INFORMATION TO USERS

This manuscript has been reproduced from the microfiim master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleedthrough, substandard margins, and improper alignment

can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overlaps. Each original is also photographed in
one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9" black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

®

UMI

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

THE DEVELOPMENT OF AN
AUTOMATED MEETING SCHEDULER

HOOMAN SALAMAT

A THESIS
IN
THE DEPARTMENT
OF

COMPUTER SCIENCE

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Computer Science

CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

MARCH 1999

© HOOMAN SALAMAT, 1999

il

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Volre reference
Qur file Notre rétérence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette these.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimes
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-39117-5

Abstract

The Development of an Automated Meeting Scheduler
Hooman Salamat
The Virtual Secretary is a software agent that can act on behalf of its user’s secretary.
This dissertation presents an introduction to automating a secretarial task, that is, meeting
scheduling. Meeting s'cheduling is a part of the Virtual Secretary's task that negotiates on
its user’s behalf to arrange a meeting at a suitable time for all attendees according to their
priorities and preferences. In this sense, Virtual Secretary produces a compromise
solution, which is a tradeoff between conflicting attendees’ priorities and preferences.
The attendees only have knowledge of their own calendar and preferences, which could
be changed or fixed over time. The host of the meeting asks for a meeting, but Virtual
Secretary is the central agent that monitors the negotiation. The assumption is that Virtual
Secretary locates attendees by e-mail addresses to send them the meeting invitations. The
attendees and the host of the meeting interact with the system through the Internet. The
users receive their invitations about the pending meeting via e-mails and request their
meeting, confirm their attendance in the meeting. cancel their meeting, get the status of
their meeting, and prioritize their attendees on-line through the Internet. Virtual Secretary

processes scheduling of the meetings off-line on the host machine.

ii

Acknowledgements

This dissertation represents a great deal of time and effort not only my part, but also on
part of my advisor Peter Grogono. He has helped me shape my work from day one, and
encouraged me to achieve to the best of my ability. I would like to thank Peter for his
support and suggestions that have had a significant impact on this work. He gave me the
opportunity to develop the Virtual Secretary application. Without Peter, this dissertation

would not have happened.

My parents, Reza and Agdas Salamat, have always been, and continue to be, there for me
all times. They have been incredibly supportive, understanding, and encouraging as they
have gone through the entire graduate experience with me. This dissertation is dedicated
to my parents, who keep me connected to the world away from the keyboard, and remind

me every day how good it feels to learn new things.

While I cheerfully share the credit for the accurate and educational aspects of this
dissertation, the mistakes and omission [have to claim as mine alone. Please bring them

to my attention.

1

[S]

INTRODUCTION 1
1.1 S OFTWARE AGENT cereitetiectceseerersesescssssessssssssnessssrsessssnmssssasssrsnssssmsosssssssstssossssnorsnsenttasnssssorcstoarisronsrses |
1.2 VIRTUAL SECRETARY2
1.3 POSSIBLE TASKS FOR A VIRTUAL SECRETARY . 2
J. 3.1 DiPECIOIY SEIVICE ce.eeeecneneerecneeieeescameseresesanstasa s bbbt e 3
1.3.2 NOHFICAION SEIVICE ...cuueeeneeenieieneiieneetemsssssasss et e e e ettt 3
133 BUHEHN BOQIT SCIVICE c.anneeeeveeeeeeeecreeeveeseeveesseeaesssssssssssssensesssssssssnmsssssssesisasssmesmsssssesssnsensnnsaas 3
1.3.4 Meeting SCREAUIING SEIVICE...........uuuemeeeeemeeeeieeeescencete ittt 3
1.3.5 Text-Speech CONVErSiON SEIVICEooweeeuresieseeseneseamensin ettt st 4
[.3.6 Message FOrwarding SErVICEumeoeememeeeeeesem e ettt 4
1.3.7 MeSSAE QUEIY SEIVICE......u.eememereemeecteeieteisseeete e et et bbb 4
1.3.8 Remote File MAnagement SEPVICComeereresecemessentmee et see st s 5
J. 3.9 FX SOIVICE o oeeeeeeeeeeeeeeeeeeeeseesssesessessnssssnessssasesaasenessarerssantsssassasaes e sssasestonsrenmssses s nsane s ssenesa s 5
1.3.10 Multilingual SErviCe.......o.euemeeeneeeeeeeeteienee et c ettt 5
1.4 ECURITY conovncereeeecesesensessesssssssssnssssessssssensssanpsssssnssssnsnessosssssessesstossaseesstsassnssensossoesesoasocssnesceressnonennes 6
MEETING SCHEDULING & VS 7
2.1 INTRODUGCTION .ereeeeeceteereessssmsssseessssesssssssesssssasessasassssnsannnssssessssssossasssnsesesssssnnmnssensanmassasssssasosaassoses 7
2.2 PRINCIPLE CONTRIBUTIONS ...uvrieeeerciieerersereesceesstosessannsrenmesessosrasssomessssessssensrsssmnssssasesanasossasssntassconss 8
2.3 MULTI-AGENT SYSTEM ...ecteeeeereeerrerereesessesssecsscssessssnsmssssessasessssstsesesessonsetsssssesssssererssssassnsasesssassse 11
2.4 KNOWLEDGE-BASED SYSTEM ...ouurtierrieeimaresresecsorssssorsensasssassesassssonsesassssssmstosssssssnmtsssassssnsassasassoss 11
BACKGROUND 14
3.1 GQURNVEY otrenieevaerassacaneesesasssssarenssassnsssssessrasensnacssesessnsasassenoesessssssssssssssssssossossenstonsanasnssosesssessasisssnsces 14
3.2 PROPAGATION OF VS eoeeeceeeereecrtrseersaseensesesmssessss e s s s sasesesssasssataesessaessse casssbesss bt ersarasssnassensaonnssas 15
33 TUSER PREFERENCES «e.eeiitvrererseresessasesasssassesaseesesssessssnsssnsaessontosssstsnsasasannstsassnsmosasnonsssseersstensnsarssoses 16
3.4 THE APPLICATIONS e eeteeercceereneersocicsacsecsnsossesanssrssssassssomessssssssntasnnssnssssnsans 17
FeBd WIHIASIFE ..ottt s s e 17
342 POIICO waeeeeeeeeeeeeeeeeeeeeeeseseressessesssssesssssassssssassssemaseaesse s s s s s e s e s e s s e ns e nnaae s s s cea oo ee s nssese s b r e s a e 18
3.4.3 Microsoft SCHEAUIE +........ouemeenemiriieeieieiee ettt 18
344 Meeting MAKCEE XP ... eeieneeeeeeeeee et 19
USER AND TASK MODEL 20
4.1 TUSER wooreeoeeeeeeeeeesesessecmesssssseseessnsassssssatensssaasassesesessessnmens s venssasntssasanesatesssnnteronsstesassressnesssnerensannsnsaas 20
4.2 TASK woeeeeeeeeeeseesseeeseeasamessssresassssosssssasssessssasassasaaatassorsesanssttsasssaseastesrsesasnasesenesetesassssranrer nteasnesranen 21
G20 USCES GOALS oeoeeeeeeeeeeeeeseeereeeeesrsmesservesesssssrsesssanasassssrmarreteta st s sa e asta s e saraebear s sssssasraetas s anannns 22
43 MMODELING. ...ceeeeeeceeeeeesesssresssesssssasessseaasssmsssnsssuseersssssssnsassnssassasassesseessnssosasassatssmssssssssmsasmessmssansanss 22
4.3.1 Metaphors for tRe iNErfACE dESIGNo.weveuemeeecneeieieieei et 23
.32 USE SEQUENCES «.e.eeneeneeenrenrererensieiesiee e s st st sess s e bt e 23
B.3.3 USEEINOAEL eeeeeeeeeeeeeeeeeremereesenveseeeessesssssassssessasssnnssssasssssssssassanssassasssmasaneasssnsersssrianneseniaesnnes 24
4.3.4 Proposed solution : Knowledge-based CGI SYSIEIMSovevevoieiiomeiniieceitntiiriceci s 25
DESIGN 27
5.1 MEETING SCHEDULING AUTOMATION ...iuicicveesceectsreemsnsrsnssnsccsrasmtoncessnoncssssssensserssonssssrssesssssssstoesases 27
5.2 INFORMATION NEEDED FOR COOPERATION ...ccciiiimirnmnreorootentestocnntieiaensiressssasnonanseosenassssoesssestsoscues 28
5.3 SCHEDULING ALGORITHM ..cuvvirrveirrressseesnsssssssesssossessssrsssassassnsssnissssssssssasesssnsssnssonsossssosassmsssesssens 28
5.4 PREFERENCES ..eouvteseessseesssssasseesssaessassessesssssntossssssessnresssstsstssesssssnsssssssiessesosasssiostormssnmssassesassnasass 31
5.5 PRIORITTIES. cueueeeeccessessossssssessrssassssensssssssssssssssasssssasnssenssssessssessssssessssresssssssnsenssorsossnassosssssssssssssssseons 31
5.6 QUORUM REQUIREMENTS ..uvnrtetenereirenssesnssessssssssssass seraemsnsn st st s s sb s s stas ettt s 32

IMPLEMENTATION 34
6.1 THE PROGRAMMING LANGUAGE ...uteuicirencinsirssresresesssnssessserssstusimmirietositsssesssnasrasmonsscasssstissiosineasens 34
6.2 COMMON GATEWAY INTERFACE ..cccoveeciemirececncisseissonmntansessaesmtaastasssessssasassasstossarassssssisssnersasnsasasss 35

9

6.3 PLATFORM...uuuettertmterrvnrnnrnrrenenns

6.4 ARCHITECTURE ..ucuceeneviirnciencene e
6.5 THEMODULES

650 MERBAIIL oo

6.5.2 Reqform.htmicc.eeeeen....

6.5.3 SUDIUIITEG.CQI oot eeeecvecrcasssssssnassesss s setsssn s msse s ens e s s st seassssesssrmsassas s s e nnnna st aes
6.5.4 CONFITRIML ..o eceemeeteer e e sesssstssss e sarssesssa s re s me s san s sraase st ssrs e s ss s n e nsnsen
6.5.5 COMPIITICEE ceeeneereneeeieceecectee e e eetecroeenee s sssssessans st srstamss e sme s s e nn semaran s aems s seemss s anmsnnnr s sssrsnes
6.5.6 SUBDIIICONMSIII.CRI .veoneeneereeeeeemecrieeeeeercaccrcseetesesssesserisa e ses s se e m s ssss s s ettt e sassasesanansanees

6.5.7 Status.Htmleeneeeeeeeeeeeeeeeeeeeaeenne

6.5.8 SIAIUS.CRI-coaennceeeiieeimecercriiriceininnaneeees

6.5.9 PriOFTIY.RIML........oooeeeneeeereeeeeceeaeeeeeetete e cemeses s e re e ss e s s e se s ssss s s m et s st son b r s esern e snsnanes
6.5.10 PrIOFTIY.CRI conneeeeenreeeeeeeeeee e e cec e st esas s snesses s e s ess s e e s b b e snc s ra s o e s e s e s s s e s b aa s s ense
6.5.71 SUBIMUIDITOFIIY.CQI conieeninineeeceeeeeecreeerecsteeereesse e et e sse e sns smta s et e st st tc e s b r s s e m s nsen e
B.5.12 CANCEIRIIU coneeeeeneeeeeeeeeeeeeeeeeeeeeearesesesesnssssnenssestesesmassessasasassassssssaneranrsnses e s mmsteesssesnmanses

6.5.13 Cancel.cgi........ccccovvnneeiimmmananaaannn..
6.5.14 Schedule..............ccccoucovemiiminnnnn...

G505 ETHQEL eooeevvssssessmssnaaesaasesssas e n s et e s s e astate s e e c e sn s ns s s s b b nnaen e seeseenass
B. 516 SECUFILY ceoeeeeeeeeeeeereeeeeee et et eece et ceee e cesssser s e s s s e sr e e s b e et e st et e amt st st n e n s a e s s s se s

SECURITY

7.1 INTRODUCTION.ccvveerernn -
7.2 RISK coreceeetiiectmiessrsverenneensnesenneseesensonnes
7.3 (@163 5701231 4 17Ut

7.4 FORMS ..iiiriiaiterentennenrevnrecrencsennenennenes

7.5 USER AUTHENTICATION ..o ettineeereereeeeeereesressasassssssassessssesmrstrassssasessasensnssmsansssesssssnmssrsssnssasssssresssssses
7.6 PLATEFORM..cevveeeueeneveesesesieesseessenssssssssnsssssnsssssssssssemesrasessassesasssessassossssssssasserrresssasasssassasessonssssnsssns
7.7 OUR SUGGESTIONS <.eooeoeeireeseeeenreeasreressseesssnssmsssssseeasssssotossonsanmesssssssmeretssssssossranssonsesorassarassessrssssosss
T 7d USING SSL et eres e e e e s s s e et e e s e e
7.7.2 USING SHTTP ..ot eenmeem ettt sttt s et s s e e e sotm e s s s ne s e sy esss 2 ms

7.7.3 Using Personal Certificates to control server access

7.74 Using PubliC-KCY ERCIYDHOMoooeeeeeiieeeeeeeie ettt et nes s s e s s
7.8 RIESULT eeecuieuierereierinirecnnnresnssssansnsosansescesnersscsssssssarsssssssvensrssensssssrsssssssnssssenssssensresnsnsssssssnsasascoscsssses

CONCLUSION

8.
8.

REFERENCES

l IN GENERAL oeunitiireiercoiereneieesesatsseroresmsrsrssnsssssasnesrssesssasmmmssmrssesasnsosssreasessssstososonsssasnsansssasssrsssssses
2 FUTURE WORK ..cc.ctiiieeicveirtericeeeecccsceessssssosssssosssssrnsssstsermisssansessnsssnsressssrsnssonssesasosessassnnsmasnsscsscsces

vi

1 Introduction

1.1 Software Agent

An agent acts on behalf of its user. A software agent is a particular type of agent that
assists users with computer-based tasks. Software agents differ from each other based on
the nature of the tasks performed, the nature and source of intelligence, and mobility.
Software agents also can learn the user’s preferences. In terms of intelligence, software
agents rely on a programmer’s skill. Figure 1 illustrates the relationship between

software agent, applications, and users.

Application

Infteraet wid

literact with
Collaborate

Figure 1

1.2

1.3

Virtual Secretary

The desirability of computerizing major secretarial tasks in order to achieve higher
efficiency in terms of time and accuracy in the real world provided the motivation for
building a Virtual Secretary (VS). The main goal was to construct a software agent that
learns to perform important secretarial tasks based on requests from users. The next step
could be to model other Virtual Secretaries to cooperate with each other in a multi-agent

system.

To build a Virtual Secretary, we imitate the activities of a secretary in real life. Then we
think about how much intelligence would be enough for the Virtual Secretary. VS could
accomplish its tasks using a knowledge-base system, and could update its knowledge by

learning or by getting all the required information from users on-line.

In this work, we describe a VS that prompts its user in an interactive environment, in
order to receive the essential information on-line, and performs the scheduling process

off-line.

Possible tasks for a Virtual Secretary

The following services are some of the most important tasks that we expect that an ideal

VS can take care of.

1.3.1

1.3.2

1.3.3

1.3.4

Directory Service

The Directory Service allows the user to maintain vital information about clients, friends
and relatives - such as pager and telephone numbers, addresses, etc. Whenever the users
wish to access such information, they just need to hook to their VS and it will give them

the required information.

Notification Service

The alarm service helps users to organize their business. The users could inform VS in
advance indicating the time they wish to get their wake-up call. Suppose, the users have a
series of meetings lined up for the day, and they need to be reminded of the next meeting

15 minutes in advance. VS will call the users and remind them about important events.

Bulletin Board Service

"3 can maintain a Bulletin Board where the users can store any information. VS will
share the information that they wish to reveal. VS could keep the user’s client updated

round the clock on the latest news.

Meeting Scheduling Service

The automated meeting scheduler accepts a call-for-meeting request from the users to

find a common free time slot. When such a free time slot 1s not found, VS should ask the

1.3.5

1.3.6

1.3.7

busy participants to change their schedules. The other type of meeting scheduling could
be scheduling in a multi-agent-based environment where each agent knows its user’s

preferences and calendar availability in order to act on behalf of its user.

Text-Speech Conversion Service

If the users are leaving their office, VS will store all the messages for them. It notifies the
users by a pager or the users can call VS from the outstation location everyday, if
necessary, and VS will read out their electronic messages or fax for them. If the users
want to reply their messages over the phone, VS will recognize their speech and convert

the messages to text, and finally forward them as e-mails to the senders.

Message Forwarding Service

Whenever the users go to another location, all their messages from their office will
automatically reach them there. Of course they have to inform their VS of their travel
plans and duration of stay in advance. If the users are in a meeting and they don’t want to
be disturbed for a few hours, VS will re-direct all their messages to a friend, partner or
colleague. VS will even inform all callers that the message is being diverted to an
alternate address. The users can even retrieve all their re-directed messages directly from

VS later.

Message Query Service
There may be occasions when the users might recall their messages. The reasons could be
many. They may have received an incomplete message. Whatever the reason, they can

connect to VS and request to send them all the messages received, for examples over the

1.3.8

1.3.9

1.3.10

past 3 days remotely. VS could supply the users by search engines and the users could

sort results by date, time, word or any other priority.

Remote File Management Service

This service provides the users with access to archived documents through the Internet or
the Intranet. The users can also manage the information from different sources (images,
applications and files) remotely. A scenario would be when the users want some files
from one of their workstations and they don’t remember the file name and file server as
well. VS carries with it a certain amount of knowledge of the users and it uses this
knowledge (called “user model”) to guide the system in searching of the correct file. This
could be handled by kind of adaptive software, which contains a user model to improve

the interaction. The user model could be copied to the remote machine as part of VS.

Fax Service

The users can receive their fax through VS. They can store a copy of their fax or have
them automatically sent to their fax machine. VS can send fax to any machine the users
choose from any location. VS can broadcast their fax to thousands of numbers all at once.
If the line is busy, VS will keep calling till the fax gets through. If the users are out of the

office, VS will convert their fax to voice and read it for them on the phone.

Multilingual Service

VS could express information and communicate with the users in any language.

1.4

Security

Global internetworking has enabled many new services and opportunities. including the
use of different kinds of software agents. Software agents in the form of worm-like
programs represent a great potential for location-independent problem solving. The main
problem with such software agents is that unknown programs, which propagate to a
computer, must be trusted, since the users have no control over these programs. It is, of
course, possible to accept only active programs from users with whom we have an
authenticated agreement. Given all the possibilities that the computer network prevents
the computer fraud, a user or system manager still takes a risk in letting active programs

penetrate the system.

One approach to deal with the security problems is to adopt a security policy that is
designed to ensure appropriate levels of security. Our VS is supported by a method of

security, known as user authentication. Chapter seven explains this issue in detail.

2

2.1

Meeting scheduling & VS

Introduction

Meeting Scheduling is one of the everyday secretarial tasks that is iterative, time
consuming, and tedious. The process of searching for a commonly available time through
e-mail or phone can result in less satisfactory solutions by real secretaries due to the
communication delays and other concurrent scheduled meetings. Meeting scheduling
automation could save time and effort on the part of humans. The benefit of such
software is two-fold: VS allows users to concentrate on more productive tasks and they
improve the quality of information processing by preventing errors that might be

introduced by human users due to the routine and tedious nature of the job in question.

To effectively act as a surrogate for the user, VS must have some model of the user. The
model can either be input by the user or leamed from interaction with the user. Along

with the model there needs to be a decision-making system.

Our work has focused on the problem of how the user model can be analyzed and
understood such that VS carries out tasks on behalf of human users. Our particular
domain has been meeting scheduling and our user model is constructed from the user’s

input.

2.2

Principle Contributions

The following dimensions represent the capabilities of our automated meeting scheduling

system:

Users: The focus of this work is the automation of most of the tedious and repetitive

activities that are performed by humans. Human input is critical for VS to represent the
user model. For interaction to VS, the users only need to have access to the Internet. In
contrast to most of the currently available software for meeting scheduling, the users can
interact with the system at any time from any location. Our VS also minimizes the

amount of supervision that the user must provide.

Process: All of the scheduling process is done off-line. Thanks to multi-processing

operating systems, VS handles as many processes as exist in the system simultaneously.

Platform: Thanks to the Internet, the users don’t need any specific platform to work

with VS. The only thing the users need to interact with the system is access to the Internet
and e-mail address for receiving invitation mails. In this sense, VS is completely
platform-independent. On the other hand, the program itself can be installed on PC,
workstations, etc., since this program has been written in Perl programming language. VS
exists on the target host and users don’t need to install any application or software on

their site in order to use our VS.

"I

Time: VS allows users to process meeting scheduling asynchronously on-line through

the Internet. The time required for all interactions depends on the user’s Internet Service

Provider, but is usually less than one minute.

Group context: The convention adopted in our approach is that any user can initiate a

meeting request. We also assume that the invitees are completely free to accept or reject.
The users can give their proposals based on their own preferences and priorities and it

doesn't depends on what position they have (hosts or invitees).

Preferences: In our development, we concentrate on user preferences and priorities to

categorize acceptable or unacceptable meeting proposals. Based on user preferences and

priorities, we propose meeting times and locations.

Mobility: Our VS propagates to the web browsers, bringing data and program to

execute locally. The users run their own copy of VS, and VS is distributed across the
entire Internet. In other words, VS takes advantage of both centralized and distributed

environments.

Ease of use: Working with our VS is simple and doesn’t need any computer skill. VS

provides the users with a user-friendly environment.

» Privacy: Privacy issues are key in our VS. Each meeting has its own password. The
invitees have only access to their own meeting information. The passwords are
distributed by the host of the meeting via e-mail. There is a risk, of course, that
passwords will become known to unauthorized persons. This, and other aspects of

security, are discussed in Chapter 7.

» Quorum: While scheduling a meeting, in general, it is not a necessary requirement that
all potential participants participate. Such a constraint causes many scheduling failures
and is avoidable. The goal of introducing the concept of quorum is to find out the best set
of members for a meeting if the scheduler finds that it is impossible to schedule all the

participants in a proposed time slots and locations.

» Calendar: In contrast to most of the meeting scheduler applications, there is no need for
our VS and its users to have any calendar application. This extra software might restrict
user’s mobility for those applications, which need to install the calendars in their
premises. The mobile calendars (such as the calendars over the Internet) also need high
security and some times providing such a security is not easy if the calendar should be

sharable by the users.

The sections 2.3 and 2.4 describe the other capabilities that the software agents might
have. In particular, we focus on the structure of a multi-agent and knowledge-based

systems. Our VS doesn’t support these features.

2.3

2.4

Multi-agent system

A multi-agent system requires some kind of automatic process, which can communicate
with other agents to perform some collective task on behalf of one or more humans. In

multi-agent system, VS could learn from other VSs.

The following are major issues with multi-agent systems:

The speed of communication in a distributed system.

Security and privacy (necessity of having a reliable network to connect agents).
Multiple agents might have different perspective and constraints.

The communication approach (e.g., LAN, WAN, etc.)

In multi-agent systems, agents are basically organized into a cooperative group for the
purpose of knowledge sharing. The following section will explain how the knowledge-

based system can exploit the multi-agent system.

Knowledge-based system

Knowledge is the objects, concepts and relationships that are assumed to exist in some
area of interest. A collection of knowledge, represented using some knowledge
representation language, is known as a knowledge base, and a program for extending

and/or querying a knowledge base is a knowledge-based system.

v

Knowledge differs from data or information in that new knowledge may be created from
existing knowledge using logical inference. If information is data plus meaning, then

knowledge is information plus processing.

One of the requirements to work with our VS is to retrieve the wanted data from the users
directly, which means, the users should go to the host page and enter their preferences
and requests in a user-agent interactive environment. Our VS doesn’t have any
knowledge about the users by default. The user’s profile is given individually for each

meeting.

In a knowledge-based system, VS has basic knowledge of the users and we name it as the
first level of an intelligence agent. VS on this level could fulfill tasks with the help of the
knowledge-based system. The key issue for VS on the second level of intelligence is to
keep its knowledge fresh and updated by learning. If VS stays only on the first level, it
will be useless since the users™ preferences and priorities change over time. VS on the
third level of intelligence should know how to cooperate with each other to solve
problems efficiently. An important characteristic for VS with such cooperative behavior
is how to find out who can help me, to predict the other VSs activities, and contact them

for assistance.

VS could know the others’ activities in two ways:

The most straightforward way is through communication. But, it is time-consuming, and

may decrease system performance.

12

“

I d

Agent modeling: In this sense, we have to find out how to model an agent’s knowledge
for the purpose of intelligent cooperation, and how to update and maintain this

information consistently for later prediction.

In general, what kind of information that is appropriate to represent an agent depends on

the agent’s application domain (e.g., the host of the meeting versus the invitees).

The following information is required to model VS for cooperation purposes:

The tasks of agents.
When do agents need cooperation to perform a task?
What kind of information do agents need for the purpose of cooperation?
VS has no idea how to handle a task.
VS lacks some information to complete a task.
VS only has the ability to perform one fraction of the task.
Which agent(s) should store this information?
How to store this information?

How agents have access to this information (where they exchange the information)?

To satisfy the cooperation process, VS needs a database to store the most updated
activities of the other VSs. Whenever VS needs cooperation, VS should extract the above

information from the database.

3

3.1

Background

Survey

Past efforts in developing an automated meeting scheduler have met with limited success.
For example, [Maes, 1994] focused on learning personal assistants that learn user
preferences by watching the user scheduling meetings. The goal was to assist users in

making decisions by suggesting alternatives and not to automate the process.

Most of the commercially available products for scheduling over computer networks
have been based on PC systems. Microsoft Outlook Meeting Scheduler, CyberMatrix
Meeting Manager, Meeting Maker and Microsoft Schedule+ are examples of these
products. These products provide the users with only a nice interface to view their own
calendars and that of other users, and in some cases find time intervals to propose by
searching these calendars. When using these systems, users have to allow complete
access to their calendars by all other users. The only restriction is that the users have the
sole authority to modify their associated calendar. Calendaring and scheduling products
are well established for personal or organizational use [Sen et al., 1997], [Maes, 1994],
but they usually are limited to exchange of information among users of the same system,
usually within the boundaries of a single organization. None of these systems satisfy the

real need for intelligent scheduling that honor user preferences and priorities.

3.2

Propagation of VS

Gunnar Hartvigsen, Arne Helme and Stig Johansen (1995) focused on the propagation of
the Virtual Secretary’s user model. Propagation of the user’s environment includes export
of the user environment to a remote host. The virtual secretary body process is referred to
the part of the application, which performs all the processing. To reduce the security
problem, VS body process exists on the target host, and its process is well known. A user
model contains a deséription of the mission, the user (including user’s history, current
task, preferences, etc.), administrative and control data, etc. The user model, or if
appropriate, part of the user model is initialized by the body process on the remote host to
continue its mission. When a user needs the virtual secretary on a mission, the
propagation will take place through the copying of the user model or part of the user

model. This approach implies that no executable code is transferred.

Wen Cao, Cheng-Gang Bian, Gunnar Hartvigsen (1997) presented VS in two aspects: (1)
to construct individual agents on three intelligence levels: knowledge-base level, learning
level and cooperation level; and (2) to model other agents’ activities by task-based for the
purpose of efficient cooperation. The cooperation process finds out who can help VS as
quickly as possible. The task-based provides the direct mapping between tasks and the

related agent sets that could perform such tasks.

15

3.3

User preferences

[Sen 1997] proposed a tradeoff between conflicting user preferences to produce a
compromise solution using voting theory. His meeting scheduling uses the calendar
manager software to manipulate the user’s calendar, and uses the e-mail system to

communicate messages with other meeting-scheduling agents.

In contrast to most of the currently available software for centralized calendar
management and meeting scheduling, Sen’s approach is distributed, where each
employee in the organization is provided with an automated meeting scheduler agent.
When a user wants to schedule a meeting with other users, the user requests to the agents

of the meeting.

Sen proposed a voting mechanism to schedule meetings in order to satisfy user’s
preferences. Users also can provide preferences for meeting topics, lengths, time, date,
etc. Finally the user should rate each preference dimension. By default, VS will assume a
preferred profile. The user may, however, specify any alternate profile or VS may learn

from observed behavior of the user.

The user could assign a value between 0 and 1 for all options of each dimension. The
total of all options under a given dimension need not sum to 1. For example, if the user
specifies the preference for meeting on days of the week, Monday could be .56 and
Tuesday could be .87 and so forth. The important point is that every participant should be

able to specify the weight for the options in each preference. The user also specifies a

minimum threshold for each dimension. If the value of the option falls below the

minimum threshold, then the user would prefer not to attend that meeting.

3.4 The Applications

3.4.1 Wildfire
Wildfire is a personal assistant developed by Wildfire Communications
(www.wildfire.com), which uses speech recognition to manage the users’ phone, fax and

email communications. Wildfire offers the following services:

Answer phone and even recognize frequent callers.

Let users voice-dial their calls.

When a person leaves a voice mail message, it captures their name
and number, so the user can return calls by simply saying "Give me z call!"

Announce every caller's name so the users always know who is on the
line, even if the user is listening to a message.

Remember names and phone numbers for 150 contacts, and
the user can call them by simply saying their name.

Route the users’ incoming calls to any phone that the users designate.

Although Wildfire can make a call to all invitees, it doesn’t support meeting scheduling

which honors the users’ preferences and priorities.

3.4.2 Portico

Portico is a new kind of virtual assistant developed by General Magic
(www.generalmagic.com). It can take messages, screen calls, track the users down when
they are out of the office, check emails, even get the user the latest business and stock
quotes. With Portico the users can prioritize email messages, access their email, voice
mail, address book, calendar, news, and stock quotes over the phone or the web and reply

to messages right then and there.

MagicTalk™ is the foundation technology for Portico. Portico will understand more than
one million different phrases, and can reply to the user with approximately 5,000

responses and helpful hints.

Although Portico is a strong virtual assistant, it doesn’t provide a serivce to users by

finding common time slots and locations for scheduling purpose.

3.4.3 Microsoft Schedule +

Microsoft Schedule + is an organizer developed by Microsoft
(http://channels.microsoft.com/scheduleplus) that helps users keep track of their schedule
and contacts. With Schedule+, The users can:

I. Track appointments.

2. Schedule meetings with other Microsoft Exchange Client users.

3. Prioritize tasks.

4. Organize business and personal contacts.

5. Set reminders to help you remember your appointments, meetings, and tasks.

Although Microsoft has a nice interface as compared to our VS and provides its users
with recurring meetings, the users are not able to prioritize their free time slots, location

and attendees.

3.4.4 Meeting Maker XP
Meeting Maker is an automated meeting scheduler developed by ON Technology

(http:// www.inform.umd.edw’ ARHU/mm/mmtoc.html) that helps users schedule a

meeting. In contrast to our VS, the users can propose one time slot and location like
Microsoft Schedule +. Meeting Maker and Microsoft Schedule + enable users to propose
recurring meeting. The users can select the frequency option to propose weekly, monthly
or daily recurring meetings. Both software also provide users with calendar where the

L1333

users organize their tasks and calendar availability.

The major difference between our implementation and other work on meeting scheduling
is that we are interested more in efficiently automating the scheduling process than in
learning about user preferences over time and minimizing the supervision of the users.

Also, anyone can use VS.

4 User and Task Model

4.1User

User modeling has been found to enhance the effectiveness and/or usability of software
systems in a wide variety of situations. A user model is an explicit representation of
properties of a particular user. A system that constructs and consults user models can
adapt diverse aspects of its performance to individual users. Techniques for user
modeling have been developed and evaluated by researchers in a number of fields,
including artificial intelligence, education. psychology, linguistics, human-computer

interaction. and information science.

User modeling may be used for several purposes: to improve the interpretation of user
actions at the interface level, to improve the interface presented to the user or to improve

the actions of a system that operates on behalf of the user.
The major emphasis in our work is on user and task analysis. User and task analysis is the
process of constructing the user and task model and using these models when decision-

making. The analysis includes:

What users’ goals are; what they are trying to achieve?

Y

» What do users actually do to achieve those goals?

\ %

What personal, social, and cultural characteristics the users bring to the tasks?

» How are the users influenced by their physical environment?

20

> How users’ previous knowledge and experience influence how they think about their
task

> What do users value most ?)

Once we have developed a preliminary picture of the users, we begin to plan how to
obtain information about users. We studied the users of VS in three categories:

> How do they define themselves (Personal characteristic)?

» How do they diffef (Hosts or invitees)?

» How do they interact with VS§?

How the information VS gains about the users.

‘/

The fact is that no matter where the complexity of users’ personal characteristics may
lead the design decisions, we recognized that the more data we have to assist in decision
making, the more successful the decisions are likely to be. Our user and task analysis
relies on data obtained from user or task model rather than assumptions. The data is
constructed by the users when:

» Request a meeting

» Attend a meeting

» Prioritize the invitees

4.2Task

We need not only know about the users, but also about users’ task. Initially, we tried to
find out the ways to simplify what users do so that they can accomplish their goals easily

and how the tasks that one person (like host) does relate to tasks that others (like

attendees) do to accomplish a given piece of work (such as meeting scheduling). To

answer these questions we need task analysis and building a task model.

In our work, we predicted that the list of tasks may change. The procedures they take to
do those tasks may change. This prediction enables VS to add more tasks so that our
implementations are much less likely to change. VS already supports the following tasks:
» Request a meeting

» Cancel a meeting

» Get the meeting status

» Attend a meeting

4.2.1 Users’ Goals

To do a task analysis, we should understand users’ goals and how users move from goals

to tasks to actions. A task is what someone does to achieve a goal.

Our users’ goal is to schedule the meeting according to the users’ calendar availability.
Since we have different users with different preferences, there is no guarantee that all the

users’ goal match.

4.3Modeling

To organize and analyze the user data and build the user model, we need an effective
interface. The model that we build will depend on the type of information we have
collected from users through interface, the tasks and the users’ goals. We take this

information into account as we develop our user or task model.

22

Modeling is a complex process that requires both creativity and a firmly grounded
understanding of users, tasks, and environments. In modeling, we have to figure out:

» How to make sense of all data retrieved from the users.

> How to tum the data into useful information such that VS communicates effectively
to its other components.

> How to turn the communications into decision making

4.3.1 Metaphors for the interface design

Metaphors provide analogs from the users’ real world to the virtual world you have
constructed in the interface. In our VS, we designed a straightforward visual
representation of the users’ current process. For example, if users are requesting a
meeting, we constructed a form in the interface that helps users express their request as

they communicate by phone.

4.3.2 Use sequences

A use scenario tells a story about the users and their proposed interactions with VS. With
a use sequence, you take part of a scenario and turn it into a sequence of steps. The steps
should clearly indicate what actions the user will perform, what decisions the user must

make, and what actions the system will perform for the user.

After designing the interface, we have to make sure that the interface:

23

‘,’

conveys the user model.

A%

provides messages where and when the user needs them.

streamnlines tasks for the user.

\ U

» works for all the scenarios.

covers the tasks that users expect to be able to do with VS.

\Y%

4.3.3 User model

A user model is a knowledge source, which contains explicit assumptions on all aspects
of the user. A user modeling component is that part of a dialog system whose function is
to incrementally construct a user model; to store, update and delete entries; to maintain
the consistency of the model; and to supply other components of the system with

assumptions about the user.

Every user is assigned a user model representing the user’s knowledge. The user model
can be initialized by either the users input or stereotypes. the user model can be
mainpulated by the user or the system while interacting with the user. VS could handle
stereotypical knowledge about users. It could make use of two stereotypes: Host and

[nvitee.

The user’s input is the most reliable in problem-solving domains. The Human-Computer
interface is one of the technique for receiving the user’s input in order to construct the

initial user model. The initial user model can be improved based on inferring the initial

24

4.3.4

assumptions about the user and updating the knowledge while the user interacts with the

system.

Proposed solution : Knowledge-based CGl systems

Integrating knowledge-based system and CGI could provide more flexible and intelligent

navigation. A database can be used to keep and help access the information.

First generation CGI offers only links between the interface and the server side program.
Second generation systems can rely on knowledge representation approach to describe
relationships between information. The question is how to provide VS with user model

which is conveyed and queried by CGI.

The proposed model of the system relies on a four-level organization:

The information level contains data, which are considered as raw information mainly
dedicated to VS user. Only the user gives this information to VS. This level can be

implemented by human-computer interface.

The knowledge level helps reasoning. It contains general knowledge about the task
domain (useful concepts, their relationship and task model). It is implemented as

knowledge representation system.

25

The mapping level defines a mapping between data of the information level and concepts

of the knowledge level.

The communication level defines the pipelining of an intelligent preprocessing and a
database. This can be implemented using CGI. Explicit query can be sent to the mapping

level.

In this chapter, we discussed what factors should be taken into consideration in order to
make the user and task model by designing the interface. The next chapter will explain in

detail how we used them in order to make our initial user or task model.

26

S

5.1

Design
Meeting Scheduling Automation

When a user requests a meeting to be scheduled, participants have preferences about
when they like to meet such as time of day, day of week, position of invitees, topic of the
meeting, etc. The Virtual Secretary should balance such concemns, proposing and
accepting meeting times that satisfy as many of these criteria as possible. For example, a
user might prefer not to meet at suppertime unless the president of the company is

hosting the meeting.

Scheduling a meeting by real secretaries takes a lot of time and effort, and there is no
guarantee that they find a free common time slot and location that satisfy the invitees’
preferences. In the worst case, there is no time slot that satisfies the preferences of all the
invitees, and the secretary should ignore that time slot or location, and the host of the
meeting should try to schedule the meeting in another time slot or location. This process

will continue until the scheduling succeeds.

The other important issue in scheduling is the prioritization. In each meeting, there are
some participants whose presence is mandatory for the meeting. The meeting can proceed
in the absence of some of the non-mandatory or low priority participants. This fact would
relax the constraint of finding common time slot or location to finding a “fairly” common

time slot or location.

27

5.2 Information needed for cooperation

Generally, a meeting is specified by:

1. The set of participants, their e-mail addresses, their positions and places of work
(attendee’s profile).

2. The host of the meeting and the host's e-mail address (host’s profile).

3. The meeting identification (which is used as a password).

4. The length of the meeting.

5. The possible starting times (date and time) on the calendar for a meeting. The current
version limits the number of starting times to SiX.

6. The attendee’s preferences for proposed time slots when confirming.

7. The attendee’s preferences for proposed locations when confirming.

8. The priority of time slots (date and time) and locations for the host of the meeting.

9. The priority of invitees (non-mandatory, low, high, mandatory).

10. The scheduling deadline (date and time): This is the exact time that VS start off-line
processing in order to schedule a meeting.

11. The subject of a meeting.

12. The time of request by the host of a meeting (Dynamically generated by VS).

13. The time of confirmation by each attendee (Dynamically generated by VS).

5.3 Scheduling Algorithm

The following algorithm explains how VS carries out meeting scheduling:

28

‘/

“f

A7

A\

Initially, the host of the meeting starts requesting a meeting by pressing the Request-
meeting button on the main menu of VS which is currently located at

(http://www.cs.concordia/~grad/salamat/cgi-bin/menu.html). This page is password

protected by the system administrator. Therefore, all potential attendees must be given

this URL and its corresponding password.

An HTML form will be opened which will enable the host to request for a meeting by

entering:

The host’ name.

The host’s e-mail address.

The meeting ID which is used as a password and meeting identification for each
individual meeting.

The date and time of request. The application provides users with the current day
and time dynamically.

The time slots proposal: An array of possible date and times with top-down
priority, meaning that if the application find more than one time slot, the host preference
is the one which is situated higher in the list box.

Deadline (date and time).

Location(s): The possible locations.

Meeting subject.

The e-mail addresses of attendees (mandatory and non-mandatory).

29

3. The host requests a meeting by pressing the OK button and the program automatically
will send an invitation e-mail to the attendees. “You are requested to attend the meeting

[D4024419. Please confirm your attendance at http://www....”. Simultaneously, the

application creates a process for scheduling purpose. This process will remain in sleeping

mode till the deadline is arrived.

4. Tt is worthwhile to mention that at this time VS also creates a profile for the meeting by
saving the meeting information in various files. Chapter 5 discusses meeting profile in

detail.

5. When invitees receive their invitation mail, they go to VS main menu on the Internet, and
click on the “Attending Meeting” button. A pop-up window asks for the meeting ID.
Then the invitee will be taken to another URL, which contains all information about the
pending meeting. The invitees should click on all of the intervals (time slots) they can
attend. Then, the invitee notifies VS of the request by pressing the OK button. It also

triggers VS to update the meeting profiles by saving the information to the files.

6. The meeting should be scheduled by the time the deadline is expired. The process will be
woken up and VS tries to find a common time slot. If it cannot find any interval, it fails
and the meeting is abandoned by informing the host of the scheduling failure. Otherwise

it schedules the meeting for the earliest interval (which has highest priority).

30

5.4

5.5

Preferences

Users have preferences on when they like to meet, e.g. time of day, day of week, status of
other invitees, location, etc. An automated meeting scheduling system should be able to
balance such concemns. In our work, the preferences target the invitees’ preferences over
the time slots and locations offered by the host of meeting. Since the hosts of meeting can
offer more than one time slot and one location, the invitees can choose as many locations
and time slots as they wish. OQur VS allows only the host to offer the time slots and

locations.

The user’s preference ranking is an integral part of the decision making of VS. VS arrives

at consensus for meeting time and locations while balancing different preferences.

Priorities

To be useful, an automated meeting scheduling system has to be adaptive to user
priorities. The fact is that VS is to be used by humans, therefore, it is essential to encode
and follow the priorities and preferences of associated users. This section gives an
overview of our prioritization mechanism that reasons with user priorities in order to
schedule a meeting in a manner that will satisfy the user. This section will also illustrate
how the prioritization scheme produces a compromise solution involving tradeoff

between conflicting user preferences.

31

5.6

When it comes to priority, we target the invitee’s priorities from the point of view of the
host of the meeting. The host can assign points to each invitee. For example, Invitee_l
has 10 points (low priority), Invitee_2 has 20 points (high priority), Invitee_3 has 100
points (Mandatory), and Invitee_4 has 0 points (Non-Mandatory). Hosts are not obligated
to choose priority and in this case, VS assumes that all members are mandatory, therefore

it finds a mutual time slot and location that is common between all the invitees.

Hosts have the choice to prioritize their invitees. They can do this task at any time

between requesting a meeting and the deadline for the scheduling.

VS weighs the invitee's points given by the host of the meeting. Using these priority
values, the scheduler generates a ranking for each time slot and location. VS provides the

host with default priority values.

Quorum requirements

The host can also specify a minimum threshold. If the result of ranking falls below the
minimum criteria, then VS won’t announce that meeting for that specific time slot and
location. Since VS is responsible for rating each time slot and location, the scheduler will
choose the time slot and location corresponding to the maximum value above the

minimum threshold.

32

To calculate the priority values relating to a specific time slot or location, the scheduler
retrieves the files where the information about the user preferences and priorities has
been saved. Then, for each time slot, the scheduler checks if the invitee has chosen that
interval. If so, the scheduler accumulates the invitee’s score. The scheduler uses the same
procedure for each location. At the end, we have a two-dimensional table, with invitees
on one dimension, and locations and time slots on the other. This table represents the sum
of points that each time slot and location has been accumulated so far. Then, the
scheduler finds the time slot and location, which have maximum accumulated points. If
the two values corresponding to the time slot and location are greater than minimum
threshold chosen by the host, and the number of attendees whose preferences satisfy this
time slot and location is greater than minimum number chosen by the host, the meeting
will be scheduled. The scheduled meeting will be announced to all of the invitees by e-
mail. Even the attendees can be informed of the current status of the meeting through
Internet. There is a web page designed for this purpose to give the status of the meeting at
any time. This URL also represents that how many invitees have confirmed their

attendance, and which time slots and locations they have chosen.

6 Implementation

6.1 The programming language

The system was implemented in a platform independent language (Perl). Perl was chosen
as the programming language due to its strong text processing capabilities. Perl has
readily adapted itself to the task of providing information using text-based protocols. The
Web is driven by plain text. Web servers and web browsers communicate using a text
protocol called HTTP, HyperText Transfer Protocol. Some parts of the program also are
encoded in a text markup system called HTML, HyperText Markup Language. This

grounding in text is the source of much of the Web’s flexibility, power, and success.

Perl is by far the most widely used language for CGI programming. It contains many

other powerful features. The advantages of Perl include:

a Itis highly portable and readily available.
a It contains very simple and concise constructs.
g It makes calling shell commands very easy, and provides some useful equivalents of

certain UNIX system functions

34

6.2

Common Gateway Interface

The Web is a client-server system. Client browsers request documents identified by
Uniform Resource Locator (URL) from web servers. This browser-to-server dialog is
governed by the HTTP protocol. Most of the time, the server merely sends back the
contents of a file. Sometimes, however, the web server will run another program to send
back a document that could be HTML text, an image, or any other document type. The
server-to-program dialog is governed by the CGI (Common Gateway Interface) protocol,
so the program that the server runs is a CGI program or CGI script. The server encodes

the client’s form input data, and the CGI program decodes the form and generates output.

The server tells the CGI program what page was requested, what values (if any) came in
through HTML forms, and where the request came from. The CGI program’s reply has
two parts: headers to say "I am sending back an HTML document”, I am sending back a
GIF image”, or I am not sending you anything, go to this page instead”, and a document
body, perhaps containing GIF image data, plain text, oo HTML. The full CGI
specification lays out which environment variable holds which data (such as form input

parameters) and how it is encoded.

The CGI programs are called each time the web server needs a dynamic document
generated. The CGI program doesn’t run continuously, with the browser calling different
parts of the program. Each request for a partial URL corresponding to the CGI program
starts a new copy of the CGI program. The CGI program generates a page for that

request, then quits.

35

6.3

A browser can request a document in a number of ways called methods. The GET
method simply requests a document. The HEAD method is used when the browser wants
to know about the document without aétually fetching it. The POST method is used to
submit form values. In our VS, we have used the POST method rather than the GET
method. The reason is that POST requests cannot be cached, because each request is
independent. The browser or the server may cache a GET request in the URL. This
means that making a GET request for a particular URL once or multiple times should be
no different. That is why the HTTP GET method is used in document retrievals where an
identical request will produce an identical result, such as dictionary lookup. GET method
also has limitation on the total size of the data requested. The HTTP POST method sends

form data separate from the request. It has no such size limitation.
Platform

Our VS is implemented on Unix Solaris. Since the program is written in Perl language,
VS can be implemented on PC, as well. The only restriction for the users is access to the

Internet. It doesn’t matter where and when they interact with VS.

36

6.4 Architecture

The architecture of the automated meeting scheduler is illustrated in Figure 2.

Main Menu

\ '\ 1. Request a meeting
Start

2. Attend a meeting
/ 3. Meeting status
4. Meeting priority

5. Exit
Regform.htmi Confirm.html Cancel.htmi Status.hmtl Priority.html
Submitreq.cgi Confirm.cgi Cancel.cgi Status.cgi Priority.cgi
Schedule Submitconfirm.cgi submitpriority.cgi

Figure 2

37

6.5

6.5.1

The Modules

To develop a system that is portable across the platforms, we developed an HTML-based
GUI for user-VS interaction. The following sections explain each module used in VS
application. The modules with extension (-html) are HTML scripts (HTML tags) and the

(.cgi) are CGI scripts written by Perl.

Menu.htmi
User starts interaction with the meeting scheduler through the main menu. The main
menu is the front page of VS. This interface allows users to request for a meeting, cancel
a meeting, view a meeting status, attend in a meeting, prioritize invitees and exit. Figure

3 illustrates the main menu.

38

Reque,,mmg[SR

MeaananoW =

aiby

fel ET [l temet 20ne.

Figure 3

6.5.2 Regform.htmi

The user can request a meeting by pressing the request-meeting button on the main menu.
The reqform.html module creates a form, using HTML tags, where the host of the
meeting can fill in all of the information related to a meeting that will be submitted to the

server. The forms are composed of widgets, like text entry fields, check boxes, list boxes,

text areas and radio buttons.

39

The request form contains:

Text fields for the host name, the e-mail address, subject and length of a meeting.

A text field for a meeting ID, which is a unique key to process the information of a
meeting. The type of this text field is as password.

The current time is represented dynamically as the user arrives at this page. Therefore.
there is no need for the user to provide this text field manually.

A text area for location(s) and a text area for invitees’ e-mail addresses.

A text field for deadline time and three list boxes for deadline date (day, month and
year). VS starts scheduling off-line using deadline.

One text field for time and three list boxes for date (day, month and year) for all six time
slots. Time slots are the intervals that the host of the meeting offers to invitees. Each time
slot is labeled using a check box. In this sense, the user should mark the corresponding

check box if that time slot is to be offered to invitees.

After the host fills out the form completely, the host should press the “submit™ button in
order to submit the request to the “submitreq.cgi” module. The host can also clear the
fields by pressing the reset button. The user can always go back to the main menu. The
user will be forced to enter éll the required information in the form if the user happens to
forget to enter some of the items. In the case of time slots and locations, at least one item

is required. Figure 4 illustrates the form used by the host to requests a meeting.

40

;IHostNamg F—iooman Salamat Enzﬂsalamathooman@mpactnet .

!gh&“m&m! Meehng Subject [Acnon plan for the project: A ' L

' h’me ofgcm ﬁ'hu Jen141028:22EST1998 -
f{Lcngth of meeting (zmnutes)i 20 .

Fl e s

'Tnnc(}ﬂmnn) r2 59 ,March

“{GrogonoRcs.concordia.ca
Vsalemat@alpnet.com
Christopher.cottin@statcan.ca 5
Attendee's Email Addresses [Selamat@cs.concordia.ca

Possible Time Slots

Top-Down. Prib;ity

1 ¥ Time(hhmm) 1000

'ﬁn;mry ‘;”ﬂw jﬁssag

2 ¥ Time(bhmm) |16:30

[sanuary wjf20 ~}]1939 ¥]

3 Time(hhumm) |1459

[February ={|9 >j[1999 3] -

' 4 ¥ Time(hhomm) [11:25

[Februery =f|17 ~|1933 *]

5 ¥ Time(bhmm) [1000 [February =3 =139 3|
16 I Time(hhmm) [0000 [Merch | JIDW-}@G

[Simireqmst | Resst]

)

aLL

Figure 4

41

6.5.3 Submitreqg.cgi

The Submitreq.cgi ensures whether or not the form is filled out completely. If not, it
prompts the user which field has not been filled yet. Then it checks out if there is another
meeting with this meeting ID. If so, it forces the user to change the meeting ID. Figure 5

illustrates the HTML page that the Submitreq.cgi returns.

42

hitp //www concordia ca’/ “grad/salamat/cgrbin/submitieq cgi Microsoft Internet t xplorer

W’g_] //www cs. wmdaca/“gvadlsalanadcg—b«ﬂsxbmtreq og:

Thank you. Your request has been sent to all of the attendees:

1: salamat hooman@mpact.net
2: Salamat@cs.concordia ca

Silene

e

N AR

Figure §

6.5.3.1

Q

Storing meeting profile

After the above validations, this module creates six files. If the meeting-id is meeting-file,
then those files will be: “meeting-file.pro”, “meeting-file.sch”, “meeting-file.mm”,
“meeting-file.loc”, “meeting-file.tim”, and “meeting-file.sloc”. For keeping information
of the initial user and task model, we used the file system rather than the database. The

reasons are:

The users should have access only to the information related to their own meeting. The

system takes a risk by allowing users to update the database through CGI script.

43

O As the volume of the meeting increases, the speed of communication decreases due to
updating or retrieving information from the database. Since every time the users interact

with the system, the user or meeting profile should be retrieved or updated.

6.5.3.1.1 meeting-file.pro

The “meeting-file.pro” contains all filtered information passing from reqform.html to

“submitreq.cgi” as text format.

6.5.3.1.2 meeting-file.sch

In the “meeting-file.sch”, each record (line) has two fields. An e-mail address of an
attendee and a time slot code indicating the attendee’s preference in terms of possible
time slots that the invitee could attend in a meeting. The time slot code contains at most
six digits (012345) corresponding to the maximum six possible time slots, which the
attendee can choose at the time of confirmation from the list box. The “meeting-file.sch”
is a hash table, which provides the essential information to the scheduler when finding

the common time slot.

6.5.3.1.3 meeting-file.mm

The “meeting-file.mm” contains the e-mail address of all invitees.

6.5.3.14 meeting-file.tim

6.5.3.1.5

The “meeting-file.tim” contains two fields: the digits (0-5) and possible date and time
slot. This is a kind of array, which maps the time slots to the digits, which generate the

time slot code in the “meeting-file.sch” file.

meeting-file.loc

6.5.3.1.6

The “meeting-file.loc” contains two fields: the digits (0-5) and locations. This is a kind of
array, which relates the locations to the digits, which generate the location codes using in

the “meeting-file.sloc™ file.

Meeting-file.sloc

In the “meeting-file.sloc”, each record (line) has two fields. An e-mail address of an
attendee and a location code indicating the attendee’s preference in terms of possible
locations that the invitee could attend in a meeting. The location code contains at most six
digits (012345) corresponding to the maximum six possible locations, which the attendee
can choose at the time of confirmation from the list box. The “meeting-file.sloc” is a hash
table, which provides the essential information to the scheduler when finding the
common location. It is worthwhile to mention that if only one location is offered by the

host, VS doesn’t use this file.

The “submitreq.cgi” basically extracts the information for later retrieval and scheduling
purposes, and distributes it in various files. Then it sends an invitation to each attendee

via e-mail. This mail contains the name of the host, meeting ID, which is essential for the

6.5.4

confirmation. It also asks the attendees to confirm their attendance at the host site. At the

end, it runs the “schedule” module as off-line.

Confirm.htmi

The Confirm.html script receives the meeting ID as a password and an identification to
retrieve the required information related to the meeting and passes it to the “Confirm.cgi”
module. All the invitees start with this web page to confirm their attendance and express

their preferences regarding time, dates and locations. Figure 6 illustrates this HTML

page.

Nl

Figure 6

6.5.5

Confirm.cgi
The Confirm.cgi retrieves the user profiles from the files “meeting-file.pro”, “meeting-
file.loc”, and “meeting-file.tim”. The invitee enters the name in a text field on the form.
The invitee also chooses its own e-mail address, the time intervals and locations that can
attend from list boxes on the interface. The time of confirmation is represented
dynamically as time at which the user arrived at this page. The time slots and locations
are represented as multiple selection list boxes. Acceptable time slots and locations can
be specified by clicking on the items. Reset and Submit buttons are provided to clear all
entered information, and to submit the meeting request. Figure 7 illustrates the form that

the invitees fill out in order to send their proposals to VS.

47

. D http //www cs. mm&ca/‘gad/salan&/cg-bwﬂcorfmcg

Astend in ths moeting 575

 |Attendee’s Name [Victor Selama{ Email address [salamat@cs concordiaca »)

' _fme of Coafirmation [Tue Mar 16 17.14 32 EST 1999
'Mcetmg Subject {The Virual Secretary .

: Lengﬂxofmeehng(mncs)l 120 DeadLme]ThUJﬁnMZUUﬂUm% :

‘\;Please choose all ofﬁxe locations where you can par’nczpaze :

P L i I T O O N [T VI -2 N

-

SubmitRequest | ‘RESET [

el

U [@) Tntemet zome

X

Figure 7

48

6.5.6

Submitconfirm.cgi

The Submitconfirm.cgi first receives the information from confirm.cgi. The information
basically contains the time intervals and locations that the invitees prefer to attend at a
meeting. This module codifies the invitee’s preferences. Then it updates the “meeting-
file.sch” and “meeting-file.sloc” files by entering the attendee’s e-mail address and the
time slot and location codes. In this module, the invitee would be forced to choose at least
one location and one time slot. Figure 8 illustates the HTML page that the CGI script

returns.

49

Wf‘ﬂ Hm;//ﬁu~w§&cf9§=;;§9wsm;ﬁm@ - e
Thank you. Your confirmation has been sent to the host of meeting. i
UL
Figure 8
6.5.7 Status.htm|

The Status.html script receives the meeting ID as a password and a meeting identification
to the meeting and passes it to the “status.cgi” module. The host of the meeting can get

the status of a meeting at any time. Figure 9 illustrates this HTML page.

50

'MM

mmF-_——-T_

-fnsss‘r E

S

Figure 9

6.5.8

Status.cgi

The Status.cgi script presents the status of the meeting at any time. It basically contains
two tables saying which locations and time slots has been chosen by each invitee so far.
This module also says when and where the meeting has been scheduled. This is useful
information for the invitees that they want to get information about their meeting without
e-mails. It also helps for the host of meetings to make a better decision. In particular,
when it comes to prioritizing the invitee, this would be helpful. Figure 10 illustrates that

this HTML page returns.

51

, M Status. N B
~ Fihe Locations has been chosmbyeach P I R
imvmce so far _ . . T : o
: san 455Bhd.cheLevesqu: 7155 Bivd, Rene Levcsquc -
i!saiamatl@csconcor&aca » 2200 Wgzd;g Ap:#503 ;ﬂ 021 - S 42200 »
’ - II5SBhd,R.eneLthsque '
ma@escomcordacs 2200 Wt AOWST3 lopey g :
‘ :]455 Blvd Rege 11155 Bhd. Rme Levesque .
‘m°m@m"m”“ | Levesque #1043-1 [Sude#2200 - :
; i1455 Blvd: Renz R &
saIzmat@cs concor&aca o .ch’sque #1 043- :
b.f'nle Tme Slots chosen by each
imwtee so far) _ »
© . Wedlan13 ‘WedJan 13 SunFeb 14 - MoaFeb 15 Mar1 MonAprS5.
salamat 1 @cs.concordia ca 110:00:00 12:.30:00 ‘13 5500 i20:00:00- " 116:.00.00 i08.1500
. 11999 11999 11999 11899 1999 1999
WedJari 13 SunFeb 14 MonMar 1l
salamat@cs. concordia ca 10:00:00 13:55.00 10:00.00
: 11999 11998 . ;1999 _
] ‘WedJan 13 SunFeb 14 MonMarl
salamat hooman@mpactnet . f12:3000 i13:55:00 '10:00:00
{1999 1999 1999
“WedJan 13 -
~-110:00:00
salamat@cs.concordia.ca 1999
: =
ey TN {777 @ intemet zone P
Figure 10

52

6.5.9

Priority.html

The hosts of meeting can prioritize their attendees by arriving at the *Priority.html” page
by pushing the “Priority” push button on the main menu of VS. This feature is optional
for the hosts of meeting. This HTML page asks the host for the meeting id and password
and passes them to the Priority.cgi. The next section explains in detail how the
Priority.cgi accomplishes the task of the invitees’ prioritization. Figure 11 illustrates this

HTML page.

53

Puarity Miciosoft Internet E xplorer

Rtp://www umorxia.cal"gad/sdm:at/cg—bnlmny ‘\!mf")]) pivdia B o

Pn’oalimg ﬂw m
: Thxs shodd be done by mc host of the mnctmg!

Figure 11
6.5.10 Priority.cgi

The host of the meeting prioritize the invitees. Basically VS provide four categories for
invitees.
1. Non-mandatory: Those invitees whose presence doesn’t affect the scheduling at all.

2. Low: Those invitees whose presence wouldn’t really affect the scheduling.

54

3. High: Those invitees whose presence is important, but the meeting could be scheduled in
their absence.
4. Mandatory: Those invitees whose presence is mandatory, otherwise the meeting won't be

scheduled. Typical mandatory invitees include chair, secretary, vice-president, etc.

The host can also choose the minimum number of attendees required in order to

scheduling a meeting.

Each of four categories mentioned above has its corresponding score. Non-mandatory is
0, Low is 10, High is 20 and Mandatory is 100. The host can also prioritize the invitees
by giving the minimum accumulated points required to schedule a meeting. This
threshold value is used for making decision on location and time slot according to the

invitee’s priority, when there is no common time slot and location.

it is important to point out that the prioritization procedure is optional. If a host doesn’t
ask for prioritization, the scheduler assumes that it should find the absolute common time
slot and location. But if the host prioritize the invitees, the scheduler will find the most
common time slot and location according to the priorities. Figure 12 illustrates the HTML

page that this CGI script returns.

55

iwlﬁﬂmﬂwuw@wwwwaowmw N

s m e S NN Mm vc‘wvx_@y r r - r .
isalamat hooman@rmpactaet - on-Mandatory € Low,r. m o Mm@o,y P L
The value ofcachpnomy - on-Mandatory =0, Low =10, Esgx—'zo Mmdazozy 100 o

] |

A‘Ihemmmmmmbetofamdeesmmdtoschcddcﬁnsmeemg e D k-

’H’m mmmm pomts reqmredto schcduleﬁnx mcctmg - .

N

T [temet 2008

Figure 12

6.5.11 Submitpriority.cgi

The Submitpriority.cgi module stores the invitees’ priority from the host’s point of the

view to a file ("meeting-file.pri"). This information will be referred during scheduling.

Figure 13 illustrates the HTML page that this CGI script returns.

56

j hitp //www c3 concordia ca/~ grad/salamat/cgr bin/submitprioiity cqi - Microsoft Internet E xplores

78 o ﬁ'

M[&] mm;/lw.uwmdacal'gadlswthWncw,cg _'d ®Go’L

Thank you. Your attendees has been prioritized.

3] = I T [intemat zane .
Figure 13
6.5.12 Cancel.html

The Cancel.html receives the meeting ID as a password and an identification to the
meeting and passes it to the “Cancel.cgi” module. The host of the meeting can cancel a

meeting at any time. Figure [4 illustrates this HTML page.

57

Cancel a Meeting Microsoft Internet E xplores

LS

(3] T e T T ntemetzone A
Figure 14
6.5.13 Cancel.cgi

The Cancel.cgi removes all of the files related to the meeting from the file system. In
general we have eight files for each meeting (meeting-file.sch, meeting-tile.loc, meeting-
file.sloc, meeting-file.mm, meeting-file.pro, meeting-file.tim, meeting-file.fin, meeting-

file.pri). Figure 15 illustrates the HTML page that this CGI script returns.

58

3

http: //www cs concoirdia.ca/~grad/salamat/cgi-bin/cancel cgi - Microsoft Internet E

el

T i remetzone .

Figure 15

6.5.14

Schedule

The Schedule module actually does the whole process of scheduling. When this module
is called by “submitreq.cgi”” module, its process sleeps until the deadline arrives. The
deadline is basically a date and time indicating when VS should wake up the sleeping
process and schedules the meeting. By the time the deadline kicks off, the process
automatically wakes up as an off-line process on a particular machine. The “schedule”
module gets the meeting profile, extracts the time slots offered by the host of the meeting,
counts the number of invitees and compares with the number of attendees who have
confirmed their attendance so far. If there are enough members (all the invitees who has

been invited, do they confirm their attendance) or if there is a common time slot and

common location according to their priority, then the meeting will be scheduled. The

59

schedule module uses the “meeting-file.sch” for finding common time slot and the

“meeting-file.sloc” for finding common location (if there is more than one).

Consequently, VS informs all of the :;utendees of exact date, time and location of a
meeting. If there is no common time slot and location, the scheduler checks out if there is
a file called “‘meeting-file.pri”. If not, VS informs the host of the meeting of the failure. If
yes, VS goes to the following steps to find the most common time slot according to the
host’s prioritization.

Find the most common time slot.

Count the number of the attendees for this time slot.

For each attendee, find its priority (and its corresponding point) and then calculate the
total points of all attendees for this time slot.

Find the slot time which has the maximum total points.

If the number of the attendees is greater than the minimum number and the maximum
total score is greater than minimum point required to schedule a meeting, the meeting
will be scheduled at the most common time slot, if there is a common location.

If there is no common location, then VS calculates the total point for each Igcation.

Find the location which has the maximum total point.

If the maximum total point for that location is greater than the minimum required score,
the meeting will be scheduled, otherwise, VS informs the host of the meeting of the

failure.

60

9. Create a file "meeting-file.fin", which contains the result of the scheduling. The content
of this file is used when the users like to get the status of the meeting through the

Internet. This is useful, when the attendees dont have access to their mailbox.

6.5.15 E-mail

VS calls the e-mail subroutine in order to invite the attendees or inform the host of the
meeting of the canceliation or success of the scheduling. It is important to note that the
users never send any mail to anybody in our implementation. The users receive at most
two e-mail messages from VS: the invitation, and the report of success or failure of the

scheduling.

Our e-mail subroutine uses the Unix Mini-mailer utility for handling mails through the
Internet. When it comes to WWW, the mailing strategy is different from standalone
programs for security purposes. If we wish to send an electronic mail from a Web
browser, we need a mail gateway to actually send the message. A mail gateway is the
machine that connects two or more electronic mail systems, and transfers messages
between them. Mail User Agent (MUA) is the program that allows the user to compose
and read electronic mail messages. The MUA provides the interface between the user and
the Message Transfer Agent (MTA). MTA is the program responsible for delivering e-
mail messages. Upon receiving a message from a MUA or another MTA, it stores it
temporarily locally and analyses the recipients and either delivers it (local addressee) or
forwards it to another MTA. In either case, it may edit and/or add to the message headers.
The Unix MTA supports mail transport via TCP/IP using SMTP. MTA is normally

invoked in the background via a MUA such as the miniature mailer (Minimailer).

61

6.5.16

Security

Our SVS (Secure Virtual Secretary) is the automated meeting scheduler that provides the
users with high security in addition to the user authentication. VS2 uses PGP (Pretty
Good Privacy) for encrypting the e-mails before sending to the users. PGP is a public key
encryption package to protect e-mail and data files. It lets VS communicate securely with
its users, with no secure channels needed for prior exchange of keys. PGP is well featured
and fast, with sophisticated key management, digital signatures, data compression, and
good ergonomic design. Chapter seven explains public key encryption techniques, our
infrastructure for security implementation, and other security issues. This section just

explains how SVS applies PGP to send the e-mails containing the passwords to the users.

It is a necessary requirement for SVS to have the user identification of all its users and
their public keys. The user identification is an ASCII string used to identify a user. Our
SVS assumes the user ID is the same as the user e-mail address.

The following are the steps required to be done in order to use PGP in SVS:

The users and SVS generate their own unique private and public keys.

SVS should have the users’ public key. The f)ﬁvate keys are secret to the users.

SVS adds the users’ public key to its key ring. The key ring are basically two files
(pubring.pgp and secring.pgp) containing two sets of names for public keys and private

keys respectively.

62

SVS encrypt the message using the user’s public key and digitally sign the message using
its private key.
On receipt, the users should save the message into a file and decrypt the cipher message

using their own private key.

63

7

7.1

Security

Introduction

CGI programs let anyone run a program on the system. This allows an anonymous user
from any where to send it unexpected values, and to try to trick it into doing‘ the wrong
thing.

All CGI programs must be placed in a distinct directory. In our work, the directory path is
“/home/grad/www/salamat/cgi-bin”. The most important reason for this is system
security. By having all the programs in one place, a server administrator can control and
monitor all the programs being run on the system. However, there are directives that
allow programs to be run outside of these directories, based on the file extension. The
following directive, when placed in the “srm.conf * configuration file, allows the server

to execute files containing .pl, .sh, or .cgi extensions:

AddType application/x-httpd-cgi .pl .sh .cgi
However, this could be very dangerous. By globally enabling all files ending in certain
extensions, there is a risk that novice or malicious programmers might write programs

that violate system security (e.g., printing the contents of important system files to

standard output).

64

7.2

Risk

When it comes to WWW security, there are basically three types of risk:

Bugs or misconfiguration problems in the Web server that allow unauthorized remote
users to:
Steal confidential documents not intended for their eyes.
Execute commands on the server host machine, allowing them to modify the system.
Gain information about the Web server’s host machine that will allow them to break into
the system.

Launch denial-of-service attacks, rendering the machine temporarily unusable.

Browser-side risks, including;:
Active content that crashes the browser, damages the user’s system, breaches the user’
privacy, or merely creates an annoyance.

The misuse of personal information knowingly or unknowingly provided by the end-user.

Interception of network data sent from the browser to the server or vice versa via
network eavesdropping. Eavesdroppers can operate from any point on the pathway
between the browser and server including:

The network on the browser’s side of the connection.
The network on the server’s side of the connection.
The end-user’s Internet Service Provider (ISP).

The server’s ISP.

Either ISPs’regional access provider.

65

‘/

\Y

It is important to realize that the "secure" browsers and servers are designed only to
protect confidential information against network eavesdropping. Without system security

on both browser and server sides, confidential documents are vulnerable to interception.

CGQGlI scripts

The problem with CGI scripts is that each one presents yet another opportunity for
exploitable bugs. CGI scripts should be written with the same care and attention given to
the Internet servers themselves, because, in fact, they are miniature servers.
Unfortunately, for many Web authors, CGI scripts are their first encounter with network

programming.

CGI scripts can present security holes in two ways:

They may intentionally or unintentionally leak information about the host system that

will help hackers break in.

Scripts that process remote user input, such as the contents of a form or a "searchable
index" command, may be vulnerable to attacks in which the remote user tricks them into

executing commands.

CGI scripts are potential security holes even though users run the server as "nobody". A

subverted CGI script running as "nobody" still has enough privileges to mail out the

66

7.4

7.5

system password file, examine the network information maps, or launch a log-in session
on a high numbered port (it just needs to execute a few commands in Perl to accomplish
this). Even if the server runs in a chroot directory (The chroot is a directory which can
be run only by privileged users and is used to give a process such as FT'P or HTTP access
to a restricted portion of the file system), a buggy CGI script can leak sufficient system

information to compromise the host.

Forms

One of the critical issues is when the CGI scripts deal with forms and they don’t check
the form data. A malicious user can embed the shell meta-characters (characters that have
special meaning to the shell) in the form data. If a malicious user entered the following

as the value of the user:

:rm *; mail —s “Ha Ha” malicious@crack.net </etc/passwd

This might remove all the files in the current directory, and it would also mail the

/etc/passwd file to the malicious user.

User authentication

In addition to domain-based security, most HTTP servers also support a more
complicated method of security, known as user authentication. When configured for user

authentication, specified files or directories are set up to allow access only by certain

67

users. A user attempting to open the URLs associated with these files is prompted for a

name and password.

The username and password are checked by the server, and if legitimate, the user is
allowed access. In addition to allowing the user access to the protected file, the server
also maintains the user’s name and passes it to any subsequent CGI programs that are
called. The server passes the user name in the REMOTE_USER environment variable. A
CGI script can therefore use server authentication information to identify users. Our VS

is supported by user authentication.

Since our VS should create some text files for scheduling purpose to store information of
a meeting remotely (such as meeting profiles and user profiles), these files and the
directory which they belong to. should be world readable and writable. In this sense, to
protect our directory and server from viruses, the system administration of the computing
service that this application is supposed to be installed, should make that directory

password protected. Therefore, only privileged users are allowed to use the application.

Server authentication doesn’t provide complete security, since the user name and
password are sent unencrypted over the network, it is possible for a “snoop” to look at
this data. Therefore, it is obvious that our approach is not the best and most secure way of

the system protection.

68

7.6

7.7

7.7

Platform

Unix systems, with their large number of built-in servers, services, scripting languages,
and interpreters, are particularly vulnerable to attack because there are simply so many
portals of entry for hackers to exploit. Less capable systems, such as Macintoshes and

special-purpose Web server boxes, are less easy to exploit.

In the real world, of course, many sites will want to run a Windows NT or Unix server in
order to gain the performance advantage of a multitasking operating system and the
benefits of database and middleware connectivity. Security holes have been found in both
Unix and Windows NT server systems, and new security holes are being found on a
regular basis. On the whole Windows NT systems seem to be more vulnerable at the
current time, partly because the OS is relatively new and the big bugs havent been
shaken out, and partly because the NT file system and user account system are highly

complex and difficuit to configure correctly.

Our suggestions

The following are our suggestions in order to improve VS in terms of security:

Using SSL

69

71.7.2

 7.7.3

Secure Socket Layer is the scheme proposed by Netscape Communications Corporation.
It is a low level encryption scheme used to encrypt transactions in higher-level protocols
such as HTTP, NNTP and FTP. The SSL protocol includes provisions for server
authentication (verifying the server’s identity to the client), encryption of data in transit,
and optional client authentication (verifying the client’s identity to the server). SSL is
currently implemented commercially on several different browsers, including Netscape
Navigator, Secure Mosaic, and Microsoft Internet Explorer, and many different servers.
including ones from Netscape, Microsoft, IBM, Quarterdeck, OpenMarket and OReilly

and Associates.

Using SHTTP

Secure HTTP is the scheme proposed by CommerceNet, a coalition of businesses
interested in developing the Internet for commercial uses. It is a higher level protocol that
only works with the HTTP protocol, but is potentially more extensible than SSL.
Currently SHTTP is implemented for the Open Marketplace Server marketed by Open
Market Inc, on the server side, and Secure HTTP Mosaic by Enterprise Integration

Technologies on the client side.

Using Personal Certificates to control server access

SSL can also be used to verify the user’s identity to the server, providing more reliable
authentication than the common password-based authentication schemes. To take

advantage of this system each user will have to obtain a "personal certificate" from a CA

70

7.7.4

(Certifying Authority). The VeriSign Corporation was the first and still most widely used

certifying authority.

A certification authority is a central, trustworthy entity whose certification key is
commonly known and trusted. Every user in the domain of the certification authority can
exchange its key with the certification authority in a secure manner in order to have it
digitally certified by the authority. Other users can then verify the authenticity of the key

by checking the signature of the authority.

Using Public-key encryption

The Public-key encryption scheme is introduced by Diffie and Hellman in 1976. Each
user gets a pair of keys, called the public key and the private key. Each user’s public key
is published while the private key is kept secret. Messages are encrypted using the

intended recipient’s public key and can only be decrypted using his private key.

In the last three years, encryption utilities like Pretty Good Privacy (PGP) and Privacy
Enhanced Mail (PEM) have matured to a point where they have begun to receive
widespread acceptance among users of electronic mail on the Internet and Intranets. To
achieve a maximum benefit from these security measures, though, we have to provide an
infrastructure for our user, which includes trusted key servers, a key certification

authority and a definite policy to establish such an authentication infrastructure.

We now explain the infrastructure that we have planned for VS:

71

7.8

A public key is used for authentication purpose using a private key accessible only to the
users and a public key known to their VS. The users who want to decrypt an e-mail from
VS has to publish their public key to VS. Fortunately there is a secure way to exchange
keys. The users can digitally sign their public key. The digital signature basically is extra
data appended to a message, which identifies and authenticates the sender and message

data using the public key encryption.

There are three methods to produce a user’s key pair:

The user generates its own key pair, and its secret key is never released to another entity.
The key pair is generated by a third party, which makes it necessary that the user receives
its secret key in a secure way.

The key pair is generated by a certification authority, a special third party, which fulfills

appropriate security requirements.

Result

The task of establishing an authentication infrastructure is challenging and requires some
time and effort. In this chapter we described only some protocols that can be added to
make VS more secure. The cryptographic security services don’t specify a standard of
any kind and discussion of this issue is unlimited. We tried to introduce the importance of
security and its relationship to our work. In this sense, VS could be extended to provide

greater security. This extension can be provided by creating a new infrastructure or by the

72

trust that can be made by CAs. Finally, the question may arise as to which solutions
should be supported. Should we go for using the encrypting utilities such as PGP, PEM,

S/MIME, etc., or how can we implement our own infrastructure? These are future work!

73

8

8.1

8.2

Conclusion

In General

Automating meeting scheduling is important. VS cannot only save time and effort, but
also may lead to more efficient scheduling. This dissertation has explained how VS
implements the task of scheduling a meeting. By utilizing the invitee’s preferences and
the host’s priorities, VS can provide more effective scheduling than manual processes
used by human secretaries. Our VS has focused on representing and using user
preferences to categorize acceptable meeting proposals. We have also shown how to
produce a consensus for meeting times and location using quorum while balancing
different user preferences and priorities. Our VS has been designed so as to minimize the

amount of supervision the user must provide.

The benefit of such a software agent is to allow users to concentrate on more productive
tasks. VS not only saves time and effort, but also improves the quality of information

processing by preventing errors that might be introduced by secretaries.

Future Work

Although in the first version of VS we have focused on one secretarial task, e.g. meeting

scheduling, we expect that eventually VS will take care of most secretarial services.

74

Some of the extensions that we are actively pursuing include leaming user preferences
and priorities by observing users, providing more secure environment for the users of VS,
receiving the user preferences and priorities as many as possible, and scheduling the
meetings accordingly. We are also interested in extending the protocol to multi-agent
systems where the virtual secretaries cooperate with each other. This would be useful
when VS doesn’t have enough knowledge to do a task, and then it would use the other

virtual secretaries in order to accomplish that task.

The Internet has made remote conferencing a widespread reality. This has added a new
and challenging dimension to the problem of scheduling meetings and conferences. The
stress on a participant due to the geographical time difference needs to be taken into
account while scheduling a meeting. In a global event, participants may locate in
different time zones. People in different parts of the world have different local calendars
having different working hours. All participants will naturally prefer a meeting to be
scheduled within their working hours. This is one of the issues that would make VS more

powerful.

The ultimate objective is, the users should give the order of what to do, while VS figures

out how to do and carry out the tasks.

75

9 References

[Cao et al, 1996] W. Cao, C. G. Bian & G. Hartvigsen: Cooperator-Base + Task-Base
for Agent Modeling: the Virtual Secretary Approach. In Proceedings of Agent Modeling
Workshop, 13th National Conference on Artificial Intelligence - AAAI96, pp. 105-111,

AAAI Press, Portland, Oregon, USA, 1996.

[Cao et al., 1997] W. Cao, C. G. Bian & G. Hartvigsen: Achieving Efficient Cooperation
in a Multi-Agent System: the Twin-Base Modeling. In Proceedings of Cooperative
Information Agents - DAI meets Database Systems (CIA97), Lecture Notes in Artificial

Intelligence, Vol. 1202, pp. 210-221, Springer-Verlag, Kiel, Germany, 1997.

[Hackos and Redish, 1998] JoAnn T.Hackos & Janice C. Redish: User and Task

Analysis for Interface Design, 1* ed., John Wiley & Sons Inc, 1998.

[Hartvigsen et al., 1995] G. Hartvigsen, A. Helme & S. Johansen, A Secure System
Architecture for Software Agents: The Virtual Secretary Approach. In Proceeding of the

Second Broadcast Open Workshop, 1995.

[Kosba and Wahlster, 1989] A. Kobsa W. Wahlster: User Models in Dialog systems,

Springer-Verlag, 1989.

76

[Maes, 1994] Pattie Maes. Agents that reduce work and information overload.

Communications of the ACM, 37(7):31-40, 1994.

[Nanard at al, 1993] Jocelyne Nanard, Marc Nanard, Anne-Marie Massotte, Alain
Djemaa, Alain Joubert, Henri Betaille, Jaques Chauché: Integrating Knowledge-based

Hypertext and Database for Task-oriented Access to Documents. DEXA 1993: 721-732

[Sen and Durfee, 1991] Sandip Sen and Edmund H. Durfee. A formal study of
distributed meeting scheduling: Preliminary results. In Proceedings of the ACM

Conference on Organizational Computing systems, pages 55-68, 1991.

[Sen and Durfee, 1994] Sandip Sen and Edmund H. Durfee. On the design of an adaptive
meeting scheduler. In Proceedings of the Tenth IEEE Conference on Al Application,

pages 40-46, March 1994.

[Sen and Durfee, 1996] Sandip Sen and Edmund H. Durfee. A contracting model for

flexible distributed scheduling. Annals of Operations Research, 65:195-222, 1996.

[Sen and Durfee, 1998] Sandip Sen and Edmund H. Durfee, A Formal Study of

Distributed Meeting Scheduling," accepted for publication in Group of Decision and

Negotiation Support Systems, 1998.

77

[Sen et al., 1997] Sandip Sen, Thomas Haynes, and Neeraj Arora, ‘‘Satisfying User
Preferences While Negotiating Meetings," International Journal of Human-Computer

Studies, vol. 47, pages 407-427, 1997 (special issue on Group Support Systems).

78

