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ABSTRACT

The range time for jump diffusion with

two-sided exponential jumps

Di Xu

The first passage time of a stochastic process with respect to set A is the time until

the stochastic process first enters A. In this thesis, we study the first passage times for

a doubly exponential jump diffusion process, which consists of a continuous part given

by a Brownian motion with drift and a jump part given by a compound Poisson process

with jump sizes following a double exponential distribution. The Laplace transform of

the two-sided first passage time for a set [−a, b]c, a, b > 0 is found in this thesis.

The range time is another topic that has been studied in several papers, especially

for Brownian motion. The first range time is the first time when the range of a stochas-

tic process reaches a given level. In this thesis, by using solutions of the two-sided exit

problem, we find the Laplace transform for the first range time and the distribution of

the value of the process at the first range time.
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Chapter 1

Introduction

The range process {Rt; t ≥ 0} of a stochastic process {Xt; t ≥ 0} started at 0, is defined

by

Rt = X t −X t, t ≥ 0,

where X t := sup
s≤t

Xs and X t := inf
s≤t

Xs. As a result, the proceess {Rt; t ≥ 0} is increasing

and vanishes at t = 0. We denote its inverse, which is called the first range time for a

certain range r > 0, by

T = Tr = inf{t ≥ 0 : Rt ≥ r}.

Note that P{T < ∞} = 1 for most interesting Markov process. Intuitively, T is the

first time when the range of the process X reaches r. The range interval at time T is

[XT , XT ]. Sometimes, the range time is also called cover time. One boundary of the

range interval is visited at time T , and the other boundary is first visited at some time

S < T , where

S = inf{s ≤ T : Xs = XT +XT −XT} .

Throughout this thesis, the above notation will be preserved.
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Let {Xk} be a sequence of mutually independent random variables with expectation 0

and variance 1. Define Sn =
n∑
i=1

Xi, Mn = max
1≤i≤n

Si, mn = min
1≤i≤n

Si. The random variable

Rn = Mn−mn is called the range of the cumulative sum Sn. For the Bachelier-Wiener

process, Feller (1951) shows that the density function of the range Rn is given by

δ(n; r) = 8
∞∑
k=1

(−1)k−1k2φ(
kr√
t
),

where φ(x) stands for the normal density function with zero mean and unit variance.

To derive this, Feller (1951) starts from the density function for the event that {Sn =

x,Mn ≤ v,mn ≥ −u} and obtains the density function f(n;u, v) for the event {Mn ≤

v,mn ≥ −u}. The density function of Rn is obtained by δ(n; r) =
∫ r
0
f(n; u, r − u)du.

To eliminate the trend when E(Xk) 6= 0, Feller (1951) replaces the random variables

Sk by

S∗k = Sk −
kSn
n
, (k = 1, 2, ..., n),

and defines the corresponding variables M∗
n, m∗n and R∗n by analogy. The adjusted range

has a greater sampling stability and it can be used even when the means do not vanish.

The density function of the range R∗n is given by

δ(n; r) = re′′(r)+
∞∑
k=2

{2k(k−1)[e′((k−1)r)−e′(kr)]+(k−1)2re′′((k−1)r)+k2re′′(kr)},

where e(x) = exp(−2x2/t).

In Imhof (1985), the process {Xt} stands for either the standard Brownian motion

or the three dimensional Bessel process. Define the first hitting time at level y as

τ(y) = inf{t,X(t) = y}. The density function for the range time Tr is shown to be

P (Tr ∈ dt) = 2(∂/∂r)Qt(r/2, r/2, r)dt, t > 0,
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where Qt(x, y, z)dy = Px(X(t) ∈ dy, τ(0) ∧ τ(z) > t), 0 < x ∧ y ≤ x ∨ y < z. Fur-

thermore, the density for Tr1 − Tr can be obtained by conditioning for instance on

X(Tr) > 0, for 0 < r < r1, as follows,

P (Tr1−Tr ∈ dt) = (∂/∂r1{Qt((r1−r)/2, (r1−r)/2, r1)+Qt((r1−r)/2, (r1+r)/2, r1)}dt.

Imhof (1985) also shows that for Brownian motion {Xt}, the process {|X(S + t) −

X(S)|, 0 ≤ t ≤ T − S} is a three-dimensional Bessel process up to time τ(r).

In Vallois (1995), Xt considers a R-valued Brownian motion. In the paper the Brow-

nian trajectory is decomposed from extremes, via the inverse of the range process. The

main result is an intrinsic decomposition which takes its values in some subset U of

C([0,∞),R+) and indexed by Σ = {t ≤ 0;X(T )X(S) < 0} where C([0,∞),R+) de-

notes the set of all continuous functions. By splitting the initial point process into two

independent U-valued compound Poisson processes, it also gives a new proof of the

last result in Imhof (1985). Further, the author considers the process {Mt} defined by

Mt =
√

2XT√t
, where M is a square integrable martingale. M is connected to parabolic

martingales, which allows to show that M has a chaotic property representation.

As in Vallois (1996), let {Xn} denotes a Bernoulli random walk started at 0 with

P (Xn+1 − Xn = 1) = p and P (Xn+1 − Xn = −1) = q, p + q = 1. The generating

function of the first range time Tr is denoted by G(r) (i.e. G(r) = E(rTr) ), for every r

in [−1, 1],

G(r) =
N(r)

D(r)
,
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where

c = q/p,

φ(r) = 1− 4r2pq,

N(r) =
√
φ{2
√
φ− r[q(1 + cn)(αn+1

1 − αn+1
2 )− (p+ qcn)(αn1 − αn2 )]},

D(r) = (r − 1)[qrcn(α2n+1
1 + α2n+1

2 )− 1].

It is shown that the generating function is a rational function, which allows to compute

the distributions for Tr and Rr. Moreover, by letting n→∞, the asymptotic behavior

of Tn is investigated. At the end of this paper, two explicit results are proved for non-

symmetric case p 6= q: Tn/n converges in probability to 1/|p−q| and (Tn−n/|p−q|)/
√
n)

converges in distribution to normal distribution N(0, 4pq/|p− q|3).

Based on the results in Vallois (1996), Chong et al. (2000) present a result on cover

times for the asymmetric random walk and also random variables connected with the

coverage of a Brownian motion. A simple asymmetric random walk on the integer

points Z is stopped when the range first reaches a given magnitude m. The number of

steps until this happens is called the cover time. Let Sn be the position of the random

walk at time n. Suppose that the simple random walk with S0 = 0 is stopped when its

range is m. It is stopped at step

N = min{n : max
0≤i≤n

Si − min
0≤i≤n

Si = m}.

The coverage of the walk is an interval consisting of m + 1 consecutive integers with

SN being the point where the walk has reached a range of m. The other end point of

the coverage interval is first visited at some step M < N , whence

SM = 1(SN<0)(SN +m) + 1(SN>0)(SN −m).
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The following theorems are about the results for a simple random walk.

Theorem 1.1. (Chong et al. (2000)) With η(s) := arccosh(1/(s
√

4pq)) and ς(z) :=

ln
√
p/q + ln z, we have, for z > 0 and x, y 6= 0,

E(xMyN−MzSN )

=

(
s[(m/2){η(x) + ς(x)}]s[((m+ 1)/2){η(x) + ς(x)}]

s[1
2
{η(x) + ς(x)}]s[mη(x)]

+
s[(m/2){η(x)− ς(x)}]s[((m+ 1)/2){η(x)− ς(x)}]

s[1
2
{η(x)− ς(x)}]s[mη(x)]

)
s[η(y)]

s[(m+ 1)η(y)]

=

(
s[(m+ 1)η(x)]c[mς(z)]− s[mη(x)]c[(m+ 1)ς(z)]− s[η(x)]

{c[η(x)]− c[ς(z)]}s[mη(x)]s[(m+ 1)η(y)]

)
s[η(y)].

where s[x] := sinh(x) = 1
2
(ex − e−x) and c[x] := cosh(x) = 1

2
(ex + e−x).

Theorem 1.2. (Chong et al. (2000)) Let ς := ln
√
p/q. The distribution of the stopping

point is, for p 6= q,

P (SN = k) = eςk
s[|k| ς]s[ς]

s[mς]s[(m+ 1)ς]

= pm+(k−|k|)/2qm−(k+|k|)/2
(p|k| − q|k|)(p− q)

(pm − qm)(pm+1 − qm+1)
.

Let the process Xt be a Brownian motion with drift µ, then the Laplace transform

of (S, T,XT ) is shown as follows.

Theorem 1.3. (Chong et al. (2000)) For a Brownian motion with drift µ and variance

σ2 > 0, we have, for t, u ≥ 0 and all v, with sn[x] := sinhn(x), ε := rµ/σ2 and

α(x) := r/σ
√
µ2/σ2 + 2x,

E(e−uS−t(T−S)−vXT ) =
2α(t)

s[α(t)]

(
s2[1

2
(α(u) + ε− rv)]

(α(u) + ε− rv)s[α(u)]
+

s2[1
2
(α(u)− ε+ rv)]

(α(u)− ε+ rv)s[α(u)]

)
.

In Vallois and Tanré (2003), the authors follow a similar path as Vallois (1996). In-

stead of considering the simple random walk, the process in this paper is a Brownian
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motion with drift µ.

In Vallois and Salminen (2005), the first range time of a linear diffusion on R is

considered. Inspired by the observation that the exponentially randomized range time

has the same law as a similarly randomized first exit time from an interval, the authors

study a large family of non negative two-dimensional random variables (X,X ′). They

also explain the Markovian structure of the Brownian local time process when stopped

at an exponentially randomized first range time.

So far, we have seen that most of the results on the first range time are derived for

some specific processes, such as simple random walk or Brownian motion. In Ren (2006),

a different and simple approach is used to derive a result of a joint Laplace transform

on the first range time for general diffusion processes. It is shown that problems on the

first range time could be eventually reduced to solving an ordinary differential equation.

In this thesis we present the most comprehensive results to date on first range time

for a two-sided jump diffusion process. The process we consider is a standard Brownian

motion with drift plus an independent compound Poisson process. The process starts

from 0 and we are interested in the distribution of the time when the difference of the

running maximum and running minimum first reaches level r. Our idea is to divide

the interval [0, r] into 2n parts and consider the problem on each small interval and

approximate the range time by the sum of two first passage times. The first passage

time approximates S and the second passage time approximates T −S. Then we apply

results of the two-sided exit times for a jump diffusion process. We first find the joint
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probability generating function of the range time and the value of the process at the

range time. We also find the distribution of the value of the process at the range time.

The outline of this thesis is as follows. Chapter 2 introduces some basic concepts

and preliminary results on the exit problems for jump diffusion processes. Chapter 3

presents the Laplace transform of the two-sided exit time from a finite interval for the

jump diffusion process. In this chapter we also generalize a result in Kou and Wang

(2003). Chapter 4 derives the Laplace transform for the first range time by using the

two-sided exit problem results in Chapter 3 and some approximations. The distribution

of the process at the first range time is also obtained in this chapter.
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Chapter 2

Preliminaries

Let W
(µ)
t = µt+Wt be a standard, one-dimensional Brownian motion with drift µ. Let

H = Ha,b = min{t,W (µ)
t /∈ (a, b)} be the first-exit time. Define E(X;A) as E(X1{A}).

From Borodin and Salminen (2002), we have the following conclusion:

Ex

(
e−αH ;W

(µ)
H = a

)
= eµ(a−x)

cosh((b− x)
√

2α + µ2)

cosh((b− a)
√

2α + µ2)

Ex

(
e−αH ;W

(µ)
H = b

)
= eµ(b−x)

cosh((x− a)
√

2α + µ2)

cosh((b− a)
√

2α + µ2)

Our interest is focused on jump diffusion processes, which are widely used, for ex-

ample, in finance to model asset prices(stock, bond, currency, etc.). Two examples are

the normal jump diffusion process where the jumps follow a normal distribution (see

Merton (1976)) and the double exponential jump diffusion process where the jumps fol-

low a double exponential distribution (see Kou (2002)). Meanwhile, Perry et al. (2002)

studies the one-sided and two-sided first-exit problems for a compound Poisson process

with both positive and negative jumps of hyperexponential, Erlang and Coxian types

and with linear deterministic negative drift between jumps. Kou and Wang (2003) use a

doubly exponential jump diffusion process to model asset prices in finance. The process
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is of the form

Xt = µt+ σWt +
Nt∑
i=1

Yi, X0 ≡ 0.

Here {Wt : t ≥ 0} is a standard Brownian motion with W0 = 0, while {Nt : t ≥ 0}

is a Poisson process with rate λ, constants µ and σ > 0 are the drift and volatility

of the diffusion part respectively, and the jump sizes {Y1, Y2, ...} are independent and

identically distributed random variables. The common density of Y is given by

fY (y) = pη1e
−η1yI{y≥0} + qη2e

η2yI{y<0},

where p, q ≥ 0 are constants, p+ q = 1 and η1, η2 > 0.

Define τb := inf{t ≥ 0;Xt ≥ b}, b > 0.

Theorem 2.1. (Kou and Wang (2003)) For any α ∈ (0,∞), let β1 and β2 be the only

two positive roots of the equation

xµ+
1

2
x2µ2 + λ

(
pη1

η1 − x
+

qη2
η2 + x

− 1

)
= α,

where 0 < β1 < η1 < β2 < ∞. Then we have the following results concerning the

Laplace transforms of τb and Xτb.

E
(
e−ατb

)
=
η1 − β1
η1

β2
β2 − β1

e−bβ1 +
β2 − η1
η1

β1
β2 − β1

e−bβ2 ,

E
(
e−ατb ;Xτb − b > y

)
= e−η1y

(η1 − β1)(β2 − η1)
η1(β2 − β1)

[e−bβ1 − e−bβ2 ], for any y ≥ 0,

E
(
e−ατb ;Xτb = b

)
=
η1 − β1
β2 − β1

e−bβ1 +
β2 − η1
β2 − β1

e−bβ2 .

The Laplace transforms of the joint distribution of the first passage time it gives is

consistent with the results in Chapter 3 of this thesis.

The probability

P

(
Xt ≥ a, max

0≤s≤t
Xs ≥ b

)
= P (Xt ≥ a, τb ≤ t),
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for some fixed numbers a ≤ b and b > 0 is useful, for example, in pricing barrier options

while the logarithm of the underlying asset price is modeled by a jump diffusion process.

The following theorem gives the joint distribution of the jump diffusion and its running

maxima.

Theorem 2.2. (Kou and Wang (2003)) The Laplace transform of the joint distribution

is given by

∫ ∞
0

e−αtP (Xt ≥ a, τb ≤ t)dt

=E
(
e−ατ ;Xτb = b

) ∫ ∞
0

e−αtP (Xt ≥ a− b)dt

+ E
(
e−ατ ;Xτb > b

) ∫ ∞
0

eαtP (Xt + ξ ≥ a− b)dt.

Here ξ is an independent exponential random variable with rate η1 and E (e−ατ ;Xτb > b)

is obtain by letting y = 0 in Theorem 2.1.

Wang and Zhang (2009) discuss the two-sided first-exit problems of a diffusion process

with both positive and negative Erlang jumps using a martingale approach. They

introduce the surplus process

Xt = u+ ct+ σWt −
Nt∑
i=1

Yi, t ≥ 0,

where u ≥ 0 is the initial capital of the company, and c is the positive constant premium

income rate, {Wt : t ≥ 0} is a standard Brownian motion with dispersion parameter

σ > 0. Let {Nt : t ≥ 0} be a Poisson process with intensity λ > 0, counting the

total number of claims from an insurance portfolio and {Yi : i ∈ N} be a sequence of

independent and identically distributed random variables with density

fY (y) = p
ηn1 y

n−1

(n− 1)!
eη1yI{y≥0} + q

ηm2 (−y)m−1

(m− 1)!
eη2yI{y<0},

10



where p, q ≥ 0 are constants with p+q = 1, η1, η2 > 0. In particular, explicit expressions

for the Laplace transform of first exit times, as well as the distribution of the time of

ruin are obtained. Define

τa := inf{t ≥ 0 : Xt ≤ a}, 0 < a < u,

τ0 := inf{t ≥ 0 : Xt ≤ 0},

τb := inf{t ≥ 0 : Xt ≥ b}, b > u,

τ := inf{t ≥ 0 : Xt /∈ (0, b)}, b > u.

Theorem 2.3. (Wang and Zhang (2009)) For any θ > 0, we have the Laplace trans-

forms of τa and Xτa

Eu
(
e−θτa

)
=

n+1∑
i=1

Eu
(
e−θτa1Gi

)
=

n+1∑
i=1

πi,

Eu
(
e−θτa ;Xτa < a

)
=

n∑
i=1

Eu
(
e−θτa1Gi

)
=

n∑
i=1

πi,

Eu
(
e−θτa ;Xτa = a

)
= Eu

(
e−θτa1Gn+1

)
= πn+1,

where

Gi = {X· crosses the level a at time τa by the ith phase of a downward jump}, i = 1, 2, ..., n,

Gn = {Xτa = a}

and the vector π satisfies the following system

πf̂ [βi] = eβi(u−a), i = 1, 2, ..., n+ 1, (2.1)

π is the unique solution of (2.1).

Theorem 2.4. (Wang and Zhang (2009)) The Laplace transforms in connection with

the first-exit time τ are obtained as follows:

Eu
(
e−θτ

)
=

n+3∑
i=1

Eu
(
e−θτ1Ki

)
,

Eu
(
e−θτ ;Xτ ≥ b

)
= Eu

(
e−θτb1{τb<τ0}

)
=

n+1∑
i=1

Eu
(
e−θτ1Ki

)
,

Eu
(
e−θτ ;Xτ ≤ 0

)
= Eu

(
e−θT1{τ0<τb}

)
=

n+3∑
i=n+2

Eu
(
e−θτ1Ki

)
,
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where the events K1, K2, ..., Km+n+2 are defined as

Ki = {X· crosses b at time τ by the ith phase of a positive jump}, i = 1, 2, ...,m,

Km+1 = {Xτ = b},

Km+1+j = {X· crosses 0 at time τ by the jth phase of a negative jump}, j = 1, 2, ..., n,

Km+n+2 = {Xτ = 0}.
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Chapter 3

First passage times of a jump diffu-

sion process

Let

Xt = σWt + µt+
Nt∑
i=1

Yi, (3.1)

where W is a Brownian motion with W0 = 0, N is a rate λ Poisson process and (Yi)

are i.i.d. random variables with density function

fY (y) = pη1e
−η1y1{y≥0} + qη2e

−η2y1{y<0}, p, q > 0, p+ q = 1.

In addition, processes W., N. and (Yi) are independent. Note that the jump part is

a special case of the so-called marked point processes; further background on marked

point processes can be found in Brémaud (1981) and Jacod and Shiryaev (1987). The

process in (3.1) is indeed special cases of Lévy processes, processes with stationary and

independent, see Bertoin (1996) and Sato (1999).

Normally, the two-sided exit problem is difficult for general Lévy processes. It can only

be solved for certain kinds of jump distributions, such as the exponential-type, thanks
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to the memoryless property of the exponential distribution.

The process X in (3.1) has a generator

Lu(x) =
1

2
σ2u′′(x) + µu′(x) + λ

∫ ∞
−∞

[u(x+ y)− u(x)]fY (y)dy.

For any θ ∈ (−η2, η1), E[eθXt ] exists and

E[eθXt ] = eψ(θ)t,

where

ψ(θ) = θµ+
1

2
θ2σ2 + λ

(
pη1
η1 − θ

+
qη2
η2 + θ

− 1

)
.

Lemma 3.1. For all α > 0, the equation ψ(x) = α has exactly four roots β1, β2,−β3,−β4,

such that

0 < β1 < η1 < β2 <∞, 0 < β3 < η2 < β4 <∞.

In addition, let the overall drift of the jump diffusion process be

u := µ+ λ

(
p

η1
− q

η2

)
.

Then, as α→ 0+,

β1 →


0, if u ≥ 0;

β̃1, if u < 0;

and

β2 → β̃2, β3 → β̃3, β4 → β̃4,

where β̃1, β̃2, β̃3 and β̃4 are defined as the unique roots of equation

ψ(x) = 0, such that 0 < β̃1 < η1 < β̃2 <∞; 0 < β̃3 < η2 < β̃4 <∞.

14



Proof. Function ψ is convex in (−η2, η1) with ψ(0) = 0. Since

lim
x→η−1

ψ(x) = +∞ and lim
x→−η+2

ψ(x) = +∞,

there is exactly one root β1 for equation ψ(x) = α in (−η2, 0) and another root in

(0, η1). Furthermore, since

lim
x→η+1

ψ(x) = −∞ and lim
x→+∞

ψ(x) = +∞,

there is at least one root in (η1,+∞). Similarly, since

lim
x→−η−2

ψ(x) = −∞ and lim
x→−∞

ψ(x) = +∞,

so there is at least one root in (−∞,−η2). The equation ψ(x) = α is a polynomial

equation of degree four, so it has at most four roots. It follows that, there is exactly

one root in (−∞,−η2) and (η1,∞), respectively.

The limiting results when α→ 0 follow easily once we note that ψ′(0) = u.

For any a, b > 0 let

τ := inf{t ≥ 0 : Xt ≤ −a or Xt ≥ b}.

So τ is the first time when process Xt /∈ [−a, b]. We want to find E (e−ατ ;Xτ ≥ b),

E (e−ατ ;Xτ ≤ −a), E (e−ατ ;Xτ < −a− x) and E (e−ατ ;Xτ − b > x) for x > 0.

We first define some constants. Put

A :=
(β2 − β1)(β4 − β3)

(β1 − η1)(β2 − η1)(β3 − η2)(β4 − η2)

+
e−(a+b)β2

(β1 − η1)(β2 + η2)

(
(β1 + β3)(β2 + β4)

(β3 + η1)(β4 − η2)
e−(a+b)β3 − (β1 + β4)(β2 + β3)

(β4 + η1)(β3 − η2)
e−(a+b)β4

)
+

(β1 + β3)(β2 + β4)

(β2 − η1)(β4 + η1)(β1 + η2)(β3 − η2)
e−(a+b)(β1+β4)

+
e−(a+b)(β1+β3)

(β3 + η1)(β1 + η2)

(
(β1 + β4)(β2 + β3)

(β2 − η1)(−β4 + η2)
+

(β2 − β1)(β4 − β3)
(β4 + η1)(β2 + η2)

e−(a+b)(β2+β4)
)
,
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A11 :=
e−(a+b)β2

β2 + η2

(
e−(a+b)β4(β2 + β3)β4
(β4 + η1)(β3 − η2)

− e−(a+b)β3(β2 + β4)β3
(β3 + η1)(β4 − η2)

)
− β2(β3 − β4)

(β2 − η1)(β4 − η2)(−β3 + η2)
, (3.2)

A31 :=
e−(a+b)β1

β1 + η2

(
e−(a+b)(β4+β2)(β2 − β1)β4

(β4 + η1)(β2 + η2)
+

(β1 + β4)β2
(β2 − η1)(−β4 + η2)

)
+

e−(a+b)β2β1(β2 + β4)

(β1 − η1)(β4 − η2)(β2 + η2)
. (3.3)

Define A21 and A41 such that −A21 is obtained from A11 by changing β2 to β1 in (3.2),

and −A41 is obtained from A31 by changing β4 to β3 in (3.3).

B11 :=
−β3 + β4

(β4 − η2)(−β3 + η2)
+
e−(a+b)(β4+β2)(β2 + β3)

(β2 + η2)(β3 − η2)
− e−(a+b)(β3+β2)(β2 + β4)

(β2 + η2)(β4 − η2)
, (3.4)

B31 :=
e−(a+b)β2(β2 + β4)

(β4 − η2)(β2 + η2)
+

e−(a+b)β1(β1 + β4)

(β1 + η2)(−β4 + η2)
+

(−β1 + β2)e
−(a+b)(β2+β4+β1)

(β1 + η2)(β2 + η2)
. (3.5)

Define B21 and B41 such that −B21 is obtained from B11 by changing β2 to β1 in (3.4),

and −B41 is obtained from B31 by changing β4 to β3 in (3.5).

Theorem 3.1. For any α1 > 0, b > 0,

E
(
e−α1τ ;Xτ ≥ b

)
= A1e

−β1b + A2e
−β2b + A3e

−β3a + A4e
−β4a,

where

A1 =
A11

η1A
,A2 =

A21

η1A
,A3 =

A31

η1A
and A4 =

A41

η1A
.

Proof. We consider the two-sided exit problem under the same settings of Kou and

Wang (2003). To this end, we modify the approach of Kou and Wang (2003) for the
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one-sided exit problem. Let

u(x) =



1, x > b;

A1e
−β1(b−x) + A2e

−β2(b−x) + A3e
−β3(x+a) + A4e

−β4(x+a), −a ≤ x ≤ b;

0, x < −a.

For −a < x < b,

∫ ∞
−∞

u(x+ y)fY (y)dy

=

∫ ∞
b−x

pη1e
−η1ydy +

∫ −a−x
−∞

0× qη2eη2ydy

+

∫ b−x

0

(
A1e

−β1(b−x−y) + A2e
−β2(b−x−y) + A3e

−β3(x+y+a) + A4e
−β4(x+y+a)

)
pη1e

−η1ydy

+

∫ 0

−a−x

(
A1e

−β1(b−x−y) + A2e
−β2(b−x−y) + A3e

−β3(x+y+a) + A4e
−β4(x+y+a)

)
qη2e

η2ydy,

where ∫ ∞
b−x

pη1e
−η1ydy = pe−η1(b−x),

∫ b−x

0

e−β1(b−x−y)pη1e
−η1ydy +

∫ 0

−a−x
e−β1(b−x−y)qη2e

η2ydy

=

(
pη1

η1 − β1
+

qη2
η2 + β1

)
e−β1(b−x) − pη1

η1 − β1
e−η1(b−x) − qη2

η2 + β1
e−β1(a+b)−η2(x+a),

similarly for β2,∫ b−x

0

e−β2(b−x−y)pη1e
−η1ydy +

∫ 0

−a−x
e−β2(b−x−y)qη2e

η2ydy

=

(
pη1

η1 − β2
+

qη2
η2 + β2

)
e−β2(b−x) − pη1

η1 − β2
e−η1(b−x) − qη2

η2 + β2
e−β2(a+b)−η2(x+a),

for β3,∫ ∞
b−x

e−β3(x+y+a)pη1e
−η1ydy +

∫ 0

−a−x
e−β3(x+y+a)qη2e

η2ydy

=

(
pη1

η1 + β3
+

qη2
η2 − β3

)
e−β3(x+a) − pη1

η1 + β3
e−β3(a+b)−η1(b−x) − qη2

η2 − β3
e−η2(x+a),
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and finally for β4,∫ ∞
b−x

e−β4(x+y+a)pη1e
−η1ydy +

∫ 0

−a−x
e−β4(x+y+a)qη2e

η2ydy

=

(
pη1

η1 + β4
+

qη2
η2 − β4

)
e−β4(x+a) − pη1

η1 + β4
e−β4(a+b)−η1(b−x) − qη2

η2 − β4
e−η2(x+a).

Put

F1(A1, A2, A3, A4) := A1 + A2 + e−β3(a+b)A3 + e−β4(a+b)A4 − 1,

F2(A1, A2, A3, A4) := e−β1(a+b)A1 + e−β2(a+b)A2 + A3 + A4,

F3(A1, A2, A3, A4) :=
η1

η1 − β1
A1+

η1
η1 − β2

A2+
η1

η1 + β3
e−β3(a+b)A3+

η1
η1 + β4

e−β4(a+b)A4−1,

F4(A1, A2, A3, A4) :=
η2

η2 + β1
e−β1(a+b)A1+

η2
η2 + β2

e−β2(a+b)A2+
η2

η2 − β3
A3+

η2
η2 − β4

A4.

Since (A1, A2, A3, A4) solves the following system of equations

Fi(A1, A2, A3, A4) = 0, i = 1, 2, 3, 4, (3.6)

we can verify that

u(b) = F1(A1, A2, A3, A4) + 1 = 1,

u(−a) = F2(A1, A2, A3, A4) = 0,

and for −a < x < b,

Lu(x)− α1u(x) =A1e
−β1(b−x)(ψ(β1)− α1) + A2e

−β2(b−x)(ψ(β2)− α1)

+ A3e
−β3(x+a)(ψ(−β3)− α1) + A4e

−β4(x+a)(ψ(−β4)− α1)

− F3(A1, A2, A3, A4)pe
−η1(b−x) − F4(A1, A2, A3, A4)qe

−η2(x+a)

=0.

Similar to Kou and Wang (2003), we can select a sequence of uniformly bounded

functions (un) such that un ∈ C2(R), where C2(R) refers the twice-differentiable func-

tion whose second derivative is continuous. un(x) = u(x) for −a ≤ x ≤ b, un(x) = 0
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for x ≤ −a − 1/n, un(x) = 1 for x ≥ b + 1/n, and both (u′n) and (u′′n) are uniformly

bounded. Then

‖Lun − α1un‖∞ → 0.

Applying Itô’s formula, (see Rao (1995) and Protter (1990)), we see that the process

Mn
· := e−α1(·∧τ)un(X·∧τ )−

∫ ·∧τ
0

(Lun(Xs)− α1un(Xs))ds

is a martingale. Taking a limit in n we have that

E
(
e−α1(t∧τ)u(Xt∧τ )

)
= lim

n→∞
E
(
e−α1(t∧τ)un(Xt∧τ )

)
= lim

n→∞
un(0)

= u(0)

= A1e
−β1b + A2e

−β2b + A3e
−β3a + A4e

−β4a.

Then

E
(
e−α1τ ;Xτ ≥ b

)
= lim

t→∞
E
(
e−α1(t∧τ)u(Xt∧τ )

)
= A1e

−β1b + A2e
−β2b + A3e

−β3a + A4e
−β4a.

Remark 3.1. Note that in the above proof we show that there is a unique function

u ∈ C((−∞,∞)) ∩ C2((−a, b)) satisfying

u(x) = 0, x ≤ −a;

Lu(x)− α1u(x) = 0, −a < x < b;

u(x) = 1, x ≥ b.
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Remark 3.2. It seems to be very difficult to give the distribution of the two-sided

exit time analytically. Because when we apply the inversion of Laplace transforms on

E (e−α1τ ;Xτ ≥ b), we need to do the integration for eα1τE (e−α1τ ;Xτ ≥ b) on α1. From

the theorem 3.1, we can see that the result for E (e−α1τ ;Xτ ≥ b) is not directly expressed

by α1. Instead, it is expressed by the solutions of the equation ψ(x) = α1, which have

very complicated expressions. But we can give the distribution of the two-sided exit time

numerically.

Theorem 3.2. For α1 > 0,y > 0,

E
(
e−α1τ ;Xτ − b > y

)
= B1e

−β1b +B2e
−β2b +B3e

−β3a +B4e
−β4a,

where

B1 =
e−yη1B11

η1A
,B2 =

e−yη1B21

η1A
,B3 =

e−yη1B31

η1A
and B4 =

e−yη1B41

η1A
.

Proof. Similar to the proof for Theorem 3.1, for y > 0 define

v(x) =



1, x > b+ y;

0, b < x ≤ b+ y;

B1e
−β1(b−x) +B2e

−β2(b−x) +B3e
−β3(x+a) +B4e

−β4(x+a), −a ≤ x ≤ b;

0, x < −a,

where (B1, B2, B3, B4) solves the equations

B1 +B2 + e−β3(a+b)B3 + e−β4(a+b)B4 = 0,

e−β1(a+b)B1 + e−β2(a+b)B2 +B3 +B4 = 0,

η1
η1−β1B1 + η1

η1−β2B2 + η1
η1+β3

e−β3(a+b)B3 + η1
η1+β4

e−β4(a+b)B4 = e−η1y,

η2
η2+β1

e−β1(a+b)B1 + η2
η2+β2

e−β2(a+b)B2 + η2
η2−β3B3 + η2

η2−β4B4 = 0.
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Then one can show that

v(−a) = 0 = v(b)

and for −a < x < b,

Lv(x)− α1v(x) = 0.

We first approximate v by continuous functions (vn) such that 0 ≤ vn(x) ≤ 1 for

x ∈ (b+y, b+y+1/n) and vn(x) = v(x) for x ∈ (b+y, b+y+1/n)c. Then approximate

vn using a smooth function and finally apply Ito’s formula. We can show that

E
(
e−α1τ ;Xτ − b > y

)
= E

(
e−α1τv(Xτ )

)
= lim

n→∞
E
(
e−α1τvn(Xτ )

)
= lim

n→∞
vn(0)

= v(0)

= B1e
−β1b +B2e

−β2b +B3e
−β3a +B4e

−β4a.

Combining Theorems 3.1 and 3.2, we have

Proposition 3.1.

E
(
e−ατ ;Xτ = b

)
= C1e

−β1b + C2e
−β2b + C3e

−β3a + C4e
−β4a.

where

C1 = A1 −B1, C2 = A2 −B2, C3 = A3 −B3 and C4 = A4 −B4.

Letting a→∞ we can recover Theorem 2.1.
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Corollary 3.1. For any α ∈ (0,∞), let β1 and β2 be the only two positive roots of the

equation

ψ(x) = α,

where 0 < β1 < η1 < β2 < ∞. Then we have the following results concerning the

Laplace transforms of τ and Xτ :

E
(
e−ατ

)
=
η1 − β1
η1

β2
β2 − β1

e−bβ1 +
β2 − η1
η1

β1
β2 − β1

e−bβ2 ,

E
(
e−ατ ;Xτ − b > y

)
= e−η1y

(η1 − β1)(β2 − η1)
η1(β2 − β1)

(
e−bβ1 − e−bβ2

)
, for any y ≥ 0,

E
(
e−ατ ;Xτ = b

)
=
η1 − β1
β2 − β1

e−bβ1 +
β2 − η1
β2 − β1

e−bβ2 .

Proof. In Theorems 3.1, 3.2 and Proposition 3.1, let a→∞, then

A1 =
A11

η1A

= − β2(β3 − β4)
(β2 − η1)(β4 − η2)(−β3 + η2)

/
η1(β2 − β1)(β4 − β3)

(β1 − η1)(β2 − η1)(β3 − η2)(β4 − η2)

=
β2(η1 − β1)
η1(β2 − β1)

,

A2 =
A21

η1A

=
β1(β3 − β4)

(β1 − η1)(β4 − η2)(−β3 + η2)

/
η1(β2 − β1)(β4 − β3)

(β1 − η1)(β2 − η1)(β3 − η2)(β4 − η2)

=
β1(β2 − η1)
η1(β2 − β1)

,

B1 =
e−yη1B11

η1A

=
e−yη1(β4 − β3)

(β4 − η2)(−β3 + η2)

/
η1(β2 − β1)(β4 − β3)

(β1 − η1)(β2 − η1)(β3 − η2)(β4 − η2)

= e−η1y
(η1 − β1)(β2 − η1)

η1(β2 − β1)
,
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and

B2 =
e−yη1B21

η1A

= − e−yη1(β4 − β3)
(β4 − η2)(−β3 + η2)

/
η1(β2 − β1)(β4 − β3)

(β1 − η1)(β2 − η1)(β3 − η2)(β4 − η2)

= e−η1y
(β1 − η1)(β2 − η1)

η1(β2 − β1)
.

Let y = 0, we then get

C1 = A1 −B1

=
β2(η1 − β1)
η1(β2 − β1)

− (η1 − β1)(β2 − η1)
η1(β2 − β1)

=
η1 − β1
β2 − β1

,

and

C2 = A2 −B2

=
β1(β2 − η1)
η1(β2 − β1)

− (β1 − η1)(β2 − η1)
η1(β2 − β1)

=
β2 − η1
β2 − β1

.

So these are all consistent with Theorem 2.1 of Kou and Wang (2003) for the one-sided

exit problem of the doubly exponential jump diffusion process.

Remark 3.3. To find E (e−ατ ;Xτ ≤ −a), we can consider the time when −X first exits

the interval [−b, a] at level a and apply the previous results.

Define

X̂t = −Xt = −σWt − µt−
Nt∑
i=1

Yi,

where W is a Brownian motion with W0 = 0, N is a Poisson process with rate λ and

(Yi) are i.i.d. random variables with density function

f̂−Y (y) = pη1e
η1y1{y<0} + qη2e

−η2y1{y>0}, p, q > 0, p+ q = 1.
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In addition, W , N and (Gi) are independent. Process X̂t has a generator

L̂u(x) =
1

2
σ2u′′(x)− µu′(x) + λ

∫ ∞
−∞

[u(x+ y)− u(x)]f−Y (y)dy.

For any θ ∈ (−η2, η1),

E
(
eθX̂t

)
= eψ̂(θ)t,

where

ψ̂(θ) = −θµ+
1

2
θ2σ2 + λ

(
pη1
η1 + θ

+
qη2
η2 − θ

− 1

)
.

For α > 0, equation

ψ̂(x) = α

has exactly four solutions β̂1, β̂2,−β̂3,−β̂4 such that

0 < β̂1 < η1 < β̂2, and 0 < β̂3 < η2 < β̂4;

We can get similar results to the above theorems for X̂t with Âi, B̂i and Ĉi following

the similar notation as for Ai, Bi and Ci, where i = 1, 2, 3, 4.
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Chapter 4

Range time for jump diffusion

Next, we will discuss the range time of the jump diffusion X in (3.1). As we defined

in Chapter 1, T is the first time when the range of the process reaches r, the process

should be necessarily at an extremum at time T . Correspondingly, S is the first time

when the process is at the other extremum up to time T . The joint Laplace transform

for S and T is given in the following theorem and it is the main result of my thesis.

Theorem 4.1. For any α1, α2 > 0 and r > 0,

E(e−α1S−α2(T−S);XS −XT = r) =
4∑
i=1

Ci
βi

(1− e−βir)

(
2∑
i=1

Ĉiβ̂ie
−β̂ir −

4∑
i=3

Ĉiβ̂i

)
.

Proof. Our idea is to divide the interval [0, r] into 2n parts and consider the problem

on each small interval. Define

Ak,n =

{
kr

2n
≤ XT <

(k + 1)r

2n
, k = 0, 1, 2 · · · , 2n − 1

}
,

and

An =
2n−1⋃
k=0

Ak,n.

For 0 ≤ k ≤ 2n − 1, define

S−k,n = inf

{
0 ≤ t ≤ T : Xt ≥

kr

2n

}
,
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and

T−k,n = inf

{
0 ≤ t ≤ T,Xt ≤ −

r(2n − k − 1)

2n

}
,

with the convention that inf ∅ =∞. Denote

S−n =
2n−1∑
k=0

S−k,nIAk,n and T−n =
2n−1∑
k=0

T−k,nIAk,n .

We can see that

S−n ≤ S and T−n ≤ T.

Since with probability one, S can not be a jump time for X, then S−n ↑ S and XS−n
→ XS

a.s. In addition, T−n ↑ T ; XT−n
→ XT a.s when XT −XS = r and XT−n

= XT for n large

enough when XT −XS > r.

In view of two-sided jumps, the process can reach S in two ways: the process X may

either reach kr/2n , k = 0, 1, 2, ..., 2n − 1, continuously or by an upward jump. Define

bxc :=


ri
2n
I{ ri

2n
≤x< r(i+1)

2n
}, i = 0, ..., 2n − 1;

r(i+1)
2n

I{ ri
2n
≤x< r(i+1)

2n
}, i = −2n + 1, ..., 0.

E(e−α1S−α2(T−S);XS −XT = r)

= lim
n→∞

E
(
e−α1S

−
n −α2(T

−
n −S−n );

⌊
XS−n

⌋
−
⌊
XT−n

⌋
= r − r

2n

)
= lim

n→∞

2n−1∑
k=0

E

(
e−α1S

−
k,n−α2(T

−
k,n−S

−
k,n);XS−k,n

>
kr

2n
,
⌊
XT−k,n

⌋
= −(2n − k − 1)r

2n

)

+ lim
n→∞

2n−1∑
k=0

E

(
e−α1S

−
k,n−α2(T

−
k,n−S

−
k,n);XS−k,n

=
kr

2n
,
⌊
XT−k,n

⌋
= −(2n − k − 1)r

2n

)

:=I + II. (4.1)

For term I, let y∗ = XS−k,n
, y = y∗ − kc

2n
. Then Xt first crosses kr/2n, for k =
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0, 1, 2, ..., 2n − 1, because of the jumps.

Then by Theorem 3.2 with b = kr
2n
, a = r(2n−k)

2n
and Proposition 3.1 with â = r

2n
−

(y∗ − kr
2n

) and b̂ = r + y∗ − r(k+1)
2n

, we have

2n−1∑
k=0

E

(
e−α1S

−
k,n−α2(T

−
k,n−S

−
k,n);XS−k,n

>
kr

2n
,
⌊
XT−k,n

⌋
= −(2n − k − 1)r

2n

)
(4.2)

=
2n−1∑
k=0

∫ r
2n

0

E0(e
−α1S

−
k,n , S−k,n < T−k,n, XS−k,n

− kr

2n
∈ dy∗)E∗y(e−α2T ;S−k+1,n > T−k,n)

=
2n−1∑
k=0

∫ r
2n

0

(
−e
−yη1B11

A
e−

β1kr
2n − e−yη1B21

A
e−

β2kr
2n − e−yη1B31

A
e−

β3r(2
n−k)

2n − e−yη1B41

A
e−

β4r(2
n−k)

2n

)

×
(
Ĉ1e

−β̂1(r+y∗− (k+1)r
2n

) + Ĉ2e
−β̂2(r+y∗− (k+1)r

2n
) + Ĉ3e

−β̂3( (k+1)r
2n

−y∗) + Ĉ4e
−β̂4( (k+1)r

2n
−y∗)

)
dy∗

:=En.

By (3.6) with i = 2, we have

Ĉ1e
−β̂1r + Ĉ2e

−β̂2r + Ĉ3 + Ĉ4 = 0.

Hence, using Taylor expansions for the exponential functions at 0,

Ĉ1e
−β̂1(r+y∗− (k+1)r

2n
) + Ĉ2e

−β̂2(r+y∗− (k+1)r
2n

) + Ĉ3e
−β̂3( (k+1)r

2n
−y∗) + Ĉ4e

−β̂4( (k+1)r
2n

−y∗) − 0

=Ĉ1e
−β̂1r(e−β̂1(y

∗− (k+1)r
2n

) − 1) + Ĉ2e
−β̂2r(e−β̂2(y

∗− (k+1)r
2n

) − 1)

+ Ĉ3(e
−β̂3( (k+1)r

2n
−y∗) − 1) + Ĉ4(e

−β̂4( (k+1)r
2n

−y∗) − 1)

=
(
Ĉ1β̂1e

−β̂1r + Ĉ2β̂2e
−β̂2r − Ĉ3β̂3 − Ĉ4β̂4

)
×
(

(k + 1)r

2n
− y
)

+ o(2−2n)

≤
(
Ĉ1β̂1e

−β̂1r + Ĉ2β̂2e
−β̂2r − Ĉ3β̂3 − Ĉ4β̂4

)
× r

2n
+ o(2−2n)

On the other hand, ∫ r
2n

0

e−yη1dy =
1

η1
(1− e−

rη1
2n ).
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Calculating the following sums over k, we have

2n−1∑
k=0

e
−βirk

2n =
1− e−βir

1− e
−βir
2n

, i = 1, 2,

and
2n−1∑
k=0

e
−βjr(2

n−k)
2n =

e−βjr − 1

1− e
βjr

2n

, j = 3, 4.

So,

En ≤
r

Aη12n
(1− e−

rη1
2n )×

(
Ĉ1β̂1e

−β̂1r + Ĉ2β̂2e
−β̂2r − Ĉ3β̂3 − Ĉ4β̂4

)
×

[
2∑
i=1

Bi1(1− e−βir)
1− e−

βir

2n

+
4∑
j=3

Bj1(e
−βjr − 1)

1− e
βjr

2n

]
. (4.3)

Let n→∞, by (4.3) we can get

lim
n→∞

2n−1∑
k=0

E

(
e−α1S

−
k,n−α2(T

−
k,n−S

−
k,n);XS−k,n

>
kr

2n
,
⌊
XT−k,n

⌋
= −(2n − k − 1)r

2n

)

≤ lim
n→∞

r

A2n

(
Ĉ1β̂1e

−β̂1r + Ĉ2β̂2e
−β̂2r − Ĉ3β̂3 − Ĉ4β̂4

) 4∑
i=1

e−βir − 1

βi

= 0

For the term II in (4.1), X reaches the running maximum up to time T due to the

Brownian motion, we want to apply Proposition 3.1 with b = kr
2n
, a = r(2n−k)

2n
for X and

with â = r
2n
, b̂ = r for X̂. We can take the limit on n directly to get the exact results.

By Proposition 3.1,

lim
n→∞

2n−1∑
k=0

E

(
e−α1S

−
k,n−α2(T

−
k,n−S

−
k,n);XS−k,n

=
kr

2n
,
⌊
XT−k,n

⌋
= −(2n − k − 1)r

2n

)
(4.4)

= lim
n→∞

2n−1∑
k=0

(
C1e

−β1rk
2n + C2e

−β2rk
2n + C3e

−β3r(2
n−k)

2n + C4e
−β4r(2

n−k)
2n

)
× (Ĉ1e

−β̂1r + Ĉ2e
−β̂2r + Ĉ3e

−β̂3r
2n + Ĉ4e

−β̂4r
2n ).

Taking sums over k, we have

2n−1∑
k=0

e
−βirk

2n =
1− e−βir

1− e
−βir
2n

, i = 1, 2,
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and
2n−1∑
k=0

e
−βjr(2

n−k)
2n =

e−βjr − 1

1− e
βjr

2n

, j = 3, 4.

By (3.6) with i = 2, we also have

Ĉ1e
−β̂1(r+ r

2n
) + Ĉ2e

−β̂2(r+ r
2n

) + Ĉ3 + Ĉ4 = 0.

Hence, using Taylor expansions for the exponential functions at 0,

Ĉ1e
−β̂1r + Ĉ2e

−β̂2r + Ĉ3e
−β̂3r
2n + Ĉ4e

−β̂4r
2n − 0

=Ĉ1(e
−β̂1r − e−β̂1(r+

r
2n

)) + Ĉ2(e
−β̂2r − e−β̂2(r+

r
2n

))

+ Ĉ3(e
−β̂3r
2n − 1) + Ĉ4(e

−β̂4r
2n − 1)

=Ĉ1e
−β̂1r β̂1r

2n
+ Ĉ2e

−β̂2r β̂2r

2n
− Ĉ3

β̂3r

2n
− Ĉ4

β̂4r

2n
+ o(2−2n)

So we have

lim
n→∞

2n−1∑
k=0

E

(
e−α1S

−
k,n−α2(T

−
k,n−S

−
k,n);XS−k,n

=
kr

2n
,
⌊
XT−k,n

⌋
= −(2n − k − 1)r

2n

)

=
4∑
i=1

Ci
βi

(1− e−βir)(Ĉ1β̂1e
−β̂1r + Ĉ2β̂2e

−β̂2r − Ĉ3β̂3 − Ĉ4β̂4).

Combining these two cases, we can get the desired results for this theorem.

Theorem 4.2. For any α1, α2 > 0 and r > 0,

E(e−α1S−α2(T−S);XS −XT > r)

=
4∑
i=1

Ci
βi

(1− e−βir)(B̂1β̂1e
−β̂1r + B̂2β̂2e

−β̂2r − B̂3β̂3 − B̂4β̂4).

Proof. In this theorem, we consider the case that the process jumps over the previous

running minimum by a downward jump. We just need to follow the proof of Theorem

4.1 by changing Ĉi to B̂i.
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The joint Laplace transform of (S, T,XT ) for two-sided jump diffusion processes is

given in the following Theorem.

Theorem 4.3. Given any x < 0, α1, α2 > 0, we have for −r < x < 0,

E(e−α1S−α2(T−S);XS −XT = r,XT < x)

=

(
2∑
i=1

Ci
βi

(1− e−βi(r+x)) +
4∑
i=3

Ci
βi

(eβix − e−βir)

)

×

(
2∑
i=1

Ĉiβ̂ie
−β̂ir −

4∑
j=3

Ĉjβ̂j

)
,

and for x < −r,

E(e−α1S−α2(T−S);XS −XT > r,XT < x)

=eη1(x+r)

(
2∑
i=1

Ci
η1 + βi

(1− e−(βi+η1)r)−
4∑
i=3

Ci
βi − η1

(e−βir − e−η1r)

)

×

(
2∑
i=1

B̂i1β̂ie
−β̂ir −

4∑
i=3

B̂i1β̂i

)
,

while for −r < x < 0,

E(e−α1S−α2(T−S);XS −XT > r,XT < x)

=

{ 2∑
i=1

Ci
βi

(1− e−βi(r+x)) +
4∑
i=3

Ci
βi

(eβix − e−βir)

+ eη1(x+r)

(
2∑
i=1

Cie
−(η1+βi)r

η1 + βi
(e−(η1+βi)x − 1) +

4∑
i=3

Cie
−η1r

η1 − βi
(e−(η1−βi)x − 1)

)}

× 1

η1A

(
2∑
i=1

B̂i1β̂ie
−β̂ir −

4∑
i=3

B̂i1β̂i

)
.

Proof. Similarly to Theorems 4.1 and 4.2, we already know that (4.2) is 0 when n goes
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to infinity,

E(e−α1S−α2(T−S);XS −XT = r,XT < x)

= lim
n→∞

⌊
2n(x+r)

r
−1

⌋∑
k=0

(
C1e

−β1rk
2n + C2e

−β2rk
2n + C3e

−β3r(2
n−k)

2n + C4e
−β4r(2

n−k)
2n

)
×
(
Ĉ1e

−β̂1r + Ĉ2e
−β̂2r + Ĉ3e

− β̂3r
2n + Ĉ4e

− β̂4r
2n

)
=

(
2∑
i=1

Ci
βi

(1− e−βi(r+x)) +
4∑
i=3

Ci
βi

(eβix − e−βir)

)
×

(
2∑
i=1

Ĉiβ̂ie
−β̂ir −

4∑
j=3

Ĉjβ̂j

)
.

Then

E(e−α1S−α2(T−S);XS −XT > r,XT < x)

=E(e−α1S−α2(T−S);XS −XT > r,XT < x, 1{x<−r})

+ E(e−α1S−α2(T−S);XS −XT > r,XT < x, 1{−r<x<0}).

When x < −r, by Theorem 3.2 with b = kr
2n

, a = r(2n−k)
2n

and Proposition 3.1 with

â = r
2n

, b̂ = r, ŷ = −x− (2n−k)r
2n

, we get

E(e−α1S−α2(T−S);XS −XT > r,XT < x)

= lim
n→∞

2n−1∑
k=0

(
C1e

−β1rk
2n + C2e

−β2rk
2n + C3e

−β3r(2
n−k)

2n + C4e
−β4r(2

n−k)
2n

)
×
(
B̂1e

−β̂1r + B̂2e
−β̂2r + B̂3e

− β̂3r
2n + B̂4e

− β̂4r
2n

)
= lim

n→∞

2n−1∑
k=0

(
C1e

−β1rk
2n + C2e

−β2rk
2n + C3e

−β3r(2
n−k)

2n + C4e
−β4r(2

n−k)
2n

)
× 1

η1A
eη1(x+

(2n−k)r
2n

)

(
B̂11e

−β̂1r + B̂21e
−β̂2r + B̂31e

− β̂3r
2n + B̂41e

− β̂4r
2n

)
=eη1(x+r)

(
2∑
i=1

Ci
η1 + βi

(1− e−(βi+η1)r)−
4∑
i=3

Ci
βi − η1

(e−βir − e−η1r)

)

×

(
2∑
i=1

B̂i1β̂ie
−β̂ir −

4∑
i=3

B̂i1β̂i

)
.
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When −r < x < 0, by Theorem 3.2 with b = kr
2n

, a = r(2n−k)
2n

and Theorem 3.1 with

â = r
2n

, b̂ = r, ŷ = 0 for the first part and â = r
2n

, b̂ = r, ŷ = −x − (2n−k)r
2n

for the

second part, we have

E(e−α1S−α2(T−S);XS −XT > r,XT < x)

= lim
n→∞

⌊
2n(x+r)

r
−1

⌋∑
k=0

(
C1e

−β1rk
2n + C2e

−β2rk
2n + C3e

−β3r(2
n−k)

2n + C4e
−β4r(2

n−k)
2n

)
×
(
B̂1e

−β̂1r + B̂2e
−β̂2r + B̂3e

− β̂3r
2n + B̂4e

− β̂4r
2n

)
+

2n−1∑
k=b 2n(x+r)

r c

(
C1e

−β1rk
2n + C2e

−β2rk
2n + C3e

−β3r(2
n−k)

2n + C4e
−β4r(2

n−k)
2n

)

×
(
B̂1e

−β̂1r + B̂2e
−β̂2r + B̂3e

− β̂3r
2n + B̂4e

− β̂4r
2n

)

= lim
n→∞

⌊
2n(x+r)

r
−1

⌋∑
k=0

(
C1e

−β1rk
2n + C2e

−β2rk
2n + C3e

−β3r(2
n−k)

2n + C4e
−β4r(2

n−k)
2n

)
× 1

η1A

(
B̂11e

−β̂1r + B̂21e
−β̂2r + B̂31e

− β̂3r
2n + B̂41e

− β̂4r
2n

)
+

2n−1∑
k=b 2n(x+r)

r c

(
C1e

−β1rk
2n + C2e

−β2rk
2n + C3e

−β3r(2
n−k)

2n + C4e
−β4r(2

n−k)
2n

)

× 1

η1A
eη1(x+

(2n−k)r
2n

)

(
B̂11e

−β̂1r + B̂21e
−β̂2r + B̂31e

− β̂3r
2n + B̂41e

− β̂4r
2n

)
=

{ 2∑
i=1

Ci
βi

(1− e−βi(r+x)) +
4∑
i=3

Ci
βi

(eβix − e−βir)

+ eη1(x+r)

(
2∑
i=1

Cie
−(η1+βi)r

η1 + βi
(e−(η1+βi)x − 1) +

4∑
i=3

Cie
−η1r

η1 − βi
(e−(η1−βi)x − 1)

)}

× 1

η1A

(
2∑
i=1

B̂i1β̂ie
−β̂ir −

4∑
i=3

B̂i1β̂i

)
.

With the above theorem, we can find the defective distribution for XT .
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Corollary 4.1. Given any x < 0, α1, α2 → 0+, we have for −r < x < 0,

P (XT < x,XS −XT = r)

=

(
C1(r + x) +

C2

β̃2
(1− e−β̃2(r+x)) +

4∑
i=3

Ci

β̃i
eβ̃ix(1− e−β̃i(r+x))

)

×
(
Ĉ2
˜̂
β2e
−˜̂β2r − Ĉ3

˜̂
β3 − Ĉ4

˜̂
β4

)
,

while for x < −r,

P (XT < x,XS −XT > r)

=eη1(x+r)

(
C1(1− e−η1r)

η1
+

C2

η1 + β2
(1− e−(β2+η1)r)−

4∑
i=3

Ci
βi − η1

(e−βir − e−η1r)

)

×

(
B̂21β̂2e

−β̂2r −
4∑
i=3

B̂i1β̂i

)
,

and for −r < x < 0, we have

P (XT < x,XS −XT > r)

=

{
C1(r + x) +

C2

β2
(1− e−β2(r+x)) +

4∑
i=3

Ci
βi

(eβix − e−βir)

+ eη1(x+r)

(
C1e

−η1r

η1
(e−η1x − 1) +

C2e
−(η1+β2)r

η1 + β2
(e−(η1+β2)x − 1) +

4∑
i=3

Cie
−η1r

η1 − βi
(e−(η1−βi)x − 1)

)}

× 1

η1A

(
B̂21β̂2e

−β̂2r −
4∑
i=3

B̂i1β̂i

)
,

where β̃i is the solution of ψ(x) = 0 and
˜̂
βi is the solution of ψ̂(x) = 0, for i = 1, ..., 4,

while Ci, Ĉi and B̂i1 are redefined by letting β1, β̂1 = 0 (see Lemma 3.1).
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Proof. Let α1, α2 → 0+ in Theorem 4.3, then the distribution for XT is given by

P (XT < x,XS −XT = r)

= lim
α1→0+

α2→0+

(
2∑
i=1

Ci
βi

(1− e−βi(r+x)) +
4∑
i=3

Ci
βi

(eβix − e−βir)

)
×

(
2∑
i=1

Ĉiβ̂ie
−β̂ir −

4∑
j=3

Ĉjβ̂j

)

=

(
C1(r + x) +

C2

β̃2
(1− e−β̃2(r+x)) +

4∑
i=3

Ci

β̃i
eβ̃ix(1− e−β̃i(r+x))

)

×
(
Ĉ2
˜̂
β2e
−˜̂β2r − Ĉ3

˜̂
β3 − Ĉ4

˜̂
β4

)
,

where we need Lemma 3.1 for the last two equations.

When x < −r,

P (XT < x,XS −XT > r)

= lim
α1→0+

α2→0+

eη1(x+r)

(
2∑
i=1

Ci
η1 + βi

(1− e−(βi+η1)r)−
4∑
i=3

Ci
βi − η1

(e−βir − e−η1r)

)

×

(
2∑
i=1

B̂i1β̂ie
−β̂ir −

4∑
i=3

B̂i1β̂i

)

=eη1(x+r)

(
C1(1− e−η1r)

η1
+

C2

η1 + β2
(1− e−(β2+η1)r)−

4∑
i=3

Ci
βi − η1

(e−βir − e−η1r)

)

×

(
B̂21β̂2e

−β̂2r −
4∑
i=3

B̂i1β̂i

)
,

where we need Lemma 3.1 for the last two equations.
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When −r < x < 0,

P (XT < x,XS −XT > r)

= lim
α1→0+

α2→0+

{ 2∑
i=1

Ci
βi

(1− e−βi(r+x)) +
4∑
i=3

Ci
βi

(eβix − e−βir)

+ eη1(x+r)

(
2∑
i=1

Cie
−(η1+βi)r

η1 + βi
(e−(η1+βi)x − 1) +

4∑
i=3

Cie
−η1r

η1 − βi
(e−(η1−βi)x − 1)

)}

× 1

η1A

(
2∑
i=1

B̂i1β̂ie
−β̂ir −

4∑
i=3

B̂i1β̂i

)

=

{
C1(r + x) +

C2

β2
(1− e−β2(r+x)) +

4∑
i=3

Ci
βi

(eβix − e−βir)

+ eη1(x+r)

(
C1e

−η1r

η1
(e−η1x − 1) +

C2e
−(η1+β2)r

η1 + β2
(e−(η1+β2)x − 1) +

4∑
i=3

Cie
−η1r

η1 − βi
(e−(η1−βi)x − 1)

)}

× 1

η1A

(
B̂21β̂2e

−β̂2r −
4∑
i=3

B̂i1β̂i

)
,

where we need Lemma 3.1 for the last two equations.
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Chapter 5

Conclusion and future work

Previous results on the range process, the first range time and the first passage time

can be found in several papers. In this thesis, we first obtain the Laplace transforms

of the first passage times for two-sided exit problem. It is difficult to study the first

passage times for general jump diffusion processes with arbitrary jumps, due to a pos-

sible overshoot, Xτb − b, over the boundary. The double exponential jump diffusion

process offers a rare case in which analytical solutions for the first passage times are

feasible. The results are consistent with those for one-sided exit problem in Kou and

Wang (2003). We also derive explicit expressions for the joint distribution of the times

when the process reaches the running maximum and minimum, up to range r, using

the idea of considering each interval with length r/2n and applying the two-sided exit

time’s results. The distribution for the process at the range time is also given.

In the future, we can work on the range time for jump diffusion process where the

jumps follow a mixture of exponential distribution. We can also consider the range

time for Lévy process with one-sided jumps. For Lévy process with general two-sided
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jumps, it is still an open problem to characterize its range time.

Following Kou and Wang (2004), we would like to apply the results we obtained on

the range time to price the options related to the fluctuation of an asset value process.

Also, by using the Gaver-Stehfest algorithm, we can try to fine the numerical values for

the distribution of the two-sided exit time through the inversion of Laplace transforms.
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P. Vallois and E. Tanré. Range of brownian motion with drift. J. Theor. Prob., 2003. 5

S. Wang and C. Zhang. First-exit times and barrier strategy of a diffusion process with

two-sided jumps. (unpublished preprint). 2009. 10, 11

39


	1 Introduction
	2 Preliminaries
	3 First passage times of a jump diffusion process
	4 Range time for jump diffusion
	5 Conclusion and future work

