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ABSTRACT 

Analytical and Experimental Studies on In-plane Vibrations and Noise of Rolling 
Disks Subject to Non-homogeneous Constraints 

Salem M. Bashmal 
Concordia University, 2010 

In many engineering applications involving circular disks such as railway wheels, 

grinding wheels and disk brakes, the in-plane dynamics play a prominent role causing 

disk noise and vibration. While the out-of-plane characteristics have been extensively 

investigated over the past many decades, only limited efforts have been made on the in-

plane vibration behavior of circular and annular disks. This dissertation research aims at 

developing a generalized formulation for analysis of in-plane vibration behavior of 

circular annular rotating disks under different support conditions at the inner and outer 

boundaries. 

The in-plane free vibration of the elastic and isotropic disk is first studied on the 

basis of the two-dimensional linear plane stress theory of elasticity. The exact solutions 

for the frequency equations are obtained for annular disks with uniform boundary 

conditions, including elastic boundaries. The results obtained are used to validate the 

accuracy of the approximate methods for cases involving uniform boundary conditions. 

The boundary characteristic orthogonal polynomials are employed in the Rayleigh-Ritz 

method to evaluate free in-plane vibration behavior of disks with free boundary 

conditions while artificial springs are used to realize clamped conditions at discrete 

points. The obtained results are compared with those attained from a finite element model 

to demonstrate the validity of the proposed method. For rotating disks, the frequencies 
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corresponding to the forward and backward traveling waves are obtained and compared 

with those available in the published studies. The expressions for the acoustic properties 

from thick annular disks subject to non-uniform boundary conditions are presented. 

Analytical results suggest that the non-uniformity of the support affects the modal 

characteristics of disk along the in-plane and out-of-plane directions, while introducing 

additional coupling between the modes. Specifically, some of the peaks in the frequency 

response, obtained under uniform boundary conditions, split into two distinct peaks in the 

presence of a point support. Laboratory measurements are performed to investigate the 

effects of different support conditions on the in-plane and out-of-plane responses of 

stationary and rotating disks with different radius ratios. The proposed formulation is 

extended to study the three-dimensional problem of a rotating railway wheel under the 

effect of contact with rail. 
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1. INTRODUCTION AND LITERATURE REVIEW 

1.1. General 

Circular disks are commonly used in a wide variety of engineering applications 

including space structures, electronic components and rotating machinery. The vibration 

of such disks is known to cause vibration in itself and also of adjoining components 

which could lead to fatigue failure of the system. Moreover, rotating disks such as 

railway wheels, grinding wheels, disk brakes and gears have been found to be responsible 

for the major part of the radiated noise [ 1]. The out-of-plane vibration characteristics of 

rotating disks have been extensively investigated over the past many decades. Many 

engineering applications, however, involve in-plane vibration of rotating disks, which 

have received relatively little attention. The in-plane vibration of rotating disks also play 

a prominent role in the characteristics of the entire system suggesting that a study of in-

plane vibration is also important in addressing the issue related to noise and vibration of 

the rotating machines.  

For automotive rotors and thick annular disks, the frequencies of in-plane modes 

of vibration have frequencies that are both comparable to low-order bending modes and 

within the acknowledged brake noise range [ 2]. Although the sound radiation from the 

rotor occurs through its out-of-plane motion, the excitation force arises from the friction 

energy in the in-plane direction. Friction from the pads excites the in-plane vibration in 

the rotor which in turn couples with bending modes of vibration to produce noise [ 2]. 

Laboratory studies have also demonstrated that in-plane modes exist at frequencies 
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comparable to those associated with the out-of-plane bending even for disks with 

thickness to diameter ratios as small as 10-1 [ 2]. 

Furthermore, the in-plane dynamics of disks is more closely related to the sound 

radiation. The studies have generally assumed that the sound radiation from the in-plane 

modes of a disk is negligible compared to that attributed to the out-of-plane modes. The 

in-plane vibration, however, could contribute significantly to the sound especially for 

disks that are relatively thick. For example, the radial components of railway wheel are of 

most importance in rolling noise [ 3]. Moreover, squealing noise that occurs as the train 

traverses narrow curves is due to the frictional contact between the rail and wheels. A 

component of this friction load is oriented in the in-plane directions leading to potential 

in-plane vibration of the wheel. Furthermore, the in-plane vibration of the wheels could 

affect the magnitude of the friction and, consequently, the amplitude of the squeal [ 2,  4]. 

This dissertation research is concerned with the analysis of in-plane vibration 

behavior of stationary and rotating disks subject to various boundary conditions that may 

be found in engineering applications. An analytical method is proposed to study the in-

plane vibration behavior of the disks subject to combinations of various classical 

boundary conditions, and single or multiple elastic or non-uniform supports. Laboratory 

experiments are also performed and the data are used to demonstrate the validity of the 

proposed approach. 

1.2. Review of Previous Literature  

The analysis of any vibrating system necessitates appropriate modeling of the 

structural components and boundary conditions. Plates, cylinders and shells are, 
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obviously, used to represent two-dimensional (or three-dimensional) structural 

components. Therefore, a substantial body of literature could be found on the analysis of 

such structures with different geometries, material properties and boundary conditions. 

Rotating structures, such as railway wheel or disk brake, can also be modeled as circular 

disks with both in-plane and out-of-plane degrees-of-freedom (DOF). The relevant 

reported studies on circular disks are thus reviewed and discussed in the following 

sections to build the essential background and formulate the scope of this dissertation. 

Although numerous selected studies are cited in the following section, it needs to be 

noted that there are far more related works in the literature. For more related studies, 

references are made to the works by Leissa [ 5] and Rao [ 6]. The general scope of the 

problems and the related work presented in the literature are grouped under different 

relevant topics and briefly described in the following sub-sections.  

1.2.1. In-plane Dynamics of a Disk 

The vibration characteristics of circular disks subject to classical boundary 

conditions have been reported in a vast number of studies. In particular, the out-of plane 

flexural vibrations of the circular disks have been analytically investigated under 

different boundary conditions using several exact and approximate approaches [ 5,  6]. 

These studies have provided vast amount of information on out-of-plane vibration 

behavior of disks. The in-plane vibration characteristics of disks, however, have been 

reported in fewer studies. Although some of the studies have included in-plane dynamics 

in the analysis, the focus was primarily on the out-of-plane dynamics due to in-plane 

excitations [ 7-  10]. Ferguson and White [ 7] studied out-of plane dynamic response of a 
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plate under the effect of static, in-plane loading at the outer edge. Srinivasan and 

Ramamurti [ 8] studied the buckling and free vibration of an annular plate with clamped 

inner boundary and a concentrated, in-plane edge load at the outer boundary using semi-

analytical finite element method. Yano and Kotera [ 9] studied the stability of a rotating 

disk with a fixed elastic restraint and, in a subsequent study, included the effect of static 

in-plane load [ 10]. While these models captured the effect of in-plane forces on out-of-

plane vibration, the in-plane deformations of the disk were entirely ignored. 

In-plane vibration of circular disks, however, have been gaining increasing 

attention only in recent years, in view of its applications in various practical problems 

including the vibration of railway wheels, disk brakes and hard disk drives [ 1,  3,  11]. 

Furthermore, the in-plane dynamics of rotating disks is considered to be of practical 

importance in view of its application in rolling noise emission arising from the wheel-rail 

interactions [ 12].  

In-plane Vibration of Stationary Disk 

The first attempt to tackle the problem of vibration within the plane of disks was 

by Love [ 13], who derived the essential equations of motion and presented the general 

solution for a thin circular disk with free edge conditions. No further investigations were 

performed on the modal characteristics of the disk since the physical significance of the 

problem was not apparent to the author to attempt the solution. The practical importance 

of Love’s theory was highlighted by Onoe [ 14], who related it to problems involving 

piezoelectric vibrators and relatively thick disks. He evaluated the in-plane vibration of 

disks using numerical analysis and presented the frequency equations corresponding to 
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the different modes. The variations in the frequency parameters versus the Poisson’s ratio 

were discussed briefly.  A more generalized analysis of the in-plane vibration of disks 

was subsequently presented by Holland [ 15] in the late sixties, who reported the 

frequency parameters and normalized eigenmodes for a wide range of nodal diameter 

numbers and Poisson’s ratios. The study also investigated the response due to an in-plane 

force excitation.  

Another study evaluated the frequency parameters and associated mode shapes of 

in-plane vibration of solid disks clamped at the outer edge using assumed deflection 

modes in terms of trigonometric and Bessel functions [ 16]. The study examined the effect 

of Poisson’s ratio and disk thickness on the natural frequencies. It was shown 

mathematically that the modes with circumferential wave number equal to unity are the 

only group of modes that involve displacement of the disk center. More recently, Park 

[ 17] followed an approach similar to that proposed by Love and obtained an exact 

frequency equation for a solid disk clamped at the outer edge. The two dimensional 

deformed shapes were derived from the finite element model and natural frequencies 

were compared with those reported in a previous study [ 16].  

The above studies were limited to in-plane free vibration of solid disks. Such 

analyses of annular disks have been addressed only in a few studies. Ambati et al. [ 18] 

presented a generalized formulation for in-plane vibration analysis of annular disks and 

extended the application to solid disks as well as thin rings by varying the size of the 

opening. A relation was established between the in-plane modes of annular disks with 

their counterparts of the thin ring. The authors also illustrated verifications of the 

analytical results through experiments. The study, however, was limited to disks with free 
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boundary conditions at both the inner and the outer edges. The natural frequencies of an 

annular disk with clamped inner edge and free outer edge were obtained by Srinivasan 

and Ramamurti [ 19], who also obtained the stress distribution due to a rotating force. Irie 

et al. [ 20] evaluated the natural frequencies of in-plane vibration of annular disks using 

transfer matrix formulation with combinations of free and clamped conditions at the inner 

and outer edges, while the corresponding mode shapes were not presented. In a recent 

paper, Wu [ 21] focused on the torsional vibration of circular and annular disks subject to 

different boundary conditions. Mode shapes were presented and discussed along with 

torque distribution for different modes. The in-plane dynamic response due to external in-

plane force was investigated by Leung and Pinnington [ 22]. The study obtained the 

transfer function between the rim and the center.  

In recent studies, Lee and Singh [ 23,  24] calculated the modal radiation properties 

of a thick annular disk due to out-of-plane and radial excitations. The in-plane vibration 

characteristics were obtained using the transfer matrix method proposed by Irie et al. [ 20] 

and the finite element method. Two analytical methods were proposed for the calculation 

of the far field pressure from the radial structural modes of the thick annular disk with 

free boundaries. The first method employed the Rayleigh integral approach, while the 

second treated the inner and outer edges as two cylindrical radiators. The analytical 

results were also compared with the numerical results obtained using boundary element 

method and with the experimental measurements. Although both methods revealed 

acceptable accuracy when compared with the experimental results, the cylindrical 

radiator method provided more accurate results than the Rayleigh integral. The effect of 
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couplings between the in-plane and out-of-plane modes on the total acoustic radiation in 

thick annular disks was also studied [ 11]. 

Rotating Disks 

The vast majority of the above-stated studies have considered non-rotating disks 

for the in-plane vibration analysis. In practice, the problem of rotating disks is far more 

relevant to applications such as railway wheels, circular saw blades and spur gears. A 

rotating disk imparts additional forces due to the centrifugal and gyroscopic effects. 

Furthermore, it has been shown that each resonance observed for a stationary disk splits 

into two resonances when rotation is introduced due to the gyroscopic effects [ 25]. 

Centrifugal forces can be considered as additional stiffeners as a function of the rotational 

speed. The vibration analysis of rotating disks, thus, involves far more complexities than 

that of a stationary disk subject to a rotating load as a result of the Coriolis and 

centrifugal terms associated with the relative motion between the spinning disk and the 

stationery edge loads [ 25]. The problems of in-plane vibration of rotating disks have been 

addressed in only a few studies. Bhuta and Jones [ 26] provided a solution to the 

axisymmetric in-plane vibrations of a thin rotating circular full disk and concluded that 

the effect of rotation is generally lowering the natural frequencies for the modes 

considered. Two types of instabilities were discussed. The first type was called the “static 

resonance” or “bursting” [ 27] which occurred when the radial displacements due to 

centrifugal force became unbounded at critical speed values. The second type of 

instability was attributed to couplings between the radial and torsional displacements 

causing the disk to become dynamically unstable when spinning at high speed. This was 
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referred to as dynamic instability and is the common type of instability discussed in the 

literature.  

Burdess et al. [ 27] presented generalized formulations by implementing Lame's 

potentials to consider asymmetric in-plane vibrations. Unlike the axisymmetric modes, 

the rotational effects caused the natural frequencies to yield two distinct values. The 

effect of rotational speed on forward and backward traveling waves of a two nodal 

diameter mode was discussed for a solid disk with free outer edge. Chen and Jhu [ 25,  28] 

extended the analysis to study the divergence instability of spinning annular disks 

clamped at the inner edge and free at the outer. The effects of radius ratio on the natural 

frequencies and critical speeds of the disk were also investigated. The studies concluded 

that the critical speeds of in-plane modes with different nodal diameter numbers 

approached a single asymptotic value as the nodal diameter increases. This value was 

independent of the radius ratio but dependent on the Poisson’s ratio. The same problem 

was analyzed by Hamidzadeh [ 30,  31] where the equations of motion were represented in 

terms of the dilatation and the elastic rotation of the disk.  

In the previous studies, the critical speeds were determined using the classical 

theory of linear elasticity. It was further assumed that the equations of motion could be 

established around the equilibrium position, which permitted the decoupling of the static 

or steady state and dynamic responses. The additional stiffening due to the static 

displacement could thus be neglected in the dynamic analysis. In order to capture the 

stiffening effect of the rotation, it is essential to employ the nonlinear strain measures 

which couple the static solution with the dynamic problem. Several studies have 

considered stiffening effects on structures other than disks such as rings [ 32,  33] and 
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beams [ 34]. The effects of additional stiffening have been discussed extensively in the 

context of out-of-plane vibrations of disks [ 35]. For the in-plane modes of rotating disks, 

Deshpande and Mote [ 36] studied the stability of a spinning thin disk using a nonlinear 

strain measure in order to account for the stiffening of the disk due to rotation. The study 

suggested that the critical speeds were incorrectly predicted by the linear strain measure 

since the effect of stiffening due to initial deformation was ignored. The static 

equilibrium problem was subsequently solved to obtain the axisymmetric radial 

expansion and the associated additional stiffening effects. The study did not observe a 

critical speed in the range of rotational speeds considered for modes with two or less 

nodal diameters, when the initial stiffening effect was included in the in-plane vibration 

analysis. An upper limit for the rotational speed was identified where the assumption of 

linear strain measure would be applicable.  

The analysis of dynamic response of a rotating disk also involves similar 

challenges associated with consideration of the external rotating force, namely the 

centrifugal and coriolis forces. Srinivasan and Ramamurti [ 19] investigated the problem 

of a stationary disk subject to a rotating edge load, while Chen and Jhu [ 25,  29] obtained 

the in-plane dynamic response of the rotating annular disk subject to a fixed load. The 

difference between the two studies lies in the treatment of additional terms arising from 

the centrifugal and coriolis forces in the rotating disks. The two studies may, thus, be 

expected to yield comparable responses at relatively low rotational speeds. The most 

significant deviations between the results of the two studies, the one involving a fixed 

disk with a rotating load and that of a rotating disk with fixed load, would be in the 

modes with zero nodal diameter number, i.e. axisymmetric modes. More recently, Koh et 
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al. [ 37] revisited both problems (stationary disk-rotating load and rotating disk-fixed 

load) using moving element method. The moving element method is similar to the 

conventional finite element method except that the elements can rotate relative to the disk 

and are not attached to material points. The study also presented analytical solution using 

the approach developed by Chen and Jhu [ 28] while using Fourier-Hankel functions 

instead of the Fourier-Bessel functions and confirmed the differences observed in [ 29]. 

Leung and Pinnington [ 38] conducted experiments to measure the in-plane response of 

stationary disk under rotating edge loads. The cited references mostly dealt with the 

vibration of disks with uniform boundary conditions. The effect of point support or 

contact has not been addressed in the literature. The stiffening due to rotation was also 

formulated with the assumption of uniform boundary conditions. It, therefore, became 

essential to investigate the effects of stiffening and constraint non-uniformity on the in-

plane modes of vibration for annular disks. 

Applications of In-plane modes 

In order to reflect the importance of in-plane modes of vibrating structures, a few 

investigations have illustrated the contributions of in-plane modes to various practical 

problems. As discussed above, relatively thick disks exhibit in-plane modes. Common 

applications include the disk brakes and railway wheels. In both applications, the disks 

are relatively thick, rotating and are subject to external forces and/or contact forces. The 

contributions on in-plane modes in the coupled vibration characteristics and noise 

radiation have been discussed in a few studies. Tzou et al. [ 2] investigated the vibration 

characteristics of a disk brake through formulation and analysis of a three-dimensional 
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model for the disk (discussed in a subsequent section). Laboratory tests on disk brakes 

showed that in-plane modes exist at frequencies comparable to those of the out-of-plane 

modes even for disks with thickness ratio of 0.1. Figure  1.1 shows that the first radial 

mode (3.2 kHz) is located between the second and third bending modes, while the 

torsional mode is even lower than the first bending mode [ 2]. Lee [ 39] investigated the 

instability in brake system due to in-plane modes compared to instability due to the out-

of-plane modes. More recently, Kirillov et al. [ 40] studied the coupled vibration of a 

rotating disk brake in the presence of a distributed frictional loading on its surface based 

on Kirchhoff’s assumptions. The out-of-plane and in-plane modes of vibrations were 

decoupled due to the linearity of the problem. This study showed that the frictional pads 

must have both in-plane and out-of-plane components in order to introduce a linear 

coupling between the in-plane and the out-of-plane modes. The perturbation method was 

used to predict the stability boundaries of the coupled system.  

Lee and Singh [ 41] extended their own work on the acoustic properties of thick 

disks to study the mutual radiations of the radial and out-of-plane modes contributing to 

the sound radiation of a disk brake rotor. The far-field sound radiation from the disk 

brake rotor was computed using a finite element model to obtain the vibration 

characteristics, while analytical methods were employed for deriving the sound radiation 

properties. 

In railway vehicles, the interactions of the rotating wheel with the rail are 

considered as the primary source of noise radiation [ 42- 44]. The rotation of the wheel, 

coupling between modes, contact forces and different types of excitation are significant 
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factors contributing to the noise radiation due to wheel-rail interactions (see Figure  1.2). 

The dynamic railway wheel and track interactions in the presence of wheel flat defects 

 
Figure  1.1: Frequency response of an automobile brake rotor system: (a) out-of-plane 

vibration, (b) in-plane radial modes, (c) in-plane torsional modes [ 2]. 
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would be of particular interest in the context of in-plane wheel vibration, which may 

contribute to dynamic wheel impact loads and noise emission, although only minimal 

efforts have been made in identifying relation between the in-plane modes and noise 

radiated [ 12]. Detailed models of railway wheels are required to account for the in-plane 

deformations of the wheels. Furthermore, the gyroscopic and preload effects may be of 

particular importance [ 45]. A discussion on the available models in the literature will be 

given in a later section. 

 

Figure  1.2: Schematic showing the sources associated with rolling wheel-rail interactions 
contributing to noise emission [ 12]. 

Baddour and Zu [ 46] presented a mathematical model of a spinning thin disk 

based on the linear Kirchhoff and nonlinear von Karman strain expressions incorporating 

both in-plane inertia and rotary inertia. For the stationary disks, the in-plane and out-of-

plane modes were observed to be uncoupled and could be treated independently. For the 

spinning disks, it was shown that inclusion of the in-plane inertia results in additional 
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terms in the equation for the out-of-plane vibrations, which had been ignored in the 

previous studies. These additional terms were present in both the linear and nonlinear 

analysis of rotating disks and added additional stiffening to the out-of-plane 

displacement. The nonlinear equations of motion for the out-of-plane vibrations were 

linearized and solved for the natural frequencies to study the rotational effects [ 47]. It 

was concluded that the in-plane inertia could not be ignored for spinning disks, although 

its contribution to the out-of-plane vibrations could be neglected for stationary disks.  

More recently, Baddour and Zu [ 48] revisited the nonlinear coupled problem of 

the spinning disk that included three nonlinear differential equations, which were 

simplified to two degrees-of-freedom (DOF) model using the Galerkin method. The study 

reported somewhat new phenomena such as internal resonance and instability of the disk 

which were attributed to the inclusion of the in-plane inertia. These observed phenomena 

were not present when the in-plane inertia was ignored. It was, thus, concluded that the 

consideration of in-plane mode is important in applications where high rotational speed is 

encountered. 

1.2.2.   Point and Line Contact 

It is well known that the vibration characteristics of the disk are significantly 

affected by the type of boundary conditions. Circular disks with different boundary 

conditions are commonly encountered in many engineering applications including space 

structures, electronic components and rotating machinery. In most cases, the disk may be 

fastened or welded at different points suggesting that the boundary conditions may 

neither be rigid nor be uniform around the edge. Moreover, rotating disks are subject to 
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friction or contact forces from the adjacent structures such as friction pad in disk brakes 

and railway wheel contact with the rails. Several models have been proposed to study 

disks with contact or point clamped boundary conditions, which may be classified into 

two groups based on the treatment of the contact. In the first approach, the contact is 

considered as an external force applied to the disk. The time response due to the contact 

force is subsequently obtained. The most of the cited studies described in the previous 

section on the in-plane vibration of disks would fall within this first analysis approach. 

The second approach considers the contact as an additional constraint. This method 

allows for analyses of free vibrations of the disk under the effect of the contact. The 

additional constraint may be considered as a point support [ 7], a line support [ 49] or an 

elastic support [ 50]. The effects of such contacts on the out-of-plane vibration 

characteristics of circular disks have been extensively investigated, while such studies on 

the in-plane vibration have not been reported in the literature. The relevant reported 

studies on the out-of-plane vibrations are, thus, reviewed and discussed in this section 

since their proposed methods could also be applied to study the in-plane modes or the 

coupled vibrations of thick disks.  

The study by Hirano and Okazaki [ 51] was among the first ones, which 

investigated the fundamental out-of-plane mode of a solid circular disk with mixed 

boundary conditions using the integral equations formulation proposed by Keer and Stahl 

[ 52] for rectangular plates. Combinations of free, clamped and simply-supported 

boundary conditions were considered at the outer edge of the solid disk. Numerical 

results were verified by experiments performed on a solid disk that was clamped over a 

portion of the edge and free over the remaining circumference. The free vibration of a 
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disk elastically supported at discrete points located arbitrarily inside the disk was 

investigated by Irie and Yamada [ 53]. The natural frequencies and mode shapes were 

calculated numerically for both symmetrical and anti-symmetrical modes of the disk 

supported at several points. This study showed that the natural frequencies and mode 

shapes vary considerably with variations in location of the supports. Leissa et al. [ 54] 

investigated the out-of-plane free vibration of a circular plate with elastic constraints 

varying along the outer periphery. The elastic constraints were represented in terms of a 

Fourier series along the periphery of the disk. The numerical results were evaluated for a 

single sinusoidal variation of the rotational spring along the outer edge. The proposed 

method was subsequently extended to include the vibration of disks with linearly varying 

thickness along the radial direction by Laura and Ficcadenti [ 55].  

Narita and Leissa [ 56,  57] 57 further investigated the free vibration of a disk with 

clamped or simply supported conditions only along a portion of the edge. This study 

showed variations in the frequency with respect to the angle formed by the constrained 

portion of the edge. Figure  1.3 shows that symmetric and anti-symmetric modes follow 

different paths as the span of the clamped edge increases, until they approach the same 

value of the natural frequencies at the totally clamped edge condition. In Figure  1.3, the 

numbers on the right and left vertical axes are the frequency parameters for the point-

supported and totally-clamped conditions, respectively, while ߙ represents the angle 

formed by the edge support. Amabili et al. [ 58] investigated the modal characteristics of a 

solid plate fixed by different number of bolts using the Fourier series expansion of the 

elastic constraints in conjunction with the Rayleigh-Ritz method.  Based on the Mindlin’s 

plate theory, Irretier [ 50] used a point elastic spring to represent a contact between the rail 
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and the railway wheel for predicting the natural frequencies and the mode shapes, and 

dynamic response to a harmonic excitation at the wheel-rail contact. 

 
Figure  1.3: Variations in the frequency parameters of a solid circular disk with respect to 

the angle formed by the constrained portion of the edge (ݒ ൌ 0.33) [ 56]. 

Alternate methods, other than the elastic constraints, have also been used for 

analysis of free vibration of circular disks with mixed boundary conditions such as the 

variational approach [ 59], perturbation method [ 60] and Lagrange multipliers [ 7]. In a 

study by Ferguson and White [ 7], the free vibration characteristics of a stationary disk 

were obtained by an extension of the Rayleigh-Ritz method and the unknown Lagrange 
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multiplier. The disk was clamped at the inner boundary with a point constraint on the 

periphery. The effect of in-plane static loading applied between the centrally clamped 

region and the contact region were also examined, which resembled a railway wheel. The 

resulting study illustrated the changes in the natural frequencies and the mode shapes. 

The relation between the load and a natural frequency for a given rotational speed was 

further calculated using a combination of Fourier series along the circumferential 

direction and finite element analysis for the radial behavior. 

It is more realistic to assume that the peripheral load is a distributed load. Chonan 

and Hayase [ 49] studied the in-plane stress distribution in a spinning annular disk through 

a Galilean transformation. The disk was clamped at the inner boundary and subjected to a 

stationary distributed load along a finite length of the outer boundary. Eastep and 

Hemmig [ 61] employed finite-element approach to investigate the vibration responses of 

a disk with partially free and partially clamped edges. The numerical results were verified 

using the experimental data and the effects of variations in the arc length of the free 

portion on the natural frequencies were discussed.  

The reported studies have shown that the presence of non-uniform boundary 

conditions caused some of the modes to have two distinct natural frequencies [ 57]. This 

was clearly illustrated in Figure  1.3 when the disk is clamped along portion of the edge. 

This has been attributed to different effects of non-uniform conditions on the symmetric 

and anti-symmetric modes of vibrations. This frequency split was also observed in the 

experimental measurements conducted by Eastep and Hemmig [ 61]. This behavior has 

also been discussed extensively in a recent study on a solid disk with mixed boundary 

conditions [ 62]. 
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The cited references, however, mostly investigated the out-of-plane dynamics 

only. The effect of an additional constraint or a point support on the in-plane modes has 

not been addressed. Furthermore, consideration of circular disks with either a point or a 

patch constraint with certain flexibility would be more representative of many situations 

such as automobile wheel/tire assembly and railway wheels. The in-plane vibration 

characteristics of disks with such partial supports and flexible boundary conditions have 

not yet been reported.  

1.2.3. Three Dimensional Models 

The reported studies on vibration characteristics of circular disks have generally 

considered classical thin plate theory which assumes that in-plane and out-of-plane 

displacements are uncoupled. This reduces the problem to single DOF (out-of-plane) 

two-dimensional problem. For a moderately thick disk, such theory would yield incorrect 

estimates of the natural frequencies of the disk because due to the presence of shear 

deformation and rotary inertia. Mindlin [ 63] proposed an alternate theory for thick plates 

where the shear deformation and rotary inertia were included in the analysis of the two-

dimensional system. The Mindlin’s theory has been extensively used to predict the 

natural frequencies of circular thick plates subject to different boundary conditions [ 64-

 66].   

A three-dimensional model, however, could provide more comprehensive 

vibration characteristics of the disk involving both the in-plane and out-of-plane modes 

and the coupling between the motions. For applications such as in railway wheels and 

disk brakes, for example, the disks are undoubtedly thick and the couplings between in-
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plane and out-of-plane modes are quite strong. Three-dimensional models are, thus, 

desirable for analyses of coupled vibrations of circular disks.  

Hutchinson [ 67] presented the first three-dimensional solution of circular disks 

using Bessel functions of the first kind in the radial direction and trigonometric functions 

in the circumferential and normal directions. The series method was used to represent the 

analytical solutions of annular plates [ 68]. So and Leissa [ 69- 71] reported a number of 

studies on natural frequencies and mode shapes for thick structures including circular 

annular disks, through analysis of the three-dimensional models in conjunction with the 

Rayleigh-Ritz method. The validity of the results was demonstrated through comparisons 

with those reported from various thick plate models for disks with free boundary 

conditions. These studies suggested that selection of the origin of the radial coordinate at 

the middle distance between inner and outer edges would improve the convergence of the 

solution. 

Tapered disks exhibit greater affinity in bending, which make them quite 

attractive in many applications. The three-dimensional vibration analysis of annular disks 

has been extended to study annular disks with linearly varying thickness along the radial 

direction by Kang and Leissa [ 72] and with nonlinear thickness variations by Kang [ 73].  

The three-dimensional model has also been used by Tzou et al. [ 2] to investigate 

the vibration characteristics of a disk brake. The Rayleigh-Ritz method was used to 

obtain the natural frequencies of an annular thick disk with free and inner clamped 

boundary conditions. The effect of disk thickness on the natural frequencies and mode 

shapes were studied as the disk underwent continuous transition from thin disk to an 

annular cylinder. The results showed that several in-plane and out-of-plane modes could 
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be close to each other or even have identically same natural frequencies, when the disk 

thickness is varied. These modes could couple together in the presence of geometric 

asymmetry or nonlinearity.  

A recent study has employed finite element method to analyze the vibration 

characteristics of a rotating thick plate based on Mindlin plate theory and nonlinear strain 

measure [ 74]. The governing equations were derived using Kane’s method [ 75]. The 

general equations were derived in the Cartesian coordinate system for rotating 

rectangular disk but some results were obtained for the solid circular disks. The stiffening 

effect of the centrifugal forces was taken into account, which was derived from the static 

deflections of the rotating disk. The variations in natural frequencies with respect to 

different parameters such as rotational speed and thickness ratios were discussed. 

Three-dimensional models, that considered the coupled in-plane and out-of-plane 

modes of vibrations, were essential to provide a comprehensive understanding of the 

modal characteristics of thick disks. Although many investigations tackled thick disk 

problems, it is apparent that the consideration of rotation and non-uniform support 

conditions is still lacking. It is, therefore, essential for a comprehensive model to take 

into account the coupled in-plane and out-of-plane vibrations under the effects of 

constraints and rotation. 

1.2.4. Applications to Railway Wheel 

A railway wheel can be modeled as a disk and its modes of vibration resemble 

those of a flat circular plate. Its interactions with the rail could excite both the in-plane 

and out-of-plane vibration responses. The dynamics of the railway wheels can be 
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classified based on the frequency range of interest. The low frequency responses, up to 50 

Hz, concern the stability and comfort performances, where the wheel is treated as a rigid 

mass. The high frequency range responses, above 500 Hz, contribute to acoustic 

emission. The wheel dynamics in the mid frequency range concern the stress and fatigue 

of the wheel-rail system [ 45].  

The high frequency vibration characteristics of the wheel are of practical interest 

for acoustic emission and the high frequency surface stresses [ 1,  12]. It has been 

recognized that prediction of wheel-rail noise radiation requires analyses of the sound 

radiation characteristics of the railway wheel [ 4]. Detailed high frequency models are 

also considered useful in establishing the validity ranges of the simplified approximate 

models [ 76].  

Wheel elastic models 

A number of studies have proposed different models of an elastic wheel using 

different approaches [ 45,  50,  77,  78]. Within this context, a comprehensive review of 

historical evolutions and recently published methods of modeling of the vehicle and track 

dynamic interaction problems has been given in [ 45]. In this reference, the theoretical 

importance of classical continuous models was substantiated and the adequacy of simple 

railway models to certain types of problems was addressed. A few studies have also 

investigated the vibration properties of railway wheels as thick disks. Irretier [ 50] 

developed a model to study the natural and forced flexural vibration of a railway wheel 

using the Mindlin's plate theory. The thickness of the disk was assumed to vary 

continuously in the radial direction and a linear elastic spring was introduced at the 
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contact point of the wheel rim and the rail in the out-of-plane direction only. The rotation 

of wheel was not considered and only out-of-plane characteristics were investigated.   

Sakamoto et al. [ 78] conducted analytical and experimental studies to determine 

the natural frequencies of a railway wheel. The analytical model studied the in-plane and 

out-of-plane vibrations separately. The wheel was modeled as a circular plate with 

constant thickness and a ring. Good agreement was achieved between the theoretical and 

experimentally measured frequencies, although the natural frequencies were limited to 

݊ ൒ 2. This was perhaps due to lack of consideration of the axle, which did not permit 

accurate predictions of modes corresponding to ݊ ൌ 0 and ݊ ൌ 1.  

Bogacz and Dzula [ 79] analyzed the high-frequency forced vibration of a rolling 

wheelset interacting with rails by means of 3-D linear Hertzian springs. The physical 

model of the wheelset consisted of two elastic wheels, connected by a rigid axle shaft. 

The axle was considered with six degrees of freedom including three translational and 

three rotational motions. In the study, wheels were modeled as elastic curved beams with 

constant curvature. Wheels were connected to the axle by means of a distributed elastic 

spring.  

A few studies have suggested that vibration responses of the wheels could be 

estimated without considering the axle, while the axle could be represented by a 

constraint at the inner edge of the hub. Thompson [ 1] estimated the natural frequencies of 

the wheels using a finite element model of the wheels alone. Axisymmetry of the 

structure was assumed with sinusoidal variations along the circumferential direction. The 

mode shapes were presented for several flexural and radial modes. The study concluded 

that for modes with ݊ ൒ 2, the axle could be ignored, by imposing a clamped condition at 
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the inner edge of the hub. This Idealization was expected to yield reasonable results for 

all modes, except for ݊ ൌ 0 and ݊ ൌ 1. The extension and flexure of the axle shaft, 

however, contributes greatly to the modes corresponding to ݊ ൌ 0 and ݊ ൌ 1[ 1]. 

Several continuum models have also been developed for analyses of the railway 

wheelset [ 45,  80,  81]. The complex geometry of the wheelset could be effectively 

represented by a composition of different continuous systems, often with additional 

masses. Wheelset models of this type differ significantly in their complexity from those 

summarized above. A continuous model of a flexible wheelset running on flexible track 

was developed by Meywerk [ 81] to study the dynamic behavior of the railway wheels. 

The axle was modeled using the Timoshenko beam theory while the wheel disk model 

considered the Kirchhoff's plate theory. This model, shown in see Figure  1.4, was 

coupled with a wear model to predict the polygonalization of the wheel and the 

development of out-of-roundness defects in the wheels. 

 
Figure  1.4: (a) Elastic wheelset/track model, and (b) primary suspension model 

developed by Meywerk [ 81].  
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Noise Radiation 

The wheel/rail noise emission may be characterized in three primary categories, 

namely the rolling noise, impact noise and squeal noise. The rolling noise generally 

occurs on straight tracks and is predominantly caused by undulations of the wheel and the 

rail surfaces which induce a vertical relative vibration. Impact noise can be considered as 

an extreme form of rolling noise occurring at discontinuities of the wheel or rail surface, 

or due to wheel/rail defects. The excitation is again vertical, while the non-linearities play 

a greater role. The squeal noise, occurring on sharp radius curves, is usually induced by 

lateral excitation [ 3]. A review of the wheel-rail models developed to study the noise 

generation has been presented in a few studies [ 3,  12,  44]. Knothe and Grassie [ 12] have 

reviewed the evolutions in modeling of railway vehicle/track interactions with greater 

emphasis on the track models, while Talotte [ 44] presented a critical review of studies 

describing identifications and modeling of railway noise sources.  

The frequency spectrum of the noise emitted by the wheel-rail system exhibits 

broad frequency content, with the highest levels occurring in the 800-2500 Hz frequency 

range. Figure  1.5 illustrates a typical frequency spectrum of the radiated noise [ 42]. The 

emitted noise in the frequency interval of 100–5000 Hz has been associated with rolling 

noise, with the highest levels occurring in the 500–2500 Hz range. At frequencies below 

500 Hz, the primary contribution to the noise is radiated by the sleepers, while the rail 

vibration has been reported as the dominating source of noise in the 500 Hz to 1 kHz 

range. Stiffer rail pads tend to increase the frequency interval of the sleeper noise. The 

studies have suggested that wheel vibrations contribute most significantly to wheel-rail 

noise at frequencies above 1 kHz [ 82].  



26 

 

 
Figure  1.5: An example spectrum of the wheel-rail noise in the one-third octave bands, 

: tread-braked vehicle,   :disk-braked vehicle[ 42]. 

Fingberg [ 4] predicted the noise radiation from a wheel using a boundary element 

method with an objective to determine the squealing noise. A finite element model of the 

wheel was used to obtain natural frequencies and mode shapes of the wheelset. The study 

reported the mode shapes of a wheelset. Figure  1.6 illustrates the mode shapes 

corresponding to the lowest symmetric and anti-symmetric modes of the wheelset. It has 

been pointed that predicting the squealing noise is impossible without considering the 

radiation characteristics of the wheel. Wu and Thompson [ 43] developed a numerical 

model to predict the wheel/rail dynamic interaction caused by excitation due to wheel 

flats and the consequent noise radiation.  
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Figure  1.6: Mode shapes of an elastic wheelset [ 4]. 

1.2.5. Methods of Analysis 

The reported studies on circular disks have employed widely different methods of 

analysis. These studies are further reviewed and briefly discussed in view of the methods 

used and their relative merits and limitations. For isotropic circular plates of uniform 
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thickness subject to the classical boundary conditions of clamped, free or simple support, 

exact solutions to the governing equations of motion have been obtained in terms of 

Bessel functions. The natural frequencies and corresponding mode shapes, thus, were 

derived and have been presented in [ 5,  6]. However, such exact solutions are limited only 

to special cases and are not available for the general cases involving non-uniform 

geometric or material properties. The vast majority of the studies have, thus, used 

approximate solutions of the vibration problems.   

The Rayleigh-Ritz Method 

  The Rayleigh-Ritz method has been most commonly used to study the vibration 

properties of various structural components due to its accuracy and versatility. In this 

method, the maximum strain and kinetic energies of the system are expressed in terms of 

assumed deflection shapes in the form of a series of shape functions that satisfy at least 

geometric boundary conditions multiplied by the undetermined coefficients. These 

coefficients are adjusted by minimizing the frequency with respect to each of the 

coefficient to form an eigenvalue problem. The eigenvalues and the associated 

eigenvectors are subsequently obtained from the solution of the eigenvalue problem [ 83]. 

The Rayleigh-Ritz method estimates the frequencies of continuous systems with an 

acceptable accuracy. The accuracy of this method, however, greatly depends on the 

choice of the shape functions that should be differentiable half as many times as the order 

of the system satisfy at least the geometric boundary conditions. Several appropriate 

admissible functions may, thus, be used, provided they satisfy the required boundary 

conditions for the disks and are relatively easily determined. However, the subsequent 
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use of these functions in the Rayleigh-Ritz procedure would require the tedious and error-

prone evaluation of integrals involving products of trigonometric and hyperbolic 

functions.  

For problems involving multiple disks, identification of the appropriate beam 

functions becomes far more difficult. Bhat [ 84] suggested a set of boundary characteristic 

orthogonal polynomials for use in the Rayleigh-Ritz method as the admissible functions 

for dynamic and static problems of beams or plates with classical or non-classical 

boundary conditions.  These functions exhibit a number of meritorious features such as 

the relative ease of generation and integration, and realization of diagonal mass matrix 

and diagonally dominant stiffness matrix. In these respects, the boundary characteristic 

orthogonal polynomials offer significant computational advantages over the beam 

function, particularly for the continuous disks [ 85]. 

The boundary characteristic orthogonal polynomials have been successfully 

employed to study the vibration characteristics of a variety of structures such as elliptical 

plates [ 86,  87], tapered beams [ 88] and polygonal plates [ 89]. Boundary characteristic 

orthogonal polynomials are generalized functions that are considered admissible in the 

Rayleigh-Ritz method for various beam and plate problems including several 

complicating effects. For instance, this method was used to study the flexural vibration of 

thin annular and circular composite plates, subject to certain complicating effects such as 

isotropic or polar orthotropic material, uniform or radially varying thickness and 

intermediate concentric ring supports [ 90,  87]. Similar analyses have also been performed 

on annular and circular, thin, sectorial plates subject to same complicating effects [ 90]. 

This illustrates the versatility and accuracy of the approach to tackle problems with a 
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variety of complicating effects whether in the material properties, boundary conditions or 

geometry. It has also been demonstrated that the boundary characteristic orthogonal 

polynomials can be used in other approximate methods such as Galerkin method [ 91] or 

Lagrangian multiplier method [ 92].  

Boundary Conditions 

The classical boundary conditions include simply supported, clamped or free end 

conditions. The vast majority of the reported studies in vibration of continuous systems 

have considered either clamped or free boundary conditions. In the Rayleigh-Ritz 

method, the trial functions used must satisfy at least the geometric boundary conditions, 

which are zero displacement and slope for the clamped conditions and zero displacement 

for simply-support conditions, while no geometrical boundary conditions exist for the 

free edges. When using the boundary characteristics orthogonal polynomials, only the 

starting function is selected to satisfy the geometric boundary conditions and all 

remaining functions are generated using the Gram-Schmidt orthogonaliztion process [ 84], 

which ensures that all the orthogonalized functions satisfy the geometric boundary 

conditions.  

However, sometimes it is difficult to have admissible functions that satisfy the 

geometric boundary conditions. A circular disk clamped at a portion of the edge and free 

on the remaining or a disk with multiple point supports, are some of such boundary 

conditions. Therefore, another approach is to allow the admissible function to violate the 

geometric boundary conditions and then enforce the boundary conditions by using 

artificial springs. The artificial springs also permit the coupling of the components of 
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each system and simplifying the selection of trial functions or the Rayleigh-Ritz solution 

[ 93]. The principle of artificial springs can be considered as a penalty method [ 93], which 

reduces the constrained problem to an unconstrained problem by the introduction of a 

penalty function associated with the constraint [ 94]. In this approach, the error associated 

with the unconstrained problem is multiplied by a very large penalty parameter, which 

effectively reduces the emphasized error and yields a solution that satisfies the boundary 

conditions [ 95].  

The approach of employing elastic springs distributed uniformly around the edge 

has been extensively used in problems related to out-of-plane vibrations of circular plates 

[ 96- 98] and cylindrical shells [ 93]. Several studies have also considered the effect of 

partial supports and stiffness non-uniformity on the out-of-plane vibrations of plates [ 53-

 58]. Kim and Dickinson [ 99] studied the axisymmetrical and non-axisymmetrical 

vibrations of isotropic and polar orthotropic annular plates with either one or both 

peripheries elastically restrained against rotation and/or translation using the Rayleigh-

Ritz approach.  

The advantage of using this method is particularly evident when couplings 

between two or more elastic components are involved. Moreover, a perfectly clamped 

condition may not exist in practice. Flexible boundary conditions may, thus, be 

considered more representative of practical situations or when comparing with the 

experimental data. Artificial springs can also be used as a connection between different 

components. A rigid joint between the components can be approximated by inserting 

artificial springs of large stiffness, while flexible joints may be simulated by assigning the 

representative stiffness value for the joint [ 99]. Yuan and Dickenson used this method to 
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study the free vibration problem of systems comprised of cylindrical thin shells and thin 

annular circular plates [ 93]. The cylindrical shell was connected to the plates by means of 

artificial springs. In this study, the boundary characteristic orthogonal polynomials are 

employed in the Rayleigh-Ritz method to perform a free in-plane vibration analysis of an 

annular disk with uniform and non-uniform boundary conditions. Owing to its versatility, 

artificial springs are used to represent flexible boundary conditions at the edges. 

1.3. Scope and Objectives 

Despite the extensive reported studies on the out-of-plane vibration properties of 

the disks, a comprehensive understanding of the in-plane vibration phenomena and its 

couplings with the out-of-plane modes is still lacking, particularly under non-uniform 

boundary conditions. A number of investigations have also tackled the modeling and 

analysis of in-plane vibrations, although for uniform boundary conditions [e.g.  24,  47]. 

These models can provide, to some degree, a qualitative insight into the in-plane 

vibration characteristics of disks. The review of the reported studies suggests that far 

more research efforts are needed for a better understanding of the in-plane modes of thick 

circular disks with non-uniform boundary conditions. For instance, the frequency 

equations for in-plane modes of disks are available only for limited boundary conditions. 

The effect of elastic constraint or point support on the in-plane modes has not yet been 

addressed. A flexible model of disk that combines the vibration theory of elastic bodies 

and the rotational effects is, thus, desirable which would find many applications such as 

in wheel-rail interactions and brake systems. 
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The formulation of a simple, yet credible, model that considers the in-plane 

modes of a rotating wheel would be desirable. Such a model could provide a reliable 

platform to investigate problems such as in the wheel-rail dynamics and to gain more 

insight into the vibration and the noise radiation of the railway vehicle. Consequently, an 

analytical method is developed in this dissertation research, in which a simple 

comprehensive approach has been put forward for the treatment of disks subject to any or 

all combinations of several complicating effects and having any combination of classical 

and non-classical boundary conditions and/or elastic supports. 

The primary objective of this study is, thus, to develop a realistic mathematical 

model to analyze vibration characteristics of circular disks with different boundary 

conditions. The model is developed to accommodate various classical and non-classical 

boundary conditions and external excitations that may exist in many applications. The 

following are the specific objectives of this study: 

1. To develop a generalized formulation for in-plane vibration analysis of circular 

annular disks under different combinations of clamped, free or flexible boundary 

conditions at the inner and outer edges, and derive exact frequency equations for 

different combinations of boundary conditions.  

2. To employ the boundary characteristic orthogonal polynomials as assumed 

deflection functions in the Rayleigh-Ritz method in order to obtain the natural 

frequencies and associated mode shapes under different geometries and 

combinations of boundary conditions.  
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3. To investigate the in-plane modes of vibrations, and identify the bifurcation of 

frequencies, the effects of initial stress and constraint non-uniformity of rotating 

disks.  

4. To conduct laboratory experiments on stationary and rotating circular disks under 

selected boundary conditions and demonstrate the validity of the analytical 

methods in terms of vibration and acoustic emission properties.  

5. To develop an analytical model of a thick disk to evaluate its acoustic properties 

associated with the in-plane and out-of-plane noise radiation under free and 

constrained conditions, and study the coupling between the in-plane and out-of-

plane vibration modes.  

6.  Investigate the coupled in-plane and out-of-plane modes of vibration of a thick 

disk in the presence of constraint non-uniformity and rotation effects using a 

three-dimensional model.    

1.4. Organization of the Thesis 

This dissertation is organized into seven chapters describing systematic 

developments in realizing the above objectives. In chapter 2, the derivation of the energy 

expressions is presented in polar coordinates. The corresponding equations of motion are 

also derived and discussed. The equations of motion are solved to obtain the exact 

frequency equations for the uniform boundary conditions, including flexible uniform 

edges. The Rayleigh-Ritz method is, then, utilized to solve the problem of in-plane 

vibration of circular and annular disks subject to uniform and non-uniform boundary 

conditions. The strain energy expressions for in the artificial springs are derived. The 
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model for the vibrations of rotating disks is derived based on the assumption of linear 

elasticity, while the effect of additional stiffening is investigated by employing nonlinear 

strain-displacement relation of annular disks subject to non-uniform boundary conditions. 

This is followed by the formulation for the in-plane acoustic properties of the circular 

disk.  

Chapter 3 is dedicated to explore the free vibrations of stationary disks with 

uniform boundary conditions. The frequency parameters obtained from exact solutions 

are used as reference to examine the convergence property of the Rayleigh-Ritz method. 

The analytical results are used in a parametric study to investigate the effect of several 

geometric properties on the modal characteristics of annular disks. The mode shapes of 

disks with selected uniform boundary conditions are presented and compared with 

previous literature. 

Chapter 4 considers the in-plane free vibrations of stationary disks with non-

uniform boundary conditions. The chapter starts with a description of the finite element 

model and experimental setup used to validate the analytical results. Then, the 

convergence rate of the Rayleigh-Ritz method for problems with non-uniform boundary 

conditions is discussed. The frequency parameters are, then, presented for various 

combinations of classical and non-uniform boundary conditions. The results obtained by 

the current procedure are validated against the finite element results. Two-dimensional 

contour plots are presented for selected mode shapes to investigate the effect of the 

constraints on the radial and circumferential displacements. The experimental results are 

presented and compared with analytical results. The vibration and acoustic properties of 

an annular disk subject to different combinations of boundary conditions are discussed.  
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The focus of chapter 5 is on the analysis of in-plane vibrations of rotating disks. 

The rotational effects on annular disks subject to uniform boundary conditions are 

discussed based on the linear analysis. The variations of the travelling waves are 

presented with respect to rotating and fixed coordinates. Then, a rotating point-supported 

disk is employed to investigate the combined effect of rotation and boundary condition 

non-uniformity on the modal characteristics of the disk. The initial stiffening due to 

rotation is, then, introduced by developing a non-linear model that permits the coupling 

between static and dynamic problems. The general non-linear problem of an annular disk 

subject to non-uniform boundary conditions is investigated. Finally, the results from the 

experimental investigations are described. 

In chapter 6, a thick disk model is proposed where the constrained and rotational 

effects are addressed in the context of a coupled three-dimensional model. The essential 

energy expressions for thick disks are derived to allow consideration of multiple disks 

connected by artificial spring and non-uniform point, line or area support that has 

variations along circumferential and normal directions. Expressions to estimate the 

acoustic properties from the in-plane and out-of-plane modes are also presented. The 

applicability of the model is demonstrated by relating it to a railway wheel while 

comparison with measured railway wheel data is performed to illustrate the accuracy and 

versatility of the developed model.  

The highlights and major conclusions drawn from this study together with 

recommendations for the future work are finally presented in chapter 7. 
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2. IN-PLANE FREE VIBRATION OF ANNULAR DISKS 

The out-of-plane vibration properties of circular disks have been extensively 

investigated under a range geometries and boundary conditions, while only limited efforts 

have been made to characterize the in-plane vibration characteristics. The in-plane 

vibration of circular disks was first attempted by Love [ 13] who formulated the equations 

of motion for a thin solid circular disk with free outer edge together with the general 

solution. The equations of motion were subsequently solved by Onoe [ 14] to obtain the 

exact frequency equations corresponding to different modes of a solid disk with free 

outer edge. Holland [ 15] evaluated the frequency parameters and the corresponding mode 

shapes for a wide range of Poisson’s ratios and the vibration response to an in-plane 

force. The in-plane vibration characteristics of solid disks clamped at the outer edge have 

been investigated in a very few recent studies. Farag and Pan [ 16] evaluated the 

frequency parameters and the mode shapes of in-plane vibration of solid disks clamped at 

the outer edge using assumed deflection modes in terms of trigonometric and Bessel 

functions. Park [ 17] derived the exact frequency equation for the solid disk clamped at 

the outer edge.  

The in-plane vibration analyses in the above reported studies were limited to solid 

disks with either free or clamped outer edge. Such analyses for the annular disks with 

different boundary conditions have been limited to a few studies. The variations in the in-

plane vibration frequency parameters of annular disks with free edges were investigated 

as function of the size of the opening by Ambati et al. [ 18]. Another study investigated 

the free vibration and dynamic response characteristics of an annular disk with clamped 
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inner boundary and a concentrated radial force applied at the outer boundary [ 19]. Irie et 

al. [ 20] investigated the modal characteristics of in-plane vibration of annular disks using 

transfer matrix formulation while considering free and clamped inner and outer edges. 

The finite element technique has also been used to examine the validity of analytical 

methods [e.g.  16,  19]. The exact frequency equations of in-plane vibration, however, 

have been limited only to solid disks. Such analyses for the annular disks pose more 

complexities due to the presence of different combinations of boundary conditions at the 

inner and outer edges.  

This chapter aims at generalized formulation for in-plane vibration analyses of 

circular annular disks under different combinations of clamped, free or flexible boundary 

conditions at the inner and outer edges. The primary objective of this chapter is to 

investigate the in-plane modal characteristics of circular and annular disks subject to 

general boundary conditions with relative ease and acceptable accuracy. Starting from the 

constitutive laws and stress-strain relations, the integral expressions for strain and kinetic 

energies of the disk are presented in the polar coordinates. The energy expressions are 

subsequently solved to determine the natural frequencies and mode shapes of annular 

disks. The exact frequency equations are also derived for different combinations of 

boundary conditions, including the flexible boundaries, for various radius ratios, while 

the solid disk is considered as a special case of the generalized formulation. 

Moreover, the Rayleigh-Ritz method is employed to derive the eigenvalue 

equations. The circumferential displacement components are expressed in terms of 

trigonometric functions and boundary-characteristic orthogonal polynomials in the radial 

direction. Orthogonal polynomials are generated for the free boundary conditions of the 
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disk and artificial springs are used to account for any possible boundary conditions. The 

clamped boundary case is also analyzed with orthogonal polynomials that directly satisfy 

the clamped boundary conditions. The accuracy of the eigenvalues is ascertained through 

comparisons with the results reported in the published studies.  

2.1. Equations of Motion of an Annular Circular Disk 

Consider an annular disk with outer radius Ro, inner radius Ri and thickness h, as 

shown in Figure  2.1. It is assumed that the disk is isotropic with mass density ρ, Young's 

modulus E and Poisson's ratio v. The radial and circumferential displacement components 

of a point in the plane of the annular disk are denoted by ur and uθ , respectively. The 

expression for the strain energy of the disk in polar coordinates (r,θ) is derived from the 

constitutive laws and strain-displacement relations. The strain energy in polar coordinate 

(r,θ) can be written as: 

ॼ ൌ
1
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( 2.1)

where ॼ is the strain energy. In the above formulation, small strains are assumed and the 

Hooke's law is employed to express stress-strain relationship. For a flat disk, the plane 

stress conditions may be expressed by the following relations: 
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Substituting Eq. ( 2.2) into the strain energy expression ( 2.1) leads to: 

 



40 

 

 

Figure  2.1: Geometry and coordinate system used for in-plane vibration analysis of an 
annular disk. 
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For small deformations, the strain-displacement relations are written as: 

⎟
⎠
⎞

⎜
⎝
⎛ −

∂
∂

+
∂
∂

=

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+=

∂
∂

=

r
u

r
uu

r

uu
r

r
u

r
r

r

r
r

θθ
θ

θ
θ

θ
ε

θ
ε

ε

1
2
1

1

 

( 2.4)

By substituting the strain-displacement relations into Eq.( 2.3) and introducing the 

non-dimensional parameter ξ =r/Ro, the strain energy is expressed in terms of the 

displacements as: 
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where ߚ ൌ ܴ௜ ܴ௢⁄  is the ratio of inner radius Ri to the outer radius Ro. 
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The kinetic energy of the disk can be expressed as: 
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 ( 2.6)

where T is the kinetic energy, and ݑሶ ௥ and ݑሶ ఏ are the time-derivatives of the radial and 

circumferential displacements, respectively. 

2.1.1. Equations of Motion 

The Hamilton’s principle is applied to derive the equations of motion from the 

energy expressions, such that: 
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Performing the variations with respect to time and space results in expressions in 

terms of ݑߜ௥ and ݑߜఏ. Requiring the coefficient of each variation to vanish over the 

domain will yield the equations of motion. These equations of motion in the polar 

coordinate system (r,θ) are derived as: 
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where ܥ௅
ଶ ൌ ܧ ሺ1ߩ െ ⁄ଶሻݒ  and ்ܥ

ଶ ൌ ܧ ሺ1ߩ2 ൅ ⁄ሻݒ . 
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2.2. Exact Frequency Equations 

Considering that the exact solutions could serve as a benchmark for all other 

approximate and numerical techniques, it is desirable to formulate exact frequency 

equations to study the in-plane vibration properties of the disk with different boundary 

conditions. The equations of motion, Eqs. (2.8) and (2.9), however, show strong coupling 

between the radial and circumferential displacements. The exact solution can be obtained 

for limited cases by defining variables that could produce uncoupled equations in one of 

the classical forms. In this section, the equations of motion are solved to obtain the exact 

frequency equations for the uniform boundary conditions, including flexible uniform 

edges. The frequency equations are subsequently used to assess the accuracy of the 

Rayleigh-Ritz method. 

 Following Love’s theory [ 13], the radial and circumferential displacements can 

be expressed in terms of the Lamé Potentials  ߶ത and ത߰ [ 100], as: 

௥ݑ ൌ ቆ
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 ( 2.10)
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 ( 2.11)

Assuming harmonic oscillations corresponding to a natural frequency ω, the 

potential functions ߶ത and ത߰ can be represented by: 

߶തሺߦ, ,ߠ ሻݐ ൌ Φሺߦሻ cos ߠ݊ sin  ݐ߱

ത߰ሺߦ, ,ߠ ሻݐ ൌ Ψሺߦሻ sin ߠ݊ sin (2.12 ) ݐ߱

where n is the circumferential wave number or nodal diameter number. Upon substituting 

for ur and uθ in terms of ߦ, Φ and Ψ from Eqs. ( 2.10) to ( 2.12), in Eqs. ( 2.8) and ( 2.9), the 

equations of motion reduce to the following uncoupled form: 
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ଶΦ׏ ൌ െߣଵ
ଶΦ 

ଶΨ׏ ൌ െߣଶ
ଶΨ 

( 2.13)

where ߣଵ and ߣଶ are non-dimensional frequency parameters defined as 
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Equation ( 2.13) is the parametric Bessel equations and their general solutions are 

expressed in terms of the Bessel functions as [ 101]: 

Φ ൌ ሼܣ௡ܬ௡ሺߣଵߦሻ ൅ ௡ܤ ௡ܻሺߣଵߦሻሽ 

Ψ ൌ ሼܥ௡ܬ௡ሺߣଶߦሻ ൅ ௡ܦ ௡ܻሺߣଶߦሻሽ 
( 2.16)

where ܬ௡ and ௡ܻ  are the Bessel functions of the first and second kind of order n, 

respectively, and ܣ௡, ,௡ܤ   .௡ are the deflection coefficientsܦ ௡ andܥ

The radial and circumferential displacements can then be expressed in terms of 

the Bessel functions by substituting for Φ and Ψ in Eqs. ( 2.10) and ( 2.11). The resulting 

expressions for the radial and circumferential displacements can be expressed as:  
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2.2.1. Free and Clamped Boundary Conditions 

Equations ( 2.17) and ( 2.18) represent the solutions for distributions of the radial 

and circumferential displacements for the general case of an annular disk. The 

evaluations of the natural frequencies and arbitrary deflection coefficients (ܣ௡ , , ௡ܤ  ௡ܥ

and ܦ௡), however, necessitate the consideration of the in-plane free vibration response 

under different combinations of boundary conditions at the inner and the outer edges. For 

the annular disk clamped at the outer edge (ߦ ൌ 1), the application of boundary 

conditions (ݑ௥ ൌ 0 and ݑఏ ൌ 0) to, Eqs. ( 2.17) and ( 2.18) yield: 

ଵሻߣ௡ܺ௡ሺܣ ൅ ଵሻߣ௡ܼ௡ሺܤ ൅ ݊ሾܥ௡ܬ௡ሺߣଶሻ ൅ ௡ܦ ௡ܻሺߣଶሻሿ ൌ 0 

ଶሻߣ௡ܺ௡ሺܥ ൅ ଶሻߣ௡ܼ௡ሺܦ ൅ ݊ሾܣ௡ܬ௡ሺߣଵሻ ൅ ௡ܤ ௡ܻሺߣଵሻሿ ൌ 0 
( 2.20)

In a similar manner, the solution must satisfy the following for the clamped inner 
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( 2.21)

The conditions at the free edges are satisfied when the radial (Nr) and 

circumferential (Nrθ) in-plane forces at the edge are zero [ 16], such that 
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A direct Substitution of ݑ௥ and ݑఏ from Eqs. ( 2.17) and ( 2.18) in the above 

equations would result in second derivatives of the Bessel functions. Alternatively, the 

above equation for the boundary conditions may be expressed in terms of Φ and Ψ 



45 

 

through direct substitution of  ݑ௥ and ݑఏ from Eqs. ( 2.10) and ( 2.11), respectively. The 

boundary conditions in terms of Nr can thus be obtained as: 
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Rearranging Eq. ( 2.23) results in 
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The second order derivative term ሺ߲ଶΦ ⁄ଶߦ߲ ሻ in Eq. ( 2.24) can be eliminated by 

adding and subtracting the term ቀଵ
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and using Eq. ( 2.13), which renders the terms within the first parenthesis identically equal 

to zero. Equation ( 2.25) describing the boundary condition associated with Nr can be 

further simplified upon substitutions for ߣଵ
ଶ ൌ ଶߣ

ଶ ሺ1 െ ሻݒ 2⁄ , which yields 
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Similarly, the boundary condition equation associated with Nrθ, Eq.( 2.22), can be 

simplified as: 
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Upon substituting for Φ and Ψ from Eqs. ( 2.16) in Eqs. ( 2.26) and ( 2.27), the 

boundary condition equations for the free edges are obtained, which involve only first 

derivatives of the Bessel functions. For an annular disk with free inner and outer edges, 
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Eqs. ( 2.26) and ( 2.27) represent the conditions at both the inner and the outer boundaries 

ߦ) ൌ 1  and ߦ ൌ  The equations for the free edge boundary conditions can be .(ߚ

expressed in the matrix form in the four deflection coefficients, as: 
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The determinant of the above matrix yields the frequency equation for the annular 

disk with free inner and outer edge conditions. 

For the clamped inner and outer edges, the equations for the boundary conditions 

can be obtained directly from Eqs. ( 2.20) and ( 2.21), such that 

ۏ
ێ
ێ
ێ
ۍ ܺ௡ሺߣଵሻ ܼ௡ሺߣଵሻ ଶሻߣ௡ሺܬ݊ ݊ ௡ܻሺߣଶሻ

ଵሻߣ௡ሺܬ݊ ݊ ௡ܻሺߣଵሻ ܺ௡ሺߣଶሻ ܼ௡ሺߣଶሻ
ܺ௡ሺߣଵߚሻ ܼ௡ሺߣଵߚሻ ௡

ఉܬ௡ሺߣଶߚሻ ௡
ఉ ௡ܻሺߣଶߚሻ

௡
ఉܬ௡ሺߣଵߚሻ ௡

ఉ ௡ܻሺߣଵߚሻ ܺ௡ሺߣଶߚሻ ܼ௡ሺߣଶߚሻ ے
ۑ
ۑ
ۑ
ې

൞

௡ܣ
௡ܤ
௡ܥ
௡ܦ

ൢ ൌ ሼ0ሽ ( 2.29)

In the above equations, the first two rows describe the boundary condition at the 

outer edge, while the last two rows are associated with those at the inner edge. The 

equations for the boundary conditions involving combinations of free and clamped edges 

can thus be directly obtained from the above two equations. For the free inner edge and 

clamped outer edge, denoted as 'free-clamped' condition, the matrix equation comprises 

the first two rows of the matrix in Eq.( 2.29) and the lower two rows from Eq.( 2.28). For 
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the clamped inner edge and free outer edge, denoted as 'Clamped-Free' condition, the 

matrix equation is formulated in a similar manner using the lower and upper two rows 

from Eqs. ( 2.29) and ( 2.28), respectively. 

The in-plane vibration analysis of a solid disk can be shown as a special case of 

the above generalized formulations. Upon eliminating the coefficients associated with 

Bessel function of the second kind, Eqs. ( 2.28) and ( 2.29) reduce to those reported by 

Onoe [ 14] for free solid disk and by Park [ 17] for the clamped solid disk. The frequency 

equation corresponding to different values of n for the solid disks involving the two 

boundary conditions are summarized in Table  2.1, where ܺ௡ሺߣଵሻ is the derivative of the 

Bessel function ܬ௡ evaluated at the outer edge ( ߦ ൌ 1). For annular disks, a simplified 

frequency eqautaions can be obtained for the axisymmetric modes. These equations are 

expressed in Table  2.2 for the four combinations of boundary conditions. 

Table  2.1: Frequency equations for the solid disks corresponding to free and clamped 
edge conditions. 

Boundary conditions at 
ߦ ൌ 1  clamped  Free 

n=0 
Radial  ଵߣ  ଵሻ=0ߣଵሺܬ  ଵሻߣ଴ሺܬ ൌ ሺ1 െ  ଵሻߣଵሺܬሻݒ

Circumferential  ଶߣ  ଶሻ=0ߣଵሺܬ  ଶሻߣ଴ሺܬ ൌ  ଶሻߣଵሺܬ2

n=1 

 ܺ௡ሺߣଵሻܺ௡ሺߣଶሻ ൌ
݊ଶܬ௡ሺߣଵሻܬ௡ሺߣଶሻ 

 
 ሾ ଵܺሺߣଶሻܬଵሺߣଵሻሿ ൅ ሾ ଵܺሺߣଵሻܬଵሺߣଶሻሿ ൌ ቀ2 െ ഊమ

మ

మ ቁ   ଵሻߣଵሺܬଶሻߣଵሺܬ
 

n>1 
 

 
 ሾܺ௡ሺߣଶሻ െ ଵሻߣଶሻሿሾܺ௡ሺߣ௡ሺܬܳ െ ଵሻሿߣ௡ሺܬܳ ൌ ݊ଶሺܳ െ 1ሻଶ   
 
where ܳ ൌ ଶߣ

ଶ 2ሺ݊ଶ െ 1ሻ⁄   
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Table  2.2: Frequency equations of axisymmetric modes for annular disks 

Boundary 
conditions  radial  Circumferential 

inner  outer 
Clamped  Clamped  ଵሻߣଵሺܬ ଵܻሺߣଵߚሻ െ ሻߚଵߣଵሺܬ ଵܻሺߣଵሻ ൌ ଶሻߣଵሺܬ 0 ଵܻሺߣଶߚሻ െ ሻߚଶߣଵሺܬ ଵܻሺߣଶሻ ൌ 0 

Free  Free 

ቂቀെ ఒభ
ሺଵି௩ሻቁ ଵሻߣ଴ሺܬ ൅ ଵሻቃߣଵሺܬ ቂቀെ ఒభ

ሺଵି௩ሻቁ ଴ܻሺߣଵߚሻ

൅ ଵ
ఉ ଵܻሺߣଵߚሻቃ — ቂ ିఒభ

ሺଵି௩ሻ ଴ܻሺߣଵሻ

൅ ଵܻሺߣଵሻቃ ቂቀെ ఒభ
ሺଵି௩ሻቁ ሻߚଵߣ଴ሺܬ

൅ ଵ
ఉ ሻቃߚଵߣଵሺܬ ൌ 0 

ሾെ2ܬଵሺߣଶሻ ൅ ଶሻሿߣ଴ሺܬ ଶߣ ቂି
ଶ
ఉ ଵܻሺߣଶߚሻ

൅ ଶߣ ଴ܻሺߣଶߚሻቃ

െ ቂെଶ
ఉ ܬଵሺߣଶߚሻ

൅ ሻቃߚଶߣ଴ሺܬ ଶߣ ሾെ2 ଵܻሺߣଶሻ
൅ ଶߣ ଴ܻሺߣଶሻሿ ൌ 0

Clamped  Free 

ቂቀ ఒభ
ሺଵି௩ሻቁ ଵሻߣ଴ሺܬ െ ଵሻቃߣଵሺܬ ଵܻሺߣଵߚሻ

െ ሻߚଵߣଵሺܬ ቂቀ ఒభ
ሺଵି௩ሻቁ ଴ܻሺߣଵሻ

െ ଵܻሺߣଵሻቃ ൌ 0 

ሾ2ܬଵሺߣଶሻ െ ଶሻሿߣ଴ሺܬ ଶߣ ଵܻሺߣଶߚሻ
െ ሻሾ2ߚଶߣଵሺܬ ଵܻሺߣଶሻ
െ ଶߣ ଴ܻሺߣଶሻሿ ൌ 0 

Free  Clamped 

ଵሻߣଵሺܬ ቂቀെ ఒభ
ሺଵି௩ሻቁ ଴ܻሺߣଵߚሻ ൅ ଵ

ఉ ଵܻሺߣଵߚሻቃ

൅ ቂቀെ ఒభ
ሺଵି௩ሻቁ ሻߚଵߣ଴ሺܬ

൅ ଵ
ఉܬଵሺߣଵߚሻቃ ଵܻሺߣଵሻ ൌ 0 

ଶሻߣଵሺܬ ቂି 
ଶ
ఉ ଵܻሺߣଶߚሻ ൅ ଶߣ ଴ܻሺߣଶߚሻቃ

െ ቂെଶ
ఉ ܬଵሺߣଶߚሻ

൅ ሻቃߚଶߣ଴ሺܬ ଶߣ ଵܻሺߣଶሻ ൌ 0 

 
 

2.2.2. Flexible Boundary Conditions  

In the above formulations, the boundary conditions considered are either clamped 

or free. However, flexible boundary conditions may be considered more representative of 

many practical situations.  The proposed formulations can be further employed to study 

the in-plane vibration of solid as well as annular disks with flexible boundary conditions. 

Artificial springs may be applied to describe the flexible boundary conditions at the inner 

or the outer edge of an annular disk. A number of studies on the analysis of out-of-plane 

vibration characteristics of circular plates and cylindrical shells have employed uniformly 

distributed artificial springs around the edge to represent a flexible boundary conditions 

or a flexible joint [ 96- 99].  
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Artificial springs, distributed along the radial and circumferential directions at the 

free outer and/or inner edges, were considered to simulate the flexible boundary 

conditions, as shown in Figure  2.2. The exact solution of the frequency equations for the 

disk with flexible supports can be attained from Eqs. ( 2.17) and ( 2.18) together with the 

consideration of the flexible boundary conditions. The conditions involving flexible edge 

supports at the inner and outer edges are satisfied when the radial (Nr) and 

circumferential (Nrθ) in-plane forces at the edges are equal to the respective radial and 

circumferential spring forces, such that 

),(
)1( 2 θξ

ξθξξ
θ

rrr
r

o
r uKuvuvu

Rv
EhN =⎥

⎦

⎤
⎢
⎣

⎡
+

∂
∂

+
∂
∂

−
−

=  ( 2.30)

),(1
)1(2

θξ
ξξθξ θθ
θθ

θ uKuuu
Rv

EhN r

o
r =⎥

⎦

⎤
⎢
⎣

⎡
−

∂
∂

+
∂
∂

+
−

=  ( 2.31)

where Kr and Kθ are the radial and circumferential stiffness coefficients, respectively. 

Introducing the non-dimensional stiffness parameters, ܭഥ௥ ൌ ௥ܴ௢ሺ1ܭ െ ଶሻݒ ⁄݄ܧ  and 

ഥఏܭ ൌ ఏܴ௢ሺ1ܭ ൅ ሻݒ ⁄݄ܧ , Eqs. ( 2.30) and ( 2.31) can be written as 

ቆ
݊ଶ

ଶߦ െ
1
ߦ

߲
ߦ߲ െ

1
2 ଶߣ

ଶ ൅ ഥ௥ܭ
߲

ቇߦ߲ Φ ൅ ݊ ൬
1
ߦ

߲
ߦ߲ െ

1
ଶߦ ൅

1
ߦ ഥ௥൰ܭ Ψ ൌ 0 ( 2.32)

݊ ൬
1
ߦ

߲
ߦ߲ െ

1
ଶߦ െ

1
ߦ ഥఏ൰ܭ Φ ൅ ቆ

݊ଶ

ଶߦ െ
1
ߦ

߲
ߦ߲ െ

1
2 ଶߣ

ଶ െ ഥఏܭ
߲

ቇߦ߲ Ψ ൌ 0 ( 2.33)

The application of the above conditions yields the matrix equations for the disk 

with flexible supports at the inner and outer edges, similar to Eq. ( 2.28). The frequency 

parameters are subsequently obtained through solution of the matrix equations. The 

above boundary equations reduce to those in Eqs. ( 2.26) and ( 2.27) for the free edge 

conditions by letting ܭഥ௥ ൌ 0 and ܭഥఏ ൌ 0. Furthermore, the clamped edge condition can 
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be represented by considering infinite values of ܭഥ௥ and ܭഥఏ. Equations ( 2.32) and ( 2.33) 

further show that the flexible edge support conditions involve combinations of the free 

and clamped edge conditions. 

2.3. Analyses Using Rayleigh-Ritz Method 

Exact analysis of a vibrating system with several complicating effects is generally 

difficult. Therefore, several approximate methods have been developed to solve the 

vibration problems with acceptable and reliable accuracy [ 83,  88]. The Rayleigh-Ritz 

method is one of the most popular methods that have been used to obtain the natural 

frequencies and mode shapes of a wide range of vibration problems. In this section, the 

Rayleigh-Ritz method is utilized to solve the problem of in-plane vibration of circular 

and annular disks, described in Eqs. ( 2.5) and ( 2.6). 

For harmonic vibration with time dependence, the free in-plane vibration response 

is assumed to have a sinusoidal variation around the disk, and may be expressed in the 

form: 

∑
∞

−=
n

tj
nr enUtu ωθξθξ )cos()(),,(  ( 2.34)

∑
∞

−=
n

tj
n enVtu ω

θ θξθξ )sin()(),,(  ( 2.35)

where Un and Vn are radial and circumferential deflection functions, respectively. The 

above assumed solutions are substituted in the energy expression, the energy Eqs. ( 2.5) 

and ( 2.6), which are then integrated with respect to θ (0, 2π), The Integrals of the 

trigonometric functions are expressed by the relations: 
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The substations of the above integrals in the energy expressions yields the 

following expressions for maximum strain energy, ॼmax, and kinetic energy, Tmax: 

ॼ௠௔௫ ൌ
ߨ
2

݄ܧ
1 െ ଶߥ න ൝ሺܷ௡

ᇱ ሻଶ ൅ ௡ܷߥ2
ᇱ ቆ

ܷ௡

ߦ
൅

݊ ௡ܸ

ߦ
ቇ ൅ ቆ

ܷ௡

ߦ
൅

݊ ௡ܸ

ߦ
ቇ

ଶଵ

ఉ

൅
1
2

ሺ1 െ ሻߥ ቆെ
ܷ݊௡

ߦ
൅ ௡ܸ

ᇱ െ ௡ܸ

ߦ
ቇ

ଶ

ቋ  ߦ݀ߦ

( 2.36)

௠ܶ௔௫ ൌ
ߨ
2 ߱ଶ݄ܴߩ଴

ଶ නሺܷ௡
ଶ ൅ ௡ܸ

ଶሻߦ݀ߦ
ଵ

ఉ

 ( 2.37)

where " ' " represent the derivative with respect to ߦ. Employing the condition ॼmax=Tmax, 

the Rayleigh’s quotient can be written as:  
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 ( 2.38)

where E
vRo )1( 222

2 −= ρωλ . 

2.3.1. Boundary Characteristic Orthogonal Polynomials 

The displacements Un(ξ) and Vn(ξ) of the circular disks can be expressed as a 

linear combination of the assumed deflection shapes in the form of the boundary 

characteristic orthogonal polynomial (BCOP) set (߶ଵ, ߶ଶ,….. ߶௡), first proposed by Bhat 
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[ 84]. A brief discussion about the properties of the boundary characteristic orthogonal 

polynomials is given here in order to better understand their versatility. The first property 

of these polynomials is the “Orthogonality”, which helps simplifying the analysis and 

eliminates the problem of matrix ill-conditioning. The definitions of orthogonality can be 

described as [ 101,  102]: 

Functions y1(x), y2(x), … defined on some interval a൑x൑b are called Orthogonal 

with respect to a weight function p(x)>0 if 

න ݔሻ݀ݔ௟ሺݕሻݔ௞ሺݕሻݔሺ݌
௕

௔

ቄൌ 0 for ݇ ് ݈
് 0 for ݇ ൌ ݈ 

( 2.39)

The norm ԡݕ௞ԡ of ݕ௞ is defined by 

ԡݕ௞ԡ ൌ ඩන ௞ݕሻݔሺ݌
ଶሺݔሻ݀ݔ ൌ 0

௕

௔

 ( 2.40)

If a set of functions ݕሺݔሻ are orthogonal and all have norm of unity, they are 

called orthonormal functions. The orthogonal polynomials are related to each other using 

the following recurrence formula: 

ሻݔ௞ାଵሺݕ ൌ ሺݔ െ ܾ௞ሻݕ௞ሺݔሻ െ ܿ௞ݕ௞ିଵሺݔሻ for ݇ ൌ 1,2,3 …  ( 2.41)

where ܾ௞ and ܿ௞ are constants to be defined and ݕ଴ሺݔሻ ൌ 0. Multiplying both sides of 

Eq. ( 2.41) by ݌ሺݔሻݕ௞ሺݔሻ and integrating over the interval a൑x൑b yields: 

න ݔሻ݀ݔ௞ሺݕሻݔ௞ାଵሺݕሻݔሺ݌
௕

௔

ൌ න ௞ݕݔሻݔሺ݌
ଶሺݔሻ݀ݔ

௕

௔

െ ܾ௞ න ௞ݕሻݔሺ݌
ଶሺݔሻ݀ݔ

௕

௔

 
f 

െܿ௞ න ݔሻ݀ݔ௞ሺݕሻݔ௞ିଵሺݕሻݔሺ݌
௕

௔

 

( 2.42)
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Due to the orthogonal property, the first and last terms in Eq. ( 2.42) vanish. The 

coefficients ܾ௞are thus obtained as: 

ܾ௞ ൌ න ௞ݕݔሻݔሺ݌
ଶሺݔሻ݀ݔ

௕

௔

න ௞ݕሻݔሺ݌
ଶሺݔሻ݀ݔ

௕

௔

൙  ( 2.43)

Similarly, multiplying both sides of Eq. ( 2.41) by ݌ሺݔሻݕ௞ିଵሺݔሻ yields the 

expression for constant ܿ௞ as: 

ܿ௞ ൌ න ௞ݕݔሻݔሺ݌ ሺݔሻݕ௞ିଵሺݔሻ݀ݔ
௕

௔

න ௞ିଵݕሻݔሺ݌
ଶ ሺݔሻ݀ݔ

௕

௔

൙  ( 2.44)

The set of polynomials generated using the above formulations for ܾ௞ and ܿ௞ 

maintains the orthogonal properties for the entire set. There are two properties of the 

BCOP  that are useful in the Rayleigh-Ritz method [ 85]: (i) when the value of the first 

function ݕଵሺݔሻ and its derivatives are equal to zero at ݔ௣ in the interval a൑ ௣ݔ ൑b, then, 

all the generated polynomials and their derivatives will be identically zero at ݔ ൌ  ௣; (ii)ݔ

if the first polynomial is symmetrical or anti-symmetrical around an axis, then all the 

functions will hold the same symmetric or anti-symmetric property around the same axis. 

These two properties are necessary to ensure that the generated polynomials satisfy the 

boundary conditions at the edges or at any intermediate positions and preserve the 

symmetry of the system. The proofs for these properties have been reported in [ 85] 

together with detailed descriptions of the BCOP. 

In this analysis, the BCOP are used as admissible functions for the variations in 

the radial displacements, Un(ξ) and Vn(ξ), with the weighting function ݌ሺߦሻ ൌ  A .ߦ
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starting function ߶ଵሺߦሻ is constructed as the polynomial of the lowest degree that satisfies 

the geometric boundary conditions, such that: 

conditionsfreefor;1
conditionsclampedfor;)1()( 22

1

=
−= ξξφ  ( 2.45)

The successive polynomials are generated using the recurrence relation 

,2),()()()(
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The displacement responses are subsequently derived from: 

ܷ௡ሺߦሻ ൌ ෍ ഥܷ௠௡߶ሺߦሻ
௠

 ( 2.48)

௡ܸሺߦሻ ൌ ෍ തܸ௠௡߶ሺߦሻ
௠

 ( 2.49)

Substituting Eqs. ( 2.48) and ( 2.49) into Eq. ( 2.38) and applying the condition of 

stationarity of λ 2 with respect to the arbitrary coefficients ഥܷ௠௡ and തܸ௠௡ :  

ଶߣ∂

∂ ഥܷ௠௡
ൌ 0 

ଶߣ∂

∂ തܸ௠௡
ൌ 0  

( 2.50) 

results in the eigenvalue problem: 
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ቀሾܭሿ െ ሿቁܯଶሾߣ ൜
ഥܷ௠௡
തܸ௠௡

ൠ ൌ ሼ0ሽ.
 
 ( 2.51) 

The stiffness matrix [K] is given by: 
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and ߶௜
ᇱ ൌ ௗథ

ௗక
.  

In the eigenvalue problem, Eq.( 2.51) , [M] is the mass matrix and is given by: 

.  where
][]0[

]0[][
][

1
2∫=⎥

⎦

⎤
⎢
⎣

⎡
=

β

ξξφ dm
m

m
M iii

ii

ii  

The mass matrix is diagonal due to the orthogonal property of the assumed 

deflection modes. The frequency parameters are obtained by solving the eigenvalues 

problem, Eq. ( 2.51).  

The above formulation can be applied to obtain the natural frequencies of annular 

disks under different combinations of boundary conditions at the inner and outer edges. A 

i=1,…,mn; and j=1,…,mn 
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polynomial of degree four is used to define the starting function in the orthogonal set, 

such that: 

∑
=

+=
4

0
11 )(

i

i
ia ξξφ

 
( 2.52)

The constant coefficients, ai+1, of the assumed starting function under different 

combinations of boundary conditions are presented in Table  2.3. In the table, the 

boundary conditions C-C and F-F refer to the clamped (inner edge) – clamped (outer 

edge) and free (inner edge) – free (outer edge), conditions, respectively. Similarly C-F 

and F-C refer to the clamped (inner edge) – free (outer edge) and free (inner edge) – 

clamped (outer edge), conditions, respectively. It should be noted that for a solid disk 

ߚ) ൌ 0) the starting function will be identical to Eq. ( 2.45). 

Alternatively, the natural frequencies of the disk with clamped boundary 

conditions can be obtained using artificial springs with admissible functions that satisfy 

the free boundary conditions.  The natural frequencies would approach those of the disk 

with clamped conditions, when the stiffness due to artificial stiffness is significantly 

greater than that of the disk. This approach is particularly advantageous when two or 

more elastic components need to be connected. Rigid joint between the two components 

can be approximated by increasing the stiffness due to the artificial springs to a very high 

value. Flexible joints can be simulated by assigning the appropriate values of the stiffness 

due to the joint [ 99]. This method is also beneficial in verification of the analytical 

approach on the basis of the laboratory measured data since it is quite difficult to simulate 

a perfectly clamped condition at the boundary in the experimental setup.  
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Table  2.3: Coefficients of starting functions satisfying geometrical boundary conditions 
for annular disk. (F= Free, C= Clamped). 

Coefficients 
Boundary Conditions 

C-C C-F F-C F-F 
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In this study, artificial springs, distributed in the radial and circumferential 

direction on both the inner and outer edges of the disk, are employed (Figure  2.2). The 

maximum strain energy stored in the artificial springs is computed from: ॼ 

ॼௗ ൌ
1
2 ݄ ቈන ,௥ሺܴ௢ݑ௥௢ሾܭ ,ߠ ߠሻሻሿଶܴ௢݀ݐ

ଶగ

଴
൅ න ,௥ሺܴ௜ݑ௥௜ሾܭ ,ߠ ߠሻሻሿଶܴ௜݀ݐ

ଶగ

଴

൅ න ,ఏሺܴ௢ݑఏ௢ሾܭ ,ߠ ߠሻሻሿଶܴ௢݀ݐ
ଶగ

଴
൅ න ,ఏሺܴ௜ݑఏ௜ሾܭ ,ߠ ߠሻሻሿଶܴ௜݀ݐ

ଶగ

଴
቉ 

( 2.53) 

where K represents the stiffness per unit length, subscripts r and θ represent the radial and 

circumferential directions, respectively, and the subscripts i and o refer to the inner and 

outer radii of the disk. The total strain energy of the disk is then obtained by adding 

Eq. ( 2.53) to that presented in Eq. ( 2.36). Following the same aforementioned procedure 

and assuming the polynomial functions that satisfy the free conditions, the eigenvalue 

problem is formulated and solved to determine the natural frequencies of the disk with 

clamped condition at the inner and/or outer boundary. For instance a C-F, boundary 
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condition (clamped inner and free outer edges) is simulated by selecting high stiffness 

value for the inner boundary springs, and zero stiffness for outer edge artificial springs. 

2.4. Boundary Conditions Non-uniformity 

The disks in various applications may have non-uniform boundary conditions 

such as disks supported on a point or over a partial edge. Furthermore the support 

stiffness at an edge may vary along the support. Several studies have considered the 

effects of such partial supports and stiffness non-uniformity on the out-of plane vibration 

properties of the plates [ 56- 62].  The studies have shown that partial supports cause the 

frequency parameters to split into symmetric and anti-symmetric frequencies 

corresponding to each mode [ 56], as was illustrated in Figure  1.3. These frequency 

parameters, however, converged to identical values when uniform boundary conditions 

were considered.  

The studies on in-plane vibration of disks, however, have not yet considered the 

effects of partial supports. Consideration of circular disks with either a point or a patch 

constraint would be more practical for analyses of in-plane vibration in many situations 

such as automobile wheel/tire assembly and railway wheels. The dynamic railway wheel 

and track interactions in the presence of wheel flat defects would be of particular interest 

in the context of in-plane railway wheel vibration, which may contribute to dynamic 

wheel impact loads and noise emission [ 12]. The effects of partial supports and flexible 

boundary conditions on the in-plane free vibration of circular disks are thus investigated 

using the methodology presented in the previous section. The boundary characteristic 

orthogonal polynomials are employed as assumed deflection functions in the Rayleigh-
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Ritz method to obtain the natural frequencies and associated mode shapes. Unlike the 

disk with uniform constraints, the partial support is characterized by defining artificial 

spring coefficients as functions of the angular coordinate. The strain and kinetic energy 

for the disk are identical to those presented in Eqs. ( 2.5) and ( 2.6), respectively, while 

partial support condition is achieved by introducing artificial springs along the concerned 

portion of the free edge.  

The free in-plane vibration of the disk is assumed to exhibit sinusoidal variations 

along the circumferential direction, and may be expressed in the form: 

,ߦ௥ሺݑ ,ߠ ሻݐ ൌ ෍ ௖ܷ,௡ሺߦ, ሻݐ cosሺ݊ߠሻ
ஶ

௡ୀ଴

൅ ௦ܷ,௡ሺߦ, ሻݐ sinሺ݊ߠሻ, ( 2.54)

,ߦఏሺݑ ,ߠ ሻݐ ൌ ෍ ௖ܸ,௡ሺߦ, ሻݐ cosሺ݊ߠሻ
ஶ

௡ୀ଴

൅ ௦ܸ,௡ሺߦ, ሻݐ sinሺ݊ߠሻ, ( 2.55)

where ݊ ൌ 0, 1, 2, …, is the circumferential wave number or nodal diameter number, and 

U and V are radial and circumferential deflection functions, respectively, expressed as 

linear combinations of assumed deflection modes in the form of boundary characteristic 

orthogonal polynomials, such that: 
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where the first subscripts of functions U and V, c and s, respectively, refer to cosine and 

sine components of the deflections, ഥܷ and തܸ  are the deflection coefficients, and ߶m(ξ) is 

the assumed deflection shape corresponding to mode m. It should be noted that the radial 

and circumferential displacement for the disk with uniform boundary conditions, 
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presented in Eqs. ( 2.34) and ( 2.35), include only the cosine and sine components of 

Eqs. ( 2.54) and ( 2.55), respectively. This will be discussed in more details in a 

subsequent section. 

Substituting the displacement functions from Eqs. ( 2.54) and ( 2.55) into the 

energy expressions, Eqs. ( 2.5) and ( 2.6), and equating the maximum kinetic and potential 

energies yields the Rayleigh’s quotient ߣଶ, where ߣଶ ൌ ଶܴ௢߱ߩ
ଶሺ1 െ ଶሻݒ ⁄ܧ , as formulated 

in the previous section. Application of the condition of stationarity with respect to the 

arbitrary coefficients, ഥܷ௖,௠௡, ഥܷ௦,௠௡ തܸ௖,௠௡ and തܸ௦,௠௡ yields:  

பఒమ

ப௎ഥౙ,ౣ౤
ൌ 0 ;  பఒమ

ப௎ഥೞ,ౣ౤
ൌ 0 

பఒమ

ப௏ഥౙ,ౣ౤
ൌ 0 ;  பఒమ

ப௏ഥೞ,ౣ౤
ൌ 0,  

( 2.58)

and the following eigenvalue problem: 

ቀሾܭሿ െ ሿቁܯଶሾߣ

ە
ۖ
۔

ۖ
ۓ

ഥܷ௖,௠௡
ഥܷ௦,௠௡
തܸ௖,௠௡
തܸ௦,௠௡ ۙ

ۖ
ۘ

ۖ
ۗ

ൌ ሼ0ሽ. ( 2.59)

The eigenvectors in the above formulation include both the cosine and sine 

components of the radial and circumferential displacements, where [K] and [M] are 

(4ൈ ݉ ൈ ݊) nondimesional stiffness and mass matrices, respectively. Due to the nature of 

couplings between the modes of non-rotating disks, the system of equations could be 

decomposed into two subsets, each of size (2ൈ ݉ ൈ ݊). The solution of Eq. ( 2.59) 

revealed that the radial cosine components, ഥܷ௖,௠௡, are coupled with the corresponding 

circumferential sine components, തܸ௦,௠௡ only. The radial sine components, ഥܷ௦,௠௡ , on the 

other hand, are coupled with the circumferential cosine components, തܸ௖,௠௡ only. The 
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couplings between the various modes and their effects are described in the subsequent 

sections. The formulations of the stiffness and mass matrices are thus presented 

considering only one subset of equations. Furthermore, the subscripts c and s 

corresponding to the cosine and sine components are omitted for the purpose of brevity. 

The stiffness and mass matrices for each subsystem are defined in a manner similar to 

that presented in section  2.3.  

2.4.1. Boundary Conditions 

A set of artificial springs are introduced at the free outer and inner edges to 

simulate the clamped and flexible boundary conditions. A significantly higher spring 

stiffness could be chosen to represent a clamped boundary condition. The artificial 

springs are distributed in the radial and circumferential directions on both the inner and 

outer edges of the disk, as shown in Figure  2.2.  The artificial springs may also be applied 

only to a portion of the edges along the circumferential direction to realize a partial 

support or a point support condition. The maximum strain energy stored in the distributed 

artificial springs at the inner and outer edges, ॼd can be obtained as: 

ॼௗ ൌ
1
2 ݄ ቈන ,௥ሺܴ௢ݑሻሾߠ௥௢ሺܭ ,ߠ ߠሻሻሿଶܴ௢݀ݐ

ଶగ

଴
൅ න ,௥ሺܴ௜ݑሻሾߠ௥௜ሺܭ ,ߠ ߠሻሻሿଶܴ௜݀ݐ

ଶగ

଴

൅ න ,ఏሺܴ௢ݑሻሾߠఏ௢ሺܭ ,ߠ ߠሻሻሿଶܴ௢݀ݐ
ଶగ

଴
൅ න ,ఏሺܴ௜ݑሻሾߠఏ௜ሺܭ ,ߠ ߠሻሻሿଶܴ௜݀ݐ

ଶగ

଴
቉

( 2.60)

where K(θ) represents radial and circumferential stiffness per unit length of the disk, 

subscripts ro and ri denote radial springs at the outer and inner edges, respectively, and 

subscripts θo and θi represent the respective springs along the circumferential directions. 
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It is assumed that the artificial springs are symmetric about ߠ ൌ 0. The spring stiffness 

K(θ) may thus be expressed by a Fourier cosine series, as: 

ሻߠሺܭ ൌ
ܽ଴

2
൅ ෍ ܽ௟ cosሺ݈ߠሻ

ஶ

௟ୀଵ

 ( 2.61)

where 

ܽ௟ ൌ
1
ߨ

න ሻߠሺܭ cosሺ݈ߠሻ ߠ݀
ଶగ

଴
ሺ݈ ൌ 0,1,2, … ሻ ( 2.62)

 

 
Figure  2.2: Annular disk with an elastic point support at the outer edge; and 

uniformly clamped at the inner edge 

A clamped boundary condition may be realized by assuming K(θ) as a constant in 

Eq. ( 2.60) and by selecting nearly infinite stiffness values. For a disk supported at a point 

on the outer edge, the maximum potential energy ॼp can be derived as: 

ॼ௣ ൌ
1
2 ,௥ሺܴ௢ݑ௣௥݄ሾܭ ,଴ߠ ሻሿଶݐ ൅

1
2 ,ఏሺܴ௢ݑ௣ఏ݄ሾܭ ,଴ߠ ሻሿଶ ( 2.63)ݐ

where Kpr and Kpθ are the stiffness per unit length due to the point elastic support in the 

radial and circumferential directions, respectively, and θ0 is the circumferential 

coordinate of the point support.  

The total strain energy is obtained by adding either Eq. ( 2.60) or ( 2.63) to 

Eq. ( 2.5), depending upon the constraint. The solution of the resulting eigenvalue 
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problem then yields the frequency parameters for the in-plane vibration of the annular 

disk subject to selected boundary and constraint conditions at the two free edges. For 

example, a clamped condition at the inner boundary and a free outer boundary (C-F) can 

be realized by letting ܭ௥௜, ܭఏ௜ ՜ ∞ and ܭ௥௢, ܭఏ௢ ՜ 0.   

2.4.2. Nature of Couplings 

The in-plane vibration modes exhibit complex couplings among them, which 

further depend upon the boundary conditions. The solutions of the eigenvalue problems 

for different boundary conditions can provide significant insight into the nature of 

couplings between different modes and the effects of boundary conditions on the in-plane 

vibration properties. It should be noted that the mass matrix is diagonal due to the 

orthogonal property of the assumed deflection shapes. The stiffness matrix, however, is 

non-diagonal due to the presence of derivatives of the assumed deflection shapes and 

non-uniform constraint conditions. The couplings among different modes can thus be 

solely attributed to the stiffness matrix. As discussed earlier, the system of equations can 

be represented by those of two independent subsystems, associated with coupled radial 

cosine and circumferential sine, and radial sine and circumferential cosine modes, 

respectively. In the following discussion, these are referred to as even and odd 

subsystems with respect to the radial displacement. It should also be noted that the even 

radial displacement is coupled with the odd circumferential displacement only. The odd 

and even subsystems, however, would be coupled in the case of rotating disks, which is 

considered in section  2.5. 
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For different combinations of classical boundary conditions, the following 

observations related to mode couplings could be made through examination of the 

stiffness matrix: 

• The modes with different nodal diameter number (n) are uncoupled. The coupling 

exists between modes with different nodal circles (m) within the same nodal 

diameter number (n). Consequently, each set of modes corresponding to the same 

n can be studied independently. 

• For modes with zero nodal diameter number, ݊ ൌ 0, the modes are either purely 

radial or purely circumferential. The even subsystem would yield radial expansion 

modes, while the odd subsystem gives the torsional modes. Since the variation of 

displacements along the circumferential direction is zero, these modes are 

considered as axisymmetric modes. 

• For ݊ ൒ 1, the radial and circumferential displacements are coupled within the 

same nodal diameter number n. The frequency parameters of the odd subsystem 

are identical to those obtained for the even subsystem. The modes of the odd 

subsystem, however, exhibit a phase shift of ߨ ሺ2݊ሻ⁄  with respect to their 

counterpart. It would thus be sufficient to compute the frequency parameters of 

one of the subsystems. 

For a disk with non-uniform boundary conditions, nature of coupling between the 

modes would differ from those observed under classical boundary conditions, 

specifically: 

• The modes associated with different nodal diameter number n are coupled, and 

thus cannot be studied independently. Although the two subsystems could still be 
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treated independently assuming symmetry about ߠ ൌ 0, the resulting modes will 

be coupled within each subsystem. 

• For axisymmetric modes, ݊ ൌ 0, the odd subsystem yields free vibration 

responses that are different from those of the even subsystem. However, the 

modes are no longer purely radial or purely circumferential due to the effect of 

partial supports. 

•  Although the even and odd subsystems remain uncoupled, they yield different 

values of the frequency parameters. The effect of partial elastic support can be 

considered similar to the gyroscopic effect due to rotation in which the natural 

frequencies split into two different values. Similar effect has been reported by 

Narita and Leissa [ 57] and Eastep and Hemmig [ 61] for the case of out-of-plane 

vibrations. 

The frequency parameters are tabulated and the mode shapes of the in-plane free 

vibration of circular disks are presented and discussed in the next chapter. The results 

obtained are compared with those reported and those obtained from the finite element 

analysis in order to illustrate the validity of the present method. 

2.5. Rotational Effects 

The problems of in-plane vibration of rotating disks have been addressed in only a 

few studies, although the rotating disks are of extreme importance in many engineering 

applications. Bhuta and Jones [ 26] provided a solution to the symmetric in-plane 

vibrations of a thin rotating circular full disk and determined natural frequencies for some 

specific modes. Burdess et al. [ 27] presented generalized formulation by implementing 
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Lame's potentials to consider asymmetric in-plane vibrations and discussed the effect of 

rotational speed on the forward and backward traveling waves of a two nodal diameter 

mode. Chen and Jhu [ 25,  28] extended the analysis to study the divergence instability of 

spinning annular disks clamped at the inner edge and free at the outer boundary. The 

effect of radius ratio on the natural frequencies and critical speeds of the disk was also 

investigated. Hamidzadeh [ 30,  31] analyzed the same problem with a different 

formulation. In these studies, the critical speeds were determined using the classical 

theory of linear elasticity, while the boundary conditions were limited to a free outer 

edge.  

Many engineering applications involve rotating disks with point or patch contact 

such as railway wheel-rail contact and disk brake-friction pad contact. The effect of 

flexible partial or point supports on the in-plane vibration of rotating circular disks, 

however, have not been investigated. In this study, the boundary characteristic orthogonal 

polynomials are employed as assumed deflection functions in the Lagrange’s equation to 

obtain the natural frequencies for various rotating speeds with different sets of boundary 

conditions. The formulations are also applied to study the combined effects of rotation 

and constraint non-uniformity on the natural frequencies. 

2.5.1. Linear Model Formulation 

Consider a disk rotating at constant speed Ω. In order to describe the system of 

rotating disk, two coordinate systems are needed, as shown in Figure  2.3. The first 

coordinate system (r,ߠ) is the rotating frame where ߠ is the circumferential coordinate 
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attached to the rotating disk. The second coordinate system (r,ߟ) is a fixed frame, where 

 .is the circumferential coordinate referenced to the inertial frame ߟ

The expression for strain energy of the disk is identical to that derived for the 

stationary disk which comprises the strain energy due to the elastic properties of the free 

disk, as described in Eq. ( 2.5), and the strain energy due to boundary constraints, as 

described in Eq. ( 2.60) or Eq. ( 2.63). The expression for the kinetic energy of the disk is  

 
Ω

 

Figure  2.3: Geometry and coordinate system used for in-plane vibration analysis of a 
rotating disk 

formulated upon considering the effects of centrifugal and coriolis forces arising from the 

disk rotation. Let r0 denote the undeformed location of a particle in the disk and ݑത be the 

corresponding displacement vector. The instantaneous position of the particle can thus be 

described as ݎҧ ൌ ଴ݎ ൅ ҧݎ߲ ത, and the corresponding velocity asݑ ⁄ݐ߲ . Let ҧ݁௥ and ҧ݁ఏ be the 

unit vectors in the radial and circumferential directions, respectively, and ҧ݁௭ be 

perpendicular to the plane containing ҧ݁௥ and ҧ݁ఏ. The position vector can be expressed as: 

θθeueuru rr ++= )(  ( 2.64) 



68 

 

       The angular velocity vector, ΩሬሬԦ, can be expressed in terms of the angular 

speed, Ω as:  

zeΩ=Ω
r

 

The velocity vector is subsequently derived as: 

θθθ euueuuv rrr )()( Ω++Ω−= &&
r

 

The kinetic energy of the rotating disk in the rotating coordinate system (r,θ) is 

derived as: 

ܶ ൌ
1
2 ଴ܴߩ݄

ଶ න න ቀ൫ݑሶ ௥ െ Ωݑఏ൯
ଶ

൅ ൫ݑሶ ఏ ൅ Ωݑ௥൯
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ଵ

ఉ

ଶగ

଴

 ( 2.65)

In the above formulation, the displacement functions (ݑ௥,  ఏ) are identical toݑ

those derived in Eqs. ( 2.54) and ( 2.55). Substituting the assumed solutions into the 

energy expressions, Eqs. ( 2.5) and ( 2.6), yields the expressions for the strain and kinetic 

energy in terms of the displacement functions. The strain energy of the disk can be 

written in matrix form as: 

ॼ ൌ
1
2

ሼݍሽ்ሾܭሿሼݍሽ ( 2.66)

where ሼݍሽ ൌ ሼ ഥܷ௖,௠ ഥܷ௦,௠ തܸ௖,௠ തܸ௦,௠ሽ் and the stiffness matrix [K] is given by: 

ሾܭሿ ൌ

ۏ
ێ
ێ
ێ
ሾܷܷሿۍ ሾ0ሿ ሾ0ሿ ሾܷܸሿ

ሾ0ሿ ሾܷܷሿ ሾܷܸሿ ሾ0ሿ
ሾ0ሿ ሾܸܷሿ ሾܸܸሿ ሾ0ሿ

ሾܸܷሿ ሾ0ሿ ሾ0ሿ ሾܸܸሿ ے
ۑ
ۑ
ۑ
ې
 

The elements of the above stiffness matrix have been defined in section  2.3.  

 The kinetic energy of the rotating disk can also be expressed in matrix form as: 

ܶ ൌ
1
2

ሼݍሶ ሽ்ሾܯሿሼݍሶ ሽ ൅
1
2 Ωଶሼݍሽ்ሾܯሿሼݍሽ ൅ Ωሼݍሽ்ሾܩሿሼݍሶ ሽ ( 2.67)
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where [M] is the mass matrix formulated as: 

ሾܯሿ ൌ

ۏ
ێ
ێ
ۍ
ሾ݉௜௜ሿ ሾ0ሿ ሾ0ሿ ሾ0ሿ
ሾ0ሿ ሾ݉௜௜ሿ ሾ0ሿ ሾ0ሿ
ሾ0ሿ ሾ0ሿ ሾ݉௜௜ሿ ሾ0ሿ
ሾ0ሿ ሾ0ሿ ሾ0ሿ ሾ݉௜௜ሿے

ۑ
ۑ
ې
 

And mii is the generalized mass, derived from: 

∫=
1

0

ξξφφ dm iiii  

The mass matrix is diagonal because of the orthogonal property of the assumed 

polynomial functions. The second term in Eq. ( 2.67) is attributed to the centrifugal force 

and is a function of the rotational speed. The third term includes the skew-symmetric 

gyroscopic matrix [G], derived as: 

ሾܩሿ ൌ

ۏ
ێ
ێ
ۍ

ሾ0ሿ ሾ0ሿ ሾെ2݉݅݅ሿ ሾ0ሿ
ሾ0ሿ ሾ0ሿ ሾ0ሿ ሾെ2݉݅݅ሿ

ሾ2݉݅݅ሿ ሾ0ሿ ሾ0ሿ ሾ0ሿ
ሾ0ሿ ሾ2݉݅݅ሿ ሾ0ሿ ሾ0ሿ ے

ۑ
ۑ
ې
 

The energy expressions are subsequently used to derive the equations of motion 

for the rotating disk in the fixed coordinate system, and the eigenvalue problem. The 

differential equations of motion for the rotating disk are obtained using the Lagrange 

equation, and expressed as:  

}0{}]{[}]{[}]{[ =+Ω+ qKqGqM &&&  ( 2.68)

An eigenvalue problem is formulated and solved to determine the natural 

frequencies of the in-plane vibration of the disk subject to different combinations of 

boundary conditions, including the flexible and partial supports. 

The coupling between the in-plane vibration modes depends upon the boundary 

conditions and the rotation of the disk. As discussed in section 2.4.2, non-uniform 



70 

 

boundary conditions produce coupling between modes with different nodal diameter 

number, n, while rotation of the disk is responsible for the coupling between modes 

within the same nodal diameter number. Hence, for a disk subject to uniform boundary 

conditions (stationary or rotating), modes with different nodal diameter number, n, are 

uncoupled and can be studied separately. Moreover, for a stationary disk, two uncoupled 

subsystems exists for each nodal diameter number, the first subsystem constitutes the 

radial cosine modes coupled with the circumferential sine modes (referred to as even 

subsystem) while the second subsystem has the radial sine modes coupled with the 

circumferential cosine modes within the same nodal diameter number (referred to as odd 

subsystem). Both the subsystems yield identical values of the frequency parameters 

except for the axisymmetric modes. Rotation of the disk produces coupling between these 

two subsystems through the gyroscopic matrix. The modes with different nodal diameter, 

however, remain uncoupled for the disk with uniform edge conditions, which suggest that 

the summation over n could be omitted in Eqs. ( 2.54) and ( 2.55) describing the 

displacement response, while the eigenvalue problem could be significantly simplified.  

The non-uniformity of the boundary conditions, however, causes the radial and 

the circumferential modes to couple with radial and circumferential modes with different 

nodal diameter numbers, respectively. The system may be decomposed into even and odd 

subsystems, which could be studied independently for the stationary disks. Each 

subsystem would yield distinct frequency parameters due to the coupling between modes 

with different nodal diameter number. For the rotating disks with non-uniform boundary 

conditions, all the modes are derived from Eq. ( 2.68) and need to be solved 

simultaneously to determine the deflection coefficients. 
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2.5.2. Formulation of the Nonlinear Rotational Effects 

When a circular disk rotates at a constant speed, the disk undergoes an initial 

deformation resulting from the centrifugal forces. This initial deformation can be 

obtained by solving the static problem associated with the abovementioned energy 

expressions. The linear in-plane vibration analysis, however, assumes this initial 

deformation to be small and thereby neglects the stiffening effect of this deformation. 

The static deformation, however, is directly proportional to the rotational speed and may 

not be of the same order as the amplitude of the in-plane oscillations. This static 

deformation is also known as the axisymmetric radial expansion of the disk or the steady 

state solution. The effect of the initial deformation could be incorporated in the analysis 

by consideration of the stiffening effect through nonlinear strain-displacement relations. 

A number of studies have investigated the effect of this additional stiffening on the out-

of-plane vibration of different structures such as rings, beams and plates (out-of-plane) 

[e.g.  32,  33].   

The effects on the in-plane vibration, however, have been explored in a single 

study by Deshpande and Mote who studied the in-plane stability of a spinning thin disk 

using a nonlinear strain measure in order to account for the stiffening of the disk due to 

rotation [ 36]. The study did not observe any critical speed in the range of rotational speed 

considered for modes with two or less nodal diameters. An upper limit of the rotational 

speed was identified where the assumption of linear strain measure would be applicable. 

The study considered free edge boundary conditions. In this study a nonlinear 

formulation is realized to study the effect of additional stiffening on the vibration of an 

annular disk subject to non-uniform boundary conditions, using the nonlinear strain-
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displacement relation. The stress-strain relation, however, is assumed to be linear (plane 

stress conditions). The disk is assumed to rotate at a constant speed until it reaches its 

equilibrium position, with no in-plane vibration. The radial expansion is subsequently 

calculated and added as an additional stiffness to the governing equations of motion. This 

is achieved by employing the strain-displacement relations written as: 
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( 2.69)

By substituting the above strain-displacement relations into the strain energy 

expressions, Eq. ( 2.3), and introducing the non-dimensional parameter ξ =r/Ro, the strain 

energy can be expressed in terms of the displacements. Substituting the assumed 

solutions, Eqs. ( 2.54) and ( 2.55), in the strain energy expression yields the nonlinear 

strain energy expression in terms of displacement functions. The resulting strain energy 

expression contains both the linear terms (squared displacement function shown in 

Eq. ( 2.5)) and nonlinear terms (cubic and fourth order displacement terms) and can be 

written in matrix form as: 

ॼ ൌ
1
2

ሼݍሽܶሺሾܭሿ ൅ ൧ݍഥܭൣ ൅ ሽ ( 2.70)ݍ൧ሻሼݍݍനܭൣ

where ሼݍሽ ൌ ሼ ഥܷ௖,௠ ഥܷ௦,௠ തܸ௖,௠ തܸ௦,௠ሽ் and [K] is the linear stiffness matrix obtained 

from the linear strain relation. The nonlinear stiffness matrices ൣܭഥ௤൧ and ൣܭന௤௤൧, obtained 

from the cubic and fourth order terms, respectively, are dependent on the generalized 
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coordinates ሼݍሽ. In this study, only the contributions of ሾܭሿ and ൣܭഥ௤൧ associated with 

linear and nonlinear cubic terms, are retained in the strain energy, assuming relatively 

small contribution due to higher order terms. This leads to a simplified strain energy 

expression, written as: 

ॼ ൌ
1
2

ሼݍሽ்ሺሾܭሿ ൅  ሽ ( 2.71)ݍഥ௤൧ሻሼܭൣ

 The linear component of the above strain energy expression can be used to obtain 

the static deformation. The resulting strain energy expression is presented in Eq. ( 2.5) for 

a disk rotating at a constant speed with negligible in-plane oscillation; only radial 

deformation of the disk is present, which is function of r alone. This suggests that all 

circumferential displacements and variations with respect to ߠ could be disregarded. The 

linear strain energy expression then reduces to: 

The kinetic energy expression can also be derived from: 

ܶ ൌ
1
2 ଴ܴߩ݄

ଶ න නሺΩሺߦ ൅ ߠ݀ߦ݀ߦ௥ሻሻଶݑ
ଵ

ఉ

ଶగ

଴

 ( 2.73)

The equation of equilibrium of the disk can be subsequently derived from 

Eqs. ( 2.72) and ( 2.73) as: 

The solution of the above equation can be expanded in terms of Bessel function, 

as: 

ॼ ൌ
1
2

݄ܧ
1 െ 2ߥ න න ቊ൬
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௥ݑ

ߦ
௥ݑ߲
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൰ ൅ ൬

௥ݑ

ߦ
൰

2
ቋ ߠ݀ߦ݀ߦ

1

ߚ

ߨ2

0

 ( 2.72)

߲ଶݑ௥

ଶߦ߲ ൅
1
ߦ

௥ݑ߲

ߦ߲ െ
௥ݑ

ଶߦ ൅
ሺ1ߩ െ ଶሻߥ

ܧ Ωଶሺߦ ൅ ௥ሻݑ ൌ 0 ( 2.74)



74 

 

where ߙଶ ൌ ఘ൫ଵିఔమ൯
ா

Ωଶ, and ܣଵ and ܤଵ are the arbitrary coefficients that can be solved by 

applying the boundary conditions. 

The equilibrium equation ( 2.74) is valid only for uniform boundary conditions in 

the rotating coordinate system. For a boundary condition involving single point support 

or an edge support, the expansion due to rotation is not axisymmetric and the 

solution ( 2.75) cannot be considered valid.  The static deformation thus describes the 

steady state solution obtained from the original strain and kinetic energy expressions, 

Eq. ( 2.5) and Eq. ( 2.73). The static displacement is derived from the solution of the 

governing equation of the total deformation (including static deformation and the in-

plane oscillation): 

( ) }{}{][][}]{[}]{[ sq FqKKqGqM =++Ω+ &&&
 ( 2.76)

where Fs is the force due to rotation. Let us define an initial configuration where the disk 

is subject to static deformation alone. All the terms in Eq. ( 2.76) will vanish except for 

the stiffness and force terms, resulting in: 

( ) }{}{][][ ssqs FqKK =+
 ( 2.77)

The above equation is solved to determine the vector ሼݍ௦ሽ, which contains the 

coefficients associated with the initial deflection. It can also be noted that for a linear in-

plane analysis, the nonlinear stiffness matrix will vanish and the disk will undergo radial 

expansion only. Equation ( 2.77) can be reduced to a set of linear algebraic equations to 

yield: 

௥ݑ ൌ െߦ ൅ ሻߦߙଵሺܬଵܣ ൅ ଵܤ ଵܻሺߦߙሻ ( 2.75)
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}{][}{ 1
ss FKq −=  ( 2.78)

The above solution is identical to that obtained from Eq. ( 2.75), when the disk is 

subject to uniform boundary conditions. For non-uniform boundary condition, the 

nonlinear or linear formulations, Eqs. ( 2.77) and ( 2.78) can be solved for the nonlinear 

analysis and linear analysis, respectively. 

For the dynamic analysis, an alternate dynamic vector ሼݍௗሽ relative to the static 

displacement vector ሼݍ௦ሽ is defined as: 

ሼݍௗሽ ൌ ሼݍሽ െ ሼݍ௦ሽ ( 2.79)

Replacing the vector ሼݍሽ by ሼݍௗሽ ൅ ሼݍ௦ሽ in Eq. ( 2.76) yields: 

ሾܯሿሼݍሷௗሽ ൅ Ωሾܩሿሼݍሶௗሽ ൅ ൫ሾܭሿ ൅ ௗሽݍഥ௤௦൧൯ሼܭൣ ൅ ௦ሽݍഥ௤ௗ൧ሼܭൣ ൅ ௗሽݍഥ௤ௗ൧ሼܭൣ

൅ ൫ሾܭሿ ൅ ௦ሽݍഥ௤௦൧൯ሼܭൣ ൌ ሼܨ௦ሽ 
( 2.80)

The last terms in Eq. ( 2.80) is identical to Eq. ( 2.77) obtained from the static 

analysis and could be eliminated. Equation ( 2.80) thus reduces to the dynamic 

displacement vector ሼݍௗሽ alone. The free vibration analysis of the rotating disk is 

subsequently performed by neglecting the nonlinear matrix that depends on the dynamic 

displacement vector, ൣܭഥ௤ௗ൧ሼݍௗሽ. Equation ( 2.80) is thus written as:  

ሾܯሿሼݍሷௗሽ ൅ Ωሾܩሿሼݍሶௗሽ ൅ ሾܭሿሼݍௗሽ ൅ ௦ሽݍഥ௤ௗ൧ሼܭൣ ൅ ௗሽݍഥ௤௦൧ሼܭൣ ൌ 0 ( 2.81)

Equation ( 2.81) is the governing equation of motion of a rotating disk subject to 

initial deformation due to its rotation and uniform as well as non-uniform boundary 

conditions. 
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2.5.3. Formulations in the Fixed Coordinate System 

For rotating disks, it may be convenient to transform the energy expressions to the 

inertial frame, particularly when an external non-rotating force or constraint is applied as 

in the case of a rotating railway wheel. Energy expressions are transformed from the 

rotating coordinate system (r, θ) to the fixed coordinate system (r, η) by using the 

following transformations:  
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( 2.82)

 where 

tΩ+= θη  ( 2.83)

While the resulting strain energy is similar to that presented in Eq. ( 2.5) for the 

linear analysis with uθ replaced by uη, the kinetic energy with respect to the fixed 

coordinate system is derived as: 

ܶ ൌ
1
2 ଴ܴߩ݄

ଶ න න ൭൬ݑሶ ௥ ൅ Ω
௥ݑ߲

ߟ߲ െ Ωݑఎ൰
ଶ

൅ ቆݑሶ ఎ ൅ Ω
ఎݑ߲

ߟ߲ ൅ Ωݑ௥ቇ
ଶ

൱ ߠ݀ߦ݀ߦ
ଵ

ఉ

ଶగ

଴

 ( 2.84)

In a similar manner, the non-linear problem can also be transformed to the inertial 

frame by using transformations described in Eq. ( 2.82). The effect due to additional static 

deformation is included by neglecting the time derivative terms from Eq. ( 2.84), which 

yields:  

ܶ ൌ
1
2 ଴ܴߩ݄

ଶ න න ൭൬ߗ
௥ݑ߲

ߟ߲ െ ఎ൰ݑߗ
ଶ

൅ ቆߗ
ఎݑ߲

ߟ߲ ൅ ߦሺߗ ൅ ௥ሻቇݑ
ଶ

൱ ߠ݀ߦ݀ߦ
ଵ

ఉ

ଶగ

଴

 ( 2.85)
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The static deformation coefficients vector ሼݍ௦ሽ in the fixed frame is derived using 

the approach described in section (2.5.4) involving solutions of Eqs. ( 2.77) and ( 2.78). 

The dynamic deflection coefficient vector ሼݍௗሽ in the fixed-frame is subsequently 

obtained using ሼݍ௦ሽ and the governing equations of motion as described above.  

There are two particular problems that are of practical importance for the rotating 

disks. The first problem concerns rotating disk with non-rotating boundary conditions 

such as in a rotating railway wheel with a non-rotating constraint, which is the rail 

contact. In this case, the constraint is applied after transforming the expressions to the 

fixed coordinate system. This differs from the problem involving rotations of both the 

disk and the constraints, which could represent a rotating disk bolted at certain points to a 

shaft. Both the problems are presented in Table  2.4  together with the corresponding 

energy expressions. 

Table  2.4: Rotating disk with (a) rotating constraint, (b) non-rotating constraint. 

 
Ω 

 

 

 
Ω

 

Strain Energy: Eq ( 2.5) Strain Energy: Eq. ( 2.5) 

Spring energy: ଵ
ଶ

,௥ሺܴ௢ݑ௣௥݄ሾܭ ,଴ߠ ሻሿଶ Spring energy: ଵݐ
ଶ

,௥ሺܴ௢ݑ௣௥݄ሾܭ ,଴ߟ  ሻሿଶݐ

Kinetic energy: Rotating coordinate Kinetic energy: Fixed coordinate 

Ω 
(a) 

(b) 
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2.6. Formulation of the Acoustic Model 

The noise radiation from both out-of-plane and in-plane modes of circular disks 

are important in many applications. In this section, an acoustic model of the circular disk 

involving in-plane vibration model is formulated to study the noise radiation 

characteristics. The model is derived using the formulation presented by Junger and Feit 

[ 103], William [ 104] and Lee and Singh [ 24]. 

2.6.1. Sound Radiations Associated with In-plane Modes 

Lee and Singh [ 24] presented two different approaches to calculate the sound 

pressure associated with in-plane modes. The first approach involved the Rayleigh 

integral in a manner similar to that employed in the out-of-plane analysis. The second 

approach treated the outer and inner edges of an annular disk as two separate cylindrical 

sound radiators. In this study, the formulations are derived on the basis of the second 

approach, since it is considered to yield more accurate analysis of the in-plane noise 

radiation [ 24]. 

The sound radiation due to radial displacement of the disk can be obtained by 

solving the Helmholtz equation. The Helmholtz pressure equation can be written in terms 

of the Fourier transform of the sound pressure ෨ܲ , as [ 104]:  

ቆ
߲ଶ

ଶݎ߲ ൅
1
ݎ

߲
ݎ߲ ൅ ݇ଶ െ ݇௭

ଶ ൅
1
ଶݎ

߲ଶ

ଶቇߠ߲ ෨ܲሺݎ, ,ߠ ݇௭ ሻ ൌ 0 ( 2.86)

where ݇  is the acoustic wave number and ݇௭  is structural wave number in the z 

direction. The solution of the above equation is assumed to be of the form: 

frame, Eq. ( 2.6) frame, Eq. ( 2.84) 
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෨ܲሺݎ, ,ߠ ݇௭ ሻ ൌ ௡ܪܣ
ଵ ቈݎට൫݇ଶ െ ݇௭

ଶ൯቉ cos (2.87 ) ߠ݊

where ܪ௡
ଵ is the Hankel function of order n. The coefficient A in this equation can be 

obtained from the boundary conditions at the edge of the disk, as: 

߲ ෨ܲሺݎ, ,ߠ ݇௭ ሻ
ݎ߲ ൌ െߩ଴ݑሷ ൫ݎ, ,ߠ ݇௭ ൯; at ݎ ൌ ܴ௢ ( 2.88)

where ߩ଴ is mass density of air. The acceleration of the disk surface can be obtained from 

the vibration analysis of the disk, which can be expressed as: 

ሷݑ ሺߠ, ሻݖ ൌ ห ሷܷ หܼሺݖሻ cos (2.89 ) ߠ݊

where ܼሺݖሻ is the acceleration distribution function in the z direction. Equations ( 2.88) 

and ( 2.89) yield the following: 

߲ ෨ܲሺݎ, ,ߠ ݇௭ ሻ
ݎ߲ ൌ െߩ଴ห ሷܷ ห ෨ܼ൫݇௭ ൯ cos ,ߠ݊ at ݎ ൌ ܴ଴ ( 2.90)

where 

෨ܼሺݖሻ ൌ න ܼሺݖሻ݁௜௞೥௭݀ݖ

௛/ଶ

ି௛/ଶ

 ( 2.91)

The constant A in Eq. ( 2.87) can be obtained from Eq. ( 2.90), as: 

ܣ ൌ
െߩ଴ห ሷܷ ห ෨ܼሺ݇௭ ሻ

ට൫݇ଶ െ ݇௭
ଶ൯ܪ௡

ଵ ቈܴ଴ට൫݇ଶ െ ݇௭
ଶ൯቉

 ( 2.92)

After taking the inverse Fourier transform and simplifying the expression for the 

sound pressure, the sound pressure from the outer surface Po and from the inner surface 

Pi can be expressed, respectively, as: 
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௢ܲ,௡ሺܴ, ,ߠ ߶ሻ ൌ
଴݁௜௞೙ோߩ

௡ܴ݇ߨ sin ߶
ሷݑ| ௡|݄

ܵ݅݊ܿሺ݇௡ sin ߶ ݄/2ሻሺെ݅ሻ௡ାଵ

௡ܪ
ଵᇱሺ݇௡ ܴ଴ sin ߶ሻ

cosሺ݊ߠሻ ( 2.93) 

௜ܲ,௡ሺܴ, ,ߠ ߶ሻ ൌ
଴݁௜௞೙ோߩ

௡ܴ݇ߨ sin ߶
ሷݑ| ௡|݄

ܵ݅݊ܿሺ݇௡ sin ߶ ݄/2ሻሺെ݅ሻ௡ାଵ

௡ܪ
ଶᇱሺ݇௡ ܴ௜ sin ߶ሻ

cosሺ݊ߠሻ ( 2.94) 

where ܪ௡
ଵ is Hankel functions of the first kind of order n and ' is the derivative with 

respect to the argument of the Hankel function and R is the distance between the receiver 

and the center of the disk. The total modal sound pressure Pn is the sum of the sound 

pressures from two radial edges, such that: 

௡ܲሺܴ, ,ߠ ߶ሻ ൌ ௢ܲ,௡ሺܴ, ,ߠ ߶ሻ ൅ ௜ܲ,௡ሺܴ, ,ߠ ߶ሻ ( 2.95) 

The modal directivity function ܦ௡ሺߠ, ߶ሻ can be written as: 

,ߠ௡ሺܦ ߶ሻ ൌ ܴ ௡ܲሺܴ, ,ߠ ߶ሻ݁௜௞೙ோ ( 2.96)

The modal sound power can be expressed as: 

Π௡ ൌ
1
2 ඵ ௡ܲ

ଶ

଴ܿ଴ߩ

ଶగ గ

଴ ଴

sinሺ߶ሻ݀(2.97 ) ߶݀ߠ

where ܿ଴ is the speed of sound. The modal radiation efficiency can be calculated using 

the following equation: 

σ௡ ൌ
Π௡

ሶݑ|ۃ ௠௡|ଶۄ 

where  

ሶݑ|ۃ ௡|ଶۄ ൌ
1

ሺܴ௜ߨ2
ଶ െ ܴ௢

ଶሻ
ඵ ሶܷ௡ଶ
ோబ ଶగ

ோ೔ ଴

 ݎ݀߶݀

( 2.98)

The above formulations have been widely used to determine the sound radiation 

from disks with free boundary conditions [ 24,  104], and could also be applied for disks 

subject to non-uniform conditions. The primary difference between the two sets of 



81 

 

boundary conditions lies only in the expression of the arbitrary coefficient A in 

Eq. ( 2.92).  These are thus derived considering the non-uniform boundary conditions. The 

radial acceleration of the disk subject to a non-uniform boundary condition can be 

derived as: 

ሷݑ ሺܽ, ,ߠ ሻݖ ൌ ܼሺݖሻ ෍ൣห ሷܷ ௖,௡ห cosሺ݊ߠሻ ൅ ห ሷܷ ௦,௡ห sinሺ݊ߠሻ൧
ஶ

௡ୀ଴

 ( 2.99)

For a stationary disk, it has been shown that the cosine and sine components are 

uncoupled (see section  2.4.2) which yield identical natural frequencies for the uniform 

boundary conditions. For the partially supported disk, they remain uncoupled but yield 

different values for the natural frequencies. The radial acceleration of the disk is thus 

rewritten in terms of components for the even and odd systems, such that: 

ሷݑ ௖ሺܽ, ,ߠ ሻݖ ൌ ܼሺݖሻ ෍ห ሷܷ௖,௡ห cosሺ݊ߠሻ
ஶ

௡ୀ଴

; even system ( 2.100)

for the even system, and 

ሷݑ ௦ሺܽ, ,ߠ ሻݖ ൌ ܼሺݖሻ ෍ห ሷܷ௦,௡ห sinሺ݊ߠሻ; odd system
ஶ

௡ୀ଴

 ( 2.101)

for the odd system. The application of the boundary conditions to Eq. ( 2.88) yields: 

߲ ෨ܲ൫ݎ, ,ߠ ݇௭ ൯
ݎ߲ ൌ ෍ ௡ܪ௡ܣ

ଵᇱ ቂݎඥሺ݇ଶ െ ݇௭
ଶሻቃ cos ߠ݊

ൌ െߩ଴ ෨ܼሺ݇௭ ሻ ෍ห ሷܷ௖,௡ห cosሺ݊ߠሻ
ஶ

௡ୀ଴

 

( 2.102)

Multiplying both sides by cosሺ ത݊ߠሻ and integrating from zero to 2ߨ, yields following 

expression for the coefficients An: 
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۔

ۖ
ۓ െߩ଴ห ሷܷ ௖,௡ห ෨ܼሺ݇௭ ሻ

ට൫݇ଶ െ ݇௭
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ଵ ቈܽට൫݇ଶ െ ݇௭
ଶ൯቉

, ݊ ൌ ത݊

0 ݊ ് ത݊

 ( 2.103)

The above is identical to expression ( 2.92) obtained for the free boundary 

conditions. The same term could also be obtained for the sine component, when sine 

expression for the odd system is employed instead of cosine term for the even system in 

Eq.( 2.87), in solution of the Helmholtz equation. 

The displacement functions in the above equations were obtained from the 

harmonic response due to a point harmonic force, which can be calculated as: 

,ݎሺݑ ሻߠ ൌ െ
ܨ

݄ߩ ߱௡
ଶ ෍

ܷ௡ሺݎ௙, ௙ሻܷ௡ߠ
்ሺݎ, ሻߠ

൫߱ଶ െ ߱௡
ଶ൯ ൅ ݅2߫௡ሺ߱ ߱௡⁄ ሻ

ே

௡

 ( 2.104)

where ܷ௡ is the eigenfunction, ݎ௙ and ߠ௙ are the radial and circumferential location of the 

excitation harmonic force and ߫௡ is the modal damping ratio.  

2.7. Summary 

This chapter presented the systematic formulations of the mathematical models 

for the in-plane vibration characteristics and acoustic properties of annular disks. The 

frequency parameters were obtained using exact solutions of the equations of motion and 

the Rayleigh-Ritz method for disks subject to free, clamped and flexible boundary 

conditions. The Rayleigh-Ritz method is extended to include the effect of boundary 

condition non-uniformity by employing distributed artificial springs along the 

circumferential direction. It has been observed that non-uniformity in the boundary 

conditions introduced additional coupling between modes with different nodal diameter 
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numbers, which in turn increased the degree of complexity in the system. The coupling 

effects would yield different solutions for the eigenvalue problems of the even and odd 

subsystems which caused the split of frequency parameters.  

For rotating disks, the equations of motion were derived with respect to rotating 

and inertial frames. The presented formulation allowed the inclusion of non-uniform 

support and initial stiffening in the analysis. Rotational effects introduced coupling 

between even and odd systems and need to be solved simultaneously. Finally, the 

expressions for the acoustic properties of annular disks subject to non-uniform boundary 

conditions were derived. In the following chapters, the obtained results are presented and 

discussed. 
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3. IN-PLANE VIBRATIONS OF STATIONARY DISKS 

The accuracy and applicability of the proposed methodologies in predicting the 

in-plane modal characteristics of annular disks are investigated in this chapter. The free 

vibration properties of the stationary annular disks with uniform boundary conditions, 

including flexible boundaries, are explored using the method described in the previous 

chapter. The validity of the method is demonstrated by comparing the results with the 

data reported in the literature. However, the reported studies on exact solutions have been 

limited to in-plane frequency analysis of the solid disks alone [ 15,  17]. The frequency 

parameters obtained from the exact frequency equations are subsequently used as a 

reference to examine the convergence property of the Rayleigh-Ritz method. The modal 

in-plane characteristics of annular disks are expected to be strongly influenced by various 

geometric properties, although the effects have been explored only in a few studies 

[ 2,  18].  

In this study the Rayleigh-Ritz method is applied to study the effects of several 

geometric properties on the modal characteristics of annular disks. The model validity is 

further examined by comparing the mode shapes of disks with selected uniform boundary 

conditions with the reported model characteristics. It needs to be emphasized that the in-

plane model characteristics of annular disks with non-uniform boundary conditions are 

not found in published literature. The discussions in this chapter are thus devoted to disks 

with uniform boundary conditions only, while the non-uniform support conditions are 

investigated in the subsequent chapter. 
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3.1. Model Validations 

The frequency equations derived for the annular disks with arbitrary radius ratios 

in section  2.2 could be evaluated to obtain the modal characteristics of the disks. The 

analytical models of the stationary disks subject to uniform boundary conditions, 

however, have been formulated using a number of simplifying assumptions. It is, thus, 

essential to verify the validity of the analytical model in predicting the in-plane vibration 

responses of the disks. The verification of the analytical formulations is generally 

performed through comparisons with a reference response that may be obtained from 

different methods or experimentally. The exact solutions for the in-plane vibration 

modes, however, have been obtained only for solid disks, while exact frequency 

parameters for annular disks could not be found in the published studies. Therefore, the 

exact frequency equations, derived in section  2.2, are evaluated numerically and 

compared with those reported for the solid disks with free or clamped outer edge. The 

validity of the exact solutions obtained for the annular disks is examined through 

comparisons of the exact solutions with those reported in the published studies on the 

basis of alternate approximate or numerical methods. The exact solutions were obtained 

from the Bessel’s functions, as described in section  2.2. The resulting exact solutions of 

the frequency equations are then considered to serve as benchmark for verification of the 

solutions obtained using the approximate techniques for all the uniform boundary 

conditions, including the flexible boundaries.   

In this section, the frequency parameters derived for different combinations of 

boundary conditions are compared with those reported in different studies for the solid 

disks to demonstrate the validity of the proposed formulation. For this purpose, the 
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frequency parameters of a solid disk with free and clamped outer edge are initially 

evaluated and compared with those reported by Holland [ 15] and Park [ 17], respectively. 

TablesTable  3.1 andTable  3.2 and  summarize the frequency parameters of a solid disk with free and 

clamped outer edge conditions, respectively, derived from the exact solutions. The tables 

illustrate the results corresponding to a few selected modes. The obtained results were 

found to be identical to those reported in [ 15] and [ 17] for solid disks suggesting the 

validity of the solution methodology. 

The exact frequency parameters for the annular disks were subsequently obtained 

under different combinations of boundary conditions at the inner and outer edges. The 

edge conditions are presented for the inner edge followed by that of the outer edge. For 

instance, a 'Free-Clamped' condition refers to free inner edge and clamped outer edge. 

The solutions obtained for conditions involving free and clamped edges ('Free-Free', 

'Free-Clamped', ' Clamped-Clamped' and 'Clamped-Free') are compared with those 

reported by Irie et al. [ 20] in TablesTable  3.3 toTable  3.6, respectively. The simulation results were 

obtained for two different values of the radial ratios (ߚ ൌ 0.2 and 0.4), and ݒ ൌ 0.3. The 

results show excellent agreements of the values obtained in the present study with those 

reported in [ 20], irrespective of the boundary condition and radius ratio considered. It 

must be noted that for the solid disk with free edge and for free-free annular disk that 

natural frequencies for ݊ ൌ 2 case are lower than those for ݊ ൌ 1. The results suggest 

that the proposed frequency equations could serve as the reference for approximate 

methods on in-plane vibration characteristics of annular disks with different combinations 

of edge conditions. 
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Table  3.1: Exact frequency parameters of in-plane vibration of a solid disk with free edge 
ݒ) ൌ 0.3). 

Mode ݊ ൌ 1 ݊ ൌ 2 ݊ ൌ 3 ݊ ൌ 4 
1 1.6176 1.3876 2.1304 2.7740 
2 3.5291 2.5112 3.4517 4.4008 
3 4.0474 4.5208 5.3492 6.1396 
4 5.8861 5.2029 6.3695 7.4633 
5 6.9113 6.7549 7.6186 8.5007 
6 7.7980 8.2639 9.3470 10.2350 
7 9.6594 8.7342 9.8366 11.0551 

 

Table  3.2: Exact frequency parameters of in-plane vibration of a solid disk with clamped 
edge (ݒ ൌ 0.33). 

Mode  ݊ ൌ 1 ݊ ൌ 2 ݊ ൌ 3 ݊ ൌ 4 
1  1.9441  3.0185  3.0185  4.7021 
2  3.1126  4.0127  4.0127  5.8985 
3  4.9104  5.7398  5.7398  7.3648 
4  5.3570  6.7079  6.7079  8.9816 
5  6.7763  7.6442  7.6442  9.5296 
6  8.4938  9.4356  9.4356  11.1087 
7  8.6458  9.9894  9.9894  12.5940 

 

Table  3.3: Frequency parameters of in-plane vibration of an annular disk with 'Free-Free' 
conditions (ݒ ൌ 0.3). 

  ݊ ൌ 1 ݊ ൌ 2 ݊ ൌ 3 ݊ ൌ 4 

radius ratio 
Reference 

[ 20] 
present 
study 

Reference 
[ 20] 

present 
study 

Reference 
[ 20] 

present 
study 

Reference 
[ 20] 

present 
study 

0.2 
1.652  1.651  1.110  1.110  2.071  2.071  2.767  2.766 
3.842  3.842  2.403  2.402  3.401  3.400  4.389  4.388 

0.4 
1.683  1.682  0.721  0.721  1.618  1.619  2.482  2.482 
4.044  4.044  2.451  2.450  3.346  3.346  4.227  4.226 

Table  3.4: Frequency parameters of in-plane vibration of an annular disk with 'Free-
Clamped' conditions (ݒ ൌ 0.3). 

  ݊ ൌ 1 ݊ ൌ 2 ݊ ൌ 3 ݊ ൌ 4 

radius ratio  
Reference 

[ 20] 
present 
study 

Reference 
[ 20] 

present 
study 

Reference 
[ 20] 

present 
study 

Reference 
[ 20] 

present 
study 

0.2 
2.104  2.103  2.553  2.553  3.688  3.688  4.712  4.711 
3.303  3.302  3.948  3.948  4.859  4.858  5.894  5.893 

0.4 
2.517  2.517  2.721  2.721  3.214  3.214  3.955  3.956 
3.508  3.508  4.147  4.147  4.998  4.998  5.874  5.873 
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Table  3.5: Frequency parameters of in-plane vibration of an annular disk with 'Clamped-
Clamped' conditions (ݒ ൌ 0.3). 

  ݊ ൌ 1 ݊ ൌ 2 ݊ ൌ 3 ݊ ൌ 4 
radius 
ratio 

Reference 
[ 20] 

present 
study 

Reference 
[ 20] 

present 
study 

Reference 
[ 20] 

present 
study 

Reference 
[ 20] 

present 
study 

0.2 
2.783  2.783  3.378  3.378  4.066  4.065  4.802  4.800 
4.060  4.060  4.360  4.359  5.104  5.103  6.003  6.001 

0.4 
3.429  3.429  4.023  4.022  4.707  4.707  5.287  5.286 
5.306  5.306  5.311  5.311  5.619  5.619  6.289  6.288 

Table  3.6: Frequency parameters of in-plane vibration of an annular disk with 'Clamped-
Free' conditions (ݒ ൌ 0.3). 

   n=1  n=2  n=3  n=4 
radius 
ratio 

Reference 
[ 20] 

present 
study 

Reference 
[ 20] 

present 
study 

Reference 
[ 20] 

present 
study 

Reference 
[ 20] 

present 
study 

0.2 
0.919  0.919  1.542  1.541  2.157  2.157  2.778  2.777 
2.121  2.121  2.605  2.604  3.473  3.472  4.408  4.406 

0.4 
1.281  1.281  1.965  1.964  2.445  2.445  2.911  2.911 
2.691  2.691  2.908  2.907  3.604  3.603  4.492  4.491 

 

It should be noted that the reported results were obtained using the exact 

frequency equations, which are applicable only for uniform boundary conditions. In this 

study, the Rayleigh-Ritz method formulation has been extended to study the modal 

behavior of annular disks subject to non-uniform boundary conditions. The accuracy and 

convergence properties of the Rayleigh-Ritz method are evaluated, although the analyses 

are limited to uniform boundary conditions only in this chapter.  

3.2. Convergence Property of the Rayleigh-Ritz Method 

The convergence of the frequencies obtained using the Rayleigh-Ritz method to 

the corresponding exacts values strongly relies upon three primary factors. These include 

the number of boundary characteristic orthogonal polynomials (BCOP) used in the 

analysis, and number of terms considered in the solutions for non-uniformities. The 
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stiffness parameters chosen to simulate a clamped boundary condition may also influence 

the accuracy of the convergence and the computational efficiency. In order to investigate 

the accuracy of the Rayleigh-Ritz method, a convergence study is conducted by 

considering different number of polynomials. The results are used to assess the accuracy 

of the solutions and the required number of the BCOP to be used in the model. The 

convergence of the frequency parameters with spring stiffness parameters varying from 

zero (free condition) to infinity (clamped conditions) is further investigated. 

3.2.1. Effects of Number of Polynomials 

The effect of number of polynomials (M) on the solutions in terms of the 

frequency parameter is investigated by considering a few lower modes. The solutions 

were initially obtained for ܯ ൌ 2 and the number of polynomials was increased in a 

sequential manner until the solution converged to the exact reported value within four 

significant figures. As an example, TablesTable  3.7 andTable  3.8 illustrate the frequency parameters 

corresponding to the lower modes of a solid disk with fixed and clamped outer edge, 

respectively, for different values of (M). The clamped boundary condition is applied 

through selection of a first polynomial that satisfies the zero deflection at the outer edge. 

The last row in both the tables show the exact values obtained from the frequency 

equations.  

The results suggest that accurate frequency parameters of in-plane vibration of 

solid disks could be obtained by considering M in the order of 3 to 4. TablesTable  3.9 andTable  3.10 

show the convergence of the frequency parameters of annular disks with radius ratios of 

0.2 and 0.6, respectively, with free boundaries. The results were obtained for M ranging 
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from 2 to 10 in case of the ߚ ൌ 0.2 and from 2 to 6 for ߚ ൌ 0.6. The simulations revealed 

numerically stable solutions for the ranges of M considered. The lower frequency 

parameters tend to converge more rapidly than those of the higher modes. A larger 

number of polynomials is thus required in order to assure the convergence of the first five 

modes to four significant figures. Based upon these results, ten polynomials were used in 

the subsequent calculations, unless otherwise specified.  

Table  3.7: Influence of number of polynomials on the convergence of the frequency 
parameters of a solid disk with free outer edge (ݒ ൌ 0.3). 

M (0,2) (1,1) (0,0)r (0,3) (1,2) 

2 1.3915 1.6599 2.0519 2.3015 2.6210 

3 1.3883 1.6177 2.0490 2.1332 2.5285 

4 1.3876 1.6176 2.0488 2.1312 2.5117 

5 1.3876 1.6176 2.0488 2.1304 2.5112 

6 1.3876 1.6176 2.0488 2.1304 2.5112 

7 1.3876 1.6176 2.0488 2.1304 2.5112 

Exact 1.3876 1.6176 2.0488 2.1304 2.5112 
r: pure radial mode;  

 

Table  3.8: Influence of number of polynomials on the convergence of the frequency 
parameters of a solid disk with clamped outer edge (ݒ ൌ 0.33). 

M (0,1) (0,0)θ (0,2) (1,1) (0,0)r 

2 1.9442 2.2290 3.0367 3.1956 3.8508 

3 1.9442 2.2178 3.0213 3.1154 3.8318 

4 1.9441 2.2178 3.0185 3.1136 3.8317 

5 1.9441 2.2178 3.0185 3.1130 3.8317 

6 1.9441 2.2178 3.0185 3.1130 3.8317 

Exact 1.9441 2.2178 3.0185 3.113 3.8317 
r: pure radial mode; θ: pure circumferential mode.
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Table  3.9: Influence of number of polynomials on the convergence of the frequency 
parameters of an annular disk with free edges (ߚ ൌ ݒ ;0.2 ൌ 0.3). 

M (0,2) (1,1) (0,0)r (0,3) (1,2) 

2 1.1493 1.6778 1.8211 2.1481 2.4455 

3 1.1273 1.6513 1.8063 2.0847 2.4093 

4 1.1169 1.6512 1.8025 2.0754 2.4047 

5 1.1126 1.6512 1.8017 2.0731 2.4030 

6 1.1108 1.6512 1.8015 2.0717 2.4026 

7 1.1102 1.6512 1.8015 2.0711 2.4025 

8 1.1100 1.6512 1.8015 2.0708 2.4024 

9 1.1100 1.6512 1.8015 2.0708 2.4024 

10 1.1100 1.6512 1.8015 2.0707 2.4024 

Exact 1.11 1.6512 1.8015 2.0707 2.4024 
r: pure radial mode;  

 

Table  3.10: Influence of number of polynomials on the convergence of the frequency 
parameters of an annular disk with free edges (ߚ ൌ 0.6; ݒ ൌ 0.3ሻ. 

M (0,2) (0,3) (0,0)r (1,1) (0,4) 

2 0.4253 1.0687 1.2201 1.6196 1.8055 

3 0.4186 1.0451 1.2197 1.6179 1.7573 

4 0.4182 1.0431 1.2197 1.6178 1.7524 

5 0.4181 1.0430 1.2197 1.6178 1.7520 

6 0.4181 1.0430 1.2197 1.6178 1.7519 

Exact 0.4181 1.0430 1.2197 1.6178 1.7519 
r : pure radial mode. 

3.2.2. Effect of Stiffness Parameters 

The rate of convergence of the frequency parameters of an annular disk with 

artificial springs distributed uniformly along the inner or outer edges is strongly 

dependent upon the chosen stiffness parameters. Higher values of the stiffness parameter 
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yield higher frequency parameters and approach those of a disk with a clamped edge. For 

the current analysis, the stiffness parameters along radial and circumferential directions 

are assumed to be equal. The variations in the frequency parameters with unequal 

stiffness parameters will be discussed in the next section. The influence of variations in 

the stiffness parameters on the in-plane vibration frequency parameters are investigated 

for both the solid and the annular disk with uniformly distributed artificial springs along 

the outer edge.  

The influences of variations in the stiffness parameter on the frequency 

parameters corresponding to selected models of a solid disk elastically constrained along 

the outer edge are shown in Table  3.11. Table  3.12 presents the convergence rate of an 

annular disk with artificial springs along the inner edge for different values of the 

stiffness parameters. The tables also list the exact frequency parameters of the disks with 

free and clamped edge. The results suggest that a stiffness value exceeding 105 would be 

sufficient to simulate the clamped boundary with estimated frequency precision to four 

significant figures. The first two frequency parameters of the solid disk (0,0) and (0,1)θ 

represent the rigid body modes under a free boundary condition. The values of these 

frequency parameters increase with increasing stiffness parameters and approach those of 

a clamped disk as the stiffness exceeds 105. The frequency parameters of the annular disk 

(Table  3.12) also exhibits similar tendency. From the results, it can be concluded that the 

convergence can be achieved relatively rapidly with increasing stiffness parameters and 

the number of polynomials. 
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Table  3.11: Convergence of the frequency parameters of a solid disk with artificial 
springs uniformly distributed along the outer edge as the spring parameters increase 

ݒ) ൌ 0.33). 

(m,n) (0,1) (0,0)θ (0,2) (1,1) (0,0)r (0,3) (1,2) 

Free 0 0 1.3579 1.5945 2.0674 2.0863 2.4776 

10-1 0.4318 0.6169 1.4321 1.7140 2.1266 2.1465 2.5771 
100 1.1104 1.5805 1.8812 2.3538 2.5312 2.5614 3.1437 
101 1.7750 2.1426 2.7458 3.0056 3.4898 3.5663 3.8550 
102 1.9256 2.2103 2.9886 3.1022 3.7937 3.8749 3.9960 
103 1.9423 2.2170 3.0154 3.1119 3.8279 3.9080 4.0115 
104 1.9440 2.2177 3.0181 3.1129 3.8313 3.9112 4.0125 
105 1.9441 2.2178 3.0184 3.1130 3.8317 3.9116 4.0126 
106 1.9441 2.2178 3.0185 3.1130 3.8317 3.9116 4.0127 

Clamped 1.9441 2.2178 3.0185 3.1130 3.8317 3.9116 4.0127 
r: pure radial mode; θ: pure circumferential mode.  

Table  3.12: Convergence of the frequency parameters of an annular disk with artificial 
springs uniformly distributed along the inner edge as the spring parameters increase 

ߚ) ൌ 0.6; ݒ ൌ 0.3). 

(m,n) (0,0)θ (0,1) (0,2) (0,3) (0,0)r (1,1) (0,4) 

Free 0 0 0.4181 1.0430 1.2197 1.6178 1.7519 

10-1 0.3959 0.5444 0.7557 1.2292 1.3579 1.6833 1.8687 

100 1.0267 1.3608 1.7765 2.0905 2.1102 2.1883 2.5165 

101 1.5462 1.8527 2.5178 3.1254 3.4504 3.4527 3.4828 

102 1.6496 1.9411 2.5984 3.2782 3.8683 3.8583 3.6972 

103 1.6610 1.9509 2.6067 3.2921 3.9181 3.9065 3.7198 

104 1.6622 1.9518 2.6076 3.2934 3.9232 3.9114 3.7220 

105 1.6623 1.9519 2.6077 3.2936 3.9237 3.9119 3.7223 

106 1.6623 1.9519 2.6077 3.2936 3.9237 3.9119 3.7223 

Clamped 1.6623 1.9519 2.6077 3.2936 3.9237 3.9119 3.7223 
r: pure radial mode; θ: pure circumferential mode.  
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3.2.3. Influences of Boundary Conditions 

The results presented in TablesTable  3.1 toTable  3.12 demonstrate the effectiveness of the 

Rayleigh-Ritz method in predicting the modal characteristics of annular disks with good 

accuracy. The frequency parameters of the annular disk are further investigated for 

boundary conditions involving different combinations of free, clamped and elastic edges. 

The solutions corresponding to selected modes are obtained for the 'Elastic-Free', 'Elastic-

Clamped', 'Elastic-Elastic', 'Free-Elastic' and 'Clamped-Elastic' conditions. The results 

obtained for these boundary conditions are presented in Table  3.13. The results were 

obtained for ߚ ൌ 0.2 and ݒ ൌ 0.3, while  the non-dimensional radial and circumferential 

stiffness parameters were chosen as , ܭഥ௥ ൌ 1 and  ܭഥఏ ൌ 1. The results presented for a few 

lower modes are compared with those obtained from the exact solution. The comparisons 

reveal very good agreement between the exact and the approximate results irrespective of 

the boundary condition considered, further verifying the effectiveness of the proposed 

method. 

Table  3.13: Frequency parameters of in-plane vibration of an annular disk with flexible 
boundary conditions. 

   ݊ ൌ 1  ݊ ൌ 2  ݊ ൌ 3  ݊ ൌ 4 
Boundary 
conditions 

Rayleigh‐
Ritz 

Exact 
Rayleigh‐

Ritz 
Exact 

Rayleigh‐
Ritz 

Exact 
Rayleigh‐

Ritz 
Exact 

Elastic‐Free 
0.771  0.771  1.408  1.408  2.121  2.121  2.772  2.772 
1.906  1.906  2.524  2.524  3.444  3.444  4.397  4.397 

Elastic‐Clamped 
2.590  2.590  3.117  3.116  3.928  3.926  4.759  4.760 
3.625  3.625  4.134  4.136  5.000  5.001  5.957  5.957 

Elastic‐Elastic 
1.494  1.492  1.815  1.813  2.474  2.472  3.123  3.120 
2.603  2.601  3.209  3.207  4.004  4.002  4.859  4.857 

Free‐Elastic 
1.040  1.046  1.505  1.504  2.414  2.416  3.114  3.116 
2.432  2.432  3.018  3.018  3.895  3.896  4.833  4.834 

Clamped‐Elastic 
1.686  1.686  1.960  1.959  2.514  2.512  3.129  3.127 
2.764  2.765  3.319  3.317  4.061  4.060  4.879  4.877 
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3.3. Factors Affecting In-Plane Vibration of Annular Disks 

The frequency parameters of an annular disk are strongly affected by the 

geometry and the boundary conditions of the disk. This section is devoted to investigate 

the relation between the frequency parameters and several geometric and boundary 

conditions parameters.  

3.3.1. Influence of the Constraints Stiffness 

The stiffness parameters of the artificial springs introduced at the boundary 

further affect the frequency parameters, as illustrated in Tables Table  3.11 and Table  3.12. The 

effects of variations in the stiffness parameters along each direction (radial and 

circumferential) on the frequency parameters are also investigated. For this purpose, the 

artificial springs are introduced along the radial and the circumferential directions on the 

outer edge of an annular disk (ߚ ൌ 0.2; v=0.3).The inner edge of the disk, however, is 

assumed to be free.  

Figure  3.1 illustrates the influence of spring stiffness at the outer edge on the 

frequency parameters for selected modes. The figures illustrate the influences of different 

combinations of non-dimensional spring stiffness parameters along the radial direction, 

ഥ௥ܭ ൌ ௥ܴሺ1ܭ െ ଶሻݒ ⁄݄ܧ  and along the circumferential direction, ܭഥఏ ൌ ఏܴሺ1ܭ െ ଶሻݒ ⁄݄ܧ , 

on the frequency parameter. The frequency parameters are expressed by the frequency 

ratio, ߣҧ௠,௡ ൌ  ௙ሻ௠,௡ is the frequency parameter corresponding toߣ௙ሻ௠,௡, where ሺߣ௠,௡/ሺߣ

the disk with free edge, shown in Table  3.3. The results suggest that the frequency 

increase with increase in ܭഥ௥ and ܭഥఏ. The frequency corresponding to the lower modes 

increases more significantly with increase in ܭഥ௥  than ܭഥఏ. For higher modes, the effect of 
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 ഥఏ becomes more significant, although the influence of spring constant becomes lessܭ

significant as m and n increase. These suggest that the lower modes are significantly 

influenced by ܭഥ௥ , while ܭഥఏ affects frequencies of the higher modes. The variations in the 

frequency parameters are rapid at lower stiffness values for all modes. The figure also 

shows the frequency parameters of the disk constrained by the radial springs alone in the 

X-Z plane (ܭഥఏ  ൌ 0) or by the circumferential springs alone in the Y-Z plane (ܭഥఏ ൌ 0). 

These boundary conditions are similar to those reported for rectangular disks where the 

normal displacement is constrained while the tangential displacement remains free or 

vice-versa, referred to as “simply-supported” boundary condition [ 106].  

From the formulations, presented in section  2.3, it is evident that the frequency 

parameters would be affected by a number of geometric parameters, namely, the 

thickness, radius ratio and the outer radius of the annular disk. The effect of radius ratio 

on the frequency parameters has been discussed by Ambati et al. [ 18] for an annular disk 

with free boundary conditions only. In this study, the effects of each parameter on the 

natural frequencies of the disk are investigated, for the general boundary conditions at the 

inner and outer edges.  

3.3.2. Influence of Radius Ratio  

The effect of radius ratio of the annular disk on the frequency parameters are 

illustrated in figuresFigure  3.2 toFigure  3.7 for different boundary conditions. The frequency 

parameters follow different trends as the radius ratio varies between zero (solid disk) and 

unity (thin ring). For a disk with free boundary conditions, three different trends are 

observed. The first trend is for modes with nodal diameters but no nodal circles (m=0). 



97 

 

These frequency parameters approach zero as the radius ratio approaches unity as shown 

in Figure  3.2. The figure shows the variations in frequency parameters for free disk with 

Poisson’s ratio of 0.3.  In addition to the modes shown, there exist two rigid body modes 

with zero values for the free disk, irrespective of the radius ratios. These include the body 

translation (0,1) and body rotation (0,0)θ.   

 

Figure  3.1: Influences of variations in the non-dimensional radial (ܭഥ௥) and 
circumferential stiffness (ܭഥఏ) at the outer edge of the disk on the normalized frequency 

parameters ൫ߣഥ௠,௡ ൌ ௠,௡ߣ ሺߣ௙ሻ௠,௡ൗ ൯ ; ݒ ൌ ߚ ;0.3 ൌ 0.2. 

The second group of modes is those where the frequency parameters approach 

finite values for the thin rings as increasing the radius ratio. These frequency parameters 

 ҧଵ,ଶߣ

 ҧଶ,ଶߣ ҧଶ,ଷߣ

 ҧଵ,ଷߣ
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are shown in Figure  3.3. The mode (0,0)r is the pure radial mode, which approaches the 

mode that is referred to as the “breathing mode” of thin rings (ߚ ൎ 1). All the remaining 

modes in Figure  3.3 have one nodal circle number m and approach the extensional ring 

modes with increasing radius ratio. It should be noted that the frequency parameter of the 

(0,0)r mode is greater than that of (1,1)  mode for low radius ratios but it becomes lower 

than that of the (1,1) mode as the radius ratio exceeds 0.3. The third group of modes 

includes all the remaining modes that approach infinity as the radius ratio approaches 

unity. This group includes modes with nodal circle number ݉ ൒ 2 as shown 

in Figure  3.4. Modes with same nodal circles number used to group with each other and 

follow the same path to infinity, as shown in the figure. These modes exhibit different 

behavior in the middle range of radius ratios. At radius ratios ߚ ൌ 0.3 to 0.5, for instance, 

several modes become close to each other and cross over. Pure torsional or radial modes 

join the nearest group of m and follow their path to infinity as shown in the figure. 

 
Figure  3.2: Variations in frequency parameters of modes with zero nodal circle as a 

function of the radius ratio (ݒ ൌ 0.3); free boundary conditions. 
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Figure  3.3: Variations in the frequency parameters of the finite modes as a function of the 

ݒ) ൌ 0.3); free boundary conditions. 

 
Figure  3.4: Variations in the frequency of parameters of the infinite modes versus radius 
ratio (ݒ ൌ 0.3) for free boundary conditions, ݊ ൌ 1,  ݊ ൌ 2,   

radial modes,   torsional modes. 
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For an annular disk with uniformly clamped inner edge, as the radius ratio 

increases, the degrees of freedom of the resulting ring are constrained by the clamped 

edge, which yields extremely rigid constraints. The frequency parameters corresponding 

to all of the modes thus approach infinity as the radius ratio approaches unity as shown 

in Figure  3.5. It is, however, important to examine the trends in frequency parameters of 

different modes in the middle range of radius ratios, which could permit the grouping of 

the modes or changing their order with variations in the radius ratio. Figure  3.5 shows 

variations in the frequency parameters of the lowest four nodal circle number (m) as a 

function of the radius ratio.  

It is apparent that frequency parameters of modes with same m tend to group 

together as they approach infinity with increasing value of ߚ. As the nodal circle number 

increases, the frequency parameters approach infinite more rapidly. For a solid disk 

ߚ) ൌ 0), although the inner edge is clamped, there exists a rigid body rotational mode. 

This is due to the fact that the torsional stiffness at the inner radius becomes very small 

when the radius ratio approaches zero. At radius ratios close to unity, some ill-

conditioning was observed in the numerical evaluations since the annular disk reduces to 

a rigid thin ring.  

3.3.3. Influence of Disk Diameter 

The in-plane vibration properties of the annular disks are evaluated in terms of 

non-dimensional frequency parameters, for different the radius ratios. In order to study 

the effect of disk diameter on the in-plane vibration properties, the natural frequencies in 

Hertz are obtained from the frequency parameters. This may be of particular importance 
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in the design stages and has been used to specify the dimensions of the disks used in the 

experimental part of this dissertation research. The effect of variations in the diameter is 

investigated for different radius ratios, while the material properties are the same as those 

specified in experimental investigations, see Table  4.5 in the next chapter. 

 

 
Figure  3.5: Variations in frequency parameters as a function of the radius ratio for a disk 

with inner clamped edge (ݒ ൌ 0.3), ݊ ൌ 1, ݊ ൌ 2,   radial 
modes,   torsional modes. 
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ߚ) ൌ 0.2, 0.4, 0.6 and 0.8). The analysis is performed for frequencies corresponding to 

various modes, while the results are presented for four modes: (0,2)θ, (1,1), (0,3) and 

(1,0), in Figure  3.6, for the disk with free-free boundary conditions. The presented four 

modes belong to different groups with respect to their variations with the radius ratio as 

described above. The results are presented for different values of outer radius, ranging 

from 0.05m to 0.35m. The results show that the natural frequencies decrease with 

increasing diameter, irrespective of β. The decrease in frequency with increasing 

diameter is more significant for lower value of β, as it would be expected. Figure  3.6 (a) 

and (c) are the two modes that converge to zero as the radius ratio approaches unity, 

see Figure  3.2. 

 For this group the range of variation of natural frequencies is the largest for solid 

disks and decreases as the radius increases. Figure  3.6 (b) is the mode that converges to a 

finite ring mode, see Figure  3.3, which is nearly unaffected by the change in the radius 

ratio. The third type of modes are those for which natural frequencies increase as the 

radius ratio increases, which are shown in Figure  3.6 (d). These modes have opposite 

trend to the first group, Figure  3.6 (a) and (c). The lowest natural frequencies are for solid 

disks while it increases as the radius ratio increases.  

Similarly, Figure  3.7 shows the variation for an annular disk with clamped inner 

edge. Since all modes approach infinity as the radius ratio increases, they all follow same 

trend as in Figure  3.6 (d). The disk in Figure  3.7 (a) has a rigid body mode for solid disk 

and is always zero. 
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(a) (b) 

(c) (d) 

Figure  3.6: Variation in the natural frequencies of disk with free edges with 
respect to the outer radius: (a) mode  (0,2), (b) mode (1,1), (c) mode (0,3) and (d) mode 

ߚ   .ߠ(1,0) ൌ ߚ   ,0 ൌ ߚ  ,0.2 ൌ ߚ  ,0.4 ൌ 0.6, 
ߚ  ൌ 0.8. 
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 (a) (b) 

(c) (d) 

Figure  3.7: Variation of the natural frequencies of disk with clamped inner edge with 
respect to the outer radius:  (a) mode (1,0)ߠ, (b)  mode (1,1), (c) mode (1,2), (d) mode 

ߚ  .(2,1) ൌ ߚ   ,0 ൌ ߚ  ,0.2 ൌ ߚ  ,0.4 ൌ 0.6, 
ߚ  ൌ 0.8. 
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3.3.4. Influence of Disk Thickness 

The third geometric parameter that is considered in the free in-plane vibration 

problems is the thickness of the disk. Several studies have investigated the effect of the 

thickness on the frequency parameters [ 2,  16,  36]. Equation ( 2.38) shows that the 

thickness of the disk can be eliminated from the formulations which suggests that the 

frequency parameters are unaffected by the thickness of the disk. This assumption is valid 

only for thin disks. Kane and Mindlin [ 107] suggested that the effect of thickness can be 

neglected for circular disks with thickness to radius ratios less than 0.2. Therefore, the 

thickness effect on the in-plane modes of vibration has to be studied for thick disks only 

on the basis of three-dimensional thick disks models. The variations of the radial and 

circumferential displacements along the normal direction have to be considered which 

will result in symmetric and anti-symmetric modes along the normal direction. 

3.4. Mode Shapes 

Radial distributions of the modal deflections are depicted in Figure  3.8 for a few 

selected modes for a solid disk with clamped outer edge. The mode shapes exhibit 

harmonic distributions of the circumferential variations. The mode shapes clearly show 

that the center of the disk is always a nodal point with zero deflection for all the modes. 

This was evident for all the boundary conditions considered, except for modes with 

݊ ൌ 1. This can attributed to the fact that, for any mode that corresponds to ݊ ് 1, a 

displacement component of the center at an angle θ is offset by an equal displacement in 

the opposite direction, θ+π. For ݊ ൌ 1, the component of the displacement at θ+π is 

added to the response at θ due to the change of the sine and cosine functions when the 
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angle is increased by π [ 16]. This concludes that modes with ݊ ൌ 1 are the only group of 

modes that involve movement of the center. Therefore, the disk can be decoupled from 

any other components, i.e. the shafts, when calculating the modes other than n=1 modes. 

The motion of the center, however, needs to be specified for modes with n=1. This is 

probably the reason that Thompson [ 1] included the axle in his finite element model 

involving the one-nodal diameter modes of a railway wheel and excluded it from the 

vibrations corresponding to other modes.  

The mode shapes of an annular disk (ߚ ൌ 0.2) with free inner and outer edges are 

shown in Figure  3.9 for the first five modes. The figure shows the radial variations in the 

circumferential and radial displacements in the left column and a two-dimensional 

contour plot of the deformed shape of the disk, which can be obtained by a vector sum of 

both displacements in the right column. The dashed line in deformed shape represents the 

initial shape of the inner and outer edges of the disk. Darker shadings in the contour plots 

represent zero displacements, while the regions of maximum displacements are 

represented by lighter shadings.  The nodal diameters are clearly shown as dark shadings 

along the disk. The nodal circle of the first torsional mode (0,1) is shown in the figure, 

while the nodal circle for mode (1,1) is not clearly shown in the deformed shapes since it 

appears on the circumferential displacement only. 

3.5. Summary 

This chapter discussed the free vibrations of in-plane modes of annular disk 

subject to uniform boundary conditions. The accuracy of the results is demonstrated by 

comparison of the results with the data reported in the literature. The exact frequency 
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equations were used to assess the convergence property of the Rayleigh-Ritz method. The 

effect of stiffness parameter, radius ratio and outer radius on the natural frequencies of 

the disk is investigated. The frequency parameters follow different trends as the radius 

ratio increases for free disks, while they all approach infinity for disks with clamped 

edge.  The mode shapes of solid disks illustrated that modes with ݊ ൌ 1 are the only 

group of modes that involve movement of the center of the disk, while other modes have 

zero displacement at the center regardless of the boundary conditions. This chapter was 

devoted to the discussion of stationary disks subject to uniform boundary conditions, 

while disks subject to non-uniform supports are investigated in the subsequent chapter. 
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Figure  3.8: Radial and circumferential mode shapes for a solid disk clamped at the outer 
edge, (horizontal axis is the radial variation;  radial displacement, 

circumferential displacement). 
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Figure  3.9: Radial and circumferential mode shapes and deformed shapes of an annular 
disk with free inner and outer edges;  radial displacement, 

circumferential displacement. 
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4. IN-PLANE VIBRATIONS OF ANNULAR DISKS WITH 
NON-UNIFORM BOUNDARY CONDITIONS 

4.1. Introduction 

In the previous chapter, in-plane vibration properties of annular disks were 

investigated under boundary conditions with uniform distribution along the 

circumferential direction. In this case, the admissible functions could be easily selected to 

satisfy the geometric boundary conditions at both the inner and outer edges of the annular 

disks. The uniformity of the boundary conditions simplified the analysis and reduced the 

required computational effort for solving the vibration problem. In many applications, the 

disks may involve discrete supports at a given point or over a partial circumference of the 

disks or have a contact with some other components that constrain only a partition of the 

edge. The methodology presented in section  2.4 could be employed to investigate the in-

plane modal characteristics of solid and annular disks subject to different types of non-

uniform boundary conditions.  

 The validity of the proposed method is examined in this chapter. For this 

purpose, a finite element model of the disk is formulated and analyzed and laboratory 

experiments are performed to obtain frequency parameters under selected boundary 

conditions. Both the numerical results and the experimental data are used to demonstrate 

the validity of the proposed method. The convergence of the Rayleigh-Ritz method for 

solutions of problems with non-uniform boundary conditions is investigated and 

discussed.  
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The solutions are obtained for both the odd and even subsystems for evaluations 

of the frequency parameters and the mode shapes, for various combinations of classical 

and non-uniform boundary conditions. Two-dimensional contour plots of the mode 

shapes are presented for selected modes to evaluate the effect of the constraints on the 

radial and circumferential displacements. Both the vibration and acoustic properties of an 

annular disk subject to different combinations of boundary conditions are discussed for 

the stationary disks, while those of a rotating disk are discussed in the next chapter. 

4.2. Stiffness Due to Non-uniform Constraints 

The strain energy expressions for the non-uniform boundary conditions have been 

expressed in Eq.( 2.60). The variations in the stiffness parameters representing the 

boundary along circumferential direction are modified in order to characterize single, 

multiple points or line support conditions. The circumferential variations of the stiffness 

parameter K(θ) can be expressed by its Fourier series expansion to allow simplified 

representation of complex variations.  Figure  4.1 shows the Fourier expansion of the 

stiffness parameter corresponding to a number of support conditions that are used in the 

following computation analyses of in-plane vibration properties of disks under non-

uniform conditions. The stiffness parameters should have constant values at the angular 

positions of the support and zero otherwise. A uniform clamped condition can be 

considered as the limiting case, when the stiffness parameter is distributed uniformly 

along the entire periphery.  Finer distributions can be achieved by increasing the number 

of terms (l) in Eq. ( 2.61), which will reduce the undesired negative stiffness values that 

appear at some of the angular positions. The stiffness for different support conditions, 
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shown in Figure  4.1, have axis of symmetry about ߠ ൌ 0, in order to decouple the system 

into odd and even subsystems as described in section  2.4.2.  

(a) (b) 

(c) (d) 

(e) (f) 

Figure  4.1: Fourier expansion of the stiffness parameter K(θ) for different support 
conditions: (a) clamped, ߠ ൌ ߠ ,clamped (b) ;2/ߨ  ൌ  point support; (d) two point (c) ;ߨ 

support; (e) three point support; and (f) four point support. 
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Alternatively, Eq. ( 2.63) can be used to constrain the disk at the single or multiple 

points. It should be noted that the radial and circumferential stiffness parameters are 

assumed to have the same variation along the circumferential direction, irrespective of 

the type of constraint considered. In this chapter, the variations in the frequency 

parameters are obtained for the odd and even subsystems, for different stiffness 

parameters and the angular positions of the constrained portion. The effect of different 

orientations of multiple point supports on the frequency parameters and mode shapes are 

also discussed. Although the results are restricted for supports at the boundaries, the 

formulation can be equally used to represent support conditions at points located at 

different positions on the disk.  

4.3. Validation Methods 

  The validation of analytical models is vital to assure the reliability of the model 

in evaluating and solving the vibration problems. A number of studies have derived exact 

solutions under limited types of boundary conditions, which could serve as the reference 

response [ 13- 15,  17]. The exact solutions for the in-plane vibration modes, however, are 

available only for solid disks with uniform boundary conditions. From the review of the 

published studies, it became evident that the free vibration responses of the annular disks 

have been mostly obtained using numerical approaches, which are also limited for the 

uniform boundary conditions, namely free or clamped edges [ 20]. Therefore, alternate 

methods are required for verification of vibration responses of annular disks with non-

uniform boundary conditions. These may include laboratory experiments or numerical 

approximate methods that could serve as the reference responses.  
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In the previous chapter, the reported data have been used to examine the validity 

of the proposed models under uniform boundary conditions. The exact frequency 

equations are, then, considered as the benchmark for evaluating the accuracy of the 

Rayleigh-Ritz method for uniform boundaries. In this chapter, finite-element model of 

the disks with non-uniform boundary conditions are formulated and solved to provide the 

reference data under such conditions. Furthermore, simple laboratory experiments are 

performed to verify the frequency parameters of the disks under selected conditions.  

4.3.1. Finite Element Analysis 

Considering that the natural frequencies of in-plane modes of circular disks with 

non-uniform boundary conditions have not yet been reported in the literature, the finite-

element method is used to obtain free vibration properties for examining the validity of 

the analytical results. In the finite element models, the modal analyses were performed to 

obtain the natural frequencies and the mode shapes of an annular disk subject to different 

types of boundary conditions at the inner and outer edges. Figure  4.2 illustrates the two-

dimensional finite-element model used to study the in-plane vibration characteristics of 

annular disks. The model was formulated using four node shell elements (SHELL63), 

which are considered to yield more accurate results in the context of linear modal 

analyses [ 105]. Each element possesses six degrees-of-freedom (DOF) at each node 

including three in translation and three in rotation. Quadrilateral element shapes were 

used, instead of the triangular elements, for mesh generation which is known to give 

more accurate results as recommended in the ANSYS manual [ 105]. The distribution of 

elements was controlled by specifying the number of elements along the radial and 
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circumferential directions. The mesh distribution is depicted in Figure  4.2. The number of 

elements as well as that of the nodes was permitted to vary for each case due to 

differences in the radius ratios.  

 

Figure  4.2: Finite-element model of an annular disk used in the modal analysis. 

The modal extraction analysis was used to solve for the natural frequencies and 

mode shapes for the annular disk subject to different boundary conditions. The rigid body 

mode option was also selected in order to identify the rigid body modes that may exist 

especially for the totally free disks. The clamped boundary conditions were applied by 

enforcing the nodes at the particular edge to have zero displacements and rotations. The 

point or partial boundary constraints were enforced by constraining single or multiple 

adjacent nodes on the edge. The finite-element model can yield both the in-plane and out-

of-plane modes of vibrations. In order to obtain the in-plane modes only, all other nodal 

displacement and rotational DOF were constrained to have zero displacements. Similarly, 
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the in-plane DOF of all the nodes were constrained to have zero displacements in order to 

extract the out-of-plane modes of vibrations.  

The material properties and dimensions of the disk used were selected to be 

identical to those employed in the reported studies [e.g.  23], when model verifications 

were sought on the basis of the reported data. In cases involving verifications against the 

experimental data, the properties and dimensions were selected as those of the disk used 

in the experimental investigation, which will be described in the next section. 

Furthermore, the comparisons of the modal responses with either reported or measured 

data are presented in terms of the non-dimensional frequency 

parameters. Table  4.1summerizes the properties of the disks used in this study.  

Table  4.1: Properties of the annular disk used in this study [ 23]. 
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s density (ρ) 7905.9 kg/m3 

Modulus of elasticity (E) 218 x 109 N/m2 

Poisson's ratio (ν) 0.305 

G
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pr

op
er

tie
s Thickness (h) 31.5 mm 

Outside diameter (Ro) 151.5 mm 

Inside diameter (Ri) 87.5 mm 

 

The validity of the finite-element model is initially established by comparing the 

resulting in-plane frequency parameters with those reported in the literature. The reported 

results, however, are limited only to the uniform boundary conditions. Table  4.2 

encompasses the frequency parameters of selected in-plane vibration of an annular disk 

clamped at the inner edge and with free outer boundary, referred to as 'Clamped-Free', 

derived from the analytical method and the finite element model, with those reported in 
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[ 20]. The comparisons revealed very good agreements between the analytical, finite 

element model and the reported results, suggesting the validity of the finite element and 

the analytical models in predicting the in-plane vibration properties under classical 

boundary conditions. 

Owing to the lack of published results on the in-plane free vibration of disks 

under partial or point supports, the validity of the finite element model under such 

constraints could only be established on the basis of the out-of-plane free vibration 

responses. The frequency parameters reported by Narita and Leissa [ 57] for the out-of-

plane vibration of point-simply supported and point-clamped solid disks are considered, 

and compared with those obtained from the finite element model (Table  4.3). The 

comparisons suggest reasonably good agreements between the reported and finite 

element model results under both types of point support conditions. From the reasonably 

good agreements observed in TablesTable  4.2 and Table  4.3, it is deduced that the finite element 

model can be considered to yield reasonably accurate in-plane free vibration 

characteristics of the annular disk subject to constraints involving point, partial or full 

supports. 

 Table  4.2: Comparisons of frequency parameters ߣ of in-plane vibration of an annular 
disk clamped at the inner edge (v = 0.3, β = 0.2). 

(m,n) Reference [ 20] present 
study FE Model 

(1,0)θ 0.352 0.3526 0.3524 
(1,1) 0.919 0.9193 0.9193 
(1,2) 1.542 1.5416 1.5414 
(2,1) 2.121 2.1208 2.1208 
(1,3) 2.157 2.1570 2.1568 
(1,0)r 2.204 2.2040 2.2039 

r: pure radial mode; θ: pure circumferential mode.
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Table  4.3: Comparisons of frequency parameters ߣ of out-of-plane vibration of a solid 
disk (v =0.3). 

 Solid disk with point clamped Solid disk with point simply-
supported 

(m,n) Reference [ 57] FE Model Reference [ 57] FE Model 

(0,0) 0.737 0.714 0 0 
(0,1) 1.943 1.932 1.816 1.815 
(0,2) 2.904 2.896 2.795 2.793 
(1,0) 3.227 3.236 3.200 3.200 
(0,3) 3.630 3.627 4.052 4.052 

 

4.3.2. Laboratory Measurements 

The vibration characteristics of circular disks were also investigated in the 

laboratory under limited boundary conditions to further examine the validity of the 

analytical results. It needs to be emphasized that only a few studies have experimentally 

investigated the in-plane modes of vibrations of annular disks with uniform boundary 

conditions [ 18,  22,  108]. In the present study, an experiment is designed to measure the 

in-plane free-vibration properties of a non-rotating annular disk with free and point 

support conditions using an accelerometer and a microphone. The measured data are also 

used to characterize the acoustic radiation properties of disks. 

Figure  4.3 shows the schematic of the experimental setup. The disk is excited 

along the radial direction by an impulse hammer, while an accelerometer is mounted 

radially to capture the acceleration in the radial direction. In order to assure that the 

captured frequencies are due to in-plane motion and not due to out-of-plane vibrations, 

the measurements are also taken by exciting the out-of-plane modes. The experiment 

design thus permitted the measurements of in-plane and the out-of-plane vibration due to 

both in-plane and out-of-plane excitations, as shown in Table  4.4.  
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Figure  4.3: Schematic of the experimental set up. 

Table  4.4: Schematic showing positions of the impulse hammer excitation and the 
accelerometers on the surface of circular disk for capturing in-plane and out-of-plane 

vibration frequencies: Accelerometer:          , Hammer:         . 

Out-of-plane 

In-plane  

Out-of-plane due to in-plane 
Excitation 

 

 

The impulse hammer used in this study is equipped with a force sensor 

(KISTLER 9722A500). A high frequency IEPE miniature accelerometer with built-in 

pre-amplifiers was used to measure the acceleration (Bruel and Kjaer 4508B). The sound 

pressure measurements were also conducted using a Bruel and Kjaer 4181 microphone 

combined with pre-amplifier, which was mounted close to the position of the 

accelerometer to capture the radiated acoustic signal (Figure  4.3). The acceleration, force 

and sound signals were acquired in a multi-channel signal analyzer (PULSE) and 

analyzed to obtain the frequency spectra of vibration and sound pressure. The analyses 
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were performed over the bandwidth of 12 kHz, which encompassed the lowest four in-

plane vibration modes.  

From the results presented in the previous chapter, it was observed that the first 

and third natural frequencies decrease with increasing radius ratio, while the second 

mode frequency is independent of the radius ratio. This observation was used to 

determine the dimensions of the disks used in the experiments. Two annular disks of 

different radius ratios were used in the experiment to observe the natural frequency 

behavior for different radius ratios. The geometric and material properties of both disks 

are shown in Table  4.5. The measurements were performed for the disks with different 

sets of boundary conditions. The natural frequencies of the disks were initially identified 

by placing the disk on a soft cushion to resemble free boundary conditions. Each disk was 

subsequently mounted vertically with a portion of its outer edge clamped in a vice-grip to 

represent a point support condition. A C-clamp was further used to simulate the disk 

supported at two points. The measured data were acquired for each experimental 

condition shown in Table  4.4 for the boundary conditions described above.  

Table  4.5: Geometric and material properties of annular disks used in the experiments.  

Disk I Disk II 

Outer radius, Ro 0.15 m 

Inner radius, Ri 0.05 m 0.09 m 

Thickness, h 0.01 m 

Material 1018 Carbon Steel 

Density, ρ 7850 kg/m3 

Modulus of elasticity, E 210 x 109 N/m2 

Poisson's ratio, ν 0.3 
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4.4. Convergence Study 

In the previous chapter, a convergence study of the proposed analytical method 

was presented for uniform boundary conditions. It was deduced that the number of 

polynomials used in the formulation and the stiffness parameters could affect both the 

accuracy and the convergence of the results. It is reasonable to expect that these 

parameters would play an important role in the accuracy of the analysis for the non-

uniform boundary conditions in a similar manner. It was further shown that the modes 

with different nodal diameter number (n) are uncoupled for the uniform boundary 

conditions. The coupling, however, was observed between modes with different nodal 

circles (m) within the same nodal diameter number (n). For disks with non-uniform 

boundary conditions, the modes associated with different nodal diameter number n are 

coupled and cannot be studied independently. Therefore, the number of terms (N), which 

is the maximum number of modes used along the circumferential direction, would form 

an additional important parameter to be considered for the convergence study.  

The formulations presented in section  2.4 were solved to determine the frequency 

parameters for solid and annular disks with different combinations of boundary 

conditions. FiguresFigure  4.4 andFigure  4.5 illustrate variations in frequency parameters 

corresponding to the first few odd and even modes of solid and an annular disk (ߚ ൌ 0.6) 

for different number of terms (N) under single-point and line support condition, 

respectively. The results are presented for (N) ranging from 5 to 200. The results were 

obtained using a fixed number of polynomials along the radial direction and constant 

stiffness parameters that were determined from the results of the convergence study 

presented in the previous chapter. Figure  4.4(a) and (b) present the variations in the 
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frequency parameters for an annular disk (ߚ ൌ 0.6) obtained from the even and odd 

analyses, respectively, while those for solid disks are presented in Figure  4.4 (c) and (d). 

The point support at the outer edge is taken at ߠ ൌ 0 as shown in Figure  4.4, while the 

line support condition refers to clamped condition along one-quarter of the outer edge as 

in Figure  4.5. It can be noticed that some of the frequency parameters do not vary with 

the number of terms for the point support condition. This is attributed to the location of 

the point support being on a nodal diameter of that specific mode. Both, the solid and 

annular disks, exhibit the first rigid body mode in translation, derived from the odd mode 

with nodal diameter at the location of the support. A detailed discussion of the nodal 

diameters is presented in the subsequent sections describing the deformed shapes. 

The results attained for the annular disk with ߚ ൌ 0.6, free at the inner edge and 

clamped along one-quarter of its outer edge are illustrated in Figure  4.5. The Fourier 

expansion of the stiffness parameter is same as the one shown in Figure  4.1(a). The 

variations in the even and odd frequency parameters with varying (N) are shown 

in Figure  4.5(a) and (b), respectively for annular disk, while those for the solid disk that 

its partly clamped at the outer edge are shown in  Figure  4.5 (c) and (d). Unlike the point 

support conditions, the convergence of frequency parameters for all modes seems to be 

affected by the number of terms (N) used, which is attributed to the more severe influence 

of the line support constraint. All the frequency parameters exhibit converging behavior 

with increasing number of terms while the rate of convergence differs for different 

modes. The figures show considerable variations in the frequency parameters until N 

approaches 50, although a greater N may be required for some of the modes. Based upon 

these  results,  subsequent  calculations  in  this  chapter  are  carried  out  using ܰ ൌ 50, 
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(a) 

(b) 

(c) 

(d) 

Figure  4.4: Variations in the frequency parameters of disks with single point support for 
different number of terms (N) used in the formulations: (a) annular-even; (b) annular-odd; 

(c) solid-even; (d) solid-odd. 
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(a) 

(b) 

(c) 

(d) 

Figure  4.5: Variations in the frequency parameters of disks with single point support for 
different number of terms (N) used in the formulations: (a) annular-even; (b) annular-odd; 

(c) solid-even; (d) solid-odd. 
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and ܭഥ௥ ൌ ഥఏܭ ൌ 10ହ except for the situations where the influences of support stiffness on 

the variations of the frequency parameters are investigated. 

4.5. In-plane Vibration Analysis of Annular Disks with Single 

Point Support 

The frequency parameters and the corresponding mode shapes of annular disks 

with different edge constraints are obtained by solving the eigenvalue problem, defined in 

Eq.( 2.59). This section is devoted to discuss the effects of additional point supports on 

the frequency parameters and mode shapes of annular disks. The effect of multiple point 

supports with different orientations and line support will be discussed in the following 

section. 

The frequency parameters and mode shapes for the in-plane free vibration of the 

annular disk were obtained under four different support conditions: (i) Clamped inner 

edge with point clamp support at the outer edge, referred to as 'Clamped-Point Clamped' 

condition; (ii) Point-clamped support at the inner edge with clamped outer edge, referred 

to as 'Point Clamped -Clamped' condition; (iii) Point clamp support at inner edge with 

free outer edge, referred to as 'Point Clamped -Free' condition; and (iv) Free inner edge 

with point-clamp support at the outer edge, referred to as 'Free-Point Clamped ' condition. 

A point-constraint within the annular disk is realized by introducing a two-dimensional 

point spring, as was illustrated in Figure  2.2. The analyses were performed to obtain 

frequency parameters of the even (coupled radial cosine and circumferential sine modes) 

and odd (coupled radial sine and circumferential cosine modes) subsystems 

corresponding to the selected modes, which are presented in TablesTable  4.6 andTable  4.7, 
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respectively. It can be noted from TablesTable  4.6 andTable  4.7 that the even and odd subsystems 

yield distinctly different frequency parameters.  

It is important to note that the label (m,n) in TablesTable  4.6 andTable  4.7 does not reflect the 

nodal diameter and the nodal circle number, since the modes are coupled within each 

subsystem.  The label (m,n) for the 'Clamped-Point Clamped' support condition, however, 

can be directly related to those reported in Table  4.2, when the point support constraint is 

relaxed at the free edge. The results presented in TablesTable  4.2, Table  4.6 and Table  4.7 suggest that the 

frequency parameters of the disk with an outer edge point support are higher than those 

of the disk with the free outer edge.  

Table  4.6: Even frequency parameters ߣ of selected modes of In-plane vibration 
of the annular disk (ݒ ൌ ߚ ,0.3 ൌ 0.2). 

Constraint Clamped-Point 
Clamped 

Point Clamped-
Clamped 

Free-Point 
Clamped 

Point Clamped-
Free 

(m,n) 
Present 
study FE Model

Present 
study FE Model

Present 
study 

FE 
Model 

Present 
study 

FE 
Model 

(0,1) 0.9561 0.9548 2.1618 2.1576 0.3073 0.3031 0.3040 0.2808 
(0,2) 1.605 1.5999 2.6399 2.6334 1.1868 1.1883 1.1633 1.1584 
(1,1) 2.1349 2.135 3.3025 3.3055 1.6589 1.6645 1.6851 1.6850 
(0,3) 2.1882 2.1882 3.7375 3.7351 1.8327 1.8304 1.8355 1.8284 
(0,0) 2.3097 2.2999 3.3944 3.3847 2.145 2.1471 2.0793 2.0845 

 

Table  4.7: Odd frequency parameters ߣ of selected modes of In-plane vibration of 
the annular disk (ݒ ൌ ߚ ,0.3 ൌ 0.2). 

Constraint Clamped-Point 
Clamped 

Point Clamped-
Clamped 

Free-Point 
Clamped 

Point Clamped-
Free 

(m,n) 
Present 
study FE Model

Present 
study FE Model

Present 
study 

FE 
Model 

Present 
study 

FE 
Model 

(0,0) 0.5148 0.5142 2.1712 2.1702 0 0 0 0 
(0,1) 1.0773 1.0636 2.3021 2.3054 0.5202 0.5266 0.3251 0.3331 
(0,2) 1.5554 1.556 2.6812 2.6685 1.1122 1.1125 1.1712 1.1732 
(0,3) 2.1568 2.1616 3.7300 3.7360 2.0721 2.0738 2.0791 2.0836 
(1,1) 2.1754 2.1753 3.3219 3.3249 1.7643 1.7693 1.6807 1.6849 

 

The effect of the point support is further investigated by varying the support 

stiffness on the frequency parameter, and the corresponding mode. The radial and 

circumferential stiffness parameters of the point support are varied from zero (free 
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condition) to very large values (nearly clamped) condition. Figure  4.6 illustrates the 

variations in the frequency parameters corresponding to selected modes with variations in 

the normalized stiffness parameters in the radial, ܭഥ௣௥ ൌ ௣௥ሺ1ܭ െ ଶሻݒ ⁄ܧ  and 

circumferential, ܭഥ௣ఏ ൌ ௣ఏሺ1ܭ െ ଶሻݒ ⁄ܧ , directions. The figure illustrates the frequency 

parameters of the selected odd and even modes, denoted by 'O' and 'Ev', respectively. The 

results clearly show considerable deviation in the frequency parameters corresponding to 

the even and odd modes when the stiffness parameters of the point support are increased. 

The two, however, converge to values identical to those in Table  4.2, when the point 

support stiffness diminishes to free outer edge condition. This tendency was observed for 

all the four constraint conditions considered. As an additional example, Figure  4.7 

illustrates the variations in frequency parameters of selected modes of the annular disk 

with free inner edge but point-supported outer edge with varying support stiffness.  

The results in Figure  4.6 further show a change in the order of the modes with 

increasing support stiffness. For the annular disk clamped at the inner edge, the frequency 

parameter of the (1, 1) odd mode becomes greater than that of the (0, 3) odd mode, while 

the order of these modes is opposite when the support stiffness is relatively small. This 

trend is not observed for the 'Free-Point Clamped' condition as seen in Figure  4.7. 

The in-plane vibration of the disk with different support conditions were further 

evaluated using the two-dimensional deformation plots, obtained from Eqs. ( 2.54) 

and ( 2.55). The results, however, were presented for the clamped inner edge and point 

supported outer edge only in order to illustrate the effect of point clamped support on the 

in-plane vibration modes. Deformation contour plots for selected modes of the 'Clamped-

Point Clamped' disk were presented and compared with those of the 'Clamped-Free' disk. 
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  0                           2.5E+03                         5.0E+03                         7.5E+03                        1.0E+04 

 

Figure  4.6: Variation in the frequency parameters of selected modes with varying 
normalized point support stiffness at the outer edge of an annular disk clamped at the 
inner edge (ݒ ൌ 0.3, ߚ ൌ 0.2),  (1,1)Ev,   (1,1)O,  (0,3)O, 

 (0,3)Ev,  (0,0)Ev. 

  0                      2.0E+03              4.0E+03                  6.0E+03                  8.0E+03                1.0E+04 

 

Figure  4.7: Variation in the frequency parameters of selected modes with varying 
normalized point support stiffness at the outer edge of an annular disk clamped at the 
inner edge (ݒ ൌ 0.3, ߚ ൌ 0.2),  (1,1)Ev,   (1,1)O,  (0,0)Ev, 

 (0,3)Ev,  (0,3)O. 
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Figure  4.8 illustrates the deformed shape corresponding to the lowest mode of the 

'Clamped-Free' disk (mode (0,0)θ in Table  4.2) obtained analytically and from the finite 

element analysis. This mode is purely circumferential obtained from the odd subsystem.  

(a) (b) 

 

Figure  4.8: Contour deformation plots of the purely circumferential mode (0,0)θ 
for a 'Clamped-Point Clamped' disk: (a) present analysis; and (b) finite element model. 

The effect of additional point clamped support at the outer edge on this mode is 

illustrated in Figure  4.9. The figure illustrates the mode shapes with predominant radial 

and circumferential deformation, as shown in Figure  4.9 (a) and (b), respectively, that are 

obtained through solution of the odd subsystem. The figure also shows the resultant 

deformation mode obtained from vector summation of the radial and circumferential 

displacements together with the deformed shape obtained from the finite element 

analysis, as seen in Figure  4.9 (c) and (d), respectively. The results show that the addition 

of the point clamped support yields radial displacement apart from the circumferential 

deformation, which makes the mode neither purely circumferential nor axisymmetric. 

The results also show that the resultant deformation contours corresponding to mode 
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(0,0)θ are quite comparable with those obtained from the finite element analysis. The odd 

subsystem mode shapes, shown in Figure  4.9(a) and (b), thus exhibit predominantly 

circumferential deformation and relatively small radial displacement.  

(a) (b) 

(c) (d) 

      

Figure  4.9: Contour deformation plots of mode (1,0) for a 'Clamped-Point 
Clamped' disk: (a) radial displacement; (b) circumferential displacement, (c) vector sum 
of displacements; (d) deformed shape from finite element model,         : point clamped 

support ,              undeformed edge. 
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Unlike the mode (0,0)θ, the even and odd frequency parameters corresponding to 

non-axisymmetric modes of the 'Clamped-Free' disk are identical. The predominantly 

radial and circumferential deformation modes (0,1) of the 'Clamped-Free' disk are 

illustrated in Figure  4.10 (a) and (b), respectively. These also clearly show the nodal 

diameter in both the radial and circumferential deformation shapes. It should be noted 

that both the even and odd subsystems also yield identical mode shapes, except for the 

ߨ 2⁄  radians shift. The figure also shows the resultant deformation contours obtained 

from the vector summation of the radial and circumferential displacements and the finite 

element analysis, respectively. The addition of the outer-edge point clamped support 

yields a split between the odd and even frequencies, as observed in Figure  4.6. The 

corresponding deformation modes obtained from the even and odd subsystems also 

differ, as seen in FiguresFigure  4.11 andFigure  4.12 for mode (0,1), respectively.  

Each figure illustrates predominantly radial and circumferential deformation 

shapes together with the resultant deformation contours. The resultant displacement 

contours are quite similar to those obtained from the finite element analysis in both the 

cases. A comparison of FiguresFigure  4.10 andFigure  4.11 suggests that the addition of the point 

clamped support does not affect the predominantly circumferential mode of the even 

subsystem. In a similar manner, the predominantly radial mode of the odd subsystem is 

insensitive to the point clamped support. This can also be deduced from 

Eqs. ( 2.54), ( 2.55) and ( 2.63), which show that the even subsystem is affected only by the 

radial stiffness constant of the point spring support at ߠ଴ ൌ 0, while the odd subsystem is 

influenced only by the circumferential stiffness of the point spring. The resultant even 

and odd subsystems of in-plane vibration modes of the 'Clamped-Point Clamped' disk are 
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affected by the radial and circumferential stiffness property of the point-support, 

respectively. 

 

(a) (b) 

(c) (d) 

 

 

Figure  4.10: Contour deformation plots of mode (0,1) for a 'Clamped-Free' disk: (a) radial 
displacement; (b) circumferential displacement, (c) vector sum of displacements; and (d) 

deformed shape from finite element model. 
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(a) (b) 

(c) (d) 

        

Figure  4.11: Contour deformation plots of the even mode (0,1) for a 'Clamped-Point 
Clamped' disk: (a) radial displacement; (b) circumferential displacement, (c) vector sum 
of displacements; and (d) deformed shape from finite element model,       : point clamped 

support ,              undeformed edge. 
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(a) (b) 

(c) (d) 

 

Figure  4.12: Contour deformation plots of the odd mode (0,1) for a 'Clamped-Point 
Clamped' disk: (a) radial displacement; (b) circumferential displacement, (c) vector sum 

of displacements; and (d) deformed shape from Finite element model,         : point 
clamped support ,              undeformed edge. 
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4.6. Vibration of Disks with Multiple and Distributed Support 

The effect of partial supports on the in-plane frequency parameters and modes of 

vibration are investigated for a solid disk, subject to partial supports. The length of the 

clamped support is varied by varying the arc angle from 0 to 2ߨ radians, where the 

extreme angles, 0 and 2ߨ radians, represent the single-point support and the uniformly 

clamped edge, respectively. Figure  4.13 illustrates variations in the frequency parameters 

of the disk corresponding to a few selected modes with variations in the constraint length. 

The stiffness coefficients were considered to be constant over the clamped portion along 

the circumferential direction. The results suggest that a point support causes the odd and 

even modes to split into two different values except for the modes with ݊ ൌ 0. Odd and 

even frequency parameters follow different trends as the angle of the clamped edge 

increases from 0 to 2ߨ radians. As the clamped portion approaches a totally clamped 

edge, even and odd frequency parameters converge to identical values, which are 

indicated on the right of Figure  4.13. These values correspond to the frequency 

parameters for the annular disk subject to clamped conditions at the inner and outer 

edges. The nodal diameter number (n) and nodal circles (m) are also shown for next to 

their corresponding frequency parameter.  

Similarly, Figure  4.14 shows the variation in the frequency parameters of a solid 

disk with variations in the arc length of the clamped support. It is clear in both figures 

that, for even and odd modes that approach identical values, there might be change of 

orders as the clamping angle increases. Even and odd modes do not intersect with other 

modes of the same group, although even modes may intersect with one or more odd 

modes and vice versa. 
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Figure  4.13: Variations in frequency parameters of in-plane vibration of an annular disk 

clamped at the inner edge and with varying length of the constraint at the outer edge 
ߚ) ൌ 0.2, ݒ ൌ 0.3). 

 
Figure  4.14: Variations in frequency parameters of in-plane vibration of a solid disk with 

varying length of the constraint at the outer edge (ݒ ൌ 0.3). 
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The in-plane vibration characteristics of an annular disk bolted at multiple points, 

more representative of many engineering applications, are subsequently investigated. 

Increasing the number of supports would increase the natural frequencies in a manner 

similar to that shown in Figure  4.13 for increasing constraints length. Different 

orientations of the same number of point supports, however, may exhibit different effects 

on the natural frequencies and the mode shapes. An annular disk clamped at two points is 

considered to illustrate the effect of support location on the natural frequencies and mode 

shapes. The analysis is performed for four different combinations of two point supports at 

the inner or the outer edges, as illustrated in Figure  4.15. 

The lowest frequency parameters, for each condition, obtained from the even and 

the odd subsystems are summarized in TablesTable  4.8 andTable  4.9, respectively. The labels shown 

in the first row of both tables describe the location of the two point supports. For 

example, the (0, ߚ) represents a point support at ߠ ൌ 0 and ߦ ൌ  is the (1,ߨ) where ,ߚ

point support located at  ߠ ൌ ߦ and ߨ ൌ 1. Both tables show that the frequency 

parameters differ considerably with changes in the orientation of the point supports.  

Table  4.8: Variations in frequency parameters of in-plane vibration of an annular disk 
ߚ) ൌ 0.2, ݒ ൌ 0.3ሻ with two point supports derived from the even subsystem. 

Constraint (0,1) (0,ߚ) (ߚ,0) (ߚ ,ߨ) 
,ߨ) (1,ߨ)  (1,ߨ) (1,ߨ) (ߚ

1 0.439 0.462 0.451 0.398 
2 1.205 1.250 1.227 1.229 
3 1.727 1.668 1.695 1.688 
4 1.852 1.873 1.861 1.866 
5 2.087 2.208 2.148 2.168 
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 (a) Radial (b) Circumferential (c) Deformed shape 

 
 

 
  

 
   

 
   

Figure  4.15: Contour plots of the first even mode of the annular disk clamped at two 
points: (a) radial displacement; (b) circumferential displacement, (c) vector sum of 

displacements     : point clamped support,             undeformed edge. 
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Table  4.9: Variations in frequency parameters of in-plane vibration of an annular disk 
ߚ) ൌ 0.2, ݒ ൌ 0.3ሻ with two point supports derived from the odd subsystem. 

Constraint (0,1) (0,ߚ) (ߚ,0) (ߨ, β) 
,ߨ) (1,ߨ) β) (1,ߨ) (1,ߨ) 

1 0.122 0.417 0.299 0.180 
2 0.478 0.619 0.550 0.606 
3 1.225 1.116 1.171 1.186 
4 1.707 1.894 1.797 1.777 
5 2.089 2.071 2.080 2.078 

 

Figure  4.15 shows the contour plots of the first mode obtained from the even 

subsystem for different point support configurations. For each support condition, the 

figure illustrates the mode shapes with predominant radial and circumferential 

deformation in the second and third columns, respectively. The deformed shapes obtained 

from the vector summation of the radial and circumferential displacements are illustrated 

in the fourth column, while the dashed line represents the undeformed edges of the 

annular disk.  Darker shadings in the contour plots represent zero displacements, while 

the regions of maximum displacements are represented by lighter shadings. As shown 

in Figure  4.15, the deformed shapes differ considerably for the four constraint cases 

considered, although they are all supported at two points. The nodal diameter of this 

mode is horizontal in the circumferential mode shape and vertical in the radial mode 

shape. The circumferential mode shapes corresponding to all the four support conditions 

are thus almost similar, since all the points are located at the nodal diameter of this mode.  

The radial mode shape, however, is strongly affected by the locations of the point 

supports. The first two support cases, the disk supported at two points at the outer edge 

and the disk supported at two points at the inner edge, are symmetric about the vertical 

nodal  diameter  causing the  nodal  diameter to  remain vertical. The nodal  diameters  
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 (a) Radial (b) Circumferential (c) Deformed shape 

 

 

 

 
 

Figure  4.16: Contour plots of the first odd mode of the annular disk clamped at two 
points: (a) radial displacement; (b) circumferential displacement, (c) vector sum of 

displacements     : point clamped support,             undeformed edge. 

corresponding to the third and fourth conditions, however, are not vertical due to the 

orientation of the clamped points. For the fourth case, there exists a short nodal line 

passing through the two points. For the same mode of vibration, the mode shapes 

obtained from the odd subsystem are illustrated in Figure  4.16 for the same four clamped 
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conditions considered in Figure  4.15. The contour plots suggest that the radial 

displacement mode shape has a horizontal nodal diameter and the clamped points yield 

only insignificant effect on the mode shape. The mode shape of circumferential 

displacement is considerably affected by the clamped points especially for the last two 

conditions where the clamped points are not symmetric about the vertical line. Therefore, 

locating the point supports on the nodal diameter of the mode minimizes the effect of the 

support on that particular mode. Moreover, the symmetry of point supports about the 

nodal diameter reduces the effect on the mode shapes. 

 (a) Radial (b) Circumferential (c) Deformed shape 

 

 

 

 

 

 

Even Modes 

Odd Modes 

Figure  4.17: Contour plots of the first even and odd modes of the annular disk clamped at 
three points: (a) radial displacement; (b) circumferential displacement, (c) vector sum of 

displacements     : point clamped support,             undeformed edge. 
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The same deflection mode is also investigated under the conditions of three and 

four point supports and the resulting contour plots are presented in figures Figure  4.17 andFigure  4.18, 

respectively. Each figure illustrates the results obtained from the even and odd 

subsystems. In the circumferential mode shape shown in Figure  4.17, the nodal diameter 

expands towards the point supports for both the odd and even modes. The results show 

that the number of bolts and their locations would have considerable effect on the 

frequency parameters and mode shapes. 

 

 (a) Radial (b) Circumferential (c) Deformed shape 

 

 

Even Modes 

   

Odd Modes 

   

Figure  4.18: Contour plots of the first even and odd modes of the annular disk clamped at 
four points: (a) radial displacement; (b) circumferential displacement, (c) vector sum of 

displacements    : point clamped support,              undeformed edge. 
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4.7. Experimental Results 

In this section, the results obtained from the experimental investigations on 

annular disks are presented, and discussed to illustrate the effects of non-uniformity of 

the support on the modal characteristics of the disks. The results obtained from the 

laboratory measurements are also compared with those obtained from the analytical 

model.  

4.7.1. Disks with Free Boundary Conditions 

Table  4.10 compares the first four in-plane natural frequencies of the annular disk 

(DISK I) with free edges obtained from the analytical model and experimental 

measurements. Figure  4.19 further presents the frequency spectrum of the measured in-

plane vibrations of the disk. The measured and computed out-of-plane natural frequencies 

of the same disk are presented in Table  4.11, while the frequency spectrum of the 

vibration in the 12 kHz range is shown in Figure  4.20. Comparisons of the spectra 

presented in FiguresFigure  4.19 andFigure  4.20 suggest that none of the out-of-plane modes occur in 

the proximity of the in-plane modes. The first in-plane mode occurs at 4848 Hz, while 

none of the out-of-plane modes seem to be present near this frequency. Similarly, none of 

the out-of-plane modes exist between the 8486 and 10460 Hz frequency range, where the 

next three in-plane modes are observed. It is thus concluded that the measurements 

acquired along the radial direction can accurately describe the in-plane modes of 

vibration with negligible coupling effects of the in-plane and out-of-plane modes. 

TablesTable  4.10 andTable  4.11 show good agreements between the analytical and experimentally 

observed natural frequencies of in-plane and out-of-plane vibration of the disk suggesting 
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the validity of the analytical model in predicting the natural frequencies of annular disks 

with free edges.  

Table  4.10: Compariosn of in-plane natural frequencies of the annular disk with free 
edges (DISK I) identified from the experiment with those derived from the analytical 

model. 

(m,n) (0,2) (1,1) (0,0)r (0,3) 
Experimental (Hz) 4848 8952 9720 10450 

Analytical (Hz) 4821 8865 9602 10332 
 

 

Figure  4.19: Frequency spectrum of measured in-plane vibration for an annular disk with 
free edges (DISK I). 

Table  4.11: Compariosn of out-of-plane natural frequencies of the annular disk with free 
edges (DISK I) identified from the experiment with those derived from the analytical 

model. 

Experimental (Hz) 522 936 1326 1908 2354 3486 3598 5036 

Analytical (Hz) 528 922 1337 1965 2388 3572 3678 5211 

Experimental (Hz) 5348 5854 6504 6676 7502 8220 8486 10460

Analytical (Hz) 5520 5990 6788 6988 7848 8801 9009 10476
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Figure  4.20: Frequency spectrum of measured out-of-plane vibration of an annular disk 

with free edges (DISK I). 

Table  4.12 compares the in-plane natural frequencies of the annular disk (DISK 

II, Ri = 0.09 m) with free edges obtained from the measurements and the analytical 

model. Figure  4.21 illustrates the spectrum of measured in-plane vibration of the disk. 

Comparison of the in-plane natural frequencies of DISK I (Table  4.10) and DISK II 

(Table  4.12) show the effect of variation in the radius ratio on the natural frequencies. 

The results were also observed to be in close agreement with those reported by Ambati 

[ 18] for disks with free edges. The modes with zero nodal circles (݉ ൌ 0) exhibit the 

lowest values for DISK II, which confirms that these modes approach zero frequencies as 

the radius ratio increases. The mode (0, 3) tends to decrease from around 10 kHz for 

DISK I to nearly 6 kHz for DISK II, as the radius ratio increases. The radial mode (0, 0)r 

and the mode (1,1) change their order but their values do not decrease dramatically. The 

mode (0,4) is an additional mode shown within the range of interest in the DISK II 
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response which was higher than the range of interest for the low radius ratio disk 

(DISKsI). 

Table  4.12: Compariosn of in-plane natural frequencies of the annular disk with free 
edges (DISK II) identified from the experiment with those derived from the analytical 

model. 

(m,n) (0,2) (0,3) (0,0)r (1,1) (0,4) 
Experimental (Hz) 2432 6064 7040 9344 10160 

Analytical (Hz) 2439 6018 6951 9243 10065 

 
Figure  4.21: Frequency spectrum of measured in-plane vibration for an annular disk with 

free edges (DISK II). 
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conditions, the results could not be compared with analytical results for circular disks 

with such clamped points. The measured data obtained for point-clamped disks are thus 

compared with those obtained for the disks with free edges in order to examine the 

frequency responses in a qualitative sense. The frequency distribution is compared with 

that of the disk without supports to study the effects of additional supports on the natural 

frequencies. The results obtained from the analytical model for disks with a point support 

are used to facilitate the interpretation of the experimental results. It is also important to 

note that the experimentally observed frequencies would be higher than those derived 

from the model since the clamped support used in the experiment cannot be characterized 

by a point support that is considered in the model. Furthermore, the measured data could 

be affected by several other factors such as the location of the accelerometer relative to 

the support location. The location of the accelerometer at or near the nodal diameter of 

some of the modes would significantly influence the measurements. Furthermore, in 

order to limit the contribution of the in-plane modes, the analysis of the effects of point 

supports on the out-of-plane modes has been limited to frequency range of 5 kHz. 

Out-of-plane Modes 

Figure  4.22  shows the frequency spectrum of the out-of-plane vibration response 

of the point-supported disk. The figure illustrates the spectra of the measurements taken 

at two different points relative to the support. Comparisons of the spectra with that of the 

disk with free edges (Figure  4.20) show significant effect of the support on the frequency 

distribution. For example, the free disk mode located at 1908 Hz (Figure  4.20) splits into 

two distinct peaks for the point-supported disk at 1918 Hz and 2230 Hz (Figure  4.22(a)). 
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The observed results agree very well with the analytical results. Moreover, Figure  4.22(b) 

shows two distinct peaks at 2538 and 3170 Hz, which could not be observed from the 

previous figures. The results obtained from the analytical model, however, revealed these 

two peaks to be the odd and even natural frequencies of the 2356 Hz mode observed 

in Figure  4.20. In Figure  4.22 (a) and (b), the peak observed near 4604 Hz is not evident 

in the response of the disk with free edges (Figure  4.20). This peak, however, 

corresponds to the 3598 Hz mode in Figure  4.20, which suggests that the corresponding 

frequency increases by nearly 1.0 kHz due to the additional support. 

(a) 

 
(b) 

 
Figure  4.22: Out-of-plane frequency spectrum for an annular disk with point support 
(DISK I): angular position of the accelerometer relative to the support (a) π/2, (b) π. 
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The frequency spectrum of the out-of-plane vibration measured under an 

excitation along the radial direction is shown in Figure  4.23. The pairs of frequencies 

described in Figure  4.22 are also clearly observed from Figure  4.23. The first in-plane 

mode is also observed at 4848 Hz, which was not evident in the spectra (Figure  4.22) 

obtained under out-of-plane excitations alone. This figure demonstrates a strong relation 

between the out-of-plane and in-plane modes of vibration, and that the in-plane 

excitations could excite the out-of-plane modes in a manner similar to that caused by 

excitations along the out-of-plane direction.  

 

 
Figure  4.23: Out-of-plane frequency spectrum for an annular disk with point support 

(DISK I) due to in-plane excitation. 
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the two modes into two distinct frequencies, while the third one was a purely radial mode 

whose frequency increased slightly with the point-support. The first in-plane mode at 

4848 Hz (Figure  4.19) also increased slightly due to the point support but did not split 

into two values although it belongs to the group of modes that are expected to yield such 

a behavior. This could be explained by the fact that this mode is (0, 2), where both the 

odd and even components have nodal points at the support locations which are not 

affected by the additional support. In this situation, the acceleration measurement at the 

outer edge could not detect the predominant circumferential modes. The measurements 

could thus capture the radial displacement only. Furthermore, the circumferential modes 

are also difficult to excite, as reported in a previous study [ 14]. 

Figure  4.25 illustrates the frequency spectrum of in-plane vibration of the annular 

disk (DISK II) supported using a C-clamp to simulate two points supports. The 

orientation of the support is similar to the last condition shown in Figure  4.15. A 

comparison of the spectrum of the disk with that of the free disk (Figure  4.21) and the 

frequencies in Table  4.12, shows the significant effect of the additional support on the 

natural frequencies. A split of the first mode (0,2) to odd and even values could not be 

observed, which is most likely attributed to the factors discussed in the response of DISK 

I (Figure  4.24). The second mode (0,3), however, splits into two values, where the first 

value is same as that of the free disk while the second value corresponds to an additional 

peak near 6.4 kHz. The third mode is a purely radial mode and its frequency increased 

from 7.0 kHz to 7.3 kHz, as it would be expected. The spectrum also exhibits several 

smaller peaks above the first radial modes; a definite association with the out-of-plane or 

in-plane modes could not be established.   
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Figure  4.24: In-plane frequency spectrum for an annular disk with point support (DISK I) 

due to in-plane excitation. 

 
Figure  4.25: In-plane frequency spectrum for an annular disk with two-point support 

(DISK II) due to in-plane excitation. 

The results obtained from the accelerometer are also compared with those from 
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radiations. Figure  4.26 shows the frequency spectrum of the acoustic signal measured at 

the out-of-plane position. A comparison with the frequency spectrum obtained from the 

accelerometer along the radial direction in Figure  4.19 shows that the in-plane modes are 

effectively detected by the microphone and the magnitudes of the observed peeks are 

comparable to those corresponding to the out-of-plane modes. Figure  4.27 shows the 

sound pressure spectrum when the microphone is placed along the radial direction. The 

results suggest stronger contributions of the in-plane modes compared to the out-of-plane 

modes over the same range. It should be noted that the results are presented in the 4000 

Hz to 12000Hz frequency range, since the first in-plane mode is observed 4848 Hz for 

DISK I. These results confirm that the in-plane modes of vibration are an important 

contributor to the total noise radiation if they fall in the range of interest for the particular 

application. 

The signals obtained from the accelerometer are also compared with those from 

the microphone to illustrate the contributions of the in-plane modes to the total noise 

radiations. A comparison of the frequency spectrum of the measured in-plane vibration of 

the free disk excited along the radial direction with that of (Figure  4.19) the sound 

pressure signal measured at an out-of-plane position (Figure  4.26) shows that the in-plane 

modes could also be detected from the microphone signal. Furthermore, the magnitudes 

of the observed peaks are comparable to those of the out-of-plane vibration peaks in the 

vicinity. When the microphone is placed along the radial direction, the frequency 

distribution in Figure  4.27 shows more important contributions of the in-plane modes 

than the out-of-plane modes in the same range.  
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Figure  4.26:  Frequency spectrum of the microphone signal at the out-of-plane position. 

 
Figure  4.27:  Frequency spectrum of the microphone signal at the in-plane position. 

The experimental results also confirm the analytical results that some modes split 

into two distinct values when non-uniform boundary conditions are introduced. The 
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along the out-of-plane direction suggesting a strong coupling between in-plane and out-

of-plane modes even though the thickness to radius ratio is relatively low. 

4.8. Analysis of Acoustic Responses 

Acoustic properties of annular disks such as sound pressure, directivity and sound 

power could also be obtained from the analytical approach described in section  2.6. The 

effects of non-uniformity of the boundary conditions on the acoustic properties of the 

disk could thus be investigated in a similar manner. The results are compared with those 

obtained by Lee and Singh [ 24] for the free edges conditions to examine the validity of 

the analytical approach. The effects of an additional point support are, then, investigated 

and discussed. The geometric and material properties of the annular disk used in the 

current analysis are same as that used by Lee and Singh [ 24] (Ro= 151.5 mm, Ri = 87.5 

mm, h = 31.5 mm, ߩ ൌ 7905.9 kg/m3, ܧ ൌ  218 ൈ 10ଽ N/m2 and ߥ ൌ 0.305. In order to 

obtain an estimate of the acoustic properties, the frequency response characteristics of the 

disk are computed to determine the relative amplitudes of radial displacements of the 

inner and outer edges. For this purpose, a reduced order model is formulated for the 

annular disks with the specified boundary conditions. For this purpose, the modal 

properties of the disk are obtained by solving the associated eigenvalue problem. A 

modal transformation is then invoked to formulate the system in terms of a reduced set of 

modal DOF representing the significant modes. Equation ( 2.104) is subsequently solved 

to determine the frequency response characteristics of the radial displacement due to a 

unit harmonic force applied at the outer edge.  
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Figure  4.28 shows the frequency response characteristics of the annular disk with 

free and point support boundary conditions used in the analysis. The solid line represents 

the frequency response of the disk with free edges, while the dashed and dotted lines 

represent the frequency response of the disk supported at a single point obtained from the 

even and the odd systems, respectively. The peaks shown in the frequency responses 

correspond to modes (0,2), (0,3) and (0,0)r. It is evident that the odd part of the mode 

(0,3) is hardly affected by the additional support, suggesting that the support is located at 

a nodal diameter of this specific mode. The acoustic radiations associated with the first 

two in-plane modes are evaluated and discussed below. 

 

Figure  4.28: Frequency response characteristics of the annular disk with different 
boundary conditions:  free,  point support (even system),  

point support (odd). 
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is only due to the in-plane velocities of the inner and outer surfaces. The sound pressure 

expressions are evaluated at several points on a sphere of 303 mm radius with center 

coinciding with the center of the disk. The variations in the directivity patterns ܦሺߠ, ߶ሻ 

are obtained along the ߠ and ߶ directions.  Figure  4.30 shows the directivity patterns for 

the first two modes along ߠ directions for a disk with free boundary conditions obtained 

from the even subsystem with ߶ ൌ ߨ 2⁄ , while Figure  4.31 shows the directivity along ߠ 

direction with ߠ ൌ 0. The results are presented in terms of normalized pressure, which is 

the sound pressure normalized by the maximum pressure value. The results in both the 

figures agree very well with those presented by Lee [ 108].  

(a) (b) 

 

Figure  4.29: The radial deflection plots of the annular disk with free edges: (a) mode 
(0,2); and (b) mode (0,3). 

Considering the symmetry of the patterns, the directivity is plotted in the 0 to 900 

span. The directivity pattern of the free disk obtained from the odd subsystem along the ߠ 

directions with ߶ ൌ ߨ 2⁄  is illustrated in Figure  4.32 for the first two modes. The 

variations along the ߠ direction show harmonic patterns similar to the variation observed 
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in the structural radial displacement in Figure  4.29, while the directivity of the odd 

subsystem exhibit a phase shift of ߨ ሺ2݊ሻ⁄  with respect to the counterpart from the even 

subsystem. The variation along ߶ direction for the odd subsystem is identical to that of 

the even subsystem, as shown in Figure  4.31.  

(a) 

(b) 

Figure  4.30: Directivity pattern of the annular disk with free edges along ߠ direction for 
even subsystem: a) mode (0,2); b) mode (0,3). 
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(a) 

 
(b) 

 

Figure  4.31: Directivity pattern of the annular disk with free edges along ߶ direction for 
even subsystem: (a) mode (0,2); (b) mode (0,3). 
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(a) 

(b) 

Figure  4.32: Directivity pattern of the annular disk with free edges along ߠ direction for 
odd subsystem: (a) mode (0,2); (b) mode (0,3). 

Figure  4.33 illustrates the directivity of the first two modes of the disk with a 
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location which can be attributed to the coupling with other modes. The directivity pattern 

is affected by the support although similar primary trend can be observed. The variation 

in the sound pressure along ߶ direction is shown in Figure  4.34. The directivity patterns 

obtained from the odd subsystem along the ߠ and ߶ directions are depicted in 

FiguresFigure  4.35 andFigure  4.36, respectively. Comparisons of results show that the directivity 

patterns of the odd and even subsystems for the point-supported disk are quite different. 

FiguresFigure  4.35(b) andFigure  4.36(b) show that the directivity pattern corresponding of mode (0,3), 

obtained from the odd subsystem,  are identical to those obtained for the free disk. This is 

attributable to the fact that the point support is located along the nodal diameter of this 

specific mode and does not affect the modal and acoustic characteristics. This was also 

observed from the frequency response of the free disk in Figure  4.28 where the second 

peak derived from the odd subsystem coincides with the peak corresponding to mode 

(0,3). 

The modal sound power Π୫୬ and radiation efficiency σ௠௡ are further obtained 

and compared with the reported numerical results obtained using boundary element 

method (BEM) and measured data [ 108]. TablesTable  4.13 andTable  4.14 present comparisons of the 

computed modal sound power and the radiation efficiency, respectively, with the reported 

numerical and measured values. The results show reasonably good agreements between 

the model and the reported the results, suggesting that the analytical model can predict 

acoustic properties of the annular disks with sufficient accuracy. Table  4.15 summarizes 

the sound power and radiation efficiency for the even and odd subsystems of the same 

annular disk with a point support. For the even sub system, the sound power Π୫୬ of 

mode (0,2) increases due to the substantial increase in the natural  frequency of the point-  
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(a) 

(b) 

Figure  4.33: Directivity pattern of the point-supported annular disk along ߠ direction for 
even subsystem: (a) mode (0,2); (b) mode (0,3). 
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(a) 

(b) 

Figure  4.34: Directivity pattern of the point-supported annular disk along ߶ direction 
derived from even subsystem: (a) mode (0,2); (b) mode (0,3). 
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(a) 

(b) 

Figure  4.35: Directivity pattern of the point-supported annular disk along ߠ direction 
derived from odd subsystem: (a) mode (0,2); (b) mode (0,3). 

supported disks as shown in Figure  4.28. The sound power corresponding to mode (0,3) 

decreases as a result of the decrease in the magnitude of the even part of the mode (0,3), 

although the natural frequency increases slightly. The radiation efficiency increases in 

both the modes due to increase in the natural frequency. The sound power and radiation 
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efficiency of the odd subsystems increase for mode (0,2) due to increase in the natural 

frequency while they do not change for mode (0,3) since it is not affected by the point 

support. 

(a) 

(b) 

Figure  4.36: Directivity pattern of the point-supported annular disk along ߶ direction for 
even subsystem: (a) mode (0,2); (b) mode (0,3). 
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4.9. Summary 

The presented results show the capability of the analytical method in performing 

modal and acoustic analysis with acceptable accuracy. The analysis was performed with 

no restrictions on the boundary conditions. It has been shown that the non-uniformity in 

the boundary conditions affect the modal and acoustic characteristics of the disk. The 

current chapter discussed the properties of stationary disks while the rotational effect will 

be explored in the next chapter. 

 

Table  4.13: Comparison of modal sound power Π௠௡ (dB re 1pW) for an annular disk 
with free edges. 

mode 
(m,n) Measured [ 108] BEM [ 108] Present study 

(0,2) 66.5 66.5 64.9 
(0,3) 68.0 67.5 68.4 

 

Table  4.14: Comparison of modal radiation efficiency ߪ௠௡ (dB re 1). 

mode 
(m,n) Measured [ 108] BEM [ 108] Present study 

(0,2) -3.5 -4.0 -3.3 
(0,3) -1.5 -1.0 -1.0 
 

Table  4.15: Acoustic properties of a point-supported disk.  

mode 
(m,n) 

Even subsystem Odd subsystem 
Π୫୬ σ௠௡ Π୫୬ σ௠௡ 

(0,2) 66.9 -0.68 66.1 -0.8 
(0,3) 65.6 0.47 68.4 -1.0 
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5. IN-PLANE FREE VIBRATIONS OF ROTATING DISKS 

5.1. Introduction 

The in-plane vibration characteristics of stationary annular disks subject to 

different combinations of boundary conditions, including flexible and non-uniform 

supports, have been evaluated analytically and experimentally, and discussed in chapters 

3 and 4.  The majority of the applications where in-plane modes of vibration would be of 

practical importance, however, involve rotating disks. It is, thus vital to investigate the 

modal characteristics of disks under rotational effects.  

The in-plane vibration analysis of circular disks, however, has been emphasized 

in the past few years, which reflect its importance in various practical applications 

[ 2,  11,  40]. A solution to the symmetric in-plane vibrations of a thin rotating solid 

circular disk was provided by Bhuta and Jones [ 26] who also determined natural 

frequencies for some specific modes. Burdess et al. [ 27] presented generalized 

formulation to consider asymmetric in-plane vibrations, while the effect of rotational 

speed on forward and backward traveling waves of a two nodal diameter mode was 

discussed. Chen and Jhu [ 25,  28] extended the analysis to study the divergence instability 

of spinning annular disks clamped at the inner edge and free at the outer boundary. The 

effect of radius ratio on the natural frequencies and critical speeds of the disk was also 

investigated. Hamidzadeh [ 30,  31] analyzed the same problem with a different 

formulation. In these studies, the critical speeds where determined using the classical 

theory of linear elasticity. Deshpande and Mote [ 36] studied the stability of spinning thin 
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disk using a nonlinear strain measure in order to account for the stiffening of the disk due 

to rotation. The study did not observe a critical speed in the range of rotational speed 

considered for modes with two or less nodal diameters. An upper limit for the rotational 

speed was identified where the assumption of linear strain measure would be applicable. 

The effect of flexible partial or point supports on the in-plane vibration of rotating 

circular disks, however, have not been investigated. 

The in-plane vibration properties of disks would be strongly influenced by the 

coriolis and centrifugal effects due to rotation. The mathematical formulations were 

presented, based on the linear theory, in section  2.5.1. The first section describes the 

rotational effects on annular disks subject to uniform boundary conditions. The variations 

of the travelling waves are presented with respect to rotating and fixed coordinate. Then, 

a rotating point-supported disk is implemented to investigate the combined effect of 

rotation and boundary conditions non-uniformity on the modal characteristics of the disk. 

This problem involves stationary disk with rotating support and a rotating disk with 

stationary support. The later condition is relevant to the application of railway wheel with 

rail contact or a disk brake with friction pad. The initial stiffening due to rotation is, then, 

introduced by developing a non-linear model that permits the coupling between static and 

dynamic problems. The general non-linear problem of an annular disk subject to non-

uniform boundary conditions is explored. Finally, the results from the experimental 

investigations are described. 
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5.2. Linear In-plane Vibration Analysis 

The vibration properties of a rotating disk subject to uniform boundary conditions 

could be conveniently evaluated using linear theory of elasticity, assuming small 

displacements around the equilibrium condition. The non-homogenous terms associated 

with the rotation could thus be decoupled from the equations of motion of the disk. For 

uniform boundary conditions along the circumferential direction, the coupling would then 

be limited to modes within the same nodal diameter number. The vibration analysis of the 

rotating disk can thus be reduced to n sets of uncoupled subsystems as discussed in 

section  2.5.  The uncoupled subsystems are solved assuming a constant angular velocity 

of the disk. The solutions, however, are obtained for various constant angular speeds. The 

frequency parameters of in-plane vibration are also compared with those reported in the 

published studies for stationary disks by letting the speed as zero, as well as the rotating 

disks when available. 

For the rotating disks, two distinct values of the frequency parameters of the in-

plane vibration are obtained irrespective of the angular speed, which represents the 

forward and backward frequencies. As an example, Figure  5.1 illustrates the frequency 

parameters corresponding to mode (0,2) as a function of the rotating speed for a solid 

disk with free boundary condition with respect to the rotating coordinate. The figure 

illustrates the variations in the frequency parameters with the non-dimensional rational 

speed defined as Ωഥ ൌ Ωܴ௢ ඥߩሺ1 െ ଶሻݒ ⁄ܧ . The results show considerable differences in 

the frequency parameters corresponding to the forward and backward waves. The 

parameter of the forward wave decreases from 1.39 at Ωഥ ൌ 0 to zero at Ωഥ ൎ1.35. The 
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direction of the wave reverses thereafter and can be interpreted as a backward traveling 

wave. For the backward wave, the magnitude of the frequency parameter increases 

slightly from its initial value of -1.39 at Ωഥ ൌ 0 towards a maximum value of െ1.7 near 

Ωഥ ൌ 0.5. A further increase in the rotating speed causes a reduction in the magnitude of 

the frequency parameter. The parameters of the two waves (forward and backward) 

converge as speed increases. This point of convergence is considered as the dynamic 

stability limit, where the roots approach imaginary values. The results shown 

in Figure  5.1 agreed very well with those reported in a previous study [ 27]. 

 

Figure  5.1: Variations in frequencies parameters of in-plane vibration of a free solid disk 
corresponding to mode (0, 2) with respect to the rotating coordinate. 

The results in Figure  5.1 show the variations in frequency parameters with respect 

to the rotating coordinate system. Alternatively, the variations in the frequency 
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frequency parameters corresponding to forward and backward traveling waves for an 

annular disk with respect to fixed frame are illustrated in Figure  5.2 for a few selected 

modes. The results are obtained for the clamped inner edge and free outer edge 

conditions with ߚ ൌ 0.2. The label (m, n) refers to the mode with m nodal circle and n 

nodal diameter, while the letters f and b denote the forward and backward waves, 

respectively. The results show that the frequencies corresponding to forward and 

backward waves are identical for the stationary disk, when uniform boundary conditions 

are considered. Due to the rotational effects involved, the odd and even subsystems are 

coupled and the forward and backward waves comprise the predominant cosine and sine 

modes, respectively, of the coupled system. In Figure  5.2, the mode (0,0) is the pure 

torsional mode as the speed increases which does not split into forward and backward  

directions and is the first vanishing mode as speed increases. The frequencies 

corresponding to backward waves of the other selected modes also diminish to zero as the 

rotational speed increases and approaches the critical speed. The backward wave is 

reflected back to a forward travelling wave as the speed increases beyond the critical 

speed, which is referred to as the "reflected waves" and denoted by rw in Figure  5.2. 

Similarly, Figure  5.3 shows the variations in the natural frequency of a free-free annular 

disk as a function of the rotational speed. The slope of the forward and backward waves 

increases as n increases. The results obtained for the annular disk subject to uniform 

clamped-free and free-free conditions (FiguresFigure  5.2 andFigure  5.3) are found identical to those 

reported in [ 28,  31], while the analyses of in-plane vibration of disks with the non-

uniform boundary conditions are discussed in the next sections. 
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Figure  5.2: Variations in frequency parameter of a rotating clamped-free annular disk 
ߚ) ൌ 0.2) with respect to the fixed coordinate;  : backward waves, and 

:forward waves. 

 

Figure  5.3: Variations in frequency parameter of a rotating free-free annular disk 
ߚ) ൌ 0.2) with respect to the fixed coordinate;  : backward waves, and 

:forward waves. 
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5.3. In-plane Vibration Analysis of a Rotating Point-Supported 

Disk 

The variations in frequency parameters of in-plane vibration of solid and annular 

disks with partial or point supports are investigated as a function of the rotational speed. 

Unlike the disks with uniform boundary conditions, the partial supports cause the 

frequencies to further split into two different values. This effect is added to the split 

caused by the gyroscopic effect of the rotating disk as observed in the results presented 

for the uniform boundary conditions (FiguresFigure  5.2 andFigure  5.3). Figure  5.4 illustrates variations 

in the natural frequencies with rotational speed of a solid disk with free edge and a point 

support for mode (0,2). The addition of a point support yields two different values of the 

natural frequency even when the disk is stationary, as observed in the figure. 

Furthermore, both the values tend to be higher than the natural frequency of the free disk.  

With increasing rotational speed, the variations in the forward and backward 

frequencies exhibit the same trend, irrespective of the support condition considered. The 

results further show critical speed of the disk with a point support is greater than that of 

the free disk. Moreover, the reflected wave does not reflect at the same speed. It should 

be noted that Figure  5.4 illustrates the variations in the frequency parameters 

corresponding to mode (0, 2) alone, while the veering in the frequency curve in the 

presence of the other mode frequencies was suppressed in order to clearly illustrate the 

effect of the point support. The variations in the frequency parameters of the point-

support rotating disk show the veering in frequency corresponding to each mode. While 

this effect has been shown in many studies on the out-of-plane vibration of rotating disk 

[ 109,  110], the effects on in-plane modes have not been illustrated. 
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Figure  5.4: Effect of rotational speed on the variation in natural frequency corresponding 
to mode (0,2) of a solid disk with respect to the rotating coordinate system: ,  

Free disk; and point-supported disk . 

Figure  5.5 illustrates variations in frequency parameters corresponding to the 

forward and backward waves of an annular disk clamped at the inner edge for a few 

coupled modes in the rotating coordinate system. The solid lines in the figure show the 

variations for the uniform clamped-free condition, while those in dotted lines illustrate 

the variations for the clamped-point supported disk. 

Figure  5.6 illustrates the variations in the forward, backward and reflected waves 

of the selected modes of the annular disk with the same support conditions in the fixed 

coordinate system. The results in FiguresFigure  5.5 andFigure  5.6 are obtained for a low stiffness of 

the point ܭഥ௥ ൌ ഥఏܭ ൌ 1, in order to compare them with those of the free disk. From the 

results, it is observed that, for each mode, the backward wave does not reflect at the 
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Figure  5.5: Effect of rotational speed on variations in the natural frequencies 

corresponding to selected modes of an annular disk (ߚ ൌ 0.2) with respect to the rotating 
coordinate system:  : clamped-free; and : clamped-point support. 

same critical speed. This is illustrated in the detailed view of the critical speed 

region Figure  5.6 (b).  This region of zero frequencies has been referred to as the 

divergence type instability [ 111] or stationary instability [ 112]. The length of the 
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mode. For example, Figure  5.6 (b) illustrates that mode (0,1) is strongly affected by the 
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and the reflected waves tend to merge or separate from each other at different rotational 
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for free outer edge condition, which is also clearly seen in Figure  5.2. For this uniform 

boundary condition, the frequencies of modes simply cross over, as seen in the figure. It 

is observed that the frequency curve corresponding to a particular mode of a point-

supported disk veers away from that of another mode as it approaches the frequency of 

the other mode. For example, the backward branch of mode (1,2) and the forward branch 

of mode (0,1) veer away from each other as they approach comparable values near 

Ωഥ ൌ 0.75. This is a well-known phenomenon, which is called “curve veering” and has 

been observed in many discrete and continuous systems [ 109,  110]. The results obtained 

in this study revealed that not all modes veer away from each other. The frequency 

variations in some of the modes approach each other and merge before they split again. 

Mode (1,1)b, for example, merges with mode (0,3)rw before they separate and each one 

continues its original path. This is known as flutter instability [ 111] or merged type 

instability [ 112] of rotating disks. It can be noted that when frequencies corresponding to 

two modes approach comparable values, they tend to merge if one of these relates to a 

reflected wave; otherwise they tend to veer away from each other. 

The observed veering and merger tendencies of the frequencies corresponding to 

all the modes are strongly influenced by the stiffness parameter of the point support 

stiffness. Figure  5.7, as an example, illustrates the variations in frequency parameters of 

the (0,1) and (0,2) in the fixed coordinate system for the clamped-point supported disk 

with nominal support stiffness (ܭഥ௥ ൌ ഥఏܭ ൌ 10ହ). Comparisons of the results shown in 

FiguresFigure  5.6 andFigure  5.7 clearly show the effect of support stiffness parameter on the speeds at 

which the veering and merging of frequencies of the two modes could be observed.  
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(a) 

(b) 

Figure  5.6: (a) Variation of non-dimensional natural frequencies of an annular disk 
ߚ) ൌ 0.2) with respect to the fixed coordinate; : clamped-free, : 

clamped-point support, point-support stiffness ܭഥ௥ ൌ ഥఏܭ ൌ 1, (b) detailed view of the 
critical speed region. 
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Figure  5.7: Variation of non-dimensional natural frequencies of an annular disk (ߚ ൌ 0.2) 

with respect to the fixed coordinate; : clamped-free, : clamped-point 
support. 

5.4. Rotational Stiffening Effect 
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to be axisymmetric with no circumferential displacements. This assumption simplifies the 

equation of equilibrium to Eq. ( 2.74), which can be solved to yield a closed form relation 

of Eq.( 2.75). This solution, however, is applicable to disks with uniform boundary 

conditions, only. The generalized formulation, developed in this study, can be applied for 

analysis of the static displacements due to rotation of an annular disk with non-uniform 

boundary conditions. This formulation has been presented in Eq. ( 2.78). The radial 

expansion of Eq. ( 2.78) would be identical to that obtained from Eq.( 2.75) for uniform 

boundary conditions.  The solutions are obtained for uniform boundary conditions and 

the resulting coefficients of the static vector ሼݍ௦ሽ are examined, which reveal all the 

coefficients as zero, except for those associated with the axisymmetric displacement 

ሺ݊ ൌ 0ሻ.  

For a disk with non-uniform boundary conditions, Eq. ( 2.74) would be invalid 

since the circumferential displacements and their variations along the circumferential 

coordinate are neglected. In this case, radial expansion would be obtained through 

solution of Eq. ( 2.78) only. The resulting displacements are not axisymmetric due to 

variations in the boundary conditions along the circumferential directionቀ డ
డఏ

് 0ቁ. This 

makes the coefficients associated with ሺ݊ ൐ 0ሻ in the static vector ሼݍ௦ሽ to have nonzero 

values and contribute to the radial displacement responses. Figure  5.8(a) and (b) show the 

radial expansions of the outer edge of the disk with free and point-supported outer edge, 

respectively. The undeformed shape of the disk without the rotational effects is shown by 

the dashed line. From Figure  5.8(a), it is evident that the radial expansion is 

axisymmetric, while the point support enforces zero displacement that disturbs the 
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axisymmetry of the expansion. The expansion, shown in Figure  5.8(b), is identical for a 

rotating or fixed point support relative to the disk. The two cases are shown in Table  2.4. 

For a rotating disk with a rotating support, the radial expansion also exhibits rotation at 

the same speed. For the rotating disk with a stationary support, the shape in Figure  5.8(b) 

is be non-rotating, while the disk itself is rotating.  

  (a) (b) 

Figure  5.8: Radial expansion due to rotation for the outer edge of a disk: (a) with free 
boundary conditions, (b) with a point support at the outer edge.  deformed edge, 

undeformed edge . 

In order to obtain the modal characteristics of a rotating disk with consideration of 

rotational stiffening effect, it is essential to solve for vector ሼݍ௦ሽ associated with initial 

deformation of the disk, which is a function of the rotational speed. Equation ( 2.81) is 

then solved for the dynamic displacement vector ሼݍௗሽ, which yields the modal 

characteristics of the rotating disk. Figure  5.9 compares the frequency parameters of a 

rotating annular disk with clamped-free boundary conditions and ߚ ൌ 0.2, with and 
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variations in the frequency parameters corresponding to a few selected modes, where the 

solid lines represent the variation without considering the stiffening effects, while the 

dashed lines show the variations under the effect of additional stiffening. The results 

clearly show the absence of critical speeds when the rotational stiffening is considered. 

Moreover, the rotational stiffening does not introduce any additional coupling between 

the modes and the variations exhibit only simple crossover of frequencies corresponding 

to different modes, as they approach comparable values. 

The effect of additional stiffening is further explored on the in-plane vibration 

properties of disks with non-uniform support conditions. The variations in the frequency 

parameters and the traveling waves of an annular disk clamped at the inner edge and 

point-supported at the outer edge are shown in Figure  5.10. The results are presented for 

a few selected modes; which do not show the presence of a critical speed in the speed 

range considered. The results thus suggest that merged type or stationary instabilities do 

not occur when the additional rotational stiffness effect is considered. This instability, 

however, is evident in the results obtained without the additional stiffness at speeds above 

the critical speed. The only phenomenon that can be observed in Figure  5.10 is the curve 

veering, which occurs regardless of the consideration of the stiffening effects. From the 

results it can be concluded that the additional stiffening due to rotation needs to be 

incorporated in the analysis in order to accurately predict the dynamic response of the 

disk, particularly for applications involving high rotational speeds. 
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Figure  5.9: Variations in the frequency parameter of a clamped-free annular disk 
ߚ) ൌ 0.2) with the rotational speed,  : without stiffening effect, : with 

stiffening effect. 

 

Figure  5.10: Variations in the non-dimensional natural frequencies of a clamped-point 
supported annular disk (ߚ ൌ 0.2) with the rotational speed,  : without stiffening 

effect, : with stiffening effect. 
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5.5. Laboratory Measurements 

Laboratory experiments were performed to study the effects of rotation and the 

supports on the modal characteristics of the disks. The primary goal of the experimental 

study was to confirm the split in natural frequencies of the disk that was observed in the 

analytical results under both rotation and support non-uniformity.  While the effects of 

the supports on the natural frequencies were investigated experimentally and discussed in 

section  4.7 for stationary disks, additional experiments were performed to measure the 

effect of disk-rotation on its in-plane modes under uniform and point-support boundary 

conditions.  

5.5.1. Experimental Setup 

 The experimental setup consisted of an aluminum disk mounted on a uniform 2.5 

cm diameter steel shaft that was supported by a number of bearings and driven by a 

variable speed DC motor. The motor could be operated in the 0 to 3000 rpm, using the 

speed controller. Figure  5.11 illustrates schematic and a pictorial view of the shaft disk 

assembly and the experimental setup. The disk is mounted near the free end of the shaft 

in order to reduce the contribution of the motor noise to an extent. The shaft was 

supported by three bearings; two of these were located close to the disk in order to 

minimize its deflection due to shaft rotation, as seen in Figure  5.11. An aluminum disk 

was used, instead of the steel disk, in order to reduce the magnitude of the centrifugal 

forces due to rotation of the disk. The properties of the disk used were: ܴ௢  ൌ 0.15m, 

ܴ௜݅ ൌ 0.02m, ݄ ൌ 0.01m, ߩ ൌ 2680 kg/m3, ܧ ൌ  15 x10ଽ N/m2 and v = 0.33. The 

measurements were initially performed on the stationary disk using the microphone, the 
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accelerometer and the impulse hammer, as described earlier in section  4.3.2. The 

accelerometer was used to identify both the in-plane and out-of-plane modes of vibration 

of the stationary disk. A plexiglass guard was placed around the rotating disk to ensure 

the safety of those working there. The motor was operated at different speeds, and a 

microphone was positioned on the guard close to the disk in order to measure the radiated 

sound pressure. From the preliminary measurements, it was concluded that the in-plane 

modes of the disk could not be adequately excited by the rotation of the disk. A steel stick 

was thus placed between the guard and the disk that maintained a contact with the outer 

edge of the disk and thus served as a source of continuous excitation to the disk along the 

radial direction. 

The measured signals, however, revealed significant contributions due to several 

undesired noise sources such as motor, bearings, and vibrations of the supporting table. In 

order to account for contributions due to these sources, the measurements were taken at 

each speed of interest with the disk rotating freely in the absence of the in-plane 

excitation through the steel stick. This served as the reference signal that was applied to 

signals acquired from the disk subjected to in-plane excitation. A point-support was 

subsequently introduced in order to resemble fixed point contact with the disk. The point 

support assembly consisted of a bearing with a hard urethane rubber casing on its outer 

edge. The bearing was attached to a pin, as shown in Figure  5.11. The support assembly 

was designed to achieve adjustable height, which permitted variations in the support 

force imposed on to the disk.  
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Figure  5.11: (a) Schematic of experimental set up for rotating disk, and (b) pictorial view. 

(a) 

(b) 
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5.5.2. Experimental Results 

The experiment design used in the study posed several challenges in 

measurements and identifications of in-plane modes of vibration of the rotating disks. 

The primary challenge arose from characterizations of the boundary conditions at the 

inner edge of the disk. In the experiment, the disk was coupled to the shaft through a 

flange using eight bolts. This boundary condition could be assumed to be uniform along 

the circumferential direction at the inner edge, although this would not simulate a 

perfectly clamped conditions, which is quite complex to realize in practice. This 

boundary condition, however, was considered to be better described by a flexible inner 

edge boundary condition, while the stiffness due to the constraint would be an unknown. 

The simulations were performed to compute the in-plane natural frequencies of the disk 

with both free and perfectly clamped inner edge. The results obtained for the two extreme 

boundary conditions, free and clamped inner edge, were considered as the lower and 

upper bounds of the natural frequencies of the disk. Since the disk has a low radius ratio, 

the differences between the upper and lower bounds were found to be relatively small.  

The experiments were initially conducted on the stationary disk excited along the 

radial direction, while the response was measured at the outer edge using the 

accelerometer and the microphone. Similarly, the measurements were also performed to 

acquire the out-of-plane vibration response in order to identify the out-of-plane modes 

that might be detected along the radial direction due to the coupling effects. Comparison 

between the analytical and experimental values provided guidance for selecting the inner 

edge support stiffness. A stiffness parameter value of ܭഥ௥ ൌ ഥఏܭ ൌ 1 4⁄  was considered 

adequate for the purpose of comparisons with the study of rotational effect. Table  5.1 
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shows the comparisons between the experimental measurements and the results obtained 

from analytical formulation, for a few lower modes, when the inner edge is considered to 

be supported by chosen stiffness parameters. The results show good agreements between 

the measured and model results. The peak error is in the order of 1%. 

Table  5.1: In-plane natural frequencies of an aluminum disk with flexible inner edges 
condition. 

Natural frequency (Hz) 
Experimental (Hz) 7680 9984 11820 

Analytical (Hz) 7700 10100 11900 

Apart from the above, the disk could be operated only at relatively low speeds 

partly due to speed limit of the motor and in-part due to the safety concerns. The in-plane 

natural frequencies of the disk, however, were relatively high due to the low radius ratio 

and small outer radius of the disk. The rotational speed that would allow the disk to reach 

instability was thus significantly high and could not be attempted in the experiments. 

Furthermore the aerodynamic forces/ moments tend to be quite significant at higher 

speeds and would yield additional coupling between the modes and significant damping. 

It has been suggested to either consider the aerodynamic effects in the modeling task or 

to isolate the effect by installing the disk in a vacuum chamber [ 113]. Although the 

rotational speeds in the current experiment were not sufficiently high to demonstrate the 

behavior of the disk in the instability regions, the experiments conducted at the available 

speeds showed the forward and backward traveling waves of the in-plane modes. 

Moreover, the in-plane modes are known to be relatively less sensitive to the rotational 

speed than the out-of-plane modes. The experiment speed limit of 2000 rpm was thus 
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considered sufficient to study the combined effects of rotation and non-uniform supports, 

and to illustrate the forward and backward waves in the in-plane modes.  

Uniform Boundary Conditions 

The accelerometer and sound pressure signals acquired for the stationary disk 

with uniform flexible support at the inner edge and free outer edge were analyzed using 

the multi-channel signal analyzer. The measurements were subsequently performed at 

different rotational speeds (960, 1140 and 1920 rpm). FiguresFigure  5.12 and Figure  5.13 illustrate 

frequency spectra of the measured sound pressure and acceleration, respectively, of the 

stationary disk subject to the impulse hammer excitation. The frequency spectra exhibit 

several in-plane and out-of-plane vibration modes. The spectra show the peeks 

corresponding to three in-plane vibration mode frequencies listed in Table  5.1, while all 

the outer peeks in the spectra correspond to the out-of-plane modes of vibration.  

 
Figure  5.12: Frequency spectrum of the sound pressure measured near the stationary 
aluminum disk subject to an impulse hammer excitation (flexible inner edge and free 

outer edge). 
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Considering that a point-support would cause the in-plane frequencies to increase 

significantly and thereby may shift the higher mode frequencies beyond the frequency 

range of measurement, and the relative amplitude of the first mode is considerably 

higher, the discussions of the measured data are limited to the first mode only. 

Figures Figure  5.14 toFigure  5.16 illustrate the frequency spectra of the measured sound pressure 

response of the disk rotating at three different speeds to study the effects of rotation on 

the in-plane modes of vibration. The rotational effects are evident, Figure  5.14, on the 

frequencies of the out-of-plane modes. For instance, the modes in the 4-6.5 kHz range 

exhibit frequencies corresponding to the forward and backward traveling waves. The 

frequencies of the in-plane modes do not exhibit any split in frequencies at the lower 

speeds, as seen in FiguresFigure  5.14 andFigure  5.15. It should be noted that the peak near the first in-

plane mode (near 7.8 KHz) was found to correspond to an out-of-plane mode.  

 
Figure  5.13: Frequency spectrum of the radial acceleration of the stationary aluminum 
disk subject to an impulse hammer excitation (flexible inner edge and free outer edge) 

along the in-plane direction. 
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Figure  5.14: Frequency spectrum of the sound pressure measured near the rotating 

aluminum disk subject to an impulse hammer excitation (flexible inner edge and free 
outer edge) at 960rpm. 

 
Figure  5.15: Frequency spectrum of the sound pressure measured near the rotating 

aluminum disk subject to an impulse hammer excitation (flexible inner edge and free 
outer edge) at 1140rpm. 
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Figure  5.16: Frequency spectrum of the sound pressure measured near the rotating 
aluminum disk subject to an impulse hammer excitation (flexible inner edge and free 

outer edge) at 1920rpm. 

A split in the first in-plane mode frequency, however, is clearly evident in the 

spectrum of the sound pressure measured at the higher speed of 1920 rpm, as shown 

in Figure  5.16. The results  show two peaks in the spectrum that correspond to be the 

backward and forward wave frequencies at 7.68 and 7.73 kHz, respectively. The 

experimental results thus confirm the presence of the forward and backward wave 

frequencies of the disk under a uniform support that were observed in the simulation 

results at higher disk speeds. Although the results were obtained for the disk under radial 

excitation only, the frequency spectra show significant contribution from the out-of-plane 

modes which illustrate the strong coupling between modes of the disk. It has to be noted 

that disks with larger diameter would have in-plane modes with frequency values much 

lower than those of the disk considered in the experiment, as can be seen in Figure  3.7 
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which showed the variations of in-plane modes with disk diameter. These modes would 

have higher nodal diameter number n, which yields larger split between forward and 

backward waves. 

Point-Supported Disk 

The previous results show the split or bifurcation of natural frequency due to 

rotational effects only. In the previous chapter, the effect of point support on stationary 

disk was also studied. The current results explore the combined effect of rotation and 

point support on the disk. The point support is applied to the disk by pushing the bearing 

with rubber casing against the outer edge of the disk. The measurements were taken first 

for the disk while it is in stationary position. Figure  5.17 show the frequency distribution 

of the stationary disk with the support. The split of the in-plane mode is clearly shown in 

the figure which suggests that the point support effect is evident even without considering 

the rotational effect. The support is pushed against the disk with maximum allowable 

force and the frequency response is shown in Figure  5.18. Comparison between the 

responses in FiguresFigure  5.17 and Figure  5.18 shows that the split between the frequencies becomes 

larger as the force of the support increases. 

Then, the disk is allowed to rotate while the support is applied. Figure  5.19 

illustrate the frequency distribution of the disk rotating at 500 rpm. The backward and 

forward waves are clearly shown in the figure as two peaks. The third peak that exists 

right after the forward peak frequency is an out-of-plane mode. The distribution of the 

frequencies for the disk rotating at 960 rpm is shown in Figure  5.20, which also shows 

the three peaks close to each other. Comparison between the responses at the same speed 
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without the support, shown in Figure  5.14, and with the support, shown in Figure  5.20, 

show that the response without the support did not show any split in the natural 

frequencies. The effect of the support is, therefore, helps to produce forward and 

backward frequencies at lower rotational speeds than those without support. 

Further increase in the rotational speed increases the noise and vibrations from the 

rotor, bearings and motor. The bearing noises become larger due to the support force 

against the bearings. Moreover, the heating generated at the contact at high speeds cause 

damage to the outer layer of the rubber and produce excessive fluctuation of the disk. 

These reasons make it difficult to run the disk at higher speeds as in the case of freely 

rotating disk. The results shown are, however, sufficient to prove that the support or 

contact condition has significant effect on the modal characteristics of the circular 

rotating disk. 

 
Figure  5.17: Frequency spectrum of the sound pressure measured near the stationary 

aluminum disk subject to an impulse hammer excitation (flexible inner edge and subject 
to an elastic point-support with low support force at the outer edge). 
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Figure  5.18: Frequency spectrum of the sound pressure measured near the stationary 
aluminum disk subject to an impulse hammer excitation (flexible inner edge and subject 

to an elastic point-support with high support force at the outer edge). 

 

Figure  5.19: Frequency spectrum of the sound pressure measured near the rotating 
aluminum disk subject to an impulse hammer excitation (flexible inner edge and subject 

to an elastic point support at the outer edge) at 500 rpm. 
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Figure  5.20: Frequency spectrum of the sound pressure measured near the stationary 
aluminum disk subject to an impulse hammer excitation (flexible inner edge and free 

outer edge) at 960 rpm subject to an elastic point support. 
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conditions is explored. The variations of the forward and backward travelling waves are 

presented with respect to rotating and fixed coordinates to investigate the combined effect 

of rotation and boundary condition non-uniformity on the modal characteristics of the 

disk. Unlike the disks with uniform boundary conditions, the partial supports cause the 

frequencies to further split into two different values. This effect is added to the split 
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tend to merge or separate from each other at different rotational speeds. The effect of 

additional stiffening is further explored on the in-plane vibration properties of disks with 
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non-uniform support conditions. The results clearly show the absence of critical speeds 

when the rotational stiffening is considered. An experimental study is performed to 

confirm the split in natural frequencies of the disk that was observed in the analytical 

results under both rotation and support non-uniformity. The experimental results thus 

confirm the presence of the forward and backward wave frequencies of the disk under a 

uniform support that were observed in the simulation results at higher disk speeds. The 

effect of the support, therefore, helps to produce forward and backward frequencies at 

lower rotational speeds than the case without support. 
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6. ANALYSIS OF THREE-DIMENSIONAL MODEL FOR 

THICK DISKS 

It has been established that in-plane modes of vibration are significant in 

problems involving thick disks. In such problems, the contributions due to the out-of-

plane modes are also equally important and could not be neglected. This is particularly 

significant considering the strong coupling between the in-plane and the out-of-plane 

modes for applications involving thick disks [ 2,  40,  74]. The analyses of noise and 

vibration responses of rotating thick disks thus necessitate considerations of the coupled 

in-plane and out-of-plane modes of vibrations. 

A three-dimensional model of a thick disk is thus formulated in this chapter for 

analysis of coupled in-plane and out-of-plane modes of vibration. For this purpose, the 

in-plane formulations, presented in chapter 2, are extended to study the coupled modes of 

thick disks. Furthermore, the model is applied for analysis of vibration and noise of a 

railway wheel as a typical example involving rotational and constraint effects due to the 

contact with the rail. The point support and the rotation affect both in- and out-of-plane 

modes of vibrations of the railway wheel. In a reported study of the railway wheel noise 

radiation problem, Thompson [ 1] reported that the natural frequencies of the wheel could 

split into two values for some of the modes for a stationary wheel. The noise and 

vibration of a railway wheel were investigated by Sato and Matsuhisa [ 77] through an 

experiment. The experimental set up consisted of two wheels, representing the wheel and 

the rail, pressed against each other. The measurements were taken for several conditions 

including non-rolling and rolling disks at different pressing load conditions. Comparisons 
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between the experimental and analytical results suggested that the frequency distribution 

of the radiated noise is significantly affected by the wheel-rail contact. The analytical 

results showed that experimental results were best described by modeling the wheel as a 

disk with clamped inner edge and point-supported at the outer edge. The rotational effects 

were found to be insignificant for the rotational speeds considered in the analysis. 

Sakamoto et al. [ 78] conducted experimental investigations on rail-wheel interactions and 

concluded that one of the modes responsible for noise radiation could not be linked to 

any of the natural frequencies from the data acquired for the wheel without contact with 

the rail. The authors speculated that this mode could be attributed to the rail, while no 

explanation or justifications were provided. The authors also recommended for further 

investigations in this aspect. This mode of vibration could be associated to a mode that 

splits into two distinct frequencies in the presence of the wheel-rail contact or to the rail 

vibration caused by the wheel-rail contact forces. In both cases, this addresses the 

importance of the contact condition in the analysis of wheel vibrations. Thompson [ 42] 

showed that the analysis incorporating the rotational effects yields more accurate 

predictions of the natural frequencies and the acoustic properties of the rail-wheel system.   

6.1. Analysis 

In the previous chapters, the rotational and constraint effects have been addressed 

in the context of in-plane modes of vibrations only. Owing to the expected couplings 

between the in-plane and out-of-plane modes of thick disks, a three-dimensional model is 

proposed incorporating the uniform and non-uniform constraints and rotational effects. 

This model is formulated as an extension of the in-plane model developed in chapter 2, 
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which permits the analysis of the coupled in-plane and out-of-plane vibrations. The 

essential energy expressions for thick disks are derived for the three-dimensional model 

that also allows consideration of multiple disks connected by artificial springs to simulate 

abrupt variations in the thickness of the assembly. The non-uniform contact of the disk 

with a fixed surface could be represented by a point, line or an area spring with variations 

along the circumferential and the normal directions. Rotational effects and the additional 

stiffening due to initial rotation can be incorporated in the kinetic energy expression, as 

discussed earlier in section  2.5. Expressions are further formulated for estimating the 

acoustic properties associated with both the in-plane and out-of-plane modes of vibration.  

6.1.1. Stationary Disk 

A stationary annular thick disk of thickness h, outer radius Ro and inner radius Ri 

is shown in Figure  6.1. The displacement of an arbitrary point on the disk is described in 

the cylindrical coordinate system (r, θ and z) as ur, uθ and uz, respectively. The strain 

energy can be written in terms of the stress and strain components as: 

dzddrrW
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For an isotropic elastic disk that obeys Hooke’s law, the stress-strain constitutive 

equations can be written as: 
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 where the constants ߣ and G are called the Lame constants, given by:  
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The constant G is also known as the shear modulus. The strain components can be 

expressed in terms of the three-dimensional displacements as: 

 

 

Figure  6.1: Geometry and coordinate system used for in-plane vibration analysis of a 
thick annular disk. 
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Substituting Eqs. ( 6.4) and ( 6.2) into ( 6.1) and introducing the non-dimensional 

parameters, ߦ=r/Ro and ߞ=z/h, the expression for the maximum strain energy ሺॼ௠௔௫ሻ of 

the disk in cylindrical coordinate system can be expressed as: 

 
z 

ur
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 In the above equation, the coordinates r and z are expressed in terms of non-

dimensional parameters leading to cylindrical coordinate as (ߦ,θ, ߞ). The expression for 

the maximum kinetic energy ሺ ௠ܶ௔௫ሻ is also expressed in the same coordinate system, as: 
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The free in-plane vibration of the disk is assumed to have sinusoidal variations 

along the circumferential direction of the disk, and may be expressed in the form [ 2,  71]: 

,ߦ௥ሺݑ ,ߞ ሻߠ ൌ ෍ ෍ ෍ൣ ഥܷ௖,௟௠௡ሺݐሻ߰௟ሺߞሻ߶௠ሺߦሻ ሻߠሺ݊ݏ݋ܿ
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( 6.7)
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where ഥܷ, തܸ  and ҧܼ are the radial, circumferential and transverse deflection coefficients, 

respectively. The first subscripts, c and s, refer to cosine and sine components of the 

deflections, respectively. The subsequent subscripts, l, m and n, describe the number of 

terms along the transverse, radial and circumferential directions, respectively. The 

functions ߶ሺߦሻ and ߰ሺߞሻ are the assumed deflection shapes satisfying the geometric 

boundary conditions in the form of boundary characteristic orthogonal polynomials. The 

starting functions, ߶ଵሺߦሻ and ߰ଵሺߞሻ where taken as 1, while distributed artificial springs 

were considered to represent the clamped boundary conditions. The successive 

polynomials were generated using the recurrence relation ( 2.46), while the associated 

constants ܾ௞ and ܿ௞, for the polynomials along the normal directions ߰ሺߞሻ are defined as: 
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( 6.10)

The assumed solutions ( 6.7) to ( 6.9) are substituted into the energy 

expressions, ( 6.5) and ( 6.6), to obtain natural frequencies of the disk using the Rayleigh-

Ritz method. A point support condition at an edge is realized by introducing artificial 

springs along the radial, circumferential and transverse directions at the location of the 

support, as described in section  2.4.1 for the in-plane model. Figure  6.2 illustrates the 

disk supported on a point support idealized by the artificial springs in the three directions. 

For a disk supported at multiple points on the outer edge, the maximum potential energy 

௣ܹ  can be derived as:  
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where p=1,2,…P defines the number of point supports considered, and Kpr , Kpθ and Kpz 

are the stiffness constants per unit length of the point elastic support in the radial, 

circumferential and transverse directions, respectively; and Rp, θp and ߞ௣ are the radial 

and circumferential coordinates of the point support p, respectively. It is assumed that the 

point supports have a symmetric axis about θ = 0. The total strain energy of the disk is 

then obtained by summing those defined in Eqs. ( 6.11) and ( 6.5). The energy equations 

are subsequently solved for the natural frequencies and mode shapes, using the 

methodology described in section  2.3.  

 
Figure  6.2: Annular disk with a three-dimensional elastic point support at the 

outer edge. 
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6.1.2. Rotational Effects 

The formulation of the rotational effects is similar to that described in section  2.5. 

For the linear analysis and constant rotational speed about the normal axis, the expression 

for the kinetic energy can be written as: 
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 ( 6.12) 

The kinetic energy expression can also be written with respect to fixed coordinate 

using the transformation given in Eq. ( 2.82). The kinetic energy expression, Eq.( 6.12), 

along with strain energy expressions for the disk and boundary conditions, Eqs. ( 6.5) 

and ( 6.11), can be used to study the three-dimensional modal characteristics of a rotating 

disk.  

The rotational and constraint effects yield coupling between different modes, as 

discussed previously in section  2.4.2. It was established that radial and circumferential 

displacements were coupled in thin disks, while the transverse displacement could be 

treated independently. For a thick disk, an additional coupling is introduced between in-

plane and out-of-plane modes. This is evident from Eq. ( 6.5), which shows that the 

transverse displacement is coupled with both the radial and circumferential 

displacements. The severity of the coupling between the modes depends on the rotational 

speed and the boundary conditions, as described in section  2.4.2. 

For axisymmetric modes (݊ ൌ 0), the coupling exists between the radial and the 

transverse modes only. Therefore, for a stationary disk subject to uniform boundary 

conditions, the axisymmetric radial and transverse modes need to be solved 



204 

 

simultaneously, while the circumferential torsional modes can be treated independently. 

For modes with non-zero nodal diameter number (݊ ് 0), radial, circumferential and 

transverse modes are coupled within the same nodal diameter number n. In this case, it is 

not necessary to solve for the even and odd subsystems since they would yield identical 

solutions for the eigenvalue problem. For stationary disks subject to non-uniform 

supports, the system can be conveniently expressed by decoupled even and odd 

subsystems, as described in section  2.4.2, where each subsystem would yield distinct 

values for of the natural frequencies. For rotating disks, however, both the subsystems 

need to be solved simultaneously. The non-uniform supports would further generate 

additional coupling between the modes with different nodal diameter number (n). 

An additional symmetry is also observed at ߞ ൌ 0 for disks subject to uniform 

boundary conditions at both faces. The modes, therefore, can be divided into symmetric 

and anti-symmetric modes with respect to the mid-plane of the disk. The symmetric 

modes can be obtained by taking ݈ ൌ 0, 2, 4, … in Eqs. ( 6.7) and ( 6.8) and ݈ ൌ 1, 3, 5, … in 

Eq. ( 6.9), while ݈ ൌ 1, 3, 5, … in Eqs. ( 6.7) and ( 6.8) and ݈ ൌ 0, 2, 4, … in Eq. ( 6.9) would 

yield the anti-symmetric modes [ 71].    

6.1.3. Out-of-Plane Sound Radiation 

In section  2.6, an acoustic analysis was performed to obtain the sound radiation 

characteristics due to in-plane modes of vibration of the disk. The acoustic properties 

associated with the out-of-plane modes of vibrations can also be evaluated in a similar 

manner. The three-dimensional model, presented in this section, however, can predict the 
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acoustic properties of the thick disk attributed to both the in-plane and out-of-plane 

modes.  

The far field sound pressure can be obtained by solving the Helmholtz integral 

equation, such that: 
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where P is the sound pressure generated at a sphere of radius rp by the normal velocity ݓሶ  

of the disk surface at rs. The term ܩҧ  is free space Green’s function, ߛ is the angle between 

the disk normal surface and the point where the pressure is measured and S is the 

boundary surface of the acoustic volume. For the vibrating body located in on an infinite 

rigid plane (see Figure  6.3), the sound pressure can be estimated from the Rayleigh 

integral equation [ 103]: 
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where ߩ଴ is mass density of air, ܿ଴ is the speed of sound, k is the acoustic wave number, 

R is the distance between the receiver and disk center, and ݓሶ  is the normal velocity 

amplitude. For a vibrating annular plate, the (m,n)th modal sound pressure associated with 

mode (m,n), ௠ܲ௡, can be expressed, using the Hankel transform as [ 104]: 
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( 6.15)

The surface velocity ݓሶ ሺݎሻ can be obtained by solving for the structural response, 

such that: 
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Figure  6.3: Sound radiation due to the out-of-plane vibration modes [ 23]. 
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where Cm are arbitrary constants. Substituting Eq. ( 6.16) into Eq.( 6.15), the far field 

modal sound pressure can be written as: 
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where ܬ௡ is the Bessel function of the first kind and ݇௠௡ is the modal acoustic wave 

number. The modal directivity function ܦ௠௡ሺߠ, ߶ሻ can be written in terms of the sound 

pressure, as: 

,ߠ௠௡ሺܦ ߶ሻ ൌ ܴ ௠ܲ௡ሺܴ, ,ߠ ߶ሻ݁௜௞೘೙ோ ( 6.18)

The modal sound power Π௠௡, associated with mode (m,n), can also be derived as: 

S 
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The modal radiation efficiency σ௠௡ is related to the sound power, such that: 
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( 6.20)

For thick disks, the sound radiation from both the surfaces needs to be considered. 

The following expressions are thus used to calculate the sound pressure, instead of 

Eq. ( 6.15), [ 23]: 

௠ܲ௡
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where ௠ܲ௡
௨  and ௠ܲ௡

௟  are the sound pressure from upper and lower surfaces, respectively. 

The total sound pressure is expressed by the sum of both the surface pressures leading to: 

௠ܲ௡ሺܴ, ,ߠ ߶ሻ ൌ ሺ1 ൅ cosሺߠሻሻ ௠ܲ௡
௨ ሺܴ, ,ߠ ߶ሻ ൅ ሺ1 െ cosሺߠሻሻ ௠ܲ௡

௟ ሺܴ, ,ߠ ߶ሻ ( 6.23)

Equation ( 6.23) along with Eq. ( 2.95) for the in-plane sound radiation yield the total 

sound pressure radiated from the thick disk. 

6.2. Free Vibration Response and Model Validation 

The previous section presented a brief formulation to illustrate the generalization 

of the two-dimensional analytical formulations to a three-dimensional disk model. It is, 

therefore, essential to examine the validity of the current analysis through comparisons 
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with results reported for the three-dimensional models. Moreover, the applicability of the 

model is demonstrated by relating it to a railway wheel while comparison with measured 

railway wheel data is performed to illustrate the accuracy and versatility of the developed 

model. For the purpose of validation of the model with non-uniform boundary conditions, 

the approximate numerical results are obtained from a three-dimensional finite element 

model. The three-dimensional model for the annular disk is illustrated in Figure  6.4(a), 

while the model of the railway wheel is shown in Figure  6.4(b).  

(a) (b) 

 
 

Figure  6.4: Three-dimensional finite element model of: (a) a thick annular disk; and (b) a 
railway wheel. 

6.2.1. Free Vibration of Thick Disks 

The natural frequencies are obtained for a thick disk with free boundary 

conditions and compared with those reported by So and Leissa [ 71] to demonstrate the 

model validity. Table  6.1 shows the comparisons of the frequency parameters, λଶ ൌ

ρωଶܴ୭
ଶ ⁄ܩ , of a solid disk with free boundary conditions for two different thickness to 
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diameter (h/D) ratios. The comparisons of the frequency parameters of the annular disks 

are shown in Table  6.2.  The comparisons suggest very good agreements between the 

frequency parameters obtained from the model and the reported results. This also 

confirms the applicability of the analysis to study three-dimensional vibration problem.  

Further analysis is performed to examine the accuracy of the computed frequencies of the 

disk under the non-uniform boundary conditions.   

Table  6.1: Comparisons of the frequency parameters of a solid disk with free 
conditions with the reported values (ݒ ൌ 0.3).  

ܦ/݄  ൌ ܦ/݄ 0.2 ൌ 0.5 
 Mode Present study Reference [ 71] Present study Reference [ 71] 

n=
1 

1 2.731 2.731 2.705 2.705 
2 5.864 5.864 4.595 4.595 
3 6.812 6.812 4.836 4.836 
4 9.905 9.903 6.439 6.439 

n=
2 

1 2.345 2.345 2.345 2.345 
2 4.230 4.230 3.966 3.966 
3 7.501 7.501 4.867 4.867 
4 8.561 8.560 5.623 5.623 

n=
3 

1 3.600 3.600 3.591 3.591 
2 5.793 5.793 4.612 4.612 
3 8.832 8.832 6.045 6.045 
4 10.105 10.105 6.498 6.498 

 

Table  6.2: Comparisons of the frequency parameters of an annular disk with free 
conditions with the reported values (ߚ ൌ 0.5, ݒ ൌ 0.3).  

ܦ/݄  ൌ ܦ/݄ 0.2 ൌ 0.5 
 Mode Present study Reference [ 71] Present study Reference [ 71] 

n=
1 

1 1.943 1.943 1.999 1.999 
2 8.039 8.039 3.930 3.930 
3 8.534 8.534 5.839 5.839 
4 8.945 8.945 7.706 7.706 

n=
2 

1 0.691 0.691 1.039 1.039 
2 3.123 3.123 2.846 2.846 
3 8.400 8.400 5.172 5.172 
4 8.793 8.793 6.157 6.157 

n=
3 

1 1.680 1.680 2.320 2.320 
2 4.450 4.450 3.946 3.946 
3 8.808 8.808 6.392 6.392 
4 8.986 8.986 6.805 6.805 
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Table  6.3 compares the frequency parameters obtained from the even and odd 

systems for an annular disk free at the inner edge and point-clamped at the outer 

edge. Table  6.3 also shows the frequency parameters of the disk when the point-clamp is 

relaxed (free condition). The results are compared with those attained from the finite 

element model. The labels a and s represent anti-symmetric and symmetric modes with 

respect to the ݖ ൌ 0 plane, respectively. The results show good agreement between the 

frequency parameters derived from the proposed method and those estimated from the 

finite element model. The comparison shows that the results derived from the finite 

element model are very close to the analytical results for the free disk. Some differences, 

however, are evident in both the even and odd subsystem frequency parameters of the 

disk with the point support. This is most likely attributed to the localization effect around 

the point support, which requires a more refined mesh around the support. The results, 

however, are considered to be within an acceptable accuracy considering that the peak 

error is less than 2% for most of the listed frequencies. 

 

Table  6.3: Comparisons of the even and odd frequency parameters of an annular 
disk with those estimated from the finite element model (ߚ ൌ 0.5, ܦ/݄ ൌ 0.2, ݒ ൌ 0.3).  

Constraint Free disk Point Clamped at the 
outer edge (even) 

Point Clamped at the 
outer edge (odd) 

(m,n) 
Present 
study 

FE 
Model 

Present 
study FE Model 

Present 
study FE Model 

(1,2)a 0.691 0.691 1.130 1.112 0.920 0.917 
(1,2)s 0.949 0.949 1.298 1.268 1.070 1.050 
(1,0)a 1.388 1.387 1.465 1.466 - - 
(1,3)a 1.680 1.681 1.888 1.887 1.712 1.707 
(1,1)a 1.943 1.944 2.238 2.237 1.943 1.944 
(1,0)s 2.233 2.230 2.253 2.252 - - 
(1,3)s 2.249 2.249 2.529 2.509 2.251 2.247 

a: anti-symmetric, s:symmetric 
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 In order to show the significance of coupling between in-plane and out-of-plane 

motions of thick disk, the frequency response of a thick disk with ݒ ൌ ߚ ,0.3 ൌ 0.5 and 

ܦ/݄ ൌ 0.2 subject to free and point-supported conditions is investigated.  The in-plane 

and out-of-plane responses of the thick disk are illustrated Figure  6.5(a) and (b), 

respectively, due to a harmonic excitation along the radial direction only. It is evident 

in Figure  6.5(b) that an excitation along the radial direction also excites the out-of-plane 

modes of vibrations. This suggests that the coupling of the in-plane modes with the out-

of-plane modes for thick disks would contribute to the noise radiation properties, even 

though in-plane modes did not contribute directly to the noise radiation. The coupling is 

significant and has been observed in disks with low thickness ratios such as the one used 

in the experimental investigations (Figure  4.23).  

The frequency responses, in Figure  6.5, show also the significant effect of the 

point support on both in-plane and out-of-plane modes of vibrations. As stated earlier, the 

point support would introduce additional coupling between radial, transverse and 

circumferential modes with different n numbers. This coupling effect is additional to the 

primary effect of the point support which results in increasing the natural frequencies and 

splitting of some modes into two distinct values. The frequency response of a point-

supported disk is quite different from the response of a disk with free edges for both in-

plane and out-of-plane modes of vibrations. It is, therefore, recommended to consider a 

coupled in-plane and out-of-plane model with the proper consideration of the boundary 

conditions for applications involving thick disks, especially when excitations are along 

the in-plane directions or when the boundary conditions are non-uniform.   
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a) 

 
b) 

 
Figure  6.5: Frequency response characteristics of the annular thick disk with different 
boundary conditions subject to harmonic radial force: free,  point 

support (a) radial displacement, (b) transverse displacement. 

6.2.2. Acoustic Model Validation 

It is also essential to validate the accuracy of the analysis in predicting the out-of-

plane acoustic properties of thick disks. The directivity patterns of two out-of-plane 

modes are illustrated in Figure  6.6. The pressure distributions agree very well with those 

obtained by Lee and Singh [ 23]. Further validation is performed with the sound power 

and radiation efficiency of specific out-of-plane modes, as shown in Table  6.4. The 
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calculated sound power and radiation efficiency are found to be similar to those reported 

in [ 108] for annular disks suggesting the validity of the current analysis. The formulation 

presented in this chapter along with the analysis of sound radiation due to in-plane 

modes, illustrated in sections  2.6 and  4.8, provide the essential foundation for the analysis 

of thick disks with any possible combination of boundary conditions. It is important to 

emphasize that the current formulation for acoustic properties is limited to stationary 

disks only. The formulation of the acoustic properties of rotating disks necessitate the 

employment of the far-field Green’s function of a moving source instead of the stationary 

disk used in deriving the sound pressure expression [ 114]. For applications such as 

railway wheels, which involve relatively low speeds, the acoustic properties of rolling 

wheel can be approximated by those of a stationary disk simply-supported at one point on 

the outer edge [ 77].  

Table  6.4: Comparison of acoustic power and radiation efficiency levels for selected out-
of-plan modes.  

mode 
(m,n) 

Present Reference [ 108] 
Π୫୬ σ௠௡ Π୫୬ σ௠௡ 

(1,1) 69.5669 0.9162 70.1 1.06 
(0,3) 74.95 1.1015 75.1 1.14 

 

6.3. Application to a Railway Wheel 

The proposed three-dimensional model is employed to study the vibration 

properties of a railway wheel. The flange and the web of the railway wheel are idealized 

by two disks with different thicknesses. The disk representing the web is assumed to be 

fixed at the axle shaft. The two disks are connected to each other by artificial springs that 

are uniformly distributed at radius Ri . Figure  6.7 illustrates the axisymmetric view of the 
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two-disk model of the railway wheel. The geometric and material properties of the 

idealized wheel model are summarized in Table  6.5.  

(a) 

(b) 

Figure  6.6: Directivity pattern for selected out-of-plane modes of the annular disk with 
free edges along  ߶ direction: (a) mode (0,2); (b) mode (0,3). 
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Figure  6.7: Idealization of a railway wheel by two disks with different thickness coupled 
through artificial springs. 

In Table  6.6, the in-plane and out-of-plane natural frequencies of the idealized 

model are obtained and compared with the experimental and analytical results reported 

for selected modes in [ 78]. The comparisons reveal good agreements between the model 

results and the reported analytical and experimental values. The natural frequency results 

suggest that the frequencies obtained from the proposed model are in closer agreements 

with the measured values reported in [ 78], for all modes considered. Relatively greater 

differences, however, are evident between the reported measured and the reported model 

results. It needs to be emphasized that the methodology used in deriving the reported 

analytical values was limited to prediction of the first natural frequency for each nodal 

diameter number n. Moreover, the comparisons are confined to modes with ݊ ൒ 2, since 

prediction of the natural frequencies of modes with zero or one nodal diameter 

necessitates a proper idealization of the axle as well as the wheel.  
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Table  6.5: Geometric and material properties of the idealized railway wheel model [ 78]. 

m
at

er
ia

l 
pr

op
er

tie
s density (ρ) 7800 kg/m3 

Modulus of elasticity (E) 205.8 x 109 N/m2 

Poisson's ratio (ν) 0.3 

G
eo

m
et

ric
al

 
pr

op
er

tie
s 

Outer disk thickness (h) 125 mm 

Inner disk thickness (h’) 23 mm 

Outside radius (Ro) 434 mm 

Inside radius (Ri) 364 mm 
 

A point support is introduced on the outer edge of the wheel to simulate the wheel 

contact with the rail. The support is uniformly distributed along the normal direction and 

could be best described by a line support in the three-dimensional model. The natural 

frequencies obtained from the even and odd subsystems of the model are computed and 

compared with those attained from the finite element model in Table  6.7. The effect of 

the wheel-rail contact on the natural frequencies of both the in-plane and out-of-plane 

modes is clearly evident. The addition of the point support causes the natural frequencies 

corresponding to the selected modes to increase. The frequency of the first out-of-plane 

mode is nearly twice compared to that of the free wheel. The results suggest that the 

modal characteristics of the wheel with the contact are quite different from those obtained 

for the wheel with free edges. 

Table  6.6: Comparisons of the in-plane and out-of-plane natural frequencies of the 
idealized railway wheel model with the reported measured and analytical values.  

In-plane modes (Hz) Out-of-plane modes (Hz) 
Mode 

number 
Present 
study 

Measured 
[ 78] 

Analytical 
[ 78] 

Present 
study 

Measured 
[ 78] 

Analytical 
[ 78] 

2 1719 1720 1778 435 430 435 
3 2603 2620 2577 1097 1110 1069 
4 3335 3339 3337 2004 2005 1767 
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Table  6.7: Comparisons of the in-plane and out-of-plane natural frequencies of the 
idealized railway wheel with contact support with these derived from the FE model.  

Constraint Free disk Point contact at the 
outer edge (even) 

Point Contact at the 
outer edge (odd) 

Present 
study 

FE 
Model 

Present 
study 

FE 
Model 

Present 
study 

FE 
Model 

In
-p

la
ne

 1719 1697 1721 1725 1851 1857 

2603 2611 2691 2687 2682 2684 

3335 3289 3515 3520 3452 3462 

O
ut

-o
f-

pl
an

e 435 435 635 631 825 809 

1097 1104 1340 1324 1225 1227 

2004 2029 2329 2329 2105 2073 
 

The proposed model and the formulations permit study of the effects of several 

parameters on the modal and acoustic characteristics of the wheel. As an example, the 

effect of wheel diameter on its free vibration response is illustrated in Figure  6.8. The 

figure shows the variations in the natural frequencies of the railway wheel with variations 

in the web radius Ri. It is evident from the figure that the wheels with larger radius have 

relatively smaller natural frequencies of both the in-plane and the out-of-plane modes. 

Both the in-plane and out-of-plane modes tend to be more sensitive to variation in the 

web radius as the n increases.  

Figure  6.9 (a) and (b) show the variations in the frequencies associated with the 

forward and backward waves with the rotational speed for out-of-plane and in-plane 

modes, respectively. It is shown that higher modes are more sensitive to variations in the 

rotational speed than the lower modes. The results also show absence of instability in the 

speed range considered. It is also important to note that the presented analysis employed 

the linear  strain  measure,  which  neglects the  additional  stiffening  effect  due to  
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(a) (b) 

  

Figure  6.8: Variations in the natural frequencies of a railway wheel with the web radius:  
(a) In-plane modes, (b) out-of-plane modes.   ݊ ൌ 2, ݊ ൌ 3 and  

݊ ൌ 4. 

rotation. This assumption was considered justifiable since the rotational speed is lower 

than the threshold speed specified by Deshpande and Mote [ 36]. A non-linear strain 

measure would be essential for higher speeds. The rotation, however, affects the natural 

frequencies in a considerable manner, as shown in Figure  6.9, and needs to be considered 

to accurately predict the modal characteristics of the wheel. Although the contact support 

does not affect the variations in the waves with the rotational speed but it significantly 

affects the initial values of the frequencies corresponding to zero rotational speed. as 

described above in Table  6.7. The effect of rotation on the modal characteristics of the 

wheel is relatively small compared to the significant effects associated with the wheel-rail 

contact.  

0

0.5

1

1.5

2

2.5

0.35 0.4 0.45 0.5 0.55

N
at
ur
al
 F
re
qu

en
cy
 (k
H
z)

Web Radius (m)

0

0.5

1

1.5

2

2.5

3

3.5

4

0.35 0.4 0.45 0.5 0.55

N
at
ur
al
 F
re
qu

en
cy
 (k
H
z)

Web Radius (m)



219 

 

(a) 

  

(b) 

 

Figure  6.9: Effect of rotational speed on variations in the natural frequencies of a railway 
wheel with respect to the fixed coordinate: ______ backward waves, _ _ _ _ forward 

waves, (a) out-of-plane modes, (b) in-plane modes. 

6.4. Summary 

In this chapter, the formulations developed in the previous chapters are extended 

to analyze the vibration characteristics of thick disks. The validity of the three-

dimensional model is demonstrated through comparisons of the results with the reported 
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data. The in-plane and out-of-plane natural frequencies are subsequently used to obtain 

the total sound radiation from the wheel. This allows further analysis of the sound 

radiation properties of the wheel under the effect of a contact support. The independent 

formulations derived for the sound radiation attributed to in-plane and out-of-plane 

modes permit analyses of contribution of different modes to the total sound radiation, and 

identifications of the most significant modes. The non-uniform contact or support has 

significant influence on the modal characteristics of the thick and thin disks. For thick 

disks, additional coupling between in-plane and out-of-plane modes is introduced due to 

the non-uniformity of the support. The proposed model is also applied to predict the 

natural frequencies of a railway wheel.  
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7. CONCLUSIONS AND RECOMMENDATIONS 

The overall objective of this dissertation research was to investigate the effects of 

rotation and non-homogeneous constraint on the modal characteristics of circular disks 

with particular focus on the in-plane modes of vibrations. An analytical method is 

developed in this dissertation research, in which a simple comprehensive approach has 

been put forward for the treatment of disks subject to any combination of the classical 

boundary conditions and/or elastic supports, and rotational effects. The major highlights 

of this dissertation work are briefly summarized in the following: 

7.1. Major Contributions 

Exact frequency equations have been derived for the general case of annular disks 

subject to different combinations of uniform boundary conditions. In previous studies, the 

frequency equations were presented for solid disks with free or clamped outer edge only. 

The present study proposed a generalized and accurate formulation which has the 

capability to predict the modal characteristics for annular disks subject to flexible 

boundary conditions as well as the classical clamped or free boundaries. Simplified forms 

of frequency equations are presented for solid disks and axisymmetric modes of annular 

disks. The proposed frequency equations could serve as the reference for approximate 

methods on in-plane vibration characteristics of the annular disks with different 

combinations of uniform edge conditions. 

Since exact solutions are limited to uniform boundary conditions only, the 

Rayleigh-Ritz method is used to develop a model that incorporates various classical and 
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non-uniform boundary conditions. The boundary characteristic orthogonal polynomials 

are employed as admissible functions to represent the radial variations in the 

displacements. The clamped and flexible supports are described by sets of artificial 

springs at the free outer and inner edges to study their effects on the vibration properties. 

For non-uniform supports, the stiffness parameter ܭሺߠሻ is expanded using the Fourier 

series to simulate single, multiple points or line support conditions.  

The proposed formulation is extended to study the effects of rotation on the in-

plane modal characteristics to identify the bifurcation in the frequencies. Nonlinear strain 

relations are employed to account for the stiffening effect on the rotation. While previous 

studies considered the stiffening to be axisymmetric along the circumferential direction, 

the present formulation is generalized to account for the stiffening effects for disks 

subject to uniform as well as non-uniform boundary conditions, where the initial 

displacement cannot be considered to be axisymmetric. 

The dissertation research is the first to illustrate the splitting of the in-plane 

natural frequencies due to the non-uniformity of boundary conditions and due to 

rotational effects through laboratory experiments.  The measurements are performed for 

the disks with different boundary conditions including free and point-support conditions 

and to experimentally investigate the coupling between the in-plane and the out-of-plane 

modes of vibrations. 

The acoustic properties associated with in-plane and out-of-plane modes of 

annular disks are further analyzed. For this purpose, the three-dimensional model of the 

disk is used to derive the expressions for the sound pressure, the sound power and the 

sound radiation efficiency for the general case of non-uniform boundary conditions. The 
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three-dimensional model is further employed to investigate the rotational and constraint 

effects on thick annular disks. The applicability and accuracy of the formulations is 

further explored through analysis of modal characteristics of a railway wheel in contact 

with the rail.  

7.2. Conclusions 

The major conclusions drawn from the present research work are summarized 

below. 

• The exact frequency equations for flexible boundary conditions involve combinations 

of the equations for free and clamped edge conditions. The model reduces to that for 

the clamped conditions by selecting high support stiffness values and to the free 

conditions when the stiffness parameters vanish. 

• Analytical results suggest that the non-uniformity of the support along the 

circumferential directions of the boundaries affects the modal characteristics of the 

disk along the in-plane and out-of-plane directions, while introducing additional 

coupling between the two. The system of equations can be represented by those of 

two independent subsystems, associated with coupled radial cosine and 

circumferential sine, and radial sine and circumferential cosine modes, respectively. 

The odd and even subsystems, however, will be coupled in the case of rotating disks. 

In each subsystem, the modes associated with different nodal diameter number n are 

coupled for non-uniform boundary conditions while they are uncoupled for uniform 

boundaries. Rotation of the disk produces additional coupling between these two 

subsystems through the gyroscopic matrix. 
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• The results obtained from the parametric study show considerable effects of the 

geometric parameters on the in-plane natural frequencies. While some of the modes 

are significantly affected by variations in the geometric parameters such as radius 

ratio, only minimal effects were observed on the other modes. Modes with same 

nodal diameter number n tend to have the same variation pattern with geometric 

parameters. The comparisons of the analytical results with the laboratory-measured 

data confirmed the variation patterns of different modes. 

• The results obtained for the point-supported disk show that the addition of a point 

support disturbs the axisymmetry of the modes with zero nodal diameter number, 

which makes the first torsional mode, for example, neither purely circumferential nor 

axisymmetric. 

• Some of the peaks in the frequency spectrum obtained under uniform boundary 

conditions split into two distinct peaks in the presence of a point support. These peaks 

correspond to the frequency parameters obtained from the two subsystems, which 

yield different values due to the non-uniformity of the boundary conditions.  

• The frequency parameters differ considerably with changes in the orientation of the 

point supports. The mode shapes are also strongly affected by the locations of the 

point supports. This effect is the smallest when the point supports are located near a 

nodal point of a specific mode. 

• Consideration of the radial expansion due to rotation yields additional stiffening 

effects, which affects the frequencies correspond to the forward and backward waves 

considerably. A critical speed could not be observed when the rotational stiffening 
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effect is considered. The results suggest that instability may occur in the absence of 

the additional stiffening at speeds above the critical speeds.  

• The results show that the in-plane modes of vibration are comparable with those 

associated with out-of-plane modes and contribute considerably to the total noise 

radiation. The experimental results also confirmed the splitting of some of the modes 

into two distinct pairs with a difference that could be few hundred Hertz for some 

modes. The experimental and analytical results also confirmed that an in-plane 

excitation could excite the out-of-plane modes in a manner similar to that caused by 

an out-of-plane excitation. Furthermore, the in-plane modes could be easily detected 

from the responses measured along the out-of-plane direction, suggesting strong 

coupling between the in-plane and out-of-plane modes, even though the thickness to 

radius ratio is relatively low. 

• The accuracy of the proposed model in the analysis of the railway wheel problem 

suggested the validity of the method in problems involving multi-span disks and 

three-dimensional coupled vibrations under several constraints and rotational effects. 

7.3. Recommendation for Future Work 

The present work provided significant insights into the problems associated with 

rotating disks subject to contact or supported at different points, particularly the in-plane 

modes of vibration. In view of the potential applications of the present study in many 

engineering problems, further investigations are essential for comprehensive 

understanding of the modal and acoustic characteristics of the disks in practical systems. 

Some of the recommended directions for further work are summarized below:  
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• The proposed model assumed uniform thickness along radial and circumferential 

directions. A direct extension of the current analysis is to consider disks with varying 

thickness. This would better simulate for some engineering applications involving 

non-uniform disks.  

• The expressions for acoustic properties have been formulated for stationary disks 

only. The sound emission from rotating structures requires implementation of Green’s 

function form moving sources instead of the one used for stationary sources. 

• A detailed analysis of the three dimensional model of thick disks under the effect of 

point, line or area supports are also recommended. The variations of the frequency 

parameters with the number of support or their orientations can be discussed. The 

non-uniform support can be expanded using Fourier double series to represent the 

variations in the stiffness parameters along the circumferential and normal directions. 

• The current study predicts the natural frequencies of a railway wheel. It is possible to 

combine the disk model with a beam model to develop a simplified wheelset model 

that would permit analyses of natural frequencies and mode shapes of the wheels and 

the axle, and the coupling between them. The axle could be connected to the wheels 

by means of artificial springs. This is of particular importance for predicting the 

modes with zero or one nodal diameter where the coupling is significant between 

wheels and axle modes. 

• It is anticipated that wheels defects such as flats would emphasize the contributions 

due to in-plane vibration modes. It is thus suggested to extend the analytical and 

experimental studies to investigate the effects of wheel defects on the noise emission 

due to defective wheels. 
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