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ABSTRACT

On the Mean Curvature Flow

Janine Bachrachas

We present a self-contained expository review on the mean curvature flow for smooth

embedded hypersurfaces in the (n+1)-dimensional Euclidean space. We start by

addressing the short time existence of solutions to the flow, followed by the long time

existence in the case of compact convex hypersurfaces and entire graphs. Although

the results presented here are part of the classical literature originated in the 80’s, we

derive all necessary calculations and gather the simplest possible approach in view of

later developments of the area.
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Chapter 1

Notations and preliminaries

Let M denote a connected orientable differential manifold without boundary of di-

mension n. For each point p ∈M we have local coordinates {x1, ..., xn}.

The tangent vectors

{
∂

∂x1

∣∣∣∣
p

, ...,
∂

∂xn

∣∣∣∣
p

}
form a basis of TpM with dual basis

{
dx1
∣∣
p
, ..., dxn|p

}
.

Assume M can be smoothly embedded in Rn+1 via the map

X : M −→ Rn+1.

Let us denote by the same letter M the image of M under X.

Remark 1.1.

Notice that M ⊂ Rn+1 is an immersed submanifold of codimension 1. These type of
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submanifolds are often called hypersurfaces. We will adopt this terminology.

We equip the manifold M with the Riemannian metric induced by Rn+1. This is

gij(X(p)) = 〈∂X
∂xi

(p) ,
∂X

∂xj
(p)〉

for p ∈M , where 〈· , ·〉 denotes the canonical inner product in Rn+1.

Notice that

∂X

∂xi
(p) = dX|p

(
∂

∂xi

)
and that since dX is injective the vectors

{
∂X

∂xi
(p) | 1 ≤ i ≤ n

}
form a basis of TX(p)M .

Remark 1.2.

Throughout this thesis we shall be working with the Levi-Civita connection.

As usual, g = (gij)ij denotes the metric tensor. Its inverse g−1 will be denoted with

superscripts, g−1 = (gij)ij.

The Second Fundamental Form on M , A = (hij), is given by

hij(X(p)) = −〈 ∂
2X

∂xi∂xj
(p) , ν〉

where ν is the outer unit normal vector at the point X(p).
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Notation 1.1.

We will be using the Einstein notation for sums. This is, we will not write the

summation symbol capital sigma (Σ), and we will understand a sum is made over

repeated indices, from 1 to n.

Definition 1.1 (Mean Curvature).

The Mean Curvature of M at p is the trace of the second fundamental form A, i.e.,

H = gijhij.

Definition 1.2.

The Laplace-Beltrami operator on (M, g) is the second order differential operator

defined as

∆g = gij∇i∇j.

Theorem 1.1 (Gauss-Weingarten Relations)

Let X : Mn −→ M̄n+1 be an immersion. Assume that for p ∈ M the tangent space

TX(p)M̄ splits in

TX(p)M̄ = TpM ⊕ (TpM)⊥,

which varies differentiably with p. Then the following equations are valid for all

1 ≤ i, j ≤ n:

∂2X

∂xi∂xj
= Γkij

∂X

∂xk
− hijν. (1.1)

3



∂ν

∂xj
= hjlg

lm ∂X

∂xm
. (1.2)

Proposition 1.2 (Gauss and Coddazi-Mainardi equations)

For all 1 ≤ i, j, k, l ≤ n we have

∂

∂xk
Γlij −

∂

∂xj
Γlik + ΓrijΓ

l
rk − ΓrikΓ

l
rj = (hijhkm − hikhjm)gml (1.3)

∂

∂xk
hij −

∂

∂xj
hik + Γrijhrk − Γrikhrj = 0 (1.4)

Proposition 1.3 (Intertwining covariant derivatives)

Let ∇ denote the Levi-Civita connection on a Riemannian manifold M. Then the fol-

lowing differentiation rules hold for all 1 ≤ i, j, k, l ≤ n:

For tangent vectors:

∇i∇jX
l −∇j∇iX

l = Rl
ijkX

k,

for cotangent vectors:

∇i∇jYk −∇j∇iYk = Rijklg
lmYm.

for (2, 0)-tensors:

∇i∇jαkl −∇j∇iαkl = Rijkmg
mnαnl +Rijlmg

mnαkn.

Definition 1.3 (Mean Curvature Flow).

Assume the manifold M can be smoothly embedded into Rn+1 via

4



X0 : M −→ Rn+1.

We say that the manifold M moves by Mean Curvature Flow (MCF) if there exists

a family of smooth embeddings {X(·, t) : M −→ Rn+1} which is a solution to the

following differential equations on M

∂

∂t
X(p, t) = −H(p, t)ν(p, t) p ∈M,

X(p, 0) = X0(p).

Here H(p, t) denotes the mean curvature of the manifold Mt := X(M, t) at the point

X(p, t) and ν(p, t) the outer unit normal vector at that point.

Later in this thesis, we shall prove that solutions X to the MCF exist, given smooth

initial data. If so, for each t such that a solution X(p, t) exists, we have a submanifold

of Rn+1 that we will denote by

Mt := {X(p, t) ∈ Rn+1 | p ∈M}.

Indeed, the local charts arise from the Inverse Function Theorem and charts on M .

Notice that the vectors

{
∂X

∂xi
(p, t) | 1 ≤ i ≤ n

}
form a basis of TX(p,t)M .

Remark 1.3.
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The MCF equations can be written as

∂

∂t
X(p, t) = ∆gX(p, t) p ∈M,

X(p, 0) = X0(p).

where ∆g is the Laplace-Beltrami operator onMt. Indeed, using the Gauss-Weingarten

relations, we compute

∆gX = gij
(

∂2X

∂xi∂xj
− Γkij

∂X

∂xk

)
= −gijhijν = −Hν

since H = gijhij.
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Chapter 2

Short Time Existence

In this section we intend to prove the short time existence of solutions to the Mean

curvature flow equations for smooth initial data.

We begin by analyzing the simple case when the manifold M is the graph of a func-

tion. Let f : Rn −→ R be a function of class C∞ on Rn. By the Implicit Function

Theorem we know that the graph of f

M0 = {(x, f(x)) ∈ Rn+1|x ∈ Rn}

is an embedded submanifold of Rn+1, where the embedding is given by

X0 : Rn −→ Rn+1,

X0(x) = (x, f(x)), ∀x = (x1, ..., xn) ∈ Rn.

In a later section we will show that if the initial manifold is a graph, so are the

evolving manifolds at later times. Hence, if a solution for the MCF with a graph as
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initial data exists, it is of the form

X(x, t) = (u(x, t), f(u(x, t), t)). (2.1)

where

u(x, t) = (X1(x, t), ..., Xn(x, t)),

the first n components of the position vector X.

Let us now compute the tangent vectors defined by equation 2.1.

∂X

∂xi
= (

∂u1

∂xi
, ...,

∂un

∂xi
,
∂f

∂xj

∂uj

∂xi
) = (

∂u

∂xi
,∇xf ·

∂u

∂xi
),

where · denotes the usual inner product in Rn and ∇xf is the gradient of f with

respect to the space variables x = (x1, ..., xn) ∈ Rn.

Now, the outer unit normal vector at the point X(x, t) ∈ Mt should be orthogo-

nal to all vectors in the tangent space of M at X(x, t). Then for every 1 ≤ i ≤ n we

have

0 = 〈ν , ∂X
∂xi
〉 = 〈ν ,

(
∂u1

∂xi
, ...,

∂un

∂xi
,
∂f

∂xk
∂Xk

∂xi

)
〉.

Set ν̃ := (∇xf,−1). We get that
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〈ν̃ , ∂X
∂xi
〉 = 〈(∇xf,−1) ,

∂u

∂xi
,
∂f

∂xk
∂uk

∂xi
〉

=
∂f

∂xk
∂uk

∂xi
− ∂f

∂xk
∂uk

∂xi

= 0

so ν̃ ∈ (TX(x,t)M)⊥. Normalizing ν̃ we obtain that the unit normal vector is

ν =
1

(1 + |∇xf |2)1/2
(∇xf,−1).

Notice that, in this setting, the MCF equations become

∂X

∂t
= (

∂u

∂t
,
∂f

∂xk
∂uk

∂t
+ ft). (2.2)

The second fundamental form is given by

hij = −〈 ∂
2X

∂xi∂xj
, ν〉

= − 1

(1 + |∇xf |2)1/2
〈 ∂2u

∂xi∂xj
,

∂2f

∂xj∂xk
∂uk

∂xi
+

∂f

∂xk
∂2uk

∂xi∂xj
, (∇xf,−1)〉

= (1 + |∇xf |2)−1/2 ∂2f

∂xj∂xk
∂uk

∂xi
, (2.3)

for 1 ≤ i, j ≤ n.

To proceed, we consider the scalar equivalent to the MCF equation. This is, the

evolution equation obtained by taking inner product with ν on both sides of 2.2.

Notice that, multiplying by ν we recover the equation

9



(
∂

∂t
X

)⊥
= −Hν

which is equivalent, up to tangential diffeomorphisms, to the MCF equations.

The right hand side of the scalar MCF equation becomes −H, while the left hand

side is

〈Xt, ν〉 = (1 + |∇xf |2)−1/2 〈(∂u
∂t
,
∂f

∂xk
∂uk

∂t
+ ft) , (∇xf,−1)〉

= −(1 + |∇xf |2)−1/2ft.

Hence,

ft = (
√

1 + |∇xf |2)H.

Since H = gijhij and hij as in 2.3, the previous equation rewrites as

ft = gijfij. (2.4)

Notice that equation 2.4 is a linear second order parabolic differential equation for f ,

since the matrix of the metric g is positive definite. Therefore, we know by corollary

A.2 that there exists a unique solution f , at least over a finite time interval.

Remark 2.1.

Another way to prove the short time existence of solutions in this case is observing

that H equals

10



H = div

(
∇xf√

1 + |∇xf |2

)
(2.5)

Then we can rewrite the evolution of f as an equation in divergence form

ft =
√

1 + |∇xf |2 · div

(
∇xf√

1 + |∇xf |2

)
(2.6)

Consequently, by theorem A.3 we also get the short time existence and uniqueness of

the solution.

�

In the general setting, the short time existence does not follow from the theory of

quasi-linear parabolic PDE’s. The problem is that the MCF equation will be, in

general, degenerate. By remark 1.3 we know that

∂X

∂t
= gij

(
∂2X

∂xi∂xj
− Γkij

∂X

∂xk

)
.

Since the Christoffel Symbols are defined by

Γkij =
1

2

(
∂

∂xi
gjl +

∂

∂xj
gli −

∂

∂xl
gij

)
glk,

we write

∂X

∂t
= gij

∂2X

∂xi∂xj
− 1

2

[(
∂

∂xi
gjl +

∂

∂xj
gli −

∂

∂xl
gij

)
glkgij

]
∂X

∂xk

= gij
∂2X

∂xi∂xj
− 1

2

[(
〈 ∂

2X

∂xi∂xj
,
∂X

∂xl
〉+ 〈 ∂

2X

∂xi∂xl
,
∂X

∂xj
〉

+ 〈 ∂
2X

∂xi∂xj
,
∂X

∂xl
〉+ 〈 ∂

2X

∂xj∂xl
,
∂X

∂xi
〉

− 〈 ∂
2X

∂xi∂xl
,
∂X

∂xj
〉 − 〈 ∂

2X

∂xj∂xl
,
∂X

∂xi
〉
)
glkgij

]
∂X

∂xk
,

11



which simplifies to

∂X

∂t
= gij

∂2X

∂xi∂xj
− gijgkl〈 ∂

2X

∂xi∂xj
,
∂X

∂xl
〉∂X
∂xk

= gij
∂2X

∂xi∂xj
− gijgkl

[
∂2Xα

∂xi∂xj
∂Xα

∂xl

]
∂X

∂xk
.

This vectorial PDE reduces to now a system of parabolic PDE’s for the components

Xβ of X, 1 ≤ β ≤ n+ 1. If we consider the β-th component the field, we have

∂Xβ

∂t
= gij

∂2Xβ

∂xi∂xj
− gijgkl

[
∂2Xα

∂xi∂xj
∂Xα

∂xl

]
∂Xβ

∂xk

= gij
[
1− gkl∂X

β

∂xl
∂Xβ

∂xk

]
∂2Xβ

∂xi∂xj
− gijgkl

∑
α 6=β

[
∂2Xα

∂xi∂xj
∂Xα

∂xl

]
∂Xβ

∂xk
.

The evolution equation for Xβ is therefore a quasi-linear second order equation, but

only weakly parabolic as it is degenerate along the tangential directions satisfying

gkl
∂Xβ

∂xl
∂Xβ

∂xk
= 1.

Thus, short time existence of solution to the flow is not insured by the classical theory

of parabolic equations. In order to prove short time existence we will make use of a

technique which was first shown by Denis De Turck.

The De Turck Trick.

The idea behind this technique is to make a time dependent change of variables, so

that the MCF equations in the new variables is a strictly parabolic equation. In this

setting, we can apply the classical existence results for strictly parabolic PDE’s and

the original MCF will have solutions whenever the new one has.
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Let X̃ be a reparametrization of X

X(p, t) = X̃(y(p, t), t)

where the map (p, t) 7→ y(p, t) is C∞ with C∞ inverse.

Suppose X̃ satisfies the equation

∂X̃

∂t
= ∆gX̃ + vk

∂X̃

∂xk
(2.7)

for some vk’s such that 2.7 is strictly parabolic. We know that

∆gX =
∂X

∂t
=
∂X̃

∂t
+
∂X̃

∂xk
dyk

dt

= ∆gX̃ +

(
vk +

dyk

dt

)
∂X̃

∂xk
. (2.8)

Therefore, the tangential components in 2.8 have to be zero. For this, we choose

the parametrization y such that the coefficients of the tangential directions vk’s get

cancelled. Imposing


dyk

dt
(p, t) = −vk(p, t),

yk(p, 0) = xk,

we get that

∂X̃

∂t
= gij

∂2X̃

∂xi∂xj
+
(
vk + gijΓkij

) ∂X̃
∂xk

.

13



Hence we may take

vk = gij(Γ
k

ij − Γkij)

where Γ
k

ij are the Christoffel symbols associated to a given fixed metric g. Then 2.7

can be rewritten as

∂X̃

∂t
= gij

∂2X̃

∂xi∂xj
+ gijΓ

k

ij

∂X̃

∂xk
.

This equation is strictly parabolic and we can apply the classical existence results.

14



Chapter 3

Evolution of Geometric Quantities

The main tool for studying geometric flows is to analyze how does the geometry

change with the flow. Thus we derive evolution equations for the metric, curvature

and second fundamental form.

Proposition 3.1 (Evolution of geometric quantities under the MCF)

1.
∂gij
∂t

= −2Hhij,

2.
∂ν

∂t
= ∇gH,

3.
∂hij
∂t

= ∆ghij − 2Hhilg
lmhmj + |A|2hij, where |A|2 = gijgklhikhjl is the norm of

the second fundamental form,

4.
∂H

∂t
= ∆H + |A|2H,

15



5.
∂

∂t
|A|2 = ∆|A|2 − 2|∇A|2 + 2|A|4.

Proof :

1)

∂gij
∂t

=
∂

∂t
〈∂X
∂xi

,
∂X

∂xj
〉 = 〈 ∂

∂xi
∂X

∂t
,
∂X

∂xj
〉+ 〈 ∂

∂xj
∂X

∂t
,
∂X

∂xi
〉

= −〈∂Hν
∂xi

,
∂X

∂xj
〉 − 〈∂Hν

∂xj
,
∂X

∂xi
〉

= −∂H
∂xi
〈ν , ∂X

∂xj
〉 −H 〈 ∂ν

∂xi
,
∂X

∂xj
〉 − ∂H

∂xj
〈ν , ∂X

∂xi
〉 −H 〈 ∂ν

∂xj
,
∂X

∂xi
〉

= −H 〈 ∂ν
∂xi

,
∂X

∂xj
〉 −H 〈 ∂ν

∂xj
,
∂X

∂xi
〉 = 2H 〈 ∂

2X

∂xi∂xj
, ν〉

= −2Hhij.

�

We will resume the proof of proposition 3.1 after stating a few corollaries of 1) which

will be used later in the proof.

Corollary 3.2

∂gij

∂t
= 2Hgikhkmg

mj.

Proof:

0 =
∂

∂t
(gikg

kj) = gkj
∂gik
∂t

+ gik
∂gkj

∂t

= −2gkjHhik + gik
∂gkj

∂t
.

16



So,

gil
∂glj

∂t
= 2Hgkjhik (3.1)

where we changed the name of the summing index on the left hand side of the above

equation. Now, we multiply equation 3.1 by gim and sum over i to get

δml
∂glj

∂t
= 2Hgkjhikg

im.

Thus

∂gmj

∂t
= 2Hgkjhikg

im,

which proves the corollary up to a change of indices.

�

Corollary 3.3

Let us denote by µt the volume form on (Mt, g), i.e.

µt =
√

det gij(t).

Then,

∂

∂t
µt = −H2µt.

Proof:

For simplicity of notation we will drop the subindex t. Use the definition of determi-

nant to compute

17



∂µ2

∂t
=

∂

∂t
det gij =

∂

∂t

∑
σ∈Sn

ε(σ)g1σ(1) . . . gnσ(n)

=
∑
i

∑
σ∈Sn

ε(σ)g1σ(1) . . .
∂giσ(i)

∂t
. . . gnσ(n)

=
∑
i

∑
σ∈Sn

ε(σ)g1σ(1) . . . (−2Hhiσ(i)) . . . gnσ(n)

= −2H
∑
σ∈Sn

ε(σ)(
∑
i

hiσ(i)g
iσ(i))g1σ(1) . . . gnσ(n)

= −2H(
∑
σ∈Sn

∑
i

hiσ(i)g
iσ(i))

∑
σ∈Sn

ε(σ)g1σ(1) . . . gnσ(n)

= −2H2 det gij.

�

For the proof of 2) in Proposition 3.1 we will need the following observations.

a) The vectors

{
gij
∂X

∂xj
| 1 ≤ i ≤ n

}
form a basis of TpM . Indeed,

0 = αig
ij ∂X

∂xj
⇒ αig

ij = 0, ∀ j : 1 ≤ j ≤ n.

This is equivalent to having

g−1(α1, ..., αn)t = 0

Since g−1 = (gij)ij, which is a positive definite matrix, αi = 0, ∀ i : 1 ≤ i ≤ n.

�
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b) Notice that, for all i, j, k : 1 ≤ i, j, k ≤ n,

〈gij ∂X
∂xj

,
∂X

∂xk
〉 = gijgjk = δik.

Thus if v ∈ TpM , v = aig
ij ∂X

∂xj
,

〈aigij
∂X

∂xj
,
∂X

∂xk
〉 = aiδik = ak,

which implies

v = 〈v , ∂X
∂xi
〉gij ∂X

∂xj
.

�

We now continue with the proof of Proposition 3.1.

2) Notice that
∂ν

∂t
∈ TpM . Indeed,

1 = 〈ν , ν〉 ⇒ 0 = 〈ν , ∂ν
∂t
〉,

so
∂ν

∂t
is orthogonal to ν and therefore lies in TpM . Using part b) of the previous

remark, we write

19



∂ν

∂t
= 〈∂ν

∂t
,
∂X

∂xi
〉gij ∂X

∂xj
= −〈ν , ∂

∂t

∂X

∂xi
〉gij ∂X

∂xj

= 〈ν , ∂

∂xi
(Hν)〉gij ∂X

∂xj
=
∂H

∂xi
gij
∂X

∂xj

= ∇gH,

where we used that

0 = 〈ν , ∂X
∂xi
〉 ⇒ 0 =

∂

∂t
〈ν , ∂X

∂xi
〉 = 〈∂ν

∂t
,
∂X

∂xi
〉+ 〈ν , ∂

∂t

∂X

∂xi
〉.

�

Lemma 3.4

∆hij = ∇i∇jH +Hhilg
lmhmj − |A|2hij.

Proof:

∆hij = gmn∇m∇nhij = gmn∇m∇ihjn

= gmn∇i∇mhjn +Rmijlg
lshsn +Rminlg

lshjs,

where we used the Coddazi equation 1.4 and the rules for intertwining derivatives.

Now, denoting hlk := glshsk, we write

20



∆hij = gmn∇i∇mhjn +Rmijlh
l
n +Rminlh

l
j

= gmn∇i∇jhmn + gmn(hmjhil − hmlhij)hln + gmn(hmnhil − hmlhin)hlj

= ∇i∇jH + hnj hilh
l
n − hnl hijhln +Hhilh

l
j − hnl hinhlj

Note that the second and last term get canceled and that |A|2 = hknh
n
k . Finally we

get

∆hij = ∇i∇jH − |A|2hij +Hhilg
lshsj

�

3)

∂hij
∂t

= − ∂

∂t
〈 ∂

2X

∂xi∂xj
, ν〉 = 〈 ∂

2Hν

∂xi∂xj
, ν〉 − 〈 ∂

2X

∂xi∂xj
,
∂ν

∂t
〉.

Now, on one hand we have that

〈 ∂
2Hν

∂xi∂xj
, ν〉 = 〈 ∂

∂xi

(
∂H

∂xj
ν +H(hjlg

lm ∂X

∂xm
)

)
, ν〉

=
∂2H

∂xi∂xj
+H 〈 ∂

∂xi
(hjlg

lm ∂X

∂xm
) , ν〉

=
∂2H

∂xi∂xj
+H 〈hjlglm

∂2X

∂xi∂xj
, ν〉

=
∂2H

∂xi∂xj
−Hhjlglmhim,

where we used 1.2.
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On the other hand,

〈 ∂
2X

∂xi∂xj
,
∂ν

∂t
〉 = 〈 ∂

2X

∂xi∂xj
, glm

∂H

∂xl
∂X

∂xm
〉 = 〈Γkij

∂X

∂xk
− hijν , glm

∂H

∂xl
∂X

∂xm
〉

= Γkij
∂H

∂xl
glmgkm

= Γkij
∂H

∂xk
.

Putting all the terms together we get

∂hij
∂t

=
∂2H

∂xi∂xj
− Γkij

∂H

∂xk
−Hhjlglmhim

= ∇i∇jH −Hhjlglmhim. (3.2)

By lemma 3.4, we know that

∆hij − |A|2hij = ∇i∇jH +Hhilg
lmhmj. (3.3)

Therefore,

∂hij
∂t

= ∆hij − 2Hhilg
lmhmj + |A|2hij.

�

4)
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∂H

∂t
=

∂

∂t
(gijhij) = hij

∂gij

∂t
+ gij

∂hij
∂t

= 2Hgikhkmg
mjhij + gij∇i∇jH −Hhjlglmhimgij

= ∆H +Hgikhkmg
mjhij

= ∆H +H|A|2,

where we used equation 3.2.

�

Notation 3.1.

Let us denote by (· , ·) the inner product for (2,0)-tensors on M . Explicitly, if T ijk

and Sijk are (2,0)-tensors on M ,

(T ijk , S
i
jk) = gilg

jmgkmT ijkS
l
mn.

In particular, the norm of the second fundamental form is

|A|2 = (hij , hij) = gijgklhikhjl.

�
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5)

∂

∂t
|A|2 =

∂

∂t
(gikgjlhijhkl)

=
∂gik

∂t
gjlhijhkl +

∂gjl

∂t
gikhijhkl +

∂hij
∂t

gikgjlhkl +
∂hkl
∂t

gikgjlhij

= 4Hgikhmng
nk · gjlhijhkl

+ 2gikgjl(∆hij − 2Hhilg
lmhmj + |A|2hij)hkl

= 4Hgikhmng
nk · gjlhijhkl + 2gikgjlhkl∆hij

− 4Hhilg
lmhmj · gikgjlhkl + 2|A|2gikgjlhijhkl

= 2 (hij , ∆hij) + 2|A|4.

Now we compute

∆|A|2 = ∆ (hij , hij) = 2gmn∇m (hij , ∇nhij)

= 2gmn (∇mhij , ∇nhij) + 2gmn (hij , ∇m∇nhij)

= 2 (∇nhij , ∇nhij) + 2 (hij , ∆hij)

= 2|∇A|2 + 2 (hij , ∆hij).

Consequently,

∂

∂t
|A|2 = ∆|A|2 − 2|∇A|2 + 2|A|4.

�
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Chapter 4

Compact Convex Hypersurfaces

Definition 4.1.

A hypersurface in Rn+1 is said to be strictly convex if the second fundamental form

of its embedding is everywhere positive definite.

Let M be an n-dimensional strictly convex compact hypersurface. Then, its Gauss

map ν : M −→ Sn, which assigns to each point p of M the unit outer normal vector

at p, is a diffeomorphism. Then we can use X = X(ν−1(z)) to reparametrize the

hypersurface as

X : Sn −→ Rn+1,

X(z) = r(z)z, ∀ z ∈ Sn,

where r = r(z) is a positive function. Let {u1, ..., un} be a system of local coordinates

on the sphere Sn. As before, let g denote the metric on M induced by Rn+1 and let

ḡ be the standard metric on the unit sphere, i.e., the metric on Sn ⊂ Rn+1 induced

by the ambient Euclidean space. We will compute the metric g in the coordinates

(u1, ..., un).
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We have, for 1 ≤ i ≤ n,

∂X

∂ui
= r

∂z

∂ui
+
∂r

∂ui
z.

Hence,

gij = 〈r ∂z
∂ui

+
∂r

∂ui
z , r

∂z

∂uj
+

∂r

∂uj
z〉

= r2ḡij +
∂r

∂ui
∂r

∂uj
,

since 〈 ∂z
∂ui

, z〉 = 0 and |z| = 1.

Then, gij is given by

gij = r−2

(
ḡij − ∇̄ir∇̄jr

r2 + |∇̄r|2

)
where ∇̄ir = ḡij∇̄jr and ∇̄r denotes the gradient of r with respect to the round

metric on the sphere. In local coordinates this is

∇̄r = ∇̄ir
∂

∂ui
.

Lemma 4.1

The outer unit normal vector at X(z) is

ν =
1√

r2 + |∇̄r|2
(rz − ḡik ∂r

∂ui
∂z

∂uk
). (4.1)

Proof:

A basis for the tangent plane is given by the vectors
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∂X

∂ui
=

∂r

∂ui
z + r

∂z

∂ui
1 ≤ i ≤ n.

Let us find a vector ν̃ orthogonal to all the vectors {∂X
∂ui
| 1 ≤ i ≤ n} ⊂ TxM . We

can write ν̃ as a linear combination of the basis of Rn+1

{z, ∂z
∂u1

, ...,
∂z

∂un
}.

Thus,

ν̃ = ai
∂z

∂ui
+ bz

We may choose, without any loss of generality, b = r and evaluate

〈ai
∂z

∂ui
+ rz ,

∂r

∂uj
z + r

∂z

∂uj
〉 = airḡij + r

∂r

∂uj
.

We conclude that the ai’s are given by

ai = − ∂r

∂uj
ḡij.

Thus,

ν̃ = rz − ḡij ∂r
∂ui

∂z

∂uj
.

Note that |ν̃| =
√
r2 + |∇̄r|2, so normalizing ν̃, we get the normal vector as stated in

4.1.

�

Lemma 4.2

27



The coefficients of the second fundamental form at X(z) are

hij =
1√

r2 + |∇̄r|2

(
−r ∂2r

∂ui∂j
+ 2

∂r

∂ui
∂r

∂uj
+ r2ḡij

)
,

1 ≤ i, j ≤ n.

Proof:

hij = −〈 ∂
2X

∂ui∂uj
, ν〉

= − 1√
r2 + |∇̄r|2

〈 ∂2r

∂ui∂uj
z +

∂r

∂uj
∂z

∂ui
+
∂r

∂ui
∂z

∂uj
+ r

∂2z

∂ui∂uj
, rz − ḡkl ∂r

∂uk
∂z

∂ul
〉

= − 1√
r2 + |∇̄r|2

(
r

∂2r

∂ui∂uj
+ r2 〈 ∂2z

∂ui∂uj
, z〉

− ḡkl
∂r

∂uj
∂r

∂uk
〈 ∂z
∂ui

,
∂z

∂ul
〉 − ḡkl ∂r

∂ui
∂r

∂uk
〈 ∂z
∂uj

,
∂z

∂ul
〉
)

= − 1√
r2 + |∇̄r|2

(
r

∂2r

∂ui∂uj
− r2ḡij − ḡliḡkl

∂r

∂uj
∂r

∂uk
− ḡjlḡlk

∂r

∂ui
∂r

∂uk

)
=

1√
r2 + |∇̄r|2

(
−r ∂2r

∂ui∂j
+ 2

∂r

∂ui
∂r

∂uj
+ r2ḡij

)

where we have used that the metric and its inverse are symmetric tensors and that

0 =
∂

∂uj
〈 ∂z
∂ui

, z〉 = 〈 ∂2z

∂ui∂uj
, z〉+ 〈 ∂z

∂ui
,
∂z

∂uj
〉

= 〈 ∂2z

∂ui∂uj
, z〉+ ḡij.

�

We will now consider a smooth, strictly convex, compact hypersurface M and we let

it evolve by the Mean Curvature Flow.
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An important tool in the study of the evolution is the following maximum principle

for tensors due to Richard Hamilton [4].

Before stating the theorem, let us introduce some terminology.

Definition 4.2.

LetMij be (2,0)-tensor on a manifoldM . A polynomial inMij formed by g-contracting

products of Mij with itself, is a tensor of the form

f0δij + f1Mij + f2Mikg
klMlj + · · ·+ fkMim1g

m1m2Mm2m3 · · · gm2(k−1)−1m2(k−1)Mm2(k−1)j.

where the fi’s are smooth functions on M .

Lemma 4.3 (Maximum principle for tensors)

Let Mij = Mij(p, t) be a nonnegative definite symmetric (2,0)-tensor on Mt for each

t. Suppose that

∂Mij

∂t
= ∆Mij + yk

∂Mij

∂xk
+Nij, 0 ≤ t ≤ T, (4.2)

where y = yk
∂X

∂xk
is a vector field and Nij = P (Mij, gij) is a polynomial in Mij formed

by g-contracting products of Mij with itself. Assume that Nij satisfies the null-vector

condition, i.e., if v ∈ TpMt is such that

Mijvj = 0,

then

Nijvivj ≥ 0.
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Then, if Mij ≥ 0 at time t = 0, it will remain nonnegative as long as the solution to

4.2 exists.

Proof:

Let

K = max
p∈M
|Mij|,

where |Mij|2 = (Mij , Mij), as defined in the previous section (notation 3.1). Take

now an arbitrary ε : 0 < ε < 1 and define

M̃ij = Mij + ε(δ + t)gij.

Clearly M̃ij > 0 at time t = 0. We claim that, for the time interval [0, δ], M̃ij > 0

everywhere on the manifold. . Suppose that this is not true. Then there exists a first

time t0 ∈ (0, δ] and a point x0 ∈ Mt0 , such that M̃ij has a null eigenvector. Namely

v ∈ Tx0Mt0 , that we can take to be with |v| = 1.

At the point (x0, t0), the tensor Nij satisfies

Nijvivj = Ñijvivj + (Nij − Ñij)vivj ≥ −|Nij − Ñij| ≥ −C1|Mij − M̃ij|

≥ −2Cεδ

where Ñij = P (M̃ij, gij) and C = C(K) is a constant that depends on K, since P is

a polynomial.

To proceed, extend v to a unitary vector field on a neighborhood U of x0 by par-

allel transporting v along geodesics starting at x0, during some time interval [0, t1].
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Note that Dv
dt

= 0 along any geodesic and ∇ ∂

∂xi
vi = 0 on U .

Consider now the function defined by

f(x, t) = M̃ijvivj.

Then f satisfies f(x, t) ≥ 0 for all x ∈Mt and t : 0 ≤ t ≤ δ.

Moreover, since f has a minimum at (x0, t0),

∂f

∂t
(x0, t0) ≤ 0, (4.3)

∂f

∂xk
(x0, t0) = 0 and ∆f(x0, t0) ≥ 0,

We conclude that, at (x0, t0),

∂f

∂t
=

∂Mij

∂t
vivj + ε = (∆Mij)vivj + (yk

∂Mij

∂xk
)vivj +Nijvivj + ε

= ∆f + yk
∂f

∂xk
+Nijvivj + ε

≥ (1− 2Cδ)ε.

Hence, choosing δ = min 1/4C, T , we get
∂f

∂t
(x0, t0) > 0, which contradicts 4.3.

Therefore

Mij + ε(δ + t)gij = M̃ij > 0.

Now, taking limit when ε → 0 we get that Mij ≥ 0 for all t ∈ [0, δ]. We can repeat

the same argument to prove that Mij ≥ 0 for t ∈ [δ, 2δ], so Mij ≥ 0 on [0, 2δ]. After

finite iterations, starting with Mij(δ), we get the nonnegativity over all [0, T ].
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Proposition 4.4

If the second fundamental form hij is nonnegative definite at t = 0, it remains so as

long as the flow exists.

Proof:

We know that

∂hij
∂t

= ∆hij − 2Hhilg
lmhmj + |A|2hij.

Let us define

Mij := hij,

Nij := −2Hhilg
lmhmj + |A|2hij.

Observe that if hijvj = 0 then (−2Hhilg
lmhmj + |A|2hij)vj = 0. Hence, by the

maximum principle for tensors we obtain that hij ≥ 0 for all t.

�

Next we will show that the strict convexity of a hypersurface is preserved by the mean

curvature flow. The following lemma is due to Huisken [5].

Lemma 4.5 (Pinching estimate)

Suppose there exist two positive constants ε and β, with 0 < ε ≤ 1
n
< β < 1, such

that

εHgij ≤ hij ≤ βHgij (4.4)
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and

H > 0 (4.5)

at time t = 0. Then inequalities 4.4 and 4.5 also hold for any positive time where the

flow exists.

Proof:

We know that H evolves by

∂H

∂t
= ∆H + |A|2H,

so

∂H

∂t
−∆H > 0.

Then, by the maximum principle for parabolic PDE’s, we know that H > 0 for all

times.

In order to prove the first inequality in 4.4, let

Mij :=
hij
H
− εgij,

yk :=
2

H
gkl
∂H

∂xl

and

Nij := 2εHhij − 2himg
mlhlj.

We want to apply the maximum principle for tensors. Then Mij > 0 for all times and

the first inequality in 4.4 will be proven.
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Notice that

∂

∂t

(
hij
H

)
=

H
∂hij
∂t
− hij ∂H∂t
H2

=
H∆hij − 2H2hilg

lmhmj + |A|2hijH − hij∆H − hij|A|2H
H2

=
H∆hij − hij∆H

H2
− 2himg

lmhlj,

and

∇l

(
hij
H

)
=

H∇lhij − hij∇lH

H2
,

so

∆

(
hij
H

)
= gkl∇k∇l

(
hij
H

)
= gkl

∇kH∇lhij +H∇k∇lhij −∇khij∇lH − hij∇k∇lH

H2

− gkl
2H∇kH(H∇lhij − hij∇lH)

H4

=
H∆hij − hij∆H

H2
− gkl 2∇kH(H∇lhij − hij∇lH)

H3

=
H∆hij − hij∆H

H2
− gkl 2

H
∇kH∇l

(
hij
H

)
.

Then, on one hand we have
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∂Mij

∂t
=

H∆hij − hij∆H
H2

− 2himg
lmhlj + ε

∂gij
∂t

=
H∆hij − hij∆H

H2
− 2himg

lmhlj + 2εHhij.

On the other hand,

∆Mij + yk
∂Mij

∂xk
+Nij =

H∆hij − hij∆H
H2

− gkl 2

H
∇kH∇l

(
hij
H

)
+

2

H
gkl∇lH

(
H∇khij − hij∇kH

H2
− ε∇kgij

)
+ 2εHhij − 2himg

mlhlj

= 2εHhij − 2himg
mlhlj

=
∂Mij

∂t
,

since ∇kgij = 0.

Then condition 4.2 in theorem 4.3 is satisfied for our choice of tensors. Let us check.

Suppose that for a tangent vector v we have

Mijvj = 0 =
hijvj
H
− εgijvj =

hijvj
H
− εvi.

Then,

Nijvivj = 2εHhijvivj − 2himg
mlhljvivj = 2εH(Hεvj)vj − 2gml(Hεvl)(Hεvm)

= 2ε2H2vjvj − 2εHvmvm

= 0.
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We are therefore in hypothesis of theorem 4.3, and our claim holds.

The analogous argument with

M ′
ij = βgij −

hij
H

proves the second inequality in equation 4.4.

�

We are now able to prove that a convex hypersurface evolving by the MCF will remain

embedded and strictly convex for all times such that the flow exists.

Proposition 4.6 (Convexity is preserved)

Let Mt be a compact embedded hypersurface evolving by the Mean Curvature Flow.

If M = M0 is strictly convex, then Mt remains a strictly convex compact embedded

manifold for t > 0.

Proof:

By lemma 4.5 we know that the mean curvature H and the second fundamental form

hij will remain positive for all times. It remains to prove that Mt is an embedded

hypersurface for t > 0. Suppose for some t0 the manifold develops a self-intersection

at x0 ∈Mt0 . Then by a theorem of Hadamard, near x0 the second fundamental form

hij cannot be positive, which contradicts that it should remain positive everywhere.

�

As a consequence of this proposition, the convex manifold Mt can be described as

X(z, t) = r(z, t)z, z ∈ Sn (4.6)
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for any t ≥ 0 as long as the flow exists.

Hence, to understand the evolution of the manifolds Mt it is enough to know how the

function r(z, t) behaves in time. We therefore seek its evolution equation.

From 4.6 we note that

∂X

∂t
=
∂r

∂t
z + ḡ(∇̄r, ∂z

∂t
)z + r

∂z

∂t
.

Moreover X satisfies the MCF equation
∂X

∂t
= −Hν, and since

ν =
1√

r2 + |∇̄r|2
(rz − ḡik ∂r

∂ui
∂z

∂uk
),

we have

∂r

∂t
z + ḡ(∇̄r, ∂z

∂t
)z + r

∂z

∂t
= − 1√

r2 + |∇̄r|2
H(rz − ḡik ∂r

∂ui
∂z

∂uk
). (4.7)

Taking inner product with z in both sides of equation 4.7 we get

∂r

∂t
= − 1√

r2 + |∇̄r|2
rH − ḡ(∇̄r, ∂z

∂t
) (4.8)

Also, by taking inner product with
∂z

∂uj
in both sides of equation 4.7 we get

r 〈∂z
∂t
,
∂z

∂uj
〉 =

H√
r2 + |∇̄r|2

ḡikḡkj
∂r

∂ui

=
H√

r2 + |∇̄r|2
∂r

∂uj
.

Since we can write any v ∈ TpSn as v = 〈v , ∂z
∂ui
〉ḡij ∂z

∂uj
, we get that
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∂z

∂t
= ḡij

H

r

1√
r2 + |∇̄r|2

∂r

∂uj
∂z

∂ui

and therefore

ḡ(∇̄r, ∂z
∂t

) = ḡij
∂r

∂uj
〈∂z
∂t
,
∂z

∂ui
〉

= ḡij ḡik
H

r

1√
r2 + |∇̄r|2

∂r

∂uj
∂r

∂uk
〈 ∂z
∂ui

,
∂z

∂ui
〉

= ḡij ḡiiḡ
ikH

r

1√
r2 + |∇̄r|2

∂r

∂uj
∂r

∂uk

= |∇̄r|2H
r

1√
r2 + |∇̄r|2

.

Now we can rewrite equation 4.8 as

∂r

∂t
= − rH√

r2 + |∇̄r|2
− |∇̄r|2H
r
√
r2 + |∇̄r|2

= −(r2 + |∇̄r|2)H

r
√
r2 + |∇̄r|2

= −H
r

√
r2 + |∇̄r|2.

Since H = gijhij,

∂r

∂t
= − r−2

(
ḡij − ∇̄ir∇̄jr

r2 + |∇̄r|2

)
1√

r2 + |∇̄r|2

(
−r ∂2r

∂ui∂uj

+ 2
∂r

∂ui
∂r

∂uj
+ r2ḡij

)
1

r

√
r2 + |∇̄r|2,

and consequently
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∂r

∂t
= r−3

(
ḡij − ∇̄ir∇̄jr

r2 + |∇̄r|2

)(
r

∂2r

∂ui∂uj
− 2

∂r

∂ui
∂r

∂uj
− r2ḡij

)
. (4.9)

�

4.1 Longtime existence and convergence results

To prove long-term existence of MCF for compact convex hypersurfaces we move now

to a new set up. This is not the original argument of Huisken in [5], but rather a

simpler argument due to Andrews [1].

Definition 4.3.

The support function of the convex hypersurface X : M −→ Rn+1 is

S(z) = 〈z ,X(ν−1(z))〉 z ∈ Sn,

where ν−1 : Sn −→M is the inverse of the Gauss map.

Remark 4.1.

We can represent the hypersurface M via the support function by

X(z) = S(z)z + ∇̄S(z),

where ∇̄ is the connection associated to the round metric ḡ on Sn.

Proof:
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Consider the basis of TzS
n

{z, ∇̄1z, ..., ∇̄nz}

In this basis, the normal component of the vector X(z) is given by the support

function while the tangent components are simply

〈∇̄iz ,X(z)〉 = ∇̄iS(z).

�

Proposition 4.7

The components of the second fundamental form of the hypersurface are, in terms of

the support function, given by

hij = ∇̄i∇̄jS + Sḡij,

for all 1 ≤ i, j ≤ n.

Proof:

Note that

0 = 〈z , ∇̄jX〉 ⇒ 〈∇̄iz , ∇̄jX〉 = −〈z , ∇̄i∇̄jX〉.

Then,

∇̄i∇̄jS = 〈∇̄i∇̄jz ,X(z)〉+ 〈∇̄iz , ∇̄jX(z)〉+ 〈∇̄jz , ∇̄iX(z)〉+ 〈z , ∇̄i∇̄jX(z)〉

= 〈∇̄i∇̄jz ,X(z)〉+ 〈∇̄jz , ∇̄iX(z)〉 = −h̄ij 〈z ,X〉 − 〈z , ∇̄j∇̄iX〉

= −ḡijS(z) + hji − 〈z , Γ̄kij
∂X

∂uk
〉

= −ḡijS(z) + hij,
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where we used that ḡij = h̄ij. Indeed,

0 = 〈z , ∇̄jz〉 ⇒ ḡij = 〈∇̄iz , ∇̄jz〉 = −〈z , ∇̄i∇̄jz〉 = h̄ij

�

Definition 4.4.

Let M be a manifold and {κ1, ..., κn} its principal curvatures. The principal radii of

M are given by

{ 1

κ1

, ...,
1

κn
}.

Lemma 4.8

The eigenvalues of hij with respect to the metric ḡ are the principal radii of the

hypersurface, i.e. the reciprocal of the principal curvatures.

Proof:

ḡij = 〈 ∂z
∂xi

,
∂z

∂xj
〉 = 〈hikgkl

∂X

∂xl
, hjmg

mn ∂X

∂xn
〉 = hikhjmg

klgmngln

= hikhjlg
kl,

where we used the Gauss-Weingarten relations 1.2 to differentiate
∂z

∂xk
. Then,

ḡij = (h−1)ik(h−1)jlgkl,

and therefore
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hij ḡ
jk = hij(h

−1)js(h−1)klgsl

= (h−1)klgil.

This means that the eigenvalues of hij with respect to ḡ are the same as the eigenvalues

of (h−1)ij with respect to g. The latter are the reciprocal of the eigenvalues of hij

with respect to g.

�

Definition 4.5.

Let M be a compact convex manifold. The width of M at p = ν−1(z) is given by

w(z) = S(z) + S(−z) ∀ z ∈ Sn.

The next lemma is due to Andrews [1].

Lemma 4.9

Let M be an smooth compact hypersurface of Rn+1. Suppose there exists a constant

C such that

κmax(x) ≤ Cκmin(x) ∀x ∈M.

Then

wmax ≤ Cwmin,

where κmax(x) = max{κ1(x), ..., κn(x)}, κmin(x) = min{κ1(x), ..., κn(x)}, wmax =

maxz∈Sn w(x) and wmin = minz∈Sn w(x).

42



Proof:

Let z− and z+ be such that

z− ∈ min{w(x) | z ∈ Sn},

z+ ∈ max{w(x) | z ∈ Sn}.

Let Σ be a totally geodesic sphere of dimension 2 in Sn containing z− and z+. We

can parametrize the 2-sphere by local coordinates

(x1
+, x

2
+) 7→ (cosx2

+ sinx1
+, sinx2

+ sinx1
+, cosx1

+),

with (x1
+, x

2
+) ∈ [0, π]× [0, π/2] and x1

+ = 0 corresponding to z+.

Note that

ḡ11 = |(cosx2
+ cosx2

+, sinx1
+ cosx2

+, − sinx1
+)|2 = 1

and

ḡ12 = (cosx2
+ cosx2

+, sinx1
+ cosx2

+, − sinx1
+) · (− sinx2

+ sinx1
+, cosx2

+ sinx1
+, 0)

= 0.

Therefore

∇̄1∇̄1S =
∂2S

∂(x1
+)2
− Γ1

11

∂S

∂x1
+

− Γ2
11

∂S

∂x2
+

=
∂2S

∂(x1
+)2

,
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since Γ1
11 = Γ2

11 = 0. Then we can write

∇̄1∇̄1S + ḡ11S =
∂2S

∂(x1
+)2

+ S. (4.10)

Let B be the matrix

B := Hess∇̄S + ḡS.

We know by lemma 4.8 that the eigenvalues of B are the reciprocal of the principal

curvatures of M . Let us compute

∫
Σ

B(x1
+, x

1
+)dµΣ =

∫ 2π

0

∫ π

0

(Hess∇̄S + ḡS) sinx1
+dx

1
+dx

2
+

=

∫ 2π

0

∫ π

0

(
∂2S

∂(x1
+)2

+ S

)
sinx1

+dx
1
+dx

2
+

=

∫ 2π

0

(
−S cosx1

+

∣∣2π
0

)
dx2

+

= 2π(S(z+) + S(−z+)).

Analogously, we would get

∫
Σ

B(x1
−, x

1
−)dµΣ = 2π(S(z−) + S(−z−)).

By hypothesis, κmax(x) ≤ Cκmin(x), therefore

1

κmin(x)
≤ C

1

κmax(x)
,

implying that

B(x1
+, x

1
+) ≤ C B(x1

−, x
1
−). (4.11)
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Integrating 4.11 over Σ we get

(S(z+) + S(−z+)) ≤ C(S(z−) + S(−z−)).

Thus,

wmax ≤ Cwmin.

�

Lemma 4.10 (Containment Principle)

Let M and N be two n-dimensional, strictly convex, compact embedded hypersurfaces

in Rn+1 via

X : M −→ Rn+1 and Y : N −→ Rn+1

respectively. Suppose N ( M and we let them evolve by the mean curvature flow.

Then, Nt ⊆Mt as long as both flows exist.

Proof:

Suppose t0 is the first moment such that Mt0 ∩ Nt0 6= ∅, and let us consider a point

x0 in the intersection.

At the point (x0, t0) we have,

HM(x0, t0) < HN(x0, t0),

where HM and HN denote the mean curvature of M and N respectively. Let us also

denote by νM and νN the outer unit normal vectors of M and N .

Then, since x0 is a tangency point we have that

45



νM(x0, t0) = νN(x0, t0),

so the velocity vector vM of x0 ∈ Mt0 is colinear with the velocity vN at x0 ∈ Nt0 ,

and their modulus verify

|vM | = HM(x0, t0) < HN(x0, t0) = |vN |.

Therefore the tangency point disappears immediately.

�

Theorem 4.11

The solution of the Mean Curvature Flow with initial data a smooth, strictly convex,

compact hypersurface M exists on a maximal time interval [0, ω) with ω < +∞.

Moreover, X(·, t) converges uniformly to a point in Rn+1 as t→ ω.

Proof:

Since M is compact, it is contained in a sphere of radius R. We know by equation

4.9 that the radius of the sphere evolves according to

r(t) =
√
R2 − 2nt.

Therefore, the sphere collapses to a point at time T = R2/2n. Since M is contained

in the sphere the maximal interval of existence of the flow also has to be finite. To

prove that Mt converges to a point, it is enough to show that the enclosed area tends

to zero as t → ω . If it’s not zero, there exists a small ball contained in Mt for all

t ∈ [0, ω). Hence if we write
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X(z, t) = r(z, t)z,

then r(z, t) and |∇̄r| have uniform upper and lower bounds coming from the enclosing

and enclosed spheres. Therefore equation 4.9 is uniformly parabolic, and the solution

cannot be singular at time t = ω. This contradicts that [0, ω) is maximal.

�

4.1.1 The normalized mean curvature flow

To understand the shape of Mt near the singularity, let us rescale the solution as

X̃(x, τ) =
1√

2(ω − t)
(X(x, t)−X(x, ω)),

where τ = τ(t) is a reparametrization of time. Explicitly,

τ = −1

2
log

(
ω − t
ω

)
.

Then

dτ

dt
=

1

2(ω − t)
,

and the evolution equation for X̃ is given by

∂X̃(x, τ)

∂τ
= −H̃(x, τ)ν̃(x, τ) + X̃(x, τ).

Indeed,
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∂X̃(x, τ)

∂τ
=

∂X̃

∂t

dt

dτ

=
1

2(w − t)

[
∂X

∂t

√
2(w − t) +

1√
2(w − t)

(X(x, t)−X(x,w))

]
dt

dτ

=
√

2(w − t) ∂X
∂t

+ X̃ = −
√

2(w − t) Hν + X̃

= −H̃ν̃ + X̃.

We will adopt the symbol M̃t to refer to the solution of the rescaled MCF.

Lemma 4.12

There exists a positive constant C̃ such that

C̃−1 ≤ r̃in ≤ r̃out ≤ C̃ ∀ τ ≥ 0.

Proof:

We know by lemma 4.9 that there exists a constant C such that

r̃out ≤ w̃max ≤ Cw̃min ≤ c(n)Cr̃in,

where c(n) is a constant depending on the dimension of the manifold (see [8]). Let

us denote C̃ := c(n)C.

By definition of rout, the manifold Mt is enclosed by Srout(t)(ξ), for some ξ ∈ Rn+1.

Since both Srout(t)(ξ) and Mt are convex manifolds, Mt′ will be enclosed by the evolved

sphere for t′ ∈ (t, ω). The evolution equation for the radius of the sphere is, by 4.9,

∂r

∂t
= nr−1,
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since r does not depend on the point. Then,

r2(t′)

2
= −n(t′ − t) +

r2
out(t)

2
,

and therefore

0 ≤ rout(t
′) ≤ r(t′) =

√
r2
out(t)− 2n(t′ − t) ≤

√
rout(t)− 2(t′ − t),

which implies that rout(t) ≥ 2(t′ − t) for all t′ ∈ (t, ω). Now, taking limit as t′ → ω

we get rout(t) ≥ 2(ω − t). Hence we conclude that

r̃out(τ) ≥ 1,

and since r̃out ≤ C̃r̃in

C̃−1 ≤ r̃in.

Now, let us consider Srin(t)
(ξ′) the biggest sphere enclosed by Mt. By the same

argument

r(t′) =
√
r2
in(t)− 2n(t′ − t) ≤ rin(t) ≤ rin(t′),

for all t′ ∈ (t, ω). Again, taking limit as t′ → ω we get

r2
in(t)− 2n(ω − t) ≤ rin(ω) = 0,

since Mt converges to a point as t→ ω. Thus

r̃in(τ) ≤ 1

and therefore
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r̃out(τ) ≤ C̃.

�

Lemma 4.13

There exists a positive constant C such that

sup{H̃(x, τ) | x ∈M, τ ≥ 0} ≤ C

Proof:

Let t0 ∈ (0, ω), and suppose the biggest sphere contained in Mt0 is centered at 0 ∈

Rn+1. Then, for all t ∈ [0, t0]

S(z, t) ≥ rin(t0).

Note that

∂S

∂t
= 〈∂z

∂t
,X(z)〉+ 〈z , ∂X

∂t
+
∂X

∂xk
∂(ν−1)k

∂t
〉 = 〈z , ∂X

∂t
〉

= −H

Using the calculations done in lemma 4.8 we can write the mean curvature H in terms

of the metric in the sphere. Indeed,

H = hijg
ij = hij(h

−1)imḡmn(h−1)nj = δmj ḡmn(h−1)nj

= ḡmn(h−1)nm.

Also, the same lemma and proposition 3.1 give us
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∂H

∂t
= gkl(∇̄k∇̄lH +Hḡkl).

Let us consider the function Φ : Sn × [0, t0] −→ R defined by

Φ(z, t) =
H(z, t)

S(z, t)− a
,

where a = 1
2
rin(t0). Note that S − a > 0 for all t ∈ [0, t0].

Let (z1, t1) ∈ Sn× [0, t0] be a point such that Φ achieves a maximum. Then at (z1, t1)

we have

0 = ∇̄iΦ =
∇̄iH

S − a
− H∇̄iS

(S − a)2
,

and therefore

0 ≥ ∇̄i∇̄jΦ =
∇̄i∇̄jH

S − a
− ∇̄jH∇̄iS

(S − a)2
− ∇̄iH∇̄jS

(S − a)2
− H∇̄i∇̄jS

(S − a)2
+ 2

H∇̄jS∇̄iS

(S − a)3

=
∇̄i∇̄jH

S − a
− ∇̄iS

S − a
∇̄jΦ−

∇̄jS

S − a
∇̄iΦ−

H∇̄i∇̄jS

(S − a)2

=
∇̄i∇̄jH

S − a
− H∇̄i∇̄jS

(S − a)2
=
∇̄i∇̄jH

S − a
+
HḡijS − hijH

(S − a)2

=
∇̄i∇̄jH

S − a
+
Hḡij(S − a) + aHḡij − hijH

(S − a)2

=
∇̄i∇̄jH +Hḡij

S − a
+
aHḡij − hijH

(S − a)2
.

Thus,

∇̄i∇̄jH +Hḡij ≤
hijH − aHḡij

S − a
. (4.12)

Also,
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0 =
∂Φ

∂t
=

1

S − a
∂H

∂t
− H

(S − a)2

∂S

∂t

=
1

S − a

(
gij(∇̄i∇̄jH +Hḡkl) +

H2

S − a

)
.

So, using inequality 4.12,

0 ≤ gij
(
hijH − aHḡij

S − a

)
+

H2

S − a
=

(
H2 − aHgij ḡij

S − a

)
+

H2

S − a

=
2H2 − aH|A|2

S − a
,

since gij ḡij = gijhjkg
klhlj = |A|2. Moreover, H2 ≤ |A|2, thus

H ≤ 2

a
=

4

rin(t0)
≤ 4C

rout(t0)
,

due to lemma 4.9. Then using lemma 4.12 we conclude that, for K = 4CC̃ we have

H(z1, t1) ≤ K. Therefore, for all z ∈ Sn, t ∈ [0, t0] we have

H(z, t) ≤ K.

Then, taking limit when t0 → ω we get the bound on all Sn × [0, ω). Hence

H̃(x, τ) ≤ K ∀ x ∈M, τ ∈ [0,+∞).

�

To conclude that we have convergence to a point, we recall the following theorem,

that can be found in [8].
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Theorem 4.14 (Blaschke Selection Theorem)

Let {Kj}j∈N be a sequence of compact convex sets of Rn+1 which are contained in a

bounded set. Then, there exists a subsequence {Kjk}k∈N and a compact convex set K

in Rn+1 such that Kjk converges to K in the Hausdorff metric.

Theorem 4.15

Let M̃t be a smooth strictly convex, compact hypersurface embedded in Rn+1 evolving

by the normalized mean curvature flow. For any sequence of times {τj}j∈N such that

τj → +∞ there exists a subsequence {τjk}k∈N such that {M̃τjk
}k∈N converges to a

smooth compact convex hypersurface M̃∞ in the Hausdorff metric.

Proof:

By definition, we know that for some x0 ∈ Rn+1

M̃τ0 ⊆ Sout,

where Sout = Sr̃out(τ0)(x0), the n-sphere of radius r̃out(τ0) centered at x0. Then by

Blaschke theorem, there exist a subsequence of times {τjk}k∈N with τjk → +∞ such

that {M̃τjk
}k∈N converges to M̃∞ in the Hausdorff metric.

It remains to prove that M̃∞ is non-degenerate. For this, note that for all τjk we have

r̃in(τjk) ≥ C̃−1,

by lemma 4.12. Therefore M̃∞ contains a sphere and since it is convex, it is non-

degenerate.

�
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Chapter 5

Evolution of entire graphs

Unless otherwise stated, the results of this section are due to Esker-Huisken [3].

Definition 5.1 (Entire graph).

An orientable manifold Mn embedded in Rn+1 via X : Mn −→ Rn+1 is said to be an

entire graph if, once chosen a continuous normal vector field ν, there exists ω ∈ Rn+1

with |ω| = 1 such that

〈ν|X(p) , ω〉 > 0, ∀ p ∈M.

Remark 5.1.

Since the condition of being an entire graph is open, we can insure that the manifold

will remain a graph for some small time interval (0, ε), ε > 0. Later in this monograph

we will be able to show that the graph condition is preserved as long as the flow exists.

Notation 5.1.

For simplicity of notation, given p ∈ M with local coordinates x = (x1, ..., xn) ∈ Rn,

we will identify the point x in Rn with the point X(p, t) in Rn+1. It should be clear
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from the context which one we are referring to.

Definition 5.2.

A backwards heat kernel is a function ρ : Rn+1 −→ R defined as

ρ(x, t) = [4π(t0 − t)]−n/2 exp

(
−|x0 − x|2

4(t0 − t)

)
,

where (x0, t0) ∈ Rn+2 is an arbitrary fixed point, x ∈ Rn+1 and t < t0.

Lemma 5.1

Let Mt be an entire graph evolving by the mean curvature flow. Then, its backwards

heat kernel satisfies the evolution equation

dρ

dt
= −∆ρ+ ρ

[
〈x0 − x ,−Hν〉

t0 − t
− |(x0 − x)⊥|2

4(t0 − t)2

]
,

where the superscript ⊥ denotes the normal component of the vector and ∆ is the

Laplace-Beltrami operator on Mt.

Proof:

We compute

∂

∂t
ρ =

n

2
(4π)−n/2(t0 − t)−n/2−1 exp

(
−|x0 − x|2

4(t0 − t)

)
+ [4π(t0 − t)]−n/2 exp

(
−|x0 − x|2

4(t0 − t)

)
∂

∂t

(
−|x0 − x|2

4(t0 − t)

)
=

[
n

2

1

(t0 − t)
+
∂

∂t

(
−|x0 − x|2

4(t0 − t)

)]
ρ

=

[
n

2

1

(t0 − t)
− 1

2

〈x0 − x ,Hν〉
(t0 − t)

− 1

4

|x0 − x|2

(t0 − t)2

]
ρ,

since
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∂x

∂t
= −Hν.

Now we compute ∆ρ with respect to the evolving metric. We have

∇iρ = [4π(t0 − t)]−n/2 exp

(
−|x0 − x|2

4(t0 − t)

)
1

4(t0 − t)
[2 〈x0 − x ,

∂x

∂xi
〉]

=
1

2(t0 − t)
〈x0 − x ,

∂x

∂xi
〉ρ

and

∂2ρ

∂xi∂xj
=

∂

∂xj

[
1

2(t0 − t)
〈x0 − x ,

∂x

∂xi
〉ρ
]

=
∂

∂xj

[
1

2(t0 − t)
〈x0 − x ,

∂x

∂xi
〉
]
ρ+

∂ρ

∂xj

=
1

2(t0 − t)

[
〈x0 − x ,

∂2x

∂xi∂xj
〉 − 〈 ∂x

∂xi
,
∂x

∂xj
〉
]
ρ

+
1

4(t0 − t)2
[ 〈x0 − x ,

∂x

∂xj
〉][ 〈x0 − x ,

∂x

∂xi
〉]ρ

=
1

2(t0 − t)

[
〈x0 − x ,−hijν + Γkij

∂x

∂xk
〉 − gij

]
ρ

+
1

4(t0 − t)2
[ 〈x0 − x ,

∂x

∂xj
〉][ 〈x0 − x ,

∂x

∂xi
〉]ρ.

Therefore

∆ρ = gij∇j∇iρ = gij
∂2ρ

∂xi∂xj
− gij ∂ρ

∂xk
Γkij

= ρ
1

2

1

(t0 − t)
[ 〈x0 − x ,−Hν〉 − n] + ρ

1

4

1

(t0 − t)2
|(x0 − x)T |2

= ρ

[
1

4

|(x0 − x)T |2

(t0 − t)2
− n

2

1

t0 − t
− 1

2

〈x0 − x ,Hν〉
(t0 − t)

]
.
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Hence we conclude that

∂ρ

∂t
+ ∆ρ = ρ

〈x0 − x ,−Hν〉
(t0 − t)

− 1

4
ρ

[
|x0 − x|2

(t0 − t)2
− |(x0 − x)T |2

(t0 − t)2

]
= ρ

[
〈x0 − x ,−Hν〉

(t0 − t)
− 1

4

|(x0 − x)⊥|2

(t0 − t)2

]
,

where the last equality holds by Pythagoras.

�

Theorem 5.2 ([6, Theorem 3.1])

Let Mt be an entire graph evolving by the mean curvature flow and let ρ be its back-

wards heat kernel.

(a) The following evolution equation is satisfied

d

dt

∫
Mt

ρdµt = −
∫
Mt

ρ

∣∣∣∣Hν +
1

2(t0 − t)
(x0 − x)⊥

∣∣∣∣2 dµt.

(b) More generally, for any function f = f(x, t) on Mt we have

d

dt

∫
Mt

fρdµt =

∫
Mt

(
∂f

∂t
−∆f

)
ρdµt −

∫
Mt

fρ

∣∣∣∣Hν +
1

2(t0 − t)
(x0 − x)⊥

∣∣∣∣2 dµt.
Proof:

Without loss of generality we assume x0 = 0 and set τ = t0 − t. Then, we use the

evolution equation given by lemma 5.1 to compute
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∫
Mt

ρdµt =

∫
Mt

∂ρ

∂t
dµt −

∫
Mt

ρH2dµt

= −
∫
Mt

∆ρdµt +

∫
Mt

ρ

[
〈x ,Hν〉

τ
− |x

⊥|2

4τ 2

]
dµt −

∫
Mt

ρH2dµt

=

∫
Mt

ρ

[
〈x⊥ , Hν〉

τ
− |x

⊥|2

4τ 2

]
dµt −

∫
Mt

ρH2dµt

=

∫
Mt

ρ

∣∣∣∣Hν − x⊥

2τ

∣∣∣∣2 dµt,

where we used that the manifold Mt has no boundary, and therefore

∫
Mt

∆ρ dµt =

∫
Mt

ρ∆(1) dµt = 0.

�

The argument to prove part (b) is analogous to the one used in part (a).

∫
Mt

f ρdµt =

∫
Mt

(
∂f

∂t
ρ+ f

∂ρ

∂t
)dµt −

∫
Mt

f ρH2dµt

=

∫
Mt

(
∂f

∂t
ρ− f∆ρ)dµt +

∫
Mt

fρ

[
〈x ,Hν〉

τ
− |x

⊥|2

4τ 2

]
dµt

−
∫
Mt

fρH2dµt

=

∫
Mt

(
∂f

∂t
ρ−∆fρ)dµt +

∫
Mt

fρ

[
〈x⊥ , Hν〉

τ
− |x

⊥|2

4τ 2

]
dµt

−
∫
Mt

fρH2dµt

=

∫
Mt

(
∂f

∂t
ρ−∆fρ)dµt +

∫
Mt

fρ

∣∣∣∣Hν − x⊥

2τ

∣∣∣∣2 dµt,
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since

∫
Mt

f∆ρ dµt =

∫
Mt

∆f ρ dµt.

�

Corollary 5.3

Let f = f(x, t) be a function, let V = (x, t) be a vector field on Mt and x = X(p, t) ∈

Mt. Suppose that for some t1 > 0,

s = sup
M×[0, t1]

|V | <∞

and that the following condition is satisfied

(
∂

∂t
−∆

)
f ≤ V · ∇f,

where ∇ = ∇g(t) is the gradient on Mt. Then, we have

sup
Mt

f ≤ sup
M0

f, ∀t ∈ [0, t1].

Proof:

Let

fK = max{f −K, 0}

where K = supM0
f . Then fK is piecewise differentiable so, weakly, we have
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(
∂

∂t
−∆

)
f 2
K = 2fK

∂fK
∂t
− 2fK∆fK − 2|∇fK |2 = 2fK

(
∂

∂t
−∆

)
fK − 2|∇fK |2

≤ 2fK(V · ∇fK)− 2|∇fK |2 = (fKV ) · 2∇fK − 2|∇fK |2

≤ 1

2
f 2
K |V |2 + 2|∇fK |2 − 2|∇fK |2

≤ 1

2
s2f 2

K ,

where we used the arithmetic-geometric inequality, i.e.,

ab ≤ 1

2
(a2 + b2) (5.1)

for all real numbers a and b.

Fix t0 ∈ R with 0 < t0 < t1. Using theorem 5.2 part b, we know that for x ∈Mt and

0 < t < t0 we have

∂

∂t

∫
Mt

f 2
Kρdµt =

∫
Mt

(
∂f 2

K

∂t
−∆f 2

K

)
ρdµt −

∫
Mt

f 2
Kρ

∣∣∣∣Hν +
1

2(t0 − t)
(x0 − x)⊥

∣∣∣∣2 dµt
≤ 1

2
s2

∫
Mt

f 2
Kρdµt,

for ρ defined around a point (x0, t0) ∈ Rn+2 with x0 = X(p, t0).

Therefore, comparing the integral

∫
Mt

f 2
Kρdµt

with the solution of the ODE
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y′ =

1

2
s2y

y(0) =

∫
M0

f 2
Kρdµ0 = 0

we see that

0 ≤
∫
Mt

f 2
Kρdµt ≤

[∫
M0

f 2
Kρdµ0

]
e

1
2
s2t = 0

since fK(x, 0) = 0. Thus, fK is zero on every Mt and it follows that

f(x, t) ≤ sup
M0

f

for every 0 < t < t0 and x ∈ Mt. Now taking the supremum over all x ∈ Mt and all

0 ≤ t ≤ t0, we get

sup
Mt

f ≤ sup
M0

f.

for every t ∈ [0, t0]. Taking the limit when t0 → t1 yields the result.

�

5.1 A priori height estimates.

Definition 5.3 (Height).

Let t be fixed. The height of Mt with respect to the hyperplane

[ω]⊥ = {(x1, ..., xn+1) ∈ Rn+1| 〈(x1, ..., xn+1) , ω〉 = 0}

is the real valued function

61



u(x, t) = 〈x , ω〉, ∀ x ∈Mt.

Remark 5.2.

The definition of height suggests us that the manifold M = M0 can be represented

as the set of points (x, u(x, 0)), x ∈ [w]⊥ and u being the height. Subsequently, the

manifolds Mt, t > 0, are determined by u(x, t). Moreover, u satisfies

∂u

∂t
=
√

1 + |∇u|2 div

(
∇u

1 + |∇u|2

)
, (5.2)

where the derivatives of u are taken in the directions perpendicular to ω.

�

Remark 5.3.

The function height satisfies

(
∂

∂t
−∆

)
u = 0

Indeed,

∂u

∂t
=

∂

∂t
〈X(p, t) , ω〉 = 〈 ∂

∂t
X(p, t) , ω〉 = 〈∆X(p, t) , ω〉 = ∆ 〈X(p, t) , ω〉

= ∆u.

�
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Lemma 5.4 1. The function

η1(x, t) := |x|2 + 2nt, x ∈Mt, t > 0,

satisfies (
∂

∂t
−∆

)
η1 = 0.

2. The function

η2(x, t) := 1 + |x|2 − u2 + 2nt, x ∈Mt, t > 0,

satisfies

(
∂

∂t
−∆

)
ηp2 = −p(p− 1)|∇η2|2ηp−2

2 + 2pηp−1
2 |∇u|2, ∀ p ∈ R.

Proof:

1)

∂

∂t
η1 =

∂

∂t
〈X ,X〉+ 2n = 2 〈∂X

∂t
,X〉+ 2n

= 2n− 2 〈Hν ,X〉

and
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∆η1 = ∆ 〈X ,X〉 = gij
[

∂2

∂xi∂xj
〈X ,X〉 − Γkij

∂

∂xk
〈X ,X〉

]
= gij

[
2
∂

∂xj
〈∂X
∂xi

, X〉 − 2Γkij 〈
∂X

∂xk
, X〉

]
= 2gij

[
gij + 〈 ∂

2X

∂xi∂xj
, X〉 − Γkij 〈

∂X

∂xk
, X〉

]
= 2n+ 2 〈∆X ,X〉

= 2n− 2 〈Hν ,X〉.

Hence

(
∂

∂t
−∆

)
η1 = 0.

�

2) Notice that

(
∂

∂t
−∆

)
u2 = 2u

∂u

∂t
− 2u∆u− 2|∇u|2 = 2u

(
∂

∂t
−∆

)
u− 2|∇u|2

= −2|∇u|2.

Hence

(
∂

∂t
−∆

)
η2 =

(
∂

∂t
−∆

)
η1 −

(
∂

∂t
−∆

)
u2

= 2|∇u|2.

Now,
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∂

∂t
ηp2 = p

∂η2

∂t
etap−1

2

and

∆ηp2 = pηp−1
2 ∆η2 + p(p− 1)|∇η2|2ηp−2

2 ,

thus

(
∂

∂t
−∆

)
ηp2 = pηp−1

2

(
∂

∂t
−∆

)
η2 − p(p− 1)|∇η2|2ηp−2

2

= 2p|∇u|2ηp−1
2 − p(p− 1)|∇η2|2ηp−2

2 .

�

Proposition 5.5

If there exist a constant c0 and a nonnegative real number p verifying

u2(x, 0) ≤ c0(1 + |x|2 − u2(x, 0))p ∀x ∈M,

then

u2(x, t) ≤ c0(1 + |x|2 − u2(x, t) + (2n+ 4(p− 1))t)p ∀ t ≥ 0, ∀x ∈Mt.

Proof:
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Let us consider the function

η(x, t) := 1 + |x|2 − u2 + (2n+ 4(p− 1))t.

We compute

(
∂

∂t
−∆

)
u2η−p = η−p

(
∂

∂t
−∆

)
u2 + u2

(
∂

∂t
−∆

)
η−p − 2∇(u2) · ∇(η−p)

= −2η−p|∇u|2 − p(p+ 1)u2|∇η|2η−p−2 − 2u2pη−p−1|∇u|2

− 4(p− 1)pη−p−1u2 − 4puη−p−1∇u · ∇η,

since the calculations done for η2 also hold for η.

We observe that

|4puη−p−1∇u · ∇η| = |(2uη−p/2∇u) · (2puη−p/2−1∇η)|

≤ 2η−p|∇u|2 + 2p2u2η−p−2|∇η|2.

Also,

∂η

∂xi
= 2 〈 ∂x

∂xi
, x〉 − 2 〈 ∂x

∂xi
, ω〉 〈x , ω〉 (5.3)

= 2 〈 ∂x
∂xi

, x− 〈x , ω〉ω〉, (5.4)

thus
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|∇η|2 = gii
(
∂η

∂xi

)2

= 4gii
(
〈 ∂x
∂xi

, x− 〈x , ω〉ω〉
)2

≤ 4giigii|x− 〈x ,w〉w|2 = 4( 〈x , x〉 − 2 〈x ,w〉2 + 〈x ,w〉2|w|2)

= 4(|x|2 − u2)

≤ 4η,

since n ≥ 2 and p ≥ 0. Then

(
∂

∂t
−∆

)
u2η−p ≤ −2η−p|∇u|2 − p(p+ 1)u2|∇η|2η−p−2 − 2u2pη−p−1|∇u|2

− 4p(p− 1)u2η−p−1 + 2η−p|∇u|2 + 2p2u2η−p−2|∇η|2

= p(p− 1)u2|∇η|2η−p−2 − 2u2pη−p−1|∇u|2

− 4p(p− 1)u2η−p−1

≤ 4p(p− 1)u2η−p−1 − 2u2pη−p−1|∇u|2 − 4p(p− 1)u2η−p−1

= −2u2pη−p−1|∇u|2 ≤ 0.

Now notice that

sup
M0

u2η−p ≤ sup
M0

c0(1 + |x|2 − u2)p

(1 + |x|2 − u2)p
= c0,

so we can apply corollary 5.3 to the function f = u2η−p and the vector field V ≡ 0.

We conclude that

sup
Mt

u2η−p ≤ sup
M0

u2η−p ≤ c0.

Thus

67



u2 ≤ c0η
p,

which is the desired result.

�

5.2 A priori gradient estimates.

In order to show that Mt remains a graph for all times, we want to estimate the

quantity

〈ν , ω〉

from below. Hence, let

v :=
1

〈ν , ω〉
.

We shall find a priori upper bounds for v.

Lemma 5.6

The function v satisfies the following evolution equation

(
∂

∂t
−∆

)
v = −|A|2v − 2v−1|∇v|2.

Proof:

We know that
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∂ν

∂t
= ∇H,

then

∂v

∂t
= −v2 〈∂ν

∂t
, ω〉 = −v2 〈∇H ,ω〉.

To compute ∆v let us consider {e1, ..., en} an orthonormal basis of TpM in which the

metric g at p is the identity. Then

∆ =
n∑
i=1

∇ei∇ei .

To shorten notation we write ∇i := ∇ei . Now,

∇iv = −v2 〈∇iν , w〉 = −v2 〈hijej , w〉,

where the last equality holds because of the Weingarten equations 1.2. Then,

|∇v|2 =
∑
ij

v4( 〈hijej , ω〉)2.

For each i ∈ {1, ..., n} we have

∇i∇iv = ∇i(−v2 〈hijej , w〉) = 2v3( 〈hijej , ω〉)2 − v2 〈∇i(hijej) , ω〉

= 2v3( 〈hijej , ω〉)2 − v2 〈∇i(hij)ej , ω〉 − v2 〈hij∇i(ej) , ω〉

= 2v−1|∇v|2 − v2 〈∇jhiiej , ω〉+ v2hijH 〈hijν , ω〉.

Therefore ∆v is given by

∆v = 2v−1|∇v|2 − v2 〈∇H ,ω〉+ |A|2v,
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where we used the Codazzi equations ∇khij = ∇jhki = ∇ihjk and that H =
∑n

i=1 hii.

Hence

(
∂

∂t
−∆

)
v = −|A|2v − 2v−1|∇v|2,

as claimed.

�

Corollary 5.7

If v is bounded from above at t = 0, then it will remain bounded for all times by the

same constant.

Proof:

Suppose that v(x, 0) ≤ b, ∀ x ∈M . By the previous lemma we have

∂v

∂t
= ∆v − |A|2v − 2v−1|∇v|2.

Let

vmax(t) := max
Mt

v(x, t),

which exists, at least for some interval [0, ε).

If the maximum on Mt is reached at a point x(t), then

∇vmax(t) = ∇v(x(t), t) = 0

and

∆vmax(t) = ∆v(x(t), t) ≤ 0.

Therefore,
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∂

∂t
vmax ≤ −|A|2vmax ≤ 0,

possibly in the weak sense, as vmax may not be everywhere differentiable, but it is

Lipschitz continuous. Thus, vmax is decreasing with respect to t. Since

vmax(0) ≤ b,

we conclude that

v(x, t) ≤ vmax(t) ≤ b,

for all x ∈Mt, t > 0 such that the flow exists.

�

Proposition 5.8

Suppose there exist a constant c1 and a nonnegative number p such that

v(x, 0) ≤ c1(1 + |x|2 − u2(x, 0))p, ∀x ∈M0.

Then, v satisfies

v(x, t) ≤ c1(1 + |x|2 − u2(x, t) + 2nt)p ∀x ∈Mt,

∀ t ≥ 0 for which the flow exists.

Proof:

The argument is analogous to the one used to prove lemma 5.5
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(
∂

∂t
−∆

)
vη−p2 = −|A|2vη−p2 − 2v−1|∇v|2η−p2 − p(p+ 1)v|∇η2|2η−p−2

− 2pvη−p−1
2 |∇u|2 − 2pη−p−1

2 ∇v · ∇η2

and

|2pη−p−1
2 ∇v · ∇η2| = |(2v−1/2|∇v|η−p/22 )(pv1/2η

−p/2−1
2 |∇η2|)|

≤ 2v−1|∇v|2η−p2 +
1

2
p2vη−p−2

2 |∇η2|2.

Thus,

(
∂

∂t
−∆

)
vη−p2 ≤ −|A|2vη−p2 −

(
1

2
p2 + p

)
v|∇η2|2η−p−2 − 2pη−p−1

2 |∇u|2

≤ 0,

as p ≥ 0. We now apply corollary 5.3 for f = vη−p2 and V = 0 to conclude that

sup
Mt

vη−p2 ≤ c1,

and the result follows.

�

5.3 Curvature estimates and longtime existence.

In this section we will show that as long as Mt remains an entire graph with bounded

gradient v, the curvature remains bounded as well. In fact, the a priori bounds to

the second fundamental form Mt are essential for proving longtime existence to the
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mean curvature flow with smooth initial data. However, in order to get the estimates

and longtime existence for the flow, extra hypothesis are needed.

Assumption. We will assume that the manifold has linear growth, i.e. there exists

a constant c1 ≥ 1 such that

v ≤ c1

at every point in M0. Proposition 5.8 assures that this bound will hold for all times.

Lemma 5.9

The following differential inequality is satisfied during the evolution of an entire graph

under the mean curvature flow

(
∂

∂t
−∆

)
|A|2v2 ≤ −2v−1∇v · ∇(|A|2v2).

Proof:

Using lemma 5.6, we can compute

(
∂

∂t
−∆

)
v2 = 2v

∂

∂t
− 2v∆v − 2|∇v|2 = 2v(−|A|2v − 2v−1|∇v|2)− 2|∇v|2

= −2|A|2v2 − 6|∇v|2.

By proposition 3.1 we know how |A|2, the norm of the second fundamental form,

evolves in time. Hence
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(
∂

∂t
−∆

)
|A|2 = −2|∇A|2 + 2|A|4 ≤ −2|∇|A||2 + 2|A|4.

Therefore

(
∂

∂t
−∆

)
(|A|2v2) = v2

(
∂

∂t
−∆

)
|A|2 + |A|2

(
∂

∂t
−∆

)
v2 − 2∇(|A|2) · ∇(v2)

≤ −2|∇|A||2v2 − 6|∇v|2||A|2 − 2∇(|A|2) · ∇(v2).

Now,

−2∇(|A|2) · ∇(v2) = −∇(|A|2) · ∇(v2)− 4v|A|(∇|A|)∇v

= −v−2∇(v2) · ∇(|A|2v2) + v−2|∇(v2)|2|A|2 − 4v|A|(∇|A|)∇v

= −2v−1∇v · ∇(|A|2v2) + 4|∇v|2|A|2 − 4v|A|(∇|A|)∇v

≤ −2v−1∇v · ∇(|A|2v2) + 4|∇v||A|2 + 2v2|∇|A||2 + 2|∇v|2|A|2

= −2v−1∇v · ∇(|A|2v2) + 6|∇v|2|A|2 + 2v2|∇|A||2,

where we estimated −4v|A|(∇|A|)∇v with the arithmetic-geometric inequality. We

can use the last inequality to conclude that

(
∂

∂t
−∆

)
(|A|2v2) ≤ −2|∇|A||2v2 − 6|∇v|2||A|2 − 2∇(|A|2) · ∇(v2)

≤ −2v−1∇v · ∇(|A|2v2).

�
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Proposition 5.10

If M evolves by the Mean Curvature Flow with bounded gradient and bounded curva-

ture for each Mt, then

sup
Mt

|A|2v2 ≤ sup
M0

|A|2v2.

Proof:

Let f = v2|A|2 and V = −2v−1∇v. Note that

v−1|∇v| ≤ |A|v.

Indeed, if {e1, ..., en} is an orthonormal basis of TpM in which the metric at p is

gij = δij, then

∇iv = −v2 〈∇iν , w〉 = −v2 〈hikek , w〉

so

|∇iv| ≤
∑
k

|v2||hik|

and

|∇v|2 =
∑
i

|∇iv|2 = v2
∑
i,k

h2
ik = v2|A|2.

Then, V is bounded. Hence we apply corollary 5.3 to conclude the estimate.

�

Proceeding as in [4, §13], we can get the following lemma.

Lemma 5.11

For any nonnegative integer m we have
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∂

∂t
|∇mA|2 = − 2|∇m+1A|2 + |∇mA|2

+ C(m,n)
∑

i+j+k=m

∇iA ∗ ∇jA ∗ ∇kA ∗ ∇mA, (5.5)

where ∇iA ∗ ∇jA denotes any linear combination of the tensors ∇iA and ∇jA. In

particular, we have

∂

∂t
|∇mA|2 ≤ − 2|∇m+1A|2 + |∇mA|2

+ C(m,n)
∑

i+j+k=m

|∇iA| |∇jA| |∇kA| |∇mA|. (5.6)

The preceding lemma allows us to derive uniform a priori estimates for derivatives of

any order of the second fundamental form.

Proposition 5.12

Let M be an entire graph evolving by the mean curvature flow. Suppose that v, |A|2,

|∇A|2, ..., |∇mA|2 are bounded on each Mt. Then for all t ≥ 0

sup
Mt

|∇mA| ≤ C,

where C depends on m, n, c1 and supM0
|∇jA| for j : 0 ≤ j ≤ m.

For a proof of this proposition we refer to [6, Proposition 2.3].

The following proposition provides another proof of proposition 5.12 for any time

interval [0, ε), ε > 0, by giving interior estimates. Also, it shows that, asymptotically,

the graph will flatten out at infinity.
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Proposition 5.13

Let M be an entire graph evolving by the mean curvature flow. Suppose that Mt

satisfies a linear growth v ≤ c1. Then there exists a constant C = C(m,n, c1) such

that

tm+1|∇mA|2 ≤ C, (5.7)

uniformly on each Mt.

Proof:

We’ll prove this theorem by induction on m. Let us set m = 0 and compute the

following

(
∂

∂t
−∆

)
(2t|A|2v2 + v2) = 2|A|2v2 + 2t

(
∂

∂t
−∆

)
(|A|2v2)

+ 2v
∂v

∂t
− 2v∆v − 4|∇v|2

≤ 2|A|2v2 − 2v−1∇v · ∇(2t|A|2v2)

+ 2v

(
∂

∂t
−∆

)
v − 2|∇v|2

= 2|A|2v2 − 2v−1∇v · ∇(2t|A|2v2)

− 2|A|2v2 − 6|∇v|2

≤ −2v−1∇v · ∇(2t|A|2v2),

where we used lemmas 5.6 and 5.9. Then, we can use corollary 5.3 with

f := 2t|A|2v2 + v2,

V := −2v−1∇v,
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to conclude that

sup
Mt

(2t|A|2v2 + v2) ≤ sup
M0

v2 ≤ c2
1.

By 5.11, we know that for any l ∈ N

(
∂

∂t
−∆

)
(tl+1|∇lA|2) ≤ −2tl+1|∇l+1A|2 + (l + 1)tl|∇lA|2

+ C(l, n) tl+1
∑

i+j+k=l

|∇iA||∇jA||∇kA||∇lA|. (5.8)

Suppose equation 5.7 holds up to m− 1, and let us use it to estimate the following

tl+1
∑

i+j+k=l

|∇iA||∇jA||∇kA||∇lA|

≤ tl+1
∑

i+j+k=l

√
C(i)C(j)t−i/2−j/2−1|∇kA||∇lA|

≤ C1 t
l
∑
k≤l

tk/2−l/2|∇kA||∇lA|

= C1 t
l/2|∇lA|

∑
k≤l

tk/2|∇kA|

≤ C2

∑
k≤l

tk|∇kA|2. (5.9)

Putting together equations 5.8 and 5.9 we get that for all l ≤ m

(
∂

∂t
−∆

)
(tl+1|∇lA|2) ≤ −2tl+1|∇l+1A|2 + (l + 1)tl|∇lA|2 + C2

∑
k≤l

tk/2|tk|∇kA|2

≤ −2tl+1|∇l+1A|2 + C3

∑
k≤l

tk/2|∇kA|2.

Note that we can choose a constant k1 such that
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(
∂

∂t
− ∆)(tm+1|∇mA|2 + k1 t

m|∇m−1A|2) =

− 2tm+1|∇m+1A|2 + C3

∑
k≤m

tk/2|∇kA|2

− 2k1t
m|∇mA|2 + k1C3

∑
k≤m−1

tk/2|∇kA|2

≤ C3

∑
k≤m

tk/2|∇kA|2 − 2k1t
m|∇mA|2 + k1C3

∑
k≤m−1

tk/2|∇kA|2

≤ C3

∑
k≤m−1

tk/2|∇kA|2 + k1C3

∑
k≤m−1

tk/2|∇kA|2

≤ C4

∑
k≤m−1

tk/2|∇kA|2.

Analogously we can get constants k2, ..., km+1 such that

(
∂

∂t
− ∆)(tm+1|∇mA|2 + k1 t

m|∇m−1A|2 + k2 t
m−1|∇m−2A|2 + ...

+ ...+ km−1 t
2|∇A|2 + km t|A|2 + km+1v

2)

≤ 0.

Then, using once more corollary 5.3 with V ≡ 0 we get

tm+1|∇mA|2 + k1 t
m|∇m−1A|2 + k2 t

m−1|∇m−2A|2 + ...

+ ...+ km−1 t
2|∇A|2 + km t|A|2 + km+1v

2

is uniformly bounded. Since the last m + 1 terms are bounded by the induction

hypothesis, we get that

tm+1|∇mA|2

is uniformly bounded.
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�

Theorem 5.14 (Longtime Existence)

Let M be a smooth entire graph with linear growth. Then, the Mean Curvature flow

with initial data M0 = M has smooth solution for all t ≥ 0.

Proof:

Let [0, T ) be the maximal interval of existence of the mean curvature flow with initial

condition M . Suppose T < +∞. By corollary 5.7 we know that Mt remains an entire

graph for all t ∈ [0, T ) and so it is

lim
t→T−

Mt.

By corollary 5.10, we also know that the norm of the second fundamental form |A|2

is bounded by initial conditions. Therefore H, the trace of the second fundamental

form also remains bounded for all t ∈ [0, T ).

Then, Proposition 5.13 gives us bounds for all derivatives of the second fundamental

form, so we can conclude that

MT := lim
t→T−

Mt

is also a smooth entire graph with bounded Mean Curvature. Hence we can restart

the flow with initial condition MT , and will a priori defined on an interval [T, T ′).

Therefore the initial flow is defined on [0, T ′) with T ′ > T , contradicting that [0, T )

was a maximal time interval. Thus, T = +∞.

�
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Appendix A

Generalities on Parabolic

Equations

The well-known theory of quasi-linear parabolic equations is going to aid us when

proving the existence and uniqueness of flows. In this section we recall the definitions

and results which we will need. This section is an extract of [7].

Definition A.1.

Let Ω ⊂ Rn be an open set. Let us consider the following Linear second-order

differential equation on Ω× (0, T ):

L(x, t, (∂i)i, (∂ij)ij,
∂

∂t
)u =

ut−aij(x, t)
∂2u

∂xi∂xj
+ ai(x, t)

∂u

∂xi
+ a(x, t)u = f(x, t) (A.1)

Where u = u(x, t) and f = f(x, t) are functions on Ω× (0, T ).

The operator L defined in A.1 is said to be Uniformly Parabolic in Ω × (0, T ) if
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there exist positive real numbers ν, µ such that

ν|ξ|2 ≤ aij(x, t)ξiξj ≤ µ|ξ|2,

∀ 1 ≤ i, j ≤ n, ∀ (x, t) ∈ Ω× (0, T ), ∀ξ = (ξ1, ..., ξn) ∈ Rn.

Definition A.2.

Let us denote by Q a quasi-linear second order differential operator in Ω ⊂ Rn.

Explicitly,

Q(x, t, (∂i)i, (∂ij)ij,
∂

∂t
)u =

=
∂u

∂t
−aij(x, t, u, ux)

∂2u

∂xi∂xj
+ a(x, t, u, ux) (A.2)

The quasi-linear operator Q is said to be Uniformly Parabolic if there exist real

positive non-increasing continuous functions ν, µ of τ , τ ≥ 0, such that

ν(|u|)|ξ|2 ≤ aij(x, t, u, w)ξiξj ≤ µ(|u|)|ξ|2,

∀ 1 ≤ i, j ≤ n, ∀ (x, t) ∈ Ω× (0, T ), ∀w = (w1, ..., wn), ξ = (ξ1, ..., ξn) ∈ Rn, ∀u ∈ R.

Remark A.1.

A special type of quasilinear equations are those with principal part in divergence

form. This is an equation of the form

Q(x, t, (∂i)i, (∂ij)ij,
∂

∂t
)u =

∂u

∂t
− ∂

∂xi
ai(x, t, u, ux) + a(x, t, u, ux). (A.3)

The equation A.3 can also be written as

82



Q(x, t, (∂i)i, (∂ij)ij,
∂

∂t
)u =

∂u

∂t
− ∂ai(x, t, u, ux)

∂uxj
uxiuxj + A(x, t, u, ux), (A.4)

where

A(x, t, u, ux) = a(x, t, u, ux)−
∂ai(x, t, u, ux)

∂u
uxi −

∂ai(x, t, u, ux)

∂xi
.

A.1 Hölder Spaces.

Let Ω ⊂ Rn+1 be an bounded and connected open set and let us denote ΩT :=

Ω× (0, T ).

Let u a bounded and continuous function on Ω. For γ ∈ (0, 1) we define the γ-th

Hölder seminorm by

[u]γΩ = sup
x,y∈Ω, x 6=y

u(x)− u(y)

|x− y|γ
. (A.5)

A function is said to be γ-Hölder continuous is the supremum in A.5 is finite.

For l ∈ R, define the norm

‖u‖lΩ =
∑
|α|≤[l]

‖Dαu‖∞ +
∑
α=[l]

[Dαu]
l−[l]
Ω , (A.6)

where

‖u‖∞ = sup
x∈Ω
|u(x)|.

The Hölder space Hr(Ω) is given by

{u ∈ C0(Ω) | Dαu exists and is continuous in Ω, ∀ 1 ≤ |α| ≤ [l], and ‖u‖lΩ <∞}.
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Thus, the space H l(Ω) consists of those functions u that are [l]-times continuously

differentiable on Ω and whose derivatives of order [l] are Holder continuous with

exponent γ = l − [l].

Analogously we can define Hölder spaces H l,l/2(ΩT ). They consist on continuous

functions u on ΩT having all the derivatives of the form Dα
t D

β
x with 2α + β ≤ l and

having a finite norm

‖u‖lΩ =
∑

2|α|+|β|≤[l]

‖Dα
t D

β
xu‖∞ +

∑
2α+β=[l]

[Dα
t D

β
xu]

l−[l]
x,ΩT

+
∑

0<l−2α+β<2

[Dα
t D

β
xu]

(l−2α+β)/2
t,ΩT

,

where

[u]γx,ΩT
= sup

(x,t),(y,t)∈ΩT , x 6=y

u(x, t)− u(y, t)

|x− y|γ
.

[u]γt,ΩT
= sup

(x,t),(x,τ)∈ΩT , t 6=τ

u(x, t)− u(y, t)

|t− τ |γ
.

A.2 The Cauchy Problem

Theorem A.1

Let L(x, t, ∂
∂x
, ∂
∂t

) be a parabolic operator on Rn×(0, 1) with coefficients in Hα,α/2(ΩT )

with α < 1. Then, there exists a fundamental solution for the equation L ≡ 0. This

is, a bounded function

Z : Rn × Rn × (0, T )× (0, T ) −→ R

such that

L(x, t, (∂i)i, (∂ij)ij,
∂

∂t
)Z(x, ξ, t, τ) = δ(x− ξ)δ(t− τ)
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where δ(x− y) = 1 if x = y and δ(x− y) = 0 if x 6= y.

Corollary A.2

There exist a unique solution to the Cauchy problem

 Lu(x, t) = f(x, t) in Rn × (0, T ),

u(x, 0) = ϕ(x) in Rn,

where f is a Hölder continuous function on Rn × (0, T ) and ϕ(x) is a continuous

function on Rn.

Theorem A.3

Let Q be a quasilinear operator with principal part in divergence form on Rn× [0, T ].

Suppose that on any Ω ⊂ Rn bounded

1. For (x, t) ∈ ΩT there exist positive constants b1, b2 independent of the dimension

n of Rn such that

∂ai(x, t, u, p)

∂pj
ξiξj ≥ 0, ∀x, u, p, and t ∈ (0, T ]

and

A(x, t, u, 0)u ≥ −b1u
2 − b2

or

A(x, t, u, 0)u ≥ −Φ(|u|)|u| − b2,

∫ ∞
0

dτ

Φ(τ)
=∞ Φ > 0.

Here Φ is such that if v = Φ(w, τ) then v is a solution to the following
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vt −
[
τ
∂ai(x, t, w, wx)

∂wxj
+ (1− τ)δji

]
vxixj + τA(x, t, w, wx)− (1− τ)(ψt −∆ψ)

v|ΓT
= ψ|ΓT

0 ≤ τ ≤ 1.

Then if uτ satisfies

uτ = Φ(uτ , τ)

Then there exist constants M , M1 such that

max
ΩT

|uτ | ≤M τ ∈ [0, 1]. (A.7)

max
ΩT

|uτx| ≤M1 τ ∈ [0, 1]. (A.8)

2. Let (x, t) ∈ ΩT and u such that |u| ≤ M , where the bound M comes from

equation A.7. For arbitrary p the functions ai(x, t, u, p) and a(x, t, u, p) are

continuous, the ai(x, t, u, p) are differentiable with respect to x, u and p, and

that the following inequalities are satisfied

νξ2 ≤ ∂ai(x, t, u, p)

∂pj
ξiξj ≤ µξ2, ν > 0,

n∑
i=1

(
|ai|+

∣∣∣∣∂ai∂u

∣∣∣∣) (1 + |p|) +
n∑

i,j=1

∣∣∣∣ ∂ai∂xj

∣∣∣∣+ |a| ≤ µ(1 + |p|)2.

3. For (x, t) ∈ ΩT |u| ≤ M and |p| ≤ M1, where the bounds come from equations

A.7 and A.8 respectively. The functions ai, a, ∂ai
∂pj

, ∂ai
∂u

and ∂ai
∂xi

are continuous
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and satisfy a Hölder condition in x, t, u and p with exponents β, β/2, β and β

respectively.

Then, there exists a solution to the Cauchy problem

 Qu(x, t) = 0 in Rn × [0, T ],

u(x, 0) = ψ0(x) in Rn,

where ψ0 ∈ H2+β(Ω) and is such that maxRn |ψ0(x)| <∞.

Moreover, for every Ω ⊂ Rn the solutions belong to H2+β, 1+β/2(ΩT ).

Theorem A.4

Let Q be a quasilinear operator with principal part in divergence form on Rn× [0, T ].

Suppose that all the hypothesis in theorem A.3 are verified. Suppose as well that the

functions aij(x, t, u, p) and A(x, t, u, p) are differentiable with respect to u and p and

verify

max
(x,t)∈Rn×[0,T ], |u,p|≤N

∣∣∣∣∂aij(x, t, u, p)∂u
,
∂aij(x, t, u, p)

∂p
,
∂A(x, t, u, p)

∂p

∣∣∣∣ ≤ µ1(N),

min
(x,t)∈Rn×[0,T ], |u,p|≤N

∂A(x, t, u, p)

∂u
≥ −µ2(N),

for any N and constants µ1 and µ2 depending on N . Then, there exists at most one

bounded function u(x, t) with bounded first and second derivatives which is a solution

to the Cauchy problem

 Qu(x, t) = 0 in Rn × [0, T ],

u(x, 0) = ψ0(x) in Rn,
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where ψ0 ∈ H2+β(Ω) and is such that maxRn |ψ0(x)| <∞.
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Appendix B

The Linearization of the MCF

equation

Let M be a connected n-dimensional manifold embedded into Rn+1 via the map

X : M −→ Rn+1.

As before, let us denote by ν the outer unit normal vector field of the hypersurface

X(M).

Let be Y be a fixed vector field in Rn+1. For s > 0 small real number let

Xs = X + sY

and denote by

φ = 〈Y , ν〉.

Assume that Xs satisfies the mean curvature flow equation, i.e

∂Xs

∂t
= −Hsνs.
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We will seek for the evolution satisfied by φ. Note that

φt = 〈Yt , ν〉+ 〈Y , νt〉,

∂φ

∂xi
= 〈∂Y

∂xi
, ν〉+ 〈Y , ∂ν

∂xi
〉,

∆φ = 〈∆Y , ν〉+ 2gij 〈∂Y
∂xi

,
∂ν

∂xj
〉+ 〈Y ,∆ν〉

= 〈∆Y , ν〉+ 2gijhjlg
lm 〈∂Y

∂xi
,
∂X

∂xm
〉+ 〈Y ,∆ν〉, (B.1)

and

gsij = 〈∂X
s

∂xi
,
∂Xs

∂xj
〉

= 〈∂X
∂xi

,
∂X

∂xj
〉+ s 〈∂X

∂xi
,
∂Y

∂xj
〉+ s 〈∂Y

∂xi
,
∂X

∂xj
〉+ s2 〈∂Y

∂xi
,
∂Y

∂xj
〉.

Therefore

δgij =
∂

∂s
(gsij)

∣∣∣∣
s=0

= 〈∂X
∂xi

,
∂Y

∂xj
〉+ 〈∂Y

∂xi
,
∂X

∂xj
〉

and equation B.1 rewrites as

∆φ = 〈∆Y , ν〉+ gijhjlg
lmδgim + 〈Y ,∆ν〉.

Now, gikgkj = δij so

(δgik)gkj + gikδgkj = 0
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(δgik)δlk + gik(δgkj)g
jl = 0

Thus

δgil = −gik(δgkj)gjl. (B.2)

Let νs be the outward normal vector to the s-hypersurface, whose position vector is

Xs. Since 〈νs , νs〉 = 1,

0 = δ 〈νs , νs〉 =
∂

∂s
〈νs , νs〉

∣∣∣∣
s=0

= 2 〈 ∂
∂s
νs , νs〉

∣∣∣∣
s=0

= 2 〈δν , ν〉.

Therefore δν has no normal components and can be written as

δν = (δν)j
∂X

∂xj
.

Now, 0 = 〈νs , ∂X
s

∂xi
〉 so

0 = 〈∂ν
s

∂s
,
∂Xs

∂xi
〉+ 〈νs , ∂

∂s

∂Xs

∂xi
〉

= 〈∂ν
s

∂s
,
∂Xs

∂xi
〉+ 〈νs , ∂Y

∂xi
〉

and, evaluating at s = 0, we obtain

0 = 〈δν , ∂X
∂xi
〉+ 〈ν , ∂Y

∂xi
〉

= (δν)jgij + 〈ν , ∂Y
∂xi
〉
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thus

(δν)j = −gij 〈∂Y
∂xi

, ν〉. (B.3)

On the other hand,

δhij = −〈 ∂2Y

∂xi∂xj
, ν〉 − 〈 ∂

2X

∂xi∂xj
, δν〉

= −〈 ∂2Y

∂xi∂xj
, ν〉+ gkl 〈 ∂

2X

∂xi∂xj
,
∂X

∂xk
〉 〈∂Y
∂xl

, ν〉

Since

δH = (δhij)g
ij + hijδg

ij

we get

δH = −gij 〈 ∂2Y

∂xi∂xj
, ν〉+ gijgkl 〈 ∂

2X

∂xi∂xj
,
∂X

∂xk
〉 〈∂Y
∂xl

, ν〉 − hijgik(δgkl)glj

= −gij 〈 ∂2Y

∂xi∂xj
, ν〉 − gijgklgmkΓmij 〈

∂Y

∂xl
, ν〉 − hijgik(δgkl)glj

= −gij 〈 ∂2Y

∂xi∂xj
, ν〉 − gijΓlij 〈

∂Y

∂xl
, ν〉 − hijgik(δgkl)glj

= −〈∆Y , ν〉 − hijgik(δgkl)glj

and

δH = −〈∆Y , ν〉 − hijgik(δgkl)glj (B.4)

Let B := hijg
ik(δgkl)g

lj.
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Since

Yt = −δHν −Hδν,

then

〈Yt , ν〉 = −〈δHν , ν〉 −H 〈δν , ν〉 = −δH.

Now we compute

∆φ− φt = 〈∆Y , ν〉+B + 〈Y ,∆ν〉 − 〈Yt , ν〉 − 〈Y , νt〉

= 〈∆Y , ν〉+B + 〈Y ,∆ν〉+ δH − 〈Y ,∇H〉

= 〈∆Y , ν〉+B + 〈Y ,∆ν〉 − 〈∆Y , ν〉 −B − 〈Y ,∇H〉

= 〈Y ,∆ν −∇H〉,

so

φt = ∆φ+ 〈Y ,∇H −∆ν〉. (B.5)

Lemma B.1

∆ν = ∇H − |A|2ν,

Proof:

Let us consider local coordinates around p ∈ M such that the metric g at p is the

identity. We compute

〈 ∂ν
∂xi

,
∂X

∂xj
〉 = hikgkj = hij.

Then, differentiating on both sides we get

93



∂

∂xk
hij = 〈 ∂2ν

∂xi∂xk
,
∂X

∂xj
〉+ 〈 ∂ν

∂xi
,
∂2X

∂xj∂xk
〉

= 〈 ∂2ν

∂xi∂xk
,
∂X

∂xj
〉+ 〈 ∂ν

∂xi
,−hjkν〉

= 〈 ∂2ν

∂xi∂xk
,
∂X

∂xj
〉.

So the tangent component of ∆ν in the direction of
∂X

∂xj
is

〈 ∂2ν

∂xi∂xi
,
∂X

∂xj
〉 =

∂

∂xi
hij =

∂

∂xj
hii =

∂H

∂xj
= 〈∇H ,

∂X

∂xj
〉.

Now, since

〈 ∂ν
∂xk

, ν〉 = 0,

it follows that

〈 ∂2ν

∂xk∂xk
, ν〉 = −〈 ∂ν

∂xk
,
∂ν

∂xk
〉 = −〈hkl

∂X

∂xl
, hkm

∂X

∂xm
〉 = −|A|2,

and the lemma is proven.

�

Therefore we conclude that the linearization of the MCF is

φt = ∆φ+ |A|2φ. (B.6)
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