007]. The MMD enables capturing the differences between models as a first-

class artifact.

The MMD (left side of Figure 54) stipulates the derivation of three new types for

each element type of the MM. A model fragment from the running example, placed

on the right side of the figure, illustrates its usage. The appearance of MMD elements

in the fragment indicates that the model has been changed in some way. Specifically,
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Added

Deleted

Altered

MetaModel
Element

Difference
Metamodel

(MMD)

a3: AlteredEAttribute
name = script

a1: DeletedEAttribute
name = name

c1: EClass
name = HTMLForm

a2: EAttribute
name = script

eContainingClass

eStructuralFeature

eContainingClass
eStructuralFeature

updated

t1: AddedEDataType
name = String

t2: DeletedEDataType
name = URL

eType

eTypeinduces

updated

Figure 54: Difference metamodel and a differenced model fragment

class HTMLForm has had its name attribute removed and its script attribute’s

type switched from URL to String, which is shown to be a newly added data type.

In general, adding a new element X inserts a subclassed AddedX object into the

difference model; deleting an element Y removes it, but leaves a “ghost” DeletedY

object in the difference model; and changing an element creates an AlteredZ object

that is a copy of Z before it is updated, with a reference back to the original, but

now updated Z. Care must be taken regarding IDs when copying an altered element.

The ID of the copy must be changed so as to distinguish it from the original, but not

break its link to the original or lose it in the model. For instance, short of keeping a

special list, there is no way to find object a3 in the model, because Altered elements

are not referenced by any other elements. Mirador solves the problem by assigning

the copied object the original ID, but with a special character appended to it. Now,

given an ID to an MM object, the tool can locate its shadowy Altered companion

should one (there is never more than one) be present.

The end result is a representation, in one artifact, of the model state both before

and after being changed. The initial model consists of all the Altered and Deleted

MMD elements (a3, a1, t2), and any MM elements that are not referenced by an

updated association (c1), whereas the final model consists of all MM elements (c1, a2),

plus the Added MMD elements (t1). Everything in the final model is reachable from

the root node (c1 here), but reaching the initial model requires some sort of external

reference to the Altered MMD elements, such as the special IDs described above.

We have made two minor modifications to the difference metamodel. First, the
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«Interface»
MmdEElement

AddedEClass

+AddedClass()

«Interface»
AddedEElement

«Interface»
DeletedEElement

«Interface»
AlteredEElement

AlteredEClass

+AlteredClass()
+AlteredClass(src : EClass)

-updated : ENamedElement

DeletedEClass

+DeletedClass()

«Interface»
EClass

EClassImpl

Figure 55: MMD extension of EClass and added interface hierarchy

original Changed MMD metaclass was renamed to Altered to avoid confusion with

model change, change operation, etc. Second, a shallow copy constructor was added

to the Altered classes to ease building of the difference model. There is no need to

make a deep copy of an object, because either what it references has not changed or,

if changed, it will get its own Altered copy, and so on.

The MMD extension to the EClass MM type is shown in Figure 55, along with

a hierarchy of interfaces we have defined. The Ecore EClass is actually an interface

realized by class EClassImpl, from which its three MMD classes are derived. Each

of these types in turn, realize an interface specific to their function in the MMD,

which are themselves derived from an overarching interface for MMD elements. The

interfaces make for a cleaner and more polymorphic implementation. Every Ecore

meta-element has been given a comparable structure.

7.3 Element Match Panel

Step 5 of the “Run Interactive Model Merge” use case moves the Merger from the

Model Input Panel to the Element Match Panel seen in Figure 56. The left and right

models are shown as trees, which, while having the virtue of simplicity, emphasize the

ownership and containment relations of the models’ elements. Displaying the models
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Figure 56: Mirador Element Match Panel

as trees, also avoids conflating changes to the model with changes to its view.

Each tree node displays the name and ID of the model element it holds, along

with an icon that reveals its kind. Hovering over a node brings up a tooltip with more

information. Selecting an element in a tree will cause to be displayed in the table

directly beneath that tree all of the element’s possible matches (i.e., meta-elements

of the same type) found in the other tree. Each match candidate appears in the table

with measures of its similarity to the selected element—one measure for each loaded

matching strategy—and is ranked according to its score for the selected “Automatic

matching strategy.”

Up to seven strategies may be loaded, with the GUI dynamically adapting to

accommodate the necessary controls. Two of the strategies may be user-supplied

Java classes, and one a script written in the Epsilon Comparison Language (ECL)

[Kolovos, 2009]. The “by ID” strategy, however, is always loaded. The values of a

candidate’s individual strategy measures of similarity are used to compute an overall

similarity score for the candidate. The computation is a weighted distance function,
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in which the weight for each strategy is set through the controls running across the

top of the Element Matching Panel. Putting a strategy’s weight to zero effectively

removes it from consideration in the calculation.

The tables and trees may be synchronized so that selecting one of a paired element

in either tree (signified by grayed out nodes) will highlight its partner in the other

tree. Clicking on a candidate match in a table will highlight the referenced element

in the other table’s tree regardless of its paired status. Available elements may be

paired by selecting them and pressing the Match button. Likewise, a matched pair

may be broken apart by pressing Unmatch.

7.3.1 Comparing Models and Matching Elements

The model elements are matched upon panel entry based on their overall similarity

scores. An element is matched with its highest ranked available candidate that is at,

or above, the value in the “Matching similarity threshold” field. The Merger may

change the comparison method used for this purpose with the “Automatic matching

strategy” radio buttons, and can also alter the threshold value or strategy weights

used in the calculations. Changes to any of these controls will trigger a rematching,

which will respect any manual pairing or unpairing the Merger may have already done

in the session.

In the event of a matching ambiguity, the setting of the “Master side” radio

buttons comes into play. It specifies which model’s measure to use in those cases

where the similarities between two matchable elements are not symmetrical, i.e., the

left-to-right value is different than the right-to-left value. It is also used in merging

to resolve those conflicts in which the changes are in contradiction, because they do

the same thing, but only one needs to be executed.

The enlarged cutaway of Figure 57 gives a clearer view of the model trees and

the match candidates for the two highlighted tree elements. For this screenshot, the

only strategies assigned non-zero weights are “by ID” (0.2), “by Name” (0.7), and “by

Structure” (0.4). Accordingly, they are the only components that figure in calculating

the overall measures.

Most of the trees’ elements have been matched, as signified by their being grayed

out. Based on the overall measure—selected as the automatic matching strategy—the
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Figure 57: Element trees and candidate similarity tables for matched models

best match for HTMLDocElem is HTMLDoc, but its overall score is too low to

meet the specified threshold of 0.6. The “by name” strategy, however, would meet

the set threshold had it been picked as the automatic strategy. As it is, not sharing

the same ID has a weighted downward effect on overall similarity. The converse is

not true: if the IDs in a comparison are identical, the “by ID” value is passed straight

through, disregarding any weights. This is because matching on ID is unlikely to raise

false positives.

In the implementation, the Model Differencing phase comes before the Model

Comparison phase, and for this reason the trees of the panel display difference models,

hence the presence of MMD metaobjects in the trees. Matching is not affected by

whether model elements are MM or MMD meta-elements; either can be matched.

For instance, an MM element on one side may be matched with a {deleted} MMD

element on the other side.

The MMD elements reflect the evolution that the base model replicas have under-

gone. For example, on the left side, the HTMLDocElem class has been {added} to

the base, as have its members name, add and to add, as well as its reference doc,
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the opposite end of which has been {added} to HTMLDoc as elements. The name

attribute that is pulled-up into the new class is no longer found in HTMLForm, but

instead appears in the {altered} shadow class at the bottom of the tree as having been

{deleted}. The shadow class captures HTMLForm before it is updated to subclass

HTMLDocElem.

There are two means of extending Mirador’s element matching capabilities with

custom strategies. The easier way is to write a script in the Epsilon Comparison

Language to define rules by which model elements may be matched. The simple

(and somewhat pointless) script below has two rules: one for comparing packages

and another for comparing classes.

rule Match_Packages

match l : Left!EPackage with r : Right!EPackage {

compare : true

do {

matchInfo.put("mirador", 0.6);

}

}

rule Match_Class_Names

match l : Left!EClass with r : Right!EClass {

compare : l.name = r.name

do {

matchInfo.put("mirador", 0.7);

}

}

The first rule, Match_Packages, matches any package of the left model with any

package of the right model and returns a similarity measure of 0.6 through the spe-

cially defined mirador variable. Rule Match_Class_Names is a little more discriminat-

ing in that it actually tests to see if the class names are identical, returning 0.7 if they

are. For Mirador to find an ECL script, it must be named “mirador-evaluator.ecl”

and be located in a certain directory.

The more involved customization route is to create a Java class to be loaded as

one of the “by User” strategies. This requires creating a subclass of the abstract

SimilarityEvaluator class and overloading its evaluate method. The method re-

turns a normalized value that reflects the similarity between its two model element
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parameters. As an example, the code for the evaluate method of class IdEvaluator,

a particularly simple evaluator, is reproduced below.

/**

* Evaluates similarity of IDs from one model element to another. As measures

* are not always symmetrical, a direction of evaluation is implied by the

* arguments. The measure is a normalized representation of similarity.

*

* @param from_element Model element from which to measure.

* @param to_element Model element to which to measure.

* @return Normalized similarity: 0.0 = no similarity, 1.0 = identical

*/

@Override public float evaluate(EcoreExtra from_element, EcoreExtra to_element) {

float similarity;

// No gray area: either the IDs are identical, or they are not.

if (from_element.getId().equals(to_element.getId()))

similarity = 1.0f; // Same IDs; created in base model.

else

similarity = 0.0f; // Different IDs.

return similarity;

}

7.4 Model Merge Panel

The Model Merge Panel is entered at step 8 of the “Run Interactive Model Merge”

use case and is shown in Figure 58. The panel is divided into two sections. The upper

portion displays the current state of the merged model using the same tree structure

as in the Match Elements Panel. In this panel section, user interactions are limited

to getting model element details via tooltips, and expanding or collapsing tree nodes.

The lower section is used to direct the merge: it presents the change operations from

both sides of the merge and any conflicts there might be between them, knitted into

a single list and placed in a table. The Merger then uses the button group to the

right of the table to confirm or modify the actions proposed by this merge plan.

On panel entry, a ChangeOpPlane is constructed. Once built, this control

object orchestrates the tasks remaining to complete the merge, including: building

decision tables according to their default or loaded definitions, extracting change

111



Figure 58: Mirador Model Merge Panel

operations from the matched difference models of the preceding Element Match Panel,

partitioning and ordering the operations, and detecting and automatically resolving

conflicts. Before examining some of these behind-the-scenes activities, usage of the

panel is first explained.

Pressing the Finish button will cause the merged model to be patched with any

unexecuted changes that have been marked as accepted (< or >). This excludes any

changes that have been rejected or are involved in an unresolved conflict (X), and those

that could not be applied due to an inconsistency error (!). At this point, assuming

no Merger choices to the contrary, as many of the changes from both Modelers as

possible have been incorporated into the merged model. It is now ready to undergo

the denormalizing transformation, and to be saved in its original format(s).

7.4.1 Making Merge Decisions

When the panel first opens, its upper section is filled with a copy of the base model.

Since the base model is common to both replica-versions, this copy is, in fact, the
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Figure 59: Partially executed merge plan of proposed actions for running example

merge of the two models, before any Modeler changes have been made. Their changes,

both conflicting and otherwise, are arranged into a sequence according to intra- (i.e.,

same version) change and inter- (i.e., cross version) change dependencies, with con-

flicting change-pairs being pushed as far to the end as possible. Put into a table, this

list becomes the merge plan, which is then presented to the Merger for final approval.

Figure 59 is a close-up of the merge plan for the running example.

Pending Modeler changes are listed in the left and right columns of the merge

plan, respectively. The action Mirador proposes to take with regard to each change

operation is put in the middle column. The Merger can override the tool’s deci-

sion by highlighting a change and pressing one of the control buttons: “Accept” or

“Reject” for non-conflicting changes, and “Left”, “Right” or “Reject” for conflicting

ones. “Apply” will execute all changes up to and including the highlighted one, in

accordance with the proposed action.

Application of a change (i.e., a model transformation) patches the current version

of the merged model and updates its display to reflect any visible alterations. The

symbol of the change’s proposed action is in turn updated to indicate the outcome of

the execution. Execution stops if either an error or an unresolved conflict is encoun-

tered. It is possible to skip over these and apply any remaining changes, but there is

an increased likelihood of inconsistency errors. The symbols for action proposal and

execution status that may appear in the middle column are summarized here:
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Single and conflicting changes

< (>) - execute left (right) change

<< (>>) - left (right) change executed

! - error executing change

Single changes

X - change rejected

Conflicting changes

< > - execute both changes

<< >> - both changes executed

X - unresolved conflict

Executing both operations of a conflict can be done, but only if semantics are

take into account. For instance, if one side renames an attribute and the other makes

it static, there is no real conflict, even if one is detected, so both changes should be

executed. If automatic resolution marks both changes for application, it indicates that

conflict detection and conflict resolution rules are not operating at the same level. In

other words, the detection rules see a conflict because they are not looking as deeply

as the resolution rules. This difference in level, however, might be by design: flagging

a conflict, and then automatically resolving it brings the situation to the attention of

the Merger, who can then reverse the merge decision if desired.

The status markers in Figure 59 indicate that about half of the change operations

of the merge plan have been executed successfully. While the presentation is primitive,

it is still possible to trace the application of a change to its effect on the merged model

shown in Figure 60. From top to bottom, the applied changes of the plan (with ‘L’

and ‘R’ signifying the side) yield these effects on the model:

1. Change L, to add {deleted} removes the parameter from one of the add methods

of class HTMLForm.

2. L, HTMLDocElem {added} adds a new class to the merged model.

3. Changes L, add {added} and L, to add {added} insert the so-named method

and parameter into the new HTMLDocElem class, in that order.

4. L, lists:HTMLList {deleted} and L, doc:HTMLDoc {deleted} remove both sides

of bidirectional association a2.
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Figure 60: Merged running example after execution of 11 change operations

5. R, script {altered} replaces the attribute’s data type of URL with String.

6. L, name {added} pulls-up subclass attribute name into HTMLDocElem.

7. Since it is rejected, change R, URL {deleted} has no effect on the merge.

8. L, forms:HTMLForm {deleted} takes out half of the a1 link. The other half, L,

doc:HTMLDoc {deleted}, is a few changes lower in the plan.

9. Bidirectional association a4 is put into the merged model as two references with

L, elements:HTMLDocElem {added} and L, doc:HTMLDoc {added}.

The sequence of changes in a merge plan is only partially ordered. In some cases,

the reasons for the ordering are evident (e.g., creation of HTMLDocElem before

its name attribute), but in others it is arbitrary (e.g., lower bound of sz being set to

1 before being renamed). It is this relaxed ordering that lets Mirador move conflicts

towards the bottom of the list. The benefit is that the Merger can study a nearly

fully-formed merged model before having to make any decisions regarding conflict

resolution.
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Six conflicts appear at the end of the merge plan in Figure 59. Two have to do

with the name attributes of HTMLForm and HTMLList being deleted in order

to pull them up into HTMLDocElem on the left and HTMLDoc on the right.

The resolution rules recognize that the conflict concerns operation preconditions (the

second delete will have nothing to operate on), but also that executing only one of

the deletes will satisfy both changes without error. Consequently, the rules choose to

apply the delete operation of the conflicting pair that comes from the “master side”

of the merge (Subsection 7.3.1). This satisfies the intent of both changes, eliminates

the conflict, and does not corrupt the model. The removal of the unidirectional

a3 association on both sides causes another delete-delete conflict over its sublists

reference, which is handled in the same way.

There is one add-add conflict: a unidirectional association from HTMLForm

targeting a different class on each side, but with the same role name. This is certainly

a problem for code generation, but not so much for modeling things are not so clear

cut. If the associations are matched then it makes sense to consider the changes

as mutually exclusive and force a choice. If however, as in this case, they are not

matched, a more prudent course, as followed here, is to give the roles different names

and apply both changes. Of course, the modeler is free to reject this recommendation.

The changes being considered for attribute sz are actually non-overlapping, so

the proposal is to execute both. On the left, the name is being changed to size,

while on the right its lower limit is being set. As already mentioned, the nature of

these changes could have been determined during conflict detection and a conflict not

raised, but by flagging it and then automatically resolving it, the changes become

visually linked, clueing the Merger in to the changes, but not insisting on any action

on their part.

In the last conflict, class HTMLList is changed on the left to be derived from

HTMLDocElem, and on the right from HTMLDoc. Since no rules exist to decide

this situation, the conflict is marked as unresolved, and it is up to the Merger to

make the decision. Due to the large proportion of changes that have already been

applied by the time this point is reached, the Merger should have a relatively easy

time of making a call. For instance, knowing that HTMLDocElem is now part of

the model makes inheriting from it, rather than from HTMLDoc, a sensible choice.

We have been concentrating on the interactive path through the activity diagram
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of Figure 45. But the design documents another path, what Bendix et al. [2010] refer

to as batch merging. Both paths hit all phases of the hybrid workflow to perform a

merge, but batch mode bypasses the user input control interfaces of the comparison

and resolution phases. This allows Mirador to be used sans GUI, and still produce a

merged model and textual merge report.

The hallmark of batch mode is its ability to provide rapid feedback with little

user input, and its amenability to automation (e.g., scripts, job scheduling, text

analysis programs, etc.). Since decisions with regard to element matching and conflict

resolution are made by the tool instead of a human Merger, as in interactive mode,

unresolved conflicts may leave the outcome not fully merged.

Whereas interactive mode may accept arguments or options from the command

line, or through a configuration file, for batch mode passing data in this manner is

mandatory. For example, assuming that the class path is properly set up, starting

the running example in batch mode from the command line would look like this:

java ca.dsrg.mirador.Mirador -b -c=mirador.cfg

The “mirador.cfg” configuration file might contain something along these lines:

-d -mi=0.2 -mn=0.7 -ms=0.4 -me -u1=UserEvaluator1 -mt=0.6 // Options

-td=usr/table-before.ddf -tr=usr/table-resolve.ddf // Table definitions

html/base.ctr html/left.ctr html/right.ctr // Model files

Details about the Mirador invocation syntax and the format of its configuration

file are provided in Appendix C.

7.4.2 Merging on the Change Plane

The topic of this subsection is the algorithm for carrying out the actual merging of

model change operations, namely, the Operation Extraction, Conflict Detection, and

Conflict Resolution phases of the hybrid workflow, but without the manual inter-

vention discussed in the preceding subsection. The conceptual devices introduced in

Chapter 4 find realization in the algorithm’s code: the conflict matrix takes the form

of a collective of relation maps, one for each change operation; and the change plane,

as mentioned at the beginning of this section, is instantiated as an object of type

ChangeOpPlane.
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Being the platform upon which the final sequence of change operations is decided,

the change plane is central to Mirador’s operation-based merging. As such, its incar-

nation in the code is the driver of the algorithm, which is divided into five stages.

Each stage is invoked by one of the private methods of the change plane seen in

Figure 61 and described in the correspondingly titled paragraphs that follow.

Before starting the merge, ChangeOpPlane must build two DecisionTable

objects on which it depends: a before_table, which itself is composed of two linked

tables, and a resolve_table. The tables are constructed either from the default

definitions contained in the class itself or from external definition files loaded with

the Model Input panel or configuration options.

Operation Extraction

To replace state-based artifacts with operation-based ones requires knowing which

change operations were executed in modifying the replicas. Since this information is

destroyed by the state-based front-end of the hybrid workflow, the operations must

be extracted from the two difference models outputted by the Model Differencing

phase. The extractAtomicChangeOps method of ChangeOpPlane is used for this

purpose. Each operation extracted is initially recreated as one of three types of

AtomicChangeOp, which itself is an abstract subtype of class ChangeOp. The

other subtypes are covered in the algorithm stages that use them.

The subtypes of AtomicChangeOp correspond exactly to the similarly named

metaclasses of the difference metamodel, with a single object being constructed for

each such metamodel element found in either of the difference models. Each atomic

change object is linked to an Ecore ENamedElement that is the target of the

change. The referenced element may be one of several enumerated EcoreType tags:

PACKAGE, CLASS, ATTRIBUTE, OPERATION, PARAMETER, REFERENCE, or DATATYPE. If a

change happens to be of type AlterChangeOp, then it will also have an update

reference to the model element it alters. All this information may be directly obtained

from the difference model.

The outcomes from the stage are two lists of atomic change operations. The list

orders are a byproduct of the way the graphs of the difference models are traversed

and bear no resemblance to the original sequence of model changes. The place a
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«ennumeration»
Relation

0..*

relations

ChangeOp

+isAtomic() : boolean
+isComposite() : boolean
+isContradict() : boolean
+isBefore(to_test : ChangeOp) : boolean
+isConflict() : boolean

-merge_side : MergeSide

AtomicChangeOp

-etype : EcoreType

target

updated

CompositeChangeOp

-isCycle() : boolean

AddChangeOp DeleteChangeOp AlterChangeOp

ENamedElement

0..*

changes

ContradictChangeOp

+isComplex() : boolean
+isSimple() : boolean
+isResolved() : boolean
+addToPartition() : ContradictChangeOp

ConflictChangeOp

change_lf change_rt

ChangeOpPlane

-extractAtomicChangeOps() : void
-determineRelations() : void
-partitionChanges() : void
-resolveConflicts() : void
-orderChangeOps() : void
-isBefore(to_test1 : AtomicChangeOp, to_test2 : AtomicChangeOp) : boolean

-before_table : DecisionTable
-resolve_table : DecisionTable
-model_repo : ModelRepository

0..*

changes

changes_rt   0..*

changes_lf   0..*

Figure 61: Change operation class hierarchy

change will come to occupy in its list, and eventually in the merged operational trace

of both lists, is determined by examining its relationships with all the other changes.

Determine Change Relations

Every AtomicChangeOp tracks how it relates to the others in its own relations

map. The key for a particular atomic change’s map is the other changes it has a

relationship with. The value of each map entry is the nature of the relationship,

expressed as an enumerated Relation tag of either BEFORE, or CONFLICT. Changes

with which the map owner does not have one of these kinds of relationships will have

no entry in the map.

The determineRelations method uses the before predicate to establish the po-

sitional preferences of change operations, as explained in Subsection 4.3.1. The pred-

icate is implemented as method isBefore in class ChangeOpPlane. The method

tests the relative ordering of two atomic changes, returning true if the first claims

positional preference over the second. When testing a pair of changes, isBefore
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Figure 62: a) Change dependencies in blocks, b) non-exclusive conflicts, c) exclusive
conflicts using a composite block, d) with conflicts collapsed

makes use of before_table to determine the outcome. The table is broken into two

sub-tables: the first, before_same, is used to evaluate operations from the same side

of the merge, while the second, before_cross, is used to evaluate operations from

opposite sides of the merge.

Cross-side testing discovers a conflict when isBefore returns true for a pair of

operands no matter their order. The identification of all change operation relations

essentially creates a conflict matrix that is distributed across all the changes, rather

than kept in a single construct. By consulting this map, each AtomicChangeOp is

able to tell where it stands in relation to every other AtomicChangeOp, on either

side of the merge. ChangeOp.isBefore accesses the status of the test for a given

change; it does not actually conduct the test.

Partition Change Operations

The intent of method partitionChanges is to isolate the effects of conflicts on the

other changes. It does this by putting contradicting operations into mutually exclu-

sive blocks, as described in Subsection 4.3.2. Figure 62 reproduces the change cycle

example from that section. In part a, all of the model changes, which start the process

as AtomicChangeOp objects, are partitioned into their own blocks. Each block is

a CompositeChangeOp, which may be simple and contain only a single atomic

change, as in this case, or complex and contain other composites.

In Figure 62b, the conflicting pairs of composite objects are put into Contradict-

ChangeOp objects, and referenced through the change_lf and change_rt members.

The lower two contradicting change blocks, because they are not mutually exclusive,

are composed again in Figure 62c into another composite change object. This com-

posite block has a cycle, which isCycle is able to detect, and which is broken in
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part d by collapsing its conflicts. Below is the portion of the merge report outputted

by this stage when merging the changes of Figure 62. The curly braces indicate

a ContradictChangeOp, square brackets, a CompositeChangeOp, and an al-

phanumeric label, an AtomicChangeOp.

--- CHANGE OP PARTITIONS ---

1 { [ [L1] ], [ [R1] ] }

2 { [ [L2] ], [ [R3], [R2] ] }

Line #1 is a textual rendering of the upper block of Figure 62d, with its con-

stituents occupying the left and right composite changes of a contradicting change.

The components of the figure’s lower block are in line #2, where atomic change L2

is wrapped in a composite change, which in turn is inside the left composite change

of a contradicting change. Meanwhile, the atomic changes of the R3–R2 dependency

chain are also wrapped in composite changes, and grouped into the right compos-

ite change of the conflict. The lists of extracted operations have now been merged

into a single list of atomic, composite, and conflicting change operations having no

particular order.

Resolve Conflicts

The table-driven resolveConflicts method automatically reconciles any conflicts

that match one of the patterns defined by the rules of resolve_table. The conflicts of

the merged list received from the previous stage are evaluated one by one against this

table. Each evaluation returns an ActionSeq object—a sequence of TableAction

objects, which may be empty. If non-empty, each action of the sequences is executed,

and the conflict resolved.

Execution only selects which composite change of a conflict is to be applied to

the model; it does not apply the change. The enumerated MergeSide choices for

resolution are: NONE, BASE, LEFT, RIGHT and BOTH. The first signifies that the conflict

was not resolved, the second, that both changes of the conflict are to be ignored,

the next two, that the conflict has been resolved to the indicated side, and the last,

that both changes of the conflict are to be applied. In all but the first case, the

is_resolved flag of the conflict is set to true.
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The DecisionTable class contains definitions for four variations of abstract class

TableAction: do_left, do_right, do_master, and do_rename, which override the

do_action method to make their respective resolution choices. The first two make

the obvious choices, while an ActionSeq that contains the two of them will make

the BOTH choice. The third class runs one of the do_action methods of the other

two, depending on how the “Master side” radio buttons of the Element Match Panel

have been set. The last appends a “ lf” to the target of the left change and a “ rt”

to that of the right change. This allows Mirador to circumvent the duplicate element

problem, without discarding a potentially important change.

Order Change Operations

The last stage of the algorithm is almost anticlimactic. Since the changes have al-

ready been merged into a list of operations, and their conflicts resolved to the ex-

tent possible, the merge is, in a sense, a fait accompli. Nonetheless, the function of

orderChangeOps is vital to the outcome of the merge. It ensures that the merged

changes will not be used to patch the base model in an order that would violate any

of their dependencies. It also pushes out the frontier set, delaying the requirement

for the manual resolution of any remaining conflicts as long as possible.

A final ordering is done based on the relation map kept by each change. Taken

as a whole, the maps establish a graph of dependencies between the changes of the

list: any circular dependencies in the graph will have already been broken in the

partitioning stage, and any freedom found in the graph is exploited to move conflicts

as far down the list as possible, with the unresolved ones placed below the resolved

ones. Once detected, even if resolved, a conflicting pair of changes is kept together,

both to facilitate traceability and to allow overriding of the resolution choice.

The model merge is now complete. All that remains is to patch the base model

with the transformation outputted by the algorithm. In batch mode, the Model

Patching workflow phase would be executed directly, but in interactive mode, the

Merger is given the opportunity to examine, and possibly alter, the results of the

automatic resolution.
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7.4.3 Detecting and Resolving Conflicts with Tables

Decision tables provide an overview of control flow that is easier to understand and

review than code [Pooch, 1974], making for flexible and rapid program changes. In the

Determine Change Relations stage of the merge algorithm, tables direct dependency

discovery and conflict detection (i.e., before predicate evaluation), and for the Resolve

Conflicts stage, a table decides which side of a contradicting change operation to

execute. Three distinct user types are supported: the turnkey user who relies on the

built-in tables; the motivated user who tweaks table rules; and the practitioner of

“domain specific merging” who replaces the tables entirely with their own set.

Table Specification

Rather than use its built-in tables, Mirador can load user-specified tables from files.

One such file is shown in Figure 63. The main components are: conditions, actions,

and rules. The names of the [Conditions] section correspond to functions to be

evaluated, and those of the [Actions] section to procedures to be executed. [Table]

simply provides a name and delimits sub-tables in the same file.

Each column of desired condition outcomes forms a rule. Rules are evaluated

from left to right, and condition results from top to bottom. Evaluation ends when

a pattern is matched, or the rules have been exhausted. Conditions constitute the

table’s domain, restricting these to predicates gives a value range of true (‘Y’), false

(‘N’), or don’t care (‘-’). This makes the tables limited-entry types, meaning that the

rule mask technique can be used for pattern matching [King, 1966].

A rule selects a condition for testing by placing a ‘Y’ or an ‘N’ opposite the con-

dition’s name. Conditions with a ‘-’ are ignored. To satisfy a rule, all of its tested

conditions must return the expected value. Once satisfied, a rule fires, executing the

tagged procedures of the [Actions] section in the column directly beneath the rule,

in numerical order. Actions not to be executed are marked with a ‘0’.

Conflict Detection and the before Predicate

When applied to two changes, the before predicate of Lippe and van Oosterom [1992]

imposes an ordering if one operation must come before the other. While adequate

in preventing inconsistencies among operations on the same replica, before is lacking
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[Table]

before_same // Evaluates before(op1, op2) for same side change operations.

// +-------------- Element is added to a container that itself is added.

// | +----------- Added class element is target of an added reference.

// | | +-------- Element is deleted from a container that is deleted.

// | | | +----- Altered class subtypes added class.

// | | | | +-- Catch-all rule, invokes chained decision table.

// | | | | |

[Conditions] // Rule# 1 2 3 4 5

on_same_side - - - - N

op1_is_add Y Y - Y -

op1_is_delete - - Y - -

op1_is_alter - - - - -

op1_is_class - Y - Y -

op2_is_add Y Y - - -

op2_is_delete - - Y - -

op2_is_alter - - - Y -

op2_is_reference - Y - - -

op2_is_class - - - Y -

op1_contains_op2 Y - - - -

op2_contains_op1 - - Y - -

op2_is_ref_to_op1 - Y - - -

op2_subclasses_op1 - - - Y -

aux_match - - - - Y // Invokes auxiliary table, before cross.

[Actions]

do_true 1 1 1 1 1 // Put op1 before op2.

Figure 63: Decision table for evaluating before predicate same-side model changes

when it comes to working across replicas. This is because it is often the second

operation of a pair that will have the last word, so to speak, on the outcome. For

example, if two changes rename the same (i.e., matched) attribute, the second change

will prevail, making perhaps an after predicate more appropriate.

Rather than add a new predicate, we choose to keep the original one, but extend

its semantics somewhat. Instead of implying precedence, we interpret before to mean

that an operation has a preferred position with respect to another operation, or that

it has a contrary purpose. This interpretation avoids same-side inconsistencies, but

also raises cross-side conflicts when appropriate.

The before_same sub-table of the divided before_table is used by Mirador to

test same-side changes for ordering. All pairings of same-side operations, except the

mirror pairs, are evaluated against the sub-table’s rules. If a pair of operations happen

to satisfy a rule, the sole action, do_true will return a true value indicating that op1

claims positional preference over op2.

Rule 1 in Figure 63 ensures that op1 will be executed before op2 and prevent an

inconsistency, if the element added by the first change contains the element added by
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[Table]

before_cross // Evaluates before(op1, op2) for cross side change operations.

//

[Conditions] // Rule# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

elements_match Y Y Y Y N N Y Y Y - - - - - - - - Y N -

op1_is_add Y Y - Y - - - Y N - Y Y - - - - Y - Y -

op1_is_delete - - Y - Y - - - N Y - - Y Y - Y - Y - -

op1_is_alter - - - - - Y Y - N - - - - - Y - - - - -

op1_is_class - - - - - - - - - - - - - - - Y - - - -

op1_is_reference - - - - - - - - - - - - - - - - Y - Y -

op1_updates_match - - - - - Y - - - - - - - - - - - - - -

op2_is_add Y - Y - - - - N Y Y - Y - - - Y - - Y -

op2_is_delete - Y - - - Y - N - - Y - Y - Y - Y Y - -

op2_is_alter - - - Y Y - Y N - - - - - Y - - - - - -

op2_is_class - - - - - - - - - - - - - - - - Y - - -

op2_is_reference - - - - - - - - - - - - - - - Y - - Y -

op2_updates_match - - - - Y - - - - - - - - - - - - - - -

op1_contains_op2 - - - - - - - - - Y - Y Y Y - - - - - -

op2_contains_op1 - - - - - - - - - - Y - - - Y - - - - -

op1_is_ref_to_op2 - - - - - - - - - - - - - - - - Y - - -

op2_is_ref_to_op1 - - - - - - - - - - - - - - - Y - - - -

names_are_same - - - - - - - - - - - - - - - - - - Y -

containers_match Y - - - - - - - - - - - - - - - - - Y -

[Actions]

do_true 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

do_false 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 64: Decision table for evaluating before predicate cross-side model changes

the second. Similarly, rule 2 fires if the class being added by op1 is the target of the

reference added by op2. Rule 3 is effectively the reverse of rule 1: op1 is before op2 if

both targets are being deleted and the first target is contained by the second. Rule 4

was added to handle the subclassing of a newly added class, as done in the running

example. Note that there is no need to test on_same_side for these rules because

it is implied by the nature of the tested conditions—there can be no containment,

reference or inheritance across models.

As the right-most rule is the last one tested, it can be used as a default, or catch-

all, rule. Thus, all cross-side pairs will fire rule 5, testing condition aux_match, which

is not a condition at all, but, rather a jump to the auxiliary before_cross sub-table

that contains the rules for cross-side testing (Figure 64). This table chaining makes

it possible to modularize the tables, and can be extended to any depth. A wise

precaution is to add an error checking subtable to the end of any chain. This way,

situations that do not fire an earlier rule will fire one of the rules of the error subtable,

or a final rule of all don’t care conditions. Two actions available for dealing with this

eventuality are do_assert and do_throw.
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Although more complex, the cross-side table works in the same manner as the

same-side table, except its conditions are applicable to cross model situations. For

instance, two matched elements being added to the same container element will fire

rule 1, tagging op1 as being before op2. If the reverse is also true, a conflict exists

between the two. The do_false action of default rule 20 marks a change pair as not

being dependent.

Conflict Resolution

Once the change operations have been extracted from the difference models and

put into a single list, the models are essentially merged. All that remains is to

resolve the key conflicts and order the results. Mirador uses a resolve_table to

make resolution decisions. The listing of a specification file for this table is given in

Figure 65. Automatic conflict resolution of the running example with this table will

output the following merge report lines.

--- AUTO RESOLVING CONFLICTS ---

1 [ [sublists:HTMLList {deleted} (WN3I6_223,L)] ] [3:do_master <]

[ [sublists:HTMLList {deleted} (WN3I6_223,R)] ]

2 [ [sz {altered} (DJJ3S_961_,L)] ] [4:do_left < 4:do_right >]

[ [sz {altered} (DJJ3S_961_,R)] ]

3 [ [sublists:HTMLDocElem {added} (Fu6CN_D25,L)] ]

[1:do_rename <> 1:do_left < 1:do_right >]

[ [sublists_rt:HTMLDoc {added} (c3AjT_8,R)] ]

4 [ [HTMLList {altered} (qyd2E_E3_,L)] ] [6:do_false X]

[ [HTMLList {altered} (qyd2E_E3_,R)] ]

5 [ [name {deleted} (DJJ3S_861,L)] ] [3:do_master <]

[ [name {deleted} (DJJ3S_861,R)] ]

6 [ [name {deleted} (qyd2E_35,L)] ] [3:do_master <]

[ [name {deleted} (qyd2E_35,R)] ]

The report shows that the delete-delete conflicts of lines 1, 5 and 6 are resolved by

rule 3 invoking the do_master action, which elects, based on the user-settable “Master

side” option of the Element Match Panel, to apply the left side of the conflicts. Line 2

finds, through rule 4 testing the update_same_property condition, that the changes

being made to attribute sz do not overlap, and therefore can both be applied using

actions do_left and do_right. The outcome is similar for line 3: associations added
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[Table]

resolve // Executes resolve(conflict_block)

[Conditions] // Rule# 1 2 3 4 5 6

conflict_is_simple Y Y Y Y Y -

conflicts_match N - - - - -

left_is_add Y Y - - - -

left_is_delete - - Y - - -

left_is_alter - - - Y Y -

right_is_add Y Y - - - -

right_is_delete - - Y - - -

right_is_alter - - - Y Y -

updates_are_equal - Y - - Y -

update_same_property - - - N - -

conflict_with_name Y - - - - -

[Actions]

do_rename 1 0 0 0 0 0 // Rename conflicting objects

do_master 0 1 1 0 1 0 // Execute master side change

do_left 2 0 0 1 0 0 // Execute left side change

do_right 3 0 0 2 0 0 // Execute right side change

do_false 0 0 0 0 0 1 // Signify conflict is unresolved

Figure 65: Decision table for resolving cross-side model change conflicts

to class HTMLForm target different elements, but use the same role name. Since

the associations were not matched, resolution wants to keep them both, but doing so

will result in an invalid model. Rule 1 solves the problem by running do_rename to

give the elements slightly different names, before executing do_left and do_right.

Line 4 reports that deriving HTMLList from different superclasses does not match

any rule of table resolve other than the catch-all rule 6, which returns false to signify

that the conflict was not resolved and that a user decision is required.

Customizing Rules, Conditions and Actions

By making decision table definitions accessible, Mirador opens up its conflict handling

to modification. However, it can be tricky to get things right. Rule 5 and 6 of table

before_cross offer a case in point: they work in tandem to properly raise a conflict.

If, when evaluating before(op1, op2), it is found that op1 deletes an element that op2

is attempting to alter, rule 5 will fire, returning true. Then, when the evaluation

is run in reverse, before(op2, op1), the same situation will cause rule 6 to fire and a

conflict will be detected. Without both rules, the conflict would be missed and the

element would be deleted, with the work done on the other side being lost.

It is also possible to add a new table condition or action to the Java code for use in

any table. This involves either defining and instantiating a TableCondition object
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in which the testCondition method has been overridden to perform the desired test,

or a TableAction object that overrides doAction to take the appropriate measures

in response to the firing of a rule. The new objects must then be registered with the

DecisionTable class and provided with labels to identify them to the parser.

The most effective way to extend the tables with custom conditions and actions

is to specialize their relevant method using an anonymous inner class, as the code

fragments below, for the on_same_side condition and do_true action, illustrate.

/** Decision condition to test for changes on same side of merge. */

public TableCondition on_same_side =

new TableCondition("on_same_side", new ConditionTest() {

@Override public boolean testCondition(Object... objs) {

return ((AtomicChangeOp) objs[0]).getMergeSide()

== ((AtomicChangeOp) objs[1]).getMergeSide();

}

});

/** Decision action simply sets return code of result object to true. */

public TableAction do_true = new TableAction("do_true") {

@Override public boolean doAction(ActionSet steps, Object... objs) {

steps.setMergeSide(MergeSide.BASE);

steps.setResult(Tristate.TRUE);

return true;

}

};
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Chapter 8

Validation

Validation of this research concentrates on two distinct aspects: the viability of the

proposed approach to model merging, and the ease of performing a reasonable merge.

The successful implementation of Mirador provides the primary evidence for the ap-

proach’s viability. As for ease of use, a series of merge test cases are used to exercise

Mirador and another tool. The resulting merge sessions are then treated as case

studies for analysis, with the relevant portions being compared and contrasted.

8.1 Hybrid Workflow Viability

The Mirador prototype is evidence of the viability of the hybrid merge workflow. Mir-

ador’s components are able to implement the transforming filters of the architecture

depicted in Figure 40 and succinctly expressed by the accompanying algebra. The

merging tool also manages to integrate the filters into a fully functioning whole. Even

cross-tool merges have been successfully executed by the prototype.

One of the strongest features of the workflow is its ability to deal with models

from multiple tools. Ironically, this is also its weakest link. The complexity of the

Model Normalization and Model Denormalization phases exact a price. While Mir-

ador proves that the necessary code can be written, the process is difficult; it must

be carried out for both of the phases, for every modeling tool Mirador is expected to

handle. The mitigating factor is that it need be done only once per tool.

Evaluation of the merge test cases used to exercise Mirador in the sections that
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follow also validate the workflow. They demonstrate that the tool is indeed capa-

ble of performing reasonable merges. Going deeper, they validate several individual

phases of the workflow, both by comparing the likeness of their outcomes to those

of a respected MDE tool, and by contrasting differences in the same, justified with

arguments from user experience and expectations.

Admittedly, the workflow, its pipe and filter architecture, and the merge algebra

are descriptive, rather than prescriptive. They have emerged from a system that, as

is the nature of prototypes, evolved from the ground up. Clearly, the design could be

better, the separation of phases cleaner, and the application more robust. Still, these

valid concerns notwithstanding, nothing has come to light during our experimentation

with, and observations of, the hybrid merge workflow to suggest that the approach is

anything but viable.

8.2 Primitive Evaluation Cases

This section revisits the primitive evaluation cases used in Chapter 3 to highlight

model merging problems with existing MDE tools. Only two tools will be considered

here: Mirador and version 8.01 of IBM Rational Software Architect (the latest version

at the time of writing). Rather than focus on the merged outcomes, as was done

previously, here the emphasize will be on the merge sessions engendered by each tool

and the ensuing user experience.

The experiences of a user are important, because bad experiences will in general

lead to bad results, and eventually make merging something to be avoided at all costs,

diminishing the benefits to be derived from model-driven engineering. User experience

is also important, because in many ways, it is the only means of comparing merge

tool performance. Objectively comparing the results of tools that rely heavily on user

input can be difficult, especially if the tools differ as widely in their construction and

behavior as Mirador and RSA.

8.2.1 Methodology

For each evaluation case, the three models involved in the merge will be shown in a

screenshot of the RSA model comparison window (e.g., Figure 66). The arrangement
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is the same as that used in Section 3.2: base model at the top, left and right models

below and to either side. The models are shown as trees of model elements, though

RSA, which has impressive graphics, can also display them as class diagrams.

Two additional panels appear between the replica-versions; these contain the re-

spective ancestors of the left and right models. Since both replicas came from the

same source and no changes have yet been applied to the base model, the models

pictured in the ancestor panels and the base panel are identical. The panel at the

upper left is a tabbed dialog that displays the conflicts RSA has detected or either of

the sets of changes made by the Modelers.

The merge test cases will not be run to completion in RSA, since, with suitable user

selections, any of the possible outcomes can be obtained. Instead, the presentation

and the choices it offers will be scrutinized. However, with Mirador, which offers an

unguided batch mode, the merge will be run to completion. The merged result out

of Mirador and its merge report will then be examined, and the comparable aspects

contrasted with those of RSA in order to draw out distinctions.

For all the merges that follow, Mirador was set to use the “by ID” matching

strategy with a weight of 0.2 and the “by Name” strategy with a weight of 0.7. A

matching threshold of 0.6 was selected. The merges were run in batch mode, so there

was no opportunity to sway the results through user interaction.

8.2.2 Add Same Class

In the “add same class” case, both Modelers add a class B to the base design. The

replica-versions are shown in Figure 66, after modification in RSA. The merged model,

shown before application of any changes, is identical to the base model.

Even though the new classes do not share the same ID, RSA matches them as

being the same element (an improvement over version 7). This matching is the cause

of the contradicting changes seen in the conflict panel. If the Merger does not elect

to ignore both changes, they must select one of these alternatives: either add class B,

or add class B(!). Since the tool has decided that the elements are the same element,

and since, in this instance, they happen to be identical, why is the choice of which

class B to accept offered at all?

Nonetheless, RSA’s conclusion is the correct one, if the classes are indeed the
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Figure 66: “Add same class” case being merged in Rational Software Architect

same element. But what if the two classes are not the same element, but just happen

to share the same name? Then, not only has RSA imposed a choice on us that is

no choice at all, it also prevents us from doing what we desire—to add both classes.

Like most tools, there are no provisions in RSA to undo a match, or to apply both

changes of what it considers to be a conflict, both of which Mirador allows. We will

come across this situation several times in the case studies.

Part of the Mirador merge report for the primitive appears below. The first

section reveals that Mirador has detected the same conflict as RSA and for the same

reason—identical names. However, because Mirador does a recursive analysis of the

element(s) involved in a conflict, it notices what RSA does not—that the elements

being added are, in fact, identical. Further, it recognizes that it can resolve the

conflict by arbitrarily choosing one of the changes. This it promptly does, taking the

change from the “master” side (with left being the default).

For ordering purposes, the conflicting (but since resolved) changes of the primitive

are combined in the next section, into a single ContradictChangeOp (curly braces)
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composed of a left and a right CompositeChangeOp (square brackets). Resolution

leaves only one non-conflicting change of the pair to apply to the base model. This

is what the third section of the report shows as occurring. The final section of the

report lists the elements of the resulting merged model in a hierarchical fashion—a

root package containing one A class and one B class.

--- AUTO RESOLVING CONFLICTS ---

[ [B {added} (C1CIm_9C,L)] ] [1:do_master <] [ [B {added} (qrJNI_9C,R)] ]

--- ORDERED & RESOLVED CHANGE OPS ---

{ [ [B {added} (C1CIm_9C,L)] ], [ [B {added} (qrJNI_9C,R)] ] }

--- APPLIED CHANGE OPS ---

[ [B {added} (C1CIm_9C,L)] ] << [ [B {added} (qrJNI_9C,R)] ]

--- MERGED MODEL ---

add-same-class - ARjm5_92:EPackage

A - ARjm5_D2:EClass

B - C1CIm_9C:AddedEClass

Mirador’s automatic outcome for this evaluation case is perfectly reasonable. The

criticism made of RSA with regard to the classes possibly representing different model

entities also applies here. The differences with Mirador are that, on the one hand,

interactive mode makes it possible to override the matching of the two elements, and,

on the other hand, the use of additional matching strategies (e.g., “by Structure” in a

model that actually has some structure) might not have matched the elements in the

first place. In both these cases, two B classes would have been automatically made

part of the merged model, which another table action could rename.

8.2.3 Add Different Classes

Primitive “add different class” is the same as the last case, except the names of the

added classes are not the same. The screenshot in Figure 67 gives the names of the

new classes as L and R. In this test, RSA rightly does not detect any conflicts. With

no conflicts to resolve, the Merger must still make merge decisions (reject or accept)

concerning the changes listed in the two change panels. The panel in the figure shows

the addition of class L on the left; the right panel, adding class R, is similar.

The panel contents are a bit busy—one change by the left Modeler has generated

three changes for the Merger to deal with. If a trivial change can result in this sort of
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Figure 67: “Add different classes” case being merged in Rational Software Architect

clutter, what is the potential for real changes made to a sizeable model? To be fair,

two of the changes are actually the same change being shown twice in the tree: once

in the “Model view” branch and again in the “Diagram view” branch. So, in reality,

this single model change has become not three, but only two changes.

MDE tools must create models (the model) and necessarily, diagrams (the view).

While some tools blur the distinction between the two, RSA is not one of them.

Despite initial appearances, it goes to some lengths to keep them separate. Breaking

each change of the test case into two changes—one to add a class to the model and

the other to add it to the view—is an example of maintaining this separation.

With the appropriate use of filters, RSA makes it possible to hide changes that

concern only the view, thereby eliminating a great deal of the cognitive merging noise

we first complained about in [Barrett et al., 2008]. Filtering, combined with RSA’s

separation of model and view changes, frees the Merger to concentrate on only the

model, without concern for the view. It is not possible to work in the other direction,

i.e., nothing exists in the view until it has been added to the model first. This is an
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entirely sensible restriction.

Mirador, because it only merges models at this time, does not have to worry about

the complicating factors brought on by views. Batch execution of the “add different

class” primitive yields the following merge report.

--- AUTO RESOLVING CONFLICTS ---

--- ORDERED & RESOLVED CHANGE OPS ---

R {added} (qrJNI_9C,R)

L {added} (C1CIm_9C,L)

--- APPLIED CHANGE OPS ---

>> R {added} (qrJNI_9C,R)

L {added} (C1CIm_9C,L) <<

--- MERGED MODEL ---

add-diff-class - ARjm5_92:EPackage

A - ARjm5_D2:EClass

R - qrJNI_9C:AddedEClass

L - C1CIm_9C:AddedEClass

As in RSA, no conflicts are detected. Accordingly, preservation of non-conflicting

changes will result in the base model copy being patched with both changes to produce

a model containing an L class and an R class. Again, this is a perfectly reasonable

outcome for Mirador’s automatic merging.

8.2.4 Rename Class

The last primitive evaluation case is summarized by Figure 68: class A of the base

model has been renamed AL in the left version and AR in the right version. RSA

is unable to offer any help with regard to this test case. It can correctly detect that

both replica-versions trying to rename the same element is a conflict, but it must

hand resolution over to the Merger.

A similar chain of events occurs in Mirador: it detects the same rename conflict,

for which no resolution rules exist. Since the only change to be applied to the merged

model in this test would be the outcome of the, as yet, unresolved conflict, nothing

is applied, and the merged model remains the same as the base model from which it

was replicated.

--- AUTO RESOLVING CONFLICTS ---
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Figure 68: “Rename class” case being merged in Rational Software Architect

[ [A {altered} (ARjm5_D2_,L)] ] [5:do_false X] [ [A {altered} (ARjm5_D2_,R)] ]

--- ORDERED & RESOLVED CHANGE OPS ---

{ [ [A {altered} (ARjm5_D2_,L)] ], [ [A {altered} (ARjm5_D2_,R)] ] }

--- APPLIED CHANGE OPS ---

[ [A {altered} (ARjm5_D2_,L)] ] X [ [A {altered} (ARjm5_D2_,R)] ]

--- MERGED MODEL ---

add-diff-class - ARjm5_92:EPackage

A - ARjm5_D2:EClass

The only noteworthy difference between the tools with respect to this primitive

is that a user of Mirador could conceivably devise a rule that would automatically

resolve class naming conflicts (or any other kind of conflict, for that matter). While

not likely to be applicable in circumstances as simple as these, it is not too difficult

to imagine that changes made to more complicated, domain- or organization-specific

models could fall under the coverage of such a specialized rule. For instance, the rule

might be: resolve naming conflicts by selecting the change with the name that ends

with a camel-case phrase most closely reflecting the name of the element’s subsystem.
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Figure 69: Versions of “HTML Document” model in Rational Software Architect

8.3 Involved Evaluation Case

The model evolution pyramid for the “HTML Document” running example, as ren-

dered by IBM Rational Software Architect, is pictured in Figure 69. The screenshot

captures both the element tree and UML views of the model versions. The changes

made by each Modeler are the ones enumerated in Section 7.1 and will not be repeated

here, except to note two changes not apparent in the class diagrams but revealed by

the right tree: the disappearance of class URL from package java.net, and the

establishment of a lower bound of 1 for attribute sz (renamed size on the left).

Instead of relying on screenshots, as in the previous section, for this evaluation

case we construct tables from the logs produced by the two applications over the

course of their respective merge sessions. For RSA, diagram changes were filtered out

of the log prior to saving. Readers interested in seeing the screens generated by RSA

for the case are referred to Appendix D.
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Table 3: Left “HTML Document” changes in Rational Software Architect
RL# Left Changes (16 of 28)

1 Add elements<Property> to HTMLDoc<Class>.ownedAttribute
2 Add <Generalization> to HTMLList<Class>.generalization
3 Add <Generalization> to HTMLForm<Class>.generalization
4 Add sublists<Property> to HTMLForm<Class>.ownedAttribute
5 Add HTMLDocElem<Class> to PIM<Model>.packagedElement
6 Add a5<Association> to PIM<Model>.packagedElement
7 Add a4<Association> to PIM<Model>.packagedElement
8 Delete name<Property> from HTMLList<Class>.ownedAttribute
9 Modify sz<Property>.name : String from “sz” to “size”

10 Delete add<Operation> from HTMLList<Class>.ownedOperation
11 Delete sublists<Property> from HTMLForm<Class>.ownedAttribute
12 Delete name<Property> from HTMLForm<Class>.ownedAttribute
13 Delete add<Operation> from HTMLForm<Class>.ownedOperation
14 Delete a1<Association> from PIM<Model>.packagedElement
15 Delete a2<Association> from PIM<Model>.packagedElement
16 Delete a3<Association> from PIM<Model>.packagedElement

Table 4: Right “HTML Document” changes in Rational Software Architect
RR# Right Changes (12 of 36)

1 Add name<Property> to HTMLDoc<Class>.ownedAttribute
2 Add <Generalization> to HTMLList<Class>.generalization
3 Add <Literal Integer> to sz<Property>.lowerValue
4 Add [reference] String<Primitive Type> to script<Property>.type
5 Add sublists<Property> to HTMLForm<Class>.ownedAttribute
6 Add a3<Association> to PIM<Model>.packagedElement
7 Delete name<Property> from HTMLList<Class>.ownedAttribute
8 Delete sublists<Property> from HTMLForm<Class>.ownedAttribute
9 Delete name<Property> from HTMLForm<Class>.ownedAttribute

10 Delete [reference] �reference� URL<Class> from script<Property>.type
11 Delete a3<Association> from PIM<Model>.packagedElement
12 Delete �reference�java.net.URL<Class> from net<Package>.packagedElement

Tables 3 and 4 hold the changes RSA considers to have been made to the left

and right models, respectively. The change counts in the headings reflect that the

many diagram changes not germane to the scope of this research have been filtered

out. The Mirador merge plan—containing all changes and conflicts—for case “HTML

Document” appears in Table 5. (For fit, “HTML” has been shortened to “H”.)

The mapping between the changes of the RSA and Mirador tables is laid out in

Table 6. The changes have been grouped by major model element to make them

easier to grasp. Changes that conflict are underlined: for Mirador, since the changes

are ordered, conflicting pairs have the same number, but not so for RSA, instead, the

conflict for a particular change must be read from Table 7 (e.g., according to entry
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Table 5: “HTML Document” merge plan of changes and conflicts in Mirador
M# Left (21 of 21) Right (9 of 9)

1 to add {deleted} (qyd2E A4) <
2 HDocElem {added} (sCE3W 4B4) <
3 add {added} (sCE3W 0C4) <
4 to add {added} (sCE3W 1C4) <
5 lists:HList {deleted} (YXqW0 6F1) <
6 doc:HDoc {deleted} (YXqW0 5F1) <
7 > script {altered} (DJJ3S 661 )
8 name {added} (sCE3W DB4) <
9 > URL {deleted} (McEU4 76)

10 forms:HForm {deleted} (WnHJn 291) <
11 elements:HDocElem {added} (Fu6CN B15) <
12 doc:HDoc {added} (Fu6CN A15) <
13 to add {deleted} (qyd2E 15) <
14 doc:HDoc {deleted} (WnHJn 191) <
15 add {deleted} (qyd2E 94) <
16 HForm {altered} (qyd2E 63 ) <
17 add {deleted} (qyd2E 05) <
18 > name {added} (c3AjT 11)
19 name {deleted} (qyd2E 35) < name {deleted} (qyd2E 35)
20 sublists:HDocElem {added} (Fu6CN D25) <> sublists:HDoc {added} (c3AjT 8)
21 sz {altered} (DJJ3S 961 ) <> sz {altered} (DJJ3S 961 )
22 name {deleted} (DJJ3S 861) < name {deleted} (DJJ3S 861)
23 sublists:HList {deleted} (WN3I6 23) < sublists:HList {deleted} (WN3I6 23)
24 HList {altered} (qyd2E E3 ) × HList {altered} (qyd2E E3 )

RC24, left RSA change RL12 conflicts with right change RR9).

Many of the mappings are obvious, for instance, the addition on the left of class

HTMLDocElem by change #5 in RSA (RL5) maps to Mirador change #2 (M2),

which does the same element addition. As Mirador’s merge report is somewhat spar-

ing of detail, other mappings can require some investigation to work out, e.g., the

deletion of attribute HTMLList.name in RSA by change RR7 maps—by entity ID—

to Mirador M22, and not M19, which deletes HTMLForm.name.

Mapping a few types of changes, especially those regarding associations, requires

taking metamodel clashes into account. Out of the box, RSA, which is based on

Eclipse, conforms to Eclipse’s UML2 metamodel. A UML2 association consists of an

Association metaobject, along with a property in each of the linked metaobjects to

hold the role name of its end of the association. Mirador uses the Ecore metamodel,

which constructs an association out of one or two—depending on whether uni- or

bidirectional—EReference metaobjects. Because of this, RSA requires only one

change (RL14) to remove association a1 from the base model. Mirador, however,
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Table 6: “HTML Document” change mapping between RSA and Mirador
Mirador RSA Model Change Action

M# RL# RR#
18 1 Add attribute name to HTMLDoc

2 5 Add class HTMLDocElem
3 5 Add operation add to HTMLDocElem
4 5 Add parameter to_add to operation add in HTMLDocElem
8 5 Add attribute name to HTMLDocElem
1 13 Delete parameter to_add from operation add in HTMLForm
15 13 Delete operation add from HTMLForm
16 3 Generalize HTMLForm from HTMLDocElem
19 12 Delete attribute name from HTMLForm

19 9 Delete attribute name from HTMLForm
21 9 Change attribute sz to size in HTMLForm

21 3 Change lower bound of attribute sz to 1 in HTMLForm
7 10,4 Change attribute script type to String in HTMLList

13 10 Delete parameter to_add from operation add in HTMLList
17 10 Delete operation add in HTMLList
22 8 Delete attribute name from HTMLList

22 7 Delete attribute name from HTMLList
24 2 Generalize HTMLList from HTMLDocElem

24 2 Generalize HTMLList from HTMLDoc
9 12 Delete class URL

5,6 15 Delete association a2, roles doc and lists
12,11 1,7 Add association a4, roles doc and elements
14,10 14 Delete association a1, roles doc and forms

20 4,6 Add association a5, roles form and sublists (unidir.)
20 5,6 Add association a3, roles form and sublists (unidir.)

23 11,16 Delete association a3, roles form and sublists (unidir.)
23 8,11 Delete association a3, roles form and sublists (unidir.)

takes two separate changes (M10 and M14) to accomplish the same thing.

Some Mirador changes map to the same RSA change, e.g., RSA bundles all of

the changes made to HTMLDocElem (M2, M3, M4 and M8) into change RL5,

which adds the class to the model. The one added (M4) and two deleted operation

parameters (M1 and M13) are treated by RSA in the same way. This bundling of

contained model entities reduces the number of changes, but with some loss of change

granularity. This does not matter much for deletion (the parameters need to go if

their operation is being deleted), but for addition it might. For instance, it would

not be possible to accept an added class from one side while accepting an attribute

added to its matched class on the other side.

As for conflicts, Mirador detects the six shown in the last rows of its merge plan.

The resolution decision table recognizes that the three matched, delete-delete changes
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Table 7: “HTML Document” conflicts in Rational Software Architect
RC# Conflicts (27)
1-11 Conflicting Modification and Deletion
12 Conflicting Modification

13-15 Conflicting Modification and Deletion
16 Conflicting Deletes

Delete [View] (HTMLDoc<Class>)(HTMLList<Class>)a3<Association>
Delete [View] (HTMLDoc<Class>)(HTMLList<Class>)a3<Association>

17 Conflicting Modification and Deletion
Delete [View] (HTMLDoc<Class>)(HTMLList<Class>)a3<Association>
Modify <Location>.y : EInt from -869 to -974

18-22 Conflicting Modification and Deletion
23 Conflicting Deletes

RL8 Delete name<Property> from HTMLList<Class>.ownedAttribute
RR7 Delete name<Property> from HTMLList<Class>.ownedAttribute

24 Conflicting Deletes
RL12 Delete name<Property> from HTMLForm<Class>.ownedAttribute
RR9 Delete name<Property> from HTMLForm<Class>.ownedAttribute

25 Conflicting Deletes
RL11 Delete sublists<Property> from HTMLForm<Class>.ownedAttribute
RR8 Delete sublists<Property> from HTMLForm<Class>.ownedAttribute

26 Conflicting Additions
RL4 Add sublists<Property> from HTMLForm<Class>.ownedAttribute
RR5 Add sublists<Property> from HTMLForm<Class>.ownedAttribute

27 Conflicting Deletes
RL16 Delete a3<Association> from PIM<Model>.packagedElement
RR11 Delete a3<Association> from PIM<Model>.packagedElement

(M19, M22 and M23) are not really in contradiction (i.e., the desired end is achieved

if one, and only one, of the deletes is executed) and resolves them accordingly. Even

though RSA finds the same three conflicts (lines RC23-25 in Table 7), it does not

attempt to resolve them. Related to RSA conflict RC25, is RC27—a byproduct of

UML2 representing associations with an Association metaobject. Mirador sees no

conflict here, because Ecore does not represent associations per se, just their ends.

There is no RSA equivalent to conflict M21. Mirador detects that attribute sz

is being altered on both sides, but in a non-overlapping way. Therefore, it recom-

mends that both changes be applied. In RSA, changes RL9 and RR3 affect different

properties of the same element, and so are not considered to be in conflict to begin

with. The outcome is the same in both tools, but in Mirador, because the changes

show as an auto-resolved conflict, the fact that the element has been modified by

both Modelers is made explicit, alerting the Merger without demanding a decision.

Mirador and RSA both see the addition of two sublists references to class
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HTMLForm as being in conflict (M20 and RC26), but for different reasons. In

RSA, the elements are matched by name, and thus considered to be the same asso-

ciation, so only one is allowed. Had Mirador matched the elements, it would have

followed the same course, but due to structural differences (the associations reference

different classes) it did not. However, recognizing that a class with two references

of the same name is a problem for code generation, Mirador still raises a conflict.

The table rules resolve the conflict automatically by giving each reference a slightly

modified role name—an appended “ lf” or “ rt”, respectively—before applying both

changes. This preserves both Modelers’ changes, while keeping the model valid.

Conflict M24 is one Mirador objects to, but RSA does not. The left change gen-

eralizes class HTMLList from HTMLDocElem, while the right change generalizes

it from HTMLDoc. While not strictly a modeling error, this multiple inheritance is

another problem for code generation, if the target language is Java, as it is in RSA.

With this understanding, Mirador flags a conflict. Unfortunately, as no decision table

rule matches the pattern of the conflict, it is left to the Merger to resolve.

There are 22 more RSA conflicts shown in Table 7. All have to do, directly or

indirectly, with changes made to the view of the model. There is no way to filter

diagram changes out of the conflict list. Most are shown as collapsed, but two have

been opened to give a feel for their nature. RC16 is the view counterpart of RC27,

which deletes association a3. RC17 is typical of the majority of RSA view conflicts: a

matched element is deleted from the model on one side and simultaneously altered in

the view on the other, both of which cannot happen. Such concerns are is not within

Mirador’s scope.

For this test case, Mirador was able to detect all of the model conflicts that RSA

did, plus one that RSA did not. In addition, Mirador was able to successfully resolved

five out of the six conflicts with no user input whatsoever. With a larger and more

polished rule base, Mirador can be expected to further leverage semantics for better

conflict detection, and more automatic conflict resolution.
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Chapter 9

Related Work

Synchronizers and mergers have been either state-based, relying on a static view of

data items, or operation-based, depending on dynamic traces of changes. We have,

of course, attempted to blend the best of both these approaches.

Static, state-based synchronizers are exemplified by the likes of rsync [Tridgell and

Mackerras, 2011] and its replacement, Unison [Pierce and Vouillon, 2004], whereas

the more ambitious IceCube [Kermarrec et al., 2001] is an example of a dynamic,

operation-based platform for data reconciliation. A method for model synchronization

based on transformations has been proposed by Xiong et al. [2007]. Study of the

behavior of these synchronizers has enabled us to give a definition of synchronization

that distinguishes it from merging.

Our definitions of synchronization and merge operations are from the point of

view of the items being reconciled, or aligned, and the outcome of the operation.

In an attempt to provide more solid footing, Brunet et al. [2006] treat a merge as

an algebraic operator over model and model relationship data types. They go on

to define a number of other useful model management operators, most of which we

have incorporated, along with our own additions, into definitions of the phases of

our proposed hybrid merge workflow. Boronat et al. [2007] have gone further, and

provided general semantics for the merge operator as it applies specifically to class

diagram integration, which our work does not take advantage of.

A case for state-based merging is presented by Westfechtel [2010], who argues that

operation-based approaches suffer from missing comparisons in model differencing

and missing state information in change weaving (i.e., the actual act of merging).
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Thanks to its hybrid workflow, Mirador manages to avoid both deficiencies, the first

because it has full access to the states of the replica-versions when differencing, and

the second because the operations it manipulates do not come from a change log, but

are extracted from model state. Westfechtel’s formally defined, context-free merge

rules for EMF models (i.e., Ecore) were published too late for us to translate into

Mirador decision table rules.

Vendor modeling tools with merge capabilities are predominately state-based and

are typified by the three in our survey: IBM Rational Rose, IBM Rational Software

Architect, and Enterprise Architect. Others include MagicDraw UML and Borland

Together. Several of these tools make use of the state-based Eclipse EMF Compare

facility [EMF Compare, 2010]. One operation-based modeling tool is the Fujaba

research effort [Fujaba, 2009], which uses its text-based CoObRA versioning software

to effect merges [Schneider et al., 2004]. None of the merging done by these tools, or

any others to our knowledge, blend the main merge approaches as we have done in

Mirador.

Though mostly ignored by vendors, operation-based merging was advanced by

Lippe and van Oosterom [1992] as a means for managing changes to object-oriented

databases. They describe a merge as a weave of primitive, or atomic, subtransforma-

tions taking place in a transformation grid having single- and multiple-valued node

types; relate non-commuting operations to conflicts, tabulated in a conflict matrix;

and propose three merge algorithms that hinge on the use of a before predicate for

conflict detection. They also explain a technique for ordering changes and conflicts by

partitioning them into blocks. Work done in the area of graph transformations (e.g.,

[Ehrig et al., 2006]), specifically with regard to critical pairs, and term and graph

rewriting, touches on similar concepts.

In Mirador, we have reoriented Lippe and van Oosterom’s transformation grid to

become our change plane and added another dimension to accommodate matching

strategies, thus forming our merge space. We clarify the semantics of their before

predicate used to populate the plane, so as not to miss certain types of conflicts.

We also make a distinction between direct and indirect multiple-valued nodes, with

the former identifying what we term key conflicts. Their conflict matrix has been

extended by us to occupy four quadrants in order to consider both same-model and

cross-model changes. Finally, we have added the technique of conflict collapse to their
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partitioning scheme in order to break cycles that can occur in the change graph.

Renewed interest in the operation-based approach can be seen in the detection

of conflicts as proposed by Koegel et al. [2009], who use operation commutativity,

which they term serialization, to detect conflicts as we do, but who, for performance

reasons, calculate only an approximation, rather than test all change pairings. The

transaction-based merging of Schmidt et al. [2009] treats sequences of changes com-

bined into transactions as full-fledged data objects subject to version control.

Properly matching model elements is a problem of establishing identity and is

vital to successful merging. Working on databases, Lippe and van Oosterom did

not concern themselves with matching; others (e.g., [Pottinger and Bernstein, 2003])

take it as a given. While many tools insist on unique element identifiers [Barrett

et al., 2008], more robust and flexible ideas are offered by Xing and Stroulia [2005]

in the form of the UMLDiff algorithm, which matches based on name and structural

similarity, and Kolovos [2009], who furnishes a general comparison language for which

Mirador has a specialized evaluator.

The Kompose framework consists of a metamodel specific matching portion, and

a generic merging potion [Fleurey et al., 2007]. The matching, which relies on special-

ized signatures of element type and equality tests, has the potential to use different

matching strategies, but only one per type, whereas Mirador supports up to seven.

Kompose makes the common assumption that its way of matching is the only way

and, as with many tools, cannot be overridden. The merging is state-based and has

little overlap with our work. Also, its conflicts must be manually resolved, where

Mirador can recognize and resolve many conflicts automatically.

SiDiff, as described by Schmidt and Gloetzner [2008], is a framework built around

an algorithm by Kelter et al. [2005] for building differencing tools. It does similarity-

based model element comparisons before taking the model difference. A kernel config-

uration must be created from available algorithms in order to specify how to compute

the similarity for each type of diagram element. The algorithms of SiDiff are com-

parable to Mirador’s matching strategies, but like Kompose, can only be applied one

strategy per diagram type.

SiDiff has been used by Treude et al. [2007] for differencing large models. They

show how to reduce the inherent O(n2) complexity of model element comparison to

O(n log n). Unfortunately, SiDiff appears to be a dead project. Several attempts
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to contact the team went unanswered, and the one answer was not followed-up by

them. The difference metamodel of Cicchetti et al. [2007] that was extended by us

for use with Mirador has been tied into another metamodel for conflict specification

in [Cicchetti et al., 2008], which we do not yet make use of.

Lastly, a useful resource for discovering new conflict patterns, which can then be

encoded as rules for Mirador’s decision tables, has recently appeared on the Web.

The project called Colex, a contraction of “conflict lexicon” [Brosch et al., 2010b],

aims to be a single point of reference for conflicting merge scenarios. It is comparable

to our catalog of primitive evaluation cases but, being collaborative in nature, has

the potential for greater growth.
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Chapter 10

Conclusion

This work started off with an investigation into the nature of model merging and the

model merging session. Exploration of how merging has been addressed in several

state-of-the-art MDE tools provided a baseline of understanding, as well as a feeling

for how the merge session progresses and for some of the attendant problems. Along

the way, a set of primitive evaluation merge cases was used to expose weaknesses of

the tools and the issues underlying how they address the merge process.

To lend an air of familiarity to the process, the primitives were also merged using

standard text-based tools. It was from this familiar viewpoint, and its accompanying

expectations of what constitutes normal merge behavior, that we argued that much

of what occurs when models are the operands of a merge operation, violates developer

expectations and, indeed, is often counterintuitive.

To test the proposition put forward by the thesis statement of this research, an

alternative workflow to those imposed by the main approaches to model merging

was described and its phases defined with algebraic operators. The resulting merge

workflow is a hybrid that employs the best merging approach for the task at hand.

As an aid for visualizing and reasoning about aspects of the hybrid merge work-

flow, a coordinate system for a three-dimensional merge space was described. Two

of its axes are the change operations of the composite model transformations effec-

tively executed by developers on the left and right replicas of a shared base model,

respectively. The coordinate of the space’s third dimension is the various matching

strategies used to map the model elements of these new versions to one another.

147



The hybrid workflow along with concepts from the merge space have found realiza-

tion in Mirador, our model merging tool. An overview of Mirador’s architecture was

given, highlights of its design elaborated on, and some features of its implementation

discussed. A description of how the implementation was validated against the merge

capabilities of the latest version of a top-tier MDE modeling tool was also provided.

10.1 Summary of Contributions

The evidence that this research makes the contributions claimed in the introduction is

consolidated in this section. It details how the novel aspects of Mirador and its unique

hybrid merge workflow address the issues of the problem statement, and to what

degree they meet the stated research objectives. For traceability, footnote callouts in

the text tie statements made here back to list items in the introduction.

The definition of the hybrid merge workflow is the conceptualization of the the-

sis statement, and the implementation of the prototype Mirador, its materialization.

Together, the two form the major contributions of this research, with the second

validating the first. The normalization workflow phase makes the core functionality

of Mirador and its manipulation of models independent of modeling tools and their

metamodels,1 and decouples it from any recorders of change operations.2 Defining the

workflow phases with algebraic operators directly supports a research objective,a as

does change recorder decoupling.d

Establishing an accurate correspondence between elements of the participating

models is critical to the success of a merge. Rather than settle on one kind of mapping,

as most, if not all, merging tools do, Mirador uses multiple matching strategies,3

including user-defined ones. This synthesis of model comparison techniques allows

for the characteristics of the models themselves to determine the best measure of

similarity for the elements under consideration.c Which strategies are available for

matching is under user control, and any merge decisions made by Mirador may be

overridden.c Lastly, matching done in a prior merge session may be saved for use in

guiding the comparison of the same models in future merge sessions.

Asking the user to step in whenever a difficulty, no matter how slight, is encoun-

tered is not only irksome, but can inundate the user with irrelevant details. Further-

more, it makes getting early merge feedback laborious. Mirador minimizes, or even
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eliminates, the need for human input.5 This enhancement of tool usability is achieved

by removing from consideration as many changes and conflicts as possible without

the loss of merge choices,b and by making as much of the merged context available as

possible before forcing a choice, thus aiding more informed merge decision-making.

A workflow that obtains change operations from model state, rather than from a

log, removes some changes from consideration, and thus keeps the number of changes

to a minimum, consequently lowering the probability of conflict. The auto-resolution

of conflicts that should never be brought to the user’s attention (e.g., deletes of the

same element) also improves usability. More context is made available for merge

decisions through the ordering of changes. This ensures that dependent changes do

not come up for consideration until their dependencies have been executed. The

ordering is achieved with change partitioning and, in the case of cycles, our technique

of conflict collapse.8

The workflow as devised, not only potentially reduces the cognitive load on the

user, it can also make do with no user at all. This non-interactive “fast path” through

the workflow provides for Mirador’s batch mode of operation.b The execution path

automatically matches model elements, resolves conflicts, and orders changes so as

to apply as many patches to the base model as possible; generating a merged model

and full merge report in the process. It halts after all changes have been applied, or

upon encountering an unresolved conflict or error. The mode is ideal for obtaining

rapid merge feedback, and is suitable for script or batch processing.

Mirador successfully demonstrates the feasibility and effectiveness of using deci-

sion tables to drive conflict detection and resolution.4 Its decision table mechanism

allows for the coding of table rules to recognize and handle common merge situa-

tions, thereby improving merge results.g Witness Mirador’s execution of the “add

same class” evaluation case: there were no duplicated elements in the merged model

nor any conflicts to resolve. To date, we know of only one other tool that has been

able to equal this ideal.

The knowledge of common situations and troublesome merge patterns that resides

in Mirador’s decision tables is readily extended by the addition of more rules,h as

demonstrated by the “HTML Document” example, in which a rule was added to

detect multiple inheritance conflicts. Rules may also be added to deal with a specific

class of models, or in response to local or domain-specific needs.e The mechanism
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also allows for expanding the conditions and actions of the tables, bringing the full

power of Java to bear on improving merge results. For instance, the deep compare of

elements done by the update_same_property condition can determine if alters of the

same element overlap or not. If not, the existence of an add_both action lets both

changes occur, something no other tool encountered allows.

The extensibility offered by Mirador’s decision table mechanism opens the door

to semantic merging as understood by Mens [2002] and Brosch [2009].g The tables

exploit semantics to a small degree in the detection of conflicts, in which the meaning

of an update is used to filter out syntactic conflicts that are not actually in conflict.

Rule-based merging with its potential for using semantics, along with the decoupling

front-end of the workflow, and the normalization of its internal models, makes the

core of Mirador a powerful, general-purpose model merging engine.

In addition to the above mentioned contributions, the research makes some minor

ones. Though concerned primarily with merging, we offered complementary defini-

tions of the horizontal types of synchronization and merging in Section 2.1, because

such appear to be lacking in the literature.6 The primitive evaluation cases used to

exercise the vendor tools introduced in Chapter 3 are a few of a handful of similar

cases we have defined. Though hardly the complete catalog we had set out to create,9

the cases do document several difficult merge situations.f

Finally, several devices, originally conceptual in nature, either proposed by us

(change plane, merge space), or by others and extended by us (transformation grid,

conflict matrix, and conflict partition), have found a home within the code of Mirador.

Combining the two dimensions of the change plane—a graphical means for expressing

a merge of change operationsa—with a third for matching strategies creates a space

within which to reason about a merge.7 The two-dimensional technique of conflict

detection using multiple-valued nodes was extended into this third dimension in order

to detect matching strategy conflicts.

10.2 Limitations of Work

There are two sides to our work: the theoretical and the practical. Both have limita-

tions, some of which have already been mentioned in passing, but which are discussed

here in more detail. Reasons for these limitations have to do with restrictions in the
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scope of the research, certain design decisions, and incomplete features of the proto-

type implementation.

Discussions of merging and merge tools tacitly assume that there is no loss of

generality in considering only two replicas at a time; our work is no different in this

regard. While it is true that repeated application of the merge operation can always

keep the number of replicas involved to two, it is not true that the order of application

is of no importance. This is because merging is not associative. To our knowledge,

no one has conducted an analysis of this fact. Experience leads us to believe that the

ramifications for merging in practice are small: Any merge that needs to be done in

response to a commit can usually be completed before the next commit, and, if not,

then the merges may simply be serialized.

The thesis does not try to define the model produced by the hybrid workflow, nor

what model properties the process should preserve. The transition from operation-

based to state-based models that occurs in the normalization phase of the hybrid

workflow involves a loss of information. For this reason, the operation extraction

phase is unable to reconstruct, exactly, the operational trace of changes that were

executed against a replica. This loss of intermediate history is more than offset by

a reduction in bookkeeping and merge complexity. However, it does mean that any

matching strategies based on actual change history, as first proposed by us [Barrett

et al., 2010a], will not be available.

Though Mirador is adequate as a proof of concept, in its current form, it has

shortcomings that make it unsatisfactory as a general-purpose model merging tool,

and limited our discussion of some more general issues. Most seriously, the use of

Ecore for the normal-form representation of its internal models restricts it to merging

only class diagrams. Also, Ecore cannot model some common UML concepts, such

as element visibility. At this time, the only input decouplers that have been built are

for Ecore and Fujaba models, and on the output side, only Ecore is supported.

Element matching strategies and decision tables are two areas where there was

simply not enough time to do them justice. Only three strategies have been imple-

mented in full and one of those, “by ECL”, is not intrinsically a strategy but, rather,

a means of loading a script, that is the strategy. When matching, no attempt is made

to use the best strategy for the elements under consideration. Instead, the same

strategy is used for all elements: either the strategy measure chosen by the Merger,
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or the combined overall measure. Discoveries of missed conflicts (since corrected)

have shown that the decision table rules are incomplete. Subtle interactions between

the rules can make it difficult to modify the tables without introducing unwanted (or

removing wanted!) side effects, or cause inconsistencies. No means of systematically

testing the tables has been devised, though assertions and exceptions may be added

in the form of chained, error checking subtables.

The graphical user interface is not fully developed, particularly in terms of its

display of the models, and the change operations and conflicts. During change appli-

cation, applying changes that follow a rejected change may result in an inconsistency.

Mirador flags the error only after the fact, doing no checking prior to patching the

base model that could prevent it. Finally, the merge session report is rudimentary

at best, being essentially a dump of Mirador debug messages, and requires too much

tool and model specifics in order to interpret properly.

10.3 Suggestions for Future Research

Aside from those subject to an immediate fix, the limitations and shortcomings noted

in the last section call attention to several areas that we deem worthy of further

improvement and investigation. The suggested topics have been placed under the

following six broad headings.

Merge Engine Architecture As a proof of concept, Mirador exhibits a bottom-

up architecture. A new architecture could provide the merge engine with well-defined

interfaces. This would allow the engine to be dropped between any pair of model

decoupler/coupler modules that implement the proper interfaces, giving the engine

the ability to then merge their models. The coding of such module pairs to support

some of the more popular tools would be a natural part of this improvement.

Moving from Ecore to UML2, the EMF-based metamodel of the Unified Modeling

Language [UML2, 2010], for the normal-form representation of models would allow

UML concepts to be fully supported, and enable the merging of more diagram types.

Further, the leveraging of existing mathematical mappings of UML in order to prove

merge correctness is an intriguing possibility.
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Model Element Matching The comparison strategies Mirador uses to match

model elements are a promising area of focus. Completing implementation of the

placeholder strategies that the tool now uses is a necessary first step. Afterwards,

forming a meaningful interpretation of the similarity measures, their weights, and

how best to use the strategies in combination could be investigated. The matching

mechanism itself needs to be updated to select the best matching strategy for any

pair of elements under consideration. Another decision table could be constructed to

drive this selection.

Change Conflict Modeling The conflict detection and resolution phases of the

hybrid workflow only recognize one type of conflict, namely, contradicting change

operations (i.e., those detected by the before predicate). Other types that are part of

a conflict model proposed by Brosch et al. [2010a] are operation contract violations

and post-merge violations. The abstract ConflictChangeOp was put into Mirador’s

change operation hierarchy (Figure 61) as an extension point for supporting this

model. The metamodel we use for differencing has been extended by Cicchetti et al.

[2008] to support conflict modeling as well and is another avenue to consider. Finally,

conflict visualization for Mirador is the subject of an ongoing informal collaboration.

Decision Tables Experience has shown that modifying the decision table rulebase

by hand can be difficult. If the flexibility of rule customization is to be more generally

usable, a tool for table rule maintenance must be devised. The same can be said for

table conditions and actions, which at present can only be created or altered by

editing the Java code. Rule-based technologies are an alternative to using tables for

decision-making. The Epsilon Comparison and Merging Languages [Kolovos et al.,

2010], which are essentially rule engines for models, are strong candidates for filling

this role.

Semantic Merging The path to full-fledged semantic merging is not clear at this

time. Nor is it clear whether decision tables alone are enough to achieve it; they

will likely need to work in conjunction with other mechanisms. For example, in

[Barrett et al., 2009], we discuss the merging of use case models that have been given

a formal syntactic structure. Formal semantics are imparted to the models through
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finite state machines, for which an equivalence operator is defined for the detection

of merge conflicts. A similar approach applied to the merging of other model types

might enable a significant increase in the role of semantics in model merging.

Mirador Merging Tool The prototype tool that has emerged from this research

has shown the viability of the hybrid merge workflow, and demonstrated numerous

ideas for the improvement of model merging, both in terms of results and in terms

of usability. Any of the above suggested research could benefit Mirador greatly,

and the possibilities are exciting. But most exciting of all is the possibility that

its contributions to model merging could play a small role in helping model-driven

development achieve its potential.
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Appendix A

Implementation Notes for the

Hybrid Merge Workflow

The notes collected here provide implementation information concerning the respec-

tive phases of the hybrid workflow phases as described in Chapter 5.

Model Normalization

• Three model files are input for a three-way merge, and two for a two-way merge.

• The input files may be static (i.e., state-based), or dynamic (i.e., operation-

based) representations of models.

• Upon input, models are normalized to an internal representation conforming to

a common metamodel, suitable for state-based analysis and manipulation.

• The normal-form of the internal models decouples the workflow from modeling

tools and change operation recorders.

Model Differencing

• A state-based difference is taken between normal-forms of the base model and

its left and right replica-versions.

• Two state-based difference, or delta, models conforming to a difference meta-

model are constructed as a result of the differencing.
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• The difference metamodel extends the normal-form metamodel for capturing

the evolution of the replica-versions.

• Unlike in the presentation of the workflow, in the implementation, the differ-

encing phase occurs before the comparison phase.

Model Comparison

• The elements of the two state-based internal models are matched using a com-

bination of default and possibly user-supplied matching strategies.

• Which matching strategies to employ are user-selectable, and the weights for

combining their results user-settable.

• All matching decisions may be overridden by the user.

• Matching information from a previous merge session may be used to improve

match accuracy and reduce the time spent correcting mismatches.

• Given the actual order of workflow phases, MMD elements will form part of the

comparison, and will be available for matching.

Operation Extraction

• The difference models are used to construct a set of change operations for each

side of the merge.

• The operations created, reflect the entities of the difference metamodel; that is,

they either Add, Delete or Alter a model element.

• The recreation of operational traces transitions the workflow from the state-

based to the operation-based approach.

Conflict Detection

• Changes are first ordered on the same side using the before predicate.

• Changes are then ordered across the sides, again with before: left-to-right and

right-to-left. A conflict exists if the predicate is true in both directions.
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• The three applications of before merge the models, possibly with conflicts.

• Decision tables are used to evaluate before.

• Table rules, conditions and actions are user-accessible and modifiable.

Conflict Resolution

• Automatic resolution of conflicts is also decision table-driven. Not all conflicts

may be automatically resolvable.

• One last application of before gives the change operations of the merged trans-

formation their final order, with conflicts moved as far down the list as possible.

• The final merged list of change operations is presented for user review and

possible modification before execution.

Model Patching

• Patching allows for selective execution of change operations against the base

model to produce a (partially) merged model in the normal-form.

• Patching will generate and catch an inconsistency error if user selections violate

any change dependencies.

Model Denormalization

• This is the reverse of the Normalization phase.

• The conversion is from the normal-form merged model into the forms of the

original input—one outcome for each type of input.

• The state-based merged model will be converted into an operation-based one if

the input was of that form.

• Implementation of this phase is not complete, so currently, only Ecore models

are outputted.
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Appendix B

Mirador Batch Mode Use Case

There are two user-goal use cases that describe the merging behavior of Mirador: one

for interactive mode, and one for non-interactive, or batch, mode. The main success

scenario and extensions for the interactive merge were given in Subsection 6.2.2. The

batch merge scenario and extensions appear on the next page.

168



Use Case: Run Batch Model Merge

Goal: To merge models with no input from the user

Primary Actor: Merger

Precondition: none

Main Success Scenario

1. Merger invokes Mirador with batch option, specifying desired arguments and any options.

2. System sets up merge based on passed arguments and options, loading specified models.

3. System matches model elements.

4. System detects and resolves conflicts producing a merged change set.

5. System patches base model with change set, and updates model display.

6. System outputs the (partially) merged model in the format(s) of the original1.

Use case ends successfully.

Extensions

1a. A configuration file is specified on the command line.

1a1. System parses configuration file arguments and options.

Use case continues.

2a. A specified file is not found, or cannot be parsed.

2a1. An error is displayed and logged.

Use case ends unsuccessfully.

2b. The model format is not supported, or the model is not well formed.

2b1. An error is displayed and logged.

Use case ends unsuccessfully.

4a. Only two models were loaded.

4a1. A 2-way merge is performed instead of a 3-way.

Use case continues.

5a. An error is encountered applying a change.

5a1. Change application halts, and the change is flagged as being in error.

Use case continues.

Postcondition: Merged model and merge report have been stored.

1Not yet supported. Currently, all models are output as Ecore XMI files regardless of input type.
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Appendix C

Mirador Command Line and

Configuration File Syntax

Unless passed the -b batch mode option, Mirador always starts in interactive mode

which will bring up the Model Input Panel. If none of the other options, and none of

the arguments of Figure 70 are passed, the fields and controls of the GUI will either

be empty, or in their default state.

The display of usage help is geared towards command line invocation, but anything

shown, with the exception of the -c option, may be placed in a configuration file, an

example of which may be seen in Figure 71. The format is free form with the only

restriction being that the model arguments must be listed in the order as given in the

syntax description.
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Usage: java Mirador [OPTION] [[BASE_MODEL] LEFT_MODEL RIGHT_MODEL]
Note: BASE_MODEL is required for three-way merging.

General options:
-? display this help and exit
-v print version information and exit
-c=FILE specify configuration file
-d enable printing of debug messages

Element matching:
-ml select left as master side
-mr select right as master side
-mt=VAL set element matching threshold
-mp=FILE specify previous match file
-md[=VAL] use ’by dependency’ matching strategy
-me[=VAL] use ’by ECL’ matching strategy
-mi[=VAL] use ’by ID’ matching strategy
-mn[=VAL] use ’by name’ matching strategy
-ms[=VAL] use ’by structure’ matching strategy
-m1=FILE[,VAL] use ’by user #1’ matching strategy
-m2=FILE[,VAL] use ’by user #2’ matching strategy
-mt=VAL set element matching threshold

Model merging:
-b run in batch mode
-i run in interactive mode - default
-td=FILE specify conflict detection decision table
-tr=FILE specify conflict resolution decision table

Figure 70: Mirador usage help

// Mirador configuration file to load "HTML Document".

// Options:
-d -mi=0.4 -mn=0.8 -ms=0.4 -md -me=0.5 -m1=UserEvaluator1,0.6 -mt=0.6
-tc=usr/table-before.ddf -tr=usr/table-resolve.ddf

// Arguments:
../../models/html/html.ctr
../../models/html/lf/html.ctr
../../models/html/rt/html.ctr

Figure 71: Mirador configuration file for “HTML Document” example
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Appendix D

Running Merge Example in IBM

Rational Software Architect

This appendix collects a number of screenshots of the “HTML Document” example,

which was used for Mirador validation, being merged in RSA 8.01.

Figure 72 shows the three example models being compared in RSA, with the base

model at the top, and the left and right versions on their respective sides. The two

panes between the replica-versions show the ancestor for each replica, which in a

three-way merge is the same as the base model.

All the changes found by RSA, on either side of the merge, are pictured in Fig-

ures 73 and 74. Conflicting changes have been expanded to show their counterpart

on the opposite side.

The detected conflicts for the merge are shown in Figure 75. The five expanded

conflicts at the bottom of the figure are the only ones that are related to model

changes, which is all Mirador is concerned with. The remainder (three of which have

been expanded) have to do with changes to the view of the class diagram.
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Figure 72: “HTML Document” three-way compare in Rational Software Architect
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Figure 73: Left “HTML Document” changes in Rational Software Architect
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Figure 74: Right “HTML Document” changes in Rational Software Architect
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Figure 75: “HTML Document” conflicts in Rational Software Architect
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Appendix E

Model Files of Running Merge

Example

To get a feel for the differences between state-based and operation-based model types,

the appendix presents a selection of listings of the various model files that make up

the “HTML Document” running example. In order to facilitate fit, it was necessary

to use a small font size for the listings. For reference, the Ecore metamodel is also

reproduced here [Monperrus, 2010].

Being of a reasonable size, the Ecore XMI files for all three versions of the example

model are given in their entirety. The Fujaba models, however, are rather large—the

base model file is 445 lines long, and the replica-versions, since they contain the base

model, are even longer. For this reason, only snippets from the three versions of the

model are shown. The syntax for the CoObRA log records that make up a Fujaba

model file can be found in Appendix F.

E.1 The Ecore Metamodel

Figure 76 is a class diagram for the state-based Ecore metamodel, showing its meta-

classes and their relationships. The metamodel defines the normal-form of the hybrid

merge workflow.
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Figure 76: Class Diagram of the Ecore Metamodel
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E.2 Ecore XMI Models

Below is the Ecore XMI for the base model of the “HTML Document” example. The

various EElement entities are Ecore metaclasses which are used to represent UML

elements of the model. The representation contains only state, no operations.

<?xml version="1.0" encoding="ASCII"?>

<ecore:EPackage xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:ecore=

"http://www.eclipse.org/emf/2002/Ecore" xmi:id="qyd2E_92" name="html-doc">

<eClassifiers xsi:type="ecore:EDataType" xmi:id="qyd2E_2" name="Boolean" instanceClassName="java.lang.Boolean"/>

<eClassifiers xsi:type="ecore:EDataType" xmi:id="qyd2E_3" name="String" instanceClassName="java.lang.String"/>

<eClassifiers xsi:type="ecore:EDataType" xmi:id="qyd2E_4" name="Integer" instanceClassName="java.lang.Integer"/>

<eClassifiers xsi:type="ecore:EDataType" xmi:id="qyd2E_5" name="Byte" instanceClassName="java.lang.Byte"/>

<eClassifiers xsi:type="ecore:EDataType" xmi:id="qyd2E_8" name="Float" instanceClassName="java.lang.Float"/>

<eClassifiers xsi:type="ecore:EDataType" xmi:id="qyd2E_9" name="Double" instanceClassName="java.lang.Double"/>

<eClassifiers xsi:type="ecore:EDataType" xmi:id="qyd2E_A" name="Character" instanceClassName="java.lang.Character"/>

<eClassifiers xsi:type="ecore:EClass" xmi:id="qyd2E_E2" name="HTMLDoc">

<eStructuralFeatures xsi:type="ecore:EReference" xmi:id="WnHJn_291" name="forms" upperBound="-1" eType="qyd2E_63"

containment="true" eOpposite="WnHJn_191"/>

<eStructuralFeatures xsi:type="ecore:EReference" xmi:id="YXqW0_6F1" name="lists" upperBound="-1" eType="qyd2E_E3"

containment="true" eOpposite="YXqW0_5F1"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" xmi:id="qyd2E_63" name="HTMLForm">

<eOperations xmi:id="qyd2E_94" name="add">

<eParameters xmi:id="qyd2E_A4" name="to_add" eType="qyd2E_3"/>

</eOperations>

<eOperations xmi:id="qyd2E_D4" name="add">

<eParameters xmi:id="qyd2E_E4" name="to_add" eType="qyd2E_E3"/>

</eOperations>

<eStructuralFeatures xsi:type="ecore:EAttribute" xmi:id="qyd2E_35" name="name" eType="qyd2E_3"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" xmi:id="DJJ3S_661" name="script" eType="McEU4_76"/>

<eStructuralFeatures xsi:type="ecore:EReference" xmi:id="WnHJn_191" name="doc" eType="qyd2E_E2" eOpposite="WnHJn_291"/>

<eStructuralFeatures xsi:type="ecore:EReference" xmi:id="WN3I6_223" name="sublists" upperBound="-1" eType="qyd2E_E3"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" xmi:id="qyd2E_E3" name="HTMLList">

<eOperations xmi:id="qyd2E_05" name="add">

<eParameters xmi:id="qyd2E_15" name="to_add" eType="qyd2E_3"/>

</eOperations>

<eStructuralFeatures xsi:type="ecore:EAttribute" xmi:id="DJJ3S_861" name="name" eType="qyd2E_3"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" xmi:id="DJJ3S_961" name="sz" eType="qyd2E_4"/>

<eStructuralFeatures xsi:type="ecore:EReference" xmi:id="YXqW0_5F1" name="doc" eType="qyd2E_E2" eOpposite="YXqW0_6F1"/>

</eClassifiers>

<eSubpackages xmi:id="McEU4_96" name="java">

<eSubpackages xmi:id="McEU4_A6" name="net">

<eClassifiers xsi:type="ecore:EClass" xmi:id="McEU4_76" name="URL"/>

</eSubpackages>

</eSubpackages>

</ecore:EPackage>
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Below is the Ecore XMI of the left model.

<?xml version="1.0" encoding="ASCII"?>

<ecore:EPackage xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:ecore=

"http://www.eclipse.org/emf/2002/Ecore" xmi:id="qyd2E_92" name="html-doc">

<eClassifiers xsi:type="ecore:EDataType" xmi:id="qyd2E_2" name="Boolean" instanceClassName="java.lang.Boolean"/>

<eClassifiers xsi:type="ecore:EDataType" xmi:id="qyd2E_3" name="String" instanceClassName="java.lang.String"/>

<eClassifiers xsi:type="ecore:EDataType" xmi:id="qyd2E_4" name="Integer" instanceClassName="java.lang.Integer"/>

<eClassifiers xsi:type="ecore:EDataType" xmi:id="qyd2E_5" name="Byte" instanceClassName="java.lang.Byte"/>

<eClassifiers xsi:type="ecore:EDataType" xmi:id="qyd2E_8" name="Float" instanceClassName="java.lang.Float"/>

<eClassifiers xsi:type="ecore:EDataType" xmi:id="qyd2E_9" name="Double" instanceClassName="java.lang.Double"/>

<eClassifiers xsi:type="ecore:EDataType" xmi:id="qyd2E_A" name="Character" instanceClassName="java.lang.Character"/>

<eClassifiers xsi:type="ecore:EClass" xmi:id="qyd2E_E2" name="HTMLDoc">

<eStructuralFeatures xsi:type="ecore:EReference" xmi:id="Fu6CN_B15" name="elements" upperBound="-1" eType="sCE3W_4B4"

containment="true" eOpposite="Fu6CN_A15"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" xmi:id="qyd2E_63" name="HTMLForm" eSuperTypes="sCE3W_4B4">

<eOperations xmi:id="qyd2E_D4" name="add">

<eParameters xmi:id="qyd2E_E4" name="to_add" eType="qyd2E_E3"/>

</eOperations>

<eStructuralFeatures xsi:type="ecore:EAttribute" xmi:id="DJJ3S_661" name="script" eType="McEU4_76"/>

<eStructuralFeatures xsi:type="ecore:EReference" xmi:id="Fu6CN_D25" name="sublists" upperBound="-1" eType="sCE3W_4B4"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" xmi:id="qyd2E_E3" name="HTMLList" eSuperTypes="sCE3W_4B4">

<eStructuralFeatures xsi:type="ecore:EAttribute" xmi:id="DJJ3S_961" name="size" eType="qyd2E_4"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" xmi:id="sCE3W_4B4" name="HTMLDocElem">

<eOperations xmi:id="sCE3W_0C4" name="add">

<eParameters xmi:id="sCE3W_1C4" name="to_add" eType="qyd2E_3"/>

</eOperations>

<eStructuralFeatures xsi:type="ecore:EAttribute" xmi:id="sCE3W_DB4" name="name" eType="qyd2E_3"/>

<eStructuralFeatures xsi:type="ecore:EReference" xmi:id="Fu6CN_A15" name="doc" eType="qyd2E_E2" eOpposite="Fu6CN_B15"/>

</eClassifiers>

<eSubpackages xmi:id="McEU4_96" name="java">

<eSubpackages xmi:id="McEU4_A6" name="net">

<eClassifiers xsi:type="ecore:EClass" xmi:id="McEU4_76" name="URL"/>

</eSubpackages>

</eSubpackages>

</ecore:EPackage>
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And lastly, the Ecore XMI of the right model.

<?xml version="1.0" encoding="ASCII"?>

<ecore:EPackage xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:ecore=

"http://www.eclipse.org/emf/2002/Ecore" xmi:id="qyd2E_92" name="html-doc">

<eClassifiers xsi:type="ecore:EDataType" xmi:id="qyd2E_2" name="Boolean" instanceClassName="java.lang.Boolean"/>

<eClassifiers xsi:type="ecore:EDataType" xmi:id="qyd2E_3" name="String" instanceClassName="java.lang.String"/>

<eClassifiers xsi:type="ecore:EDataType" xmi:id="qyd2E_4" name="Integer" instanceClassName="java.lang.Integer"/>

<eClassifiers xsi:type="ecore:EDataType" xmi:id="qyd2E_5" name="Byte" instanceClassName="java.lang.Byte"/>

<eClassifiers xsi:type="ecore:EDataType" xmi:id="qyd2E_8" name="Float" instanceClassName="java.lang.Float"/>

<eClassifiers xsi:type="ecore:EDataType" xmi:id="qyd2E_9" name="Double" instanceClassName="java.lang.Double"/>

<eClassifiers xsi:type="ecore:EDataType" xmi:id="qyd2E_A" name="Character" instanceClassName="java.lang.Character"/>

<eClassifiers xsi:type="ecore:EClass" xmi:id="qyd2E_E2" name="HTMLDoc">

<eStructuralFeatures xsi:type="ecore:EAttribute" xmi:id="DHxBH_9" name="name" eType="qyd2E_3"/>

<eStructuralFeatures xsi:type="ecore:EReference" xmi:id="WnHJn_291" name="forms" upperBound="-1" eType="qyd2E_63"

containment="true" eOpposite="WnHJn_191"/>

<eStructuralFeatures xsi:type="ecore:EReference" xmi:id="YXqW0_6F1" name="lists" upperBound="-1" eType="qyd2E_E3"

containment="true" eOpposite="YXqW0_5F1"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" xmi:id="qyd2E_63" name="HTMLForm">

<eOperations xmi:id="qyd2E_94" name="add">

<eParameters xmi:id="qyd2E_A4" name="to_add" eType="qyd2E_3"/>

</eOperations>

<eOperations xmi:id="qyd2E_D4" name="add">

<eParameters xmi:id="qyd2E_E4" name="to_add" eType="qyd2E_E3"/>

</eOperations>

<eStructuralFeatures xsi:type="ecore:EAttribute" xmi:id="DJJ3S_661" name="script" eType="qyd2E_3"/>

<eStructuralFeatures xsi:type="ecore:EReference" xmi:id="WnHJn_191" name="doc" eType="qyd2E_E2" eOpposite="WnHJn_291"/>

<eStructuralFeatures xsi:type="ecore:EReference" xmi:id="DHxBH_3" name="sublists" upperBound="-1" eType="qyd2E_E2"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" xmi:id="qyd2E_E3" name="HTMLList">

<eOperations xmi:id="qyd2E_05" name="add">

<eParameters xmi:id="qyd2E_15" name="to_add" eType="qyd2E_3"/>

</eOperations>

<eStructuralFeatures xsi:type="ecore:EAttribute" xmi:id="DJJ3S_961" name="sz" lowerBound="1" eType="qyd2E_4"/>

<eStructuralFeatures xsi:type="ecore:EReference" xmi:id="YXqW0_5F1" name="doc" eType="qyd2E_E2" eOpposite="YXqW0_6F1"/>

</eClassifiers>

<eSubpackages xmi:id="McEU4_96" name="java">

<eSubpackages xmi:id="McEU4_A6" name="net"/>

</eSubpackages>

</ecore:EPackage>

E.3 Fujaba CoObRA Model Snippets

Fujaba models are operation-based, therefore, a model file consists of a sequence of

change operation records. State is not directly represented, but may be extracted for

any point in time from the operations in the sequence. The opening CoObRA records

of the Fujaba base model file for the “HTML Document” example are listed below.
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Included are some prelude header records, then the creation of basic data types

(only partially shown) and various diagram elements such as cardinalities and stereo-

types (not shown). And finally, near the bottom, the creation of the root “html-doc”

package, and the class diagram “ClassDiagram1.”

h;CoObRA2 Change stream - Version ;0;3

h;Encoding;UTF-8

h;ApplicationModel;Fujaba

h;Application Name;Fujaba Tool Suite

h;Fujaba Version;5.2.2

h;reuseFAM;true

t;qyd2E#;newUMLProject;1287172487209;-;;

c1;;v::de.uni_paderborn.fujaba.uml.common.UMLProject;i:qyd2E#1;-;i:qyd2E#;

c1;;v::de.uni_paderborn.fujaba.uml.structure.UMLBaseType;i:qyd2E#2;v:java.lang.String:Boolean;i:qyd2E#;

c3;;i:qyd2E#2;name;v::Boolean;-;-;i:qyd2E#;

c3;;i:qyd2E#2;progLangType;v::Boolean;-;-;i:qyd2E#;

c3;;i:qyd2E#2;progLangType;v::boolean;v::Boolean;-;i:qyd2E#;

c1;;v::de.uni_paderborn.fujaba.uml.structure.UMLBaseType;i:qyd2E#3;v:java.lang.String:String;i:qyd2E#;

c3;;i:qyd2E#3;name;v::String;-;-;i:qyd2E#;

c3;;i:qyd2E#3;progLangType;v::String;-;-;i:qyd2E#;

•
•
•

c1;;v::de.uni_paderborn.fujaba.uml.structure.UMLPackage;i:qyd2E#92;-;i:qyd2E#;

c3;;i:qyd2E#1;rootPackage;i:qyd2E#92;-;-;i:qyd2E#;

c3;;i:qyd2E#1;name;v::html-doc;-;-;i:qyd2E#;

t;qyd2E#A2;newClassDiagram;1287172504964;-;;

c1;;v::de.uni_paderborn.fujaba.uml.structure.UMLClassDiagram;i:qyd2E#B2;-;i:qyd2E#A2;

c3;;i:qyd2E#1;modelRootNodes;i:qyd2E#B2;-;-;i:qyd2E#A2;

c3;;i:qyd2E#B2;name;v::ClassDiagram1;-;-;i:qyd2E#A2;

The following snippet shows the creation of class HTMLDoc in the base model.

In addition to change operations for creating the class in the model, there are others

to put it into the correct package, diagram, and file, complete with back references.

t;qyd2E#D2;editClass;1287172549797;-;;

c1;;v::de.uni_paderborn.fujaba.uml.structure.UMLClass;i:qyd2E#E2;-;i:qyd2E#D2;

c3;;i:qyd2E#E2;declaredInPackage;i:qyd2E#92;-;-;i:qyd2E#D2;

c1;;v::de.uni_paderborn.fujaba.uml.common.UMLFile;i:qyd2E#F2;-;i:qyd2E#D2;

c3;;i:qyd2E#F2;contains;i:qyd2E#E2;-;-;i:qyd2E#D2;

c3;;i:qyd2E#E2;file;i:qyd2E#F2;-;-;i:qyd2E#D2;

c3;;i:qyd2E#E2;declaredInPackage;-;i:qyd2E#92;-;i:qyd2E#D2;

c3;;i:qyd2E#F2;contains;-;i:qyd2E#E2;-;i:qyd2E#D2;

c3;;i:qyd2E#E2;file;-;i:qyd2E#F2;-;i:qyd2E#D2;

c3;;i:qyd2E#E2;name;v::HTMLDoc;-;-;i:qyd2E#D2;

c3;;i:qyd2E#E2;declaredInPackage;i:qyd2E#92;-;-;i:qyd2E#D2;

c3;;i:qyd2E#F2;contains;i:qyd2E#E2;-;-;i:qyd2E#D2;

c3;;i:qyd2E#E2;file;i:qyd2E#F2;-;-;i:qyd2E#D2;

c3;;i:qyd2E#F2;name;v::HTMLDoc;-;-;i:qyd2E#D2;

c3;;i:qyd2E#B2;elements;i:qyd2E#E2;-;-;i:qyd2E#D2;

182



The creation of association a4 in the left model is more complicated, with three

elements being required to represent the bidirectional link between HTMLDoc

and HTMLDocElem. For conversion to the normal-form, this structure must be

mapped to two EReference objects.

t;Fu6CN#915;editAssoc;1287613457505;-;;

c1;;v::de.uni_paderborn.fujaba.uml.structure.UMLRole;i:Fu6CN#A15;-;i:Fu6CN#915;

c1;;v::de.uni_paderborn.fujaba.uml.structure.UMLRole;i:Fu6CN#B15;-;i:Fu6CN#915;

c1;;v::de.uni_paderborn.fujaba.uml.structure.UMLAssoc;i:Fu6CN#C15;-;i:Fu6CN#915;

c3;;i:Fu6CN#A15;name;v::doc;-;-;i:Fu6CN#915;

c3;;i:Fu6CN#B15;name;v::elements;-;-;i:Fu6CN#915;

c3;;i:Fu6CN#C15;name;v::a4;-;-;i:Fu6CN#915;

c3;;i:Fu6CN#A15;revLeftRole;i:Fu6CN#C15;-;-;i:Fu6CN#915;

c3;;i:Fu6CN#C15;leftRole;i:Fu6CN#A15;-;-;i:Fu6CN#915;

c3;;i:Fu6CN#B15;revRightRole;i:Fu6CN#C15;-;-;i:Fu6CN#915;

c3;;i:Fu6CN#C15;rightRole;i:Fu6CN#B15;-;-;i:Fu6CN#915;

c3;;i:Fu6CN#A15;adornment;v::2;v::0;-;i:Fu6CN#915;

c3;;i:Fu6CN#A15;card;i:WnHJn#491;-;-;i:Fu6CN#915;

c3;;i:qyd2E#E2;roles;i:Fu6CN#A15;-;-;i:Fu6CN#915;

c3;;i:Fu6CN#A15;target;i:qyd2E#E2;-;-;i:Fu6CN#915;

c3;;i:Fu6CN#B15;card;i:WnHJn#591;-;-;i:Fu6CN#915;

c3;;i:sCE3W#4B4;roles;i:Fu6CN#B15;-;-;i:Fu6CN#915;

c3;;i:Fu6CN#B15;target;i:sCE3W#4B4;-;-;i:Fu6CN#915;

c3;;i:qyd2E#B2;elements;i:Fu6CN#C15;-;-;i:Fu6CN#915;

c3;;i:Fu6CN#C15;diagrams;i:qyd2E#B2;-;-;i:Fu6CN#915;

The last snippet is taken from the right model. It shows the altering of the data

type of attribute script (ID = DJJ3S#661) from URL (ID = McEU4#76) to String

(ID = qyd2E#3), and the deleting of attribute name (ID = qyd2E#35) from class

HTMLForm (ID = qyd2E#63).

t;DHxBH#C;inplace editing;1297992361367;-;;

c3;;i:DJJ3S#661;attrType;i:qyd2E#3;i:McEU4#76;-;i:DHxBH#C;

c3;;i:qyd2E#63;attrs;-;i:qyd2E#35;-;i:DHxBH#C;

c3;;i:qyd2E#35;parent;-;i:qyd2E#63;-;i:DHxBH#C;

c3;;i:qyd2E#35;attrType;-;i:qyd2E#3;-;i:DHxBH#C;

c2;;i:qyd2E#35;-;-;-;-;i:DHxBH#C;

183



Appendix F

CoObRA Change Record

Grammar

As already stated, Fujaba models are actually logs of change operations maintained

by the CoObRA (Concurrent Object Replication frAmework) versioning software.

CoObRA tracks model changes as a sequence of file records grouped into transactions.

The file records consist of semicolon-delimited fields.

The production rules for the CoObRA grammar are described herein using a

variation of EBNF. The syntax that follows cannot be considered complete: It was

possible to derive only some of the syntax from the designer’s Ph.D. thesis [Schneider,

2007]; the rest had to be deduced from reading the source code and by conducting

experiments through Fujaba.

F.1 Constants and Enumerations

The Java definitions of this section map between the text of the model files and the

literals of the production rules.

Record Type Flag Constants

Each CoObRA record begins with a field containing a predefined flag character that

identifies the record’s type. All are single character fields, except for the change type

(‘c’), which includes another character identifying the change’s kind.
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LINE MARKER HEADER = ‘h’

LINE MARKER COMMENT = ‘#’

LINE MARKER TRANSACTION = ‘t’

LINE MARKER CHANGE = ‘c’

LINE MARKER CHANGE NEXT = ‘x’

LINE MARKER CHANGE PREVIOUS = ‘v’

LINE MARKER CHANGE UNDONE = ‘u’

LINE MARKER CONFLICT START = ‘<’

LINE MARKER CONFLICT MID = ‘=’

LINE MARKER CONFLICT END = ‘>’

LINE MARKER EOF = ‘]’

SEPARATOR CHAR = ‘;’

Change Kind Enumeration

The second character of a change record type field (‘c’) must be one of these enumer-

ated values:

UNDEFINED = 0 The type of change was not set.

CREATE OBJECT = 1 A new object was added to the repository.

DESTROY OBJECT = 2 An existing object was removed from the repository.

ALTER FIELD = 3 A field was altered—remove old value, insert new one.

REMOVE KEY = 4 A key was removed from a qualified field.

MANAGE = 5 Management data have changed (named objects, IDs, etc.)

Modifier Enumeration

These are hexadecimal characters to represent the source of a modification. They are

applicable to transaction entries that include changes as part of the transaction:

MODIFIER INVALID = 0x00 Invalid entry, not processed.

MODIFIER TRANSIENT = 0x01 Temporary entry, ignored.

MODIFIER LOCAL = 0x04 Local entry, not sent to server.

MODIFIER SERVER = 0x08 Server entry, not resent to server.

MODIFIER DEFAULT = 0x10 Default entry, processed normally.

MODIFIER APPLICATION OFFSET = 0x100 Application specific filters.
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F.2 Production Rules

CoObRA logs changes to the artifact under its supervision with the various types of

log records described here. The logging is fine-grained, so a seemingly simple change

can produce many records. For versioning purposes, changes are encapsulated within

transactions, which may, in turn, be nested.

Fujaba shadows user modeling with the construction of an abstract syntax graph

(ASG). The actions associated with this graphical model are also recorded in the

CoObRA change log. The actions are primarily concerned with properties for the

visual presentation of the shadowed model elements.

Record Types

record

comment \n
header \n
transaction \n
change \n
undo \n
conflict \n

Comment Record

comment

# ; string

Header Record

header

h ; metadata

metadata

string (; string)*
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Undo Record

undo [LINE MARKER CHANGE UNDONE]

u ; undo-body

Change Record

change

c ch-kind ; modifier ; ch-body ;

ch-kind

(undefined | create-object | destroy-object | alter-field | remove-key | manage)

undefined [change kind not set]

0

create-object [new object added to the repository]

1

destroy-object [existing object removed from the repository]

2

alter-field [field was altered—remove old value, put new one]

3

remove-key [key removed from qualified field]

4

manage [management data have changed (named objects, ids, etc.)]

5

ch-body

(create-body | other-body)

create-body

class-name ; item-id ; field-key ; tx-id

class-name [classhandler and affected item name]

v: (class:handler-name | handler-name) : item-name

item-name [affected item name]

string
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field-key [qualified field key]

(item-id | v::classhandler | - ;)

item-id [transaction and sub-transaction identifier]

i : id-prefix # id-index

other-body

item-id ; field-name ; new-value ; old-value ; field-key ; tx-id

Transaction Record

transaction

t ; tx-id ; tx-name ; tx-time ; tx-over ; (modifier) ;

tx-id [transaction and sub-transaction identifier]

id-prefix # (id-index )

id-prefix [transaction part of identifier]

(char)5

id-index [sub-transaction part of identifier]

hex

tx-over [overarching transaction]

tx-id | -

tx-time [universal time of transaction]

UTC

tx-name [name of transaction type]

newUMLProject | projectPreferences | newStoryBoard |
newClassDiagram | newActivityDiagram | logicalStoryPattern |
storyPatternWithThisObject | stop | createOrGotoMethodBody |
editClass | editMethods | editAssoc | editActivity | editAssertion |
editTransition | editLink | editCollabStat | inplace editing |
include.includeClass | include.updateClass | editClassDiagram |
globalEditAction | setTextComment | change size | drag |
deleteDiagram globalDeleteAction | exportAndCompile
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modifier [source of transaction modification]

(invalid | transient | local | server | application)

invalid

0

transient

1

local

4

server

8

application

100
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Appendix G

Mirador Source Code Metrics

Basic source code metrics for Mirador were collected over the course of development.

The measurements were made with a shareware tool called Source Monitor. The

measures from the last snapshot are given in Table 8. To Source Monitor, “Lines” is a

count of the physical lines in the source files, and “Stmts” a count of the computational

statements ending with a semicolon character, as well as the branching statements

such as if, for and while.

Table 8: Mirador v0.84 Java source code statistics
Files Lines Stmts Branch Calls Cmnt Classes Mthds Stmts Max Avg

% % /Class /Mthd Depth Depth
107 21,050 7,878 17.7 5,187 34.7 123 6.84 6.18 8 2.16
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