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ABSTRACT 

Development of Fault Detection and Diagnosis Techniques with Applications 

to Fixed-wing and Rotary-wing UAVs 

Ling Ma 

Fault Detection and Diagnosis (FDD), as the central part of a Fault Tolerant Control 

System (FTCS), detects and diagnoses the source and the magnitude of a fault when a 

fault/failure occurs either in an actuator, sensor or in the system itself. This thesis work 

develops an applicable procedure for a FDD scheme to both fixed-wing and rotary-wing 

UAVs (Unmanned Aerial Vehicles) in the discrete-time stochastic domain based on the 

Kalman filter techniques. In particular, the proposed techniques are developed in highly 

nonlinear and 6 degree-of-freedom equations of Matlab/Simulink simulation environment 

for a quad-rotor helicopter UAV, a Boeing 747, and a NASA Generic Transport Model 

(GTM) fixed-wing UAV. A key development in this thesis is that an Adaptive Two-Stage 

Extended Kalman Filter (ATSEKF) algorithm and a Dual Unscented Kalman Filter 

(DUKF) algorithm are applied for simultaneous states and fault parameters estimation of 

these UAVs. The statistical decision-making techniques for fault detection and diagnosis 

are also discussed in the presence of partial faults in the UAVs. The measured system 

outputs and control signals are used as inputs of the ATSEKF and DUKF, and the 

estimated states and parameters are used for comparison and analysis in the fault 

detection and diagnosis. The simulation results show that the effectiveness and 

performance of ATSEKF and DUKF for the purpose of fault detection and diagnosis of 

both fixed- and rotary-wing UAVs are satisfactory. 
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1 Introduction 

The conventional feedback control system design is difficult for achieving desired 

performance in the event of fault occurrence, even for maintaining system stability after a 

fault occurrence. Due to the growing demand on dynamical systems to run autonomously 

in the presence of faults, industries in various areas spend time and money to develop 

intelligent or adaptive systems that are able to detect the presence of faults and isolate the 

faulty components in systems, especially in the aircraft industry. Since 1970s, the Fault 

Detections and Diagnosis (FDD) technique has been widely studied and used to isolate 

the faults and to accomplish satisfactory tasks under degraded situations when faults 

happen. FDD is utilized as the central part of an Active Fault Tolerant Control System 

(AFTCS) which is different from the conventional control system due to its ability to 

provide an acceptable level of performance and to maintain system stability even in the 

presence of faults, which could occur in the actuators, sensors or other system 

components. Therefore, the motivation of FDD is to provide the information about faults 

(time, type and magnitude) once a fault occurs. Based on the provided information by 

FDD, AFTCS can achieve successful system control reconfiguration [1, 2]. Development 

and implementation of FDD techniques for an AFTCS is presented in this thesis. 

1.1 Motivation 

For the aviation industry, the safety of aircraft passengers has always been an 

important issue. In history, a number of aircraft disasters were due to the damaged 
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aircrafts making the aircraft out of control during the flight. The followings are two 

examples that motivate people to examine and investigate practical FDD techniques in 

the aircraft industry.  

 

Figure 1-1 Americal Airlines Flight 191, 1979 [13]   

As shown in Figure 1-1, on May 25, 1979, American Airlines Flight 191, operated by 

a McDonnell Douglas DC-10-10, crashed on takeoff from Chicago. Investigators found 

that the #1 engine and pylon separated from the wing during rotation and a leak in the 

hydraulic lines allowed the left-side slats to retract, while the right-side slats remained 

extended. This led to a stall on the left wing which resulted in the roll-over. The airplane 

had 258 passengers and 13 crews on board. All of them died along with two on the 

ground. This is the deadliest crash in United States history [13].  
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Figure 1-2 An L-1011, Delta Airlines Flight 1080, 1977 [64] 

The next example [64] shows that the damaged aircrafts still can be controlled and 

safely landed. On April 1977, an L-1011, Delta Airlines Flight 1080 took off from San 

Diego with an undetected failure where the left stabilizer jammed in the full trailing-

edge-up position, see Figure 1-2. The nose-up and rolling moment were too large to be 

controlled. Fortunately, the experienced captain successfully landed the airplane safely by 

using throttles to supplement the remaining flight controls, using differential and 

collective engine thrust.  

Occurrence of these types of accidents leads to increasing interests in the emerging 

field of FTCS and FDD [43]. It is suggested that a successful FDD system can help crew 

members to detect and point out faults and failures with detailed information and 

solutions promptly in order to handle the problems of the aircraft at the initial stage. 

When the crews encounter something wrong with the aircraft, if there were a FDD 
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system to point out the faults and failures in detail and give the solution timely, they may 

be able to handle it. In the presence of a FDD system, the degree of danger of the faults 

or failures could be decreased, the probability of the safety of aircrafts could be increased, 

and therefore the lives of passengers could be protected. The $500 million NASA 

Aviation Safety Program was initiated in 1997 [61], and the objective is to develop 

advanced and affordable technologies to reduce the fatal aircraft accident rate. FDD is 

therefore critical and necessary for the safe operation of aerial vehicles in the aviation 

industry. 

1.2 Literature Review 

In this part, a literature review of the existing FDD techniques is presented. In order to 

understand the FDD better, FTCS is introduced first briefly. Zhang and Jiang [3] define 

the FTCS as “control systems that possess the ability to accommodate system component 

failures automatically. They are capable of maintaining overall system stability and 

acceptable performance in the event of such failures”. FTCS were also known as self-

repairing, reconfigurable or self-designing control systems. Existing FTCS can be divided 

into two groups:  

1) The Passive FTCS (PFTCS) that does not include controller reconfiguration;  

2) The Active FTCS (AFTCS) that integrates controller reconfiguration based on 

the outputs of a FDD module. 

The difference between PFTCS and AFTCS is that the controllers in PFTCS are 

designed to be robust against a class of presumed faults, while the controllers in AFTCS 
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can be reconstructed on-line in case of faults occurring in the system. Obviously, 

AFTCS is dependent on a FDD process to monitor system performance and to detect and 

identify faults in the systems [4].  

As shown in Figure 1-3, a typical AFTCS consists of four sub-components [5]:  

a) A sufficiently robust controller which is reconfigurable;  

b) A FDD scheme with high sensitivity to faults and low sensitivity to 

disturbances;  

c) A reconfiguration mechanism to reconfigure the system as much as possible; 

d) A command/reference governor. 

  

Figure 1-3 General structure of AFTCS [3] 

A FDD scheme with high sensitivity to faults and low sensitivity to model 

uncertainties, operating condition variations, and external disturbances [3] is one of key 

issues of AFTCS. Hence, the objective of a good FDD scheme is to provide fault 
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information on the system to the reconfiguration mechanism as precisely and timely as 

possible in an AFTCS. This thesis work will focus on the development of new 

approaches to FDD schemes for nonlinear systems. As mentioned above, the goal of a 

FDD scheme is to make the planned operation succeed by identifying anomalies of the 

system behavior. Hence, a FDD scheme in AFTCS has three main objectives:  

1) Fault detection, which indicates that something in the system is wrong, and 

provides information on the occurrence of a fault and the time of the fault 

occurrence. A fault can be any type of malfunction in sensors, actuators and 

components of the system that degrades the system performance and even leads 

the system to crush. In the flight control system, failures in the actuator or sensor 

may have depressed consequences that need to be detected as soon and precisely 

as possible; 

2) Fault isolation, which is to determine the location and type of the fault (which 

component has failed); 

3) Fault identification, which is to obtain the magnitude of the fault. Decisions will 

be made based on the identified fault.  

Reference [44] pointed out that fault isolation and identification are usually referred to 

as fault diagnosis. Fault diagnosis is very important for keeping the dynamic system 

robust and stable. 
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Figure 1-4 Classification of existing FDD methods 

The existing FDD methodologies can be divided into model-based and data-based 

methods [3, 41, 42], as shown in Figure 1-4, based on the process knowledge that is 

required a priori [47].  The a priori is the relationship between observes and the faults. 

The a priori knowledge can be process history-based knowledge obtained from past 

experience with the process or it can be model-based knowledge developed from a 

fundamental understanding of the process using first-principle knowledge [48], such 

knowledge is referred as the model-based knowledge.  

1.2.1 Model-based FDD schemes 

The model-based FDD scheme has been studied widely since 1970s. On contrast to 

the data-based methods, the model-based FDD scheme utilizes the dependencies between 
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different measurable signals of the system to detect fault in the process, the actuators and 

the sensors. These dependencies are expressed by a mathematical model (often known as 

analytical redundancy) of a system especially the post-fault mathematical model to carry 

out FDD in real-time. The model-based FDD can also be divided into model-based 

quantitative FDD and model-based qualitative FDD, based on the definition of model. 

The model is described in mathematical functional relationships between inputs and 

outputs of the system in model-based quantitative models. In the model-based qualitative 

models, the model is expressed in terms of qualitative functions centered on different 

units in a process [41]. The qualitative models can be causal models or abstraction 

hierarchies. The qualitative models normally are used in analyzing the system reliability 

and safety. 

1.2.1.1 Quantitative model-based FDD schemes 

Various approaches to the FDD using quantitative model-based models have been 

reported in the last three decades. The basic structure of quantitative model-based FDD is 

based on the measured input and output signals. The detection methods generate residuals 

which reflect the discrepancy between the actual behavior of the system and the expected 

behavior given by its model. In a system working properly, the residual should be zero 

theoretically, which means there is no fault occurred in the system, and the residual 

should be above zero once faults occur in the system. Therefore, the residuals contain the 

information of faults. Decision functions are on the basis of the residual. The general 

procedure of quantitative model-based FDD is shown in Figure 1-5. 
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Figure 1-5 The procedure of FDD [6] 

In Figure 1-5, u denotes the measured input, f denotes the fault occurred in the system, 

d represents the disturbance in the system and Y denotes the output signal of the system. 

The procedure of FDD can be divided into two steps:  

1) Generation of a set of residuals; 

2) Decision and isolation of the faults (time, location and magnitude). 

Four main classes of model-based residual generators exist:  

1) Observer-based approach, which reconstructs the output of the system from 

the measurements or a subset of the measurements with the aid of observers. 
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The difference between the measured outputs and the estimated outputs is used 

as the vector of residuals [17]; 

2) Kalman filters method, which is recursive algorithms for state estimation 

based on the system model in their normal operating modes. In this method, 

the filter gain is time-variant and linearized around the current operating point 

[41]; 

3) Parity-space approach, which checks the consistency of the mathematical 

equations of the system with the measurements [17].  A fault is detected when 

pre-assigned error bounds are surpassed. Since residuals are computed using 

measurements directly, the approach is very sensitive to measurement noise 

and system disturbances; 

4) Parameter estimation scheme, which is based on the fact that faults of a 

dynamic system are reflected in the changes of physical parameters in the 

system. The idea of the parameter identification approach is to detect the faults 

via estimation of the parameters of the mathematical model. Parameter 

estimation schemes provide a means of the predicted system parameters online 

in real time and provide reference for controller reconfiguration [18]. 

If the parameters of the dynamic system are known, a FDD with observer-based 

approach and Kalman filter can be applied. However, in most practical situations the 

parameters are not known or only partially known, hence the parameter estimation 

approach can be applied.  

The parameter estimation approach has three main attributions: detects and diagnoses 

as soon as possible, identifies the fault precisely and satisfies the requirements of 
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controller reconfiguration unit. In Section 3.1, parameter estimation will be discussed in 

more details. There are two approaches of parameter estimation: One is the direct 

estimation of the parameters, which can be applied when the parameters are linear. In this 

case, the well-known least squares (LS) estimation methodology can be used. The second 

approach is Kalman filter algorithm, which is applied widely when the iterative 

procedure is needed under the influence of the process disturbances. 

1.2.1.2 Qualitative model-based FDD schemes 

For the sake of brevity, only some of many techniques will be introduced in this 

section, they are fault trees, qualitative physics classes, and digraphs approaches.  

1) Qualitative physics, which has been used in the artificial intelligence area. Its 

knowledge can be represented in two ways: One is to model the generic 

behavior of the system based on qualitative differential equations termed as 

confluences equations and qualitative state [51, 52], and the other is to derive 

qualitative equations from the ordinary differential equations [52, 54]. The 

advantage of qualitative physics approach is that it determines all of the 

behaviors of the system without an accurate mathematical model [41], but the 

drawback is deriving confluence equations could be ambiguous and spurious; 

2) Fault tree analysis (FTA), which was developed at Bell Telephone 

Laboratories in 1961. It consists layers of nodes which use logic operations 

such as AND, OR and XOR to transmit primary events or faults to top level 

event. Fault trees are mainly used in system reliability analysis [41]; 

3) Digraph-based approach, which uses signed digraphs (SDG) to describe 

cause-effect relation or model. Each node of SDG represents an event or a 
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variable, and the edge means the relationship between the nodes. SDG uses the 

directed arcs to describe the change between the nodes. SDGs provide a visual 

and direct way of describing the model, and have been widely used in process 

fault diagnosis [41]. 

1.2.2 Data-based FDD schemes 

Data-based FDD method is the traditional approach to FDD. It is primarily based on 

large amount of historical process data. Data-based FDD method has two branches which 

are qualitative and quantitative depending on the implementation of feature extraction 

processing which is to transform and present data as a priori knowledge to a diagnostic 

system [42]. 

1.2.2.1 Qualitative data-based FDD schemes 

Two popular methods that use qualitative feature extraction are the expert system and 

qualitative trend analysis approaches.  

1) Expert system, which is defined by Feigenbaum [45] as “an intelligent 

computer program that uses knowledge and inference procedures to solve 

problems that are difficult enough to require significant human expertise for 

their solution”. A large number of methods of expert system have been 

developed since 1984. The earliest application of expert systems for FDD was 

for a whipped topping process [42]. The advantage of an expert system method 

is its easy for implementation, efficiency and effectiveness, but the limitation 

of an expert system approach is that it is difficult to update and very system-

specific; 



 

13 
 

2) Qualitative trend analysis (QTA), which utilizes the trend information 

presented in sensor measurements via two basic steps which are identification 

of trends in measurements and interpretation of trends in terms of fault 

scenarios. A large number of methods have been developed for the 

representation of the process trends, such as triangulation finite difference 

method, a neural network based extraction of primitive trends, a wavelet theory 

based adaptive trend analysis, a dyadic B-splines based trend analysis 

algorithm, etc [42]. 

1.2.2.2 Quantitative data-based FDD schemes 

In the development of quantitative feature extraction, the diagnostic problem-solving 

is regarded as a pattern recognition problem. Two popular methods that use quantitative 

feature extraction are the statistical process control and neural networks based 

approaches.  

1) Statistical process control (SPC), which includes univariate SPC (USPC) and 

multivariate SPC (MSPC). The USPC is less efficient than the MSPC and it 

cannot provide complete information about the interactions between variables. 

The MSPC is to transform a number of related process variables to a smaller 

set of uncorrelated variables [42]. Principal component analysis (PCA) and 

partial least squares (PLS) methods as the members of MSPC have been 

applied widely. The PCA and PLS do not need an exact system model. The 

drawback of MSPC is that it is limited to linear additive faults and it cannot 

recognize the fault isolation; 
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2) Neural networks (NN) based methods, which can be classified into the 

architecture of the neural network and the learning strategy. The NN has been 

extensively applied since 1988. The most popular processing algorithms are 

back-propagation algorithm, self-organizing maps, ART2 network, and K-

mean clustering algorithm. The limitations of NN are that it is only based on 

historic process data, it cannot generalize to unknown regions of measurements 

space and it cannot handle multiple faults [42]. 

 In general, the drawback of data-based method is that sampling the distribution of a 

class of data in the measurement space has strong implication on the results. It does not 

consider the interrelationship of measured signals of the system. Hence, data-based 

method is not adopted in this thesis work.  

1.3 Proposed Fault Detection and Diagnosis Schemes 

There are two FDD schemes implemented in this thesis work. Both of them belong to 

model-based FDD scheme. One is Adaptive Two-Stage Extended Kalman Filter 

(ATSEKF), which is for estimating the amount of actuator effectiveness reduction. The 

ATSEKF can be used to estimate the changes of biased parameters which model the 

faults in nonlinear system. However, in ATSEKF, it has to do system linearization around 

the equilibrium point at each step. So it makes the implementation difficult if the system 

has complex mathematical model.  

For estimation to nonlinear systems, the conventional EKF has been applied widely. 

However, Unscented Kalman Filter (UKF) has drawn significant research recently for 

state estimation applications due to its unique feature without a need for system 
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linearization at each time step as required by EKF [23]. The EKF is the nonlinear version 

of the Kalman filter, and it only simply linearizes about the current mean and covariance. 

Hence, the EKF can only preserve the first-order system statistics and may quickly 

diverge if the process is not modeled correctly, due to the modeling errors generated 

through linearization operation. The UKF is the improvement of the EKF to replace it in 

nonlinear filtering problems. In the UKF, the probability density is approximated by the 

nonlinear transformation of a random variable, which returns much more accurate results 

than the first-order Taylor expansion of the nonlinear functions used in the EKF. The 

approximation utilizes a set of sample points, referred to as sigma points, which 

guarantees accuracy with the posterior mean and covariance to the second order for any 

nonlinearity [39].  

In this thesis work, both the system state variables and the actuator fault parameters 

are estimated by using ATSEKF and Dual Unscented Kalman filter (DUKF) in the FDD 

module. DUKF is an extension of the UKF for providing simultaneous system states and 

fault parameters estimation for the purpose of application to FDD. In Chapter 3, the 

ATSEKF and the DUKF will be discussed in details. 

1.4 Objectives 

This thesis addresses two FDD schemes implemented on three aircraft benchmarks 

which are a quad-rotor helicopter UAV (Unmanned Aerial Vehicle), a NASA fixed-wing 

UAV model referred to as Generic Transport Model (GTM) and a Boeing 747 series 

100/200 airplane based on the measured outputs of the sensors and the inputs to actuators 

(i.e. controller outputs). The unpredicted fault considered in this thesis is the actuator 
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partial loss. Joint/simultaneous state and parameter estimation is chosen as FDD scheme 

since it can provide sufficient information for controller reconfiguration which will be 

discussed in Chapter 3 in details. Two different Kalman filter algorithms which are 

ATSEKF and DUKF are used as joint state and parameter estimation scheme for the 

purpose of FDD of both fixed-wing and rotary-wing UAVs in the presence of partial loss 

faults in actuators. 

The main contributions of this research are as follows: 

1) Develop the ATSEKF and DUKF schemes for FDD of the quad-rotor UAV, 

GTM and Boeing 747 models; 

2) Simulate various partial losses on actuator control effectiveness to validate the 

performance of the ATSEKF and DUKF; 

3) Evaluate and compare the performance of the ATSEKF and DUKF in both 

linearized environment and high-fidelity nonlinear environment through 

simulations under three aircraft models. 

1.5 Outline of the Thesis 

This thesis includes six chapters. Chapter 1 presents the motivation of FDD, literature 

review of model-based FDD and data-based FDD and the proposed FDD schemes in this 

thesis. Chapter 2 starts with the definition of types of faults and modeling with actuator 

faults, sensors faults and components faults. Chapter 2 ends with presentation of 

formulation of actuator faults. In Chapter 3, FDD methodologies are introduced in detail. 

Chapter 4 presents three different aircraft benchmarks which are a quad-rotor UAV, a 
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fixed-wing UAV model of the NASA GTM and a Boeing 747 series 100/200 airplane. In 

Chapter 5, simulation results demonstrate that model-based FDD approaches depend on 

the accurate mathematical model of the dynamic system. Finally conclusions and future 

works are discussed in Chapter 6. 
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2  Fault/Failure Classification 

To achieve high control performance, an AFTCS relies on real-time FDD to provide 

precise information on faults in the system. Therefore, for a high performance FTCS, 

when a fault/failure occurs either in an actuator, sensor or plant, a FDD scheme will 

detect and diagnose the source and the magnitude of the fault. The reconfiguration 

scheme will design the reconfigurable controller based on this information to balance and 

adapt to the faults and failures. 

This chapter will start from the definition of fault and failure. Later, it will explain 

three types of fault, and give the formulation of actuator faults. 

2.1 Definition of fault/failure 

Fault: an undesired change in a system parameter that degrades performance and a 

fault may not represent a component failure [62]. 

Failure: a catastrophic or complete breakdown of a component or function (to be 

contrasted with a fault which may be a tolerable malfunction) [62]. 

 

Figure 2-1 Block diagram of fault position 
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With respect to the location where the faults take place as shown in Figure 2-1, faults 

can be classified into three types: actuator faults, sensors faults and component faults. 

Generally speaking, when a fault occurs in the system, such as an actuator, the system 

performance may be degraded, but it may still be controllable. While when a failure 

occurs, the system maybe be crushed and lose the control completely. Therefore, a failure 

is much more severe than a fault based on the above definition.  

2.2 Types of faults 

2.2.1 Actuator faults 

An actuator is a mechanical device which converts external energy into needed motion, 

and it is a necessary component in any control systems and has been widely used in 

industrial applications and manufacturing. Actuator faults are widely researched in 

aerospace industry. In this thesis, only this kind of faults is discussed.  

 

Figure 2-2 Types of actuator faults 

The classification of actuator faults depends on the types of actuators, but generally 

faults in actuators can be divided into four types: a) lock in place failure, also called as 
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stuck failure; b) float failure; c) hard over failure, and d) partial loss of effectiveness fault. 

Figure 2-2 depicts the above faults occurring in actuators. 

Lock in place failure occurs when the actuator is stuck/frozen at certain position or has 

no response to the control input. Float failure occurs when the actuator moves freely 

without providing any force/moment to the aircraft and does not contribute to the control 

authority. Hard over failure is defined as any failure of the flight control system which 

causes a rapid and sustained displacement of an aircraft aerodynamic control surface to 

the full extent permitted by physical constraints within the actuation system [16]. Partial 

loss of actuator control effectiveness occurs when the efficiency of one or multiple 

actuators reduces. The consequences of actuator faults may be very dangerous, especially 

for the aircraft. Some actuator faults cause low efficiency, high consumption of actuators, 

while some result in the partial or total loss of control. In this thesis, partial loss of 

control effectiveness is considered. 

2.2.2 Sensor faults 

A sensor is a device which receives and measures signals of a system’s internal states, 

and it then converts them into corresponding signal outputs which can be used by 

external world.  

Faults in sensors usually can be divided into five categories: 1) bias failure; 2) drift 

failure; 3) loss of accuracy failure; 4) freezing and 5) calibration error. Figure 2-3 depicts 

the above faults occurring in sensors.  
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Figure 2-3 Types of sensors faults  

Bias failure is a constant offset/error between the actual and measured signals. The 

sensor drift failure is a condition whereby the measurement errors increase over time. The 

loss of accuracy occurs when the measurements never reflect the true values of the 

physical variables. Freezing of sensor signals indicates that the sensor provides a constant 

value instead of the true value. Finally the calibration error is a wrong representation of 

the actual physical meaning of the states from the electrical or electronic signals that 

come out from the sensor unit itself. 

2.2.3 Component faults 

The components faults shown in Figure 2-4 are modeled by any change in the 

parameter θ in the system making the nominal model of the dynamic system invalid. It 

affects the input-output state-space model in a multiplicative manner as shown in Figure 

2-5. 
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Figure 2-4 Model of component faults 

 

Figure 2-5 Multiplicative faults [63] 

2.3 Formulation of actuator faults 

An actuator fault can be normally represented in the reduction of the actuator’s 

effectiveness. A linear time-varying system associated with the actuator faults can be 

represented by following equations :  

          x t Ax t Bu t B u t w t     (2.1)  

      y t Cx t v t    (2.2) 

where   nx t  ,   lu t   and   ly t  are the system state, control input and system 

output variables, respectively.  w t
 
and  v t denote white noises.   1, , mdiag  
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where i  
are scalars satisfying 0 1i  . If 0i  , the thi actuator is working perfectly 

whereas if 0i  , a fault is present, and if 1i  , the actuator has failed completely. The 

Equation (2.1) represents a partial loss in the effectiveness via i . By the formula, it can 

be discovered that faults are related to the aircraft’s control surfaces. The objective of 

FDD is to determine the extent of the loss in the control effectiveness i . 

But considering the effects of faults/failures only in the B  matrix of the linear system 

is not sufficient. Structural damage could also happen during the flight and it will change 

the aerodynamic coefficients/derivatives of the aircraft or the centre of gravity, and 

therefore it may change the operating conditions of the aircraft from its nominal 

conditions. In terms of linear control systems, the A  matrix will also be perturbed. This 

can be represented as: 

            x t A A x t B B u t w t      (2.3) 

where A  and B  represent the changes in the A  and B  matrices. Examples of failures 

that cause structural damage are wing battle damage, and detachment of control surfaces 

[38]. In this thesis work, however, only the changes in B matrix are considered.  

2.4 Summary 

This chapter has stated briefly the definition of a fault and a failure, discussed the type 

of faults/failures based on the location where faults/failures will occur. Mathematical 

formulation of actuator faults in terms of partial loss of actuator control effectiveness is 

also presented in this chapter.  



 

24 
 

3 FDD Schemes Developed in This Thesis  

Joint state and parameter estimation schemes for FDD are adopted in this thesis. This 

chapter will start with presentation of the concept and procedure of parameter estimation. 

Then the ATSEKF and DUKF algorithms for simultaneous states and fault parameters 

estimation are presented. 

In general, a set of equations of motion can be used to describe the motion of a flight 

vehicle, and parameters can keep constant over the period of observation. However, when 

an actuator fault happens, for example a stuck failure in rudder, spoiler or elevator or 

partial loss of its effectiveness, the parameters of the aircraft system will deviate from 

their normal values. Aircraft model contains a great number of coefficients, especially 

aerodynamic coefficients and derivatives, which could change when the operating 

conditions change or faults occur. These coefficients are obtained offline by performing 

thousands of experiments through wind tunnel and/or flight tests before being used for 

modeling or control design. However, compared with online parameter estimation, the 

offline estimate is not accurate and cannot be quite synonymous with controllers in the 

presence of fault/damage. Parameter estimation technique has been applied to aircraft to 

determine aerodynamic coefficients and derivatives [38]. 

3.1 Parameter estimation 

The main concept of the parameter estimation methods for FDD is that faults are 

associated with the physical coefficients of the process. The parameter estimation 
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approaches make use of deviations in the model parameters during detecting and isolating 

faults. For parameter estimation, the residuals are the difference between the nominal and 

the estimated model parameters. In a system working properly, the residual should be 

zero theoretically, which means there is no fault occurred in the system, and the residual 

should be above zero once faults occur in the system. By estimating the parameters of a 

process model on-line, residuals are computed as the parameter estimation errors and will 

be passed to the reconfiguration controller. To successfully diagnose faults/failures, the 

mapping from the model coefficients to the process parameters is necessary.  

Consider the following mathematical model of a dynamic system: 

    , , ,y t f u w t   (3.1) 

where  u t
 
represents the input of the system,  y t

 
is the output vector,  w t

 
represents 

the noise vector, and   denotes the parameters vector which is associated with the faults. 

The idea of the parameter identification approach is to detect the faults via estimated 

parameters of the mathematical model based on the following procedure shown in Figure 

3-1: 

Step 1: Choice of a parametric model of the system,    , ,y t f u t ; 

Step 2: Determination of the relationships between the model parameters, i  
and the 

physical parameters ip ;
 

Step 3: Identification of the model parameter vector   using the input  u t
 
and output 

 y t
 
of the actual system (or of a system component); 
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Step 4: Determination of the physical parameter vector     1 ˆp t f t ; 

Step 5: Calculation of the vector of deviations,   , from its nominal value taken from 

the nominal model; 

Step 6: Decision on a fault by exploiting the relationship between faults and changes 

in the physical parameters. 

 

Figure 3-1 Procedure of parameter estimation  

Hence, by augmenting the system state vector by artificially defining the unknown 

parameters   as additional state variables, parameter estimation is achieved. Therefore, 

parameter estimation is transformed into state estimation. 
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In Equation (2.1),  1, , mdiag   where i  
are scalars satisfying 0 1i  , and 

can also be used as fault detection parameter vector. In this thesis work, this scheme is 

the same for both ATSEKF and DUKF. 

Different parameter estimation methods for FDD have been explored like extended 

Kalman filter, two-step method and least squares estimation [41]. In this thesis, ATSEKF 

and DUKF are implemented in three aircraft dynamic models which fall into a 

framework of joint/simultaneous state and parameter estimation scheme. 

In this work, both the system state variables and the actuator fault parameters are 

estimated by using an ATSEKF scheme and a DUKF algorithm in the FDD module. In 

this chapter, the ATSEKF and DUKF algorithms are presented in detail after the 

conventional Kalman filter is elaborated.  

3.2 The Kalman filter 

The Kalman filter is an efficient recursive filter that estimates the state of a linear 

dynamic system from a series of noisy measurements [9]. Theoretically, the Kalman filter 

is an estimator for so-called linear-quadratic problem, which is the problem of estimating 

the instantaneous states of a linear dynamic system perturbed by white noise using the 

measurements linearly related to the state and corrupted by white noise [10]. As a typical 

efficient recursive filter, the Kalman filter is often used to estimate the states of a 

dynamic system under white noise disturbances. The common applications include 

inertial navigation, sensor calibration, radar tracking, manufacturing, economics, signal 

processing, and freeway traffic modeling. The Kalman filter can be applied to both linear 
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and nonlinear systems. The extension of Kalman filter to handle nonlinear system is 

referred as to Extended Kalman Filter (EKF).  

Consider a linear discrete-time system which is represented by two equations as 

follows:  

 1 1,k k k k kx F x w  
  (3.2)

 

 k k k ky H x v    (3.3)  

The state vector, denoted by 
kx , is defined as the minimal set of data that is sufficient 

to uniquely describe the unforced dynamical behaviour of the system; the subscript k 

denotes discrete time. A set of observed data, denoted by the vector 
ky  are used to 

estimate the state 
kx . 

1,k kF   
is the transition matrix taking the state 

kx from time k to time 

k+1. 
ky  is the observable at time k and 

kH  is the measurement matrix. The process noise 

kw  and the measurement noise 
kv  are assumed to be additive, white, and Gaussian, with 

zero mean and normal probability distributions. 

    0,p w N Q   (3.4) 

    0,p v N R   (3.5) 

where Q is the process noise covariance matrix and R is the measurement noise 

covariance matrix. 

The Kalman filter iterates between two steps:  
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1) Time Update (Predict), the filter produces a time update at the current time 

step, based on the previous estimated states before obtaining any new 

measurements at the next time step using the system model;  

2) Measurement Update (Correct), once the new measurements information 

arrives at the new time step, the filter will produce more accurate state estimate. 

This is very close to the true value by combining the new measurements 

information with the result generated in the previous time update procedure 

based on an optimal adjustment. 

Table 3-1 The Kalman filter algorithm 

Initial Estimates: For k = 0 
 

 

 

 

 0 0x̂ E x  

  0 0 0 0 0
ˆ ˆ

T
P E x x x x   

 
 

Time Update: For k = 1, 2, … 
 

 

 
State estimation propagation: 

, 1 1
ˆ ˆ

k k k kx F x

   

Error covariance propagation: 

, 1 1 , 1 1

T

k k k k k k kP F P F Q

      

Measurement Update: For k = 1, 2, … 

 

 

 
Compute the Kalman gain matrix: 

 
1

T T

k k k k k k kK P H H P H R


    

Update state estimate: 

 ˆ ˆ ˆ
k k k k k kx x K y H x     

Update the error covariance: 

 k k kP I K H P   

 

where ˆ n

kx R
 
is defined as a priori state estimate at step k given knowledge of the 

process prior to step k  and ˆ n

kx R is defined as a posteriori state estimate at step k

given measurement ky . kP

 
is the a priori estimate error covariance. kP

 
is the a posteriori 
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estimate error covariance. n m

kK R  is the Kalman gain that minimizes the a posteriori 

and a priori estimate errors covariance. This two-step recursion is applied at each 

successive time period. The Kalman filter cycle starts with the initial estimate of 0x̂
 
and 

error covariance 0P . The time update step updates the current state and error covariance 

estimate priori time. The measurement calculates the Kalman gain kK based on the a 

priori estimate error covariance
kP , and it is used to adjust the a priori state estimate ˆ

kx

using the actual measurement ky . 

3.3 Extended Kalman filter 

Generally, the Kalman filter is widely applied to estimate a value when it is measured 

in noisy environments, to predict time-varying variables based on a linear state-space 

model and using previous measurements and to obtain a value that is closest to the true 

value from more than one source with different types of sensor. The drawback of the 

conventional Kalman filter is that the estimated system has to be linear system. However, 

most physical systems are nonlinear and dynamic. Therefore, the Extend Kalman filter 

(EKF) was proposed to address this issue. The EKF extends the use of Kalman filter 

through a linearization procedure. 

 Consider a nonlinear dynamical system described by the state-space model: 

 
 

 

1 ,

,

k k k

k k k

x f k x w

y h k x v

  

 
  (3.6) 
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where kw
 
and kv are independent, zero-mean, Gaussian noise processes of covariance 

matrices kQ
 
and kR , respectively. The functional  , kf k x denotes a nonlinear time-

variant transition matrix function, and the functional  , kh k x
 
denotes a nonlinear time-

variant measurement matrix. The EKF is to linearize the state model of Equation (3.6) at 

each step time around the most recent state estimation, which is taken to be either ˆ
kx  or 

ˆ
kx . The standard Kalman filter equations are applied, once a linear model is obtained.  

 

 

 

1

, 1

ˆ

ˆ

,
,

,

k

k

k k

x x

k

x x

f k x
F

x

h k x
H

x




















 

 (3.7) 

Table 3-2 The extended Kalman filter algorithm 

Initial Estimates: For k = 0 

 

 

 0 0x̂ E x  

     0 0 0 0 0

T

P E x E x x E x   
 

 

Time Update: For k = 1, 2, … 

 

 

 

 

State estimation propagation: 

 1
ˆ ˆ,k kx f k x

  

Error covariance propagation: 

, 1 1 , 1 1

T

k k k k k k kP F P F Q

      

Measurement Update: For k = 1, 2, … 

 

 

Compute the Kalman gain matrix: 
1

T T

k k k k k k kK P H H P H R


      
Update state estimate: 

 ˆ ˆ ˆ,k k k k kx x K y h k x   
 

Update the error covariance: 

 k k k kP I K H P 
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where ˆ n

kx R is defined as a priori state estimate at step k given knowledge of the 

process prior to step k  and ˆ n

kx R is defined as a posteriori state estimate at step k

given measurement ky . 
kP

 
is the a priori estimate error covariance. kP

 
is the a posteriori 

estimate error covariance. n m

kK R  is the Kalman gain that minimizes the a posteriori 

and a priori estimate errors covariance. This two-step recursion is applied at each 

successive time period. The EKF cycle starts with the initial estimate of 0x̂
 
and error 

covariance 0P . At each time update step, EKF linearizes the state model by using 

Equation (3.7) for performing error covariance propagation, and updates the current state 

and error covariance estimate priori time. The measurement calculates the Kalman gain 

kK based on the a priori estimate error covariance
kP , and it is used to adjust the a priori 

state estimate ˆ
kx

 
for obtaining the a posteriori state estimate ˆ

kx
 
using the actual 

measurement ky . 

3.4 The Adaptive Two-Stage Extended Kalman Filter (ATSEKF) 

Algorithm 

The conventional Kalman filter can only be applied on the premise that complete and 

accurate system parameters is known and stochastic properties of noises is known as well, 

but in most cases, it is hard to obtain the accurate system model without any bias. Based 

on this fact, Friedland put forward a new procedure of separating the estimation of the 

unknown constant bias variables from the dynamic variables in 1969 [59]. This technique 

has been extensively studied and developed. In 1996, the pseudo separated-bias 

estimation (PSBE) algorithm was proposed by Zhang et al [58]. In 1997, an optimal 
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solution of the two-stage Kalman filter for linear stochastic systems subject to random 

bias was proposed by Keller and Darouach [56], and Wu and Zhang proposed the linear 

adaptive two-stage Kalman filter in 1998 [15]. 

3.4.1 The two-stage extended Kalman filter algorithm 

This section introduces the nonlinear adaptive two-stage Kalman filter developed by 

Zhang et al [18] which is the extended version of the linear adaptive two-stage Kalman 

filter [15]. 

Consider a biased augmented nonlinear discrete-time system [18, 19]: 

                11 xx k f x k G k u k B k b k w k      (3.8) 

 
   1 kB k G k U   (3.9) 

where  

 

1

2

0 0

0 0

0

0 0

k

k

k

l

k

u

u
U

u

 
 
 
 
 
  

  (3.10) 

    1 bb k b k w     (3.11) 

           21 1 1 1 1y k h x k B k b k v k         (3.12) 

where      , ,n q lx k R b k R u k R   and  1 my k R  are the state, bias, control input 

and output variables, respectively.    ,x bw k w k
 
and  1v k  are the white noise 
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sequences of uncorrelated Gaussian random vectors with zero means and covariance 

matrices    0, 0x bQ k Q k  and  1 0R k   , respectively. The initial state  0x
 
and 

bias  0b
 
are assumed to be uncorrelated with the noise process    ,x bw k w k and

 1v k  . The initial state  0x
 
and bias  0b

 
are specified as random Gaussian vector 

with mean 
0x  and covariance

0

xP , and mean 
0b  and covariance

0

bP , respectively. Figure 3-

2 illustrates the signal flow of the TSEKF. The control signals u and measured outputs z 

are inputted into fault-free state estimator, the outputs of fault-free state estimator are 

coupled with the outputs of fault estimator ̂  via coupling equations, and the coupled 

results x  are compensated and  generate the final results x̂  of TSEKF.  

  

Figure 3-2 The signal flow of the TSEKF [1] 

Fault-free state estimator: 

             ˆ1| | 1| |x k k f x k k G k u k M k V k k b k k             (3.13) 

         

           

| | , | | ,

                     | 1| 1| 1|

x x T x

b T b T

P k k F x k k k P k k F x k k k Q k

M k P k k M k V k k P k k MV k k

         

   

 (3.14) 
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          1| 1 1| 1 1 1|xx k k x k k K k y k h x k k          
 (3.15) 

            
1

1 1| 1 1 1| 1x x T xK k P k k H k H k P k k R k


         
 (3.16) 

        1| 1 1 1 1|x x xP k k I K k H k P k k        
 (3.17) 

where the filter residual vector and its covariance are given as  

       1 1 1|r k y k h x k k      (3.18) 

          1 1 1| 1 1TS k H k P k k H k R k        (3.19) 

The Jacobians in the Taylor’s series expansion for nonlinear function f  and h  are 

 

   

   

|

1|

| , |

1 |

x x k k

x x k k

f
F x k k k

x

h
H k

x



 


   


 



 (3.20) 

Fault estimator: 

    ˆ ˆ1| |b k k b k k    (3.21) 

      1| |b b bP k k P k k Q k    (3.22) 

           ˆ ˆ ˆ1| 1 1| 1 1 1| |bb k k b k k K k r k N k k b k k         
 

 (3.23) 

             
1

1 1| 1| 1| 1| 1| 1b b T b TK k P k k N k k N k k P k k N k k S k


          
 (3.24) 

        1| 1 1 1| 1|b b bP k k I K k N k k P k k          (3.25) 
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Coupling equations: 

        1| , |M k F x k k k V k k B k   
 (3.26) 

        
1

1| | 1|b bV k k M k P k k P k k


      (3.27) 

        21| 1 1| 1N k k H k V k k B k       (3.28) 

        1| 1 1| 1 1|xV k k V k k K k N k k        (3.29) 

Compensated state and error covariance estimates: 

        ˆ1| 1 1| 1 1| 1 1| 1x k k x k k V k k b k k           (3.30) 

         1| 1 1| 1 1| 1 1| 1 1| 1x b TP k k P k k V k k P k k V k k             (3.31) 

The modification made to the two-stage Kalman filter in [56] is by using time-varying 

matrices to replace the constant coefficient matrices.  

3.4.2 The adaptive two-stage Extended Kalman filter algorithm 

In order to response to abrupt changes in the control effectiveness factors, forgetting 

factors are adopted. The basic idea is to enable a recursive algorithm to discount the past 

information so that the filter is more apt to recognize the changes in the system [55], and 

therefore Equation (3.22) is modified to  

      1| | ,    0 1b b bP k k P k k Q k       (3.32) 
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where   is a single constant forgetting factor. The adjusted covariance  1|bP k k  

should be within some prescribed bounds  

  min max1|bI P k k I     (3.33) 

where min  , max are positive constant and I is the identity matrix, since covariance 

 |bP k k cannot be too large or too small. 

The dyadic expansion of  |bP k k is  

    
1

|
l

T
b i i i

k kk k
i

P k k e e


   (3.34) 

where i

k k
 is the eigenvalues of  |bP k k with 1 l

k k k k
   , and 1 l

k ke e are the 

corresponding eigenvectors with 1 1.l

k ke e    Finally, Equation (3.21) is evolved 

into 

 

 
 

 
       

1

|
1| ,0 1

p ib T b

i i ii
i

k k
P k k e k e k Q k k

k





      (3.35) 

The forgetting factor  i k can be chosen as a decreasing function of the amount of 

information received in the direction  ie k . Since eigenvalue  |i k k  of  1|bP k k is 

a measure of the uncertainty in the direction of  ie k , a choice of forgetting factor  i k  

can be  

 

 

     

max

1

max min
min max

max

1, |

| | ,

i

i

i i i

k k

k
k k k k k k

 

  
    





 


   
   

  

 (3.36) 
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This forgetting factor ensures that Equation (3.32) can be satisfied. By replacing 

Equation (3.32) by Equations (3.35)  and (3.36), the ATSEKF is realized eventually. 

 

3.5 Dual Unscented Kalman Filter (DUKF) Algorithm 

The EKF, including the ATSEKF, approximates the nonlinearities of the system’s 

dynamics by linearizing the system at each time step through the first-order linearization 

of the nonlinear system. The EKF is a suboptimal nonlinear filter by truncating the higher 

order terms during linearization of the system [20]. The main drawbacks of the EKF are 1) 

easy to be divergent and be unstable; 2) difficult to implement the derivation of the 

Jacobian matrices; 3) convergence of parameters estimation is slow and even without 

guarantee of parameters convergence [21, 25]. In this case, the Unscented Kalman Filter 

(UKF) was proposed to overcome the shortcomings of the EKF [25]. The UKF is one of 

sigma-point Kalman filter which uses the statistical linearization technique. UKF is 

mainly used in nonlinear system identification, training of neural networks and dual 

estimation problems [20-22]. In this section, an overview of the DUKF state-parameter 

estimation scheme implemented for estimation of the loss of the actuator’s effectiveness 

due to fault occurred in actuators is presented. 
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Figure 3-3 The unscented transfer for mean and covariance propagation [25] 

For a highly non-linear model for estimation purpose, the UKF picks a minimal set of 

sample points which are called sigma points around the mean. These sigma points are 

then propagated through the non-linear functions and the covariance of the estimate is 

recovered [23]. These sigma points completely capture the true mean and covariance of 

the Gaussian random variables, and when propagated through the true nonlinear system, 

the posterior mean and covariance are accurately captured to the 3
rd

 order (Taylor series 

expansion) for any nonlinearity [25]. Thus, the UKF captures both the first-order and 

second-order statistics of the nonlinear system through a so-called Unscented 

Transformation (UT), and hence has better estimation performance compared with EKF 

which only simply linearizes about the current mean and covariance with first-order 

statics as shown in Figure 3-3. 
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3.5.1 Unscented transformation 

The unscented transformation (UT) proposed by Julier is a method for calculating the 

statistics of a random variable which undergoes a nonlinear transformation [24]. It is built 

on the principle that it is easier to approximate a probability distribution than an arbitrary 

nonlinear function [25].  

Consider a nonlinear model  y f x , and the random variable x  whose dimension is 

L , and assume x  has mean x  and covariance xP . The basic steps of UT are:  

1) Chose a set of points (sigma points) so that their sample mean and sample 

covariance are x and 
x

P  ; 

2) Apply each sigma point in turn to the nonlinear function to yield a cloud of 

transformed points and y and 
yP are the statistics of the transformed points. 

The L-dimensional random variable x with mean x  and covariance 
xP is 

approximated by 2L+1 sigma points. In order to calculate the statistics of y,   which is 

the matrix of 2L+1 sigma vectors i  is formed. 

 0 x    (3.37) 

    ,   1, ,i x
i

x L P i L      (3.38) 

    ,   1, ,2i x
i

x L P i L L       (3.39) 

the weights for the state and covariance are given by: 
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  
0

m

L








  (3.40) 

    2

0 1
c

L


  


   


 (3.41) 

 
   

 

1
,   1, ,2

2

m c

i i i L
L

 


  
  

 (3.42) 

where  2 L k L     is a scaling parameter.  determines the spread of the sigma 

points around x . The k is a secondary scaling parameter, and   is to incorporate prior 

knowledge of the distribution of x.   x
i

L P is the ith column of the matrix square 

root. In this thesis, α, β, and k are equal to 1, 2, and 3-L, respectively. i  
is propagated 

through the nonlinear function  

   , 0, ,2i if i L     (3.43) 

  
2

0

L
m

i i

i

y  


   (3.44) 

     
2

0

L
Tc

y i i i

i

P y y  


    (3.45) 

where y is the mean for y and yP
 
is the covariance of the posterior sigma points. Figure 3-

4 presents the implementation of UT.  
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Figure 3-4 Unscented Transformation [12] 

3.5.2 State estimation 

Consider a nonlinear transform of a random variable:  y f x   

Given:  x E x ,   
T

xP E x x x x   
 

 

Find:  y E y ,   
T

yP E y y y y   
 

 

A set of 2 1L  sigma points is derived as following equations from the augmented 

state and covariance where L  denotes the dimension of the augmented state. 

 0

1| 1 1| 1k k k k

       (3.46) 

   1| 1 1| 1 1| 1 ,   1, ,i

k k k k k k
i

L P i L             (3.47) 

   1| 1 1| 1 1| 1 ,   1, ,2i

k k k k k k
i

L P i L L              (3.48) 
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where   1| 1k k
i

L P   is the ith column of the matrix square root of

  1| 1k kL P   using the definition: square root A of matrix B satisfies 
TB AA .   is 

the matrix of 2L+1 sigma vectors. 

The complete state estimation of the UKF is given in Table 3-3:  

Table 3-3 The UKF state estimation algorithm 

Initial estimates: 
 

 

 0 0x̂ E x
 

0 0
ˆ ˆ 0 0

T
Tx E x x          

  0 0 0 0 0
ˆ ˆ

T
P E x x x x   

 
 

  
0

0 0 0 0 0

0 0

ˆ ˆ 0 0

0 0

T
v

n

P

P E x x x x R

R

    

 
     
   
  

 

Calculate the sigma points: 
 

 

1 1 1 1 1 1
ˆ ˆ ˆ

k k k k k kx x P x P            
   
 

 

 1, ,k   

Time update: 
 

 

 

 | 1 1 1 1, ,x x v

k k k k kF u       

 | 1 , | 1 1,x n

k k i k k kH    Y  

 2

, | 10
ˆ

L m x

k i i k ki
x  


  

 2

, | 10
ˆ

L m

k i i k ki
y 


 Y  

 2

, | 1 , | 10
ˆ ˆ

TL c x x

k i i k k k i k k ki
P x x    

 
          

Measurement update: 
 

 

 

    2

, | 1 , | 1, 0

ˆ ˆ
k k

TL c e

i i k k k i k k k kd d i
P d d R  

    D D  

    2

, , | 1 , | 10

ˆˆ
k k

TL c

w d i i k k k i k k ki
P w d 

 
   W D  

1

k k k k
k w d d d

P PK  

 ˆˆ ˆ
k k k k kw w d d  K

 

,k k k k

T

w w k d d
P P P K K
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where
T

T T Tx x v n     ,      
T

T T T
x v n    

  
, composite scaling 

parameter, L dimension of augmented state, 
vP process noise covariance matrix, 

i 

weights as calculated in Equation (3.42).
 

 

3.5.3 Parameter estimation 

Consider a nonlinear mapping  

  ,k ky G x w   (3.49) 

where kx  is the input, ky  is the output, and the functional  ,kG x w
 
is parameterized by 

the vector w. The error is defined as  ,k k ke d G x w  , kd is the desired outputs 

corresponding to input kx . In order to minimize the error, a new state-space representation 

is given,  

 1k k kw w r     (3.50) 

  ,k k k kd G x w e    (3.51) 

where kw  corresponds to a stationary process, driven by process noise kr , and the output 

kd  corresponds to a nonlinear observation on kw . The complete parameter estimation of 

the UKF is given in Table 3-4: 
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Table 3-4 The UKF parameter estimation algorithm 

Initial estimates:  

 0ŵ E w  

  
0 0 0

ˆ ˆ
T

wP E w w w w   
 

 

Calculate the sigma points: 

 

 

 

1
ˆ ˆ

k kw w

  

| 1
ˆ ˆ ˆ

k kk k k k w k ww w P w P     


   
 

W  

Time update: 
 

 
 2

, | 10

ˆ L m

k i i k ki
d  

 D  

1 1k k

r

w w kP P R




   

Option 1  | 1 | 1,k k k k kG x D W  

Option 2   ˆ ˆ,k k kd G x w  

Measurement update: 
 

 

    2

, | 1 , | 1, 0

ˆ ˆ
k k

TL c e

i i k k k i k k k kd d i
P d d R  

    D D  

    2

, , | 1 , | 10

ˆˆ
k k

TL c

w d i i k k k i k k ki
P w d 

 
   W D  

1

k k k k
k w d d d

P PK  

 ˆˆ ˆ
k k k k kw w d d  K  

where L   ,   is the composite scaling parameter, L  is the dimension of the 

parameters to be estimated, rR  is the process-noise covariance, and eR  is the measurement-

noise covariance.
 

 

3.5.4 DUKF estimation 

During FDD implementation, the dual estimation problem which consists of 

simultaneously estimating the state kx
 
and the model parameters w from the noisy data 

ky
 
needs to be addressed. ATSEKF solves this issue through treating parameters which 

needs to be estimated as state parameters. The DUKF estimation solves this problem 
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through performing the state and parameter estimation simultaneously, given only noisy 

observations. At every time sample, the UKF state filter estimates the state using the 

current model estimate ˆ
kw  while the UKF parameter filter estimates the parameters using 

the current state estimate ˆ
kx . The estimation scheme is shown in Figure 3-5. 

 

Figure 3-5 Sequential approach of DUKF designed to pass over the data one point at a 

time [26] 

3.6 Fault detection and diagnosis decision schemes 

After generation of residuals and the fault is detected by the ATSEKF and DUKF 

filters, the next task is to recognize and decide the best time to report the fault in a 

dynamic system. This step also decides the time to activate the reconfiguration module, 

so it should avoid to report too early or too late. This detection procedure is consisting of 

two steps and it is based on a statistical hypothesis test [18]. The task of the first step is to 

obtain the statistical quantities, such as mean values and variances, in a relatively large 

moving window once the system reach to steady-state condition under the normal 

operations. The assumption is that the residual from the state estimates and the residual 

from the parameter estimates follow the Normal or Gaussian distribution and are not 
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dependent on each other. The second phase uses a smaller moving window to determine 

the statistical quantities based on those from the first phase when the faults occur.  

Step 1: Define    0 0

2ˆ ,k u
 

  , where  ˆ pk  denotes the chosen residuals 

vector from the estimated fault parameters and the measurement residuals of the filter. 

0u


represents the mean value of   0

2ˆ . k


  denotes the associated variance.  

For 11, ,i N , using 

    0ˆ 1

1
ˆ

i

k

ij
k j

k
 


    (3.52) 

to obtain the mean, and covariance can be obtained by 

      0 0

2
2

ˆ ˆ1

1
ˆ

1i i

k

ij
k j k

k 
  


  
 

  (3.53) 

or in recursive form  

      0 0ˆ ˆ

1
ˆ1

i i
i

k
k k k

k 
  


    (3.54) 

        0 0 0

2
2 2

ˆ ˆ ˆ

2 1
ˆ1 1

1i i i
i

k
k k k k

k k  
   

      
 

 (3.55) 

1N is the sample size of a discrete random vector, and generally it is chosen to ensure a 

sufficient accuracy of getting the statistical quantities of the normal operations. 

Step 2: Determine the statistical quantities under the abnormal operation. 
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Define the following calculation with moving window of size 2N  based statistical 

quantities 

    
ˆ

2 12

1
ˆ

i

k

i

j k N

k j
N

 
  

   

                                                ˆ 2

2

1
ˆ ˆ1

i i ik k N k
N

        
 

                        ˆ

2

1
1

i ik k
N

     (3.56) 

     0

2

2

2

ˆ ˆ
12

1
ˆ

1i i

k

i

j k N

k j
N 

  

  

  
 

  (3.57) 

          
2

2

2

ˆˆ
12

1
ˆ

1 ii

k

i

j k N
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Then, a fault in the system corresponding to the  th residual is declared at time   if the 

following detection variable 

  
 

 

 

 0 0

2 2

ˆ ˆ

2 2

ˆ ˆ

ln 1,   1, ,i i

i i

i

k k
d k i p

k k

 

 

 

 

 

     (3.59) 

exceeds a predetermined threshold i  

                              
  
 
 
  

                                     (3.60) 

where 0H  {no fault indication in ith residual} , iH {fault indication in ith residual} . 

The window length 2N is less than 1N  and the threshold i  is a design variable, and the 
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FDD will cause jitter and false alarm if 
i  is chosen too small, on the contrary, the FDD 

will miss detection if the threshold 
i  is set too large. By defining a threshold variable 

i  

to accentuate the deviation in the statistical quantities from their normal values, the fault 

can be reported and reconfiguration control part can be activated at the best time.  

3.7 Summary 

This chapter starts from parameter estimation discussion, and later the conventional 

Kalman filter is presented. After that, ATSEKF is derived based on a two-stage Kalman 

filter originally proposed by Keller [19]. Unscented transformation is explained in this 

chapter, and based on UT, UKF state estimation and parameter estimation are presented 

respectively. This chapter presents also the FDD decision scheme adopted by this thesis 

work. 
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4 Nonlinear Dynamics and Models of Rotary- and Fixed-

wing UAVs and Boeing 747 – 100/200 

UAV is an aircraft without human crew on board and it can be controlled by a pilot at 

a ground control station or operating autonomously with autopilot during entire flight of 

the vehicles. UAV’s history can be traced back to 1894, and the first pilotless aircraft was 

built shortly after World War I. The first decade of the 21
st
 century, countries in the world 

develop a variety UAVs with different purposes, and currently 32 countries in the world 

have developed 50 kinds of UAVs [60]. UAVs have tended to be small, which are the 

main beneficiaries of the development of technology. UAV is now being given a greatly 

expanded role in war mission.  

In the aviation field, UAVs are begun to be chosen as the benchmarks to validate the 

various FTC schemes. The small size and affordable investment attract a lot of 

universities and research institutes to choose it as the test bed. Furthermore, the dynamic 

mathematical models of UAVs are not that complicated, so compared with fixed-wing 

airplanes, it will be easier to do different tests. The most attractive thing is there is no 

pilot on board, so it is less risky to be a test bed. 

In this section, two different types of UAVs will be introduced for the purpose of 

investigating and evaluating FDD schemes developed in Chapter 3, one is a rotary-wing 

quad-rotor helicopter UAV, and the other is fixed-wing general transport UAV. Boeing 

747-100/200 aircraft will be introduced as the representative for the commercial aircrafts 

at the end of this chapter. 
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4.1 Quad-rotor Helicopter UAV Model  

The first aircraft considered in this thesis work is a rotary-wing quad-rotor helicopter 

UAV as shown in Figure 4-1. The quad-rotor helicopter has been used in several domains: 

safety, natural risk management, intervention in hostile sites, and environmental 

protection [27]. The quad-rotor is a helicopter which is able to fly indoors, and it has four 

lift-generating propellers driven by four motors as shown in Figure 4-2.  

 

Figure 4-1 A quad-rotor helicopter 

In order to balance moments and produce yaw motion, propeller pairs (1, 3) and (2, 4) 

respectively turn in opposite direction as shown in Figure 4-2. The front and rear motors 

spin their propellers clockwise to generate thrust, while the left and right motors rotate 

counter-clockwise. The altitude of the quad-rotor helicopter is controlled by adjusting the 

spinning speed of four rotors together with the same magnitude in lift forces. The yaw 

angle   is generated by creating a difference in speed between clockwise and counter-

clockwise propellers. The roll angle   depends on the 2
nd

 and 4
th

 propeller’s converse 
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speed. The pitch angle   is controlled by the 1
st
 and 3

rd
 propeller’s converse speed. The 

motion in horizontal direction depends on the pitch angle and roll angle [28, 29]. 

 

Figure 4-2 Physical structure of a quad-rotor UAV [28] 

In Figure 4-2, m denotes the mass of  the quad-rotor UAV,  g is the gravity 

acceleration and 1 2 3, , ,F F F and 
4F denote the thrust forces which are generated by each 

corresponding rotor, coordinates  , ,E E Ex y z  represent the inertial reference frame E 

fixed with the earth, and coordinates  , ,B B Bx y z denote the body reference frame B fixed 

with quad-rotor UAV body.  

4.1.1 Dynamic modeling of a quad-rotor UAV 

The flight dynamic equations of a quad-rotor UAV describe a rotating rigid body with 

six-degrees-of-freedom (6DoF). The inertial reference frame is denoted by E= 

{Ex,Ey,Ez}, which is fixed with the earth, and the body frame B = {Bx, By, Bz} with the 

quad-rotor UAV body and is assumed to be at the centre of the gravity of the quad-rotor, 

where the z axis is pointing upwards. The three translation components  
T

xt yt zt 
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represent the position of the quad-rotor UAV’s center of mass, and three Euler’s angles 

 
T

     represent its orientation of a rigid body as shown in Figure 4-2,   is 

pitch angle 
1 1

2 2
  

 
   
 

,   is roll angle
1 1

2 2
  

 
   
 

and  is yaw angle 

1 1

2 2
  

 
   
 

, 
T

x y zV V V V    represents three translation velocities, and 

T

  
       represents three rotation velocities. 

The dynamic model is derived using Euler-Lagrange formalism [4] under the 

following assumptions: 

 The structure is supposed to be rigid. 

 The structure is supposed to be symmetrical. 

 The center of mass and the body fixed frame origin are assumed to coincide. 

 The propellers are supposed rigid. 

 The thrust and drag are proportional to the square of the propeller speed. 

 The relation between ,   and ,V   is  

   
t

r

RV

R







 
                       (4.1) 

tR
 
and rR are the transformation velocity matrix and the rotation velocity matrix. 

cos cos sin sin cos cos sin cos sin cos sin sin

cos sin sin sin sin cos cos cos sin sin sin cos

sin sin cos cos cos

tR

           

           

    

  
 

  
 
  

 (4.2) 
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1 0 sin

0 cos cos sin

0 sin cos cos

rR



  

  

 
 


 
  

 (4.3) 

 

3 2

3 1

2 1

0

0

0

t tR R

  
 

   
 
   

 (4.4) 

The derivative of Equation (4.1) with respect to time is given as: 

 

 t t t

t r
r

RV RV R V V

R R
R



   
 

   

  
    

  

 (4.5) 

Using the Newton’s 2
nd

 laws in the reference frame 
mE , external vertical forces 

total
F

and moments 
total

T can be represented as: 

 

 

 

total

total

F mV mV

T I I

 

  

  (4.6) 

where m  is the mass of the quad-rotor UAV and I  is the total inertia matrix of the quad-

rotor UAV,  , ,u v wI diag I I I , ,u vI I and wI are moments of inertia in the body reference 

frame. 
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


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 (4.7)  
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      

     3 4 6d y xF F l k I I     
 

 (4.8) 

where force
total

F is the total force acting on the quad-rotor UAV’s center of gravity, force 

F is generated by four rotors, force
a

F is considered as a disturbance, and force 
gF

 
is the 

gravity. 
total

T is the total torque acting on the quad-rotor UAV’s center of gravity, the 

torque T  is generated by rotors, the aerodynamic torque 
a

T is considered as a disturbance 

and the torque 
gT
 
is created by gravity.  ,t rK K

 
are two diagonal aerodynamic matrices, 

 
1

0,0, 1 ω
T

i

i iW
  

 
is the rotational velocity vector of the i-th rotor, and RI

 
is the 

inertia of the rotor. tdc  is the rotor distance to center of gravity along the x  or y  axis, dc
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is the torque/force ratio. Therefore the dynamics of rotation of the quad-rotor UAV can 

be expressed as: 

   4

1

sin

sin cos

cos cos

T T

t t t

t r
r r r r r R ii

F mR K R m g

R R
T IR I K R R IR I W



   

 

      
  

 
 

  
 
  

  
       

  


 (4.9) 

Therefore, the position  ,x y  are controlled by a virtual input based on the tilt angles

 ,  , and the  , 
 
and the  , z

 
motions are controlled by ω , 1, ,4i i  . The quad-

rotor is driven by four DC motors: 

 

2

ω

ω
ω

e

R m r s

di
L u i k

dt

d
I k i k k

dt

  

  

R

  (4.10) 

where u is the controllable input, i  is the electrical current of motors, R  is the electrical 

resistance and ω  is the rotation speed of rotor. 

4.2 The NASA GTM Fixed-wing UAV Model 

In order to investigate flight dynamics and study the behavior of the aircraft in upset 

conditions, NASA built a test bed referred as to the Generic Transport Model (GTM) that 

can fly outdoors. The GTM is a 6 degree-of-freedom (DOF) nonlinear model with 5.5% 

dynamically scaled, turbine powered fixed-wing unmanned aerial vehicle [30] as shown 

in Figure 4-3. The simulation environment is implemented by the Matlab/Simulink, while 

the two physical UAVs are available at a NASA research center for experimental tests.  
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This thesis focuses on developing FDD schemes based on a Linear Parameter Varying 

(LPV) model [31] of the GTM and a high fidelity nonlinear model of the GTM in the 

event of actuator faults or failures. The FDD scheme utilizes ATSEKF and DUKF with 

real time states estimation and fault parameters identification based on the measured 

outputs of the sensors and the inputs to the actuators under the high fidelity 6 DOF 

nonlinear Matlab/Simulink environment. 

 

Figure 4-3 The NASA generic transport model (GTM) 

4.2.1 Nonlinear model of the GTM 

The state variables of the aircraft is defined as  
T

x u v w p q r    . 

u  is velocity along x-axis with body frame, v  is velocity along y-axis with body frame, 

w  is velocity along z-axis with body frame, p is roll angular rate, q  is pitch angular rate, 

r  is yaw angular rate,   is roll angle fixed with Earth frame,   is pitch angle fixed with 

Earth frame and  is yaw angle fixed with Earth frame. 

In order to simply the dynamic equations, following assumptions are made:   

1) 0xyI   and 0yzI  ;
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2) Mass is assumed to remain constant; 

3) The center of gravity is assumed to be constant and fixed at the nominal 

 value. 

Nonlinear dynamic equations of the GTM are represented as:  

 ˆ, sin
q e T R

X X X X X

Sq
u C C C C C C g rv qw

m   
           

 
 (4.11) 

 ˆ,
cos sin

q e T T
Z Z Z Z Z Z

Sq
w C C C C C C g ru pw

m     

          
 

    (4.12) 

     
ˆ,

2 21 1
q e T R

m m m m m m zz yy xz

yy yy

q C C C C C C Sqc rp I I I p r
I I     

          
 

 (4.13) 

 ˆ ˆ,
cos cos

p rR e
Y Y Y Y Y Y

Sq
v C C C C C C g qu pv

m    

          
 

 (4.14) 

   
ˆ ˆ, p rR e

l l l l l l zz yy xzD C C C C C C Sqb rp I I I
    

         
 

 (4.15) 

   
ˆ ˆ, p rR e

m m m m m m yy xx xzE C C C C C C Sqb pq I I I
    

         
 

 (4.16) 
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  (4.17) 

 
2

yy xz xx yy
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I I D I I E
r
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  (4.18) 

 
sin sin cos sin

cos

q r
p

   





   (4.19) 

 cos sinq r      (4.20) 
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sin cos

cos

q r 





   (4.21) 

The lift, drag and pitching moment coefficients are implemented by lookup tables in the 

Matlab/Simulink simulation environment. 

4.2.2 Linear parameter varying (LPV) model of the GTM 

As the emerging approach to control theory, Linear Parameter Varying (LPV) 

modeling and control of nonlinear systems have been widely studied in dynamic systems 

since early 1990s [31, 34]. Applications have been successful in some levels. An LPV 

model simulates the actual nonlinear system by using time-varying real parameters like 

altitude and/or speed to obtain smooth semi-linear models. However, there is a few of 

investigations for FDD design with LPV model, except the work presented in [35]. Since 

FDD in this thesis work is a model-based estimation, the LPV model is chosen for the 

FDD design to the nonlinear model of the GTM due to real-time implementation 

consideration. This thesis work presents implementation of the ATSEKF and DUKF 

schemes in the GTM LPV model.  

For the sake of brevity, the basic definition of an LPV model for a nonlinear system is 

presented. LPV model is a class of finite dimensional linear models of a nonlinear system 

whose state-space entries A, B, C, and D  depend continuously on a time-varying 

parameter vector,  t
 
[36]. Parameters ( )t  can be measured at the current time and 

their values are constrained a priori to lie in some known, bounded set and this set is 

continuous, but cannot be known in advance. The formal definition of an LPV model can 

be given as follows [57]: 



 

60 
 

Given a compact subset
s , the parameter variation set 

 
denotes the set of all 

piecewise continuous functions mapping 
 (time) into  with a finite number of 

discontinuities in any interval. 

Given continuous functions: : ,  : ,  : yu
n nn ns n n s sA B C
       and 

: ,y un nsD


  an n-th order linear parameter-varying (LPV) model of a given nonlinear 

system is defined as: 

 
 

 

     
     

 

 

A t B tx t x t

y t u tC t D t

 

 

    
     
     

 (4.22)  

where  . 

Now the key task is to select an adequate  t
 
such that the above LPV model is able 

to capture the nonlinearities of the system. So far, there are three techniques for obtaining 

LPV models from a nonlinear system [33]. 

1) Jacobian linearization approach. It is implemented at a number of selected 

equilibrium points. The Jacobian linearization approach uses first-order Taylor 

series expansion of nonlinear model to create an LPV model which approximates 

the nonlinear system with respect to selected equilibrium points. The drawback of 

this approach is that it is easy to divergent and hard to obtain the transient 

behavior of the nonlinear system. 

2) State transformation approach. This approach is proposed based on exact state 

transformations at a number of selected equilibrium points. It requires that  t
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must be available in real-time for measurement. The disadvantage of this 

approach is that the existence of trim map for the entire flight envelope of interest 

for a particular combination of the scheduling variables is not guaranteed [36]. 

3) The function substitution approach. This approach is to obtain a LPV model at 

a unique trim point by decomposing the nonlinear function. The main drawback 

of this approach is the lack of theoretical validation. 

The nonlinear equations for the longitudinal motion of the GTM given as follows [33] 

were derived based on the Jacobian linearization approach: 

  
1

cos sinEAS x zV F F
m

    (4.23) 

  
1

sin cosx z

EAS

F F q
mV

       (4.24) 

 q    (4.25) 

 
y

yy

M
q

I
   (4.26)  

These equations contain transcendental functions and aerodynamic data obtained 

through wind tunnel tests and flight tests. The transcendental functions can be 

approximated by third-order Taylor series expansion as follows: 

   31
sin

6
x x x    (4.27) 

 21
cos 1

2
x x    (4.28) 
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The aerodynamic data which are obtained by using lookup tables in the nonlinear model 

of the GTM can be approximated by polynomial equations [35].  The LPV model of the 

longitudinal motion of the GTM has state variables  
T

EASx V q  , with 

equivalent airspeed ( )EASV , pitch angle rate  q , angle of attack   , and pitch angle   . 

The input vector, u, is given by  
T

ele throttleu   , with
ele  representing elevator 

deflection and 
throttle  representing throttle deflection. Therefore aerodynamic forces 

xF

and zF  and moment 
yM  are obtained through the following equations: 

        ˆ, , 2 sinx ref x x e x X thF qS C C C q T mg             (4.29) 

        ˆ, , 2 cosz ref z z e z Z thF qS C C C q T mg             (4.30) 

        ˆ, , 2y ref m m e m ENG X thM qS c C C C q Z T            (4.31) 

where the aerodynamic coefficients of angle of attack  , pitch rate q and elevator 

deflection e  
are obtained through lookup tables. 

In the original LPV model of the GTM, fault models were not included. Partial loss of 

control effectiveness in elevator has been implemented for FDD purpose in this work.  

4.3 Boeing 747-100/200 Aircraft Model  

The third aircraft model used in this thesis is a Boeing 747 series 100/200 airplane 

model. The Boeing 747 (as shown in Figure 4-4) is a large, international wide-body (two-

aisle) airliner with four fan jet engines designed to operate in international airports. For 
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Boeing 747, the longitudinal control is performed through a movable horizontal stabilizer 

with four elevator segments (inboard and outboard elevators) and the engine thrust. 

Under normal operation, the inboard and outboard elevators move together. The 

polynomial function model of the longitudinal motion of Boeing 747-100/200 aircraft is 

developed in [36]. The aerodynamic coefficients are fitted as polynomial functions of 

angle of attack and velocity over the given flight envelope. 

4.3.1 Nonlinear model of the Boeing 747 

 

Figure 4-4 Boeing 747 
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The nonlinear equations of the Boeing 747 longitudinal motion are taken from [36]. 

The longitudinal motion of an aircraft can be defined by the following six variables: 

angle of attack,  , pitch rate, q , pitch angle, , true airspeed, 
TASV , altitude, 

eh , and 

distance along the x-axis path 
ex (recall eEarth-reference-frame).  

The detailed body-axes nonlinear equations for the longitudinal motion of the Boeing 

747 are presented as follows [36]: 

    

 

   

2
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2

4 1
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 q    (4.35) 

 
 cos sin sin coseh V    

 (4.36) 
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It can also be rewritten in following matrix form: 

      , , , , , , , , ,

e

e e s e

e e

V V

q A V h q B V h f V h q

T

h h

 



     

 

   
   

    
      
    
     

      

 (4.37) 

There are three simplified inputs: elevator deflection 
e , stabilizer deflection 

s  
and 

engine thrust T . Altitude 
eh  is around 7000 m, angle of attack  2,10   and total 

airspeed  150,280V  . In longitudinal motion, the sideslip angle,  , roll angle, , roll 

rate, p , and yaw rate, r , are considered to be zero. 

4.4 Summary 

This chapter derives the dynamic mathematical model of a quad-rotor helicopter UAV, 

and explains the simulation structure of the quad-rotor UAV. The nonlinear model and 

LPV model of the NASA’s GTM is then presented in this chapter. Simulation structure of 

the GTM is also presented. The nonlinear dynamic model of Boeing 747 is further 

presented as the third benchmark model for FDD investigation. 
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5 Simulation Results and Analyses 

The ATSEKF and DUKF have been tested on the quad-rotor UAV, Boeing 747 and 

GTM models. This chapter will present the simulation and analysis results respectively.  

5.1 Application to Quad-rotor UAV 

The system state and observation equations are modeled in discrete-time domain with 

Gaussian white noise. Although this is a time-variant system model, which means that the 

trim point, output bias and the parameters are dynamic and could be functions of time and 

the current state of aerial vehicle. In order to simplify the implementation of FDD, only 

an equilibrium point was considered in this thesis. 

The linear quad-rotor UAV FDD simulation starts from the initial value

 0 0 0 0 0 0 0 0 0 1 1 0
T

X  . The measurement time interval is 

T=0.01s, and the UKF parameters are listed below:  

  

4 4

2

6 6

6 6

12 12

1

2

3 , 30

0.001

1 0.99985 1

Re 0.009

ukfpe

ufkpe

k L L

Pw I

Rr diag Pw

I

Rn I

Px I



















  


 


  


 






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The measured outputs and control signals are used as inputs for the ATSEKF and 

DUKF. The estimated states x̂  and the estimated parameters are used for comparison and 

decision making in the detection and diagnosis logic block. 

5.1.1 Application with a Linear Quad-rotor UAV Model 

  The ATSEKF and DUKF are implemented with the linearized quad-rotor UAV 

model. Simulation results under different levels of partial loss of different actuators are 

given below. The scenario is that the 1
st
 propeller effectiveness encounters a 30% partial 

loss at time of 60 seconds. 

 

Figure 5-1 State estimation  , , , , ,X Y Z   
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In Figure 5-1, the red solid line represents the system real outputs, the blue dash-dot 

line represents the state estimation outputs of ATSEKF and the black dash line represents 

the state estimation outputs of DUKF. The state estimation results shows that the state 

estimation results of ATSEKF and DUKF match the system measurement outputs well 

with linearized model. 

Figure 5-2 below presents the fault detection residual of each propeller when partial 

loss occurs on the 1
st
 propeller, and the results are obtained through Equation (3.60). 

Obviously, the results of ATSEKF and DUKF are not satisfactory. Since four propellers 

couple closely, and when the 1
st
 propeller encounters partial loss, the rest of propellers 

are affected. 

  

Figure 5-2 Residual of each propeller’s control effectiveness  
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Figure 5-3 Propeller’s control effectiveness estimation (1
st
 propeller encounters a 30% 

partial loss at the time of 60 seconds) 

On Figure 5-3, the left column plots show the four propellers’ control effectiveness 

estimation results by DUKF, while the right column plots are the control effectiveness 

estimation results by ATSEKF. The parameter estimation results show that both DUKF 

and ATSEKF can detect the partial loss with a certain delay, but only ATSEKF can 

provide good estimation of the magnitude of the fault.  

From Figure 5-1 to Figure 5-3, the simulation results show that both the ATSEKF and 

DUKF have the same performance on states estimation, the ATSEKF has better 

performance than the DUKF in terms of fault diagnosis in this quad-rotor UAV 

application, since the DUKF is more influenced by the coupled four propellers of the 

quad-rotor UAV than the ATSEKF with the linearized environment. 
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5.1.2 Application with a nonlinear quad-rotor UAV model 

The ATSEKF and DUKF are implemented with the nonlinear quad-rotor UAV model 

in this case. The scenario is that the 1
st
 propeller’s control effectiveness encounters a 30% 

partial loss at time of 60 sec. 

 

Figure 5-4 State estimation  , , , , ,X Y Z     
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In Figure 5-4, the red solid line represents the system real outputs, the blue dash-dor 

line represents the state estimation outputs of ATSEKF and the black dash line represents 

the state estimation outputs of DUKF. The state estimation results show that the state 

estimation results of ATSEKF and DUKF with nonlinear model match the system 

measurement outputs well.  

 

Figure 5-5 Residual of propeller’s control effectiveness 
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are not satisfactory, since the quad-rotor UAV is high nonlinear system and four 

propellers couple closely, and therefore as 1
st
 propeller encounters partial loss, the rest of 

propellers are affected.  

 

Figure 5-6 Propeller’s control effectiveness estimation (1
st
 propeller encounters a 30% 

partial loss at the time of 60 seconds) 
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and ATSEKF can detect the partial loss with a certain delay, but both of them cannot 

provide good estimation of the magnitude of the fault. 

From the results presented in Figure 5-4 to Figure 5-6, it can be easily seen that the 

estimated states of the ATSEKF and DUKF matched well with the measured outputs and 

also it filtered the measurement noise. Because the four propellers of the quad-rotor 

model are coupled closely, it can be seen that when one parameter changes greatly, it 

causes the other three parameters to change accordingly. It can be seen that the result of 

fault isolation is not satisfactory, and still the ATSEFK has the better performance in 

terms of fault diagnosis.  

For the parameter estimation of the quad-rotor UAV with the linear model, the 

simulation results have indicated no difference between the performance of ATSEKF and 

DUKF. Both of them matched well with the measured outputs and also the measurement 

noise was fairly well filtered. However, the parameter estimates from the ATSEKF and 

DUKF showed that these two Kalman filters did not provide accurate estimation of the 

magnitude of the fault parameter, but still indicated the time when the faults occurred. 

5.2 Application to the NASA’s GTM UAV 

In this section, simulation results and analyses of nonlinear GTM model and LPV 

model of the GTM are presented. In this thesis, it is assumed that failure occurs in the 

elevator actuator while others remain healthy. The throttle is kept constant at its trim 

setting throughout the maneuver.  
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5.2.1 Application with a nonlinear GTM UAV model 

In the nonlinear model of the GTM, the scenario is that a 20% of loss of control 

effectiveness fault in elevator occurred at 6 sec. The experiment starts with the initial 

states:  153.1694729 7.847030096 0.000195679 0.051182864 .
T

X  Since the 

computation is larger, the measurement time interval in nonlinear model is 0.02T s .  

The UKF parameters are listed as follows: 
  

1 1

2

9 9

2

9 9

9 9

1

2

3 ,  15

0.001

1 0.99985 1
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0.01
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ukfpe

k L L

Pw I

Rr diag Pw

I

Rv I

Px I


















   



   

 

 


  

.  

The measured outputs and control signals are used as inputs for the DUKF. The 

scenario is that the elevator control effectiveness encounters a partial loss of 20% (i.e. 80% 

of the original value) occurred at 6 seconds. 

   

Figure 5-7 States estimation  , , , , ,u w v p q r
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Figure 5-8 States estimation  , ,  
 

On Figure 5-7 and Figure 5-8, the red solid line represents the system outputs and the 

blue dash-dot line represents the state estimation results of DUKF. The measured and 

estimated states of DUKF are almost equal making it hard to see the difference between.   

 

Figure 5-9 e  control effectiveness estimation (20% partial loss occurred at 6 seconds) 
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Figure 5-9 shows that DUKF can detect and diagnosis the partial loss occurred at 6 

seconds, and the delay is less than one second. 

From Figure 5-7 to Figure 5-9, it can be observed that the DUKF can correctly 

estimate all the states and fault parameters within the given time limits in the nonlinear 

model, and it is very easy to implement the DUKF in the nonlinear model since it does 

not need to linearize the nonlinear model. It can be seen that the DUKF is a powerful 

recursive parameter estimation algorithm that improves the reliability of parameter 

estimates in the nonlinear systems. 

5.2.2 Application with a GTM LPV Model 

In the LPV model, the experiment starts with the initial states  0 0 0 0
T

X  . The 

measurement interval is 0.01 .T s  The test scenario is that a 20% loss of control 

effectiveness fault in elevator occurred at 6 sec. The UKF parameters are listed as follows: 

  
2

4 4

2

4 4

4 4

4 4

2 2
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I
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   

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  

The ATSEKF and DUKF use the measured outputs and outputs of LPV, and the state 

estimation and parameter estimation of the ATSEKF and DUKF will be presented below. 
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Figure 5-10 States estimation  , , ,EAS q 
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Figure 5-11 t  
and e control effectivness estimation ( e partial loss of 20% at 6 sec) 

On Figure 5-10 to Figure 5-11 show that the states estimation of the ATSEKF and 

DUKF in the GTM LPV environment matched well with the measured outputs and also it 

filtered the measurement noises and two Kalman algorithms detect and identify the fault 
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For the nonlinear model of GTM, the results showed that estimated effectiveness had a 

large jump when the fault occurred, but it became stable in a short time. The LPV model 

showed that DUKF and ATSEKF had similar parameter estimation accuracy, since the 

LPV model had simplified the nonlinear model greatly. 

0 1 2 3 4 5 6 7 8 9 10
-0.1

0

0.1

0.2

0.3

time

e
le

 L
o
s
s
 [

%
]]

 

 

TRUE LOSS

DUKF

ATSEKF

0 1 2 3 4 5 6 7 8 9 10
-0.1

-0.05

0

0.05

0.1

time

th
ro

tt
le

 L
o
s
s
 [

%
]]



 

79 
 

5.3 Application to Boeing 747 Model 

The implementation of Kalman filter in Boeing 747 model is different from the 

implementation of quad-rotor UAV model. The measurement time interval is 0.02T s . 

The simulation starts from the initial condition as    

 0.0162 0 230 0.0162 7000 .
T

X  The UKF parameters are chosen as: 

  
2
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
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The first test scenario is that s control effectiveness encounters a partial loss of 50%  

at 15 seconds.  

On Figure 5-12, the red solid line represents the true measured states, the blue dash-

dot line represents the estimated states of DUKF and the black dash line is the estimated 

states of ATSEKF. The simulation results show that the measured and estimated states of 

ATSEKF and UDKF are almost equal making it hard to see the difference between them. 
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Figure 5-12 States estimation  , , , , eV q h 
 

In Figure 5-13, the black dash line is the parameter estimated by ATSEKF, the blue 

dash-dot line represents the parameter estimated by DUKF, and the red solid line shows 

the partial loss of the true fault parameter. The simulation results show that both 

algorithms can estimate the partial loss occurred on s  in the Boeing 747 nonlinear 

model correctly. 
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Figure 5-13  , ,e s T   control effectiveness estimation ( s encounters a partial loss of 

50%  at 15 seconds) 

From Figure 5-12 to Figure 5-13, only one of  , ,e s T  encounters a partial loss and 

others are working properly. From the above simulation results, it can be easily seen that 

the outputs of the ATSEKF and DUKF matched well with measured outputs and also it 

filtered the measurement noises. The DUKF converges faster than the ATSEKF in the 

parameter estimation.  
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The second test scenario is that 
e encounters 40% partial loss at 20 seconds, 

s

encounters 50% partial loss at 20 seconds and T encounters 20% partial loss at 30 

seconds. 

 

Figure 5-14 States estimation  , , , , eV q h 
 

On Figure 5-14, the measured and estimated states are almost equal making it hard to 

view the difference between them.   
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Figure 5-15  , ,e s T   control effectiveness estimation (  , ,e s T  encounters a partial 

loss)  

Figure 5-15 presents that both ATSEFK and DUKF can estimate all partial losses 

occurred in the Boeing 747 nonlinear model correctly. 

From Figure 5-12 to Figure 5-15, it can be concluded that for the estimation of the 

Boeing 747 aircraft with nonlinear model, the simulation showed that the DUKF has 

better performance. DUKF can estimate the magnitude of fault very accurately in the 

nonlinear model. The results have shown that ATSEKF and DUKF can not only track the 

reference input effectively but also detect and diagnose the occurrence of the actuator 

faults in the quad-rotor UAV and Boeing 747 Simulink models. 

0 5 10 15 20 25 30 35 40 45 50
0

1

2

Time(s)

Lo
ss

 o
f 

E
le

va
to

r 
D

ef
le

ct
io

n
 

 TRUE

ATSEKF

DUKF

0 5 10 15 20 25 30 35 40 45 50
0

1

2

Time(s)

Lo
ss

 o
f 

S
ta

bi
liz

er
 D

ef
le

ct
io

n

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

Time(s)

Lo
ss

 o
f 

E
ng

in
e 

T
hr

us
t



 

84 
 

5.4 Comparison of ATSEKF and DUKF 

The simulation results show that DUKF is able to obtain better estimation accuracy of 

fault magnitudes compared with ATSEKF. For the linearized model of Boeing 747, both 

DUKF and ATSEKF can obtain accurate estimation of fault magnitudes, but in terms of 

time to convergence, DUKF is faster than ATSEKF. 

DUKF is the fastest algorithm in terms of time of convergence. However, DUKF is 

computationally more expensive, especially for nonlinear models whose coefficients are 

implemented by lookup tables in the Matlab/Simulink. The reason is that DUKF 

algorithm requires the 2L+1 sigma points, where N is the dimension of the augmented 

state. These 2L+1 sigma points join the measurement update and time update, so it makes 

the computation 2L+1 times larger than that of ATSEKF. Because ATSEKF linearizes 

the system at each sample point, it could lead to a poor performance by introducing 

unknown errors in the covariance of the transformed distribution. Furthermore, ATSEKF 

has to linearize the system at each time step, so it makes the implementation more 

difficult. After comparing the DUKF and ATSEKF, it is easy to find that the DUKF is 

better than ATSEKF, but with the cost of high demand for computation. 

5.5 Summary 

This chapter presents the simulation results of quad-rotor UAV, GTM UAV and 

Boeing 747. The estimations of GTM nonlinear model and LPV model produced similar 

results as Boeing 747. The simulation results indicated that ATSEKF and DUKF can 

correctly estimate all the states and fault parameters within the given time limits. 

However, the simulation results with quad-rotor UAV show that ATSEKF and DUKF 
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can detect the faults, but cannot identify the faults satisfactorily since quad-rotor UAV is 

a highly coupling nonlinear system. 
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6 Conclusions and Future Works 

6.1 Conclusions 

This thesis presented results from an on-line FDD design based on nonlinear recursive 

state and parameter estimation in the framework of discrete-time stochastic system. The 

estimation performance of two Kalman filters, namely ATSEKF and DUKF, were also 

compared. 

Simulation evaluation results in Chapter 5 show that both ATSEKF and DUKF are 

very successful in terms of states estimation. However, there are some differences in 

parameters estimation performance. In terms of convergence, DUKF is faster than 

ATSEKF in parameter estimation. It should be pointed that the DUKF is a powerful 

recursive state and parameter estimation algorithm that improves the reliability of 

parameter estimates in the nonlinear systems. The DUKF has the advantage that it 

separates state estimation and parameter estimation which is more accurate compared 

with ATSEKF. The DUKF can use the nonlinear model of the system directly with no 

need to linearize the nonlinear system, so the DUKF is easier in algorithm 

implementation. The drawback of the DUKF is that it is more time-consuming, especially 

when the number of system states and the number of parameters to be estimated increase.  

6.2 Future Works 

In terms of faults, this work only considers partial loss type of faults. Other types of 

actuator faults need to be taken into consideration as one of the future works. Only 

actuator faults have been considered while the other faults are assumed to functional 
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normally. In reality, faults can occur also in the sensor and system components. 

Development of new FDD schemes for sensor and system component fault including 

wing/body damages will be another future works. Improvement of the robustness and 

performance of the ATSEKF and DUKF algorithms, development of computationally 

more efficient DUKF algorithm, as well as integration of the FDD schemes with fault 

tolerant control are also some future works. 
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