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ABSTRACT

The range time for jump diffusion with
two-sided exponential jumps

Di Xu

The first passage time of a stochastic process with respect to set A is the time until
the stochastic process first enters A. In this thesis, we study the first passage times for
a doubly exponential jump diffusion process, which consists of a continuous part given
by a Brownian motion with drift and a jump part given by a compound Poisson process
with jump sizes following a double exponential distribution. The Laplace transform of

the two-sided first passage time for a set [—a, b]°, a,b > 0 is found in this thesis.

The range time is another topic that has been studied in several papers, especially
for Brownian motion. The first range time is the first time when the range of a stochas-
tic process reaches a given level. In this thesis, by using solutions of the two-sided exit
problem, we find the Laplace transform for the first range time and the distribution of

the value of the process at the first range time.
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Chapter 1

Introduction

The range process { Ry;t > 0} of a stochastic process { X;;t > 0} started at 0, is defined
by

thyt—xt, tz(),

where X, := Tilt) Xsand X, = 225 Xs. As aresult, the proceess { R;;t > 0} is increasing
and vanishes at ¢t = 0. We denote its inverse, which is called the first range time for a
certain range r > 0, by
T=T,=inf{t>0: R, >r}.

Note that P{T < oo} = 1 for most interesting Markov process. Intuitively, 7" is the
first time when the range of the process X reaches r. The range interval at time T is
[X;, X7]. Sometimes, the range time is also called cover time. One boundary of the
range interval is visited at time T', and the other boundary is first visited at some time
S < T, where

S=inf{s<T:X,=Xr+X,; — Xr}

Throughout this thesis, the above notation will be preserved.



Let { X} be a sequence of mutually independent random variables with expectation 0
and variance 1. Define S, Z X, M, = max Sz, m, = 11r111<n S;. The random variable
i=1 <isn

R, = M, —m,, is called the range of the cumulative sum S,,. For the Bachelier-Wiener

process, Feller (1951) shows that the density function of the range R, is given by

Snir) =83 (~1) (L

_)7
= Vi

where ¢(x) stands for the normal density function with zero mean and unit variance.
To derive this, Feller (1951) starts from the density function for the event that {S, =
x, M,, < v,m, > —u} and obtains the density function f(n;u,v) for the event {M,, <

n > —u}. The density function of R, is obtained by d(n;r) fo n; u, r—u)du.
To eliminate the trend when E(X}) # 0, Feller (1951) replaces the random variables

Sk by

kS
n

Sk’ S (k:1,2,...,n),

and defines the corresponding variables M, m” and R by analogy. The adjusted range
has a greater sampling stability and it can be used even when the means do not vanish.

The density function of the range R} is given by

d(n;r) =re” —1—2{2]{: (k—1)] — 1)) =€ (kr)| 4+ (k—1)2re" ((k—1)r)+k*re” (kr)},

where e(x) = exp(—222/t).

In Imhof (1985), the process {X,} stands for either the standard Brownian motion
or the three dimensional Bessel process. Define the first hitting time at level y as

7(y) = inf{t, X (t) = y}. The density function for the range time 7, is shown to be

P(T, € dt) =2(0/0r)Q(r/2,r/2,7)dt, t>0,
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where Qi(x,y,2)dy = P,(X(t) € dy, 7(0) AT(2) >t),0 <z Ay <zVy <z Fu-
thermore, the density for 7,, — 7, can be obtained by conditioning for instance on

X(T,) >0, for 0 < r < ry, as follows,

P(T,, =T, € dt) = (0/0r{Q:((r1—7)/2,(r1—7)/2,11)+Q:((r1—7) /2, (r1+7r)/2,71) }dt.

Imhof (1985) also shows that for Brownian motion {X,}, the process {|X(S + t) —

X(9)],0 <t <T— S} is a three-dimensional Bessel process up to time 7(r).

In Vallois (1995), X, considers a R-valued Brownian motion. In the paper the Brow-
nian trajectory is decomposed from extremes, via the inverse of the range process. The
main result is an intrinsic decomposition which takes its values in some subset U of
C(]0,00),R;) and indexed by ¥ = {t < 0; X(T)X(S) < 0} where C(]0,00),R;) de-
notes the set of all continuous functions. By splitting the initial point process into two
independent U-valued compound Poisson processes, it also gives a new proof of the
last result in Imhof (1985). Further, the author considers the process {M,;} defined by
M, =V2Xr :» Where M is a square integrable martingale. M is connected to parabolic

martingales, which allows to show that M has a chaotic property representation.

As in Vallois (1996), let {X,,} denotes a Bernoulli random walk started at 0 with
P(Xps1— X, =1) =pand P(X,01 — X, = —1) = q, p+ q = 1. The generating
function of the first range time T, is denoted by G(r) (i.e. G(r) = E(r") ), for every r

in [—1,1],




where

c=q/p,

¢(r) =1 —4r’pq,

N(r) = Vé{2v/é — rla(1 + ) (" — a5 ™) = (p + gc")(af — a3)]},

D(r) = (r = 1)[gre" (o™ + a3™) — 1].
It is shown that the generating function is a rational function, which allows to compute
the distributions for 7, and R,. Moreover, by letting n — oo, the asymptotic behavior
of T, is investigated. At the end of this paper, two explicit results are proved for non-
symmetric case p # ¢: T, /n converges in probability to 1/|p—¢| and (T,,—n/|p—q|)//n)

converges in distribution to normal distribution N(0, 4pq/|p — q|3).

Based on the results in Vallois (1996), Chong et al. (2000) present a result on cover
times for the asymmetric random walk and also random variables connected with the
coverage of a Brownian motion. A simple asymmetric random walk on the integer
points 7Z is stopped when the range first reaches a given magnitude m. The number of
steps until this happens is called the cover time. Let .S,, be the position of the random
walk at time n. Suppose that the simple random walk with Sy = 0 is stopped when its

range is m. It is stopped at step

N = min{n : max S; — min S; = m}.
0<i<n 0<i<n

The coverage of the walk is an interval consisting of m + 1 consecutive integers with

Sy being the point where the walk has reached a range of m. The other end point of

the coverage interval is first visited at some step M < N, whence

SM = 1(SN<0)<SN + m) —+ 1(SN>0)(SN — m)
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The following theorems are about the results for a simple random walk.

Theorem 1.1. (Chong et al. (2000)) With n(s) := arccos h(1/(s\/4pq)) and <(z) :=

In\/p/q+1Inz, we have, for z >0 and x,y # 0,

s[(m/2){n(z) — () }s[((m + 1)/2){n(z) — C(w)}]) s[n(y)]
s[(m + 1)n(y)]

sl + Dnteelms(o) = s+ 10(2) SW”) i)

where s[z] := sinh(z) = 3(e” — ¢™") and c[z] := cosh(z) = $(e” + e77).

Theorem 1.2. (Chong et al. (2000)) Let ¢ :=1In+/p/q. The distribution of the stopping
point is, for p # q,

s[|k[ s]s[s]
s[mg]s[(m + 1)q]

P(SN:k):€<k

_ pm+(k—|k|)/2qm—(k+|k|)/2 (PW - Q‘k‘)(p —q) _
(pm —qm)(pmtt — gt

Let the process X; be a Brownian motion with drift u, then the Laplace transform

of (S, T, Xr) is shown as follows.

Theorem 1.3. (Chong et al. (2000)) For a Brownian motion with drift u and variance

0? > 0, we have, for t,u > 0 and all v, with s"[z] := sinh™(z), € := ru/o* and

a(z) :==r1/o\/p?/o? + 2z,

o uS—H(T—8)~vXry _ 2a(t) ( s’[3(a(u) +&—rv)] s?[2(a(u) — e + 1v)]
B ) ((a(u) + e —rv)sla(u)] * (a(u) —e+ Tv)s[a(u)]) '

In Vallois and Tanré (2003), the authors follow a similar path as Vallois (1996). In-
stead of considering the simple random walk, the process in this paper is a Brownian
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motion with drift p.

In Vallois and Salminen (2005), the first range time of a linear diffusion on R is
considered. Inspired by the observation that the exponentially randomized range time
has the same law as a similarly randomized first exit time from an interval, the authors
study a large family of non negative two-dimensional random variables (X, X’). They
also explain the Markovian structure of the Brownian local time process when stopped

at an exponentially randomized first range time.

So far, we have seen that most of the results on the first range time are derived for
some specific processes, such as simple random walk or Brownian motion. In Ren (2006),
a different and simple approach is used to derive a result of a joint Laplace transform
on the first range time for general diffusion processes. It is shown that problems on the

first range time could be eventually reduced to solving an ordinary differential equation.

In this thesis we present the most comprehensive results to date on first range time
for a two-sided jump diffusion process. The process we consider is a standard Brownian
motion with drift plus an independent compound Poisson process. The process starts
from 0 and we are interested in the distribution of the time when the difference of the
running maximum and running minimum first reaches level r. Our idea is to divide
the interval [0,7] into 2" parts and consider the problem on each small interval and
approximate the range time by the sum of two first passage times. The first passage
time approximates S and the second passage time approximates T'— S. Then we apply

results of the two-sided exit times for a jump diffusion process. We first find the joint



probability generating function of the range time and the value of the process at the

range time. We also find the distribution of the value of the process at the range time.

The outline of this thesis is as follows. Chapter 2 introduces some basic concepts
and preliminary results on the exit problems for jump diffusion processes. Chapter 3
presents the Laplace transform of the two-sided exit time from a finite interval for the
jump diffusion process. In this chapter we also generalize a result in Kou and Wang
(2003). Chapter 4 derives the Laplace transform for the first range time by using the
two-sided exit problem results in Chapter 3 and some approximations. The distribution

of the process at the first range time is also obtained in this chapter.



Chapter 2

Preliminaries

Let Wt(“ ) = ut + Wy be a standard, one-dimensional Brownian motion with drift pu. Let
H = H,;, = min{t, W ¢ (a,b)} be the first-exit time. Define E(X;A) as E(X 1))

From Borodin and Salminen (2002), we have the following conclusion:

E (efozH. W _ a) _ ohla—2) cosh((b — z)\/2a + p?)
x ) H
cosh((b — a)\/2a + p?)

B (o) —p) — g bl — /BT
x 9 H
cosh((b — a)\/2a + p2)

Our interest is focused on jump diffusion processes, which are widely used, for ex-

ample, in finance to model asset prices(stock, bond, currency, etc.). Two examples are
the normal jump diffusion process where the jumps follow a normal distribution (see
Merton (1976)) and the double exponential jump diffusion process where the jumps fol-
low a double exponential distribution (see Kou (2002)). Meanwhile, Perry et al. (2002)
studies the one-sided and two-sided first-exit problems for a compound Poisson process
with both positive and negative jumps of hyperexponential, Erlang and Coxian types
and with linear deterministic negative drift between jumps. Kou and Wang (2003) use a

doubly exponential jump diffusion process to model asset prices in finance. The process
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is of the form

Nt
Xe=pt+oW,+) Y, Xo=0.

=1

Here {WW; : t > 0} is a standard Brownian motion with Wy = 0, while {N; : ¢ > 0}
is a Poisson process with rate A\, constants p and o > 0 are the drift and volatility
of the diffusion part respectively, and the jump sizes {Y7,Y3, ...} are independent and

identically distributed random variables. The common density of Y is given by

Ty (y) = pme™ " Iy>o0y + qnae™Y Iy <oy,

where p,q > 0 are constants, p+ ¢ =1 and 1,7 > 0.

Define 7, := inf{t > 0; X; > b},b > 0.

Theorem 2.1. (Kou and Wang (2003)) For any o € (0,00), let 51 and By be the only

two positive roots of the equation

1
zp+ =2+ A P + CULT ) - Q,
2 m—x M+

where 0 < By < m < By < 0o. Then we have the following results concerning the

Laplace transforms of 7, and X, .

E (e_’””) _ m—051 B e bBr | Bo—m B o bB2

m B2 — B T Ba — B 7
E (e_o‘”’; X5 — b > y) =e M (771 77_1(%2)(_6251_) 771) [e_bﬁl - e_b&]’ foranyy 20,

—am. m — B —bBy fo —m —bBy
Bl =) = g5 " T

The Laplace transforms of the joint distribution of the first passage time it gives is
consistent with the results in Chapter 3 of this thesis.

The probability

P(Xt > a, maXstb) =P(X: >a,m <t),

0<s<t
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for some fixed numbers a < b and b > 0 is useful, for example, in pricing barrier options
while the logarithm of the underlying asset price is modeled by a jump diffusion process.
The following theorem gives the joint distribution of the jump diffusion and its running

maxima.

Theorem 2.2. (Kou and Wang (2003)) The Laplace transform of the joint distribution

s given by

/ e P(X, > a,m, < t)dt

0

=E (e, X, =) / e ™P(X, > a—b)dt
0

+E (e, X, > b) / e P(Xy+ &> a—b)dt.
0

Here £ is an independent exponential random variable with rate n, and E (e=*7; X,, > b)

s obtain by letting y = 0 in Theorem 2.1.

Wang and Zhang (2009) discuss the two-sided first-exit problems of a diffusion process
with both positive and negative Erlang jumps using a martingale approach. They

introduce the surplus process

Nt
Xt:u+ct+aWt—Z}/;, t >0,

i=1
where u > 0 is the initial capital of the company, and c is the positive constant premium
income rate, {W; : t > 0} is a standard Brownian motion with dispersion parameter
o > 0. Let {V; : ¢ > 0} be a Poisson process with intensity A > 0, counting the
total number of claims from an insurance portfolio and {Y; : i € N} be a sequence of

independent and identically distributed random variables with density

niy"! g (—y)™ !

fy(y) = pmemyf{yzo} +q (m— 1) e Ity<oy

10



where p, ¢ > 0 are constants with p+q = 1,71, 72 > 0. In particular, explicit expressions
for the Laplace transform of first exit times, as well as the distribution of the time of
ruin are obtained. Define

T, :=inf{t >0: X, <a}, 0<a<u,

10 :=inf{t > 0: X; <0},

7 :=inf{t >0: X, > b}, b>u,

T:=inf{t >0:X; ¢ (0,b)}, b>u.
Theorem 2.3. (Wang and Zhang (2009)) For any 6 > 0, we have the Laplace trans-

forms of 7, and X,

n+1 n+1
Fu (e—OTa) _ Z Fu (6_97“1@) — Z o
i=1 i=1

E* (6*97“; X;, < a) = i £ (e’emlgi) = i ey
i=1

i=1

E (6*97“; X, = a) = k" (e*GTalgnH) = Mnil,

where

G; = {X. crosses the level a at time 1, by the ith phase of a downward jump},i =1,2, ...

G, =1{X;, =a}

and the vector m satisfies the following system
TfBi] = P =12, n+1, (2.1)
7 1s the unique solution of (2.1).

Theorem 2.4. (Wang and Zhang (2009)) The Laplace transforms in connection with

the first-exit time 7 are obtained as follows:

n+3

Eu (6—6'7—) — Z FEu (e_eTlKi) ’
=1

n+1
E* (e X, > b) = B* (e 1) = 30 B* (e~ 1) .
=1

n+3
B (e X, <0) = B (e emy) = 3 B (715,
i=n+2

11



where the events Ky, Ko, ..., Ky inio are defined as

K; = {X. crosses b at time T by the ith phase of a positive jump}, i = 1,2, ...,m,

Km+1 = {XT = b}a

K145 = {X. crosses 0 at time T by the jth phase of a negative jump}, j = 1,2, ..

Kpynya = {XT - 0}‘

12



Chapter 3

First passage times of a jump diffu-

sion process

Let
Nt
Xy =oW,+put+ Y Y, (3.1)

=1

where W is a Brownian motion with W, = 0, N is a rate A Poisson process and (Y;)

are i.i.d. random variables with density function

fy(y) = pme ™10y + qmee” ™ 1y<oy, p,g>0,p+q=1.

In addition, processes W, N. and (Y;) are independent. Note that the jump part is
a special case of the so-called marked point processes; further background on marked
point processes can be found in Brémaud (1981) and Jacod and Shiryaev (1987). The
process in (3.1) is indeed special cases of Lévy processes, processes with stationary and
independent, see Bertoin (1996) and Sato (1999).

Normally, the two-sided exit problem is difficult for general Lévy processes. It can only

be solved for certain kinds of jump distributions, such as the exponential-type, thanks

13



to the memoryless property of the exponential distribution.
The process X in (3.1) has a generator

[e.9]

Lu(w) = 50u"(@) + ul () 4 A [ ulo -+ 9) — ule) o)y,

—0o0

€Xt]

For any 0 € (—nq,m1), E[e’*] exists and

where

1 M qne
0) = Ou + =6 2+)\( + —1).
Vo) =on 2" 7 m—0 m+0

Lemma 3.1. For alla > 0, the equation 1(x) = « has exactly four roots 1, Ba, — B3, — B4,
such that

O0<Bi<m<fa<oo, 0<f3<n<By<oo.

In addition, let the overall drift of the jump diffusion process be

Then, as o — 0+,

and
52 _>/§2aﬁ3 — @7/84 — B:b

where 51, B;, 53 and §4 are defined as the unique roots of equation

(x) =0, such that 0<51<7]1<52<oo;0<g3<n2<g4<oo.

14



Proof. Function 1 is convex in (—nsq,71) with ¢(0) = 0. Since

lim ¢(x) = +ooand lim w( ) = +o0,

T, r—r— 7]2
there is exactly one root f; for equation ¥ (z) = a in (—n2,0) and another root in

(0,71). Furthermore, since

lim, (r) = —ccand lim (x) = 400,

$_>771 T—r—+00

there is at least one root in (7, 4+00). Similarly, since

lim ¢(zx) = —ocoand lim ¥ (x) = +oo0,

or—ny Z——00
so there is at least one root in (—oo, —12). The equation ¢(x) = « is a polynomial
equation of degree four, so it has at most four roots. It follows that, there is exactly
one root in (—oo, —n) and (1, 00), respectively.

The limiting results when «a — 0 follow easily once we note that ¢'(0) = . [
For any a,b > 0 let
=inf{t >0:X; < —aor X; > b}.

So 7 is the first time when process X; ¢ [—a,b]. We want to find E (e *"; X, > b),
E(e v X, < —a), F(e*; X, < —a—2z)and E(e*"; X, — b > x) for z > 0.
We first define some constants. Put

_ (B2 — B1)(Bs — B3)
(Br —m) (B2 — m) (B3 — 1m2)(Bs — 12)
i e (et <(51 + B3) (B2 + Ba) o—(atb)s _ (81 + Ba) (B2 + 53) a+b)54)
(Br—m) (B2 +m2) \ (B3 +m1)(Bs — n2) (Ba+m1) (B3 — 772)
(81 + B3) (B2 + Ba) o~ (@) (B1+54)
(B2 = m1)(Bs +n0) (Br + n2) (B3 — 12)
(
(B

o (a+b)(B1+53) ( (B1+ B4)(Ba + B3) n (B2 = B1)(Bs — Bs) (D) 52+ﬁ4)>
(53 + 1) ( |

_|_

+12) \ (B2 —m)(=Bas+m2)  (Ba+m)(B2+ 772)

15



A ':@*(aer)ﬁQ (e(a+b)ﬁ4<62 +/33)ﬁ4 B ef(a+b),83<ﬂ2 +ﬁ4)53)
YR \ Gt m)(B—m) (Batm)(Bi— )
B B>(Bs — Ba)
(B2 — ) (B — ) (—Bs + )’ (32)
A _:e—(a+b),81 (e—(a+b)(,84+62)(52 — B1)ba N (By + B1) 52 )
- B+ 12 (Bs +m)(B2 + 1m2) (B2 =) (=B + 1m2)
e~ (@B, (By + By) (3.3)

+ .
(Br = 1) (Ba — m2) (B2 + 1m2)
Define Ay and A4y such that —Ay; is obtained from Aj; by changing 5, to £ in (3.2),

and — Ay is obtained from Ajz; by changing §,; to S5 in (3.3).

B —53 + 54 N e—(a+b)(54+ﬂ2)(ﬁ2 + 53) B e—(a+b)(53+62)<ﬂ2 4 54) (3 4)
U Br =) (=Bs+m) | (Bo+m2)(Bs — ma) Bo+m2)(Ba—ma)

e—(a+b)52 (B2 + Ba) 67(a+b),81<51 + ) (—p1 + 52)67(a+b)(52+/34+61)
(Ba—m2) (B2 +m2)  (Br +n2)(=Ba +12) (Br +n2) (B2 + m2)

By = . (35)

Define By and By such that — By is obtained from Bj; by changing 5 to f; in (3.4),

and — By is obtained from Bs; by changing 84 to 83 in (3.5).
Theorem 3.1. For any oy > 0, b > 0,

E (e X, > b) = Aye ™ 4 Age 0 4 Age 0 4 Aye o,
where

_An
771147

_An
mA’

A3_ﬂ and A4:£

A = .
' mA mA

Ay

Proof. We consider the two-sided exit problem under the same settings of Kou and
Wang (2003). To this end, we modify the approach of Kou and Wang (2003) for the

16



one-sided exit problem. Let

;

1, x> b;

w(@) =S Ao P1-2) L Ao b-2) | Age-Bslota) L A, e-fileta) g < g <

0, T < —a.
\

For —a < x < b,

/ e+ ) Iy )y

[e.o]

= / pme” "dy + / 0 x gnee™dy
b

—X —00

b—=x
+/ (Ale—ﬁl(b—w—y) +A26—52(b—x—y) + A3e—ﬁ3(x+y+a) +A4e—ﬁ4(z+y+a)>pme—mydy
0

0
+ / (Ale_ﬁl(b_x_y) + Ag@‘ﬂﬂb_w_y) + A36_63($+y+a) + A46_’34(‘”+y+a)) qnae™dy,

—a—x

where

/ pme "dy = pe” =),
b

—T

b—x 0
/ e—ﬁl(b—:c—y)pme—n1ydy+/ 6—61(b—a:—y)qn2en2ydy
0

—a—x

_ ( Pm n qnz ) e Pilb—z) _ P o m(b—2) _ q7)2 o~ B1(at+b)—m(z+a)
m—05  m+bB m — B n2 + B

similarly for fs,

b—x 0
/ e—ﬁz(b—ﬂc—y)pme—mydy + / e~ B2(b—z—y) g™V dy
0

—a—x

_ ( Pm n qnz ) e P2(b—z) _ P o mb—z) _ q7)2 o~ Ba(a+b)—m(z+a)
m— B2 ne+ B m — B2 N2 + B2

for 637

o) 0
/ 6—53(w+y+a)pm€—mydy + / e—ﬂs(ﬂc+y+a)qn2en2ydy
b

—x —a—x

_ < pm_ 4 ) o—Balera) _ PN pi(art)y—m—o) _ LR —pe(ata)
m+ Bz n2— B3 m + B3 N2 — B3

17



and finally for (,,

oo 0
/ e Bi(atita) gy / e~ Bilatita) g omgy
b

—x —a—x

:< pm + qmn2 )6‘54(”“)— pm o Balatb)—mi (b—z) _ qmne o (e +a)

m+PBs me— B m + Ba N2 — P
Put
Fi(Ay, Ay, As, Ay) i= Ay + Ay + e Pt gy 4 o=Palatt) g
Fy(Ay, Ay, As, Ay) = e Pt A 4 e=B20t0) 4y 4 Ay 1 A,
Fi(Ay, Ao, s, Ad) = — o A Tﬁ2 At TBBeﬁs(LHb)Ag—I—ﬁe54(a+b)A4—1,
F4(A1’ Az A A4) - ﬁe_ﬁl (a+b)Al " ﬁe_&(“*b)/b - 2 ?12 B3 As 2 712 B A

Since (A1, As, Az, Ay) solves the following system of equations
Fi(A1, Ag, A3, Ay) =0, 1=1,23,4, (3.6)
we can verify that
u(b) = F1(Ay, Ag, A3, Ay) +1 =1,
u(—a) = Fy(Ay, Ag, Az, Ay) =0,

and for —a <z < b,

Lu(z) — aqu(z) =A™ O (4 (1) — an) + Age 207D (4(B2) — an)
+ Agem B (Y (—B3) — o) + Ae (Y (=) — n)
— Fy(Ay, Ag, Az, Ape ™0™ — Fy(Ay, Ay, Az, Ag)ge P
=0.
Similar to Kou and Wang (2003), we can select a sequence of uniformly bounded
functions (u,) such that u, € C*(R), where C?(R) refers the twice-differentiable func-

tion whose second derivative is continuous. u,(x) = u(z) for —a < z < b, u,(x) =0
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for v < —a —1/n, u,(x) =1 for x > b+ 1/n, and both (u},) and (u) are uniformly

n

bounded. Then

| Ly, — ayu, ||, — 0.

Applying 1t6’s formula, (see Rao (1995) and Protter (1990)), we see that the process
AT
M= em My, (X o) — / (Lun(Xs) = arun(Xs))ds
0
is a martingale. Taking a limit in n we have that

E (e—al(t/\r)u(Xt/\T)) — lim E (e—al(t/\T)un<Xt/\T))

n—oo

= lim w,(0)
n—oo

= u(0)

= Aleiﬁlb + Agei’gzb + Ageiﬁsa + A4€7'84a.
Then

E (e ™ X, > b) = lim E (e y(X,,,))

t—o00

= Ale_ﬂlb + Age_ﬂgb + A36_ﬁ3a + A4€_ﬂ4a.

O

Remark 3.1. Note that in the above proof we show that there is a unique function

u € C((—00,00)) N C?*((—a,b)) satisfying
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Remark 3.2. It seems to be very difficult to give the distribution of the two-sided
exit time analytically. Because when we apply the inversion of Laplace transforms on
E(e™7; X, > b), we need to do the integration for e "E (e~“7; X, > b) on ay. From
the theorem 3.1, we can see that the result for E (e=*17; X, > b) is not directly expressed
by ay. Instead, it is expressed by the solutions of the equation ¢ (x) = a1, which have
very complicated expressions. But we can give the distribution of the two-sided exit time

numerically.

Theorem 3.2. For a; > 0,y > 0,

E(e ™ X, —b>y) = Bie """+ Bye " + Bye 7" 4 Bye e

)

where

—ym B ~ym B —ym g ~ym B
Bl:u,gzze_ﬂ733:u and 3426—41
mA mA mA mA

Proof. Similar to the proof for Theorem 3.1, for y > 0 define

(

1, x>b+y;
0, b<x<b+uy;
316—51(17—96) + Bze—ﬁz(b—f) + 336—53($+a) + 346—54(14-@)’ —a <z <b;

0, r < —a,

\

where (B, B, Bs, By) solves the equations
(

6761(a+b)B1 + 6752(a+b)32 + Bg —+ B4 = O’

<
m m e—B3(a+b) e—Pa(a+d) — o~ MY
nm—pF1 Bl + n1—pB2 B2 g 1 +B 3 B + ! B4 =e
12 —pB1(a+b) —Ba( 12 _
772+B16 ' B + a5 € ’ 3T =5 By =0.
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Then one can show that

and for —a < x < b,

Lv(z) — aqv(z) = 0.

We first approximate v by continuous functions (v,) such that 0 < v,(x) < 1 for
z € (b+y,b+y+1/n) and v,(z) = v(x) for z € (b+y,b+y+1/n)°. Then approximate

v, using a smooth function and finally apply Ito’s formula. We can show that

E(e™ X, —b>y) =E (e (X))

= lim E (e v, (X,))

n—o0

= lim v,(0)

n—oo

= v(0)

= Ble_ﬁlb + Bge_ﬁQb + Bg€_ﬁ3a + B4€_/B4a.

Combining Theorems 3.1 and 3.2, we have

Proposition 3.1.
E (e‘m; X, = b) = Che Pl 4 Che P2  Cae P30 4 Oy P,
where
Ci,=A—By, Cy=A,— By, C3=A3 — By and Cy= A, — By.

Letting a — oo we can recover Theorem 2.1.
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Corollary 3.1. For any a € (0,00), let 81 and Py be the only two positive roots of the

equation

where 0 < B < my < By < 0o. Then we have the following results concerning the

Laplace transforms of T and X :

—p1 D et Po—m b e_bﬁQ,
m Ba— P m Ba— P

E(eom) =1

Car. B _ - 1y(Th — B1) (B2 —m) —bB1 _ ,—bB2
E(e X, b>y) e " P — B1) (e e ), foranyy >0,

—ar h — P1 b1 o8 B2 —m o8
E(e ", X, =0 T4 = 2,
( )= Br—Pi° By — i

Proof. In Theorems 3.1, 3.2 and Proposition 3.1, let a — oo, then

A
Al = 771_A
. B2(B3 — B4) / (B2 — B1)(Ba — Bs)
(B2 =) (Ba —m2)(=Bs +m2)/ (Br —m) (B2 — m)(Bs — 12)(Ba — 12)
_ @2(7}1 - 51)
Uil (52 - 51)7
Ay
Ay = 771_A
_ 51(53 - 54) / Uil (52 - 51)(54 - 53)
(Br = m)(Ba —m2) (=B +m2)/ (B —m) (B2 — m)(Bs — m2)(Ba — 1m2)
~ BB —m)
771(52 51)
e—ymBll
B; = A

_ e (Ba—Ps) / (B2 — B1)(Bs — Bs)
(Ba —m2)(=Bs+mn2)/ (B —m)(B2 —m)(Bs — n2)(Ba — m2)
_ oy = B1)(B2 —m)
771(52 - 51) ’
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and

e ym B21

B, —
? mA

_ e Yn(By — Ps) / m(Ba — B1)(Ba — B3)
(B —=m2)(=Bs +m2) / (B —m) (B2 —1m1)(Bs — 12)(Ba — 12)
_ oy Br=m) (B —m)
m (B2 — 1) .

Let y = 0, we then get

Cl = Al - Bl
_ Bo(m — B1)  (m — B1)(Ba —m)

B m(B2 — B1) m(B2 — Br)

_ m — B
By — B’

and
CQZAQ—BQ

Bi(Ba—m) (B —m)(B2—m)

N m(Ba — B1) m(B2 — Br)
_P—m
By — P

So these are all consistent with Theorem 2.1 of Kou and Wang (2003) for the one-sided

exit problem of the doubly exponential jump diffusion process.

Remark 3.3. To find E (e *"; X, < —a), we can consider the time when —X first exits

the interval [—b, a] at level a and apply the previous results.

Define
Ny
Xi=—-Xy = —oW, — pt — ZYQ,

i=1

where W is a Brownian motion with Wy = 0, N is a Poisson process with rate A\ and

(Y;) are i.i.d. random variables with density function

~

fov(y) = pe™1yycor + qnee ™10y, 2, >0, p+q=1.
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In addition, W, N and (G;) are independent. Process X, has a generator

o0
A

Lu(w) = 3t (2) = (@) + A [ [u(o +9) ~ ula)) o)y

—0o0

For any 0 € (—nq,m1),

E (eeXt> = e&(&)a

where

5 1 M qne
0) = —6 +—022+)\( + —1).
¢<) H 2 7 m+60 n—0

For a > 0, equation
d(@)=a

has exactly four solutions 51, //6\2, — 53, — 34 such that
0<f1<m <2 and 0 < f3 <ne < P

We can get similar results to the above theorems for Xt with A\i, B\l and @ following

the similar notation as for A;, B; and C;, where i = 1,2, 3, 4.
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Chapter 4

Range time for jump diffusion

Next, we will discuss the range time of the jump diffusion X in (3.1). As we defined
in Chapter 1, T" is the first time when the range of the process reaches r, the process
should be necessarily at an extremum at time 7. Correspondingly, S is the first time
when the process is at the other extremum up to time 7'. The joint Laplace transform

for S and T is given in the following theorem and it is the main result of my thesis.

Theorem 4.1. For any oy, a9 >0 and r > 0,

2 4
Blem -0 o )+ 3 G- (S8 - 3003).

Proof. Our idea is to divide the interval [0, 7] into 2" parts and consider the problem

on each small interval. Define

_ 1
Apn = {];T X Uﬂ;r—n)r,k:o,1,2---,2"—1},

and
2n—1
= | Ak
k=0
For 0 < k£ < 2" — 1, define

k
S,;n:inf{0<t<T Xt>2—:}

25



and

2" —k—1

with the convention that inf ) = co. Denote

2" —1 2n—1
Sn = E :Sk,n[Ak,n and TTL = : :Tk,nIAk,n'
k=0 k=0

We can see that

S, <S5 and T, <T.

Since with probability one, S can not be a jump time for X, then S, 15 and Xg- — Xg
a.s. In addition, T, 1T XTn_ — X7 a.s when X7 — Xg = r and XT; = Xr for n large

enough when X; — Xg > r.

In view of two-sided jumps, the process can reach S in two ways: the process X may

either reach kr/2" , k=0,1,2,...,2" — 1, continuously or by an upward jump. Define

|

on {%SI<%}’

i=0,..,2"—1;
lz] =

r(i+1) I

2 gk <a<HEHY

i=—2"+1,..,0.

E(emd2T=9). xX¢ _ Xp =)

i B (e - Ut < )

n—00 on
— 1 2"*1E —a18,, —aa(Ty, —Sy )X kr X . (2” —k— 1)7’
— kr (2" —k—1)r
: —a1S, , —aa(T, =S, ). _ _ — k=
el 3 (e, = | =S
=0
=1 +11I. (4.1)

For term I, let y* = Xs,; Ly =y — ;“—,‘f Then X, first crosses kr/2", for k =
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0,1,2,...,2" — 1, because of the jumps.

Then by Theorem 3.2 with b = 2n7 = # and Proposition 3.1 with @ = 7 —
(y* — &) and b=r+y" — T(];il), we have

1

oS —an(T- -5 kr (2" —k—1r
a1 S az (T, S

> (e X g <) e

k=0

-1 .
= _alskn S < Tk’ n7XS_ - 2_ € dy )E*( _a2T k+1n > Tk:n)

anl/zn e Y By Bk € ymBQl _Bgkr € ymBgl @ik e 3”’1341 B2k
= _ e R _ _—

A A A A

* (k+1)7‘

~

)+ 626’52(”1’**M) + Ce™ By (DT g n 046*54 (Gt y*)) a0y

<01 o Bilry*—

=E,.
By (3.6) with ¢ = 2, we have
6167317’ + 62673271 + 63 + 64 =0.

Hence, using Taylor expansions for the exponential functions at 0,

% (k+D)r

C 6—51(r+y* (HW) + 626—62(T+y -7 + 036—/33( gn —y*) + 646—34((’?3%—3/*) —0

:ale—glr(e—@(y*—(k;%)r) — 1)+ 626—§2r(€—§2(y*—(k;7n1)r)

_1)

53 (k:+1)r (k+1)'r

+ Cy(e v) 1) + Oy (e v —1)

s G A a aa A kot )
= <C151€ Pt CoBae™" — O35 — C4ﬁ4) X <(2—n)r - y) +o(27)

~ o~ a ~ o~ = oA~ r
< (Clﬁle_ﬂlT + CyBpe™" — O35 — 0454) X on +0(27°")

On the other hand,
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Calculating the following sums over k, we have

on_1
_ﬂﬂ‘k 1 —_ 6_51
e = — =12,
k=0 I —emr
and
n__
2n—1 —p;r(2"—k) efﬁjr -1 .
e 2n = —5 el j p— 3, 4
=0 1—eam
So,

E, < (1—e2%) x (6151675” + Cobae 2 — Cyffy — @434>
A7]12n

2

A(1—e By L By(e P —
Z—B“(l - +ZB” 1)]. (4.3)

X

i=1 1—e 27 j=3 1—e¢ 2"

Let n — oo, by (4.3) we can get

2m—1

. e o kr (2" —k—1)r
=0
. Bir B. ~ ~ ! e Bir 1
< lim A2n (Clﬁle " 1 CyBpe 2" — Cy By — C4ﬁ4) ; ——

For the term I7 in (4.1), X reaches the running maximum up to time 7" due to the

Brownian motion, we want to apply Proposition 3.1 with b = zn ,a4 = w for X and

with @ = 2%,/5 = r for X. We can take the limit on n directly to get the exact results.

By Proposition 3.1,

2" —1

1S —an(T S kr (2" —k—1)r
: arS, —oa(Ty =S, ). = = =
nhﬁlgo kz_% E (e K kon Sk ,XSM TR {XTMJ o ) (4.4)
i Byrk —B37(2" k) —Byr(2"—k)
= lim Z <Cle 7 4 Che 2 H +Cge o + Cye 2m )
~ > A~ > A~ —E T A~ —E T
X (016—517" + CQ€_B2T + 036273 + C4€277%).
Taking sums over k, we have
n—1
gk 1—eAT

Ze 2n :—_[8”’ 7/21,2,
k=0 1 —e2m



and

7Bj'r(2n7k) efﬁj,r — 1

1
ZeT:—W, j:3,4

E—0 1 —e2m

By (3.6) with ¢ = 2, we also have
Cre™? Buir+ ) 1 CoeP Ba(r+ ) 1+ s+ Cy = 0.
Hence, using Taylor expansions for the exponential functions at 0,

~ ~ R . o _Bar o e
016—517" + Cge_ﬁw + 036273 + 04627’% —0
:61 <€*E17" _ e*El(T+QLn)> + 62<€7,§2r o €7§2(r+2%))

+Cy(e™ — 1) + Cyle ™ — 1)

Combining these two cases, we can get the desired results for this theorem. O]

Theorem 4.2. For any ay,as >0 and r > 0,

:Zg(l—e B (B Bre” Bir 4 ByBaePor — B3y — Bufhy).

Proof. In this theorem, we consider the case that the process jumps over the previous
running minimum by a downward jump. We just need to follow the proof of Theorem

4.1 by changing @ to éz [
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The joint Laplace transform of (S, 7T, Xr) for two-sided jump diffusion processes is

given in the following Theorem.

Theorem 4.3. Given any x < 0, a1,y > 0, we have for —r < x <0,

E(e—a15—a2(T_S); Xg—Xp=rXr< ZL')

— Bi
2 R N 4 R
]
i=1 7=3

and for x < —r,

E(efoaS*aQ(T*S); Xs—Xr>nr, Xr < l’)

2 4
—em(@+r) (Z Cjﬁ (1 _ e—(ﬁi-f-m)T) _ Z 3 G (e—ﬁﬂ _ e—nu“))
T i

i=1 i=s 1M

2 4
X (Z Eilgie_ﬂir — Z Eu@) 3
i—1 =3

while for —r < x < 0,

E(e—als—O’Q(T_S);XS f— XT > ’I“, XT < :L')

2 4
:{ Z g(l _ e*ﬁz‘(rﬂ)) 4 Z g(eﬁw _ 67'3“")
i=1 Bi =3 Bi
4

2 o—(m+Bi)r o~ MT
L emla) (Z %@(mwm ISP 7; (e~ m—tw _ 1)) }
m i — Bi

i—1 i—s N

2 ~ 4
X nLA (Z BuBie™?r — ZBilﬂi> :
! i=1 i=3

Proof. Similarly to Theorems 4.1 and 4.2, we already know that (4.2) is 0 when n goes
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to infinity,

E(e—alsfaz(T*S);XS — X7 = r, Xr < 1:)

{2n(r+'r) _IJ

s

. Bar(2™—k) _Bar(2"—k)
= lim E (Cle e + Che™ i + Cse” 2 + Che 2m )

~ ) ~ a -~ E T -~ B r
X <01€BIT + Cgeiﬁwq + 03672% + 0462%1)

Le) o) P .
— (Z El(l _ 6—5z‘(r+»’l¢)) + Z E.Z(eﬁiz _ e-ﬁﬂ")) > (Z C; ie—ﬁﬂ’ _ Z Oj j) )
i=1 " i .

=3
Then
E(efouS*OéQ(T*S); Xs—Xr>nr, Xr < :IZ')
:E(efouS*OQ(T*S); Xg— X7 > r, Xr < Z, 1{x<77’})

+ B(e 5709 X — Xp > v, X7 < 2, 1{_rcucoy)-

When x < —r, by Theorem 3.2 with b = ’;—Z:, a = T(Q;L;k) and Proposition 3.1 with

d= g b=r §=—r— O weget
E(G—OQS—OQ(T_S);XS —Xr>rXr< l‘)

2" —1
. Birk Bark 537"(2 —k) B4r(2n7k)
= lim E (Cle 27 4 Che” 27 4+ Cye™ + Che 27 )
n—oo

~ s ~ s -~ E T -~ § r
X (Ble_ﬁ”’ + Bge_ﬂﬂ + Bge_% + B46_24n>

2" —1
Bark ﬁ3r<2” k) B4T(2’Lk)>

Birk
= lim Z <01€ i + Che™ 2" 4+ (Cse” + Che 27
n—»00

k)r 3 3 = ) fay Bar -~ Byr
| (Blle_ﬁlr + Bye " + 3316_%" + B416_2%1>

2 4
:enl(m+r) (Z i(lﬁ (1 — e (Bi+m)r Z _ 6—7717”))
— i

3 771
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When —r < z < 0, by Theorem 3.2 with b = &2 a = T(Q;Ln ¥ and Theorem 3.1 with

~ -~

a:%,b:r,Q:Ofortheﬁrstpartanda:%,bzr,@z—ﬁ—(znz;nk)rforthe

second part, we have

E(efalsfoQ(T*S);XS — XT >, XT < .CIZ')
| 2etr) |

. BlTk ['337‘(2 —k) [‘347‘(2" k)
= lim E (016 2+ (Che” 2" +Cg€ + Cye™ )

n—00
k=0

s~ &~ Bar o~ _Bar
X (Ble_’g”" + Bye P2 4 336_2% + B4e_2%>
21

_Birk ﬂ3r(2n—k) _[34'r(2n—k)

+ Y ((J 3 e B 4 Oy 4 Oy S )
_| 2%(atr)
k=[5 |

A~ i~ A~ i~ A~ E T ~ E T
X (Bleﬁlr + BQGiﬁQT + 33672% + B4€2%L>
LQ”(I«FT)_lJ

. Birk Bark [33r(2 —k) Byar(2™—k)
= lim E (C’le 2 4 (Che™ i + Cse™ + Che” 27 )

n—oo

k=0
L (5 B\ B ooBor B, o~ B
X — | Byje 7" + Bgyje 2 +Bgle 2" + Bye 2?
mA
2" —1

_ Birk Bark B3r(2™—k) _ﬁ4’r'(2nfk)
+ Y (0 B L Che B 4 Cye T 4 Cpe )

| 2Gatn)

k=| ]

™
1 @"—k)r ”

~ = —~ ~ —~ Bar . 3
X —Ae’“(g”Jr ) (3116_6” + Bore " 4 Bye~ 7 + B416_2%1>
Ui

2 4
:{ Z g(l _ e*ﬁz‘(rﬂ)) 4 Z g(eﬂﬂ _ e*ﬂﬂ")
i=1 ﬁz i—3 57,

C e 771+/Bl)r

Cie
+ em(@t) (ZW( —(m+Bi)e _ +Z ‘ ~(m—pir _ 1)) }

=1

(Z BiBie Z Bi @) :

With the above theorem, we can find the defective distribution for X.
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Corollary 4.1. Giwen any x < 0, aq, as — 0+, we have for —r < x <0,

P(XT<!IT,X5—XT:T)

4
— (Cl (T + :L‘) + %(1 —32 7’+$) Z 5143 6-&(?’-&-@))
2 i=3 i

< (Cuhe P~ G- Cih).
while for x < —r,

P(XT<I,XS—XT>T‘)

Ci(l—e™mm) Gy B oo .
_ () I 1 — o~ (Betm)ry _ i (Bt _ gmmr
( ( )= i m( )

T m + Pa — i —

<B2152€ par ZBMB@) ;

and for —r < x < 0, we have

P(XT<.CC,X5—XT>T>

{Cl(wrx) +g (1 — e Pelrta) +Z 51 (e — e 7T)

2

Cie—mr C'Qe* n+0B2)r 4 C.e—mr '
+ em@+r) (217 o-mz _ 4= e~ (m+B2)x _ 4 + 2 (emm=B)r _q
m ( ) m + B ( ) ;771—51‘( )

11A (321526 far Zleﬁz> )

where EZ is the solution of ¥(x) =0 and BZ is the solution of ﬁ(m) =0, fori=1,...,4,

while C;, C; and By are redefined by letting [, Bl =0 (see Lemma 3.1).
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Proof. Let aq,as — 04 in Theorem 4.3, then the distribution for Xr is given by

P(XT<LU,XS—XT:T’>

2 o Lo -
"o (Z El(l - e_rgi(r-&-a:)) + Z _"L(eﬂil’ _ 6—/31'7")) X (Z é\i/\ie_ﬂir _ Z 6]3]

3;381 =1 i—3 — =
C. —~ Lo - N
— <Cl(T + SC) —+ ;2(1 _ e*BZ(T‘JrI)) + Z BTzeﬁlx<1 o eﬁ¢(r+:p))>
2 i=3 Pi

X <O2526_52T — O35 — C'454) ;
where we need Lemma 3.1 for the last two equations.

When x < —r,

P(XT<I7XS—XT>T)

2 4
Ci C.
= lim em(@*n) (Z L (1 — e WBitmry _ g L (e gmmr)
m+ B —~ Bi—m

[e5] ~>0+ =1
0424)07L =

2 4
X (Z Eilgieiﬁﬂ — Z Eu@)
i=1 =3

I 4
—em(z+r) (Cl(l —e ™) + & (1— 6*(ﬁ2+771)T) _ Z Ci (67'3“" _ 67717")>
=3

Ui m + B Bi — m
~ 4
X (leﬁzeﬁﬂ — Z Bﬁﬁi) ;
=3

where we need Lemma 3.1 for the last two equations.
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When —r <z < 0,

P(XT<JJ,X5—XT>T>

2
= lim { Z %(1 _ e—ﬂi(r—i-m Z% Bixz e—ﬂir)

o L&A
06 (m+Bi)r 6 —-mr
+ e (@+r) v (o (mAB)r + —(m—pi)z 1)
; m + B (e ; nm —

2
X mLA (Z leﬁz Zleﬁz>

Co s N~ Cip g g
= Ci(r+a) + — (1 — e 2U) 13 " 2 (efir — 0
B <5,

1=

wip [ Cre=mr Che~(m+or . Cie ™" g
+ em@t) (T(e nE—1)+ W(e (m+B2)z _ 1) +Z—ﬁz( n=pie 1)

4
1 ([~ ~ 2 P
— | Bufae™™ =Y BB |,
X 1A< 21326 2 15)

where we need Lemma 3.1 for the last two equations. O]
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Chapter 5

Conclusion and future work

Previous results on the range process, the first range time and the first passage time
can be found in several papers. In this thesis, we first obtain the Laplace transforms
of the first passage times for two-sided exit problem. It is difficult to study the first
passage times for general jump diffusion processes with arbitrary jumps, due to a pos-
sible overshoot, X;, — b, over the boundary. The double exponential jump diffusion
process offers a rare case in which analytical solutions for the first passage times are
feasible. The results are consistent with those for one-sided exit problem in Kou and
Wang (2003). We also derive explicit expressions for the joint distribution of the times
when the process reaches the running maximum and minimum, up to range r, using
the idea of considering each interval with length r /2" and applying the two-sided exit

time’s results. The distribution for the process at the range time is also given.

In the future, we can work on the range time for jump diffusion process where the
jumps follow a mixture of exponential distribution. We can also consider the range

time for Lévy process with one-sided jumps. For Lévy process with general two-sided
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jumps, it is still an open problem to characterize its range time.

Following Kou and Wang (2004), we would like to apply the results we obtained on
the range time to price the options related to the fluctuation of an asset value process.
Also, by using the Gaver-Stehfest algorithm, we can try to fine the numerical values for

the distribution of the two-sided exit time through the inversion of Laplace transforms.
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