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ABSTRACT
On the Mean Curvature Flow

Janine Bachrachas

We present a self-contained expository review on the mean curvature flow for smooth
embedded hypersurfaces in the (n+1)-dimensional Euclidean space. We start by
addressing the short time existence of solutions to the flow, followed by the long time
existence in the case of compact convex hypersurfaces and entire graphs. Although
the results presented here are part of the classical literature originated in the 80’s, we
derive all necessary calculations and gather the simplest possible approach in view of

later developments of the area.

il



Acknowledgments.

I would like to thank Dr. Alina Stancu for being a caring and committed supervisor.
This thesis is a consequence of uncountably many hours of mathematical discussions

with Alina.

v



Contents

1 Notations and preliminaries
2 Short Time Existence
3 Evolution of Geometric Quantities

4 Compact Convex Hypersurfaces
4.1 Longtime existence and convergence results . . . . . . . . ... .. ..

4.1.1 The normalized mean curvature flow . . . . . . . . . . . ...

5 Evolution of entire graphs
5.1 A priori height estimates. . . . . . . . . ... .00
5.2 A priori gradient estimates. . . . ... ...

5.3 Curvature estimates and longtime existence. . . . . . . . ... .. ..
Appendices

A Generalities on Parabolic Equations
A.1 Holder Spaces. . . . . . . . .
A.2 The Cauchy Problem . . . . ... ... ... ... ... ........

B The Linearization of the MCF equation

Bibliography

15

25
39
A7

54
61
68
72

81
83
84

89

95



Chapter 1

Notations and preliminaries

Let M denote a connected orientable differential manifold without boundary of di-

mension n. For each point p € M we have local coordinates {z?, ..., 2"}.

The tangent vectors

0

g eeey _n
» ox

9
ox!

form a basis of T, M with dual basis

{da:l

Assume M can be smoothly embedded in R"*! via the map

y

o dm”|p} )

X : M — R"

Let us denote by the same letter M the image of M under X.

Remark 1.1.

Notice that M C R™*! is an immersed submanifold of codimension 1. These type of



submanifolds are often called hypersurfaces. We will adopt this terminology.

We equip the manifold M with the Riemannian metric induced by R**!. This is

9(X0)) = () O ()

for p € M, where (-,-) denotes the canonical inner product in R,

Notice that

0X 0
ozt (p) = dXl, (8I1>

and that since dX is injective the vectors

{Ge1<iznl

form a basis of T'x,) M.

Remark 1.2.

Throughout this thesis we shall be working with the Levi-Civita connection.

As usual, g = (g;;)i; denotes the metric tensor. Its inverse g~! will be denoted with

superscripts, g1 = (gij)ij-

The Second Fundamental Form on M, A = (h;;), is given by

(X)) = — (=) )

where v is the outer unit normal vector at the point X (p).



Notation 1.1.
We will be using the Einstein notation for sums. This is, we will not write the
summation symbol capital sigma (%), and we will understand a sum is made over

repeated indices, from 1 to n.

Definition 1.1 (Mean Curvature).

The Mean Curvature of M at p is the trace of the second fundamental form A, i.e.,

Definition 1.2.
The Laplace-Beltrami operator on (M, g) is the second order differential operator

defined as

Ag = g”V,VJ

Theorem 1.1 (Gauss-Weingarten Relations)
Let X : M™ —s M"™ be an immersion. Assume that for p € M the tangent space

Tx M splits in

TxpM =T,M & (T,M)",

which varies differentiably with p. Then the following equations are valid for all
1<i4,5<n:




ov m 0X

o = " g 2
Proposition 1.2 (Gauss and Coddazi-Mainardi equations)
Forall1 <i,j,k,l <n we have
9 l 9 l r !l r 1l ml
oL~ ggrLi T il = il = (hihim — hixhym)g (1.3)
0 0 , ,

Proposition 1.3 (Intertwining covariant derivatives)
Let V denote the Levi-Civita connection on a Riemannian manifold M. Then the fol-

lowing differentiation rules hold for all 1 < 1,7, k,l < n:

For tangent vectors:

ViV; X' - V,;V, X' = R, X",

for cotangent vectors:
VleYk - Vjlek = Rijklglmym.
for (2,0)-tensors:

mn mn
ViVjian — V;iViar = Rijimg™" 0 + Rijimg"™" Q.-

Definition 1.3 (Mean Curvature Flow).

Assume the manifold M can be smoothly embedded into R"*! via



Xo: M — R,

We say that the manifold M moves by Mean Curvature Flow (MCF) if there exists
a family of smooth embeddings {X(-,¢) : M — R™"} which is a solution to the

following differential equations on M

0
aX(p, t) = —H(p, t)v(p,t) pe M,

X(p7 0) = Xg(p).

Here H(p,t) denotes the mean curvature of the manifold M, := X (M,t) at the point

X(p,t) and v(p,t) the outer unit normal vector at that point.

Later in this thesis, we shall prove that solutions X to the MCF exist, given smooth
initial data. If so, for each ¢ such that a solution X (p, t) exists, we have a submanifold

of R™"! that we will denote by

M; == {X(p,t) e R"™ | p e M}.

Indeed, the local charts arise from the Inverse Function Theorem and charts on M.

Notice that the vectors

form a basis of T'x, M.

Remark 1.3.



The MCF equations can be written as

0
aX(p, t) =A,X(p,t) pE M,

X(p,0) = Xo(p).

where A is the Laplace-Beltrami operator on M;. Indeed, using the Gauss-Weingarten

relations, we compute

since H = g h,;.



Chapter 2

Short Time Existence

In this section we intend to prove the short time existence of solutions to the Mean

curvature flow equations for smooth initial data.

We begin by analyzing the simple case when the manifold M is the graph of a func-
tion. Let f : R® — R be a function of class C* on R". By the Implicit Function
Theorem we know that the graph of f

My = {(z, f(z)) € R""| 2 € R"}

is an embedded submanifold of R"*!, where the embedding is given by

Xo: R — R

Xo(z) = (z, f(x)), Vo= (x,..,x,) € R".

In a later section we will show that if the initial manifold is a graph, so are the

evolving manifolds at later times. Hence, if a solution for the MCF with a graph as



initial data exists, it is of the form

X(z,t) = (u(x,t), f(u(x,t),t)). (2.1)

where

u(z,t) = (X (x,t), ..., X"(x,1)),

the first n components of the position vector X.

Let us now compute the tangent vectors defined by equation 2.1.

0X  ou'  Ou' Of ow,  Ou Ou
ox; N (3371'"“’ a%’axj axi) (T%,vxfa_xl)’

where - denotes the usual inner product in R” and V,f is the gradient of f with

respect to the space variables x = (x4, ..., z,) € R™

Now, the outer unit normal vector at the point X(z,t) € M, should be orthogo-
nal to all vectors in the tangent space of M at X (z,t). Then for every 1 <1i <n we

have

0= ( 8_X>_< oul ou" Of 0X* >
— Wi T W\ o 0k o )

Set 7 := (V. f,—1). We get that



ox, ou Of ouF

of our B of our
ozk 0zt Oxk Ox'
=0

v,

so U € (Tx(zpyM)*. Normalizing 7 we obtain that the unit normal vector is

1
e D UEA

Notice that, in this setting, the MCF equations become

0X  ou Of ouF

E—(E,@E—Fﬂ). (2.2)

The second fundamental form is given by

X

axiax/w

- 1 0%u O2f out  of o*F
T (1 VL2 507 Guionk 00 9uk Dwiw

o2f out
— 2y-1/2_0° ) ou”
(L4 1V iT) Oxidxk Ox'’

hij = —(

(vmfa _1)>

(2.3)

for 1 <i,5 <n.

To proceed, we consider the scalar equivalent to the MCF equation. This is, the
evolution equation obtained by taking inner product with v on both sides of 2.2.

Notice that, multiplying by v we recover the equation



o 1

which is equivalent, up to tangential diffeomorphisms, to the MCF equations.

The right hand side of the scalar MCF equation becomes —H, while the left hand

side is
_ ou Of ouk
<Xt7y> = (1+ ’vmf|2) 1/2 <<E7@E+ft)a(vxfa_l)>
= —(L+ |V /)21
Hence,

fo=(V1+I|Vaf]?) H.

Since H = ¢g“h;; and hy; as in 2.3, the previous equation rewrites as

fi = gijfij- (2.4)

Notice that equation 2.4 is a linear second order parabolic differential equation for f,
since the matrix of the metric g is positive definite. Therefore, we know by corollary

A.2 that there exists a unique solution f, at least over a finite time interval.

Remark 2.1.
Another way to prove the short time existence of solutions in this case is observing

that H equals

10



. Va.f
H=div| ———— 2.5
<\/1 T I—fo|2> 29)

Then we can rewrite the evolution of f as an equation in divergence form

V1+|Vaf]?

Consequently, by theorem A.3 we also get the short time existence and uniqueness of

fi = /14 |V, f]?-div (V—C"f> (2.6)

the solution.

O

In the general setting, the short time existence does not follow from the theory of
quasi-linear parabolic PDE’s. The problem is that the MCF equation will be, in

general, degenerate. By remark 1.3 we know that

0X Z.j<a2x kax)

ot oridri U ogk

Since the Christoffel Symbols are defined by

170 0 0
ko Ik
Iy = (8 S951 + 9~ %gi]’) g,

we write
oxX . PX 1 9 w ] OX
o =7 8x%9xﬂ T2 Ka 91T 5y ngz Oz lg”)g I }%
o L[(, X 0X. X 0X
-7 8x’8xﬂ 2 {( Oxidxs’ 8xl> * <8x¢8x“@>
P?X 00X N PX 00X

<8x18x3 8xl> <89038ml 0xl>
0’X 00X 0?X 8X>) I U}G_X

<8x¢3x“ 3Ij> B <8xj8xl’ oxt oxk’

11



which simplifies to

0X . 0?X . 0?’°X 0X.0X
— 97— — g o 2 )
ot 0xi0xI 0zidxi’ Oxl’ Ok
y 02X i 0?X* 09Xl 0X
= g R S )
0zt 0xI 0xi0xi Ozt | Oxk

This vectorial PDE reduces to now a system of parabolic PDE’s for the components

XPof X,1< B <n+ 1. If we consider the S-th component the field, we have

ox° L PXP [ 92X° 9x°] ax?
ot 9 owiow Y Ori0w Ort | oz
g 0XPOXP] 92XP y 92X~ 90X 0X#P
— iJ Kkl g Kl
7 [1 7 oa! (%’“] oxidwi 7Y (;B{ﬁx’f)xj 8xl} oak

The evolution equation for X7 is therefore a quasi-linear second order equation, but

only weakly parabolic as it is degenerate along the tangential directions satisfying

w0XPOXP
ozt oxk

Thus, short time existence of solution to the flow is not insured by the classical theory
of parabolic equations. In order to prove short time existence we will make use of a

technique which was first shown by Denis De Turck.

The De Turck Trick.

The idea behind this technique is to make a time dependent change of variables, so
that the MCF equations in the new variables is a strictly parabolic equation. In this
setting, we can apply the classical existence results for strictly parabolic PDE’s and

the original MCF will have solutions whenever the new one has.

12



Let X be a reparametrization of X

X(p,t) = X(y(p,t),t)

where the map (p,t) — y(p,t) is C* with C'* inverse.

Suppose X satisfies the equation

0X . 0X
IX A Ko dr 9.
T A (2.7)

k

for some v"’s such that 2.7 is strictly parabolic. We know that

0X X | OX dy

AX = == =2 -
g ot ot * oxk dt
~ dy*\ 90X
o k
= AX+ (v + _dt ) 9k (2.8)

Therefore, the tangential components in 2.8 have to be zero. For this, we choose
the parametrization y such that the coefficients of the tangential directions v¥’s get

cancelled. Imposing

dy*

—(p,t) = —vF(p,t
dt (p’ ) v (p’ )7
¥ (p,0) = 2",
we get that
oxX .. 9°X o 0X
=gy ko qgurk)
ot =9 ggaw T W TG o

13



Hence we may take

b = g (FZ — FZ)

where ffj are the Christoffel symbols associated to a given fixed metric g. Then 2.7

can be rewritten as

0xX 0°X | Lk 0X

- )

ot = 9 grigw "9 gk

This equation is strictly parabolic and we can apply the classical existence results.

14



Chapter 3

Evolution of Geometric Quantities

The main tool for studying geometric flows is to analyze how does the geometry
change with the flow. Thus we derive evolution equations for the metric, curvature

and second fundamental form.

Proposition 3.1 (Evolution of geometric quantities under the MCF)

ot J7

ov

0 ¥ _v.H
ot Vol

ahij Im 9 9 i Kl )
3. ot = Aghij —2thlg hmj+ |A| hija where |A| = g]g hikhjl is the norm Of

the second fundamental form,

OH
. — =AH+ |A’H

15



5. %|A\2 = A|A]? = 2|VA]? +2|A".

Proof :

1)

99i; 2(8_X 8_X>_<88_X€9_X>+<18_X a_X>
ot ot ‘Ozt oxi’ ‘Ozt Ot W Oxd oxl Ot Ozt
_<3H1/ 8X>_ <8HV 0_X>

oxt ' Oxi orl  Oxt

OH 0X ov 0X OH 0X ov 0X
= —%@,%)— <%7@>—@<V7%>— (@7%>
B v 0X v 00X, 0?°X
= HGr e ~H g ) = M g V)

O

We will resume the proof of proposition 3.1 after stating a few corollaries of 1) which

will be used later in the proof.

Corollary 3.2

Ogii 4 .
= 2H " hyumg™ .
ot g Ngmg
Proof:
0 i 0k 89kj
0 = —(gig™) =g :
at(gkg )=y 5 T 9k

, 0q"i
= 20" Hhiy + g "

16



So,

lj

Ji—gy = 2H g" hyy, (3.1)

where we changed the name of the summing index on the left hand side of the above

equation. Now, we multiply equation 3.1 by ¢"™ and sum over i to get

gl 4 4
Spi—— = 2H g hirg™.
! ot g 1Y
Thus
Og™ v
=2Hg¢" hyrg"™,
ot g kg

which proves the corollary up to a change of indices.

Corollary 3.3

Let us denote by p; the volume form on (M, g), i.e.

e = 4/ det gi;(t).

Then,

&Mt = —H’py.

Proof:
For simplicity of notation we will drop the subindex ¢. Use the definition of determi-

nant to compute

17



ou? 0 0
K = —det 9i; = a Z 5(0)910(1) <+ 9no(n)

gESy
0Gio(i
= Z Z €<0)glo(1) s © -+ Gno(n)
: ot
i oESn
= Z Z e(0)g10(1) - - (—2HNio(i)) - - - Gno(n)
i OESh
= —2H Z 5(0)(2 hw(i)gw(i))gmu) <+« Gno(n)
ogESh 7
= —2H(Z th(i)gw(i)) Z £(0)910(1) - - - Gno(n)
o€Sn 1 oc€Sn
= —2H?det Gij-

For the proof of 2) in Proposition 3.1 we will need the following observations.

a) The vectors

{gij% | 1§i§n}
e

form a basis of T, M. Indeed,

L 0X g
Ozaig”—aj = aig” =0,Vj:1<757<n.
x

This is equivalent to having

g_l(ozl, ) =0

Since g~! = (¢%);;, which is a positive definite matrix, a; =0,V i: 1 <i <n.

18



b) Notice that, for all 4,7,k : 1 <14, j, k <n,

G O0X OX.
<9]@7%> :gjgjk:(sik-

0X
Thus if v € T,M, v = aig”%,

L0X 0X
<az9j% ) %> = a;0;; = ay,

which implies

_ < 8_X> ija_X
T e Gy

We now continue with the proof of Proposition 3.1.

ov

2) Notice that
) Notice tha 5

€ T,M. Indeed,

1= (v,v) = 0= <V,%>,

v
SO En is orthogonal to v and therefore lies in 7,M. Using part b) of the previous

remark, we write

19



ov v 90X, 0X 00X, ;;0X

— - - = - LV
ot 5t 909 5w Wi aa 9 5
B 0X  OH ..0X
— N w___ — w___
WogmHVN 55 = 559" 5.
~ V,H,
where we used that
X o OX. ov 0X 90X
0= = 0= V! = e T o

Lemma 3.4

Ahi]’ = VZV]H + Hh,ilglmhmj — ’A‘thj

Proof:

Ahij = gmnvmvnhij:gmnvmvihjn

= gmnvivmhjn + Rmijlglsh'sn + Rminlglshjs’

where we used the Coddazi equation 1.4 and the rules for intertwining derivatives.

Now, denoting hl, := g'*h., we write

20



Ahij = ¢""ViVuhjn + Rupighl, + Rminlhé'
= gmnvzvjhmn + gmn(hmjhzl - hmlhm)h{n + gmn(hmnhzl - hmlhin)hg

ViV H + hlhahl, = Bithihl + Hhghl — B by,

Note that the second and last term get canceled and that |A|? = h%h}. Finally we

get

Ahy; = Vi V;H — |A|Phy; + Hhyg"hg;

ahij . 0 82X 82HV 82X ov

5t~ ot'awow Y = omow Y~ \gwaw B

Now, on one hand we have that

(o V) = (g (v + Hg™ 520 )
2
N 8(332'5):1 <aii( J’glm%)’ )
- aijgm A lmaij';;‘ )
B aijgcf 9" him

where we used 1.2.

21



On the other hand,

PX v 0P?X 0OH 0X 0X 0H 0X
(o ) = (oo ey = (TS — g
Oxidzi’ Ot Oxidxd '7 Ozl Oxm Y Oxk 7T Oal O

k @H Ilm
= ij%g Jkm
OH
k
~ lug
Putting all the terms together we get
Oh; 0?H  OH .
— = —— — [ —— — Hh;g"" him,
ot 0x'0xI Y Oxk it
= ViV;H — Hhjjg" hip,. (3.2)
By lemma 3.4, we know that
Ahy; — |APhyy = ViV H + Hhig"™ ho;. (3.3)
Therefore,
Oh; m
U
4)

22



OH o .. g .. Ohy;

— = —(¢Yhy) = hj;—=— g

ot g9 hia) = hii 5+ 97
= 2Hgikhkmgmjh,~j +gijV¢VjH — thlglmhimgij
= AH+ Hg*hpmg™ hy;
= AH+ H|AP,

where we used equation 3.2.

Notation 3.1.
Let us denote by (-, -) the inner product for (2,0)-tensors on M. Explicitly, if T]’k

and S}, are (2,0)-tensors on M,

(T;k ) ;k) = gilgjmgka;kSqlnn-

In particular, the norm of the second fundamental form is

|AP? = (hij, hij) = " g" hachy.

23



0
t|A|2 6t(g g]lhuhkl)
o 8glk P dg’ 5l " 8h1] zk ]l Ohy ik jl
T g hijhy + o ——09" hijhiy + —— 875 Py + ot — 979" hy;

= 4Hgikhmngnk g’ hijhkl

-+ Zk jl(Ahw — 2thlglmhm] —+ ’A| hZ]>h’kl
= AHG"hinng™ - ¢ hijhia + 29" ¢ by Ah
— AHhjg" ™ hinj - ¢ ¢ i + 2| APgF g7 g

= 2(hy, Ahy) + 2| A%
Now we compute
A‘AF = A (hij> hij) =29""V,, (hz‘j, Vnhij)
= 29™ (thz'j ) vnhz‘j) +29™" (hij ) vmvnhij)

= 2 (Vnhz] y Vnhz'j) + 2 (th y Ahw)

= 2|VA|? +2(hij, Ahyj).
Consequently,

%|A|Q = AJA]2 = 2|VAP +2|A[%

24



Chapter 4

Compact Convex Hypersurfaces

Definition 4.1.
A hypersurface in R"! is said to be strictly convex if the second fundamental form

of its embedding is everywhere positive definite.

Let M be an n-dimensional strictly convex compact hypersurface. Then, its Gauss
map v : M — S™, which assigns to each point p of M the unit outer normal vector
at p, is a diffeomorphism. Then we can use X = X (v~'(2)) to reparametrize the

hypersurface as

X 8" — R™M
X(z) =r(2)z, VzelS”,
where 7 = r(2) is a positive function. Let {u',...,u™} be a system of local coordinates
on the sphere S™. As before, let g denote the metric on M induced by R+ and let

g be the standard metric on the unit sphere, i.e., the metric on S C R"*! induced

by the ambient Euclidean space. We will compute the metric g in the coordinates

(Ul, ,un)

25



We have, for 1 <7 <n,

ou; B T@ui 0uiz
Hence,
( 0z N or 0z n or >
T T - R, = —_—Z
9ij out  out ouw  ou’
945 T 5w o’
ince (1 ,2) =0 and |2 = 1
since {(— ,2) =0 and |z| = 1.
out’
Then, ¢¥ is given by
gij =2 g"j — —VZTV_JT
r2 + |Vr]?

where Vir = gV,r and Vr denotes the gradient of r with respect to the round

metric on the sphere. In local coordinates this is

)
Vr=V" -
r e
Lemma 4.1
The outer unit normal vector at X (z) is
1 e Or 0z

(4.1)

e AU W

Proof:

A basis for the tangent plane is given by the vectors

26



0X or 0z
= z+r

— - - 1 <i<n.
out  ou ou’ =t=n

0X
Let us find a vector 7 orthogonal to all the vectors {6_ |1 <i<n}cCT.M. We
u'l

can write 7 as a linear combination of the basis of R"*+!

0z 0z
{Z, %, ceey %}

Thus,

ﬂ:ai

out

We may choose, without any loss of generality, b = r and evaluate

0z or 0z _ or
(aiw +rz, =2+ T—) = @rg; +ro—.

ou’ out ou’

We conclude that the a;’s are given by

or i
A = ————
ouw’
Thus,
- _; Or 0z
UV =Tz — —_— .
g out Ou’

Note that || = 1/r2 4+ |Vr|2, so normalizing 7, we get the normal vector as stated in

4.1.

Lemma 4.2

27



The coefficients of the second fundamental form at X (z) are

1 0%r or Or
= (2 % ),

hij =
TR\ 0udi o 0w

1<i j<n
Proof
02X
" =~ Gugw V)
o 0?r Z+8r%+ﬁ8z+r 0?2 kl&"%)
T V2 0uwdw ™ 0w Out - Out Oud  QulOud TET I Bk gyl

o 1 . O?r ey 0%z )
/P |V \ 0w Qutdud’

g Or Or 0z 0z, _,,0r Or 0z 82)

WA il wila i wi v wal i
o 1 . 0?r s ﬁﬁ__  Or Or
T et \wow ~ 068" 5 919 5 g
2
= 1 — < or Qﬁﬁ—l—?ﬁgw)

SRR\ 0wdr 0w ou

where we have used that the metric and its inverse are symmetric tensors and that

0 0z 0%z 0z 0z
0 = 5559 = uaw 9 Guaa!
_ 0%z Vg
= \guigw < I

O

We will now consider a smooth, strictly convex, compact hypersurface M and we let

it evolve by the Mean Curvature Flow.

28



An important tool in the study of the evolution is the following maximum principle

for tensors due to Richard Hamilton [4].

Before stating the theorem, let us introduce some terminology.

Definition 4.2.
Let M;; be (2,0)-tensor on a manifold M. A polynomial in M;; formed by g-contracting

products of M;; with itself, is a tensor of the form

fobi + frMi; + foMieg® My + -+ + fuMim, g™ My - - - 26072060 M,

2(k—1)J "

where the f;’s are smooth functions on M.

Lemma 4.3 (Maximum principle for tensors)
Let M;; = M;;(p,t) be a nonnegative definite symmetric (2,0)-tensor on My for each

t. Suppose that

8Mij
ot

OM;;

=AM+ Oxy,

+ Ny, 0<t<T, (4.2)

0X
where y = ykm is a vector field and N;j = P(M;;, g;j) is a polynomial in M;; formed
x

by g-contracting products of M,; with itself. Assume that N;; satisfies the null-vector
condition, i.e., if v € T,M; is such that
Mijvj = O,

then

Nijvivj 2 0.

29



Then, if M;; > 0 at time t = 0, it will remain nonnegative as long as the solution to

4.2 exists.

Proof:
Let

K = max| il

where |M;;|? = (M;;, M;;), as defined in the previous section (notation 3.1). Take

now an arbitrary € : 0 < e < 1 and define

M = M;; + (5 +t)gi;.

Clearly Mij > 0 at time ¢t = 0. We claim that, for the time interval [0, J], ]\;[ij > 0
everywhere on the manifold. . Suppose that this is not true. Then there exists a first
time ¢y € (0, ] and a point xy € M,,, such that J\;[ij has a null eigenvector. Namely

v € Ty M,,, that we can take to be with |v| = 1.

At the point (g, %), the tensor N;; satisfies

Nijvwj = Nijow; + (Nij — Nij)viv; = =[Ny — Nig| = —=C1|M;; — M|

> —2C¢e)

where N;; = P(M,;,gi;) and C = C(K) is a constant that depends on K, since P is

a polynomial.

To proceed, extend v to a unitary vector field on a neighborhood U of zy by par-

allel transporting v along geodesics starting at xg, during some time interval [0, ¢].
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Note that % = (0 along any geodesic and V o v; =0 on U.

oz

Consider now the function defined by

f(l', t) = Mijvivj.

Then f satisfies f(z,t) > 0forallz € My and t: 0 <t <.

Moreover, since f has a minimum at (x, to),

—(20,t0) <0, (4.3)

0
a—;(l’o,to) = O and Af(l'o,to) 2 O,

We conclude that, at (xg,to),

af oM, OM;;
E = 8t JUZ"U]' +e= (AMij)Uﬂ}j + (yk aaj‘kj )Uﬂ]j + Nijvivj + €
of
= Af—i—yk% —FNijUin + €
> (1-2C%)e.

0
Hence, choosing § = min1/4C, T, we get a—{(xo,to) > 0, which contradicts 4.3.

Therefore

Now, taking limit when ¢ — 0 we get that M,; > 0 for all ¢ € [0,6]. We can repeat
the same argument to prove that M;; > 0 for t € [9,26], so M;; > 0 on [0,26]. After

finite iterations, starting with M;;(J), we get the nonnegativity over all [0, T7.
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Proposition 4.4
If the second fundamental form h;; is nonnegative definite at t = 0, it remains so as

long as the flow exists.

Proof:

We know that

ot = Ahw - 2Hhilglmhmj + |A|2hzj

Let us define

M;j := hij,
Nz’j = —2Hhilglmhmj -+ |A‘2h”

Observe that if hjjv; = 0 then (—=2Hhyg"™hm; + |A[*hi;)v; = 0. Hence, by the

maximum principle for tensors we obtain that h;; > 0 for all ¢.
O

Next we will show that the strict convexity of a hypersurface is preserved by the mean

curvature flow. The following lemma is due to Huisken [5].

Lemma 4.5 (Pinching estimate)
Suppose there exist two positive constants € and 3, with 0 < ¢ < % < B < 1, such

that

eHgy; < hij < BHg;; (4.4)
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and

H >0 (4.5)

at time t = 0. Then inequalities 4.4 and 4.5 also hold for any positive time where the

flow exists.

Proof:

We know that H evolves by

OH )
Fra AH + |A|I°H,
SO
OH _ AH > 0.
ot

Then, by the maximum principle for parabolic PDE’s; we know that H > 0 for all

times.

In order to prove the first inequality in 4.4, let

M;; —Fj—agw,
2 OH

k. 4 unOH
y _Hg ozl

and

Nij = 2€Hhij — thmgmlhlj.

We want to apply the maximum principle for tensors. Then M;; > 0 for all times and

the first inequality in 4.4 will be proven.
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Notice that

and

SO

8hij o
H ot hija_il
H?2
HAh” — 2H2hilglmhmj + ’A|2hZ]H — hl]AH — hz]lAPH
H?2
HA;; — hi;AH
iR g™y,

H2

v (hu) _ HYVihy = Vil
H H? ’

hi
"V, <EJ>

o VeH hij + HV N hi; — Vihi Vi H — bV V, H
9 2
o 2HV  H(HV by — hiyV, H)
g HA
HAhy; — hyyAH 2V H(HV hy; — hyV,H)
H?2 -9 H3
Lt = g SV H Y, <FJ) .

Then, on one hand we have
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OM;; HAh;; — hi; AH l 0gi
HAh;; — hi; AH m
- JH2 J — 2himg""hij + 26 Hhy;.

On the other hand,

OM;; HAR;; — hi; AH 2 hii

k ij _ ij ij Kl ij
AM;; +y oo T Ny = 7 — 9" ViV (—H)
+ Eg le ( H2 — 5V;€gij

+ 2€Hhij — Zhimgmlhlj

= 2€Hhij — thmgmlhlj
(9Ml-j
ot ’

since Vg;; = 0.
Then condition 4.2 in theorem 4.3 is satisfied for our choice of tensors. Let us check.

Suppose that for a tangent vector v we have

Then,

Nijviv; = 2eHhj v — 2himgmlhljv,-vj = 2cH(Hev;)v; — Qle(Hé“’Ul)(HEUm)
= 252H211jvj — 2eHv,, v,

= 0.
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We are therefore in hypothesis of theorem 4.3, and our claim holds.

The analogous argument with

Mi/j = Bgij — H

proves the second inequality in equation 4.4.

O

We are now able to prove that a convex hypersurface evolving by the MCF will remain

embedded and strictly convex for all times such that the flow exists.

Proposition 4.6 (Convexity is preserved)
Let M; be a compact embedded hypersurface evolving by the Mean Curvature Flow.
If M = My is strictly convex, then M; remains a strictly convex compact embedded

manifold for t > 0.

Proof:

By lemma 4.5 we know that the mean curvature H and the second fundamental form
hi; will remain positive for all times. It remains to prove that M, is an embedded
hypersurface for ¢ > 0. Suppose for some ¢y the manifold develops a self-intersection
at xy € My,. Then by a theorem of Hadamard, near z the second fundamental form

hi; cannot be positive, which contradicts that it should remain positive everywhere.
O

As a consequence of this proposition, the convex manifold M; can be described as

X(z,t) =r(z,t)z, z e S" (4.6)
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for any ¢ > 0 as long as the flow exists.
Hence, to understand the evolution of the manifolds M; it is enough to know how the
function r(z,t) behaves in time. We therefore seek its evolution equation.

From 4.6 we note that

ox _ ﬁan g(Vr %)Z + r%
ot ot IV ot
. . 0X .
Moreover X satisfies the MCF equation il —Hv, and since
1 e Or 0z
VS AT
we have
or - Oz 0z 1 e Or 0z

—z+9(Vr,—)z+r—=—

o o T e o D

Taking inner product with z in both sides of equation 4.7 we get

or 1 - 0z

0
Also, by taking inner product with 8_21 in both sides of equation 4.7 we get
U

0z 0z H e Or
B H or
B 2+ |Vr|2 0wl
Since we can write any v € 1,S™ as v = (v, 8—?>§ij8—?, we get that
out"” ouw
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0z H 1 or 0z

E 71/7’24— |V7“|2 ou’ 8U1

and therefore

0z or 0z 0z

%) = 7 aua<at oa!
H 1 or Or 0z Oz

_ gightd (= O,
T /2 +|Vr2 0ul OuF “out” Oul
B %kg 1 or or
— 9 gzzg /—7"2 T |V’)“|2 Oul auk
1
= |V7”|2

T T2+ |?r\2.

Now we can rewrite equation 4.8 as

or rH _ |VrPH

ot VT2 |Vr2 ry/r2 4 V]2

(24 Vi) H
r\/12 + |Vr[2

H —
= ——=\/r2+|Vr]2
.

Since H = g“hj,

a Y Virvir 1 . 0%r
ot T TR ) e e\ ouidw
or Or YR N Y —
+ 28u1%~|—r g,]); T +|V7’|,

and consequently
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or 4 ViV 0?r or or 5
- = Y — = - - — 22— — i ] - 4.
or " (g 2+ |Vr\2> (raulauf ouious | TP (4.9)

4.1 Longtime existence and convergence results

To prove long-term existence of MCF for compact convex hypersurfaces we move now
to a new set up. This is not the original argument of Huisken in [5], but rather a

simpler argument due to Andrews [1].

Definition 4.3.

The support function of the convex hypersurface X : M — R is
S(z) = (z,X(v '(2))) ze 8",

where v~! : S — M is the inverse of the Gauss map.

Remark 4.1.

We can represent the hypersurface M via the support function by
X(2) = S(2)z + VS(2),

where V is the connection associated to the round metric g on S™.

Proof:
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Consider the basis of T,5"
{2,V12,...,V,2}

In this basis, the normal component of the vector X(z) is given by the support

function while the tangent components are simply

(Viz, X(2)) = V,;5(2).

Proposition 4.7
The components of the second fundamental form of the hypersurface are, in terms of

the support function, given by
hij = ViV;S + Sgi;,
foralll <i, 5 <n.

Proof:

Note that

Then,

= <vzﬁjz s X(Z)) —+ (?]z s ?ZX(Z» = _hij <Z s X> — <Z s @J?lX>
p 0X

= —GijS(2) + hji — <2T1jauk>

—gl]S(Z) + hija
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where we used that g;; = Eij. Indeed,

0= <Z s VJZ> = gij == <VZZ,V]Z> = — <Z,V1ij> = Bij

Definition 4.4.
Let M be a manifold and {kq, ..., k,} its principal curvatures. The principal radii of

M are given by

1 1
{R—l,...,ﬁ—n}.

Lemma 4.8
The eigenvalues of h;; with respect to the metric § are the principal radii of the

hypersurface, i.e. the reciprocal of the principal curvatures.

Proof:
_ 0z 0z 0X mn OX -
Gij = <%7%> = ( ikgkl%?hjmg %> = hik:hjmgklg Gin
hirhug™,
: : ) . 0z
where we used the Gauss-Weingarten relations 1.2 to differentiate I Then,
x

gij — (h_l)ik(h_l)jlgkl,

and therefore
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hisg* = by (B (R g
— ()
This means that the eigenvalues of h;; with respect to g are the same as the eigenvalues

of (h™1)% with respect to g. The latter are the reciprocal of the eigenvalues of h;

with respect to g.

Definition 4.5.

Let M be a compact convex manifold. The width of M at p = v~'(2) is given by

w(z) = S(2) + S(—=2) Vze S

The next lemma is due to Andrews [1].

Lemma 4.9

Let M be an smooth compact hypersurface of R, Suppose there exists a constant
C such that

Fmaz () < CRpin () Vo € M.

Then

Wmax S Cwmin7

where Kmae(r) = max{k1(z), ..., kn()}, Kmin(x) = min{ki(z), ..., 6, (T)}, Winae =

max,egn W(x) and Wy, = min,egn w(z).
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Proof:

Let z_ and 2z, be such that

z_ € min{w(z) |z € S"},

2y € max{w(z)|z € S"}.

Let ¥ be a totally geodesic sphere of dimension 2 in S™ containing z_ and z,. We

can parametrize the 2-sphere by local coordinates

12 2 o1 2 ] 1
(xl,2%) = (cosa? sinx,, sinaz? sina,, coszl),

with (21 ,2%) € [0,7] x [0,7/2] and 2}, = 0 corresponding to z;.

Note that
_ 2 2 .1 2 o 1N2
G11 = |(cosx? cosx?, sinz] cosa?, —sinx)|" =1
and
q = (cosx? cosz?, sinz! cosa?. —sinzl) - (—sinz? sinz!, cosz? sinzl. 0
12 + + + +9 + + + + +
= 0.
Therefore

_ - 98 L, 08 ., 98
R
oS
T Ol
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since I'{; = T'?, = 0. Then we can write

ViViS +guS = + . (4.10)

Let B be the matrix

B := HessgS + g5S.

We know by lemma 4.8 that the eigenvalues of B are the reciprocal of the principal

curvatures of M. Let us compute

2
/ (HessgS + gS) sina! dal da?.
0

/ ( 5+ S) Slnx+dx+dx+
—-Sec

2
os:p+‘0 )dx+

— 27(S(z4) + S(—21)).

/ Blal, e\ )dus —
>

I
N\N

Analogously, we would get

/ZB(xl_, o )dus = 2r(S(z_) + S(—z.)).

By hypothesis, () < Chpin(z), therefore

implying that

B(zl,xl) < CB(zl,ah). (4.11)
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Integrating 4.11 over X we get

(S(z4) + 5(=24)) < O(S(2-) + 5(—2-)).

Thus,

Wmaz S Cwmzn .

Lemma 4.10 (Containment Principle)
Let M and N be two n-dimensional, strictly convex, compact embedded hypersurfaces

in R™ via

X:M—R" gnd Y:N— R

respectively. Suppose N C M and we let them evolve by the mean curvature flow.

Then, Ny C M; as long as both flows exist.

Proof:
Suppose t is the first moment such that M;, N N;, # 0, and let us consider a point
zo in the intersection.

At the point (xo,t) we have,

HM(QZ(), to) < HN(.T(), to),

where H); and Hy denote the mean curvature of M and N respectively. Let us also
denote by vy; and vy the outer unit normal vectors of M and N.

Then, since xg is a tangency point we have that

45



v (o, to) = vn (0, o),

so the velocity vector vy, of zy € My, is colinear with the velocity vy at g € Ny,

and their modulus verify

‘UM| = HM(.Z‘(),to) < HN(Lb’o,to) = |’UN|.

Therefore the tangency point disappears immediately.

Theorem 4.11
The solution of the Mean Curvature Flow with initial data a smooth, strictly convez,
compact hypersurface M exists on a maximal time interval [0,w) with w < +o0.

Moreover, X (-,t) converges uniformly to a point in R*™! ast — w.

Proof:
Since M is compact, it is contained in a sphere of radius R. We know by equation

4.9 that the radius of the sphere evolves according to

r(t) = vV R? — 2nt.

Therefore, the sphere collapses to a point at time 7' = R?/2n. Since M is contained
in the sphere the maximal interval of existence of the flow also has to be finite. To
prove that M, converges to a point, it is enough to show that the enclosed area tends
to zero as t — w . If it’s not zero, there exists a small ball contained in M; for all

t € [0,w). Hence if we write
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X(z,t) =1r(z,t)z,

then r(z,t) and |[Vr| have uniform upper and lower bounds coming from the enclosing
and enclosed spheres. Therefore equation 4.9 is uniformly parabolic, and the solution

cannot be singular at time ¢ = w. This contradicts that [0,w) is maximal.

4.1.1 The normalized mean curvature flow

To understand the shape of M, near the singularity, let us rescale the solution as

~ 1
X(z,7) = m (X (z,t) — X(z,w)),

where 7 = 7(¢) is a reparametrization of time. Explicitly,

11 w—t
T=—=log| — |].
2 & w

Then

dr 1

At 2(w—t)
and the evolution equation for X is given by

% = —H(z,7)o(z,7) + X(2,7).

Indeed,
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0X (2,7) X dt

or ot dr
1 0 1 dt
= w9 v 2w —t) + 2(w_t)(X(x,t)—X(x,w)) .
= 2(w—t)a—)t(+)~(:— 2w —t) Hv + X
= —Hiv+X.

We will adopt the symbol M, to refer to the solution of the rescaled MCF.

Lemma 4.12

There exists a positive constant C such that

Cilgﬁingfoutgé V7'20

Proof:

We know by lemma 4.9 that there exists a constant C' such that

fout S 7vbmax S Cwmzn S c(n)C’fm,

where ¢(n) is a constant depending on the dimension of the manifold (see [8]). Let
us denote C' := ¢(n)C.

By definition of ., the manifold M, is enclosed by S, ) (&), for some { € R**1.
Since both S, ,, ) (§) and M, are convex manifolds, My will be enclosed by the evolved

sphere for ¢’ € (t,w). The evolution equation for the radius of the sphere is, by 4.9,

or .
— =nr,
ot
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since 7 does not depend on the point. Then,

and therefore

0 < Toult!) S 7(t) = \/rult) = 20(' = 1) < V/roal®) = 2(F = 1),

which implies that r,,:(t) > 2(t' — t) for all ¢ € (t,w). Now, taking limit as t' — w

we get 7oyt (t) > 2(w — t). Hence we conclude that

7:out (T) Z 17

and since 7 < CTyp,

C_l S fzn

Now, let us consider S, (&) the biggest sphere enclosed by M;. By the same

Tin(t)

argument

r() = /7200 = 20(t — 1) < riu(t) < (),

for all ¢ € (t,w). Again, taking limit as t’ — w we get

o (t) = 2n(w —t) < rip(w) =0,

wm

since M, converges to a point as t — w. Thus

and therefore
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oY

fout (T) S

Lemma 4.13

There exists a positive constant C' such that

sup{ﬁ[(x,T) |z e M,7>0}<C

Proof:
Let ty € (0,w), and suppose the biggest sphere contained in M, is centered at 0 €

R™"!. Then, for all t € [0, t,]

S(z,t) > rin(to).

Note that
os oz 0X  oXow Y. X
i <E’X<Z)>+<Z’E+@ BN ) = <Z’W>
= —H

Using the calculations done in lemma 4.8 we can write the mean curvature H in terms

of the metric in the sphere. Indeed,

H = hijgij = hij(h_l)imgmn(h_l)nj = 5?7mn(h_1)nj

Also, the same lemma and proposition 3.1 give us
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OH _
YT g (Vi Vi H 4 Hggl).

Let us consider the function ® : S™ x [0,ty] — R defined by

H(z,t)

R T )

where a = 31, (to). Note that S —a > 0 for all t € [0, #).

Let (z1,t1) € S™x [0, o] be a point such that ® achieves a maximum. Then at (z;,%;)

we have

and therefore

Thus,

Also,

v

O V.V;H V;HVS V;HV;S HVV;S sz]’S?iS

B S—a (S—a)? (S—a)? (9—a) (S —a)
V.V,H VS - V;S = HV,V;S

S—a S—avjq)_mviq)_ (S —a)?
V.V;H HV.\V;S V.,V;H N Hgi;S — hiH

S—a (S —a)? S—a (S —a)?
V.V,;H N Hg;;(S —a)+ aHg;; — hiyH

S—a (S —a)?
V.V;H + Hg; n aHg;; — hii H

S—a (S —a)?
ViV,H + Hgg; < % (4.12)
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00 _ 1 oH__H s
o  S—adt (S—a)2ot
1

e e _ H?

So, using inequality 4.12,

- S —a S—a S —a S —a
2H? — aH|A|?
S—a ’

since gYg;; = g¥h;rg" hy; = |A|?. Moreover, H*> < |A|?, thus

H <

2 4 < 4C
a Tin(tO) - Tout<t0)’

due to lemma 4.9. Then using lemma 4.12 we conclude that, for K = 4CC we have

H(z,t;) < K. Therefore, for all z € S", t € [0,ty] we have
H(z,t) < K.

Then, taking limit when ty — w we get the bound on all S x [0,w). Hence

H(z,7) < K VezeM, Tel0,+00).
U

To conclude that we have convergence to a point, we recall the following theorem,

that can be found in [8].
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Theorem 4.14 (Blaschke Selection Theorem)
Let {K}jen be a sequence of compact convex sets of R™™ which are contained in a
bounded set. Then, there exists a subsequence {Kj, }ren and a compact convex set K

in R™Y such that K, converges to K in the Hausdorff metric.

Theorem 4.15

Let M, be a smooth strictly convez, compact hypersurface embedded in R™*' evolving
by the normalized mean curvature flow. For any sequence of times {T;}jen such that
T; — +o0o there erists a subsequence {Tj, }ren Such that {Mm tren converges to a

smooth compact convex hypersurface Mo, in the Hausdorff metric.

Proof:

By definition, we know that for some z, € R**!

MT() g Souta

where Sout = Si,..(r)(%0), the n-sphere of radius 7o, (7) centered at xy. Then by
Blaschke theorem, there exist a subsequence of times {7, }xen with 7;, — +o0 such
that {Mm }ren converges to M, in the Hausdorff metric.

It remains to prove that M., is non-degenerate. For this, note that for all 7, we have

Tin (Tjk) > é_l )

by lemma 4.12. Therefore M, contains a sphere and since it is convex, it is non-

degenerate.
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Chapter 5

Evolution of entire graphs

Unless otherwise stated, the results of this section are due to Esker-Huisken [3].

Definition 5.1 (Entire graph).
An orientable manifold M™ embedded in R"*! via X : M™ — R"*! is said to be an
entire graph if, once chosen a continuous normal vector field v, there exists w € R**!

with |w| = 1 such that

(V|x() »w) >0, Vpe M.

Remark 5.1.
Since the condition of being an entire graph is open, we can insure that the manifold
will remain a graph for some small time interval (0,¢), ¢ > 0. Later in this monograph

we will be able to show that the graph condition is preserved as long as the flow exists.

Notation 5.1.
For simplicity of notation, given p € M with local coordinates z = (z!,...,2") € R",

we will identify the point z in R" with the point X (p,¢) in R**'. Tt should be clear
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from the context which one we are referring to.

Definition 5.2.

A backwards heat kernel is a function p : R"™ — R defined as

)=l ().

where (z¢,%9) € R"™2 is an arbitrary fixed point, x € R"™ and ¢ < t,.

Lemma 5.1
Let My be an entire graph evolving by the mean curvature flow. Then, its backwards
heat kernel satisfies the evolution equation

dp (rg—x,—Hv) |(xo—2)*|?

@ _ _A _
dt pp to—1t Aty — )2 |

where the superscript 1 denotes the normal component of the vector and A is the

Laplace-Beltrami operator on M.

Proof:

We compute

) n,o Cnfae —|zo — |
_ [ n/2 o n/2—1 0 T A
By 5 (4m) ™™ =(tg — t) exp ( 1o —1)

- E(tol—tﬁ%(:ﬂéﬂ:ﬁ)]p
_ {E 1 _1(;1:0—95,Hu>_1\x0—x\2}
to—1) 2 (to—t)  dfto—02]"

since
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oz
— = —Hv.
ot v

Now we compute Ap with respect to the evolving metric. We have

Vip = [rlt —t)]*”/2exp (—|Io — x| ) i 1 (2 (zg — ZC,%H

4(to — t) 0o—1)
I 3
T 20ty —t) 0T T aL!’
and
&p _ 9 1 (zo — 8_3“")
Oxidxd O |2(ty — 1) o e
0 1 Ox dp
= {Q(to—t) (o a—ﬂ T o
_ 1 ( 0w ) — <8_x @>
T 20ty 1) | 0T T gioai’ T \oai 0ai’|”
1 ox Ox
+ 4(t0—t)2[<0_$’@>”<0 ’81>]p
B 1 p 0%
- 2(t0 —t) |:<.T0 _x7_hljy+rijw> - gl]:| p
1 ox Ox
+ 4(t0—t)2[< 0=z, 5 )l{zo— 2, 55)p
Therefore

g 9% Op

Ap = ¢V V.p= g7 —L— i Ik

p 9'ViVip=g oo Y gkl

1 1 1 1

- o - H o - - o T2

2(t0_t>[<x0 Z, I/> n]+p4(t0—t)2‘<x0 ’
1[(xg—x 1 1 (xg —z,Hv)

PLA (to — 1) to—t 2 (to—1)

)P

n
2
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Hence we conclude that

p  {zo—x,—Hv) 1 [lro—2* |(xo—x)"?
A oy 1" [to—t)Q (to—1)?
B (xg — 1z, —Hu>_1|x0—x)L|2
B (to —t) 4 (to—1)2 |’

where the last equality holds by Pythagoras.

Theorem 5.2 ([6, Theorem 3.1])
Let My be an entire graph evolving by the mean curvature flow and let p be its back-
wards heat kernel.

(a) The following evolution equation is satisfied

d 1 2
S pdpy = — Hy+ ——— (w0 — 2)*| dp.
dt /]Wt petit /IWt p‘ v 2(t0 - t) (xo x) i

(b) More generally, for any function f = f(x,t) on M, we have

d of 1
[ sote= [ (G =ar)on= [ sl gy

Proof:
Without loss of generality we assume zy = 0 and set 7 = t; — ¢t. Then, we use the

evolution equation given by lemma 5.1 to compute
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/pdm = / dﬂt /pH?dut
M, Mt M

x,Hv |2
= - Apduﬁ/ p[< ) _ | Hdut—/ p H?dyuy
M, M, T 4T M,
zt, Hy x 2
= / p{< - >_‘47_2‘:|dﬂt_/ p H?dpuy
Mt Mt
J_2
— [ o|ay-5| du,
M, 27

where we used that the manifold M; has no boundary, and therefore

/ Apdpy :/ pA(1)duy = 0.
Mt Mt

The argument to prove part (b) is analogous to the one used in part (a).

)
fodne = [ (ot 1P~ [ sotan
Mt Mt Mt
of (r,Hv) o'
/Mt(ﬁtp pr)th+/tfp|: |
- fo Hdp,
My
_ of (zt,Hv) o]
= /(at/) Afp)duﬂr/tfp{ T |
- przdﬂt
My

2
duh

€1

B af x
= /Mt<8tp Afp)duﬁ/Mtfp Hy — -
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since

/ FApdu = [ AFpdp.
My M,

Corollary 5.3
Let f = f(x,t) be a function, let V = (x,t) be a vector field on My and x = X (p,t) €

M;. Suppose that for some t; > 0,

s= sup |V|<oo
M0, 1]

and that the following condition is satisfied

0

where V = V) 1s the gradient on M;. Then, we have

sup f < sup f, Vt € [0,t4].
M, Mo

Proof:

Let

frx = max{f — K,0}

where K = sup,,, f. Then fx is piecewise differentiable so, weakly, we have
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0 0 15)
(a - A) fo = 2O g n f 2V I = 24 (a - A) fi — 2 ficl?

< 2fk(V - Vik) =2V ik’ = (fxV) 2V fx — 2|V k|’
1

< §fz2(|v|2+2|va|2—2|VfK|2
1

S 582.]([2(7

where we used the arithmetic-geometric inequality, i.e.,

ab < =(a® +v?) (5.1)

N | —

for all real numbers ¢ and b.

Fix ty € R with 0 < ty < t;. Using theorem 5.2 part b, we know that for x € M, and

0 <t <ty we have

o frpdp :/ %—Af2 pdu_/ ficp HV+;(:U —fﬂ)leu
ot S, KT a, \ Ot K VR 2Atg — )" '
1
S LT
My

for p defined around a point (z,ty) € R"*? with xy = X (p, to).

Therefore, comparing the integral

1) ?(pd,ut
My

with the solution of the ODE
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we see that

0< [ fipdu < { fﬁpduo] ezt =0

M, My

since fx(z,0) = 0. Thus, fx is zero on every M, and it follows that

f(:L’,t) <sup f
Mo

for every 0 < t < tg and x € M,. Now taking the supremum over all x € M, and all

0 <t <ty we get

sup f < sup f.
M; Mo

for every t € [0, to]. Taking the limit when t, — ¢; yields the result.

5.1 A priori height estimates.

Definition 5.3 (Height).

Let t be fixed. The height of M, with respect to the hyperplane
(W]t = {(21, ..., Tnp1) € R (21, ..., Tpy1) ,w) = 0}

is the real valued function
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u(z,t) = (x,w), Ve M.

Remark 5.2.
The definition of height suggests us that the manifold M = M, can be represented
as the set of points (z,u(x,0)), r € [w]* and u being the height. Subsequently, the

manifolds M;, t > 0, are determined by u(z,t). Moreover, u satisfies

ou Vu
— =4/1 2div | ——— 2
o — V1t |Vul|? div (1 n ]VUP) : (5.2)

where the derivatives of u are taken in the directions perpendicular to w.

O
Remark 5.3.
The function height satisfies
0
Indeed,
ou 0 0
E - E <X<p7t) aw> - <EX(p7t) 7w> - <AX(p7t) 7w> - A<X(p7t) ,UJ)
= Au.
O
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Lemma 5.4 1. The function

m(z,t) == |z|* + 2nt, r € M, t>0,

satisfies

2. The function

ma(z,t) =1+ |z|> — u® + 2nt, r € My, t>0,
satisfies
8 P 2 p—2 p—1 2
5~ &)= —po = DIVl + 2p [Vl VpeR.
Proof:
1)
0 0

0X

= 2n—2(Hv,X)

and
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» o? 0
= — q¥ _Tk_ =2
Angp = A(X | X) g [&piaxj (X, X) F”@azk (X,X)}

g 0 ,0X 0X
ij o 2 42 _ ok /%
o 2 (5 ) -2t (5 )

92X 0X
= 20" [ou + {0 ~Th (e V)

— 2 +2(AX,X)

= 2n—2(Hv,X).

Hence

2) Notice that

ot ot
= —2|Vul.

(2 — A) u? = Qu@ — 2uAu — 2|Vul]? = 2u (2 — A) u — 2|Vul?

Hence

0 A 0 )
(@-a)m = (G-2)n-(z-2)

= 2|Vul®.

Now,
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0 oy

Z P =p 2 p—1
825772 p ot €lay
and
Anf = pb Ay + p(p — 1)V *n5 %,
thus

) (0 -
(a—A> o= D 1(5—A) e — p(p — 1)V nh

= 2|Vul*y ™ — plp — 1)|Vina*nh >

Proposition 5.5

If there exist a constant ¢y and a nonnegative real number p verifying

u?(x,0) < co(1 + |z)* — u?(x,0))P Voe M,

then

w?(x,t) < co(1+ |z|? — u?(z,t) + (2n +4(p — 1))t)? Vit >0, Ve e M,.

Proof:
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Let us consider the function
n(z,t) =14 |z|* —u?* + (2n +4(p — D)t.
We compute
0 0 0
— Al = pP | = A )u? 2 Z _AlpP_9 2y, —p
(5r-a)wre = o7 (g-a)ese (5-8)rr-2v) v
= =297|Vul* = p(p + D[V n7"7% — 2u°py "7Vl
— 4(p— Vpy P’ — dpun "~ 'Vu - Vn,

since the calculations done for 7, also hold for 7.

We observe that

[Apun ™" Vu - V| = |(2unP?Vu) - (2pun V)|

< 27|\ Vul? + 2p%un PR V)P,

Also,
on ox Ox
Ox
= 2<%,x— (x,w)w), (5.4)
thus
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2 a [ On ? ii Ox ?
V= =g pys =49 <%a$—<$7w>w>

49" giilr — (@, wywl* = 4({z,2) — 2 (v, 0)* + (v, w)*w|*)

IN

= A(jz|* —u?)

IN

4n,

since n > 2 and p > 0. Then

(% — A) utn™ < =2p7P|Vaul® = p(p + 1)UV Pn 7% = 2uPpy PV
— Ap(p — DuPn 1 4 2p7P|Vul® + 2p%un P2V
= plp — DEEVn*n™"2 = 2upy P [Vul?
— Ap(p— DuPy P!
< Ap(p — DuPn ™1 = 2uPpy P [Vul? — 4p(p — DuPn P!

= —2u’py P Vul?* <O0.
Now notice that

2 _ ,2\p
> p co(1 + |z]* —u?)

sup u < su
o T, (L [P — R

= Cp,

so we can apply corollary 5.3 to the function f = u*;p™ and the vector field V' = 0.

We conclude that

sup u277_p < sup u2n_p < ¢p.
M, Mo

Thus
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U2 S 0077p>

which is the desired result.

5.2 A priori gradient estimates.

In order to show that M; remains a graph for all times, we want to estimate the

quantity

from below. Hence, let

We shall find a priori upper bounds for v.

Lemma 5.6

The function v satisfies the following evolution equation

(2 — A) v=—|AlPv — 20| Vo]
ot

Proof:

We know that
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ov

& _VvH
ot VA,
then
v 5 v o
5= v(at,w>— v (VH ,w).

To compute Av let us consider {ey, ..., e, } an orthonormal basis of 7,M in which the

metric g at p is the identity. Then

n

A=) V,V.,

i=1
To shorten notation we write V,; := V... Now,

Vi =—0v? (Viv,w) = —v* (hije; ,w),
where the last equality holds because of the Weingarten equations 1.2. Then,

IVol? = ot ((hijes, w)*.
i

For each i € {1,...,n} we have

ViViv = Vz‘(—U2 <hij6j W) = 2U3( <hz'j€j 7W>)2 —v° <Vi(hij€j) ;W)
= 20°((hije;,w))? — v (Vi(hy)e; ,w) — v* (hi;Vi(e;) ,w)

= 2U_1|VU|2 - ’02 <thii€j ,w> + U2hin <hijl/ s w).
Therefore Av is given by

Av =207 Vo]? —v* (VH ,w) + |A|v,
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where we used the Codazzi equations Vi h;; = V;hy; = V;hj, and that H = Z?Zl hi;.

Hence

9 _ 2 —1|o,,[2
(a A)v— |A|*v — 2077 | V|7,

as claimed.

Corollary 5.7
If v is bounded from above at t = 0, then it will remain bounded for all times by the

same constant.

Proof:

Suppose that v(z,0) < b, V x € M. By the previous lemma we have

ov

5 = Av — |A]Pv — 2071 Vo]?,

Let

Umaz (t) := maxv(x,t),
t

which exists, at least for some interval [0, ¢).

If the maximum on M, is reached at a point (), then

VUnae(t) = Vv(x(t), t)=0

and

AVpae(t) = Av(z® 1) < 0.

Therefore,
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0
avmax S _‘AIQUmax S O;

possibly in the weak sense, as v, may not be everywhere differentiable, but it is

Lipschitz continuous. Thus, v,,,, is decreasing with respect to t. Since

Umax<0> S b;

we conclude that

for all x € My, t > 0 such that the flow exists.

Proposition 5.8

Suppose there exist a constant c; and a nonnegative number p such that

v(z,0) < ey (1 + |z]* — u*(2,0))?, V& € M,.

Then, v satisfies

v(x,t) < e (14 |2]* — u?(z,t) + 2nt)? Ve M,

Yt >0 for which the flow exists.

Proof:

The argument is analogous to the one used to prove lemma 5.5
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5 . o _ .
(E - A) vny” = APy " = 207 Vo, " = plp + V| Vipln 7

— 2pon, " [ Vul® = 2p, " V- Vi

and
oy _ —n/2 —p/2—1
20157 V0 - V| = (207 Y2Vl ) (pu 20, P V)|
_ 1 o
< 27 |\VoPn” + Sptun” ? Va2
Thus,

IN

) 1 o -
R (5192 +P> | Va2 — 2pmy P Vul?

0 _
(=)

IN

0,

as p > 0. We now apply corollary 5.3 for f = vn,” and V = 0 to conclude that

supvn,” < ey,
My

and the result follows.

5.3 Curvature estimates and longtime existence.

In this section we will show that as long as M, remains an entire graph with bounded
gradient v, the curvature remains bounded as well. In fact, the a priori bounds to

the second fundamental form M; are essential for proving longtime existence to the
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mean curvature flow with smooth initial data. However, in order to get the estimates

and longtime existence for the flow, extra hypothesis are needed.

Assumption. We will assume that the manifold has linear growth, i.e. there exists

a constant ¢; > 1 such that

v<¢

at every point in My. Proposition 5.8 assures that this bound will hold for all times.

Lemma 5.9
The following differential inequality is satisfied during the evolution of an entire graph

under the mean curvature flow

(% - A) |A]2v? < =207V - V(JA[*0?).

Proof:

Using lemma 5.6, we can compute

(2 - A) vt o= 21}% —20Av — 2|Vo]? = 20(—|A*v — 207 Vu|?) — 2|Vo]?

= —2|A]*v* - 6|Vu]?

By proposition 3.1 we know how |A|?, the norm of the second fundamental form,

evolves in time. Hence
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0
(& - A) |A]2 = —2|VAP + 2|A[* < —2|V|A|]? + 2| A]*.

Therefore

(% = A) (JAP?) = o? (% - A) A* + |47 <% - A) v? = 2V(JAP) - V(v?)

< —2VIA|*? - 6|Vl ||A] = 2V(JAP) - V(v?).

Now,

—2V(|A?)-V(©*) = =V(AP) - V(v*) = 40|A|(V[A) Vv
= —0v 2V(0?) - V(|A*0?) + v 2|V (0 2| A — 4v|A|(V]A|) Vo
= —20'Vou - V(JA]2v?) + 4|V |A]? — 40| A|(V|A]|) Vo
< =207 Vo - V(|A]*0?) + 4| Vu||A]? + 203V |A]? + 2|V A

= 20 'V - V(JA|?v?) + 6|Vu*|A|* + 20%|V|A]]?,

where we estimated —4v|A|(V|A|)Vov with the arithmetic-geometric inequality. We

can use the last inequality to conclude that

0
(a—A) (APW?) < —2/V|Al2? — 6|VoP||AP — 2V(JAP) - V(%)

IN

—207 Vo - V(JA]*v?).
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Proposition 5.10
If M evolves by the Mean Curvature Flow with bounded gradient and bounded curva-

ture for each My, then

sup |[A]*v? < sup |A]*0”.
M; Mo

Proof:

Let f = v*AJ]* and V = —207'Vu. Note that

vVl < |Alv.
Indeed, if {ej,...,e,} is an orthonormal basis of 7T,M in which the metric at p is
gij = 51']'7 then
Viv = —v* (Viv,w) = —v? (e, , w)

SO

Vivl <D 1071 hal
k

and

Vol =Y |Vl =0* ) bl = 0’AP
i i,k

Then, V' is bounded. Hence we apply corollary 5.3 to conclude the estimate.

Proceeding as in [4, §13], we can get the following lemma.

Lemma 5.11

For any nonnegative integer m we have

1)



0
S VAP = = 2VTHAR 4 [V AP

+ C(m,n) Z ViAxVIAxVFAx V™A, (5.5)

i+j+k=m

where V'A x VI A denotes any linear combination of the tensors VA and VIA. In

particular, we have

%‘VmAP S o 2|Vm+1A|2 + ’VmA|2

+ C(m,n) Y |V'A||VIA||[VFA|[V™A. (5.6)

i+j+k=m

The preceding lemma allows us to derive uniform a priori estimates for derivatives of

any order of the second fundamental form.

Proposition 5.12
Let M be an entire graph evolving by the mean curvature flow. Suppose that v, |A|?,

VA2, ..., [V™A|? are bounded on each M. Then for all t > 0

sup [V™A| < C,
My

where C' depends on m, n, ¢, and supy,, |V?A| for j : 0 < j < m.
For a proof of this proposition we refer to [6, Proposition 2.3].
The following proposition provides another proof of proposition 5.12 for any time

interval [0,¢), e > 0, by giving interior estimates. Also, it shows that, asymptotically,

the graph will flatten out at infinity.
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Proposition 5.13
Let M be an entire graph evolving by the mean curvature flow. Suppose that My
satisfies a linear growth v < cy. Then there ezists a constant C = C(m,n,c;) such

that

t"HHYmAR < O, (5.7)
uniformly on each M,.
Proof:

We’ll prove this theorem by induction on m. Let us set m = 0 and compute the

following

0 2,2 .2y _ 2 2 0 2,2
ov 9
+ 21}5 — 2vAv — 4]Vv|

< 2|A%? — 207 Vo - V(2t|A*v?)

ot
= 2/AP? — 207V - V(2t|A|*v?)

+ 20 (2 — A) v — 2|Vul|?

— 2|A%? — 6|V

IN

—207 Vo - V(2t|A]20?),

where we used lemmas 5.6 and 5.9. Then, we can use corollary 5.3 with

f = 2t|A*0* + 0%

V= —-20"'Vo,
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to conclude that

sup(2t|A|*v? + v?) < supv® < cf.
M, Mo

By 5.11, we know that for any [ € N

<% _ A) (tl+1|le|2) S _2tl+1|vl+1A|2 + (l + 1)tl|le|2

+ C(Ln)tHh Y [ VIA|VA|IVRAVIAL (5.8)

i+jtk=l

Suppose equation 5.7 holds up to m — 1, and let us use it to estimate the following

N VAV A VRA| VA

i+j+k=l
< YT VOGO VEA|VIA]
itj+k=l
< Cl tl Ztk/27I/2|va||le|
k<l
= CPVIAY CRvRA|
k<l
< Gy tVRAP (5.9)
k<l

Putting together equations 5.8 and 5.9 we get that for all [ < m

(% _ A) (tHl’le’Q) < _2t1+1|vl+1A|2 + (l + 1)tl‘VlA‘2 4 ngtk/2‘tk|vk14‘2
k<l

IN

_2tl+1|vl+1A|2 + ngtk/2|VkA\2.
k<l

Note that we can choose a constant k; such that
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(a o A)(tm+1|vmz4|2+k1tm|vm_1A|2):
_ 2tm+1|Vm+1A|2+ngtk/2|VkA|2
k<m
— 2Ut"|VAP + kCs Y VAP
k<m-—1
< Gy Y PIVRAP — 2kt VAP + Gy Y 2 VEAP
k<m k<m-—1
< Gy Y PIVEAP 4Gy Y R VEAP
k<m-—1 k<m-—1
< Gy Yy tPVRAP
k<m-—1

Analogously we can get constants ks, ..., k1 such that

(= — A)E"THV™mAPR + by t" |V AP + kgt VT T2AR

+ ...+ km,1 tQIVAF + kmt’A‘Q -+ k‘erl’UZ)

IN

0.

Then, using once more corollary 5.3 with V = 0 we get

VAR 4+ Rt VT AP 4 kgt VT2 AR £ L

+ ...+ km,1 t2|VA’2 + k’mt|A‘2 + ]{Zm+11)2

is uniformly bounded. Since the last m + 1 terms are bounded by the induction

hypothesis, we get that

thrllva’Q
is uniformly bounded.
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Theorem 5.14 (Longtime Existence)
Let M be a smooth entire graph with linear growth. Then, the Mean Curvature flow

with initial data My = M has smooth solution for all t > 0.

Proof:
Let [0,7") be the maximal interval of existence of the mean curvature flow with initial
condition M. Suppose T' < +o00. By corollary 5.7 we know that M, remains an entire

graph for all ¢ € [0,7) and so it is

hm Mt'

t—T—

By corollary 5.10, we also know that the norm of the second fundamental form |A|*
is bounded by initial conditions. Therefore H, the trace of the second fundamental
form also remains bounded for all ¢ € [0, 7).

Then, Proposition 5.13 gives us bounds for all derivatives of the second fundamental

form, so we can conclude that
Mr = lim M,
t—T—

is also a smooth entire graph with bounded Mean Curvature. Hence we can restart
the flow with initial condition M7, and will a priori defined on an interval [T, T").
Therefore the initial flow is defined on [0,7”) with 7" > T', contradicting that [0,7")

was a maximal time interval. Thus, T = +o0.
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Appendix A

Generalities on Parabolic

Equations

The well-known theory of quasi-linear parabolic equations is going to aid us when
proving the existence and uniqueness of flows. In this section we recall the definitions

and results which we will need. This section is an extract of [7].

Definition A.1.
Let 2 C R™ be an open set. Let us consider the following Linear second-order

differential equation on Q x (0, T'):

0
L(z,t, (0:)s, (0i) 5, a)u =
0” ou
' + ai(:mt)—

0z;0; oz, a(z,t)u= f(z,t) (A1)

u—a;;(z,t)
Where u = u(z,t) and f = f(z,t) are functions on Q x (0, T).

The operator L defined in A.1 is said to be Uniformly Parabolic in Q x (0,T) if
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there exist positive real numbers v, p such that

V|§|2 S aij(x7t)§i§j S ,U|€|2,

V1<i j<nV(zt)€Qx(0,T),VE=(&,....&) € R

Definition A.2.
Let us denote by @ a quasi-linear second order differential operator in 2 C R”".

Explicitly,

0
Qx, 1, (9)i, (0ig)igs 5 Ju =
ou 0*u
= a—aij(x,tu,ux)m + a(x,t,u,um) (AQ)

The quasi-linear operator () is said to be Uniformly Parabolic if there exist real

positive non-increasing continuous functions v, pu of 7, 7 > 0, such that

V(|u|>|§|2 < aij<x7tvu>w)£i€j < M(|u|)|£|27

V1<i,j<n,V(x,t)€eQx(0,T),Vw= (w,..,w), &= (&,....&) € R, VueR.

Remark A.1.
A special type of quasilinear equations are those with principal part in divergence

form. This is an equation of the form

o, ou 0

Q(x,t,(0)i, (0i5)ij5 a)u -a;(,t,u,ug) + a(w, b, u, uy). (A.3)

S ot o

The equation A.3 can also be written as
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0 du Oa;(x,t,u, uy)

Qx,t,(9)i, (Fig)yy 5o )u = ¢ Oty

Uyitlys + A(x, t, u, uy), (A.4)
where

Oa;(x,t,u,uy) Oda;(z,t,u, u,)

Ui -
ou v Ox’

Az, t,u,ug) = alx, t,u, uy,) —

A.1 Holder Spaces.

Let Q@ C R*! be an bounded and connected open set and let us denote Q7 :=

Qx (0, 7).

Let v a bounded and continuous function on Q. For v € (0, 1) we define the y-th

Holder seminorm by

Wy, = sup u(x) — uly) (A.5)
I7y€97x7£y |x - y|'Y

A function is said to be y-Holder continuous is the supremum in A.5 is finite.

For | € R, define the norm

lully = > 1D%ulloe + D [Du]g ", (A.6)

laf<[1] a=[l]

where

[ulloc = sup [u(x)].
el

The Holder space H"(Q) is given by

{u € C°(Q) | D*u exists and is continuous in Q, ¥ 1 < |a| < [I], and |Jul|}, < co}.
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Thus, the space H'(Q) consists of those functions u that are [I[]-times continuously
differentiable on Q and whose derivatives of order [I] are Holder continuous with
exponent v = [ — [[].

Analogously we can define Holder spaces HY/2(QT). They consist on continuous
functions « on QT having all the derivatives of the form D¥D? with 2a + # < [ and

having a finite norm

a a -l a 1—2a+3)/2
lully =" > IDfDiullw+ > [DFDIul gl + D [DfDEu]g2 R,
2lal+|8I<]] 20+ 6=[l] 0<l—2a+8<2

where
Wlo, = sw &1,
(,1),(y,t)€Qr, vy |z —y]
[u]ZQT = sup ; > )
(w,t),(ﬂ?,’T)GQT,t;éT ’ - T’

A.2 The Cauchy Problem

Theorem A.1
Let L(z,t, 2, 2) be a parabolic operator on R x (0, 1) with coefficients in H**/? (Q7)
with a < 1. Then, there exists a fundamental solution for the equation L = 0. This

18, a bounded function
Z:R"xR"x (0, T)x(0,7) — R

such that

O\ 2. t,7) = 6z — )8t — 7)

L(x,t,(0;)i, (0i)ijs 7%
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where §(xr —y) =1ifx =y and §(z —y) =0 if x # y.

Corollary A.2

There exist a unique solution to the Cauchy problem

Lu(x,t) = f(z,t) in R™x (0,T),
u(z,0) = p(x) in R™,

where f is a Holder continuous function on R™ x (0,T) and ¢(x) is a continuous

function on R".

Theorem A.3
Let Q be a quasilinear operator with principal part in divergence form on R™ x [0, T).

Suppose that on any 2 C R™ bounded

1. For (z,t) € Qp there exist positive constants by, by independent of the dimension

n of R™ such that

(x,t
M&@ > 0, Y, u, p, and t € (0, 7]
Op;
and
Az, t,u, 0)u > —bju® — by
or
Alw, t,u,0)u > —P(fu])|ul — b /Oo—dT —oo =0
s Uy Uy = 2 0 (I)(T) .

Here ® is such that if v = ®(w, ) then v is a solution to the following
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8611'(.1', ta w, w:r:)

vy — | T a + (1 - 7_)51] Vyigi + TA(I',t, w, wiﬂ) - (1 - T)(wt - Aw)
W i

U|FT :77/}|FT OSTS 1.

Then if u™ satisfies

u’ = d(u’,T)

Then there exist constants M, My such that

max |u”| < M T € [0,1]. (A.7)
Qr
max |ul| < M, 7€ 0,1]. (A.8)

T

2. Let (z,t) € Qr and u such that |u| < M, where the bound M comes from
equation A.7. For arbitrary p the functions a;(x,t,u,p) and a(x,t,u,p) are
continuous, the a;(x,t,u,p) are differentiable with respect to x, u and p, and

that the following inequalities are satisfied

Oa;(x,t,u,p)

2

- 7 <

gt < SELEB GG <ugt v

+la] < p(1+|p))>

3 (ol

i=1

) (1+|p|) +Z

2,7=1

3. For (x,t) € Qr |u| < M and |p| < My, where the bounds come from equations

A.7 and A.8 respectively. The functions a;, a, gzi, %‘Z and 6“2 are continuous

86



and satisfy a Holder condition in x, t, u and p with exponents 3, 5/2, B and

respectively.

Then, there exists a solution to the Cauchy problem

Qu(x,t) =0 in R™ x [0, 7],
u(z,0) = bo(z) in B

where 1o € H**P(Q) and is such that maxg» [1hg(z)] < 0.

Moreover, for every 2 C R™ the solutions belong to H2+571+6/2(Q_T).

Theorem A.4
Let Q be a quasilinear operator with principal part in divergence form on R™ x [0,T].
Suppose that all the hypothesis in theorem A.3 are verified. Suppose as well that the

functions a;;(z,t,u,p) and A(x,t,u,p) are differentiable with respect to u and p and

verify
i Oa;j(z, t,u,p)’ 8aij(x,t,u,p)’ 0A(x,t,u,p) < (N,
(z,t)ER™ x[0,T7, |u,p| <N ou op dp
0A(x,t,u,p)
3 ) ) ) > _ N
(a:,t)eR”xH[tl)l,%,\u,plgN ou z —h2(N),

for any N and constants 1 and pe depending on N. Then, there exists at most one
bounded function u(x,t) with bounded first and second derivatives which is a solution

to the Cauchy problem

Qu(x,t) =0 in R™ x [0, 7],
u(x,O) = %(55) i Rna

87



where ¥y € H**(Q) and is such that maxgs [1)y(7)] < oo.
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Appendix B

The Linearization of the M CF

equation

Let M be a connected n-dimensional manifold embedded into R™*! via the map
X: M — R"

As before, let us denote by v the outer unit normal vector field of the hypersurface
X(M).
Let be Y be a fixed vector field in R**. For s > 0 small real number let

X =X+sY

and denote by

¢ = <Y7V>'

Assume that X* satisfies the mean curvature flow equation, i.e

0X?

— _HR
ot v
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We will seek for the evolution satisfied by ¢. Note that
¢t = <}/;fal/> + <Y7Vt>7

o6 0V o
Ot - <%’V>+ <Y7%>7

aY v
o Bgi) T VAV

y oY 0X
— iJp o lm
<AY ) V> + 2g hjlg <8SC7’ ? a$m> + <

Ap = (AY,v)+2g7

Y, Av),

and

ox ox,
oxt ’ Oxi
0X 0X 0X 09Y oY 0X

L iyt
oxt’ Oxi N owi 0w’ TP \or O

o 9

+ 52 (
Therefore

d, _0X 0Y Y 0X
0gij = %(gij) - <8xi ’axa’> + <8xi ’ axj>

s=0

and equation B.1 rewrites as

Ap = (AY ,v) + gijhﬂglmégim + (Y, Av).

Now, g% gy; = 0! so

<5gik)gkj + gik(sgkj =0

90

(B.1)



(69™)6), + 9™ (0gk;) g’ = 0

Thus

59" = —g" (0gr;)g”". (B.2)

Let v* be the outward normal vector to the s-hypersurface, whose position vector is

X?®. Since (v*,v°) =1,

0 = 5<V,V>—£<V7l/>5:0
0 s s .
= 2<$V,I/>S:0—2<5V,I/>.

Therefore dv has no normal components and can be written as

0X
Now, 0 = (v*, %> SO
ov® 0X° ., 0 0X®
0 = (G5 o T a5
ov® 0X° oY

(gawwr (v ,@>

and, evaluating at s = 0, we obtain
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thus

i, 0Y
(ov); = —g" <3xi V). (B.3)
On the other hand,
0’y ?X
Ohij = - <8xi6:z:j V) <8xi6xj V)
0’y w, 02X 90X 0V
= gwaw M T apas o) (ga V)
Since
we get
o 0%Y . ’X 90X, ,0Y , ,
H = —g¥ — i gkt ——  —— ) (— — hyig™* lj
0 g <8x18xﬂ V) + 979 <8x18xﬂ ’8:6’“) <8xl V)~ higg" (0gk)g
iy, %Y ij Kl m 0 ik Ij
= —g” <8x"83:j V) —g7g gmkrij (@ V) — hijg (0gr1)g”
i, %Y i 0 ik 1j
= —gY <8x"83:j V) — gjrij (@ V) — hijg (Ogr)g”
= —(AY, V> - hijgik((Sgkz)glj
and

0H = — (AY ,v) — hijg““(égkl)glj (B.4)

Let B := hijgik(5gkl)glj.
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Since

Y,=—-0Hv — Hév,

then

(Yy,v) =—(0Hv,v) — H (0v,v) = —0H.

Now we compute

Ap—¢, = (AY ,v)+B+ (Y ,Av) — (Y, v) — (Y, 1)
= (AY ,v)+ B+ (Y ,Av)+dH — (Y ,VH)
= (AY ,v)+ B+ (Y ,Av) — (AY ,v) — B— (Y ,VH)

= (Y, Av—VH),

SO

¢y = Ao+ (Y ,VH — Av). (B.5)

Lemma B.1

Av =VH — |A]*y,

Proof:
Let us consider local coordinates around p € M such that the metric g at p is the

identity. We compute

ov 0X

<% ) @> = hz’kgkj = hz’j-

Then, differentiating on both sides we get
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ih,. = 0*v 8_X>+<2 0°X )

oxk™™ N\ Origxk O ozt Oxiozk
0’y  0X ov

Gwnt aar) T (g )

(o 2%

0xioxk " Oxi’”

0X
So the tangent component of Av in the direction of — is

oxJ

’v 00X 0 0 OH 0X
v a0 ~ o = gt = g — VH g
Now, since
ov
oo =0
it follows that
v ov Ov 0X 0X

Cmraer V1 = g ggr) = ~ Vg humz o)

and the lemma is proven.

Therefore we conclude that the linearization of the MCF is

¢ = A + |A]o.
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