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Abstract 
 

Effectiveness of Electrochemical Treatment of Municipal Sewage  

 

Walaa Hirzallah 

Municipal wastewater was treated in four phases, using electrocoagulation batch reactors. 

In Phase I, a comparison between electrocoagulation (EC) and chemical coagulation showed 

enhanced effluent quality when EC is used. In Phase II, two concentrations of a conditioner were 

added to four-hour EC experiments at two different voltage gradients to increase conductivity and 

initiate electroflotation, thus improving solid-liquid separation. Complete phosphorus removal 

was observed in Phase II. However, the four-hour duration resulted in higher operating costs, 

especially given that flotation was achieved within the first 45 minutes. 

Tests of Phase III were run using current densities of 10, 20 and 40 A/m
2
 and treatment 

durations of 30, 60 and 120 minutes. In each run, four 1.5 L electrokinetic reactors were operated 

in parallel, with continuous and intermittent exposure to DC current. Wastewater samples from 

two treatment plants (WWTP1 and WWTP2), with different initial characteristics, were used to 

evaluate the treatment efficiency. 

Phosphorus was entirely removed for all runs for WWTP1 and above 90% for WWTP2. 

Final COD concentrations after treatment were below 40 mg/L for both wastewater samples. 

Intermittent exposure prevented excess dissolution of the anodes, while allowing mixing and 

enhancing flocculation. Operating costs of the treated samples started at the level of 16 

CAD/1000m
3
 and depended on material and energy costs. The final phase compared flat and 

perforated electrodes in terms of material and energy consumption, as well as operating costs. It 

was demonstrated that the use of perforated anodes can reduce operating costs by 50-75%.  
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Chapter 1 – Problem Statement 

 

The process of treating wastewater involves many challenges that are not limited to the 

technical goals of maximizing water quality and solid/liquid separation. In developing a 

wastewater treatment method, one must also consider its overall environmental impact, 

usefulness in various industrial applications, ease of installation and operation, energy-

efficiency, and cost-effectiveness. Today, many wastewater treatment units are employed 

all over the world, each having its advantages and disadvantages. This study aims to 

explore the use of electrocoagulation, a process that was developed over a century ago for 

treating wastewater and which can be applied to novel operation units these days.  

Conventional treatment methods often induce a chemical reaction through the use of 

coagulants, flocculants, and other additives that aid in the removal or sedimentation of 

contaminants. In physical-chemical treatment units, sludge conditioning also requires the 

addition of polymers which change the properties of the wastewater and might decrease 

biodegradability (Bratby, 2006). Moreover, these treatment methods result in high sludge 

production, which in turn increases treatment cost. An alternative to that is to apply a 

treatment that yields similar or higher effluent quality but with lower sludge production.  

The suggested alternative process is electrocoagulation. This process (i) requires no 

addition of chemicals that might contribute to increase the initial pollution level, (ii) is 

known for its low sludge production, (iii) generates dense flocs that are easily separable 

from the liquid phase, and (iv) achieves high quality effluents. Furthermore, the 

equipment used in the process is simple and readily operable equipment.  This makes EC 
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an environmentally-friendly alternative to chemical coagulation and other treatment 

processes that require large serving areas for treatment facilities and staff. 

Electrocoagulation can also be combined with other treatment units to improve the solid-

liquid separation process. When coupled with membrane bioreactor processes, it has 

proven its effectiveness in removing colloids and suspended solids, hence avoiding 

fouling and increasing membrane filtration efficiency (Bani-Melhem & Elektorowicz, 

2010).  

The study is being conducted on wastewater sampled from different municipalities in the 

province of Quebec, where hydroelectric power is an essential natural resource. In 2008, 

hydroelectric power accounted for 96.75% of the total power available in Quebec (MNR, 

Quebec, 2008); therefore, it makes economic and practical sense to use it in treating the 

province’s wastewater, in lieu of using chemicals that require storage, transportation, 

specific handling practices, in addition to producing secondary pollution.   

Past investigations have focused on wastewaters with high contaminant and solid loads; 

meanwhile, the wastewater sampled for the purpose of this study was considered diluted. 

This characteristic encourages the investigation into the efficiency of electrocoagulation 

treatment for dilute water systems. The study focuses on phosphorus, nitrates, ammonia, 

COD, and turbidity of an effluent. Increased phosphorus levels in the wastewater can be 

reduced at the source by banning phosphate-based detergents; nevertheless, adequate 

treatment is required to avoid eutrophic conditions, which are created through excessive 

algal growth due to high consumption of phosphate and nitrogenous nutrients.  
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Eutrophication is a serious problem, especially in stagnant waters where most of the 

dissolved oxygen is depleted by algal growth, thus killing aquatic life (Thomann & 

Mueller, 1987). Phosphorus concentration is an indication of the status of a water body. 

Removal of nutrients such as nitrate and phosphorus before wastewater discharge is 

therefore necessary to avoid creating eutrophic conditions in the open water sources 

(Thomann & Mueller, 1987; Sincero & Sincero, 2003). 

Nitrate removal is also important because high concentrations of nitrate in drinking water 

can cause irritability, muscle stiffness and pain, loss of appetite and nausea (Sabzali et al. 

2006). Moreover, nitrate present in drinking water is converted by the body to nitrite, 

which then reacts with ferrous iron in the hemoglobin, oxidizing it to methomoglobin and 

thereby impairing the body’s ability to transfer oxygen (Morris et al. 2009).  

Electrocoagulation is a straightforward process that requires a short treatment time, 

making it ideal for treatment facilities with a very high flow rate. Time-intensive 

treatment processes require large reactors, especially when wastewater flow rates are 

high. The additional land and space requirements contribute significantly to the 

treatment’s overall operating costs. This study is therefore targeted to investigate EC’s 

potential to produce a high-quality effluent and a good solid-liquid separation in the 

shortest time, leaving the smallest possible financial and environmental footprints.  
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Chapter two - Literature Review 

 

2. Wastewater 

In the context of this thesis, wastewater is used water that is discharged by residential, 

industrial, and institutional buildings, as well as any other facility used by humans. The 

wastewater should be collected and treated before being discharged to surface waters. 

Each source of wastewater might contain different types of pollutants or impurities, each 

one contributing to its characteristics.  

2.1 Wastewater Characteristics 

Understanding wastewater treatment methods requires knowledge about different 

wastewater characteristics and components as defined by physical, chemical, or 

biological properties.  

2.1.1 Physical Properties 

 

Physical properties include color, odor, temperature, and the presence of solids. Before 

explaining the importance of these properties, brief information will be given about their 

sources in wastewater.  

Solids: The presence of solids can have a positive or a negative impact, depending on the 

type of treatment used. In cases where biological treatment is used, solids concentrations 

are sometimes considered a design parameter of the reactor. When treated wastewater is 

discharged to receiving water bodies, high concentrations of solids, especially colloids, 

can cause turbidity (Metcalf & Eddy, 1979). Turbidity is defined as the cloudiness of the 

solution and is caused by the presence of particles, colloids, clays, organics, inorganics or 
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microorganisms (Shidong et al. 2009; Merzouk et al. 2010). High turbidity impedes the 

penetration of sunlight into the water, therefore inhibiting plant growth, which is a food 

source for aquatic organisms (Peavy et al. 1985). Moreover, sight-dependent fish face 

greater difficulty in finding their food when turbidity is extremely high (Missouri DC, 

2001).  

When suspended solids are discharged in aquatic environments without treatment, 

accumulation of solids can form a thick sludge that contributes to the creation of 

anaerobic conditions that will harm aquatic life. Anaerobic conditions are produced when 

oxygen is not available in sufficient quantity to sustain life.  

Excess solids such as salts should also be monitored because a high concentration of salt 

in treated effluents can contribute to corrosion in the pipes transporting the water. 

Corrosion is a phenomenon that usually occurs when metals react with their surrounding 

environment and get oxidized releasing metallic cations. Moreover, if the water is to be 

reused domestically, the high salt concentrations, especially those of magnesium and 

calcium salts and carbonates, contribute to hardness of the water. Hardness is 

traditionally defined as the water’s incapacity to react with soap; soap does not readily 

lather with hard water, making it impractical for domestic use (Metcalf & Eddy, 1979). 

However, scientifically, hardness is the quantity of multivalent cations present in 

solution. When present in excess concentrations, these cations react with ions in solution 

to produce insoluble solids (Peavy et al. 1985). Therefore, it is very important to manage 

solids during wastewater treatment and in treated effluents.   
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Odor: Odor results from decomposition of organic wastes and due to the presence of 

industrial wastes, contributing to the unpleasant smell. Odors from wastewater are usually 

very repulsive; if the odor sources are not eliminated before the wastewater is discharged 

to receiving bodies, especially if these are located near inhabited areas, various repulsive 

consequences can result. Bad odors result in several physical and psychological stresses 

on human beings, causing nausea, vomiting, loss of appetite, minimal water intake, 

respiratory problems, and mental disturbances (Metcalf & Eddy, 1979). 

Color: Color in wastewater usually comes from the presence of colored constituents, the 

decomposition of organic matter, discharge of untreated wastes, septic discharge or 

surface runoffs (Peavy et al. 1985; Sincero & Sincero, 2003).  Both color and odor give 

an indication of the water quality and source.  

Temperature: Wastewater temperature is affected by the influents’ temperatures and 

discharges, as well as infiltration and runoffs in cases of heavy rain or snowmelt (Metcalf 

& Eddy, 1979). Temperature is an important parameter that affects the efficiency of most 

treatment processes (Sincero & Sincero, 2003).  

Temperature variations in receiving bodies have a big effect on aquatic life, since the 

solubility of oxygen in water decreases with increasing temperature. Dissolved oxygen is 

necessary for almost all organisms; the respiration process in aquatic living organisms 

and aerobic microorganisms requires dissolved oxygen. Therefore, monitoring water 

temperatures and dissolved oxygen is very important during the treatment processes and 

before discharge.     
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2.1.2 Chemical characteristics 

Chemical characteristics of wastewater are defined by the chemical components such as 

organic and inorganic matter and characteristics such as pH and alkalinity. pH is a 

measure of how acidic or basic a medium is; pH is log of  the concentration of hydrogen 

ions present in solution, which is determined by the degree of dissociation of water 

molecules, expressed in Equation 1:  

��� ↔  �� +  ��� (1) 

When the concentrations of hydrogen ions are known, the pH can be calculated directly: 

	� =  −����[��] (2) 

pH is a very important parameter because it affects many reactions in addition to its 

effects on microorganisms and aquatic organisms. pH values during wastewater treatment 

are adjusted or maintained within a specific range, depending on the treatment process. 

Effluent discharge standards for pH vary between 6 and 9 (Environmental Commissioner 

of Ontario , 2010). 

Alkalinity on the other hand represents the amount of ions present in the wastewater that 

can react with and neutralize hydrogen ions (Sincero & Sincero, 2003). Examples of such 

ions are carbonates, hydroxides, phosphates and ammonia. Although ammonia is not an 

ion, it contributes to alkalinity. Monitoring alkalinity of treated effluents is essential to 

avoid reactions between alkalinity and cations that can result in undesired precipitates 

(Peavy et al. 1985).  
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Organic compounds are composed of carbon, hydrogen and oxygen, which are sometimes 

combined with nitrogen, as is the case in proteins (Sincero & Sincero, 2003). Organics 

are often referred to as the carbon source, and can be classified as biodegradable or non-

biodegradable. Biodegradable organics are mainly proteins, carbohydrates, and fats, 

which can be used up by living organisms and transformed into simpler forms. An 

example of such a process is aerobic degradation, where aerobic bacteria (aerobes) use 

oxygen to degrade or metabolize organic matter, usually producing carbon dioxide and 

water (LaGrega et al.  2001; Sincero & Sincero, 2003).  

Biodegradable organic compounds are also degraded by anaerobic processes. As the 

name alludes to, this process occurs in the absence of oxygen, with methane gas as the 

main byproduct. Dissolved oxygen concentration in water reaches saturation at 8 mg/L, 

and aerobic conditions are present when dissolved oxygen levels are greater than 2 mg/L. 

Concentrations lower than 2 mg/L create anoxic conditions, whereas absence of dissolved 

oxygen leads to anaerobic conditions. The presence of organics is usually expressed in 

terms of biochemical oxygen demand (BOD) or chemical oxygen demand (COD). BOD 

represents the amount of oxygen needed by microorganisms to oxidize the organic matter 

biologically; meanwhile COD represents the amount of oxygen required to oxidize the 

organic matter through biological or chemical processes. Both measurements give an 

indication of the amount of organic compounds present (Metcalf & Eddy, 1979).  

High BOD and COD in discharged wastewater indicate oxygen depletion in the natural 

system, potentially causing anaerobic conditions and affecting oxygen dependent living 

organisms. Although COD and BOD are measures of oxygen requirements, they are 

considered as pollutants and regulations are set by governments with respect to their 
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discharge to surface waters (Moreno-Casillas et al. 2007). Both BOD and COD are 

important parameters when designing wastewater treatment processes because they are 

used to estimate the process treatment efficiency (Sincero & Sincero, 2003).  

Inorganic compounds include nutrients, heavy metals, salts, etc. Phosphorus and nitrogen 

are the most common nutrients in wastewater. Both are also important growth nutrients 

for microorganisms and should be treated before the effluent is discharge to water bodies 

to avoid conditions that stimulate algal growth in receiving water bodies. Algae grow on 

surface water when there is an excess of nutrient supply, resulting in decreased light 

penetration and oxygen solubility in water (Metcalf & Eddy, 1979). Algal presence can 

also create odor and taste problems in drinking water, and efforts must be taken to avoid 

creating conditions that encourage its growth close to drinking water supply sources. 

Table 1 - Phosphorus Concentrations and Water Body Status (Environment 

Canada, 2007) 

Status Phosphorus Concentrations (mg/L) 

Oligotrophic 0.004–0.010 

Mesotrophic 0.010–0.020 

Meso-eutrophic 0.020-0.035 

Eutrophic 0.035–0.100 

 

Water bodies with a high nutrient content are referred to as eutrophic; moderate 

concentrations result in what is known as mesotrophic conditions, and poor nutrient 

concentrations are known as oligotrophic conditions. Concentrations higher than 0.1 

mg/L are considered hypereutrophic and require immediate remedial measures. To avoid 
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eutrophic conditions in water stream, it is recommended that total phosphorus 

concentrations in treated effluents do not exceed the standards set by the Ministry of 

Sustainable Development in Quebec. 

Table 2 - Treatment Methods and Total Phosphorus Limits in Effluents (MDDEP-

Quebec, 2002) 

Treatment Method Total Phosphorus Limits (mg/L) 

Membrane Filtration 0.1 

Physical-Chemical 0.5 

Activated sludge 0.6 

Biofiltration 0.6 

Aerated Lagoons 0.8 

 

The common phosphorus forms are orthophosphate, polyphosphate and organic 

phosphate; as for nitrogen, it is present in water as proteins, urea, ammonia, nitrates and 

nitrites. Ammonia is transformed to nitrate through the nitrification process and 

denitrification reduces nitrates to nitrites and nitrogen gas. Nitrogen transformation is 

mainly carried out biologically in the environment and in treatment plants, but chemical 

and physical removal also take place during treatment processes (Bratby, 2006). 

2.1.3 Biological constituents 

 

Viruses, bacteria, protozoa, algae, and fungi constitute the biological constituents of 

domestic wastewater (Metcalf & Eddy, 1979; Sincero & Sincero, 2003). These 

microorganisms exist in various sizes; therefore, the wastewater treatment should be 

chosen based on the type of microorganisms present. Bacteria play a major role in 
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decomposition of organic material and wastes, both in the environment and in wastewater 

treatment. Some bacteria are useful in wastewater treatment, such as the nitrosomonas 

and nitrobacter, which are responsible for nitrification and denitrification respectively 

(Mulligan, 2002). Meanwhile, other bacteria like Escherichia Coli or other coliform 

bacteria, which originate in colons of humans and animals, are often indicators of human 

and animal pollution. Human consumption of water or food contaminated with coliform 

bacteria can cause severe health problems such as gastroenteritis, bloody diarrhea, and 

death. Such was the case in Walkerton, Ontario in 2000, when drinking water became 

contaminated, causing over 2500 cases of illness and seven fatalities (Aylesworth-Spink, 

2009).  

Knowing the characteristics of wastewater and their importance during the treatment 

process, as well as in the ecosystem, is necessary before exploring the various types of 

treatment methods.  

2.2 Wastewater Treatment 

 

Wastewater treatment, like wastewater characteristics, is divided into biological, physical 

and chemical categories; in many cases, processes include more than one of these types. 

The following section will elaborate on each category, its design characteristics, and 

applications.  

2.2.1 Biological Treatment 

 

Biological treatment processes are also referred to as secondary treatment units, and as 

their name indicates, they always involve living organisms, mostly microorganisms. 
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Microorganisms need carbon, nitrogen and phosphorus as sources of energy. Since many 

types of wastewater already have high biodegradable organic content, wastewater is the 

perfect source of energy for microorganisms. Biological removal of these organics is 

done through their oxidation or transformation to less polluting compounds, or to 

structures that are easily separated by settling. Examples of biological treatment units are 

activated sludge, aerated lagoons, trickling filters, and anaerobic digesters. Wastewater 

treatment using activated sludge, aerated lagoons, and membrane bioreactors (MBR) is 

discussed below.  

2.2.1.1 Activated sludge 

 

The activated sludge process is a process that has been in use since the beginning of the 

20
th

 century. The process can be described as an aeration basin where microorganisms 

and wastewater are present together, forming what is known as mixed liquor. The aerobic 

bacteria culture and the wastewater stay in contact for a specific period of time, known as 

the hydraulic retention time (HRT), defined as the time that the water stays in a specific 

reactor (LaGrega et al.  2001). The hydraulic retention time is a design parameter in water 

treatment, and is controlled by two factors: the reactor volume and the flow rate into the 

reactor, as seen from Equation 3: 

� =  �
�                  (3) 

Where θ is the HRT, V is the volume of the reactor and Q is the influent flow rate.  

The HRT is chosen in order to allow the microorganisms to oxidize most of the organic 

matter. The wastewater then leaves the activated sludge reactor and enters a secondary 
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clarifier, or a settling tank (Figure 1). In the settling tank, heavy particles and colloids 

sink, leaving clean water at the top and heavy sludge in the bottom. The sludge from the 

settling tank is usually recycled back to the activated sludge reactor to maintain a 

microorganism balance in the reactor.  

 

Figure 1 - Activated Sludge Reactor 

Aeration and mixing are very important to maintain the mixed liquor in that state and to 

ensure enough oxygen to sustain the microorganisms, thus increasing treatment 

efficiency. The recycle stream contains microorganisms that have already been in the 

aeration basin; hence, recycling the sludge can improve the efficiency of the process, 

since the recycled microorganisms will have already adapted to the components to be 

treated. 

The amount of sludge produced during the process increases as the concentration of the 

influent streams increases. The amount of sludge wasted and recycled depends on the 
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influent concentration, desired effluent concentration, and concentration inside the 

reactor. The microorganisms in the formed sludge need time to reproduce and consume 

substrates present in the reactor; this time is known as the sludge age. Sludge age is a 

very important design parameter in activated sludge reactors because it affects the 

concentration of microorganisms in the reactor and the properties of the flocs in the 

sedimentation basin (LaGrega et al.  2001). The time in the sedimentation tank or clarifier 

is not considered part of the sludge age, because in the anaerobic conditions of the 

clarifiers, the sludge becomes inactive. Sludge age is also known as sludge retention time 

(SRT) and is expressed in Equation 4 

��� =  � ��
���� � �� ! "��� #� (4) 

V= volume of reactor (m
3
) 

Xv= volatile suspended solids concentration (g/m
3
) 

Another important parameter when designing the activated sludge process is the sludge 

load, often known as food to microorganism ratio (F/M) (Sperling, 2007).  

$
% =  �.'�()

� ��
      (5) 

Typical F/M ratios are listed in Table 3. 
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Table 3 – Typical food to microorganisms ratio – F/M  (Grimm, 2002) 

Process F/M range 

 

Extended Aeration BOD 

 

0.02 – 0.1 mg/L 

 

Conventional F/M BOD 

 

0.1 to 0.5 mg/L 

 

High Rate Range BOD 

 

0.5 – 2.5 mg/L 

 

F/M ratio refers to the relationship between energy sources available in the influent and 

the amount of microorganisms in the reactor. Although the activated sludge process has 

proved efficient in the removal of BOD, COD and nutrients, the process is only 

applicable to high initial concentrations of suspended solids and BOD. As seen in Table 

3, even with low F/M ratios extended aeration is required, thus resulting in elevated 

operating costs.   

2.2.1.2 Aerated Lagoons 

 

Aerated lagoons are natural or artificial bodies of water allowing for inflow and outflow 

of wastewater after a defined retention period. Treatment relies solely on the natural 

processes of biological purification that occurs in any natural water body. Organic wastes 

in aerated lagoons are decomposed by oxidation, synthesis, and endogenous respiration. 

Organic matter oxidizes to produce carbon dioxide, water and ammonia. Energy 

produced through oxidation converts some organic waste to new cell tissue (GNL, 2009). 



16 

 

Aerated lagoons retain wastewater for an extended period of time, thus stabilizing 

wastewater as heavier particles sink to the bottom and lighter ones rise to the surface. The 

hydraulic retention time gives microorganisms time to feed on the nutrients and trace 

elements in the water (Virginia Tech, 1996). Treatment is optimized by selecting the 

appropriate organic loading, hydraulic retention time (HRT) and pond depth in order to 

promote the maximum growth of organisms beneficial to the treatment process (Mara et 

al. 1992).  

Aerated lagoons are built into or above the ground and lined with clay or other 

impervious materials to prevent groundwater contamination. The number and size of each 

lagoon, if more than one is required, depend on the wastewater inflow flow rate. 

However, systems that use several small lagoons have proven more effective than a 

single large lagoon.  

Aerated lagoons create aerobic conditions through mechanical means. External energy is 

required to ensure sufficient oxygen supply through mechanical aerators. Mechanical 

mixers may also be required to ensure adequate distribution of oxygen throughout the 

lagoon and prevent conditions that lead to the creation of anaerobic zones.  Mechanical 

aeration allows these lagoons to use 60% to 90% less land area than other natural 

wastewater treatment systems. Lagoons can be best applied for small communities, 

nevertheless, limitations of surface space or cold winter temperatures are two major 

limitations of the process (Metcalf & Eddy, 1979; Virginia Tech, 1996). Moreover, the 

accumulation of nutrients in the lagoons can results in lower removal when compared to 

other processes (Table 2).  
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2.2.1.3 MBR 

 

Membrane bioreactors (MBRs) are units that combine membrane filtration with 

biological treatment units. They combine activated sludge with a membrane filtration unit 

to achieve superior effluent quality due to the simultaneous biological treatment of 

biodegradable pollutants and the total solid/liquid separation through filtration (Merz et 

al. 2007; Tian et al. 2009). MBRs therefore have the advantage of using less space, 

making them practical in areas with high population density. Furthermore, the use of a 

membrane results in improved solid/liquid separation, independently of sludge 

settleability (Artiga et al. 2007; Meng et al. 2007). Although MBRs have several 

advantages over conventional biological units, the operating costs are very high (Merz et 

al. 2007); therefore, thorough investigation should be carried out before installing an 

MBR unit to ensure feasibility and cost-efficiency of the project.  

The membrane in the MBR reactor replaces the clarifier in the conventional activated 

sludge process train (Merlo et al. 2004; Ng et al. 2006; Sun et al. 2007; Mohammed et al. 

2008). This technology is controlled by various parameters, such as hydraulic retention 

time (HRT), sludge retention time (SRT), mixed liquor suspended solids concentration 

(MLSS), reactor volume, flow rate, depth of membrane in the reactor and membrane pore 

size.   

An advantage that MBRs have over other biological treatment units is the ability to 

operate at the range of high MLSSs (10- 40g/L), while typical biological units operate at 

a maximum of 6g/L. This is due to weaker settling at higher MLSS concentrations (Khor 

et al. 2006; Meng et al. 2007; Sun et al. 2007). Several studies were conducted to 

examine the effect of changing the MLSS concentration or SRT on the performance of 
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membrane bioreactors. A prolonged SRT, where almost no sludge is produced, has been 

investigated by various researchers. The advantage of that would be an extended retention 

of biomass, thus increased adaptation of microorganisms to the system; however, 

accumulation of inorganic compounds, inhibiting compounds or other by-products could 

be a limitation of prolonged SRTs (Han et al. 2005; Khor et al. 2006). 

Khor et al. (2006) designed an MBR reactor consisting of a big reactor divided by a 

barrier into three segments naming them a C-Tank, an N-tank, and an M-tank. The C-tank 

was responsible for COD removal, whereas the N-tank was responsible for nitrogen 

removal and the M-tank for filtration. The team tested three different SRTs: 5days, 10 

days, and prolonged; organic removal, inorganic accumulation and microbial activities 

were also tested. All three reactors showed more than 97% removal of organic 

compounds and no sign of inorganic accumulation. 

Although the proposed design achieved high removal efficiencies; the investigations 

conducted by Khor et al. (2006) did not show the performance of a fully submerged 

membrane bioreactor. The separation in the design made it similar to a sequential batch 

reactor with a membrane filtration unit at the end; thereby increasing the space needed for 

such an installation.  

Applications of submerged membrane bioreactors vary widely, and they can be used for 

the treatment of various types of wastewater; Tian et al. (2009) investigated treating 

drinking water with a submerged membrane bioreactor, and used powdered activated 

carbon as a source of energy for the microorganisms. Artiga et al. (2007) tested 

submerged membrane bioreactor treatment on winery waste which has properties 
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completely different than drinking water. The tests yielded high COD removal 

efficiencies higher than 97%, regardless of the initial concentration.  

What determines the efficiency of a membrane bioreactor, other than contaminant and 

impurities removal efficiency is the ability of the membrane to operate under a constant 

flux. Darcy’s law defines flux as the rate of volume flow rate per unit area, making it a 

function of volume, time and area. The flow rate of permeate through the membrane 

decreases with time as the pores become blocked. The blocking of the membrane pores is 

known as fouling. 

The major limitation of the MBR technology is the fouling of the membrane, and 

research has been conducted over the past decade to improve the operational parameters 

and avoid fouling. Membrane fouling is caused by the depositing of particles on the 

membrane surface, blocking its pores (Bani-Melhem & Elektorowicz, 2010); therefore 

the amount of water passing through the membrane decreases. Different researchers 

investigated different foulants; but the major two contributing to fouling are suspended 

solids and colloids (Yang et al. 2006). Fouling of membranes decreases the membrane 

permeability and increases energy demand for pumping the water across the membrane 

(Tian et al. 2009).  The energy for pumping results from the increase in trans-membrane 

pressure (TMP) which results from the decrease in permeate flux (Yang et al. 2006).   

Suggestions to avoid membrane fouling include aeration (Ji & Zhou, 2006; Yang et al. 

2006; Meng et al. 2007), back flushing of membrane with permeate (Ng et al. 2006); and 

operating at a flux lower than the critical flux (Ng et al. 2006; Yang et al. 2006; Wang et 

al. 2006). Aeration prevents fouling because the air pumped into the reactor helps to 

detach particles from the membrane surface and maintains sludge in suspension (Ji & 
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Zhou, 2006; Meng et al. 2007). Although aeration is thought of as a fouling alleviator, 

high aeration intensities could break big flocs into smaller flocs and increase the 

probability of fouling (Ji & Zhou, 2006); moreover, continuous aeration means that the 

dissolved oxygen in the reactor increases, therefore impeding the denitrification process, 

which needs anoxic conditions (Yang et al. 2006). The last and most important limitation 

of aeration is its high energy requirement; Meng et al. (2007) stated that more than 90% 

of energy consumption of a membrane bioreactor process is due to aeration.  

The aforementioned suggestions involved controlling operating conditions in a reactor; 

however, some researchers have suggested modifying sludge characteristics as a solution 

to fouling problems. Common solutions applied are the addition of coagulants that help in 

improving aggregation and producing large flocs, the addition of powdered activated 

carbon to increase porosity, which helps adsorb and remove small colloids, or zeolites 

addition to improve sludge compressibility. To improve aggregate formation, Han et al. 

(2008) and Bagga et al. (2008) pretreated the water with chemical coagulation and 

electrocoagulation, and sent the effluent from pretreatment to the MBR reactor.  Bani-

Melhem & Elektorowicz (2010) investigated the alleviation of membrane fouling by 

electrocoagulation, where dense aggregates form and prevent membrane fouling. Their 

novel design involved a submerged membrane bioreactor in addition to immersed 

electrodes connected to an electric field. Results of the investigation showed significant 

decrease in membrane fouling with the addition of electrokinetic treatment. Coagulation 

and electrocoagulation processes are discussed in sections 2.2.2.2 and 2.2.2.3 

respectively. Despite the good solid liquid separation and the high removal efficiencies 

discussed, biological processes are not practical for dilute water systems and have energy 
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intensive requirements due to aeration and membrane operations. A realistic alternative is 

the physical-chemical treatment.  

2.2.2 Physical - Chemical Treatment 

 

Physical- Chemical treatment of wastewater involves physical processes, where 

constituents do not undergo a chemical change, and chemical processes, where a 

chemical reaction or transformation takes place. The use of the word physical refers to 

the movement of particles or contaminants during the treatment process (Sincero & 

Sincero, 2003).  

Conventional wastewater treatment is preceded by a pretreatment phase. After passing 

through the screening, the water is sent to a primary clarifier, where large sized particles 

that were not retained by screening would settle.  

 

Figure 2 - Primary and Pretreatment Phases 

 

The type of treatment seen in Figure 2  is entirely physical, there are no chemical 

interferences, and separation is mainly due to the movement of particles due to filtration 
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or gravity. The process demonstrated can be a pretreatment to biological treatment. 

However, if the treatment process is solely primary, then chemicals are added before the 

primary clarifier. Solids are separated from liquids by three processes: screening, settling 

and flotation. 

Settling is another physical process that results in solids moving by gravity if it was a 

gravitational settling tank, or in many cases if centrifugal settling is employed, solids will 

move towards the driving forces (Sincero & Sincero, 2003). In settling tanks, the velocity 

and size of particles vary as the particles move down due to the adsorption and 

agglomeration of particles to form bigger settlable structures (Bratby, 2006). However, 

repulsive forces between particles in the settling tank can prevent the agglomeration 

phenomenon and retard the settling process.  

Floatation is the rise of particles in a reactor under the influence of gas bubbles that rise 

to the surface. Usually fine air bubbles are introduced in a solution, forcing light solids to 

be carried to the surface. To separate the solids from the liquids, a skimmer can be used 

to separate the floated particles; alternatively the reactor walls can be leveled. Leveling is 

having a reactor that has a side adjacent to a reservoir for collection of floating material. 

Floating particles will be collected when they overflow over the wall of the tank into the 

reservoir as seen in Figure 3. Limitations of flotation process are the expenses resulting 

from introducing the gases to lift solid particles to the surface. Moreover, the repulsive 

forces existing between particles and colloids in the solution can hinder the proper solid 

liquid separation.   
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Figure 3 - Floating Particle Overflow 

As noted so far, physical treatment does not convert contaminants to simpler, safer 

compounds before discharge into the environment; therefore, chemical treatment is 

needed to actually treat the wastewater (Sincero & Sincero, 2003). Conventional primary 

wastewater treatment plants usually remove nutrients and other impurities from the 

influent by the addition of chemical coagulants. This process involves destabilization of 

charge on colloids and weakening the attractive forces present in wastewater. It is 

important to destabilize the forces between colloids because stable colloids remain 

dispersed in the wastewater and are not readily separated (Bratby, 2006). When a 

coagulant is added, it reacts with functional groups on colloid surfaces, and reduces the 

surface charges. The destabilization results in colloid aggregation to form flocs which are 

then separated from water by settling, floatation, or precipitation (Holt et al. 2002; Wang 
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et al. 2005). The forces that affect floatation and settling are surface tension, bouyancy, 

and gravity as will be explained in section 2.2.2.3.  

2.2.2.1 Surface Charge and Destabilization 

 

Colloids in wastewater have mostly negative surface charges (Duan & Gregory, 2003; 

Bratby, 2006). The negative charges, along with the bipolarity of water molecules, result 

in water binding at the colloid-water interface, in addition to water molecule 

arrangements around the charged surface. The destabilization of the charge results in 

reduction of:  

- surface charge 

- number of adsorbed water molecules 

- zone of influence of surface charge 

Particles of opposite charges attract meanwhile those of same charges repel. Overlapping 

of the attraction and repulsion creates a charge separation were charges repel on each side 

and give a net charge of zero (point zero charge) – pzc (Bratby, 2006). The pzc of ions 

and charged particles have a capacitor- like structure that is the electrical double layer 

(Cosgrove, 2010). Gouy and Chapman introduced a model for the electrical double layer 

and defined it as “a charged surface and a diffused region of ions around the surface”. 

Stern then followed with a developed model including “a region in which ions are 

adsorbed and held to the surface” (Bratby, 2006). The Stern model divides the Electric 

Double Layer into Stern’s layer and the Diffuse Double Layer (DDL). Stern’s layer is the 

distance between the radii of hydrated positive ions and the negatively charged surface. 

The molecules in the DDL show Maxwell-Boltzmann distribution, which relates the 
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number of molecules present in the plane to the energy possessed by these molecules. 

Figure 4 shows the fixed Stern layer and the diffuse double layer explained by Stern and 

Gouy-Chapman (Bratby, 2006; Cosgrove, 2010).  

 

Figure 4 - Diffuse Double Layer (Texas A & M, 2009) 

Electric Double layer: thickness of double layer is measure by the Debye Length κ
-1

 

(Cosgrove, 2010) 

*�� = +�� ∑ - #. #
�

/�/01� 2
�� �3

    (6) 

- Where e (Electronic charge) = -1.609 x 10 
-19

 C,  

- ρion is the number density of ions  

- zion is the ion’s valence   

- ε0 is dielectric permittivity of vacuum, 8.854x 10 
-12

C
2
J

-1
m

-1
.  
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- εr is the dielectric constant of medium (dimensionless),  

- k is Boltzmann constant1.381 x10
-23

JK
-1

 

- T is absolute temperature in Kelvin. 

Therefore, the colloids start moving toward each other, and can be maintained in close 

proximity by Van der Waals forces of attraction (Zanello, 2003; Cosgrove, 2010). These 

forces are explained by a strong attraction between the electron cloud of an atom and the 

nucleus of an adjacent atom. Van der Waals forces can hold the atoms close together 

because they are stronger than repulsion forces when DDL has an adequately low 

thickness. The adsorption of polymers and ions, in addition to the formation of 

precipitate, contribute to destabilization (Bratby, 2006). Another force of attraction that 

helps in keeping molecules clustered is hydrogen bonding. Hydrogen sites from one 

molecule are attracted electrostatically to the oxygen sites of an adjacent molecule; 

holding them close together as a pair (Taniguchi et al. 2002).  

Derjaguin, Landau, Verwey and Overbeek, introduced the DLVO theory, which estimates 

the total force between colloidal particles as a sum between the Van der Waal’s forces 

and the double layer forces (Cosgrove, 2010). Charged ions in solution move under the 

influence of thermal agitation; as the ions move, they will most likely collide with stable 

colloids in suspension. This collision disturbs the stability of the colloids, causing them to 

move randomly known as the Brownian motion. Brownian motion allows the particles to 

be adsorbed on colloid surfaces. 

Measuring the potential between the moving particle and the supporting liquid allows the 

quantification of the DDL, yielding a value known as zeta potential (Den & Huang, 

2006). Zeta potential is the potential at the shear plane of the solid/liquid interface 
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(Cosgrove, 2010); it gives a good indication of colloid stability, ion adsorption, and the 

efficiency of coagulation and flocculation processes as will be shown in the next section.  

4 =  56	7
�8 /�/      (7) 

Where ζ is the zeta potential (V) 

µ is electrolyte viscosity (kg/ms) 

ε0 and ε are the permittivity of the vacuum and solvent respectively C
2
J

-1
m

-1
 

E is the potential gradient applied (V/m) 

υp is the particle velocity/mobility (m/s) 

2.2.2.2 Coagulation 

 

Destabilization of the electric double layer and the surface charge during coagulation is a 

result of the addition of metal coagulants (metal salts) and polymers (Bratby, 2006; Al-

Amoudi et al. 2007). When metal salts are added, the ionic strength of the solution 

increases, leading to a thinning of the double layer and reduction in zeta potential (Duan 

& Gregory, 2003). The most common metal salts used in water treatment are aluminum 

sulphate (Al2 (SO4)3. xH2O) and ferric chloride (FeCl3) because they have a high valance, 

readily available, and are cheaper than other chemical coagulants (Duan & Gregory, 

2003; Ahmad et al.  2007). The hydrolysis of the salt and release of metal cations leads to 

neutralization of surface charge in negatively charged colloids, decreases DDL thickness 

followed by formation of insoluble hydroxides on which impurities can adsorb (Duan & 

Gregory, 2003; Ahmad et al. 2007).  
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Aluminum sulphate salt is known as alum and can be used in industry in its liquid or dry 

form. Liquid aluminum sulphate is corrosive and needs to be stored in corrosion- resistant 

tanks made of lead, plastic-lined steel, or 316 stainless steel (Bratby, 2006). When 

hydroxides are present in water, the following reactions take place upon addition of alum:  

9��(��;)5. �;��� + = ���  → �9�(��)5 + 5��;
�� + �;���               (8) 

If carbonates are present in water, carbon dioxide will be produced: 

9��(��;)5. �;��� + = ?�(�?�5)�  → �9�(��)5 + 5?���; + = ?�� + �;���  (9) 

The hydroxides formed are insoluble and form the basis of floc formation; however, 

hydrolyzed sulphates are released in solution. The same reactions take place when ferric 

chloride is added; except that iron has two oxidation states, therefore both ferrous and 

ferric  hydroxides form (Fe(OH)2 and Fe(OH)3) in addition to the chlorides being released 

in solution. Equations 8 and 9 describe the simple reactions that take place; however, 

upon hydrolysis of the coagulants, the hydroxides formed could polymerize to form metal 

hydroxide polymers, especially aluminum. Examples of aluminum hydroxide polymers 

are Al3 (OH)4
5+

, Al8(OH)20
4+

, Al13O4(OH)24(H2O)12
7+

, etc. (Bratby, 2006).  

Impurities and colloids can be adsorbed onto the hydroxide precipitate. The colloids 

present in the solution can be either entrapped inside the hydroxide flocs formed, or 

enmesh to the surface of hydroxides. The enmeshment is defined as sweep coagulation 

(Peavy et al. 1985). As the flocs get bigger, they start settling due to gravity; hence, 

adsorbing more particles from the solution. The settling velocity of the flocs increases as 

flocs become larger. Mixing is a vital step in the chemical coagulation treatment for it 
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ensures uniform coagulation, in addition to increasing the collisions between charged 

particles, hence, promoting flocculation (Peavy et al. 1985).  

Treatment using chemical coagulation has been used on a variety of wastewaters such as 

dairy effluents (Tchamango et al. 2010), textile wastewater (Zongo et al. 2009), industrial 

wastewater (Meas et al. 2010), dye- polluted water (Canizares et al. 2006), pulp and 

paper wastewater (Ahmad et al. 2007), personal care product wastewater (El-Gohary et 

al. 2010), and soil leachate (Meunier et al. 2006). The main parameters studied were 

COD, turbidity, color, total solids (TS) and phosphorus.  

TS removal occurs through physical and chemical processes, namely the coagulation and 

flocculation as aggregates form settleable structures. Turbidity removal is a consequence 

of the decrease in the concentration of total solids concentration. On the other hand, 

phosphorus in the form of phosphates is removed through a chemical reaction between 

phosphate ions and the metal cations in solution, which results in the formation of 

insoluble metal phosphates. 

(9��(��;)5). �; ��� + � @�;
5�  → � 9�@�; +  5 ��;

�� +  �; ��� (10) 

; $�?�5 +  5 @�;
5�  → $�@�; + $�5(@�;)� +  �� ?��    (11) 

Both FePO4 and AlPO4 are insoluble, with solubility products of 10
-21.9

 and 10
-21

 

respectively. However, alum is the recommended coagulant for phosphorus removal 

because ferric ion in FePO4 can be reduced to ferrous ion, Fe
2+

 under anoxic or anaerobic 

conditions. Ferrous phosphate is soluble in water, thus re-releasing phosphates back into 

solution, or to a water body if released from sediments (Bratby, 2006).  
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Kabdasli et al. (2007) investigated the efficiency of three different coagulants in the 

treatment of dye-bath effluents: ferrous sulphate, ferric chloride, and alum. COD removal 

efficiencies were 61.6%, 66.1% and 62.8% respectively starting at an initial concentration 

of 310 mg/L. Kabdasli et al. (2007) concluded that ferric chloride is a better coagulant 

salt with respect to COD removal; nevertheless, the differences can be considered 

negligible. Similar comparisons were carried out by El- Gohary et al. (2010), using the 

same coagulant salts for COD removal on personal care products wastewater with an 

initial COD concentration of 2300 mg/L, as well as comparing the removal efficiencies 

for precipitation and flotation techniques for solid/liquid separation. Results for 

precipitation tests were 75.8%, 77.5 %, and 76.7% for ferric chloride, ferrous sulphate 

and alum respectively; differences were therefore not very significant. Flotation results 

were highest for alum 77.5 % and lowest for ferrous sulphate 67.7 %. Sludge volume 

index (SVI) measures were done after the experiments to evaluate the settleability of the 

sludge. Ferric chloride had the lowest SVI, while the poorest settling was with alum 

treatment. Alum treatment yielded the biggest volume of sludge and the lowest sludge 

solid content, therefore indicating high water retention of sludge produced. Tchamango et 

al. (2010) used alum to treat dairy effluents, and investigated the removal efficiencies of 

turbidity, phosphorus, nitrogen and COD. The highest removal rate was for turbidity 

(100%), followed by phosphorus (94%) and nitrogen (81%), and finally COD (63%). 

Results were based on a 30- minutes treatment and a coagulant dose of 0.414g/L; the pH 

of the solution dropped significantly upon addition of the coagulant, while conductivity 

increased. Bagga et al. (2008) also investigated the removal of solids and colloids to 

improve the filtration process and avoid fouling, using chemical coagulation as a 
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pretreatment to surface water microfiltration. The investigation findings showed an 

increase in fouling in the pH range of 6.4 – 8.3, and that low concentrations of coagulants 

(< 10 mg/L) did not produce flocs large enough to avoid fouling. Fouling decreased with 

iron concentrations greater than 10 mg/L; therefore, pH and the coagulant dose are very 

important parameters for efficiency of a coagulation/flocculation treatment process.  

The most important parameters in the chemical coagulation process are the pH and the 

coagulant dose, as seen from the findings of the aforementioned researchers (Duan & 

Gregory, 2003; Sincero & Sincero, 2003; Bratby, 2006). The formed metal hydroxides 

show a point of zero charge, and that is the pH, where the hydroxides exhibit a zero 

surface charge (Duan & Gregory, 2003). Particle aggregation is enhanced as pH increases 

towards the i.e.p. due to a decrease in stability. Correct coagulant dosage is important for 

many reasons:  

- An excessive dose can contribute to charge reversal, increasing colloid stability 

(Duan & Gregory, 2003; Mouedhen et al. 2008) 

- Excess salt can contribute to increasing conductivity of the treated solution 

- An excessive dose can contribute to increasing turbidity of solution (Duan & 

Gregory, 2003) 

- An excessive dose can contribute to increasing TSS content (Ahmad et al. 2007) 

- An excessive dose directly contributes to an excess of chemicals that will pollute 

receiving bodies if not treated further 

- An excessive dose drives up the overall cost due to an increase in coagulant cost 

- An excessive dose leads to larger settled sludge volumes, contributing to increase 

sludge handling costs 
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- An insufficient dose will result in an incomplete treatment process 

- An insufficient dose does not release enough cations to destabilize charges 

The right coagulant dosage is determined by evaluating the change in zeta potential; the 

optimal coagulant dose is found when the zeta potential value approaches zero mV.  

Achieving better flocculation without the risk of excess coagulant dosage, synthetic 

polymers with high molecular weight are added to help produce heavier flocs (Das et al. 

2009). Since the step that follows coagulation and flocculation is usually sedimentation, it 

is important to produce flocs that will readily settle. Dense flocs are desirable in water 

treatment because they have better settling and less water retention properties, therefore 

enhancing the dewatering process (Wang et al. 2006; Ni’am et al. 2007). Polymers bring 

about two types of interactions: bridging interactions and charge neutralization, both of 

which help in aggregation and production of dense flocs (Bratby, 2006; Cosgrove, 2010).  

The chemical coagulation studies presented showed that a significant amount of 

chemicals, namely coagulant salts, polymers, and buffers, is necessary to be added to the 

wastewater treatment process; therefore increasing both the environmental footprint and 

costs of the treatment. Particularly considering that chemicals needed for the treatment 

are not fully consumed during the process, and that the unused portion remains in the 

treated wastewater, which is in some cases directly discharged to water bodies. Moreover, 

the chemicals used in the treatment require special transportation, handling and storage; 

subsequently, adding to the costs of the treatment. Another drawback of using chemical 

coagulants is the high amount of chemical sludge produced during the treatment which 

contributes to more dewatering costs (Sincero & Sincero, 2003). These limitations 

encourage exploring an alternative treatment process that eliminates high sludge 
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production (Khoufi et al. 2007), the addition of coagulant salts, polymers, and buffers, 

and yields superior effluent quality.  

2.2.2.3 Electrocoagulation 

 

Interest in improving physical- chemical treatment, along with increasing environmental 

awareness, is fuelling the drive to minimize the use of chemical products in water 

treatment. Electrocoagulation (EC) is a process that does not require the addition of any 

chemical coagulants; the coagulation- flocculation process is very similar to chemical 

coagulation, except that the coagulant is generated in-situ through the dissolution of 

sacrificial anodes that are connected to an electric current (Can˜izares et al. 2005; Hansen 

et al. 2005, 2007; Meunier et al. 2006; Drouiche et al. 2008).  

The EC process eliminates contaminants through several steps: (i) electro-oxidation of 

the anode and release of metallic cations in solution, (ii) electro-migration and 

electrophoresis, which are the movements of charged ions and colloids, respectively, in 

the direction of electrodes of opposite charge resulting in destabilization of charges in 

solution, (iii) collisions and interactions between moving particles causing compression 

of the double layer, hence coagulation, (iv) adsorption of the solids, colloids and other 

contaminants on the coagulated particles, forming bigger aggregates, (v) separation of 

aggregates by settling or flotation as a result of hydrogen gas generation at the cathode 

(Kobya et al. 2006; Ni’am et al. 2007; Ghernaout et al. 2008; Liu et al. 2010).  

The process involves connecting metal electrodes to a direct current generator. The 

chosen metal should be suitable for use as sacrificial anodes; that is, it should produce 

metal cations in the solution (Meunier et al. 2006; Hansen  et al. 2007). Aluminum and 
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iron are the materials of choice because they produce a higher valence (Merzouk et al. 

2010). Hydroxyl ions and hydrogen gas form at the cathode, and metal ions are released 

at the anode by electrolytic oxidation of the metal electrode. 

 

Figure 5 – Schema of Electrocoagulation Process in Wastewater 

 

To further elaborate on the mechanism described above, the REDOX reactions at the 

anode and cathode are as follows:  

Example 1: Aluminum anode  

9#!�: 9����� 9�5� +  + 5��         (12) 

?��B!�:  5��� +  5������ �. ) ��  +  5���         (13) 

���0���: 9� + 5 ��� → �. ) �� +  9�(��)5         (14) 
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Example 2: Iron anode 

9#!�: $����� $���  +  ���       (15) 

?��B!�: ���� +  ������� ��  +  ����        (16) 

���0���: $� +  �������� ��  +  $�(��)�         (17) 

Or 

9#!�: $����� $�5�  +  5��        (18) 

?��B!�: 5��� +  5������ �. ) ��  +  5���       (19) 

���0���: $� +  5������� � . ) ��  +  $�(��)5       (20) 

Therefore, the general equations to describe the reactions occurring during the EC 

process are:   

9#!�: %���� %#�  +  #��    (21) 

?��B!�: ���� +  �������  ��  +  ����    (22) 

 

As mentioned earlier, the charged particles move toward the oppositely charged 

electrodes. Concentrations of charged particles in addition to the strength of electric field 

control the thickness of the double layer which is numerically represented as zeta 

potential. Ionic strength of the solution is related to both the concentration of electrolyte 

and the valence of the ion (Bratby, 2006). 

C =  ?���D�0�E��.�

�          (23) 

�
* =  �.� F ��GH

√C         (24) 

Where I = Ionic strength 
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κ
-1

= Double layer thickness,  

z= valence of ion 

C electrolyte = Concentration of electrolyte (moles/L) 

Concentration of moving charged particles from the bulk of solution to the electrode 

surface are affected by the distance of the particle from the electrode and the time needed 

for the movement of particles (Zanello, 2003). Although ions or molecules of the same 

charge can be present close to the electrode surface, the forces of attraction between the 

charged particles and electrode surface are stronger than the repulsive forces. Movement 

of ions and charged particles under the influence of electric field is demonstrated in 

Figure 6. 



37 

 

 

Figure 6 - Electrode/Solution interface 

 

When setting electric parameters in an electrocoagulation experiment, voltage gradient or 

current density should be fixed. Electrical conductivity represents the amount of electrons 

available to carry charges and allow the passing of the current; thus, it is the measure of 

the mobility of ions in a solution (Valenzuela et al. 2002). Once an electric field is 

applied to a conductor material, electric forces act on charged particles in solution, 

causing them to move to electrodes of opposite charge, producing an electric current. 

Two forces act on ions in solution in an electrochemical cell: electric field forces and 

frictional forces. These forces can be expressed as: 

$8 = .�8         (25) 
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$( = =J70�            (26) 

 

WhereFE = electric field force 

FD= frictional force 

E= electric field – voltage gradient (V/m)  

eo=electric charge = 1.602×10
-19

 Coulombs 

µ = viscosity (kg/ms)  

r= radius of a spherical ion (m) – spherical assumption 

v= velocity of ion (m/s)  

 z = ion valence 

The maximum ion velocity is derived by balancing the equations of both forces, as shown 

in equation 26 

.8 = =J70� → �K�F =  .�8
=J70           (27) 

 

Ion mobility in an EC treatment process depends on ion size, its valence, the solution 

viscosity, the applied voltage, the spacing between the electrodes, and the solution 

temperature. The solution temperature influences ion mobility indirectly as it affects 

viscosity (Valenzuela et al. 2002). 

During EC treatment, positively charged ions are generated then stabilized by the 

negatively charged particles in the solution, producing heavy flocs (Merzouk et al. 2010). 

The metal cations and the hydroxyl anions form metal hydroxide coagulants on which 

solids, metals and other impurities are adsorbed (Bagotsky, 2006). Moreover, the 

electroflocculation process can be enhanced due to the increased particles collisions 

resulting from the generation of gases at the cathode and anode and the movement of 
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charged particles to oppositely charged electrodes. Oxygen gas can be produced at the 

anode in addition to chloride ions being oxidized to chlorine gas; however, the dominant 

oxidation reaction in non-inert anodes is the corrosion of the anode material. These gases 

are not produced in significant quantities in electrocoagulation treatment, therefore are 

not presented in Figure 5.  

The adsorption of the solids and impurities on the metal hydroxides creates amorphous 

flocs that either sink as sediments, if the flocs are heavy enough, or float on the surface if 

the flocs are lighter. Amorphous nature of flocs formed can increase the surface area, 

hence increasing adsorption of suspended particles and colloids to the flocs and enhance 

solid-liquid separation (Gomes et al. 2007). However, light flocs float as a result of the 

upward force of hydrogen gas molecules and other gases that can be generated during the 

EC process; plenty gas generation can impede settling of the flocs.  

A disadvantage of electrocoagulation though is the passivation of the anode, which 

occurs when an oxide layer covers the anode, decreasing the current efficiency and hence 

the overall process efficiency. Passivation of the anode gives a strong indication about the 

prolonged existence of an EC process (Holt et al. 1999).  However, this passivation 

decreases with voltage decrease; and can be considered during the designing process. 

Another limitation can be the high price of energy in developing countries.  

 Some researcher (Canizares et al. 2006; Ni’am et al. 2007) concluded that EC produces 

denser flocs which have higher stability and are more readily separated from the solution. 

A reason for the denser floc production is electro-osmosis, a process that involves the 

movement of water out of the flocs under the influence of an electric field (Tuan et 
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al.2008). The following equation relates the velocity at which the water particles move  

due to electro-osmosis and to the potential gradient applied and zeta potential:  

6��� =  //�4
7 8     (28) 

Where υH2O is the flow of water due to electro-osmosis (m/s) 

ζ is the zeta potential (V) 

µ is electrolyte viscosity (kg/ms) 

ε0 and ε are the permittivity of vacuum and solvent respectively C
2
J

-1
m

-1
 

E is the potential gradient applied (V/m) 

Therefore, apart from the fluid proerties, the electroosmotic flow is affected by the 

voltage applied and the spacing between the electrodes.  

EC treatment systems are flexible, and that makes them ideal for treating a wide variety 

of effluents, e.g.  seawater (Timmes et al. 2009), domestic effluents (Lin et al. 2005), 

dairy effluents (Tchamango et al. 2010), industrial effluents (Meas et al. 2010), heavy 

metal contaminated wastewaters (Hansen et al. 2005; Hansen et al. 2007), dye-polluted 

wastewaters (Kabdasli et al. 2007; Phalakornkule et al. 2010), textile effluents (Zongo, et 

al. 2009; Merzouk et al. 2010), restaurant food industry (Chen et al. 2000; Kobya et al. 

2006), and oil industries (Bensadok et al. 2008).  

All cited studies have shown that EC is effective in destabilizing charge and forming 

aggregates; however, each study investigated different parameters and operational 

conditions. Zongo et al. (2009) evaluated the efficiency of EC treatment in COD and 

turbidity removal from textile wastewater. They tested aluminum and iron anodes at 
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current densities in the range of 50 -200 A/m
2
. A total turbidity removal and a COD 

removal rate 74-88% were achieved, starting from about 1500 mg/L. Removal 

efficiencies were not very different for both electrode materials; however, settling of 

aluminum formed gelatinous flocs that were better than the brown iron precipitates 

because the brown color contributed to changing the water quality. The process energy 

requirements were evaluated with respect to COD removal. The study found that 1.75 

kWh/m
3
 and 1.53 kWh/m

3
 were consumed using iron and aluminum, respectively, to treat 

1000 mg/L of COD; therefore using aluminum electrodes would reduce the energy 

requirements of the treatment. Nevertheless, the researchers found that energy 

consumption can be reduced by 30% if the solution conductivity was increased using 

sodium chloride.   

Zodi et al. (2009) also investigated COD and turbidity removal from textile wastewater 

using both iron and aluminum anodes in the current density range of 50 – 200 A/m
2
 to 

assess settling characteristics of sludge produced after treatment. A COD removal rate of 

95% for initial COD concentration of 3200 mg/L was achieved in this investigation. The 

same COD removal efficiency was also reported by Meas et al. (2010), which was 

satisfactory for water recycling standards. Final COD concentrations achieved by the 

above-mentioned researchers were higher than standard effluent discharge limits; 

therefore, further treatment was required. At the current densities tested by Zodi et al. 

(2009), iron- treated wastewater had SVI values that were significantly lower than those 

of aluminum- treated wastewater, indicating better settling with iron treatment. The effect 

of treatment time on iron settling was not tangible, while settling characteristics of 
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aluminum-based flocs deteriorated as treatment time increased. This trend can be 

attributed to the gel-like hydroxides that form with aluminum.  

Ni’am et al. (2007) investigated turbidity and COD removal using iron electrodes to treat 

synthetic wastewater at currents varying from 0.5- 0.8A. The effect of treatment time and 

settling time was also investigated. Similar results to the aforementioned investigations 

were observed with respect to turbidity removal; effluent turbidity was about 9 NTU. The 

highest observed COD removal rate was 75.5% starting with an initial concentration of 

1140 mg/L.  Findings proved that COD removal increases at higher currents, treatment 

times, and settling times.  

COD removal efficiencies obtained by many researchers were mostly between 60 – 80%. 

Moises et al. (2010) designed a continuous electrocoagulation activated sludge system to 

improve color, turbidity and COD removal. The continuous system consisted of an 

electrocoagulation unit using aluminum electrodes, followed by a clarifier and a 

biological reactor. COD removal efficiency after EC treatment was 59%, but the overall 

removal efficiency was 80%. The pretreatment with EC can reduce the time needed in a 

biological reactor. The treatment duration applied was 45 minutes in the EC reactor and 6 

hours in the biological reactor. The type of wastewater treated by Moises et al. (2010) had 

a conductivity of 6.7 ± 1.3 mS, making it a very good candidate for EC treatment, since 

energy requirements are very low at such a high conductivity. Although Moises et al. 

(2010) described their system as a combination system, the configuration applied served 

as a pretreatment to biological treatment.  
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The differences in COD removals can be explained by the fact that sugars, alcohols, 

phenols and other chemicals that do not react with the generated metallic cations remain 

in solution. These chemicals contribute to the COD measure if not absorbed into or 

adsorbed onto flocs; therefore, COD can remain unchanged after treatment (Moreno-

Casillas et al. 2007). Municipal wastewater contains compounds of different sources; as a 

result, COD is only partially removed in most cases (Moreno-Casillas et al. 2007).  After 

a coagulation treatment, the remaining COD portion is mainly the soluble COD (Bratby, 

2006). 

Research also expanded to investigate the performance of EC in eliminating coliform 

bacteria. Ghernaout et al. (2008) applied EC treatment to surface waters testing three 

anode materials: aluminum, steel and stainless steel. Four different current densities were 

tested: 20, 50 100 and 200 A/m
2
 during 35 minutes of treatment. At current densities 20 

and 50 A/m
2
, decrease in E.coli culture was not observed rapidly; however, at 100 and 

200 A/m
2
, a significant decrease in bacterial count was noted. Thirty minutes were 

sufficient to completely eliminate E.coli and algae at all currents and treatment times 

tested; however, the study showed that aluminum electrodes were more efficient than 

steel and stainless steel electrodes on E.coli destruction (Ghernaout et al. 2008). Linares-

Hernandez et al. (2009) also investigated the removal of coliforms using 

electrocoagulation, and a 99% coliform destruction rate was obtained using aluminum-

iron electrodes at a current density of 45.45 A/m
2
 and at pH 8. Coliform removal was 

coupled with 69%, 71%, 83% and 80% reduction of COD, BOD5, color, and turbidity, 

respectively. Therefore, electrocoagulation can be used for disinfection at high current 

densities and long exposure durations.  
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One of the major environmental concerns for surface waters is eutrophication. A major 

factor in mitigating the effects of eutrophication is contaminant reduction at the source, 

by using phosphate-free detergents, for example. However, the presence of phosphates in 

domestic wastewaters is inevitable. Phosphorus is present in plants and animals, and finds 

its way to domestic wastewater through human waste (Sincero & Sincero, 2003).  As 

described earlier, phosphorus removal can be carried out biologically by microorganisms, 

or by precipitating phosphates using metallic cations. EC can therefore be an alternative 

treatment mechanism for the removal of phosphorus from wastewater.  Given that 60% of 

the phosphorus in domestic wastewater comes from urine, Zheng et al. (2009) ran EC 

experiments on male urine in order to assess the feasibility of reducing phosphorus at the 

source. Current densities tested were between 10 and 50 A/m
2
, and the gaps between 

electrodes ranged from 5 to 40 mm.  Removal efficiency of phosphorus increased as 

current density and treatment time increased. The optimal gap chosen was 5 mm, and at 

current density 40 A/m
2
, 98% phosphorus removal was achieved after 20 minutes of 

treatment.  Initial phosphorus concentration was 490.2 mg/L. Increasing the distance 

between the electrodes had no effect on phosphorus removal, but caused a significant 

increase in energy consumption.  Despite obtaining such a high removal rate, using an 

iron electrode can lead to phosphates being released back into the wastewater. Under 

anaerobic conditions, iron (III) phosphate is reduced to soluble iron (II) phosphate. This 

problem can be avoided if aluminum electrodes are used for phosphorus removal, since 

aluminum has only one oxidation state.  

If phosphorus levels in surface waters are not controlled, phosphorus can contaminate 

drinking water sources and ground waters. Vasudevan et al. (2008) studied the removal of 
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phosphates from drinking water by electrocoagulation using mild steel anode material. 

Five different current densities in the range of 0.01 to 0.05 A/dm
2
 were tested. Removal 

efficiencies of phosphates increased as current density increased. Maximum removal for 

each current density was achieved after 20 minutes of treatment; any increase in 

treatment time after this period yielded no additional phosphate removal. The maximum 

removal efficiency was 98% and the lowest was 68%. The effect of pH change on 

removal efficiency was also assessed; the highest removal rate was noted at pH 6.5. 

Although similar removal efficiencies were observed in the two case studies, initial 

concentrations are much higher in the former experiment.  

The dairy effluent treatment case by Tchamango et al. (2008) presented in section 2.2.2.2 

included a comparison between the chemical treatment of dairy effluents and EC 

treatment using aluminum electrodes. Phosphorus, COD, nitrogen and turbidity results 

were almost identical for both treatment methods; phosphorus removal rate reached 

almost 90%. However, the researchers noted two major advantages of EC treatment over 

the conventional treatment: (i) treated wastewater showed lower conductivity and neutral 

pH, enabling its recycling for industrial purposes, (ii) the amount of aluminum released 

into solution was less than the salt amounts added in chemical coagulation.  

As suggested by Tchamango et al. (2008), Ricordel et al. (2010) investigated treatment of 

surface waters using EC also for industrial uses. The experiments were run using 

aluminum anodes, and removal of phosphates, nitrates and bacteria were assessed. 

Oxygen levels decreased up to 90% during the experiments due to the deoxygenating 

effect of hydrogen gas produced. 
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O2 +2H2O + 4e 
-
 ���� 4OH 

- 
     (29) 

The researchers related the nitrate reduction to the decrease in oxygen levels. However, 

phosphate removal was a result of the precipitation of phosphates to form insoluble 

aluminum phosphates.  

In addition to EC’s ability to improve effluent quality by eliminating contaminants, EC 

can be used as a pretreatment before membrane filtration units, in order to remove 

colloidal particles and decrease fouling. Bagga et al. (2008) studied pretreatment of 

surface water with EC using iron electrodes before microfiltration. Their research found 

that using iron as an anode was not recommended because soluble Fe
2+

 ions were also 

produced. They recommended using aluminum as anode material because it had only one 

oxidation state.  

Electrocoagulation using aluminum electrodes has been tried, not as a pretreatment to 

membrane filtration, but as a combined system within submerged membrane reactor by 

Bani-Melhem & Elektorowicz, (2010). The researchers investigated the effect of 

electrocoagulation on mitigating membrane fouling in a submerged membrane electro-

bioreactor (SMEBR). The anode material was aluminum, while the cathode was made of 

stainless steel. The investigation has shown that electrocoagulation can be combined with 

a membrane filtration unit to improve filtration operation and avoid fouling.  

Although the treatment results achieved by the researches cited above were satisfactory, 

none of them carried out EC treatment on dilute wastewater with low initial COD, 

phosphorus and solids concentrations. 
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2.2.2.3 Electroflotation 

 

As noticed in the previous section, electrocoagulation applications are very wide, but 

when applied on dilute wastewater, settling of the flocs formed could be a limitation. If 

proper settling is not achieved, the treated water could become turbid. Many 

municipalities and industries have strict regulations regarding the turbidity of discharged 

effluents. Coagulation, sedimentation, filtration, and flotation are examples of turbidity 

treatment methods.  

Sedimentation by gravity is unfeasible in dilute systems if the density of the formed flocs 

is not significantly higher than the density of the solution. Settling problems could be 

solved by designing a flotation unit. Flotation as a technique for solid/liquid separation 

has been widely used; however, the technologies and applications vary. Flotation can be 

used for recovery of solids, water, oil, as well as wastewater/solid separation, sludge 

thickening, algae removal, and juice clarification (Lee et al. 2007; Araya-Farias et al. 

2008; Shidong et al.  2009). Common types of flotation techniques are induced gas 

flotation (IGF), pressurized dissolved air flotation, non-pressurized entrapped air 

flotation, and biological flotation by gases produced by biological activities. 

Dissolved air flotation (DAF) is used commonly in the industry. Pressurized gas is 

introduced into the system and carries the light particles to the surface. The particles 

could be light flocs, oils, suspended solids, or algae (Yang et al. 2008; Shidong et al. 

2009). The flotation is achieved through the generation of many small gas bubbles, on 

which light particles adhere and get carried to the surface. Some researchers have tried 
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introducing ozone instead of air to achieve simultaneous separation and disinfection with 

promising results (Shidong et al. 2009). 

Filtration and induced gas flotation processes require high energy input for pumping the 

wastewater or pressurizing and pumping the gases. Another type of flotation that is not 

commonly used in the industry, even if it has less energy requirements, is electroflotation 

(EF). Electroflotation is an electrocoagulation technique targeted to achieve solid/liquid 

separation in a reactor. Flotation occurs as the solids and flocs formed in the solution are 

carried to the surface by the hydrogen gas bubbles produced at the cathode as seen in 

equation 12.  

The amount of hydrogen gas produced (moles) is related to the current density applied 

(J), effective area of the electrode (A), electrocoagulation time (t), and number of 

hydrogen molecules generated per electron involved in redox reactions (H) 

(Phalakornkule et al. 2010): 

#�� = L.9.�
$ �    (30) 

In comparison to other flotation methods, electroflotation produces larger amounts of 

small gas bubbles, increasing the surface area for adsorption of contaminants on to gas 

bubble, thus carrying them to the water surface (Gao et al. 2005; Ge et al. 2004). The 

amount of gas produced depends on the amount of charge passing through the system. 

For each Faraday, or 26.8Ah, 0.0224 Nm
3
 of hydrogen gas is produced, which surpasses 

the volume of gas in DAF methods explained above. 
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The fact that the gas bubbles generated during an EF treatment carry the solids and oils to 

the surface makes EF ideal for turbidity removal. Just like any other treatment, many 

parameters control the process. Current density, treatment time, wastewater 

characteristics, and choice of anode material are examples of controlling parameters. The 

flotation process is controlled by the current density, viscosity of the fluid and the surface 

tension. These parameters affect the bubble size, the bubble rise velocity, and the gas 

holdups (Ben Mansour et al. 2007; Sarkar et al. 2010). Sarkar et al. (2010) explained that 

the gas bubbles detach from electrode surface when surface tension forces (Fσ) are equal 

to the sum of buoyancy forces (FB) and pressure forces (FP):  

$M =  $' +  $@       (31) 

Ben Mansour et al. (2007) experimentally related the bubble diameter (db), the bubble 

rise velocity (νrise) and the gas hold ups (εgas) to the current density (J) and viscosity (µ) in 

the following equations:  

!N = =. �O) F L�.;= F 7�.;H    (32) 

P0 �� = �. )=H F L�.=H F 7��.�O       (33) 

/��� = �. �;F���� F L�.Q� F 7��.OO    (34) 

The major controlling parameter in the electroflotation process is the current density, 

since it controls the amount and size of gas bubbles generated as seen from equations 30 

and 32. As current density increases, more hydrogen gas is produced (Merzouk et al. 

2010). Therefore, the treatment duration can be chosen based on the current density 

applied to control the amount and size of gas particles desired (Equation 30 & 32). It has 
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been shown that flotation is better with finer gas bubbles (Bagotsky, 2006; Jimenez et al. 

2010). 

The choice of anode material also affects flotation, since different anode materials 

produce varying hydroxides and formed flocs. For example, aluminum is a good choice 

for EF because aluminum hydroxides are usually light and get carried to the surface 

easily (Gao et al. 2005). Nevertheless, at high current densities and long exposure times, 

if excess aluminum is generated in-situ, excess aluminum hydroxide will form and 

accumulate in a polymer form, contributing to increasing the turbidity of the water rather 

than removing it (Merzouk et al. 2010).   

Conductivity is one of the main wastewater characteristics that control EF treatment 

conditions and the amount of power supplied to the system. When the conductivity of the 

solution is high, lower potential is needed to reach to the desired current density. 

Conductivity in this context represents the ion concentration in the solution. Ions present 

in wastewater could be from dissolved salts, solids, acids or bases. The amount of ions 

present in a solution is important when using electrocoagulation, because it contributes to 

the electrical conductivity of the system. 

Hydrogen production at the cathode can sometimes be a limitation to the settling of dense 

flocs in an EC reactor. A study targeting the removal of chromium from wastewater using 

electrocoagulation without filtration was conducted by Ping et al. (2006), where metal 

hydroxides were formed, but the hydrogen production hindered the settling of the flocs. 

The metal hydroxides formed were small and dense; therefore, they were not readily 

carried to the surface by the hydrogen bubbles.  
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Floc separation should be assured in order to obtain chromium levels that are safe for 

discharge, which is why a filtration unit is usually added. In order to solve the solid/liquid 

separation problem, the researchers added an EF unit after the EC reactor to separate the 

precipitates formed. Sodium chloride salt was added in the EF unit to increase the system 

conductivity, thereby increasing current and resulting in more hydrogen generation. 

Moreover, a surfactant was added to decrease the surface tension and enhance the rise of 

gas bubbles. The last addition to the system was alum, since aluminum hydroxides are 

large and have low densities, which makes them easier to carry to the surface. The use of 

two separate electrokinetic reactors, EC and EF would require high energy inputs in 

addition to additional space requirements. Modifications can be introduced to achieve 

simultaneous EC and EF in the same reactor.  

The researchers also decided to try a hybrid Al-Fe electrode for flotation and removal of 

chromium without a filtration step or addition of surfactant. The hybrid system resulted in 

more than 97% removal of chromium at low power input, where the energy requirements 

were less than 1kWh/m
3
. 

A study was conducted by Ge et al. (2004) to investigate EF effectiveness in treating 

laundry wastewater which contained surfactants, salts, and phosphates. The researchers 

studied the ability of EF to remove phosphates, COD, surfactant and turbidity. Three 

bipolar aluminum electrodes were places between two titanium electrodes. The titanium 

cathode and anode were dedicated for electrolysis of water, where oxygen gas was 

produced at the anode and hydrogen gas at the cathode. The three bipolar aluminum 

electrodes were in effect two-sided electrodes, one of which was connected to the 

positive terminal, making it the anode, and the other to the negative terminal, making it 
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the cathode. Having three sets placed in series increased the treatment efficiency, 

decreased the time and allowed better distribution of produced hydrogen gas.  

As mentioned above, EF could be used for clarification purposes. A study was conducted 

by Farias et al. (2007) to investigate the effect of different current densities on the 

clarification of apple juice (decreasing the turbidity and improving the color of the juice). 

The current densities tested were 10, 20 and 40 A/m
2
; and the treatment time was 30 

minutes. The experiments were run with and without gelatin as a clarifying agent. 

Addition of gelatin helps in evaluating whether the desired results can be achieved by EF 

alone, or whether the addition of a clarifying agent is needed. Results showed that the 

best flotation was achieved at a current density of 20 A/m
2
. Results of the study showed 

that EF alone, at a current density of 20 A/m
2
, was efficient in reducing tannins and 

protein content of the juice. EF helped reduce turbidity from 436 NTU to 10 NTU at the 

above mentioned current density without a clarifying agent, and to 3.4 NTU with the 

addition of gelatin. Although EF proved to remove proteins in this case, results might not 

accurately describe the extent to which EF is responsible for protein reduction because a 

pectinase pretreatment was done before the EF unit.  

Phalakornkule at al. (2010) looked at EF as a sustainable process from which energy can 

be recovered. The energy to be recovered is not in the form of electrical energy, but 

rather hydrogen recovery. Although hydrogen by itself is not a form of energy, it is a 

renewable energy source. The investigation involved hydrogen recovery from EC 

treatment of dye-containing wastewater. The treatment process was no longer regarded as 

a solid-liquid separation but rather a gas-liquid-solid separation. Results of the 
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investigation showed that the energy yield of collected hydrogen accounted to 8-13% of 

the energy requirements of the EC process.  

Research continues to enhance the electrocoagulation and electroflotation processes; 

however, solutions should be aimed towards feasible technologies that are efficient, cost 

effective, and practical for a wide array of applications. Electroflotation is currently being 

considered as an extra unit following an EC treatment reactor; nevertheless, there is 

considerable potential in applying EF as a complete treatment unit with simultaneous 

treatment and solid-liquid separation in the same reactor, especially for dilute wastewater 

systems. 
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Chapter Three – Methodology 

 

Failure of biological systems to effectively treat very dilute wastewater (e.g. less than 100 

mg/L COD) , as well as the growing drive to limit the use of chemical coagulants and 

polymers in wastewater treatment, makes electrocoagulation (EC) an ideal alternative. 

This study was therefore initiated as a response to the lack of research into the 

applicability of EC when treating very dilute wastewater, with the interest of exploring a 

treatment process with the smallest economic and environmental footprint. This study 

aims to (i) investigate the effectiveness and feasibility of the EC process for the treatment 

of wastewaters with different initial characteristics to expand its applications to a wider 

gamut of industries; (ii) investigate different operational conditions of EC process in the 

interest of reducing operating costs to assess the feasibility of its application; (iii) 

evaluate EC performance as a pre-treatment, post-treatment and a standalone process. To 

achieve these objectives, the study was divided to four phases: 

I. Phase I: Comparison of electrocoagulation and chemical coagulation 

II. Phase II: Transformation of the electrocoagulation process into electroflotation 

III. Phase III: Study of the effect of interrupted exposure to DC field on 

electrocoagulation and electroflotation 

IV. Phase IV: Study of the effect of using different forms of electrodes on current 

efficiency 
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Figure 7 – Methodology of Phases I to IV 
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3.1 Phase I – Comparison between EC and chemical coagulation 

 

The wastewater samples used for running the experiments were collected from a 

municipality in Quebec. Treated effluent samples were collected from the same plants in 

order to compare the removal efficiency by electrocoagulation in bench scale experiments 

with aerated primary treatment with usage of coagulants in the plant of concern. The tests 

conducted in this phase were run on 1.5 liter wastewater samples. The experimental work 

was divided into two stages: Stage I - investigation of adequate EC operating conditions, 

and Stage II - a comparative study between EC and chemical coagulation treatment.  

EC Operating Conditions – Stage I 

Based on previous of Bani-Melhem & Elektorowicz (2010), the following 

electrocoagulation experimental conditions were chosen for Phase I: 

•  Voltage gradients (0.5, 1 and 1.5 V/cm) 

•  Exposure times (5, 15 and 30 minutes)   

• Aluminum (Al) anode dimensions (14.2cm x 11cm ) 

• Effective anode area: 156.2 cm
2
 = 0.01562 m

2 
 

In total, nine conditions were tested before choosing the optimal operating conditions for 

the second stage.  
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Comparative Experiments – Stage II (based on results from Stage I) 

• Electrocoagulation (1V/cm) 

• EC (1V/cm) + 1 mg/L Al  

• Chemical Coagulation (4 mg/L) of Al (alum) (Al2(SO4)3. 18H2O) 

• Duration: 30 min 

Parameters studied: 

• Phosphorus removal 

• Chemical Oxygen Demand (COD) removal 

• Filterability 

Once the best electrocoagulation operating conditions for wastewater samples were 

chosen in the first stage, the second stage was initiated with the objective of comparing 

EC under these conditions with chemical coagulation treatment, using alum as the 

coagulant. Since the municipality involved in this study uses a dosage of 3-4 mg/L of 

aluminum, an aluminum concentration of 4 mg/L, in the form of alum, was chosen. An 

additional investigation was performed with the concentration of 1 mg/L of aluminum to 

complete the comparative study of chemical coagulation with electrocoagulation. Studies 

focused particularly on phosphorus compound, since it was the main concern for the 

municipality involved in this study. As discussed in the previous chapter, the presence of 

high concentrations of phosphorus in water bodies can lead to eutrophication. Phosphates 

are removed from water through a ligand exchange mechanism between the phosphate 
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group and hydroxides in solution (Golder et al. 2006).  According to Mustafa et al. (1999) 

and Golder et al. (2006), phosphates are best sorbed on aluminum; consequently 

sacrificial aluminum anode was used in this study.  

During the second stage of the experiment, three treatments were applied in parallel to the 

wastewater samples:  

a) Electrocoagulation alone using aluminum anode ,  

b) Chemical coagulation using aluminum coagulant (alum), and 

c) Combination of electrocoagulation and chemical coagulation.  

Electrocoagulation tests were operated based on optimal condition generated during 

Stage I.  

Phosphorus and COD removal efficiencies, as well as time to filtration (TTF) were 

measured after each run. The time to filtration indicates the filterability of the flocs 

formed. 

3.1.1 Experimental Apparatus 

 

The experiments were run in 2 L cylindrical polyethylene reactor (with an effective 

volume of 1.5 L). The cathode material was stainless steel; meanwhile aluminum was the 

sacrificial anode. Stirring was done at a speed of 120 rpm throughout the experiment, 

using a Corning digital magnetic stirrer. No air was injected during all experiments. 

Figure 8 shows the setup for the electrocoagulation tests, which is identical to that of 

chemical coagulation tests, with the exception that the electrodes and the power supply 

are not used during the latter.  
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Figure 8- Experimental Setup- Phase I 

 

3.1.2 Experimental Analysis 

 

To study the effect of each operating condition on filterability of flocs, samples were 

taken before settling and 70 ml of each sample were filtered under vacuum using 

Ahlstrom-Grade 238 glass fiber filter paper. The time needed to filter the aforementioned 

volume of sample was noted, as the filtration time is directly proportional to the water 

retention of sludge, i.e. the longer the time needed, the higher the water retention.  

After the experiment, a sedimentation time of one hour was allowed before supernatant 

samples were taken. However, conductivity and pH were directly measured before and 

after each run using HACH probe meters, methods 8160 and 8156, respectively. The 

samples were then filtered under vacuum filtration to test for TSS (APHA Method 

2450D). After filtration, the filtrate was tested for orthophosphate and COD using HACH 

DR-2800 spectrophotometer methods 8178 and 8000, respectively.  
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3.2 Phase II – Electroflotation 

 

Phase II is complimentary to phase I, with the aim of improving the solid/liquid 

separation in an electrocoagulation process. Since real wastewater was used in this study, 

the conductivity varied considerably with seasonal changes. When conductivity was low, 

the current passing at the fixed voltage gradients applied was very low. This causes the 

solid/liquid separation, or floc settling process, to slow down considerably, which in turn 

increased the retention time needed in the settling tanks. Electroflotation can solve the 

problem of weak floc settling, as it uses the bubbling of gases produced in-situ at the 

electrodes to carry the flocs up to the water surface as shown in equations 30, 33 and 34 

in section 2.2.2.3. 

Conductivity of the water collected for the Phase I experiments was found to be low; as a 

result, low current passed through at the voltage gradients applied. To increase the 

amount of current passing through the system, several screening tests were conducted to 

observe the effect of adding sodium chloride salt on conductivity. A combination of the 

salt concentrations of 0.05% w/w and 0.2% w/w, and voltage gradients of 0.5 V/cm and 2 

V/cm were applied (Table 4). Two extreme values, lower and higher than optimal 

conditions applied in previous phase (1 V/cm), were chosen for studying the effect of salt 

even at lower voltage gradients to reduce the energy requirements of the process as noted 

by Zongo et al. (2009). The exposure duration was extended thirty minutes to a maximum 

of four hours in this set of screening tests to assess whether prolonged exposure has a 

significant effect on flotation.  
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Table 4 - Experimental Conditions Applied in Phase II 

Conditions Applied Duration Volume  
Anode 

Material 

Cathode 

Material  

Effective 

Anode  

Area cm
2
 

2V/cm-0.2% NaCl 

4 hours 1.5 L Aluminum 
Stainless 

Steel  
156.2 

2V/cm-0.05% NaCl 

0.5V/cm-0.2% NaCl 

0.5V/cm-0.05% NaCl 

 

Dissolved oxygen, conductivity, pH, phosphorus, and COD were measured before and 

after each run. Electrodes were also washed, dried, and weighed after each experiment to 

measure the weight loss in the anode. The theoretical anode consumption was then 

calculated in order to compare it with the actual electrode consumption 

Current was noted throughout the experiments, and the current density was calculated for 

each of the combinations chosen.  

L = C
9����D� ��

      (35) 

Where J = current density (A/m
2
) 

I = current (Amps) 

Aeffective = effective surface area (m
2
) 

Table 5 - Current Densities during Phase II 

Conditions Applied Average Current Density (A/m
2
) 

2V/cm-0.2% NaCl 150.1 

2V/cm-0.05% NaCl 58.6 

0.5V/cm-0.2% NaCl 16.0 

0.5V/cm-0.05% NaCl 12.8 
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As seen from Table 5, the voltage gradients yielded different current densities, depending 

on the conductivity of the solution.  Therefore, the EC-EF processes was operated at 

fixed current densities rather than fixed voltage gradients. The electric current represents 

the quantity of electrons passing through the system (Kobya et al. 2006; Drouiche et al. 

2008), which has a direct influence on the anode dissolution as seen from Faraday’s Law: 

?���D�0!� =  C�%"
.$�      (36) 

Where Celectrode = electrode consumption (kg/m
3
) 

I = current (Amps), 

Mw= molecular weight of the electrode material (g/mol) 

z= valence number of electrons transferred by the anode 

t= operating time (seconds),  

V= volume of water treated (m
3
) 

F = Faraday’s constant  

Faraday’s law measures the theoretical electrode consumption; however, actual electrode 

consumption was measured by weighing the electrodes before and after each experiment. 

When operating at a fixed current density, voltage will vary based on the conductivity of 

the system; therefore, the operating conditions won’t be affected by the seasonal 

fluctuations of salt concentrations in wastewaters which are caused by road salt 

application, heavy rains and snow melts.  
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3.3 Phase III 

 

The decision to work at fixed current densities instead of voltage gradients initiated a new 

set of experiments. The objective of this phase was to investigate the effects of different 

current densities, as well as modes and durations of exposure, on flotation and removal of 

phosphorus, nitrate, ammonia, COD and turbidity. Moreover, particle size distribution 

and zeta potential were measured.  

Three variables were considered in this Phase III: treatment duration, current density, and 

electricity exposure modes. The current densities chosen were 10, 20 and 40 A/m
2
 and 

the treatment durations were 30, 60, and 120 minutes per run. In each run, four 1.5 liter 

reactors were operated simultaneously, one reactor was continuously exposed to DC 

current and the other three were connected to pre-programmed timers to interrupt the 

exposure at various intervals throughout the experiment. A control reactor was also run 

without EC; mixing was applied throughout the experiment duration for comparison 

purposes. The power supply was connected to a control panel, enabling simultaneous 

power delivery to all the reactors and timers. The same interrupted modes were tested by 

Bani-Melhem & Elektorowicz (2010) and Ibeid et al. (2010); however, the wastewater 

used by the aforementioned researchers had much higher initial suspended solids and 

COD concentrations. The treatment runs and interval durations are summarized in Figure 

9. 
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Figure 9- Operational conditions of Phase III 

 

The combinations of experiments shown in Figure 9 were run on wastewater from two 

different municipalities in Quebec, designated as WWTP1 and WWTP2. Samples from 

WWTP1 were collected after ammonia removal, whereas WWTP2 samples were raw, 

and collected after screening. Both samples were collected during the winter season, but 

each had different initial characteristics. Having two different wastewaters was important 

to validate the flexibility of the system and its application on several types of wastewater. 

The initial characteristics of both wastewater samples are displayed in Table 6. All the 

values presented in Table 6 were measured in the lab before starting the treatment tests.  
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Table 6 – Phase III - Initial Wastewater Characteristics 

 WWTP1 WWTP2 

Conductivity (µS/cm) 2500 ± 250 1100 ± 300 

TSS (mg/L)  42 ± 20 135 ± 50 

PO4
-3 

(mg/L)  1.5 ± 0.5 6.5 ± 3 

COD (mg/L)  45 ± 8 165 ± 30 

NO3
-
 - N(mg/L) 12.2 ± 2.3 0.29 ± 0.11 

NH3 - N(mg/L)  0.04 ± 0.02 25 ± 5 

Turbidity (NTU) 19 ± 4 40 ± 15 

 

In Phase III, the treatment started for the samples from WWTP1; the resulting foam 

floating on the surface was skimmed off with a mesh spoon, as flotation was expected to 

occur during treatment. Skimming was necessary to allow sampling after treatment. 

However, this sampling method resulted in foam being broken and returned to solution; 

therefore, limitations in numerical turbidity readings occurred. A visual evaluation of 

turbidity removal was followed using comparison of pictures taken by a camera before 

and after the treatment. Consequently, for the experiments done on wastewater from 

WWTP2, a hole was drilled near the bottom side of each and a sampling tube was 

inserted in it. The purpose of the tube was not to disturb the accumulation of foam on the 

surface while sampling, therefore enabling a quantitative evaluation of the effect of 

treatment on turbidity.  

Samples were collected from the reactors after each run and were tested for many 

characteristics and parameters to evaluate treatment efficiency. Since samples were taken 

directly after the experiment, some flocs were present in the solution; therefore, 30 
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minutes of settling in sample tubes were allowed before taking turbidity readings. The 

tested parameters, as well as the methods and devices used, are listed in Table 7. 

Table 7 - Analyses applied in Phase III 

Characteristic Method/ Device 

pH Hach – HQ30D digital meter 

Dissolved Oxygen Hach – HQ30D digital meter 

Conductivity Hach – HQ30D digital meter 

Zeta Potential Zeta Meter 

Turbidity Turbidity meter 

Particle Size Distribution  Horiba Particle Analyser 

PO4
-3

 Hach DR-2800/ vials: TNT 843 + 844 

NH4
+
 Hach DR-2800/ vials: TNT 832 

NO3
- Hach DR-2800/ vials: TNT 835 

COD Hach DR-2800/ vials: TNT 821 

TSS/ TVS APHA 2540D and 2540E (1995) 

 

3.4 Phase IV 

 

Results from Phase III encouraged exploring the effect of electrode perforation to 

electrode consumption and operating cost. Therefore, two types of perforated anodes 

(having 46% of openings with circular and triangular forms) in addition to the flat anode 

used in the previous phases. Operation parameters applied based on the outcome from 

previous phases: current density of 20 A/m
2
, a treatment time of 120 minutes, and two 

exposure modes (continuous and 5’ON- 20’OFF). All samples were tested for 

phosphorus, COD, ammonia, nitrate, and turbidity. 
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The perforation of electrodes resulted in reducing the effective area of the anode from 

156.2 cm
2 

to 84.35 cm
2
. Flat electrodes and electrodes with triangular perforations had a 

thickness of 0.5 mm; the anode with circular perforation had a 1 mm thickness.  

Table 8 - Phase IV - initial wastewater characteristics 

Parameters WWTP2 

Conductivity (µS/cm) 890 ± 20 

TSS (mg/L)  120 ± 5 

PO4
-3 

(mg/L)  12.8 ± 3 

COD (mg/L)  415 ± 5 

NO3
- 
- N(mg/L) 0.62 ± 0.11 

NH3 - N(mg/L)  54 ± 0.5 

Turbidity (NTU) 40 ± 15 

 

3.5 Statistical Approach 

 

In Phase III, after the treatment of wastewater from each WWTP, 45 samples were 

analyzed for each parameter; therefore more than 720 samples were tested. Repeating all 

the sample tests would have required an excessive number of sample vials, test kits and 

storage space. Nevertheless, in the interest of maintaining a high level of reliability, 

samples that did not fit within a certain trend were repeated; and at least 5 samples were 

repeated for each parameter. Overall zeta potential and turbidity values were averaged 

from six different readings, due to the difficulty in achieving accurate readings with the 

available equipment. In repeated samples for COD, phosphorus, ammonia and nitrate, 

errors were calculated and most results fitted within a margin error of 2%. Standard 

deviations in both zeta potential and turbidity were considerably high; therefore, the 

average of six samples was presented.  
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Chapter 4 – Results and Discussion 

4.1 Phase I: Results 

Assessment of the efficiency of electrocoagulation treatment in this phase was based on 

two main parameters: removal rates of phosphorus and COD. Operating costs at different 

operating conditions were also calculated. 

4.1.1 Phase I - Stage I: Results 

 

As mentioned in Chapter 3, Stage I consisted of choosing optimal conditions for 

treatment, namely durations and voltage gradients. Of the three durations tested 5, 15 and 

30 minutes, the best treatment time chosen 30 minutes because it yielded the highest 

removal efficiencies (around 80% for phosphorus and close to 50% for COD) for all three 

voltage gradients tested (0.5, 1 and 1.5 V/cm).  

Removal Rate (% Removal) was calculated using the following equation: 

% ��K��� =  C# � �� ?#D�#�0�� #�$ #�� ?#D�#�0�� #
C# � �� ?#D�#�0�� #    (37) 

At treatment duration of 5 minutes and 15 minutes, the highest removal efficiencies were 

31% and 58% for COD and phosphorus respectively. However, higher removal 

efficiencies were achieved after 30-minute exposure experiments; removal efficiencies of 

phosphorus and COD are presented in Figure 10.  
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Figure 100 - Phase I - Stage I - Removal efficiency of phosphorus and COD 

As seen in Figure 10, the rate of phosphorus removal increased nonlinearly with the 

increase of voltage gradient reaching 80% at 1.5V/cm. It is higher than removal of 68% 

obtained by Vasudevan et al. (2008) at 2 V/cm using a mild steel anode. Therefore, 

results obtained in this experiment demonstrate the superiority of aluminum anode in 

phosphorus removal.   

Judging by the results shown in Figure 10, a voltage gradient of 1 V/cm and a 30 minute 

exposure time seem to be the optimal conditions, in terms of the obtained removal 

efficiency. However, a cost analysis was done in order to verify whether these conditions 

are also optimal from a financial perspective. In order to calculate the operating cost of an 

electrocoagulation process, two major parameters must be determined: electrode and 

energy consumptions.  

The choice of material plays an important role in determining the overall cost. The 

theoretical electrode consumption (Celectrode, kg/m
3
) is calculated using Faraday’s law 
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(equation 36) to relate the mass of the anode consumed to the current passing through it 

(I, Amps), the molecular weight of the electrode material (Mw, g/mol), the valence number 

of electrons transferred by the anode (z), the operating time (t, seconds), the volume of 

water treated (V, m
3
), and Faraday’s constant (F, Coulomb/mole) (Kobya et al. 2006; 

Drouiche et al. 2008). 

?���D�0!� =  C�%"
.$�           (36) 

Energy consumption (Cenergy, kWh/m
3
) is calculated using equation 38, where U is the 

voltage applied (Volts) 

?�#�0�E =  SC�
�         (38) 

 

Figure 11 - Phase I - Stage I: Electrode consumption 
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Figure 12 - Phase I - Stage I: Energy consumption 

 

Results show an increase in electrode and energy consumption as voltage gradient 

increases. The electrode and energy consumption values are used to estimate the 

operating cost using the following equation (Kobya et al. 2006): 

�	�0�� #�?�� = �?�#�0�E +  N?���D�0!�   (39) 

Where a and b are the price of energy (CAD/kWh) and electrode material (CAD/kg), 

respectively. The aluminum price used for calculations is 2.26 CAD/kg as per the London 

Metal Exchange (LME) on December 28
th

 2010. The price of electricity for industrial 

facilities, obtained from Hydro Quebec, was 0.05 CAD/kWh. 
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Figure 13 - Phase I - Stage I: Operating cost 

 

The operating costs were 9, 23 and, 40 CAD per 1000 m
3
 of treated water at 0.5, 1 and 

1.5 V/cm, respectively (Figure 13). Since the operating cost for 1.5 V/cm was almost 

double that obtained at 1 V/cm, the latter value was chosen as the optimal operating 

condition, especially considering similar phosphorus removal efficiency for both voltage 

gradients as shown in Figure 10.  

Table 9 – Operating Cost Summary 
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Consumption 

(kg/1000 m
3
) 

Energy 

Consumption 

(kWh/1000 m
3
) 

Operating Cost 
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3
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0.5 3.36 25 9.5 
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4.1.2 Phase I – Stage II: Results 

 

The best conditions (30 minutes exposure duration to 1V/cm) verified in Phase I Stage I 

were applied to comparative experiments in Stage II. In this stage, the TTF as well as 

removal efficiencies of phosphorus and COD were tested. 

 

Figure 14 - Phase I - Stage II - Removal of phosphorous and COD in comparative 

experiments 

Experimental results from Stage II (Figure 14) proved the advantage electrocoagulation 

provides over chemical coagulation treatment when removing phosphorus present in 

wastewater. Furthermore, it was noted that the addition of a chemical coagulant to an 

electrocoagulation treatment did not improve the phosphorus removal efficiency. 

Electrocoagulation treatment also removed an insignificantly higher amount of COD 

comparing to chemical coagulation. 
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However, differences do emerge when comparing filtration times. Figure 15 illustrates 

the effect of all three treatments on floc filterability. 

 

Figure 15 – Phase I - Stage II – TTF  
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solution can hinder the EC process through their adsorption on to the aluminum 

hydroxide precipitate.  

Equations 36, 38 and 39 (Section 4.1.1) were used to estimate the cost of EC; the cost of 

the chemical coagulant was also used for the combined EC-chemical coagulation 

experiment. Conventionally, an additional polymer cost is included in chemical treatment 

plants, but in this study, the coagulant material cost only was used for comparison. The 

chemical formula for the alum coagulant used was Al2 (SO4)3.18H2O. Therefore, adding 

4 mg/L of aluminum in the form of alum required using 50mg/L of coagulant. The price 

used for alum was 0.3 CAD/kg (Rossini et al. 1999). In order to accurately compare the 

cost of the coagulant in all three reactors, the consumed anode material was considered as 

the coagulant material in the electrocoagulation experiments.  

 

Figure 16 - Phase I - Stage II - Coagulating material costs 

 

Figure 16 represents a comparison of the coagulant material cost between EC and 
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anode material. The comparison in this study shows that anode material needed to treat 

1000 m
3
 of wastewater costs less than the chemical coagulant needed to treat the same 

volume of wastewater. EC was therefore shown to produce a higher effluent quality at an 

appreciably lower cost than chemical coagulation. Moreover, the additional costs of 

polymers, chemical storage and chemical transportation, if considered in this study, 

would have resulted in an even larger advantage for electrocoagulation, since these 

additional costs do not apply to EC treatments. Finally, better sludge quality can 

significantly decrease sludge management costs (Lin et al. 2005).  

4.2 Phase II - Electroflotation with Conductivity Variation 

 

Although results from the previous set of experiments were satisfactory with respect to 

phosphorus and COD removal, flocs’ settling was slow in the reactors, leading to a longer 

retention time in the settling tanks. In Section 3.2, electroflotation was proposed as a 

potential solution for weak floc settling, since it uses gases produced at the electrodes to 

force flocs up to the surface (Equations 30, 33 and 34) where they can be skimmed off. 

As mentioned in Chapter 3, in Phase II, sodium chloride salt was added to increase the 

electrical conductivity of the wastewater. Meas et al. (2010) treated industrial wastewater 

with electrocoagulation and found that turbidity removal improves when conductivity 

increases. In Phase II experiments, flotation was achieved with the four conditions tested. 

Although the tests were run for four hours, complete flotation was achieved in the first 45 

minutes for the four conditions (Table 4, Chapter 3). As seen in Figure 17, flotation was 

achieved, leaving the water column clean and carrying impurities to the water surface. 
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Figure 17 - Phase II – Electroflotation achieved after increase of conductivity of the 

wastewater:  

 A: before treatment, B: after treatment (top view), C: after treatment (side view) 

 

Using high values for the salt concentration and voltage gradient (0.2% and 2 V/cm, 

respectively), current density was extremely high. Running the test for four hours resulted 

in excessive dissolution of the anode, causing the water to turn grey due to aluminum 

hydroxides (Appendix II). A temperature increase of 25
o
C also occurred during this 

experiment; due to Joule’s effect. Joule’s effect is the heating that results upon the flow 

of current through a conductor (Kiehne, 2003). The generated heat leads to an increase in 

temperature of the conductor, which in turn heats the solution (Chambers’ Encyclopedia, 

1889).  

!�LT��
!� =  USFC     (40) 

A 

B 

C 
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Where QJouleis the heat generated (J) 

t is the time (seconds) 

∆U is the voltage drop (V)  

I is the current (Amps) 

Finally, the water pH increased due to the excessive quantity of hydroxide ions produced. 

Removal efficiencies were best presented in terms of current densities:  

 

Figure 18 - Phase II – Removal efficiencies of phosphorus and COD 

 

Removal efficiencies of phosphorus and COD were significantly higher in Phase II than 

in Phase I. Phosphorus removal was 100% for all the conditions tested, meanwhile COD 

removal ranged between 65% and 78%. 
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Table 10 - Phase II: Removal Efficiencies of Phosphorus and COD 

Condition 

Number 
Conditions Applied 

Average Current  

Density (A/m
2
) 

PO4
-3

 

Removal 

COD 

Removal 

1 0.5V/cm-0.05% NaCl 12.8 100.0% 69.6% 

2 0.5V/cm-0.2% NaCl 16.0 100.0% 69.6% 

3 2V/cm-0.05% NaCl 58.6 100.0% 78.3% 

4 2V/cm-0.2% NaCl 150.1 100.0% 65.2% 

 

Table 10 shows a summary of the conditions, current densities and removal efficiencies. 

The COD removal efficiencies were almost 70% at low current densities. Merzouk et al. 

(2009) yielded results in the same range with respect to COD, achieving a 68% removal 

efficiency of COD at 11.55 A/m
2
, which is very close to the 70% achieved at conditions 1 

and 2 in Table 10 in the Phase II experiments. Moreno-Casillas et al. (2007) explained 

that COD removal rates decrease with increasing pH; in Phase II a considerable increase 

in pH was experienced at 150 A/m
2
, due to the OH

-
 ion release in solution. This could 

explain the decrease in COD removal at 150 A/m
2
 after it peaked at 58.6 A/m

2
.  Despite 

the differences in COD removal efficiencies, all concentrations after treatment in Phase II 

were within the acceptable discharge standard of < 35 mg/L.  

Dissolved oxygen was monitored before and after each experiment to assess the effect of 

EC- EF treatment on oxidation processes particularly on nitrogenous compounds. As 

mentioned in Chapter 2, nitrogenous compounds also contribute to problems in receiving 

bodies and drinking water sources. 
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Figure 19 - Phase II - Ammonia and nitrate concentrations vs. Current density 

 

The initial concentration of ammonia was almost zero and increased up to 75 fold after 

exposure to direct current for four hours. Nitrate concentration on the other hand, 

decreased to almost zero after the four- hour exposure. As can be seen in Figure 19, the 

difference between ammonia increase and nitrate decrease at different current densities is 

not significant indicating that the results obtained were the same at the lowest and the 

highest current densities.  

The lack of oxygen resulted in anoxic conditions inside the reactor; the decrease in nitrate 

can be attributed to the anoxic conditions in the reactors. Dissolved oxygen (DO) 

decreases during the treatment, and the presence of anoxic conditions, coupled with the 

hydrogen gas production during the EC treatment, resulted in abiotic conversion of 

nitrates to ammonia (Equations 41 and 42). An et al. (2009) also observed abiotic 

conversion of nitrate to ammonia under anaerobic conditions, in addition to the presence 

of hydrogen and nano- scale zero-valent iron.  A study conducted by Sorenson (1978) 
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explained that bacteria (e.g. Clostridium) in water can convert nitrates to ammonia if 

other nitrogen sources required for assimilation were in short supply. Although the 

explanation given by Sorensen seems to apply to the initial conditions where there was 

almost no ammonia present initially, studies by Ghernaout et al. (2008) and Linares-

Hernandez et al. (2009) proved that the current densities tested affected the 

microorganisms, where complete removal of coliform bacteria was observed. Therefore, 

it is unlikely that the reduction was biological. Polatide and Kyriacou (2005) also 

investigated electrochemical nitrate reduction at the cathode and explained it the fate 

followed two different paths:  

V�5
�  → V��

�  → V�5    (41) 

NO2
-
 + 3H2���� NH3 + OH

-
 + H20    (42) 

And:  

 V�5
� →  V��

�  → V�        (43) 

2NO3
−
 + 5H2 → N2 + 4H2O + 2OH

−
    (44)  

 

Polatide and Kyriacou (2005) tested different cathode material, but steel wasn’t one of 

them, the results for aluminum cathodes showed that 98% of the nitrate reduced was in 

the forms of nitrite and ammonia, and only 2 % was converted to nitrogen gas.  
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Figure 20 – Phase II - Nitrate Reduction and DO Consumption 

 

Figure 20 shows that nitrate reduction follows the same trend as the decrease in dissolved 

oxygen levels. Therefore, confirming the relationship between anoxic conditions and 

nitrate removal. The decrease in dissolved oxygen levels was observed by Ricordel et al. 

(2010), where 90% of the dissolved oxygen was removed within 10 minutes of EC 

treatment.  

O2 +2H2O + 4e 
-
  ���� 4OH 

-
      (29) 

DO removal is a reduction reaction, therefore occurring at the cathode. Ricordel et al. 

(2010) explained that the hydrogen evolved at the cathode had a deoxygenating effect 

resulting in reduced DO concentrations. The sudden increase in DO consumption 

observed at 16 A/m
2
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current density on the consumptions; hence the operating cost. A comparison between 

actual and theoretical electrode consumption is presented in Figure 21. 

 

Figure 21 - Phase II – Actual and theoretical electrode consumption 

At low current densities, there was almost no significant difference between the actual 

and theoretical consumption; however, actual consumption was higher at higher current 

densities. The difference observed between actual and theoretical consumptions at high 

current densities can be attributed to the temperature increase that took place during the 

treatment, thus increasing the rate of aluminum corrosion (Davis, 1999; Valenzuela et al. 

2002; Mouedhen et al. 2008). Faraday’s law was used to calculate the theoretical 

consumption. Since Faraday’s Law does not take temperature into account (Figure 21), 

the calculated theoretical consumption was lower than the actual one. Another reason for 

increased corrosion rate can be the presence of chloride ions in solution, which are 

reported to cause pitting of the aluminum anode (Mouedhen et al. 2008). 

Energy consumption is calculated using Equation 38, but to calculate operating cost 

Equation 39 was modified to include the price of salt added, yielding Equation 45: 
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�	�0�� #�?�� = �?�#�0�E +  N?���D�0!� +  D?#D�#�0�� #[V�?�]         (45) 

Where C is the price of salt in CAD/kg and Concentration [NaCl] is the salt concentration 

in kg/m
3
. The price of salt used was CAD 50/ton (Environment Canada, 2006). Both 

theoretical and actual operating costs, based on the difference between actual and 

theoretical electrode consumption, are presented in Figure 23. 

 

Figure 22 - Phase II - Energy Consumption 
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Figure 23 - Phase II - Operating cost 

 

As seen from Figure 22 and Figure 23, energy consumption and operating cost are 

extremely high at the highest current densities, while effluent quality is not higher at 

these conditions than at the lower current densities tested. Therefore, very high current 

densities are undesirable due to the unnecessary high energy requirements and 

consequently high operating cost.  
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2
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et al. (2008) reported a decrease of over 83% in applied voltage when 100 mg/L of NaCl 

were added.  

Continuous four-hour exposure resulted in extreme energy consumptions and undesirable 

operating costs. To verify if the same removal efficiencies can be achieved at shorter 

treatment durations and lower current densities than condition 2 in Table 10, a third phase 

was necessary. 

4.3 Phase III - Effect of Interrupted Exposure on EC and EF 

 

This phase examines the effects of three operating conditions on EC and EF: treatment 

time, current density, and exposure modes.  Moreover, wastewaters were collected from 

two different wastewater treatment plants (WWTPs). Each WWTP had different initial 

characteristics; therefore, a comparison was also done between the two wastewaters in 

terms of treatment efficiencies, energy requirements, and operating cost. The figures for 

the results achieved in Phase III will be presented in removal efficiency versus treatment 

time in the text; however, removal efficiency versus current density is presented in 

Appendix I. 

4.3.1 Fate of Nutrients 

 

The change in nutrient concentrations during the experiments was studied to evaluate the 

effect of the chosen treatment conditions on the nutrients present in the wastewater. 

Considerable differences in the initial concentrations of phosphorus, nitrate, and 

ammonia (Chapter 3-Table 6) between the two wastewater tested could lead to different 

responses to the treatments applied. 
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4.3.1.1 Phosphorus Removal 

 

Phosphorus removal efficiency for wastewater from WWTP1 was 100% for all the 

conditions tested, even with the shortest time and lowest current density. Meanwhile, 

WWTP2 wastewater, which had higher initial concentrations of phosphorus, experienced 

increased removal efficiency with longer treatment duration and current densities. 

 

Figure 24 - Phase III - WWTP2 - Phosphorus removal – current density 10 A/m
2 

 

0%

20%

40%

60%

80%

100%

30 60 120P
h

o
sp

h
o

ru
s 

R
e

m
o

v
a

l 
E

ff
ic

ie
n

cy

Treatment Time, minutes

Current Density = 10 A/m2

5 ON- 20 OFF

5 ON- 10 OFF

5 ON- 5 OFF

Continuous



88 

 

 

Figure 25 - Phase III - WWTP2 - Phosphorus Removal - Current Density 20 A/m
2 

 

 

Figure 26 - Phase III - WWTP2 - Phosphorus Removal - Current Density 40 A/m
2 
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40A/m
2
 during a 30 minute treatment was also studied by Zheng et al. (2009); however, 

they achieved removal efficiencies of 40, 80, and 98% respectively. In this study (Phase 

III), the phosphorus removal from both WWTP1 and WWTP2 wastewater, using 30- 

minute runs and continuous exposure, was significantly higher. This divergence in results 

can be explained by their use of a 5mm gap between the iron electrodes. 

4.3.1.2 Nitrogen Removal 

While the wastewater from WWTP1 with sodium chloride conditioner was used in Phase 

II an investigation of nitrogen trends revealed a reduction of nitrates to ammonia. In 

phase III of nitrogen fate (a possibility of the same trends) was verified at lower treatment 

durations, lower current densities, and interrupted exposure. As it was mentioned in 

section 3.3, two types of wastewater, namely WWTP1 and WWTP2 were examined in 

this phase. 

WWTP1 – low ammonia, high nitrate content: 

In this experiment, the highest and lowest initial nitrate-nitrogen concentrations were 

14.78 mg/L and 9.03 mg/L, respectively. After EC treatment, the lowest nitrate 

concentration in treated water was 2.96 mg/L. Figures 27- 29 illustrate nitrate removal at 

each current density as treatment time increases. A variation in the initial nitrogen 

concentrations gives an inaccurate indication about effluent quality, as higher removal 

efficiency does not necessarily result in the lower effluent concentration.  
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Figure 27 - Phase III - WWTP1 - Nitrate removal vs. exposure time and treatment 

duration at current density- 10 A/m
2 

 

 

Figure 28 - Phase III - WWTP1 - Nitrate removal vs. exposure time and treatment 

duration at current density- 20 A/m
2 
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Figure 29 - Phase III - WWTP1 - Nitrate removal vs. exposure time and treatment 

duration at current density - 40 A/m
2 

 

Shorter treatment durations did not seem to affect the trend found in Phase II with respect 

to nitrate reduction. In phase III, the nitrate removal ranged between 60% and 73% for all 

current densities and treatment durations. 

As explained in Phase II, the nitrate reduction was stimulated by the presence of anoxic 

conditions; therefore, dissolved oxygen consumption are presented in Figures 30-32, and 

the same trend in nitrate removal and DO consumption confirms the relationship. 
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Figure 30 - DO consumption vs. exposure time and treatment duration at- Current 

density – 10 A/m
2 

 

 

Figure 31 - DO consumption vs. exposure time and treatment duration at Current 

density – 20 A/m
2 
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Figure 32 - DO consumption vs. exposure time and treatment duration at Current 

density – 40 A/m
2 

 

The initial dissolved oxygen concentrations were different for all experiments, but final 

concentrations were always below 2 mg/L; therefore, anoxic conditions have been always 

generated during the EC treatment. An increase in current density and exposure duration 

to DC resulted in higher DO consumption.  

Nitrate removal, anoxic conditions, and hydrogen gas generation during the experiments 

resulted in ammonia formation; the concentrations of ammonia increased as the nitrate 

concentration decreased. Figures 33-35 present nitrate and ammonia nitrogen 

concentrations during the EC treatment for the 60 minutes experiments.  
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Figure 33 - Phase III - WWTP1 – Nitrate &ammonia concentrations vs. exposure 

time at treatment time - 60 minutes - current density - 10 A/m
2 

 

 

Figure 34 - Phase III - WWTP1 – Nitrate &ammonia concentrations vs. exposure 

time at treatment time - 60 minutes - current density - 20 A/m
2 
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Figure 35 - Phase III - WWTP1 – Nitrate &ammonia concentrations vs. exposure 

time at treatment time - 60 minutes - current density - 40 A/m
2 
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Figure 36 - Phase III - WWTP2 - Ammonia concentration vs. exposure time at 

 current density - 20 A/m
2 
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WWTP1; meanwhile conditions for WWTP2’s wastewater encouraged neither abiotic nor 

biological treatments.  

4.3.2 COD Removal 

 

The initial COD concentrations in the wastewater from WWTP1 were initially very low; 

therefore, high removal efficiencies of COD were not a priority. On the other hand, 

WWTP2 wastewater had high initial COD concentrations, and COD removal was 

important in order to achieve COD concentrations that were within the acceptable 

discharge limits. 

WWTP1: low initial COD concentrations 

COD removal efficiencies for wastewater from WWTP1 are presented in Figures 37-39;  

 

Figure 37 - Phase III - WWTP1 - COD removal, current density 10 A/m
2 
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Figure 38 - Phase III - WWTP2 - COD removal - current density 20 A/m
2 

 

 

Figure 39 - Phase III - WWTP1 - COD removal - current density 40 A/m
2 
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increases chemical sludge production, which can contribute to an increase of COD in the 

water, resulting in a decreasing overall COD removal efficiency.  

However, it is important to note that initial COD concentrations were not identical for all 

tested conditions. Despite the differences in the removal efficiencies, all final COD 

concentrations were below 35 mg/L; and while some tests resulted in lower final COD 

concentrations that did translate into higher removal efficiencies since initial 

concentrations varied. The mode that showed a stable behavior for all the conditions 

tested was 5’ON- 20’OFF, where the removal efficiencies were in the same range at all 

current densities for each of the three treatment times, with the exception of 40 A/m
2
, 

where efficiency was highest at 30 minutes while decreased at 60 and 120 minutes.  

WWTP2: higher initial COD concentrations 

Initial COD concentrations in WWTP2 wastewater were higher than those in WWTP1 

wastewater, and the results for COD removal inevitably showed a different trend than in 

those from the first wastewater treatment plant. 
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Figure 40 - Phase III - WWTP2 - COD removal - current density 10A/m
2 

 

For the three durations tested at current density 10A/m
2 

(Figure 40), most of the removal 

efficiencies ranged between 70% and 80%, and the efficiency differences between the 

different operating modes did not vary significantly. 

 

Figure 41 - Phase III - WWTP2 - COD removal - current density 20A/m
2 
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Figure 42 - Phase III - WWTP2 - COD removal - current density 40A/m
2 
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wastewater treatment plants days varied drastically between days, final effluent 

concentrations were all in the same range (20-40 mg/L); the removal efficiency, as a 

percentage, was dependent on the initial COD concentration.  

The inability to obtain final concentrations below 20 mg/L, most of them falling between 

30 and 40 mg/L, could point to a limitation of physicochemical treatment with respect to 

COD removal. Given the above, additional treatment might be required to achieve 100% 

removal efficiency.   

The results concerning removal efficiencies of COD can be misleading, whether in the 

experiments conducted in this research or other published studies. Higher removal 

efficiency is not always an indication of better treatment. Bratby (2006) tested the effect 

of coagulant dosage on COD removal, and results showed that a minimum concentration 

limit was achieved, with additional dosage producing no effect on COD removal. Results 

of COD removal for the three phases are therefore in agreement with Bratby’s findings 

(2006), where maximum removal of COD was achieved even at the lowest exposure 

durations and current densities (Figures 40-42).  

4.3.3 Zeta Potential 

Zeta Potential readings for both types of wastewater did not change significantly with the 

treatments applied. Initial values were between -30 and -35 mV (Figures 43 – 45), and the 

highest value after treatment was -22 mV; therefore, some indication of floc formation 

was observed. Redox potential increased in negative values with the treatment (Appendix 

I- Figures 116-121), due to lack of oxygen supply, the release of hydroxide ions, and an 

increase in pH (Appendix I- Figures 104-109). 
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Figure 43 - Phase III - WWTP2 - Zeta potential - current density - 10 A/m
2
 

 

Figure 44 - Phase III - WWTP2 - Zeta potential - current density - 20 A/m
2 
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Figure 45 - Phase III - WWTP2 - Zeta potential - current density - 40 A/m
2
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specific trend (Figure 46), since with increase in time other phenomena take place other 

than simple flocculation, e.g. electroosmosis.  

 

Figure 46 - Phase III - WWTP2 - Average Particle Size - Current Density - 20 A/m
2 

 

Horiba Particle Size Analyzer gives a two dimensional estimate of the particle size; 

therefore, any variation in aggregate shape will be read as the diameter of a spherical 

particle. This creates a potential for misrepresentation of the actual morphology of the 

particle. Results of average particle size for treatments at current densities 10 and 40 

A/m
2
 are presented in Appendix I- Figures 122-124.  

4.3.5 Turbidity Removal 

 

WWTP1: Low suspended solids and high conductivity 

As a result of the sampling method limitations mentioned in Chapter 3, a visual 

evaluation of turbidity removal is presented for WWTP1 wastewater in Figures 47– 49.  
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Current Density 10 A/m
2
 

 

 

Figure 47 - Phase III - WWTP1 – Flotation - current density 10 A/m
2 

- 120minutes 

A: Control; B: 5’ON - 20’OFF; C: 5’ON - 10’OFF; D: 5’ON - 5’OFF; 

 E: Continuous 

 

At a current density of 10A/m
2
, flotation was weak, with no significant observed change 

in turbidity or color, as shown in Figure 47. However, some flotation was noticed after 

120 minutes in the continuous exposure and 5’ON-5’OFF reactors (Figure 47 D & E). 
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Current Density- 20 A/m
2 

 

Figure 48 - Phase III - WWTP1 – Flotation - Current Density 20 A/m
2 

- 120minutes 

A: Control; B: 5’ON - 10’OFF; C: 5’ON - 5’OFF; D: Continuous 

Using a current density of 20A/m
2
, significantly better flotation was noted than at 10 

A/m
2
, with clear water columns at the end of the 120 minute experiment. Figure 48shows 

the reactors after treatment (Figure 48-B, C, D) in comparison to the control reactor 

(Figure 49-A). Visual interpretations indicate high turbidity removal, leaving a clear 

water column. The exposure mode 5’ON-20’OFF is not presented in Figure 48; however, 

the visual appearance was almost identical to the 5’ON-10’OFF mode (Figure 48-B). The 

remarks noted after the experiment stated that 5’ON-20’OFF resulted in the thinnest foam 

layer; nevertheless, it was stable and held tightly together. A very thick foam layer was 

formed in the continuous exposure and 5’ON- 5’OFF reactors (Figure 48- C&D) the 

layers were non-uniform and had a gel-like texture when skimmed due to aluminum 

species formation (Figure 49). 
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Figure 49 - Gelatinous aluminum hydroxide formation 

 

As mentioned earlier, gel texture could be an indication of high water retention in the 

produced foam, which was later confirmed by water retention tests. At a current density 

of 20 A/m
2 

and duration of 120 minutes, foam water retention values were higher for 

continuous and 5’ON-5’OFF exposure modes. 

Current Density- 40 A/m
2 

 

Figure 50 - Phase III - WWTP1 – Flotation - current density 40 A/m
2
- 120minutes 

A: Control; B: 5’ON- 20’OFF; C: 5’ON- 10’OFF; D: 5’ON- 5’OFF; E: Continuous 
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Doubling the current density from 20 to 40 A/m
2
 resulted in an excessive release of 

aluminum ions into the solution. 5’ON-20’OFF and 5’ON-10’OFF modes involve longer 

“OFF” durations, resulting in fewer quantities of aluminum being released during the 120 

minutes of treatment time. Figure 50 illustrates how turbidity decreases in 5’ON-20’OFF 

and 5’ON-10’OFF reactors (Figure 50- B&C), then increases again in the 5’ON-5’OFF 

and continuous exposure reactors (Figure 50- D&E). Water in the 5’ON-5’OFF and 

continuous exposure reactors turned grey after 60 minutes of treatment time due to the 

excess release of aluminum ions in solution.  

Amongst three current densities and three treatment durations tested, the best solid/liquid 

separation conditions occurred with interrupted exposures at the current density of 

20A/m
2
 and 120- minute treatment time (Figure 48- B&C). Continuous exposure at the 

same conditions also yielded a clear water column, but it produced a very thick foam 

layer (Figure 48-D). 

Longer exposure allows for better mixing between the particles in wastewater and the 

aluminum ions released in solution. In cases of excess ion release, the OFF mode allows 

more time for mixing and flocculation, and the ON mode generates the hydrogen gas 

molecules that carry the flocs to the surface. Excess aluminum ions that remain in 

solution do not float to the surface, causing the water to turn grey and eventually settling 

at the bottom of the reactor when mixing stops. It was important to observe the flotation 

results in WWTP2 when the same operational conditions are applied.  
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WWTP2:  high solid content 

As mentioned in Chapter 3, turbidity measurements were read after allowing 30 minutes 

in the sampling vials to permit settling. Due to higher initial concentration of suspended 

solids in WWTP2 wastewater, not all of the flocs floated.  

Settling occurs when the densities of the particles are higher than density of the carrying 

fluid, i.e ρ2> ρ1. However, in flotation, the particle moves upwards against gravity, with 

the help of an upward driving force (Equation 33). Flotation will occur only when the 

velocity of the rising particle is higher than the downward velocity of water (Chen et al. 

2000). When suspended solid concentration increases, more hydrogen gas needs to be 

produced to carry them to the surface; controlling the amount of hydrogen gas production 

can be achieved by controlling current density and/or treatment time (Equation 30).  Ben 

Mansour et al. (2007) applied electroflotation with waters of different weight 

concentrations of glycerine to measure uprise velocity of gas particles; the reactor with 

the highest weight percent had the lowest uprise velocity; thus confirming the differences 

in flotation between WWTP1 and WWTP2 in Phase II.  Turbidity removal readings for 

WWTP2 samples are presented in Figures 52-54.  
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Figure 51 - Phase III - WWTP2 - Turbidity removal - current density 10 A/m
2 

 

 

 

Figure 52 - Phase III - WWTP2 - Turbidity removal - current density 20 A/m
2
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Figure 53 - Phase III - WWTP2 - Turbidity removal - current density 40 A/m
2
 

 

At 10 A/m
2
 (Figure 51), a similar trend to the one observed for WWTP1 took place, 

where the highest turbidity removal was after the 2 hour experiment; however, 30 

minutes after the end of the experiment, clear settling was observed in all of the reactors. 

The slowest settling occurred in the continuous mode reactor, where flocs started settling 

at the end of the 30 minute period. 

Electroflotation was observed again at 20A/m
2
, but the foam produced was not stable and 

it settled down in all reactors after electricity and mixing stopped. The foam formed by 

continuous exposure was the most stable and was the slowest to settle down.  Excess 

aluminum was produced at current density of 40 A/m
2
, and the foam formed after 120 

minutes of treatment was very stable and very resistant to settling (Appendix II- Figure 

147). This could be explained by the increased amount of hydrogen gas bubbles 

generated (Equation 30).  
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Figures 51 to 53 show that the treatment conditions and settling time chosen resulted in 

turbidity removal rate between 80 and 98%, except for the continuous mode at 20 A/m
2
 

and 120 minutes, where it was lower. It is important to note that the final turbidity values 

were due to combined electroflotation and settling. 

The actual exposure time to electricity was proportional to the settling time needed; 

therefore, the fastest settling was observed at 5’ON-20’OFF mode; and the slowest was 

with continuous mode. 

For a duration of 30 minutes, both 5’ON-10’OFF and 5’ON-20’OFF have a total of 10 

minute exposure to electricity and 30 minutes of mixing time, and the rate of settling was 

almost the same for both modes. Thickness of settled layer is also related to actual 

exposure time to electricity, and the justification to this relationship is the amount of 

aluminum ions that are being produced in-situ; any excess ions settle to the bottom. 

Figures 54- 56 show the settling that resulted from 30 minutes of settling post to 30, 60 

and 120 minutes of treatment at current density 20 A/m
2
. 
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Figure 54 – Phase III - WWTP2 - Treatment time 30 minutes 

Settling of solids after EC of WWTP2 samples for different exposure time  

 

 

Figure 55 – Phase III - WWTP2 - Treatment time 60 minutes 

Settling of solids after EC of WWTP2 samples for different exposure time  
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Figure 56 – Phase III - WWTP2 - Treatment time 120 minutes 

Settling of solids after EC of WWTP2 samples for different exposure time  

 

Calculating the change in anode weight after each experiment confirms the trend 

observed in Figures 54-56. The final stage evaluation of the best treatment conditions will 

be based on the electrode and energy consumptions, and consequently the operating cost.  

4.3.6 Electrode Consumption 

 

Electrode consumption was calculated theoretically using Faraday’s Law, and compared 

to actual consumption (Chapter 3- Equation 36). The treatment time used for the 

calculation of interrupted exposure was based on the net exposure to electricity. Table 11 

summarizes the net exposure durations for all the operation modes.  

Table 11 - Phase III - Net Exposure to Electricity 

  Net Exposure (minutes) 

Mode 30 min 60 min 120 min 

5’ON-20’OFF 10 15 25 

5’ON-10’OFF 10 20 40 

5’ON-5’OFF 15 30 60 

Continuous 30 60 120 
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Theoretical electrode consumption calculations are not affected by the applied voltage; 

therefore, the conductivity of the solution has no effect on the calculated electrode 

consumption. Despite the differences in initial conductivities between the waters of 

WWTP1 and WWTP2, calculated consumptions are the same.   

WWTP1:  high conductivity  

* C.D – Current Density 

 

Figure 57 - Phase III - WWTP1 - Actual electrode consumption-  

current density 10 A/m
2
 

0

20

40

60

80

100

120

140

30 60 120

C
 E

le
ct

ro
d

e
, 

k
g

/ 
1

0
0

0
 m

3

Treatment Time, minutes

Actual C Electrode-- C.D - 10 A/m2

5 ON- 20 OFF

5 ON- 10 OFF

5 ON- 5 OFF

Continuous



117 

 

 

Figure 58 – Phase III - WWTP1 - Actual electrode consumption -  

current density 20 A/m
2 

 

 

Figure 59 – Phase III - WWTP1 - Actual electrode consumption -  

current density 40 A/m
2 

 

Electrode consumption increases proportionally with the increase in treatment time, 

exposure time and current density (Figures 57 - 59). The highest anode dissolution occurs 
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Valenzuela et al. 2002; Mouedhen et al. 2008), a factor that is not considered in 

Faraday’s Law (Equation 36). Therefore, the actual consumption values are expected to 

be higher than theoretical values. Table 12 presents both actual and theoretical electrode 

consumptions. 

Table 12 - Phase III- Actual and Theoretical Electrode Consumption – WWTP1 

Electrode Consumption (kg/1000 m3) 

C.D 

A/m
2
 

Time 

(min) 
5’ON-20’OFF 5’ON-10’OFF 5’ON-5’OFF Continuous 

  T A T A T A T A 

10  

30 6 7 6 13 9 13 18 40 

60 9 27 12 33 18 40 36 73 

120 15 20 24 33 36 40 72 120 

20  

30 12 27 12 20 17 20 35 47 

60 17 33 23 20 35 40 69 93 

120 29 60 46 67 69 93 139 160 

40  

30 23 53 23 47 35 47 69 93 

60 35 53 46 60 69 93 139 187 

120 58 100 92 147 139 213 277 393 

 

T – Theoretical 

A- Actual 

C.D – Current Density 

 

WWTP2: high conductivity  

A comparison between actual electrode consumption when treating water from WWTP1 

and WWTP2 will provide proof of the effect of solution conductivity on electrode 

consumption. Figures 60-62 present the actual electrode consumption versus treatment 

durations for current densities 10, 20 and 40 A/m
2
.  
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Figure 60 – Phase III - WWTP2 - Actual Electrode Consumption-  

Current Density 10 A/m
2 

 

 

Figure 61 – Phase III - WWTP2 - Actual Electrode Consumption -  

Current Density 20 A/m
2
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Figure 62 – Phase III - WWTP2 - Actual Electrode Consumption -  

Current Density 40 A/m
2 

 

Table 13 – Phase III - Actual and Theoretical Electrode Consumption – WWTP2 

Electrode Consumption (kg/1000 m3) 

C.D2 Time (min) 5’ON-20’OFF 5’ON-10’OFF 5’ON-5’OFF Continuous 

  T A T A T A T A 

10 

30 6 7 6 13 9 13 18 27 

60 9 13 12 27 18 20 36 33 

120 15 27 24 33 36 60 72 113 

20 

30 12 7 12 13 17 27 35 40 

60 17 47 23 47 35 47 69 140 

120 29 53 46 93 69 147 139 220 

40 

30 23 40 23 33 35 60 69 140 

60 35 67 46 73 69 120 139 200 

120 58 100 92 147 139 193 277 240 

 
C.D – Current Density (A/m

2
) 
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WWTP2 treatments reveals significantly higher consumption when treating WWTP1 

wastewater. The amount of cations released due to electrocoagulation represents the 

current efficiency of the dissolution; current efficiencies reported by researchers varied 

between 109 and 215% Mouedhen et al. 2008).  

?T00�#� 8�� D �#DE =  9D�T�� 8��D�0!� ?#�TK	� #
�B�0�� D�� 8��D�0!� ?#�TK	� #  F ���%     (48) 

Actual electrode consumption was measured by weighing the electrodes before and after 

each treatment; theoretical treatment on the other hand, was a calculated using Faraday’s 

law (Equation 36). Current efficiencies for treating both wastewaters were always greater 

than 100%, except for the test conducted using a current density of 40 A/m
2
, 120 minute 

treatment time, and continuous mode, where the current efficiency was 86.6%. The 

decrease can be an indication that passivation of the anode took place during the 

experiment. High current densities and prolonged continuous exposure should be avoided 

to prevent passivation of the anode during treatment. Although treatment time was 

significantly longer in Phase II (4 hours), the difference between actual and theoretical 

electrode consumptions were not as important as those in Phase III; a possible 

explanation is that current efficiency was very high at the beginning before passivation 

occurred, rendering an overall difference that is slightly higher.  

The increased anode dissolution with WWTP1’s wastewater indicates that higher 

conductivity results in increasing corrosion rates of metals and increasing electrode 

consumption of EC treatment. On the other hand, higher conductivity requires lower 

power input; thus decreasing the energy consumption.  Increased current efficiency or 

electrode consumption has been explained to be related to chloride ion concentrations. 
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Presence of chloride ions has been reported to decreased anode passivation and increase 

current efficiency (Bensadok et al. 2008). 

Table 14 summarizes the consumptions at the different current densities, treatment times 

and exposure modes for wastewater obtained from both treatment plants. The increased 

anode dissolution with WWTP1’s wastewater indicates that higher conductivity results in 

increasing corrosion rates of metals and increasing electrode consumption of EC 

treatment. On the other hand, higher conductivity requires lower power input; thus 

decreasing the energy consumption. Increased current efficiency or electrode 

consumption has been attributed to chloride ion concentrations. The presence of Cl
-
 has 

been reported to decrease anode passivation and increase current efficiency (Bensadok et 

al. 2008). 

Table 14 – Phase III - Comparison of Actual Electrode Consumption for Treatment 

of WWTP1 and WWTP2 Samples 

Electrode Consumption (kg/1000 m
3
) 

C.D Time 

(min) 
5’ON-20’OFF 5’ON-10’OFF 5’ON-5’OFF Continuous 

A/m
2
 

  WWTP1 WWTP2 WWTP1 WWTP2 WWTP1 WWTP2 WWTP1 WWTP2 

10 

30 7 7 13 13 13 13 40 27 

60 27 13 33 27 40 20 73 33 

120 20 27 33 33 40 60 120 113 

20 

30 27 7 20 13 20 27 47 40 

60 33 47 20 47 40 47 93 140 

120 60 53 67 93 93 147 160 220 

40 

30 53 40 47 33 47 60 93 140 

60 53 67 60 73 93 120 187 200 

120 100 100 147 147 213 193 393 240 

C.D – Current Density 
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4.3.7 Energy Consumption 

The voltage potential needed to achieve the same current density for each type of 

wastewater varied due to the big differences in conductivity between the waters of both 

treatment plants. Energy consumption was calculated using Equation 38; and is based on 

the current, voltage applied, treatment duration, and volume of water treated. The values 

are presented in kWh/1000 m
3
 in Figures 63-68.  

WWTP1: high conductivity 

 

Figure 63 - Phase III - WWTP1 - Energy consumption - current density 10 A/m
2 

 

Energy consumption at current density 10 A/m
2 

was between 55 and 704 kWh/1000 m
3
 of 

treated wastewater (Figure 63). However, doubling the current density from 10 to 20 

A/m
2
 (Figure 64) resulted in energy consumption more than three times higher, where 

consumption was between 189 -2232 kWh/1000 m
3
 of treated wastewater.  
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Figure 64 - Phase III - WWTP1 - Energy consumption - current density 10 A/m
2 

 

 

Figure 65 - Phase III - WWTP1 - Energy consumption - current density 40 A/m
2 

 

The maximum energy consumption at current density 40 A/m
2
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2
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energy required at 10 A/m
2
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have a linear relationship.  
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WWTP1 (Figures 63-65); however, the lower conductivity of wastewater from WWTP2 

resulted in higher energy requirements.  

 

Figure 66 - Phase III- WWTP2 - Energy consumption - current density 10 A/m
2 

 

 

Figure 67 - Phase III- WWTP2 - Energy consumption - current density 20 A/m
2 

 

 

Figure 68 - Phase III - WWTP2 - Energy consumption - current density 40 A/m
2
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A substantial difference can be noticed from the graphical presentations of energy 

consumption during wastewater treatment of two plants (Figures 63-68). The voltage 

applied to achieve a certain current density when treating WWTP1’s water was half that 

applied in treating WWTP2 water. Therefore, water conductivity is a very important 

parameter when evaluating the power requirements of an EC treatment process.  

Table 15 – Phase III - Energy Consumption Comparison between WWTP1 and 

WWTP2 

Energy Consumption  (kWh/1000 m
3
) 

C.D Time 

(min) 
5’ON-20’OFF 5’ON-10’OFF 5’ON-5’OFF Continuous 

A/m
2
 

  
WWTP

1 

WWTP

2 

WWTP

1 

WWTP

2 

WWTP

1 

WWTP

2 

WWTP

1 

WWTP

2 

10 

30 55 89 55 89 83 133 165 267 

60 83 147 110 196 165 293 331 587 

120 147 218 235 348 352 523 704 1045 

20 

30 189 362 189 362 284 543 568 1085 

60 264 465 351 620 527 930 1054 1860 

120 465 865 744 1385 1116 2077 2232 4154 

40 

30 654 1584 654 1584 982 2377 1963 4753 

60 961 2015 1281 2687 1922 4030 3844 8060 

120 1791 3617 2866 5787 4299 8680 8597 17360 

CD – Current density  

Table 15 summarizes the differences in energy consumption between the two wastewater 

samples (WWTP1 and WWTP2). Elevated conductivity values in wastewater can reduce 

the energy requirements of an EC process; hence, reducing the cost of energy. The 

relationship between conductivity and energy consumptions observed in phases II and III 

is in agreement with the studies of other researchers (Chen et al. 2000; Mouedhen et al. 

2008; Ricordel et al. 2010).  
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4.3.8 Operating Cost 

 

The two parameters controlling the operating cost of an EC treatment are the energy and 

electrode consumptions. Electrode consumption resulting from treating WWTP1 

wastewater was higher than for WWTP2 wastewater; however, its energy consumption 

was significantly lower. To determine the major parameter contributing to operating cost, 

a comparison was necessary between operating costs of treating both wastewaters. The 

price of aluminum per kilogram (2.26 CAD/kg) is 45 times the energy cost per kWh (0.05 

CAD/kWh); therefore a higher cost would be expected for treating the water that results 

in higher electrode consumption. The treatment that results in a higher operating cost will 

determine the main contributor to operating cost whether its energy or electrode 

consumption.  

Table 16 - Phase III - Operating Costs (WWTP1 & WWTP2) 

Operating Cost  (CAD/1000 m
3
) 

C.D Time 

(min) 
5’ON-20’OFF 5’ON-10’OFF 5’ON-5’OFF Continuous 

A/m
2
 

  
WWTP

1 

WWTP

2 

WWTP

1 

WWTP

2 

WWTP

1 

WWTP

2 

WWTP

1 

WWTP

2 

10 

30 16 18 16 18 24 27 49 54 

60 24 28 32 37 49 55 97 110 

120 41 45 66 71 98 107 197 214 

20 

30 36 44 36 44 53 66 107 132 

60 52 62 70 83 105 125 209 249 

120 88 108 141 173 212 260 424 520 

40 

30 85 131 85 131 127 197 255 394 

60 126 179 168 239 252 358 505 716 

120 220 311 352 498 528 747 1055 1494 

CD- Current Density 
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Table 16 shows that operating cost of treating WWTP1’s wastewater was 20-30% lower 

than the operating costs for WWTP2. Although the price of aluminum is much higher, the 

comparative results in Table 16 prove that the major contributor to the EC operating cost 

was not electrode consumption. Therefore, the controlling parameter in calculating the 

operating cost and the cost efficiency of an EC process is the energy consumption, or, in 

other words, the conductivity of the wastewater. The conductivity of wastewater from 

WWTP1 was 2500 ± 250 µS/cm, whereas for WWTP2 it was 1100 ± 300 µS/cm; 

therefore, doubling the conductivity of wastewater resulted in up to 30% reduction in 

operating costs.  

4.4 Phase IV 

The high electrode consumptions that resulted in Phase III led to an examination of the 

effect of anode design on electrode consumption and current efficiency. Results from this 

phase are a contribution to a pilot-scale electro-bioreactor design investigated by 

Elektorowicz et al. (2011). Phosphorus, COD, nitrate, ammonia and turbidity removals 

were also tested for comparative purposes. The wastewater used in Phase IV was from 

WWTP2.  

4.4.1 Phosphorus Removal 

No difference in removal efficiency was expected when changing the anode surface, 

because phosphorus removal is related to the amount of metallic cations released in 

solution.  Removal efficiencies of phosphorus were between 99.3 and 100 % for the six 

combinations tested (Figure 69). 
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Figure 69 - Phase IV - Phosphorus removal 

 

4.4.2 COD Removal 

 

In Phase IV experiments, initial COD concentrations were higher than Phase III, 

therefore; final effluent concentrations were higher than the concentrations yielded in 

Phase III. Initial COD concentration in Phase IV was 415 ± 5 mg/L (Table 8). 
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Figure 70 - Phase IV - COD removal 

 

COD values were taken after half an hour of sample settling, similarly to Phase III.  

Despite the higher COD removal efficiencies achieved in Phase IV (Figure 70) when 

compared to Phase III, the lowest effluent concentration after treatment in Phase IV was 

55 mg/L.  Figure 71 presents the concentrations of COD after treatment in Phase IV 

starting from an initial concentration of 420 mg/L. Continuous exposure yielded better 

removal of COD than interrupted exposure (Figures 71 & 72).  
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Figure 71 - Phase IV - COD concentrations of treated wastewater  

 

4.4.3 Turbidity Removal 

In this phase, turbidity readings were taken at the end of each experiment, and after 30 

minutes of settling. Differences in turbidity removal for the three electrodes tested at the 

5’ON-20’OFF modes were not very significant. After 120 minutes of continuous 

exposure, the electroflotation layer formed by the circular perforation had the most 

uniform thickness. 
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Figure 72 - Phase IV - Turbidity removal - perforated electrodes - continuous mode 

Uniform foam layer with circular perforations (right) 

 

Towards the end of the two-hour experiments, the reactor with the triangular perforated 

anode and continuous exposure showed an increase in turbidity, indicating an excessive 

release of aluminum in solution. However, the reactor with circular perforation resulted 

in a clear column and good flotation. Consequently, turbidity was measured directly after 

the tests to evaluate the difference in turbidity removal if the tests were to be flotation 

treatments only (Figure 73). 
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Figure 73 - Phase IV - Instantaneous turbidity measured directly at end of 

experiment 

 

The increased turbidity at the interrupted modes in Figure 73 indicate that aluminum was 

being released in solution but the amount of hydrogen gas produced was not sufficient to 

carry the solids to the surface.  
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Figure 74 - Phase IV - Turbidity after 30 minutes of settling 

 

Differences in turbidity after settling were not significant after 120 minutes of continuous 

exposure; however, the higher instantaneous turbidity reading for the triangular 

perforated electrodes confirm the aforementioned visual observation.  
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Figure 75 - Phase IV - Electrode consumption 

 

Figure 75 shows that electrode consumptions of triangular perforated and circular 

perforated electrodes were identical at the continuous mode, but higher for triangular 

perforated electrodes at the 5’ON-20’OFF mode. Therefore, the turbidity increase noted 

earlier was not a result of excess aluminum release, but perhaps of a difference in electric 

field and flow distribution. Electrodes with circular perforation possessed a uniform 

pattern that might have helped in flotation and clarity of water column.  

Flat electrodes resulted in significantly higher electrode consumptions at both modes. 

Differences between theoretical and actual electrode consumptions of perforated anodes 
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actual electrode consumption significantly surpassed the actual consumption (Figure 76). 
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Figure 76 - Phase IV - Actual and theoretical electrode consumptions 

 

When compared to perforated electrodes, flat electrodes require almost double the 

amount of anode material per cubic meter of wastewater treated, as seen from Figure 76; 

furthermore, no significant difference was observed with respect to the removal 

efficiencies of phosphorus, COD and turbidity. Therefore, perforated electrodes can help 

reduce material cost and hence overall operating cost.   
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lower. Figure 77 shows that energy consumption for the flat electrodes was more than 

double that of perforated electrodes. 
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Figure 77 - Phase IV - Energy consumption of treating wastewater with perforated 

and non perforated anodes  

 

4.4.6 Operating Cost 

The reduction in energy and electrode consumption resulting from the use of perforated 

electrodes will consequently result in reduced operating costs. The operating costs for 

Phase IV experiments varied between 49 and 701 CAD/1000 m
3
 of treated wastewater, as 

shown in Figure 78. 
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Figure 78 - Phase IV - Operating Cost of treating wastewater with flat and 

perforated anodes 

Findings of this phase provided an alternative to reducing the operating cost of the EC 

process. The use of perforated electrodes not only resulted in lower electrode material 

requirements, but also in lower energy requirements; 61% lower energy consumption for 

perforated electrodes (Figure 77); hence, substantially improving the cost effectiveness of 

the EC process (Figure 78).   

5 ON- 20 OFF Continuous

Circular 49 374

Triangular 64 374

Flat 205 701

0

100

200

300

400

500

600

700

800

O
p

e
ra

ti
n

g
 C

o
st

, 
C

A
D

/1
0

0
0

 m
3



139 

 

Chapter 5 – Conclusions & Recommendations 

 

Wastewater treatment by electrocoagulation (EC) is an environment-friendly process that 

requires no addition of chemicals, yields high quality effluent, and requires short 

treatment times and simple operation. Given that this study is being conducted in Quebec, 

where hydroelectric power accounts for more than 95% of the total power of the province 

and is relatively inexpensive, applying electrocoagulation technology is an economical 

approach for wastewater treatment. However, the lack of research into the use of EC to 

treat very dilute wastewater motivated the present investigation into its effectiveness in 

treating real wastewater samples with distinct physical and chemical characteristics. The 

primary objectives of this study were to explore the flexibility of the EC process for the 

treatment of wastewaters with different initial characteristics, investigate different 

operational conditions of the EC process in the interest of reducing environmental and 

economic footprints, and evaluate the performance of EC as a pre-treatment, post-

treatment, and a standalone process.  

The wastewater used in this study was provided by two municipal wastewater treatment 

plants in Quebec. The wastewater samples from the two treatment plants, designated as 

WWTP1 and WWTP2, respectively, had distinctive overall characteristics which helped 

determine the treatment’s effectiveness with varying initial conditions; such as different 

conductivities, suspended solid concentrations, COD, and nutrients concentrations.  

Electrocoagulation experiments resulted in superior effluent quality when compared to 

chemical coagulation experiments. Moreover, the treatment proved far more cost-

effective through the reduction of dewatering costs and the elimination of chemicals and 
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polymers, which, in turn, eliminates all costs related to the purchase, storage, and 

transportation of chemicals. Furthermore, the use of EC as an alternative treatment to 

chemical coagulation prevents the discharge of substantial amounts of undesired anions 

to receiving water bodies.  

The ability to use EC to treat wastewater with different initial characteristics while easily 

modifying operating parameters proved the flexibility of the system. For highly diluted 

wastewater from WWTP1, all the tested operational conditions yielded satisfactory 

phosphorus removal rates, and the interruption of electrical exposure did not impede the 

treatment process. For the less diluted wastewater, obtained from WWTP2, phosphorus 

removal rates varied between 90% and 100%, and phosphorus levels after treatment at all 

tested conditions were lower than 0.5 mg/L. 

Treating the WWTP1 wastewater, containing high initial nitrate concentrations and zero 

ammonia concentrations, showed that nitrate reduction is concentration-dependent. 

Despite the high initial ammonia concentrations in the wastewater from WWTP2, 

experimental operation conditions and lack of oxygen supply did not help initiate 

nitrification. Intermittent aeration can be applied to supply enough oxygen for the 

nitrification process while allowing anoxic periods for further nitrogen removal by 

denitrification. These findings show that the system can be applied to treat wastewater or 

groundwater with high initial nitrate content. 

Solid-liquid separation using EC treatment was also observed with wastewater from both 

plants. Complete flotation resulted upon treatment of WWTP1 wastewater, leaving a 

clear water column. Meanwhile, flotation was very unstable when treating WWTP2 
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wastewater, and floated foam settled down readily once mixing stopped. Total treatment 

time is shorter when complete flotation is achieved; however, when settling is necessary, 

total treatment time increases in order to allow settling. It is therefore recommended to 

examine flotation with different initial concentrations of suspended solids in order to 

correlate electroflotation with initial suspended solid concentrations. Nevertheless, a 

solution to the problem of high initial TSS concentrations can be: (i) operating at lower 

current densities to avoid the generation of large amounts of hydrogen gas and obtain 

solid-liquid separation by settling, (ii) operating at one of the current densities tested, and 

adding inert electrodes for oxygen and hydrogen gas production by electrolysis, or (iii) 

combining EC treatment with a membrane filtration unit.  

Adding salts to wastewater prior to treatment helped increase wastewater conductivity 

and initiate flotation. At the tested salt concentrations and voltage gradient combinations, 

electroflotation was observed in the first 45 minutes. The results confirmed that EC-EF 

treatment is ideal for wastewaters with high conductivity. However, operating at a fixed 

voltage gradient is not a practical approach due to the vast differences in current flowing 

through the system at different conductivities. A practical alternative is to operate at fixed 

current densities, where voltage will vary depending on the conductivity of the solution.  

Electrode consumption was higher for wastewater with higher initial conductivity; 

therefore, the rate of anodic dissolution is proportional to the solution conductivity. 

Electrode consumptions for both wastewaters were higher than theoretically calculated 

values. To obtain more accurate consumption projections, Faraday’s Law needs to be 

modified to include more factors that affect the rate of anodic dissolution, such as 

temperature and conductivity. It is highly recommended to conduct more EC tests on 
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wastewater with different initial conductivities to create a new relationship between 

electrode consumption and conductivity of wastewater. Improving electrode consumption 

calculations will greatly facilitate system scale-up and eventual applicability in industrial 

and municipal settings. 

Long exposure to electricity can result in excessive amounts of aluminum ions release in 

the reactor. The interrupted exposure modes with the longest OFF period are therefore 

recommended to allow enough time for mixing and flocculation without the excessive 

release of metal into the solution. Energy consumption was considerably lower when 

treating WWTP1 wastewater, due to its very high initial conductivity. The amount of 

energy needed for treating WWTP2 wastewater was almost double that needed to treat 

WWTP1 wastewater. A comparison of operating costs for the treatment of wastewater 

from the two treatment plants led to the conclusion that the major contributing factor is 

energy consumption. Therefore, treating wastewater with high conductivity using EC is a 

cost effective approach. Furthermore, this demonstrates the flexibility of EC treatment, 

since its operating conditions can be altered based on initial wastewater characteristics 

and effluent standard requirements. Flexibility also extends to variations in electrode 

surfaces; the use of perforated electrodes produced a significant reduction in electrode 

and energy requirements; hence improving cost effectiveness.  

Further modifications to operational conditions or reactor setup can be investigated to 

reduce the operating conditions of the treatment process; such as testing the effectiveness 

of longer current interruptions to avoid excess anode dissolution, as well as testing the 

effectiveness of leaving a smaller gap between electrodes to reduce energy requirements. 
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EC units are simple in design, operation, and construction; hence, it is recommended to 

install such units on-site in each industrial production facility, particularly in Quebec, 

where electricity is available at moderate prices. The test results presented above have 

demonstrated the system’s flexibility and compatibility with other treatment units. When 

EC treatment is combined with a membrane filtration unit, for example, higher current 

densities and durations are not required. Furthermore, full or partial treatment of 

industrial effluents prior to discharge will reduce the load input to wastewater treatment 

facilities. 

Biological conversion of organic phosphates to orthophosphates suggests the potential for 

EC as a promising post-treatment to biological treatment processes or as part of a 

combined treatment process, as studied by Bani-Melhem & Elektorowicz (2010), where 

EC was combined with a membrane bioreactor. In conclusion, the operating conditions 

tested and successful results yielded confirm that EC can be applied as a pre-treatment, in 

combination with other treatment units, or a standalone treatment. 
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Appendix I – Additional results 

 

Phase II 

 

Figure 79 – Phase II - pH change after 4 hours of EC treatment 

Phase III – WWTP1 

 

Figure 80 - Phase III - WWTP1 – Nitrate removal – treatment time - 30 minutes 
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Figure 81- Phase III - WWTP1 – Nitrate removal – treatment time - 60 minutes 

 

Figure 82 - Phase III - WWTP1 – Nitrate removal – treatment time - 120 minutes 
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Figure 83 - Phase III - WWTP1 – Ammonia concentrations – treatment time - 30 

minutes 

 

Figure 84  - Phase III - WWTP1 – Ammonia concentrations – treatment time - 60 

minutes 
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Figure 85  - Phase III - WWTP1 – Ammonia concentrations – treatment time - 60 

minutes 

 

Figure 86  - Phase III - WWTP1 – COD removal – treatment time - 30 minutes 

0

1

2

3

4

5

6

7

8

10 20 40

A
m

m
o

n
ia

 C
o

n
ce

n
tr

a
ti

o
n

s,
 m

g
/L

Current Density, A/m2

Treatment time = 120 minutes

Control

5on-20off

5on-10off

5on-5off

Continuous

0%

20%

40%

60%

80%

100%

10 20 40

C
O

D
 R

e
m

o
v

a
l 

Current Density (A/m2)

COD Removal  vs. Current Density 

Operating time = 30 minutes 

5 ON-5 OFF

5 ON-10 OFF 

5 ON-20 OFF

Continuous



158 

 

 

Figure 87  - Phase III - WWTP1 – COD removal – treatment time - 60 minutes 

 

 

Figure 88  - Phase III - WWTP1 – COD removal – treatment time - 120 minutes 
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Figure 89 - Phase III - WWTP1 – Electrode consumption – treatment time - 30 

minutes 

 

Figure 90 - Phase III - WWTP1 – Electrode consumption – treatment time - 60 

minutes 
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Figure 91 - Phase III - WWTP1 – Electrode consumption – treatment time - 120 

minutes 

 

Figure 92 - Phase III - WWTP1 – Energy consumption – treatment time - 30 

minutes 
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Figure 93 - Phase III - WWTP1 - Energy consumption – treatment time - 60 minutes 

 

Figure 94 - Phase III - WWTP1 – Energy consumption – treatment time - 120 
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Figure 95 - Phase III - WWTP1 – Operating cost – treatment time - 120 minutes 

 

Figure 96 - Phase III - WWTP1 – Operating cost– treatment time - 60 minutes 
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Figure 97 - Phase III - WWTP1 – Operating cost – treatment time - 30 minutes 

Phase III - WWTP2 

 

Figure 98 - Phase III - WWTP2 – Phosphorus removal – treatment time - 30 

minutes 
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Figure 99 - Phase III - WWTP2 – Phosphorus removal – treatment time - 60 

minutes 

 

Figure 100 - Phase III - WWTP2 – Phosphorus removal – treatment time - 120 
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Figure 101 - Phase III - WWTP2 – COD removal – treatment time - 30 minutes 

 

Figure 102 - Phase III - WWTP2 – COD removal – treatment time - 60 minutes 
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Figure 103 - Phase III - WWTP2 – COD removal – treatment time - 120 minutes 

 

Figure 104 – Phase III - WWTP2 – pH increase – current density – 10 A/m
2
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Figure 105 – Phase III - WWTP2 – pH increase – current density – 20 A/m
2 

 

 

Figure 106 – Phase III - WWTP2 – pH increase – current density – 40 A/m
2
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Figure 107 – Phase III - WWTP2 – pH increase – treatment time – 30 minutes 

 

 

Figure 108 – Phase III - WWTP2 – pH increase – treatment time – 60 minutes 
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Figure 109 – Phase III- WWTP2 – pH increase – treatment time – 120 minutes 

 

 

Figure 110 – Phase III - WWTP2 – Temperature increase – current density – 10 

A/m
2
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Figure 111 – Phase III - WWTP2 – Temperature increase – current density – 20 

A/m
2 

 

 

Figure 112 – Phase III- WWTP2 – Temperature increase – current density – 40 

A/m
2
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Figure 113 – Phase III - WWTP2 – Temperature increase – treatment time – 30 

minutes 

 

Figure 114 – Phase III - WWTP2 – Temperature increase – treatment time – 60 

minutes 
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Figure 115 – Phase III - WWTP2 – Temperature increase – treatment time – 120 

minutes 

 

Figure 116 – Phase III - WWTP2 – Redox potential decrease – current density – 10 

A/m
2
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Figure 117 – Phase III - WWTP2 – Redox potential decrease – current density – 20 

A/m
2
 

 

Figure 118  – Phase III - WWTP2 – Redox potential decrease – current density – 40 

A/m
2
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Figure 119 – Phase III - WWTP2 – Redox potential decrease – treatment time – 30 

minutes 

 

Figure 120 – Phase III - WWTP2 – Redox potential decrease – treatment time – 60 

minutes 
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Figure 121 – Phase III - WWTP2 – Redox potential decrease – treatment time – 120 

minutes 

 

Figure 122 – Phase III - WWTP2 – Average particle size – current density – 10 A/m
2
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Figure 123 – Phase III - WWTP2 – Average particle size – current density – 20 A/m
2 

 

 

Figure 124 – Phase III - WWTP2 – Average particle size – current density – 40 A/m
2
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Figure 125 – Phase III - WWTP2 – Turbidity removal – treatment time – 30 

minutes 

 

Figure 126 – Phase III - WWTP2 – Turbidity removal – treatment time – 60 

minutes 
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Figure 127 – Phase III - WWTP2 – Turbidity removal – treatment time – 120 

minutes 

 

Figure 128 - Phase III - WWTP2 – Electrode consumption– treatment time - 30 

minutes 
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Figure 129 - Phase III - WWTP2 – Electrode consumption – treatment time - 60 

minutes 

 

 

Figure 130 - Phase III - WWTP2 – Electrode consumption – treatment time - 120 

minutes 
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Figure 131- Phase III - WWTP2 – Actual and theoretical electrode consumption –  

Current Density- 10 A/m
2 

 

 

Figure 132 - Phase III - WWTP2 – Actual and theoretical electrode consumption –  

Current density - 20 A/m
2
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Figure 133 - Phase III - WWTP2 – Actual and theoretical electrode consumption –  

Current density - 40 A/m
2 

 

 

Figure 134 - Phase III - WWTP2 – Energy consumption – treatment time - 

120minutes 
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Figure 135 - Phase III - WWTP2 – Energy consumption – treatment time - 60 

minutes 

 

 

Figure 136 - Phase III - WWTP2 – Energy consumption – treatment time - 30 

minutes 
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Figure 137 - Phase III - WWTP2 – Operating cost – treatment time - 120 minutes 

 

 

Figure 138 - Phase III - WWTP2 – Operating cost – treatment time - 60 minutes 
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Figure 139 - Phase III - WWTP2 – Operating cost – treatment time - 30 minutes 

Phase IV 

 

Figure 140 - Phase IV - Temperature increase - current density – 20 A/m
2
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Figure 141 - Phase IV - pH increase - current density – 20 A/m
2 

- 

treatment time - 120 minutes 

 

Figure 142 - Phase IV - Redox potential decrease - current density – 20 A/m
2
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Appendix II - Additional photographs 

 

Phase II 

 

 

Figure 143 - Phase II - Flotation with salt addition - clear water column 

0.5 V/cm & 0.05wt% NaCl 
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Figure 144 - Phase II - Thick and gelatinous flotation layer – clear water column 

0.5 V/cm & 0.2 wt% NaCl 
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Figure 145 - Phase II - Excess aluminum release turns water turbid 

2 V/cm & 0.2 wt% NaCl 

 

 

Figure 146 - Phase II- filter papers after filtering 50 ml of treated wastewater 
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Phase III 

 

 

Figure 147 - Phase III - Flotation after 120 minutes of exposure to 40 A/m
2 

Phase IV 

 

Figure 148 - Water column turning grey with triangular perforated anode - current 

density 20 A/m
2
 - continuous mode - 120 minutes 

Triangular Perforation  
Circular Perforation 
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Figure 149 - Phase IV - Flotation at 120 minutes - continuous mode – 20 A/m
2 

Circular (left), Triangular (right) 
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Appendix III - Sample calculations 

 

Phase II 

 

Table 17 - Phase II - Sample Calculations 

Conditions 

Applied 
ΔWt (g) 

CEnergy 

(U*I*t)/v     

(kWh/m3) 

C Salt 

kg/m3 

Salt 

CAD/kg 

Energy 

CAD/kWh 

Aluminum 

CAD/kg 

Actual 

Operating 

CAD/m3 

2V/cm-

0.2% NaCl 
4.29 76.03 2 0.05 0.05 2.225 10.26 

2V/cm-

0.05% NaCl 
1.62 28.00 2 0.05 0.05 2.225 3.90 

0.5V/cm-

0.2% NaCl 
0.34 1.87 0.5 0.05 0.05 2.225 0.62 

0.5V/cm-

0.05% NaCl 
0.31 1.53 0.5 0.05 0.05 2.225 0.56 

Phase III 

 

Table 18 - Phase III - Sample Calculations- Current Density 10 A/m
2 

- Treatment 

Duration - 30 minutes 

J10t30 
       

J10t30 

 
t (min) U (V) I (A) z 

Celectrode    

(I*t*Mw)/(z*F*v) 
Kg/m

3
 

Cenergy (U*I*t)/v     

(kWh/m
3
) 

Operating Cost 

(CAD/m
3
) 

5’ON- 20’OFF 10 5 0.16 3 5.97 0.005965 0.089 0.018 

5’ON- 10’OFF 10 5 0.16 3 5.97 0.005965 0.089 0.018 

5’ON- 5’OFF 15 5 0.16 3 8.95 0.008948 0.133 0.027 

Continuous 30 5 0.16 3 17.90 0.017896 0.267 0.054 

 

Table 19 - Phase III - Sample Calculations- Current Density 10 A/m
2
- Treatment 

Duration- 60 minutes 

J10t60 
       

J10t60 

 
t (min) U (V) I (A) z 

Celectrode   

(I*t*Mw)/(z*F*v) 
Kg/m

3
 

Cenergy (U*I*t)/v     

(kWh/m
3
) 

Operating Cost 

(CAD/m
3
) 

5’ON- 20’OFF 15 5.5 0.16 3 8.95 0.008948 0.147 0.028 

5’ON- 10’OFF 20 5.5 0.16 3 11.93 0.011931 0.196 0.037 

5’ON- 5’OFF 30 5.5 0.16 3 17.90 0.017896 0.293 0.055 

Continuous 60 5.5 0.16 3 35.79 0.035793 0.587 0.110 
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Table 20 - Phase III - Sample Calculations - Current Density 10 A/m
2
- Treatment 

Duration- 60 minutes 

J10t120 
       

J10t120 

 
t (min) U (V) I (A) z 

Celectrode   

(I*t*Mw)/(z*F*v) 
Kg/m

3
 

Cenergy (U*I*t)/v     

(kWh/m
3
) 

Operating Cost 

(CAD/m
3
) 

5’ON- 20’OFF 25 4.9 0.16 3 14.91 0.014914 0.218 0.045 

5’ON- 10’OFF 40 4.9 0.16 3 23.86 0.023862 0.348 0.071 

5’ON- 5’OFF 60 4.9 0.16 3 35.79 0.035793 0.523 0.107 

Continuous 120 4.9 0.16 3 71.59 0.071585 1.045 0.214 

 

 

 

 


