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ABSTRACT 

An Experimental Investigation of Flow Energy Losses in Open-Channel 

Expansions 

Azita Najafi-Nejad-Nasser 

 

Channel expansions are common in both natural and engineered open channels. They connect a 

relatively narrow upstream section of channel with a large downstream section of channel. Due 

to increasing cross-sectional dimensions in an expansion, the flow decelerates. Under steady 

flow conditions flow deceleration results in an increase in water pressure and hence an adverse 

pressure gradient. This often triggers flow separation and turbulent eddy motion, and causes 

energy losses in the flow. When conservation of flow energy is required, the issue of energy 

losses becomes important, a consideration which has motivated this study. The focus of this 

study is on subcritical flow, a typical flow seen under a wide range of flow conditions. This 

study aims to quantify the energy losses in a lateral expansion and to further investigate how 

effective a hump fitted on the channel-bed of the expansion is at reducing energy losses. 

This study adopted the experimental approach. Using a recirculating laboratory flume, 

experiments of flow in expansions with or without a hump were performed to measure flow 

depth, pressure, and cross-sectional mean velocities. These measurements were analysed using 

the energy concept for direct estimates of the energy loss coefficient. Without the hump, 

measured water pressures showed adverse gradient in the expansion, opposing the approaching 

flow. Estimates of the energy loss coefficients ranged from 0.46 to 0.62. These results would be 

useful for the design of channel expansions, and for calibrating and validating numerical 
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hydrodynamics models. The presence of the hump has been shown to accelerate the flow, 

convert adverse to favourable pressure gradient, and lower the energy loss coefficients by more 

than 50% when compared with the corresponding values without the hump. 

So far no satisfactory theory has been established for determining the energy loss 

coefficient for a given expansion. In this study, the momentum concept is combined with the 

energy concept in order to derive a theoretical expression for the energy loss coefficient. When 

applying the momentum concept to flow in an expansion, the pressure forces may be evaluated 

using the hydrostatic approximation, as supported by experimental evidence from this study. The 

theoretical expression involves extra parameters whose values are obtained based on the 

experimental data. It has been shown that the theoretical and experimental values for the energy 

loss coefficient are in good agreement. This theoretical expression can easily be extended to 

study channel expansions of different configurations. 

 

 

 

 

 

 

 

 

 

 

 



v 

 

ACKNOWLEDGEMENT 

 

In the first place I would like to express my gratitude to my supervisor, Dr Samuel Li. His 

guidance, encouragement and support throughout the research are greatly appreciated. His 

abundant help and invaluable assistance, support and guidance in preparing my thesis, are 

especially appreciated. I am truly fortunate to have such an excellent supervisor. 

 

I also would like to thank Dr. A. S. Ramamurthy for the kindly provided the design drawings of 

the channel expansions. 

 

 I am especially thankful to Mr. Lang Vo for his help in installing the experiment setup. 

 

This research project would not have been possible without the financial support received from 

the Natural Sciences and Engineering Research Council of Canada through the Discovery Grants 

held by Dr. S. S. Li. 

 

Last but not least, I would like to thank my parents for their endless love and support through the 

whole duration of my studies. 



vi 

 

TABLE of CONTENTS 

 

List of Figures.................................................................................................................................ix 

List of Tables..................................................................................................................................xi 

List of Symbols..............................................................................................................................xii 

 

CHAPTER ONE INTRODUCTION.......................................................................................... 1 

1.1 The need for knowledge...........................................................................................2 

1.2 Specific Aims of this Study.....................................................................................3 

1.3 Scope of the Work...................................................................................................3 

 

CHAPTER TWO SELECTIVE LITERATURE REVIEW......................................................6 

 2.1 Geometric shape of channel expansion....................................................................6 

 2.2 Hydraulic performance of channel expansions........................................................8

 2.3 Streamline pattern in channel expansions..............................................................10 

 2.4 Erodible channel expansions..................................................................................13 

2.5 Channel contractions..............................................................................................14 

2.6 Frictional effects....................................................................................................15 

2.7 Field measurements of subcritical flow in channel expansions.............................15 

2.8

 Summary.......................................................................................................................16 

 

 



vii 

 

CHAPTER THREE THEORETICAL BACKGROUND........................................................17 

 3.1 Introduction............................................................................................................17 

 3.2 Energy balance for flow in a pure channel expansion...........................................18 

 3.3 Energy balance for flow over a hump in a uniform channel..................................24 

 3.4 Energy balance for flow in an expansion with a hump fitted on the bottom.........25 

 3.5 Limitations on the use of the energy concept........................................................27 

 3.6 Pressure and sidewall forces..................................................................................28 

 3.7 Momentum equation..............................................................................................29 

 3.8 Normalised momentum equation...........................................................................30 

 3.9 Calculation of energy losses..................................................................................32 

 

CHAPTER FOURE EXPERIMENTAL SETUP AND EXPERIMENTS.............................36 

 4.1 Introduction............................................................................................................36 

 4.2 Re-circulating flume..............................................................................................36 

 4.3 Expansion section of the channel...........................................................................38 

 4.4 Discharge and depth controls.................................................................................40 

 4.5 Pressure taps...........................................................................................................44  

 4.6 Point gauges...........................................................................................................46 

 4.7 Experimental procedures.......................................................................................46 

 

CHAPTER FIVE RESULTS FOR EXPERIMENTS WITH A FLAT-BOTTOM 

EXPANSION .......................................................................................................48 

 5.1 Introduction............................................................................................................48 



viii 

 

 5.2 Discharge verification............................................................................................48 

 5.3 Experimental conditions of the upstream flow......................................................50 

 5.4 Coefficient of energy loss......................................................................................52 

 5.5 Adverse pressure gradient......................................................................................54 

 5.6 Water surface profiles............................................................................................59 

 5.7 Vertical distribution of water pressure...................................................................61 

 5.8 Pressure force on the sidewalls..............................................................................65 

 

CHAPTER SIX RESULTS FOR EXPERIMENT WITH A HUMP......................................67 

 6.1 Introduction............................................................................................................67 

 6.2 Experimental conditions........................................................................................67 

 6.3 Measured energy loss coefficients.........................................................................69 

 6.4 Pressure gradient in the direction of flow..............................................................71 

 6.5 Distribution of pressure forces on the sidewalls....................................................73 

 

CHAPTER SEVEN DISCUSSION AND CONCLUSION......................................................75 

 7.1 Discussion..............................................................................................................75 

 7.2 Concluding remarks...............................................................................................78 

 7.3 Suggestion for future research...............................................................................80 

 

ACKNOWLEDGMENT.............................................................................................................81 

 

REFERENCES.............................................................................................................................81 



ix 

 

LIST of FIGURES 

 

Figure 2.1 Channel expansion types..........................................................................................7 

Figure 2.2 Plan view velocity distribution for a rapid expansion: B/b=3.0............................11 

Figure 3.1 Definition diagram of a channel expansion...........................................................19 

Figure 3.2 Visible shock waves emerging downstream of a channel expansion....................19 

Figure 3.3 Specific energy diagram for flow in a channel expansion.....................................22 

Figure 3.4 Water surface profile for flow over a hump fitted on the bottom of a uniform 

channel...................................................................................................................23 

Figure 3.5 Free body diagrams for momentum analysis.........................................................29 

Figure 4.1 (a) Experimental setup used to conduct experiments in this study. (b) Schematic 

illustrations of the upstream channel-section, the expansion and the downstream 

channel-section......................................................................................................37 

Figure 4.2 Channel expansion and pressure taps drilled carefully in the wall and connected to 

peizometers............................................................................................................39 

Figure 4.3 The downstream gate used in the laboratory for depth and Froude number 

control....................................................................................................................42 

Figure 4.4 The 30° V-notch weir used in the laboratory for discharge measurements...........43 

Figure 5.1 Correlation of discharge measurements using the V-notch weir and the volumetric 

method....................................................................................................................49 

Figure 5.2 Comparisons of the coefficient of energy head loss between experiments and 

theoretical predictions............................................................................................53 

Figure 5.3 Positions of the pressure taps drilled through the sidewall....................................56 



x 

 

Figure 5.4 Longitudinal variations in pressure head shown for selected experiments (a)......56  

Figure 5.4 Longitudinal variations in pressure head shown for selected experiments 

(b,c)........................................................................................................................57 

Figure 5.5 Water surface profiles (a,b)....................................................................................60 

Figure 5.6 Measured pressure varying with depth below the layer surface (a,b,c).................63 

Figure 5.7 Deviations of the measured pressures from the hydrostat pressure values 

(a,b,c).....................................................................................................................64 

Figure 5.8 Subdivided areas for the calculation of the pressure force on the sidewall of the 

expansion...............................................................................................................65 

Figure 6.1 Energy loss coefficients for the experiments with the hump.................................70 

Figure 6.2 Positions of the pressure openings.........................................................................71  

Figure 6.3 Comparison between water pressures measured at corresponding pressure 

openings through sidewall to the left and the sidewall to the right.......................74 

 

 

 

 

 

 

 

 

 

 



xi 

 

LIST of TABLES 

 

Table 3.1 Calculated depth of flow at CS 3 using energy concept........................................26 

Table 3.2 Calculated depth of flow at CS 3 using the momentum concept...........................32 

Table 3.3 Calculated depth of flow at CS 3 using the momentum concept and calculated 

energy losses, for a pure expansion.......................................................................35 

Table 4.1 Geometric characteristics of the expansion used in this study..............................39 

Table 4.2  Positions of the pressure taps on the Cartesian coordinates system......................45 

Table 5.1  A summary of experiments with a flat bottom expansion.....................................51 

Table 5.2 Maximum pressure gradient, for different rows of pressure taps..........................58 

Table 6.1 Conditions of the experiments with a hump fitted on the bottom..........................68 

Table 6.2 The strongest pressure gradient a long each row of the pressure openings for 

experiments H26 to H34........................................................................................72 

 

 

  

 

 

 

 

 

 

 



xii 

 

LIST OF SYMBOLS 

 

A = Area 

b1 = upstream channel section width, CS 1 

b2 = channel width at CS 2 

b3 = channel width at CS 3 

Cd = coefficient of discharge 

D = hydraulic depth 

E1 = specific energy at CS 1 

Fi = pressure force at cross section i 

1Fr = Froude number of CS 1 

 
Fw = reaction force of sidewall 

g = gravity 

H = head measured above the weir crest 

Hi = total energy head 

h = vertical distance between the water surface and the point of interest 

hL = energy loss in the expansion 

hf = energy loss caused by friction 

he = energy loss, due to flow separation and eddy motion  

kE = energy loss coefficient  

kh = head correction factor 

L1 = upstream channel section length 

L2 = channel expansion length 



xiii 

 

L3 = downstream channel section length 

l = coordinate measured from CS 2, along the sidewall between cross sections CS 2 and CS 3 

m = side slope of a trapezoidal channel (1:m) 

n = Manning’s coefficient 

p = measured pressure 

P = height of the crest of the V-notch 

op = cubic equation parameters 

hp = hydrostatic pressure 

pL and pR = pressures measured at the corresponding pressure openings on the sidewall 

Q = total discharge  

Qo = cubic equation solutions 

vmQ = average of discharges by the volumetric method
  

vnQ = average of the V-notch discharges 

qi (i = 1 or 3) = per-unit-width discharge 

Re = Reynolds number 

Rh = hydraulic radius 

r = width ratio of b2 to b3 

S = channel bottom slope 

T= temperature or top width of the channel 

v = flow velocity  

v1 = cross-sectional mean flow velocity at CS 1 

v2 = cross-sectional mean flow velocity at CS 2 

yf  = observed final water-surface elevation, above an arbitrary datum 



xiv 

 

yi = initial water-surface elevation, above an arbitrary datum 

y = depth of flow 

y1 = depth of flow upstream of the expansion or at CS 1 

y2 = depth of flow at the entrance to the expansion or at CS 2  

y3 = flow depth at CS 3, where there are combination of the expansion  

y3* = dimensionless depth of flow  233 / yyy 
 

y3e = flow depth at CS 3, where there is a pure expansion with a horizontal bottom 

y3h = flow depth at CS 3, where there is a hump in a channel of constant width 

z1 = elevation of the channel bottom at CS 1 above an arbitrarily chosen datum 

z2 = elevation of the channel bottom at CS 2 above the datum 

 = density of fluid 

divergence angle of the expansion 

 = cubic equation parameters  

 = specific weight 

H = energy head saved 

ΔL= distance between every two adjacent pressure openings along each row 

p = deviation of the measured pressure, p, from the hydrostatic pressure, ph 

13 zzz 
 
= Elevation difference 

zmax = maximum allowable elevation difference  

 = height of the hump 

ε = angle of the bottom of the expansion with hump in the horizontal direction 

η = water surface measured above the channel bottom 



xv 

 

η* = dimensionless parameter

 

 

2y


 

θ = V-notch angle 

 = dynamic viscosity of water 

ξ = middle point along the length of the expansion sidewall 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1  

 

Chapter One Introduction 

 

1.1 The Need for Knowledge 

A channel transition is defined as a change in the direction of channel, the slope of bed level or 

cross-sectional area (Henderson 1966, p. 235). A more complicated case is the combination of 

the above-mentioned geometric features. Channel expansions are transitions with an increase in 

cross-sectional area in the direction of flow. They are commonly encountered in both natural 

open channels and constructed hydraulics facilities. Examples include flow through subdivided 

channels between bridge piers and water flowing out of culverts. Channel expansions are also 

common in laboratory flumes, aqueducts, tunnels and siphons. 

Channel expansions are worth investigating because they disturb the approaching flow, 

and more importantly because they can cause significant energy losses. On one hand, the 

disturbances emerge locally in the expansion but persist much further downstream. On the other 

hand, the energy losses in expansions cannot be recovered. The issue of energy losses in 

expansion must be addressed if conservation of flow energy is required, as is the case under 

many circumstances. 

In the case of a flow diversion channel for hydro-power generation, which often 

incorporates one or more expansions, the losses of flow energy in the expansions will mean less 

electrical power generated at the downstream hydro-power plant. In the case of irrigation 

channels with expansions, the losses of flow energy in the expansions will reduce the efficiency 

of the irrigation systems. The issue of flow energy losses in channel expansions is relevant and 

important in many other hydraulics engineering applications. 

 Open-channel flows are classified as supercritical flow, critical flow and subcritical flow, 

depending on the Froude number. Most of the time, it is subcritical flows that are generally 
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observed in open channels, including channel expansions. When passing through an expansion, 

the flow decelerates, with a rising water surface and a corresponding increase in pressure. This 

condition creates an adverse pressure gradient and potentially causes the main flow to separate 

from the sidewalls of the expansion. Consequently, eddies form locally in the corners of the 

expansion, but shear-induced turbulence can disturb the main flow over a large distance 

downstream. 

Although the physical process of flow separation has attracted extensive research 

attention with impressive applications in many different fields, no satisfactory theory has been 

developed to determine the energy losses for a given channel expansion. The energy loss 

coefficient is almost always given assumed values, which are very likely to be subject to errors. 

There is a difficulty in using the energy principle because of an unknown amount of energy loss. 

A need exists for reliable estimates of the energy loss coefficient. This is essential for the proper 

design of hydraulics facilities involving expansions. 

 Given that flow separation in expansions is undesirable, is there any practical way to 

suppress flow separation? Can the energy losses in expansions be minimised? In the search for 

answers to these questions, a number of researchers have previously undertaken various 

approaches in their studies. However, most of the earlier studies have produced only qualitative 

results. 

 It is necessary to conduct detailed and quantitative investigations of flow behaviour and 

associated energy losses in a channel expansion. This study aims to satisfy this need by 

performing laboratory experiments of subcritical flows in an expansion in the Hydraulics 

Laboratory at Concordia University. This study represents an extension of the basic idea of using 

a simple hump fitted on the channel bottom of an expansion in order to reduce energy losses in 
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the field. The experimental data obtained can be analysed based on the momentum and energy 

concepts in a complementary manner. 

 

1.2 Specific Aims of this Study 

This study adopts the experimental approach, aiming to produce good amounts of flow and 

pressure measurements in a channel expansion under subcritical conditions, to predict the 

response of the flow to the changing channel geometry using the momentum principle, and to 

determine the energy losses by feeding the results from the momentum equation into the energy 

equation. The specific objectives of this study are as follows: 

 Obtain measurements of water pressure, flow depth, cross-sectional mean flow velocity 

and water surface profile for the experiments. 

 Determine the complete list of forces on the flowing water and perform momentum 

analysis for solutions of flow velocity and depth. 

 Determine the energy losses and make comparisons between experiments with a lateral 

expansion and experiments with an extra hump fitted on the bottom of the expanding 

channel. 

 

1.3 Scope of the Work 

To achieve the objectives outlined above, the remainder of this thesis is divided into seven 

chapters. 

Chapter 2 is a summary of the current state of knowledge pertinent to this study. This 

includes the progress made in the analysis of physical processes that are responsible for flow 

separation and the formation of turbulent eddies, conclusions about changes in flow velocity and 
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depth as well as energy losses occurring in an expansion with or without bottom variations, and 

other established facts concerning the design of hydraulically efficient channel expansions. 

In Chapter 3, the theoretic background of flow in an expansion is presented in order to 

extend the study of subcritical flows in a quantitative manner. The momentum and energy 

principles are combined to derive analytical expressions for the determination of the energy loss 

coefficient. Numerical example calculations are provided to illustrate the calculation procedures. 

Chapter 4 describes the experimental setup and experiment procedures for measurements 

of various flow variables. The descriptions include the design and assembly of the experiment 

facility, the plan of experiments using different flow rates and flow depths. Discussions are given 

about the key characteristics of the expansions as well as measurement devices used in this 

study. 

Chapter 5 is devoted to presentation of the results for one set of experiments conducted 

using a channel expansion with a flat channel-bed. Analyses of the experimental data using the 

theoretical formulations presented in Chapter 3 are carried out. These involve the evaluations of 

all the forces for each of the experiments. Once the depth of flow at the downstream end of the 

expansion is determined, the energy loss relative to the velocity head at the upstream end of the 

expansion is obtained by using the energy principle. Direct comparisons are made between the 

theoretical and experimental results. 

Chapter 6 presents the results for a new set of flow experiments using the same expansion 

as in Chapter 5 but with a hump fitted on the bottom of the expansion. The experimental data are 

analysed to show the advantages of the hump in regulating the flow, eliminating adverse pressure 

gradient and enhancing energy head recovery. 
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Finally, Chapter 7 provides discussions about how the hydraulic performance of channel 

expansions can be improved and how the flow energy analysis can be extended to expansions of 

other configurations. The experimental evidence and analytical results are summarised before 

conclusions are drawn. Suggestions for future research on the topic of the hydraulic performance 

of channel expansions are made. 
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Chapter Two Selective Literature Review 

 

2.1 Geometric Shape of Channel Expansions 

Channel expansions may be classified into five different types: a cylindrical quadrant expansion, 

a straight line expansion, a square end expansion, a warped expansion, and a wedge expansion. 

These different expansions are illustrated in Figure 2.1. In a channel expansion, the expanding 

width in the horizontal may be accompanied by bed-level changes in the vertical. Hinds (1927) 

gave a summary of the empirical hydraulic design of transitions for flumes and siphons and 

made specific recommendations for various geometric shapes. The basic design objective is to 

achieve flow transition in a short distance with a minimum amount of flow disturbance. 

In particular, Hinds (1927) provided details of a design method for expansions intended 

to connect a rectangular flume to a larger, trapezoidal downstream channel. The method begins 

with an assumed water-surface profile expressed by two reverse parabolas. The parabolas have 

equal length with an inflexion point at the middle between the inlet and outlet of the expansion 

and merge tangentially with the upstream and downstream water surfaces. For given hydraulic 

properties, including bottom slopes, total discharge and flume dimensions, the expanding width 

as a function of the distance from the inlet of the expansion is calculated using the energy 

principle, with an assumed value for the energy loss coefficient. Hinds (1927) recommended an 

S-curved warped wall expansion (Figure 2.1, “warped” type), which has received some popular 

opinion. 

However, Smith and Yu (1966) found that the S-curved warped wall expansion 

recommended by Hinds (1927) was one of the least effective designs among the types of 

expansions that they tested. The problem with the recommended configuration was the 

occurrence of flow separation. Smith and Yu (1966) suggested that a straight walled diverging 
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expansion (Figure 2.1, “straight line” type) was more efficient than a curved wall expansion of 

the same length. 

None of the expansions shown in Figure 2.1 involves variations in bed level along the 

length of the expansions. It is not surprising at all that there are practical cases where changes in 

bed level are required. Under such conditions, in order to describe the geometric shape of for 

example an S-curved warped wall expansion, it is necessary to obtain three functions with the 

distance from the inlet of the expansion as their argument. One of these three functions 

determines how the bed width varies non-linearly with the distance. Another function expresses 

the variation in bed level with the distance if the inlet and outlet of the expansion are at different 

elevations. The third function defines the progressive changes of sidewall slopes from vertical at 

the inlet to certain inclination at the outlet. 

 

  

 Figure 2.1 Channel expansion types (from U.S. Department of Transportation 

1983, Chapter 4). All the expansions have geometry symmetric about the 

centreline. 

  



8  

 

2.2 Hydraulic Performance of Channel Expansions 

In the absence of changes in bed level, as subcritical flow passes through an expansion the water 

surface will rise a vertical distance. Theoretically this vertical distance is equal to the reduction 

in velocity head between the inlet and outlet of the expansion. This is to say that there is a 

conversion of kinetic to potential energy. However, this conversion is accompanied by energy 

losses. Consequently, the actual rise of the water surface or the recovery of energy head is less 

than the theoretical vertical distance (Hinds 1927). A hydraulically efficient expansion means a 

conversion of as large a fraction as possible of the differential kinetic energy to potential energy. 

This is similar to the evaluation of the performance of diffusers (Reneau et al. 1967). 

It is difficult to carry out mathematic analyses of flow energy for expansions of general 

geometry. So far no satisfactory theory for computing the energy losses in channel expansions 

has been proposed. A good alternative to characterise the energy losses would be to conduct 

experiments using expansions of widely used configurations, as shown in Figure 2.1. It is hoped 

that experimental results obtained for specific expansions can be extended to other expansions by 

e.g. careful interpolations. 

Expansions may be classified as a sudden expansion (Figure 2.1, “Square end” type), a 

rapid expansion or a gradual expansion (Figure 2.1, all the types except the “Square end” type). 

A sudden expansion is one with an abrupt increase in channel width, say from b to B, where b is 

the width of the narrow upstream section of channel and B is the width of the wide downstream 

section of channel. Such an expansion is hydraulically poor (Henderson 1966, Chapter 7). This 

may be interpreted as lower rates of conversion of kinetic to potential energy. 

Smith and Yu (1966) considered expansions as a rapid expansion when a total central 

angle, , between sidewalls reached 28°10' or a 1:4 (Lateral:Longitudinal) rate of flare. A 
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gradual expansion may be considered as one with  values smaller than 28°10'. Flow separation 

is expected to occur when  increases to 19°10', corresponding to a 1:5.98 rate of flare, unless 

the width ratio B/b < 2 (Smith and Yu 1966). In flow separation zones, turbulent eddies form and 

cause energy dissipation in the flow. An attempt to avoid flow separation in an expansion by 

reducing  may not be practical under many instances, because the length required for the 

expansion will be excessively long and the cost to build such an expansion will be too high. 

In fact, the assumption that perfection can be approached by reducing  is not necessary 

true. This has been illustrated in some examples given by Hinds (1927). A similar situation 

occurs in pipe flow in expanding pipes. Kalinske (1944) found that the loss of energy occurred 

more rapidly in the 30° expansion than in the sudden expansion. Instead of reducing , Hinds 

(1927) emphasised the importance of giving careful attention to the design of detailed 

dimensions and forms of the expansion. The computed water-surface profile through the 

expansion shall be a smooth, continuous curve, approximately tangent to the water surface 

curves in the upstream and downstream sections of the channel, and shall not contain angular 

change in the water surface (Hinds 1927; Morris and Wiggert 1972, p. 185). It is important to 

make visual observations of the water surface profile during an experiment. 

In summary, for the design of expansions the water-surface profile is computed using the 

energy principle. How accurate the computation is relies on more or less guessed energy losses. 

One ought to be cautious about considerable errors that the computational results may contain. 

 

2.3 Streamline Patterns in Channel Expansions 

Some earlier investigators of fluid flow in expansions have dealt with the limiting case of sudden 

expansions (see e.g. Abbott and Kline 1962; Mehta 1979, 1981; Graber 1982; Nashta and Garde 
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1988; Foumeny et al. 1996; Escudier et al. 2002). The results reported in their studies 

emphasised the effects of different expansion ratios on fluid pressure distributions, mean flow 

velocities, and turbulence characteristics. What is particularly important is the asymmetric 

behaviour of the flow field in perfectly symmetric expansions, first reported probably in Abbott 

and Kline (1962). 

Flow separation can take place on either side of the expansion, with the maximum 

velocity line deviating from the centreline of the expansion. These were evidenced in the 

experimental data obtained by Smith and Yu (1966) and by Mehta (1979, 1981). Mehta (1981) 

showed that the mean flow patterns become more asymmetric and unsteady with increasing 

expansion ratios. Graber (1982) attributed the asymmetric flow behaviour to a static instability of 

a flow system. The stability analysis of Graber (1982) is subject the constraint that the Froude 

number is less than 0.2. This is a severe limitation because open-channel flows with the Froude 

number exceeding 0.2 are frequently observed. Based on numerical simulations of flow 

bifurcations, Foumeny et al. (1996) showed the existence of a value of the Reynolds number at 

which the flow downstream of the expansion became asymmetric. 

So far one is not able to predict the onset of asymmetric flow patterns with certainty. 

Asymmetric flow patterns have consequences devastating to many hydraulic engineering 

structures. Smith and Yu (1966) observed in a rapid expansion that the flow from upstream 

followed one sidewall and large turbulent eddies appeared between the flowing jet and the other 

sidewall (Figure 2.2). 
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Figure 2.2 Plan view velocity distribution for a rapid expansion: B/b = 3.0 (Smith and 

Yu 1966). 

 

Nashta and Garde (1988) did obtain head loss curves by fitting experimental data, but the 

data were from less common sudden expansion experiments. The head loss was expressed by the 

Borda-Carnot relationship, involving the velocity head, the depth of flow and the expansion 

ratio. The curves show variations in the energy loss coefficient with cross-sectional area. It is 

interesting to note that the analysis of Nashta and Garde (1988) included the energy loss due to 

friction in the total energy loss. However, are the geometric shape curves applicable to a gradual 

expansion? What is the role of the divergence angle which is not a parameter in sudden- 

expansions? 

A number of investigators have made research efforts to improve the empirical S-curved 

warped wall expansion recommended by Hinds (1927) for connecting a rectangular flume with a 

trapezoidal downstream channel of larger cross section. The essential idea is to optimise the 

geometric shape of the expansion in order to achieve minimal energy losses in the expansions. 

The optimisation process makes use of the fundamental continuity and energy principles. The 

results are some modified boundary curves in the horizontal plane. 



12  

 

Using a rational method based on the concept of specific energy, Vittal and Chiranjeevi 

(1983) attempted to improve the geometric shape of the trapezoidal expansion. They proposed 

three functions to describe the bed width, bed elevation and sidewall slope, respectively. Swamee 

and Bask (1991) applied the optimal-control theory to improving the design of rectangular open-

channel expansions. Swamee and Basak (1992) extended the application of the optimal-control 

theory to further improve the geometric shape of the trapezoidal expansion reported in Vittal and 

Chiranjeevi (1983). This extension achieved a marginal reduction to the energy losses compared 

with the values of Vittal and Chiranjeevi (1993). Swamee and Basak (1993) combined the design 

ideas presented in Swamee and Basak (1991, 1992). A common limitation of all the above-

mentioned investigations is that the energy loss coefficient is assumed.  

The idea of using a triangular sill in a channel expansion to suppress flow separation and 

eddy formation was first reported in Seetharamiah and Ramamurthy (1968). They simplified the 

problem by dropping an unknown amount of energy losses that would take place between the 

inlet and outlet of the expansion. This simplification allowed them to use the specific energy 

diagram to explain mechanics of the flow past the triangular sill. As subcritical flow passes over 

the sill, part of the flow energy head is stored as elevation.  

As an extension to the work of Seetharamiah and Ramamurthy (1968), Ramamurthy et al. 

(1970) conducted experiments of subcritical flows passing gradual expansions. The flume used 

in the study was made of precast concrete slabs. Presumably, the sidewalls as well and the flume 

bottom had significant surface roughness. As a result, the factors that control flow changes in the 

expansions would include not only deceleration but also channel roughness. The fundamental 

momentum principle is still applicable. However, there is a difficulty about accurately 

incorporating the frictional forces associated with channel roughness into the momentum 
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equation. However, Ramamurthy et al. (1970) provided convincing experimental evidence that a 

hump fitted on the bottom was effective at reducing flow separation zones. The major results 

presented in the paper were velocity contours at a cross section at the crest of the hump. It would 

be useful to extend their work in order to obtain detailed measurements, including distributed 

pressures, and to quantify the reduction of energy losses in the flow. 

The earlier investigations of subcritical flow in expansions have improved our 

understanding of the shape of separating streamline, deflection angle, the length of standing 

eddies and asymmetric behaviour. Although the improved understanding is useful to the optimal 

design of channel transitions, these investigations have not directly addressed the issue of flow 

energy losses in channel expansions. 

 

2.4 Erodible Channel Expansions 

So far it has assumed that the channels and expansions of interest are non-erodible. Under some 

circumstances, turbulent eddy motion in the flow separation zones can give rise to flow shear 

stress strong enough to erode the channel sidewalls and the channel bed. The process involves 

sediment transport and morphological change, which is very complex and difficult to predict. 

Mohapatra and Bhalamudi (1994) considered the case where the bed level varied 

temporally in gradual channel expansions with an erodible bed. The authors used analytical and 

numerical models to obtain equilibrium solutions of the bed level variation in the expansions. 

Their work was limited to small expansion angles under steady conditions. The analytical and 

numerical models were based on the continuity and momentum principles, assuming that the 

flow depth and velocity did not vary across the channel width. This assumption would be 
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questionable, since the channel bed was mobile and inevitably varied across the channel (Smith 

and Yu, 1966). 

 

2.5 Channel Contractions 

For the sake of completeness, channel contractions are briefly discussed below. Relatively 

speaking, flow passing through a contraction suffers less from the problem of separation because 

streamlines are converging. However, a contraction may act as a choke for the upstream flow. In 

open channel design, choked flow is undesirable and should be prevented. The topic of 

preventing choked flow condition has been studied by a number of investigators. Liong (1984) 

analyzed the case of a rectangular channel, using the energy principle. The author used graphic 

solutions for one dimensional, steady, uniform flow without choke flow. Liong‟s (1984) analysis 

considers not only variations in channel width, but also variations in both channel width and 

channel-bed elevation. 

Dey (1998) conducted a numerical study of flow through a circular transition, focusing 

on choke-free condition. The flow is subcritical upstream of the transition, whereas it is critical 

downstream of the transition. One-dimensional energy and continuity equations were used in 

Dey‟s (1998) numerical study. The main results are the maximum permissible limits of bed 

elevation rises and allowable ranges of the upstream flow depth. 

 

2.6 Frictional effects 

Bottom friction can have a significant influence on the flow in natural channel expansions. 

Babarrutsi et al. (1989) investigated experimentally the influence on re-circulating flows in a 

shallow open-channel expansion, and compared their experimental results with the field 



15  

 

measurements of island wakes made by Ingram and Chu (1987). The inclusion of bottom friction 

appeared to represent a better reflection of the reality. Specifically, Babarrutsi et al.‟s (1989) 

velocity measurements showed that the bed friction caused both the length of the re-circulating 

zone and re-circulating flow rate to decrease. Babartutsi et al. (1991) repeated the same 

experiments but used dye technique in order to improve wake flow pattern visualisation. All the 

results reported were based on experiments with a sudden expansion. 

 The implication is that an experimental setup to investigate the effect of channel 

expansion on flow separation should be built using materials with insignificant roughness height. 

In this study, smooth-surfaced plexiglass is used to the channel sections and expansions. Energy 

losses due to surface friction are not expected to be significant. 

 

2.7 Field measurements of subcritical flow in channel expansions 

It would be constructive to make comparisons between experimental or analytical results and 

field measurements. A survey of the literature shows a very small number of field investigations 

of subcritical flows in channel expansions. Papanicolaou and Hilldale (2002) made Acoustic 

Doppler Velocimeter measurements of flow velocity at a channel cross section downstream of a 

channel expansion in a small creek. Their focus was on the spatial distributions of turbulent 

characteristics, including mean flow velocity, turbulent intensity and turbulent shear stress. 

The results indicated that secondary flows were presented downstream of the expansion, 

and the flow field was anisotropic throughout the depth, with the transverse and vertical 

velocities changing direction. The channel expansion created an unbalanced or asymmetric 

turbulent shear stress distribution. Unfortunately, it is not possible to use the field observations 
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for flow energy calculations for two reasons. First, the measurements of flow velocity were made 

at a single cross section. Secondly, no measurements of flow depth were available. 

 

2.8 Summary 

In summary, gradual expansions are very common in both natural and engineered open channels. 

As a matter of fact, almost all natural open channels vary in width. Along the path of the channel 

flow, gradual expansions connect a narrow section of channel with a wide section of channel at 

downstream. When passing through an expansion, the flow is not expected to recover its original 

state before entering the expansion. The exact amount of flow energy lost in the expansion is 

unknown. A mechanism can be provided to suppress flow separation from the channel sidewalls 

and hence to minimise the formation of turbulent eddies in separation zones. Earlier investigators 

have made an impressive progress. However, much more research efforts are needed for detailed, 

quantitative results. 
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Chapter Three  Theoretical Background 

 

3.1 Introduction 

Chapter 2 provided a review of previous studies of steady flows in a channel expansion. 

Although earlier research took various approaches such as laboratory experiments, field 

measurements and theoretical analyses, research attention was restricted mostly to qualitative 

descriptions of the flow behaviour. In this chapter, relevant fundamental principles are presented 

as a basis to extend the study of flows in a channel transition in a quantitative manner. This 

begins in Section 3.2 with the description of the energy principle pertinent to open-channel flows 

in a flat-bottom expansion. Section 3.3 discusses the energy principle for flow in an open-

channel with bottom variations. Section 3.4 extends the discussion to include the effect of 

incorporating a hump on the bottom. 

Energy loss is expected to occur in the expansion, which must be included in the energy 

balance equation. In fact, there is a lack of prior knowledge of this energy loss, therefore it is 

difficult to directly apply the energy principle for solutions to the problem of open-channel flows 

in an expansion. This situation is very similar to the problem of hydraulic jumps. The problem of 

flows in an expansion can be tackled by using the momentum principle. This limit is discussed in 

Section 3.5. 

In preparation of applying the momentum principle, Section 3.6 treats all the forces. The 

discussion of the momentum principle is taken up in Section 3.7. The momentum equation is 

normalised in Section 3.8. Once the state of the flow is determined from the momentum 

principle, one may find subsequently the energy loss in the expansion from the energy equation. 

The combination of the momentum and energy principles is done in Section 3.9.  
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3.2 Energy Balance for Flows in a Pure Channel Expansion 

A pure channel expansion is here defined as a section of channel whose width increases 

monotonically in the direction of flow and where the channel bottom is flat. The plan view of 

such an expansion is schematically shown in Figure 3.1. The expansion is between cross sections 

CS 2 and CS 3. It connects a relatively narrow section of channel at the upstream with a wide 

section of channel at the downstream. In this study, all cross sections are considered to be of 

rectangular shape. 

In the channel between cross sections CS 1 and CS 2, the energy equation is given by 
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    (3.1) 

where y1 is the depth of flow upstream of the expansion or at CS 1, v1 is the cross-sectional mean 

flow velocity at CS 1, g is the gravity, z1 is the elevation of the channel bottom at CS 1 above an 

arbitrarily chosen datum, y2 is the depth of flow at the entrance to the expansion or at CS 2, v2 is 

the cross-sectional mean flow velocity at CS 2, z2 is the elevation of the channel bottom at CS 2 

above the datum, and hf is the energy loss incurring between the two cross sections due to 

friction at the channel bed and on the sidewalls. 

The energy loss hf is negligible, in the consideration that the channel bottom and 

sidewalls are smooth surfaces with a very low roughness and the longitudinal distance between 

cross sections CS 1 and CS 2 is short. The elevation terms z1 and z2 in Equation (3.1) can be 

eliminated by setting up the channel bottom at the same elevation between the two cross 

sections.  Thus, Equation (3.1) is reduced to 
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This equation simply states that the flow has the same specific energy at the two cross sections.  
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Plan View 

Figure 3.1  Definition diagram of a channel expansion, showing the length of the expansion 

and the lengths of the upstream and downstream channel-sections. The expansion has a 

divergence angle , with its width changing from b1 at its upstream end (CS 2) to b3 at its 

downstream end (CS 3). The corners are blunt. The flow is from right to left. 

 

 

Figure 3.2 Visible shock waves emerging downstream of a channel expansion. The flow is 

from the top to the bottom, as indicated by the thick arrow. The flow approaching the expansion 

is supercritical with the Froude number greater than one (adopted from Mazumder and Hager, 

1993). 

 

y 

x 
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In Equations (3.1) and (3.2) it has been assumed that the depth of flow is uniform in the 

cross-channel direction. This assumption entails great care on us to avoid the generation and 

propagation of surface waves of significant amplitude in the expansion during experiments. 

Strictly speaking, this may not be possible, in particular when the approaching flow is associated 

with high Froude number. The Froude number is defined as the ratio of flow velocity to the 

speed at which small-amplitude surface waves propagate. When evaluated at the upstream cross 

section or CS 1, the Froude number is given by 

1

1
1

gy
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Fr         (3.3) 

where v1 is the flow velocity at CS 1, g is the gravity and y1 is the depth of flow at CS 1.  

The situation of being disturbed by surface waves is worse for supercritical flow with the 

Froude number Fr > 1. Shock waves are inevitably generated in the expansion and perturb the 

flow over a distance many times the length of the expansion, as shown in Figure 3.2. 

The energy balance between cross sections CS 2 and CS 3 (Figure 3.1) is expressed as 
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where the subscript 3 is used for cross section CS 3. The last term hL represents the energy loss 

in the expansion. This term consists of the energy loss caused by friction, the same as hf in 

Equation (3.1), and the energy loss, he, due to flow separation and eddy motion (Henderson, 

1966). The latter is greater by far than the former, i.e. fe hh  . Thus, hL in Equation (3.4) may 

be approximated as  

eL hh 
       (3.5) 
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 The state of knowledge concerning the physical process that governs flow separation and 

eddy motion is inadequate for accurate determination of the term he. Essentially, he is an 

unknown energy loss. Thus, it is not practical to directly apply the energy principle to the 

problem of open-channel flows in an expansion. In fact, the purpose of the energy analysis is to 

determine the energy loss he. This is done by incorporating Equations (3.2) and (3.5) into (3.4), 

and at the same time by using the equation of continuity. The resultant equation is given by 
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Notice that the equation of continuity is of the form 111 / yqu   and 
333 / yqu  , where qi (i = 1 

or 3) is the per-unit-width discharge. This discharge is larger at cross section CS 1 than at cross 

section CS 3. 

 Equation (3.6) will be used to directly determine the energy loss dominantly due to flow 

separation and turbulent eddy motion in the expansion from measurements of the depth of flow 

at cross sections CS 1 and CS 3 (Figure 3.1). Notice that there is no need for measurements from 

the entrance cross section CS 2. In fact, it is more difficult to obtain accurate measurements at 

CS 2, because the flow there is subject to disturbances from surface waves to a larger extent than 

at the upstream cross section CS 1. 

 In the limit of zero energy loss in a horizontal channel, both he = 0 and z = 0. Equation 

(3.6) is reduced to a cubic equation for the depth of flow y3 at the downstream end of the 

expansion or at CS 3 
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Figure 3.3 Specific energy diagram for flow in a channel expansion. The E-y curve to the 

right (the q1 curve), shows all possible depths of flow and corresponding specific energry, with a 

per-unit-width discharge of q1. The q3 curve is similsr to the q1 curve, but the per-unit-width 

discharge is q3 < q1. In the limit of zero energy loss in a horizontal channel, the depth of 

subcritivcal flow increases in the direction of the flow. 
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Elevation                                

Figure 3.4 Water surface profile for flow over a hump fitted on the bottom of a uniform 

channel. From cross section CS 2 to cross section CS 3 the water pressure is decreasing while the 

flow accelerates up-slope. From CS 3 toward downstream the water pressure is increasing while 

the flow decelerates down-slope. On the basis of the energy principle, the depth of flow 

decreases over the hump. 

 

This equation is discussed in many standard hydraulics textbooks (e.g. Chow, 1959; Henderson, 

1966). Graphical solutions for y3 can be obtained using the specific energy diagram (Figure 3.3). 

The procedures are described below. 

Suppose that point A on the upper limb of the E-y curve to the right represents the 

subcritical flow of known depth y1 and specific energy E1, which approaches the expansion. A 

straight vertical line can be drawn through point A. This line intersects the upper limb of the E-y 

curve to the left at point B. The ordinate of point B gives the depth of flow at the downstream 

end of the expansion or at CS 3. The flow velocity at CS 3 can further be determined by using 

z 

x 
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the equation of continuity. It is interesting to note that the depth of subcritical flow in a channel 

expansion increases in the direction of the flow. 

 

3.3 Energy Balance for Flows over a Hump in a Uniform Channel 

Consider the case where the channel divergence angle  shown in Figure 3.1 is zero, and hence 

there is no variation in the per-unit-width discharge in the direction of flow, i.e. q3 = q1, but a 

hump (
13 zzz  ) is present on the channel bottom, as shown in Figure 3.4. With zero energy 

loss, Equation (3.6) becomes 
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The effects of the hump on the flow can be examined using the above equation. Importantly, the 

elevation differencez must not be so large that the approaching flow is „choked‟ (Henderson, 

1966). 

 Suppose that point A on the upper limb of the E-y curve to the right in Figure 3.3 

represents the subcritical flow that approaches the hump. The maximum allowable elevation 

difference is marked by zmax. This is the distance between the straight vertical line drawn 

through point A and the straight vertical line through point C that represents the condition of 

critical flow with the minimum specific energy for the given per-unit-width discharge. 

 For any given value of z smaller than the maximum allowable value zmax, at a 

horizontal distance of z to the left of the straight vertical line through point A, a straight vertical 

line can be drawn. This line intersects, at point D, with the upper limb of the same E-y curve on 

which point A is. The ordinate of point D gives the depth of flow over the hump. As shown in 
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Figure 3.3, the depth of flow decreases over the hump, relative to the depth of the approaching 

flow. 

 

3.4 Energy Balance for Flows in an Expansion with a Hump Fitted on the Bottom 

The previous two sections discussed the effects of expanding width and raising bottom on the 

flow separately. A channel expansion causes the depth of flow to increase in the direction of the 

flow, whereas the presence of a hump on the channel bottom causes the depth of flow to 

decrease. Now the case of combining a channel expansion, shown in Figure 3.1, with a hump 

fitted on the channel bottom, shown in Figure 3.4, will be studied by applying the energy 

principle in a series of sample calculations. It is understood that these sample calculations 

exclude the possibility that energy losses occur in the channel transition. Various parameters are 

given values more or less close the experiment conditions to be presented in later chapters. 

A series of hypothetical values for the depth of flow y1 at the upstream cross section CS 1 

(Figure 3.1) in the range of 0.10 to 0.20 m are used in the sample calculations presented. A 

summary is given in Table 3.1. The per-unit-width discharge is q1 = 0.058 m
2
/s at the upstream 

cross section CS 1, and in the case of expanding channel, q3 = 0.035 m
2
/s at the downstream 

cross section CS 3. The crest of the hump is given a height of z = 0.006 m. The Froude number 

is evaluated at the upstream cross section CS 1 or   2/1

11 / gyvFr  . For comparison purposes, the 

depth of flow at the downstream end of a pure channel expansion is calculated using Equation 

(3.6) and shown as y3e in Table 3.1. The depth of flow over the hump of a uniform channel is 

calculated using Equation (3.8) and shown as y3h in the table. The depth of flow y3 at the 

downstream end of a channel expansion fitted with a hump on the channel bottom is calculated 

using Equation (3.6) with the energy loss he dropped. 
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 The results from the sample calculations are summariesed in Table 3.1. In the first case 

where there is a flat-bottom expansion with a horizontal bottom (no hump), it can be seen that 

the depth of flow increases in the expanding channel, which is what is expected. The increases 

range from 1.01 to 1.12 times the depth of flow at cross section CS 2 (Figure 3.1). In the second 

case where there is a hump in a channel of constant width, the depth of flow decreases to 90% to 

96% of the depth of flow at CS 2. This is also what is expected. 

 In the third case, the channel expansion of the first case is combined with the hump of the 

second case. The expanding width and the rising bottom work against each other. The former 

causes the flow to decelerate and the depth to increase, whereas the latter causes the flow to 

accelerate and the depth to decrease. The effect of the former appears to dominate that of the 

latter at high Froude numbers, whereas the opposite is true at low Froude numbers. We caution 

that these results correspond to the specific conditions that we have imposed on Q, q₁, q₃ and Δz, 

and should not be generalised without further systematic assessment. 

 

Table 3.1 Calculated depth of flow at CS 3 using the energy concept. The 

depth ratio is given as y3* = y3/y1. 

 

 

 

 

y1 10 12 14 16 18 20 22

Fr1 0.59 0.45 0.35 0.29 0.24 0.21 0.18

y3e (cm) 11.2 12.8 14.6 16.5 18.3 20.2 22.3

y3h (cm) 9.0 11.2 13.3 15.4 17.3 19.3 21.4

y3 (cm) 10.5 12.2 14.0 15.8 17.7 19.6 21.7

y3* 1.050 1.017 1.000 0.988 0.983 0.980 0.986

(cm) 
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3.5 Limitations on the Use of the Energy Concept 

Henderson (1966) highlighted major limitations on the use of the energy concept in open-

channel flow. In the particular case of flow in a channel expansion, difficulty arises for two 

reasons. Firstly, an unknown energy loss is assumed as negligible, which cannot be true. 

Secondly, the velocity and depth will be uniform at the entire cross section immediately when 

the flow enters the expanded section. In reality, uniform conditions can only be established until 

a point is reached some distance downstream. 

 The momentum equation is most commonly used in situations where the energy equation 

is not applicable due to an unknown energy loss. The energy loss can be calculated from the 

energy equation after it is fed with the results from the momentum equation. The use of the 

momentum equation needs to include the complete list of all the forces. 

 

3.6 Pressure and Sidewall Forces 

For the block of fluid bounded by cross sections CS 2 and CS 3 (Figure 3.1), the complete list of 

forces includes the pressure force F2 at cross section 2 and the pressure force F3 at cross section 

3, and the force Fw exerted by the contacting channel sidewalls on the flowing water. Assume 

that the pressure forces F2 and F3 are hydrostatic. The two forces are related to the depth of flow 

at the two cross sections as 
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where b2 is the channel width at CS 2, and b3 is the channel width at CS 3 (Figure 3.1). 
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It is further assumed that the sidewalls of the expansion are subject to hydrostatic 

pressure force exerted by the flowing fluid. The reaction force, Fw, is obtained by integrating the 

hydrostatic pressure, p, over the area, A, of one of the sidewalls of the expansion or  pdAFw

. This integral is evaluated as 
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where η is the water surface measured above the channel bottom, y is the depth below the water 

surface, l is the coordinate measured from cross section 2 (Figure 3.1) along the sidewall 

between cross sections 2 (CS 2) and 3 (CS 3), and L2 is the distance along the sidewall between 

the two cross sections. The Integrating over y yields 
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Notice that η(l) varies along the sidewall between the two cross sections. Its dependent variables 

presumably include the divergence angle, , the Froude number, Fr1, and the Reynolds number 

of the flow that approaches the expansion from upstream. 

There is a lack of knowledge about the functional form of η for us to proceed to evaluate 

the integral in Equation (3.12). However, according to the Mean Value Theorem for integrals, 

some ξ exists in the closed interval joining cross sections CS2 and CS3 such that 
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where the integrand, η
2
, is considered continuous on the closed interval. The simplest choice of ξ 

will be the middle point along the length of the expansion sidewall. The experiments reported in 
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this study provide data for the evaluation of Fw using the integral form in Equation (3.12) and the 

algebraic form in Equation (3.13). 

 

3.7 Momentum Equation 

Consider the section of fluid bounded by CS2, CS3 and the channel sidewalls, shown below 

 

Figure 3.5 Free body diagram for momentum analysis. 

 

In the direction of the flow, the momentum equation is given by 
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where  is the density of fluid and Q is the total discharge. The sum of the three forces on the left 

hand side of the equation acts on the block of fluid and results in a change of its momentum 

given on the right hand side. Multiplying Fw by  2/sin   resolves the force into the direction of 

the mean flow. Viscous forces on the channel bottom and sidewalls have been neglected. 

A sudden expansion corresponds to 
180 . In this special case, the momentum equation 

becomes  2332 2 vvQFFF w   , which has been treated in Henderson (1966). 

 It is important to note that Eq. (3.14) assumes the pressure force on the block of water 

exerted by one sidewall of the expansion equal to that exerted by the other sidewall. This implies 

that the flow in the expansion is symmetric. Give b3/b1 > 1.5, asymmetric flow pattern is 

expected. The error introduced due to this approximation will be examined later. 
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 By substitutions of Equations (3.9), (3.10) and (3.13) into Equation (3.14), and use of the 

relationship    232 5.02/tan bbL  , the momentum equation may be rewritten as 
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The flow velocity terms can be replaced with the equation of continuity. The equation of 

continuity is given by  
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Substituting the flow velocities from Equations (3.16a,b) into Equation (3.15) will yield a cubic 

equation with real coefficients for the depth of flow, y3, at the downstream end of the expansion. 

 

3.8 Normalised Momentum Equation 

If y3 is scaled by the depth of the approaching flow, y2, the dimensionless depth of flow 

 233 / yyy 
 is given by 
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In fact, the flow before entering the expansion can be considered as uniform flow, and therefore 

y2 is the same as y1. 
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Let r denote the ratio of b2 to b3. This ratio is less than one for expansions. The expressions for po 

and qo can be rewritten as
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η* is equal to or greater than one. For approaching flow with the Froude number less than 0.70,  

po is negative. 

 Regarding the nature of the roots of the cubic equation (17a), three possible cases can be 

distinguished using the discriminate Qo, defined as 

23

23

















 



qp
Q  or 

     4

2

4
3

2

2

2
121

27

1
FrrFrrrQ       (3.19) 

For subcritical flows with Fr2 ≤ 0.7 through expansions of relative large b3/b2 ratios, the 

determinant is less than zero. Equation (3.17a) has three possible roots, given by 
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where 
 33/2

cos






p

q


 . Equation (3.20a) gives positive values for the depth of flow at 

CS 3 that is subcritical. Although Equation (3.20b) also produces positive solutions for some of 
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the approaching flow (with a depth up to y2 = 20 cm, the solution being negative for y2 = 22 cm), 

the resultant depth of flow at CS 3 is supercritical and therefore the solutions from this equation 

should be rejected. Equation (3.20c) gives negative values for the depth of flow, and thus is of no 

physical meaning. In summary, the solutions from Equation (3.20a) are acceptable and are 

presented in Table 3.2. 

The corresponding flow velocity at the downstream cross section of the expansion or at 

CS 3 can be obtained from 

      Qyfb

Q
v

,,22

3


      (3.21) 

Calculated flow velocity at CS 3 is needed for the evaluation of the velocity head as part of the 

specific energy at the cross section. The difference in specific energy between the upstream cross 

section CS 1 and the upstream cross section C3 will show the energy loss in the channel 

expansion. 

 

3.9 Calculation of Energy Losses 

The use of the energy and momentum concepts in a complementary manner allows the 

determination of the unknown energy loss in the energy equation. For a given flow depth y1 and 

the Froude number Fr1 at the upstream, Equations (3.20a,b,c) provide solutions of the flow depth 

y3 at the downstream end of the expansion or at CS 3 (Figure 3.1). Substituting y3 into Equation 

(3.5) allows the calculation of energy loss he. The upstream flow depth y1 for this calculation is 

supplied from experimental measurements. Some sample calculations are shown in Table 3.3. 

The most important results presented in Table 3.3 are the predicted depth of flow y3 at CS 

3 and the energy loss coefficient kE. This energy loss coefficient is defined as 

 



33  

 

Table 3.2 Calculated depth of flow at CS 3 using the momentum concept. The 

depth ratio is given as y3* = y3/y1. The calculations assume zero energy losses. 
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where Hi is the total energy head equal to the sum of velocity head, elevation head and pressure 

head. The subscript i = 1 and 3 is used for the upstream cross section (CS 1) and for the 

downstream cross section (CS 3), respectively. In a horizontal channel, Equation (3.22a) 

becomes 
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Both y3 and kE appear to be sensitive to the dimensionless parameter
* , given in Equation 

(3.18c). The former is also sensitive to the Froude number Fr1 at the upstream cross section or 

y 1 (cm) 10 12 14 16 18 20 22

Fr 1 0.59 0.45 0.35 0.29 0.24 0.21 0.18

q o 0.242 0.140 0.088 0.059 0.042 0.030 0.023

p o -1.418 -1.243 -1.155 -1.105 -1.075 -1.056 -1.043

cos β o -0.039 -0.019 -0.011 -0.007 -0.004 -0.003 -0.002

y 3* 1.094 1.054 1.034 1.023 1.017 1.013 1.010

q o 0.242 0.140 0.088 0.059 0.042 0.030 0.023

p o -1.422 -1.248 -1.159 -1.109 -1.079 -1.060 -1.047

cos β o -0.040 -0.019 -0.011 -0.007 -0.004 -0.003 -0.002

y 3* 1.100 1.060 1.040 1.030 1.023 1.019 1.016

q o 0.242 0.140 0.088 0.059 0.042 0.030 0.023

p o -1.426 -1.252 -1.163 -1.113 -1.083 -1.064 -1.051

cos β o -0.040 -0.019 -0.011 -0.007 -0.005 -0.003 -0.002

y 3* 1.104 1.064 1.045 1.034 1.027 1.023 1.021

η* = 1.02

η* = 1.03

η* = 1.01
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CS1, whereas the latter is somewhat so. Fr1 ranges from 0.18 to 0.59 in the calculations (Table 

3.3).  

When 
*  is given the lower limiting value or 1, the energy loss coefficient, kE, is almost a 

constant value of 0.47. For 
*  = 1.01, kE ranges from 0.34 to 0.44, corresponding to Fr1 equal to 

0.18 and 59, respectively. The use of higher values for 
* can lead to unacceptable results of 

negative energy losses. In such a case calculations of the energy loss coefficient are omitted, 

indicated by the symbol „‒‟. The erroneous results are due to three possible reasons. The first 

possible reason is an estimation of the pressure force exerted by the sidewalls on the flowing 

water in the channel expansion. The second possible reason is that the two pressure forces on the 

sidewalls are not equal. The third reason is that the pressure on the sidewalls is non-hydrostatic. 

Notice that the results presented in Table 3.3 are based on the assumption of hydrostatic pressure 

distributions.  
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Table 3.3 Calculated depth of flow at CS 3 using the momentum concept and 

calculated energy losses, for a flat-bottom expansion. The depth ratio is given as y3* 

= y3/y1. 

 

y1 (cm) 10.00 12.00 14.00 16.00 18.00 20.00 22.00

E1 (cm) 11.71 13.19 14.87 16.67 18.53 20.43 22.35

Fr1 0.59 0.45 0.35 0.29 0.24 0.21 0.18

y3* 1.092 1.052 1.032 1.0213 1.015 1.0108 1.0081

y3 (cm) 10.92 12.62 14.45 16.34 18.27 20.22 22.18

v3 (cm/s) 32.07 27.74 24.22 21.42 19.16 17.31 15.78

E3 10.93 12.63 14.46 16.35 18.28 20.22 22.19

E1-E3 0.78 0.56 0.41 0.32 0.25 0.20 0.17

kE 0.457 0.468 0.474 0.475 0.475 0.475 0.474

y3* 1.09 1.05 1.03 1.02 1.02 1.01 1.01

y3 (cm) 10.94 12.64 14.48 16.37 18.30 20.26 22.22

v3 (cm/s) 32.00 27.68 24.18 21.37 19.12 17.28 15.75

E3 10.95 12.66 14.49 16.39 18.31 20.27 22.23

E1-E3 0.762 0.532 0.385 0.284 0.215 0.162 0.122

kE 0.445 0.447 0.440 0.425 0.407 0.378 0.344

y3* 1.10 1.06 1.04 1.03 1.02 1.02 1.01

y3 (cm) 10.96 12.67 14.51 16.41 18.34 20.30 22.27

v3 (cm/s) 31.94 27.63 24.13 21.33 19.08 17.24 15.72

E3 11.48 13.06 14.80 16.64 18.53 20.45 22.40

E1-E3 0.238 0.132 0.071 0.030 0.002 _ _

kE 0.139 0.111 0.082 0.045 0.003 _ _

y3* 1.10 1.06 1.04 1.03 1.02 1.02 1.01

y3 (cm) 10.98 12.69 14.54 16.44 18.38 20.34 22.31

v3 (cm/s) 31.88 27.57 24.08 21.29 19.04 17.21 15.68

E3 11.50 13.08 14.83 16.67 18.56 20.49 22.44

E1-E3 0.219 0.108 0.043 _ _ _ _

kE 0.127 0.091 0.049 _ _ _ _

η* = 1.02

η* = 1.01

η* = 1.03

η* = 1.00
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Chapter Four Experimental Setup and Experiments 

 

4.1 Introduction 

In this chapter, the experimental facility used in this study is described. Descriptions begin in 

Section 4.2 with a discussion on a re-circulating flume, the main component of the setup. The 

flume has been designed, assembled and installed in the Hydraulics Engineering Laboratory at 

Concordia University. One of the most important sections of the flume is an expansion, with or 

without bottom variations. The geometric features of the expansion are discussed in Section 4.3. 

The remaining sections of this chapter are devoted to measurement devices. A V-notch is used 

for flow measurements and a gate is installed at the downstream end of the channel for depth 

control. These are explained in Section 4.4. Section 4.5 discusses details about pressure taps 

connected to the sidewalls and the bottom of the expansion. In Section 4.6, point gauges used for 

measurements of the water surface are briefly introduced. Lastly in Section 4.7, the experimental 

procedures are explained. 

 

4.2 Re-circulating Flume 

The major component of the experimental facility for flow experiments is a re-circulating flume 

(Figure 4.1a), schematically shown in Figure 4.1b. The flume consists of multiple sections of 

channel as well as an expansion, which were made in the Machine Shop of the Department of 

Building, Civil and Environmental Engineering at Concordia University. These channel sections 

and expansions are installed in the Hydraulics Engineering Laboratory. The experimental setup 

is suitable for performing experiments based on the theoretical considerations discussed in 
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Chapter 3. During an experiment, the direction of the flow is from right to left, as indicated by an 

arrow in the figure. 

(a) 

 

 (b) 

 

Figure 4.1 (a) Experimental setup used to conduct experiments in this study. (b) Schematic 

illustrations of the upstream channel-section, the expansion and the downstream channel-section.  

Measurement devices include point gauges, flow meters and a sharp-crested V-notch weir. 
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From upstream to downstream, the experimental setup consists of a pump, a head tank, 

an upstream channel-section, a channel expansion with or without a hump on the channel 

bottom, a downstream channel-section, a control gate at the downstream end of the flume, a 

measurement tank equipped with a 30° triangular or V-notch sharp-crested weir, and an 

underground sump. Pressure taps (1/16” diameter holes) are installed at the sidewalls in 4 rows 

and on the channel bottom of the expansion (Figure 4.2). The pump provides a steady flow rate. 

The head tank has a width of 4 ft, a length of 4 ft, and a height of 5 ft. A contraction (4:1) 

Immediately downstream of the head tank, a float is kept on the free surface to dampen surface 

waves. The channel sections as well as the expansion are built with smooth-surfaced plexiglasses 

and hence have a very low roughness height. 

 

4.3 Expansion Section of the Channel 

The channel expansion connects the upstream channel-section with the downstream channel-

section, as shown in Figure 3.1. These three components rest on the level top of a supporting 

metal frame, which elevates the channel bottom 150 cm above the laboratory floor (Figures 

4.1a,b). The configuration of the whole channel is shown in Figure 3.1, and the dimensions of 

the various components are listed in Table 4.1. The ratio of L1 to L2 is close to 4, whereas the 

ratio of L3 to L2 is larger than 13. So the transition is considered to be short. Along the 

expansion‟s longitudinal length of 32.33 cm, the flume increases linearly in width by 11.09 cm; 

the corresponding expansion angle is 
46.19 (Figure 3.1). The sidewalls of the flume are 

30.48 cm high. All the experiments allowed a free board of at least 5 cm for safety reasons. 

The expansion is considered as a gradual expansion, with 0.5(b3 – b1)/L2 < 0.25, which is 

the 1:4 taper normally recommended for the design of an expansion (Henderson 1966), 
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optimised to reduce energy head loss due to an expansion. Nevertheless, since b3/b1 = 1.667 (> 

1.5), the expansion used in this study is expected to be more influential to the total energy loss 

than the condition (the Froude number) of the upstream flow, as is the case for an abrupt 

expansion. 

 

Table 4.1 Geometric characteristics of the expansion used in this study. 

Geometric parameter Value 

Upstream channel section width (b1) 171.1 mm 

Downstream channel section width (b3) 289.3 mm 

Upstream channel section length (L1) 1235.4 mm 

Channel expansion length (L2) 323.3 mm 

Downstream channel section length (L3) 4403.5 mm 

 
Rate of sidewall flare [1:(b3‒b1)/2L2] 1:0.183 

 
Width ratio (r = b3/b1) 1.69 

Central angle between sidewalls ( degree) 18°4' 

 

 

Figure 4.2 Channel expansion and 1/16” wall pressure taps through the wall and connected to 

piezometers. This photo shows the expansion with a hump fitted on the channel bottom. 
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In pipe flow experiments, Mehta (1979) reported that flows in two-dimensional sudden 

expansions are asymmetric and unstable, with three-dimensional character when the expansion 

ratio is larger than 1.25. In this study, the ratio is 1.668. 

On the other hand, the channel expansion is not long (323.3 mm in length), relative to its 

width (285.2 mm at the downstream end) and relative to the depth of flow (up to 250 mm in the 

experiments reported in this study). Thus, the expansion is not expected to cause a significant 

frictional loss of energy head, compared to that caused by potential flow separation. 

 Experiments were performed using both the channel expansion with a flat bottom and the 

expansion with a hump on the channel bottom in order to make comparisons of respective 

experimental results. The hump fitted on the channel bottom is shown in Figure 3.4. The design 

of the hump is as follows. Beginning at its upstream end, the channel expansion has an adverse 

bottom-slope of slightly less than S = 2%, which is steep compared to typical slopes in natural 

river channels. The channel bottom is raised linearly, by 0.635 cm at the downstream end of the 

expansion, and then drops linearly, with a favourable slope equal to S, down to the bottom level 

at the upstream end of the expansion. Thus, variations in the channel bottom are symmetric about 

the downstream end of the channel expansion. 

It is important to note that changes to the stage of flow (including flow depth and flow 

velocity) due to the transition may persist over a long distance downstream of the transition, 

although the transition itself is short. 

 

4.4 Discharge and Depth Controls 

Water is pumped up from the underground sump to the head tank at desired flow rates. A honey 

comb is fitted into the outlet of the head tank leading into the upstream channel-section. 
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Immediately downstream of the honey comb, a floating foam is held on the water surface. Such a 

configuration helps dampen surface waves that disturb the flow through the flume; ideally the 

flow is to be maintained as steady. 

For a given total discharge, to control the depth of flow through the flume and hence the 

Froude number of the flow, the downstream control gate is set to fully or partially open (Figure 

4.3). This control provides desired values for the Froude number. 

A return channel downstream of the control valve leads water to the measurement tank. 

This tank has a width of 90.17 cm. The sharp-crested V-notch weir installed at the downstream 

end of the tank is fully contracted (Figure 4.3). The height of the crest is P = 58.00 cm above the 

bottom of the tank, much larger than the recommended minimum height of 9 cm (Kindsvater and 

Carter 1957). Heads for calculating the total discharge through the V-notch weir were measured 

at a distance of 143.00 cm upstream of the weir. This distance is more than four times the 

maximum actual head intended in the experiments. During the experiments, the free flowing 

nappe through the V-notch returned water back to the sump. The underside of the nappe was at 

atmospheric pressure. The expected maximum error for discharge measurements is 3%. The 

depth measurements were made to the nearest 0.1 mm. 

For the experiments, heads in the measurement tank above the crest of the V-notch weir 

were in the range of 6 to 23 cm. The lower limit was maintained in order to avoid potential 

measurement error at such small heads and to avoid the nappe clinging to the weir, which affects 

the accuracy of the head-discharge relationship. The upper limit was maintained to satisfy

4.0/ PH , which is one of the conditions for the V-notch weir to remain fully contracted. For 

fully contracted V-notch weirs, values for the coefficient of discharge and the head correction 

factor are a function of the notch angle only (Bos 1989); the use of these values is of certainty. 
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Figure 4.3 The downstream gate used in the laboratory for depth and Froude number control. 
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Figure 4.4 The 30° V-notch weir used in the laboratory for discharge measurements. 

 

The total discharge is obtained from measurements of heads above the crest of the V-notch, 

using the following head-discharge relationship 

  2/5

2
tan2

15

8
hd kHgCQ 











    (4.1) 

where Q is the total discharge (m
3
/s), Cd is the coefficient of discharge, θ is the notch angle in 

degree, H is the head measured above the weir crest (m), and kh is the head correction factor (m). 

The values of Cd and kh are taken as 0.585 and 0.002 m, respectively. The precision of head 

measurements is 1 mm, which translates into discharge precision of 1.1710
-5

 L/s through 

Equation (4.1). 



44  

 

It is difficult to directly access the v-notch. Therefore, a connected tube is set up so that 

reading of the water level can easily be made. A velocity meter is available for two reasons. 

First, it provides direct measurements of instantaneous flow velocities distributed at cross 

sections upstream and downstream of the channel expansion. Secondly, together with the 

measurements of flow depth from point gauges and cross-sectional areas, the flow velocity 

measurements allow calculations of the total discharge in order to confirm the V-notch 

measurements. 

 

4.5 Pressure Taps 

An array of distributed pressure taps are installed on the sidewalls of the channel expansion 

(Figure 4.2). A series of evenly spaced pressure taps are also installed on the bottom of the 

channel expansion. The positions of the pressure taps are listed in Table 4.2. These positions are 

given on the Cartesian coordinates system that follows the right hand rule. The x-axis is placed 

horizontally along the middle of the flume, and points positively towards downstream (Figure 

3.1); the y-axis is placed through the upstream end of the channel expansion or CS 2, in the 

cross-channel direction; and the z-axis points positively upwards, and z is equal to zero on the 

channel bed at CS 2. 

Simple piezometers are connected to the pressure taps of 2 mm in diameter to provide 

pressure measurements. In the channel expansion with a flat bottom, there are 40 pressure taps 

on one of the sidewalls and 10 on the channel bottom. In the channel expansion with a hump 

fitted on the channel bottom, there are 40 pressure taps on each of the two sidewalls and 10 on 

the channel bottom. 

 



45  

 

Table 4.2 Positions of the pressure taps on the Cartesian coordinates system. The reference 

level or vertical datum is where z is equal to zero. There is a difference of 2 mm in channel-bed 

elevation between CS 2 and CS 3 (Figure 3.4). 

 

 

x(mm) y(mm) z(mm) x(mm) y(mm) z(mm)

88.90 -102.75 152.11 88.90 -102.75 12.41

165.10 -117.54 151.86 165.10 -117.54 12.16

215.90 -127.40 151.69 215.90 -127.40 11.99

266.70 -137.26 151.53 266.70 -137.26 11.83

298.45 -143.42 151.42 298.45 -143.42 11.72

311.15 -144.65 151.38 311.15 -144.65 11.68

342.90 -144.65 151.28 342.90 -144.65 11.58

393.70 -144.65 151.11 393.70 -144.65 11.41

444.50 -144.65 150.94 444.50 -144.65 11.24

520.70 -144.65 150.69 520.70 -144.65 10.99

88.90 -102.75 75.91 88.90 -30.00 -0.29

165.10 -117.54 75.66 165.10 -30.00 -0.54

215.90 -127.40 75.49 215.90 -30.00 -0.71

266.70 -137.26 75.33 266.70 -30.00 -0.88

298.45 -143.42 75.22 298.45 -30.00 -0.98

311.15 -144.65 75.18 311.15 -30.00 -1.02

342.90 -144.65 75.08 342.90 -30.00 -1.13

393.70 -144.65 74.91 393.70 -30.00 -1.29

444.50 -144.65 74.74 444.50 -30.00 -1.46

520.70 -144.65 74.49 520.70 -30.00 -1.71

88.90 -102.75 25.11

165.10 -117.54 24.86

215.90 -127.40 24.69

266.70 -137.26 24.53

298.45 -143.42 24.42

311.15 -144.65 24.38

342.90 -144.65 24.28

393.70 -144.65 24.11

444.50 -144.65 23.94

520.70 -144.65 23.69

pressure tap

C8

C9

C10

B10

D1

D2

D3

D4

D5

D6

D7

D8

D9

D10

Z1

Z2

Z3

Z4

Z5

Z6

Z7

Z8

Z9

Z10

B8

B9

C1

C2

C3

C4

C5

C6

C7

A9

A10

B1

B2

B3

B4

B5

B6

B7

A1

A2

A3

A4

A5

A6

A7

A8

pressure tap



46  

 

The principle by which the piezometers work can be found in standard hydraulics 

textbooks. Water pressure has no variation normal to straight streamlines. Therefore, it is 

possible to measure the pressure of water using a wall pressure “tap”, placed in a region where 

flow streamlines are straight. The pressure tap should be a small hole with the axis locally 

perpendicular to the surface (sidewall or channel-bed). The hole is made to be perpendicular to 

the channel and free of burrs. By connecting the tap to a piezometer it is possible to make 

accurate measurements of pressure in the flowing water. 

 

4.6 Point Gauges 

Along the length of the flume between the head tank at upstream and the control gate at 

downstream, several point gauges (Figure 4.2) are mounted along a pair of parallel tracks over 

the top of the flume (Figures 4.1a,b). These point gauges allow measurements of water surface 

elevation at selected locations. The accuracy of the point gauges is within 0.1 mm. It is important 

to note that the presence of water surface waves makes it difficult to obtain such accuracy. To 

alleviate the spatial fluctuations due to the surface waves (Figure 3.2), measurements are made at 

three to five more or less evenly spaced locations across the width of the channel. The average of 

the multiple point measurements is more representative for the cross section of interest than the 

measurement at individual locations. 

 

4.7 Experimental Procedures 

The experimental procedures for measurements are summarised as follows: 

a. Maintain a steady pumping rate. 

b. Record the initial and final water surface elevations of the V-notch weir. 
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c. Determine the total discharge through the V-notch. 

d. Verify the calculated total discharge using the volumetric method. 

e. Measure the water surface elevation of the approaching flow at three or more locations 

across the width of the channel. 

f. Calculate the cross-sectional mean velocity of the approaching flow. 

g. Repeat steps (e) and (f) for the downstream flow at the downstream end of the expansion. 

h. Record the expansion bottom pressures distributed along the length of the expansion. 

i. Record the sidewall pressures distributed along the length of the expansion and at 

different heights above the expansion bottom. 
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Chapter Five Results for Experiments with a Flat-bottom 

Expansion 
 

5.1 Introduction 

This chapter begins in Section 5.2 with the verification of discharges for flow experiments with a 

flat-bottom expansion. The conditions of the flows that approach the expansion are described in 

Section 5.3. The Froude number is evaluated so as to confirm the condition of subcritical flow. 

Also, the Reynolds number is evaluated to justify the omission of viscous forces in the 

momentum concept discussed in Chapter 3. Section 5.4 presents the experimental and theoretical 

results about the coefficient of energy loss in the expansion. 

The remaining sections deal with variations in water pressure. An adverse pressure 

gradient or increasing pressure in the direction of the flow often triggers flow separation. 

Experimental evidences of an adverse pressure gradient in the expansion are shown in Section 

5.5 over the entire water column and in Section 5.6 along the water surface. The vertical 

variations in pressure are examined in Section 5.7. What is particularly interesting is to reveal if 

the hydrostatic distribution is adequate to describe the pressure variations in the vertical. Finally, 

the pressure forces on the expansion sidewall for the experiments are evaluated in Section 5.8. 

 

5.2 Discharge Verification 

Discharges or flow rates are regulated by a control valve of the pumping system (Figure 4.1b). 

During an experiment the pumping of water from the sump is kept at a steady rate. The head 

over the crest of the sharp-crested V-notch weir (Figure 4.4) is measured, and from this 

measured head the discharge in the re-circulating flume (Figures 4.1a,b) is calculated using 

Equation (4.1), denoted by Qvn. A set of seven different V-notch discharges are shown in Figure 
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5.1. Although sharp-crested weirs are known to produce discharge measurements close to their 

„true values‟ with only small errors of as low as 3%, it is desirous to understand the certainty of 

the V-notch measurements. 

For this purpose, the simple volumetric method is used to obtain an independent set of 

discharge measurements. This method involves collecting 10 litres or so of water from the nappe 

passing over the weir crest, and registering the elapsed time for the collection. The actual volume 

of the collected water is measured using a graduated cylinder. The ratio of the actual volume to 

the elapsed time gives the discharge. These procedures are repeated three times for a steady 

pumping rate. The average, denoted by Qvm, of the three discharges is used for comparison with 

the corresponding V-notch measurement, as shown in Figure 5.1. 

 

Figure 5.1 Correlation of discharge measurements using the V-notch weir and the volumetric 

method. 
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In order to show how close the discharge measurements based on the two different 

methods are to each other, the correlation coefficient of the two data sets is calculated. The 

equation for the correlation coefficient is  

 
  

    







22
,

vmvmvnvn

vmvmvnvn

vmvn

QQQQ

QQQQ
QQCorrel    (5.1) 

where vmQ  is the average of discharges by the volumetric method,
 
and vnQ  is the average of the 

V-notch discharges. The correlation coefficient of the two data sets shown in Figure 5.1 is 0.994. 

Thus, both the V-notch weir and the volumetric method have produced statistically the same 

discharge measurements. In fact, the differences between the corresponding discharge 

measurements from the two methods have a mean value of 0.21 L/s and a standard deviation of 

0.29 L/s. These results of the mean value and standard deviation are very small, compared to  

vnQ  of 6.77 L/s. Subsequently, the V-notch measurements, hereafter denoted by Q, are used. 

 

5.3 Experimental Conditions of the Upstream Flow 

A total of six experiments (Table 5.1) were conducted with a flat-bottom expansion where the 

channel bed was flat. The discharge ranges from Q = 8.59 to 11.11 L/s, giving an average of 

10.25 L/s. The discharges are obtained from Equation (4.1), where the head H is the difference 

between observed final water-surface elevation yf and the initial water-surface elevation yi (above 

an arbitrary datum) in the measurement tank (Figure 4.1b and Figure 4.4). The initial water-

surface elevation is measured when the water surface just reaches the crest of the V-notch. 

The upstream flow depth y1 is taken as the difference between the initial point-gauge reading 

(bottom of the channel) and final point-gauge reading (water surface), shown in Figure 4.2. The 

precision of the point gauge is 0.1 mm. The upstream flow depth ranges from 11.12 to 18.57 
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(cm), with an average of 15.20 (cm). The upstream flow depth has been controlled with the 

downstream gate (Figure 4.3). 

 

Table 5.1 A summary of experiments with a flat bottom expansion. The water 

temperature was T = 22.5
◦
C. The independent variable is the dimensionless 

Froude number. 

Experiment Q (L/s) y1 (cm) v1 (cm/s) Fr1 Re 

E11 10.23 18.57 32.21 0.24 18856 

E12 10.23 17.45 34.27 0.26 19666 

E13 10.23 15.44 38.73 0.31 21313 

E14 11.11 14.87 43.69 0.36 23716 

E15 11.11 13.77 47.17 0.41 24881 

E16 8.59 11.12 45.21 0.43 21850 

 

The flows in all the experiments listed in Table 5.1 are subcritical, as the Froude number, 

given in Equation (3.4), has values of less than unity. An attempt has been made to conduct 

experiments with higher values for the Froude number. However, the presence of large-

amplitude (larger than 2 mm by visual examination) surface waves have created a significant 

uncertainty in measurements of the depth of flow in the expansion, and therefore, the 

experimental results are not reported in this study. 

For the purpose of evaluating the Froude number as well as the velocity head, the flow 

velocity at the upstream is calculated as the ratio of the V-notch discharge to the cross sectional 

area. The cross sectional area is simply the upstream channel width multiplied by the flow depth 

from point gauges. As discussed in Chapter 4, in order to smooth out disturbing surface waves, 

which have appeared in some of the experiments with relatively high Froude number, point 
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gauge measurements have been obtained at up to six points across the channel. The average of 

these measurements gives the flow velocity shown in Table 5.1. It is understood that the flow 

velocity varies from point to point at any given channel cross section. 

The experiments listed in Table 5.1 have high values for the Reynolds number, defined as 

    

 hRv1Re         (5.2) 

where Rh is the hydraulic radius, and  is the dynamic viscosity of water, being dependent of 

water temperature. Since the Reynolds number is as high as around 2.010
4
, the flows are fully 

turbulent in all the experiments. This common feature of the flows justifies the omission of 

viscous forces in the momentum equation (3.14). 

 

5.4 Coefficient of Energy Loss 

The energy losses have been calculated for both the experiments and predicted flow conditions. 

The predictions assume reason Froude number values with different  (Table 3.3). The energy 

loss in the expansion is found by subtracting the specific energy at the downstream end of the 

expansion or at CS 3 from the specific energy at the upstream cross section or at CS 1 (Figure 

3.1). Then, the energy loss coefficient kE is determined by dividing the energy loss by the 

velocity head at CS 1. The mathematical expression is given in Equation (3.22b). Notice that the 

expansion which is used is a gradual expansion. 

The kE values for the six experiments, listed in Table 5.1, are plotted in Figure 5.2. The 

two dashed curves are based on predicted depth of flow at Figure 5.2, for two different values of 

 . The experimental results show kE values in the range of 0.4 to 0.6. The theory gives kE 

values in good agreement with the experimental results for the Froude number larger than 0.3. At 
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lower Froude number values, the theoretical kE values are also close to the experimental data. It 

would be interesting to compare the results from this study to the energy loss coefficient given in 

Henderson (1996, p.236) for a sudden expansion. 

 

Figure 5.2 Comparisons of the coefficient of energy head loss between experiments and 

theoretical predictions. In the experiments the Froude number ranges from 0.24 to 0.43, and the 

coefficient is between 0.46 and 0.62. The dependence of kE on the Froude number appears to be 

weak. 

 

In the limiting case of  = 180°, the channel transition becomes a sudden expansion 

(Figure 3.1). Henderson (1966, p. 236) presented an equation for determining the energy loss, 

given by   
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with the coefficient of energy loss given by 
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The first term on the right hand side of the above expression represents the contribution from the 

changing width of the expansion to the total energy head loss. For the specification of expansion 

given in Table 4.1, the first term is equal to 0.167. The second term involves both the effect of 

the changing width and the Froude number of the flow. According to Henderson (1966), the 

second term does not contribute significantly to the total energy head loss unless Fr1 > 0.5 or 

b1/b3 > 0.66; since both conditions are not satisfied for the experiments conducted in this study, 

the second term is not significant. 

The kE value determined from Equation (5.4) is for a sudden expansion and therefore 

should be higher than the kE value given by Equation (3.22b) for the gradual expansion with the 

same width ratio, but it is not. As shown in Figure 5.2, the kE values determined from Equation 

(5.4) using b1 and b3 values from Table 3.1 and the Froude number from Table 5.1 are plotted 

below the experimental results and predictions of this study using the momentum concept 

combined with the energy concept, as discussed in Chapter 3. A possible explanation is that the 

restriction that 1Fr  is small enough for 
4

1Fr  and higher powers to be neglected, needed to derive 

Equations (5.3) and (5.4), is not valid in this study. 

 

5.5 Adverse Pressure Gradient 
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The phenomenon of flow separation from a solid boundary has been discussed extensively in 

many standard textbooks (e.g. White, 2006). The formation of turbulent eddies in the separation 

zone can cause significant energy dissipation in the flow. Detailed discussion on the 

phenomenon and associated energy dissipation is beyond the scope of this study. This section 

limits the discussion to adverse pressure gradient, known as one of the factors that cause flow 

separation. The pressure taps whose positions are listed in Table 4.2 produce measurements for 

determining the gradient of water pressure in the direction of flow. 

 In Figure 5.3, the expansion‟s upstream end is located at x = 0, and its downstream end is 

marked by the dotted vertical line at x = 304.8 mm. The dotted horizontal line drawn through the 

symbol o is the channel bottom, and the solid line above the sidewall pressure taps is the water 

surface for experiment E11 (one of the experiments listed in Table 5.1), meaning that the 

pressure taps are submerged. The pressure taps from right to left on the top row are denoted by 

A1, A2, ..., A10. The pressure taps from right to left on the second row from the top are denoted 

by B1, B2, ..., B10. The pressure taps from right to left on the bottom row are denoted by Z1, Z2, 

..., Z10. For complete details, refer to Table 4.2. Examples of water pressure varying in the 

horizontal direction are shown in Figures 5.4a-c. 

Along horizontal lines through each row of pressure taps (Figure 5.3), the elevation is the 

same. In Figures 5.4a-c, only the five pressure taps in the expansion are shown. As expected, the 

pressure taps (Z1 throughout Z5) at the channel bottom record the highest water pressure, 

followed by pressure taps D1 to D5, C1 to C5, B1 to B5, and A1 to A5. The longitudinal 

variations in water pressure for each row of pressure taps show almost the same pattern. The 

pressure increases with increasing distance from the entrance of the expansion. In experiment 

E14, the top row of pressure taps is submerged just below the free water surface. 
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Figure 5.3  Positions of pressure taps drilled through the sidewall (marked by the symbol +) 

of the expansion and at the channel bottom (marked by the symbol ○). The flow is from right to 

left. 

(a) 
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(b) 

 

 (c) 

 

Figure 5.4 Longitudinal variations in pressure head shown for selected experiments. The 

flow is from right to left. The conditions of the experiments are listed in Table 5.1. The upstream 

and downstream ends of the expansion are located at x = 0 and 304.8 mm, respectively. A sudden 

increase in pressure head is possibly due to eddy motion.   
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Table 5.2 The strongest adverse pressure gradient,
max

1









dx

dp


, for different rows 

of pressure taps for the experiments with a flat-bottom expansion. 

Experiment 
Maximum pressure gradient  

  

  

  

  

A1–A5 B1–B5 C1–C5 D1–D5 Z1–Z5 

E11 0.044 0.030 0.017 0.051 0.013 

E12 0.063 0.046 0.034 0.069 0.046 

E13 0.051 0.038 0.034 0.063 0.054 

E14 0.082 0.012 0.018 0.038 0.046 

E15 ‒ 0.022 0.030 0.082 0.038 

E16 ‒ 0.032 0.038 0.022 0.050 

 

In the longitudinal direction the dimensionless pressure gradient is defined as
dx

dp



1
, whose value 

is expected to change from point to point. The maximum values for different rows of pressure 

taps within the flat-bottom expansion for the six experiments are shown in Table 5.2. In 

experiments E15 and E16 the water surface is below the top row of pressure taps (denoted by A1 

to A5), and therefore no evaluations are done (shown by the symbol ‒). The table shows that in 

all the experiments except E14 and E16, the bottom row of the sidewall, which is denoted by 

D1–D5, has the largest pressure gradient for the same experiment. In experiments E14 and E16 

the top row of pressure taps (A1–A5) and the pressure tap on the channel bottom (Z1–Z5) have 

the largest value among all the rows, respectively. 

By comparing the same row of pressure taps in all the experiments, it is found that 

experiment E14 has produced the largest pressure gradient that occurred in the top row of 

pressure taps (A1–A5). For the second row (from the top) of pressure taps (B1–B5), experiment 

E12 has given the largest pressure gradient of all the experiments. Experiment E16 has yielded 
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the largest value for the largest pressure gradient for the third row of pressure taps (C1–C5). The 

largest value for the maximum pressure gradient for the fourth row of pressure taps (D1–D5) has 

been obtained in experiment E15. Finally, for the bottom pressure taps (Z1–Z5), the largest value 

for the maximum pressure gradient has been seen in experiment E16. 

For all the experiments, of all the sidewall pressure taps, the global maximum pressure 

gradient has occurred in the top row of pressure taps in experiment E14. The same global 

maximum has been observed in the bottom row of the sidewall pressure taps (D1–D5) of the 

experiment E16. The global maximum value is 0.082. The above-mentioned results are 

summarised in Table 5.2. Overall, the adverse pressure gradient has been shown to be quite 

significant, and certainly has decelerated the flow. 

 

5.6 Water surface profiles 

Water surface profiles in the expansion are shown for two of the experiments listed in Table 5.1. 

In Figures 5.5a,b the dotted horizontal line is the channel bottom and the solid curve above all 

the pressure taps is the water surface profile. Notice that the flow becomes progressively 

shallower in a sequential order of experiments E11, E12, ..., E16. In other words, among these 

experiments, experiment E11 had the deepest flow, whereas experiment E16 had the shallowest. 

In fact, in experiments E15 and E16 the top row of pressure taps was unsubmerged, and in 

experiment E14 the water surface just matched the elevation of the top row of pressure taps. 

The average slope of the water surface is calculated by dividing the difference in water 

surface elevation between the upstream and downstream ends of the expansion to the expansion 

length that is 304.8 mm. The average slopes of the water surface for experiments E11–E16 with 

the flat-bottom expansion is 0.0079, 0.0083, 0.0093, 0.0129, 0.0082, and 0.0140, respectively. 
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(a) 

 
(b) 

 

Figure 5.5 Water surface profiles shown as the solid curves above 

the pressure taps. The sidewall pressure taps are marked by the symbol 

+, and the bottom pressure taps are indicated by the symbol o. 

These values show an interesting trend that the average slope increases from experiments E11 to 

E16, with the exception of experiment E15 (From the experimental data, it is not clear what the 
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reason is). Thus, E16 has the maximum water surface slope and E11 has the minimum slope. It is 

possible that the increase in the slope of water surface is related to the increasing value for the 

Froude number from experiment E11 to E16 (Table 5.1). 

Although the individual experiments have produced different water-surface slopes, all of 

them are positive values. This means that the water surface consistently titles up through the 

expansion from its upstream end. The positive water-surface slopes of the experiments are about 

1%, which is large relative to the magnitude of typical negative slopes of natural river channels. 

It can be concluded that the positive water-surface slope in the expansion has a substantial 

impact on decelerating the flow. Positive water-surface slopes and adverse pressure gradients 

would have the effects of triggering flow separation from the expansion sidewall and hence 

dissipating flow energy. 

 

5.7 Vertical distribution of water pressure 

Knowledge of pressure distribution in the vertical is needed for the determination of pressure 

forces in the momentum equation. The flows in the experiments have been shown to be turbulent 

as the Reynolds number has values as high as 20000. As a result, the pressure distribution in the 

vertical would be at least locally non-hydrostatic, particularly near the sidewalls of the 

expansion. Here, the basic idea is to show to what extent the actual pressure can be approximated 

by the hydrostatic pressure distribution, which will simplify the calculation of pressure forces. 

The equation for the hydrostatic pressure distribution is  

                                                               
hph                                                                         (5.5) 

where  is the specific weight, and h is the vertical distance between the water surface and the 

point of interest. 



62  

 

In Figures 5.6a-c, water pressures measured at the depths of pressure taps below the 

water surface are plotted for experiments E11, E13 and E15, respectively. For each of the three 

experiments, only the pressure taps A1– Z1, A2–Z 2 and A3–Z3 are included in the plots, as A4–

Z4 and A5–Z5 show similar features. As shown in Figure 5.6a, the pressures for experiment E11 

exhibits a linear relationship with depth over the entire water column. This is to say that the 

pressure distribution in the vertical is almost hydrostatic. The hydrostatic pressure distribution is 

also true for experiments E13 and E15, over a large portion of the water column, except near the 

channel bottom. Near the bottom the measured pressure deviated from hydrostatic pressure, 

being lower in Figure 5.6b (for E13), given by Equation (5.5), whereas higher in Figure 5.6c (for 

E15). 

Let p be the deviation of the measured pressure, p, from the hydrostatic pressure, ph, 

calculated from Equation (5.5). The deviation is given by 

                                                               hppp 
      (5.6) 

For all the experiments (Table 5.1) the deviations are almost zero over a large portion of the 

water column. The average of the largest deviation p for each of the six experiments has a 

lower and an upper limit of 40 N/m
2
. The pressure deviations relative to the corresponding 

hydrostatic pressures are all less than 10%, as shown in Figures 5.7a-c Thus, the hydrostatic 

pressure distribution can be considered as a good approximation to the actual pressure 

distribution in the vertical for the pure channel expansion. 
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(a) 

 
 (b) 

 
(c) 

 

Figure 5.6 Measured pressures varying with depth below the water surface. The top, middle 

and bottom panels are for experiments E11, E13 and E15, respectively. For each of the 

experiments, P1, P2 and P3 correspond to pressure taps A1–Z1, A2–Z2, and A3–Z3, 

respectively.  
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 (a) 

 
(b) 

 
(c) 

 

Figure 5.7 Deviations of the measured pressures from the hydrostat pressure values. 

Other descriptions are identical to Figure 5.6. 
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5.8 Pressure force on the sidewalls 

The force that each of the two sidewalls of the expansion exerts on the flowing water can be 

obtained by integrating the pressure over the sidewall‟s area, R, i.e. 

                                                               
R

w pdAF       (5.7) 

where dA is the area element of the integration region. This integral needs to be approximated by 

a finite summation over subdivided vertical strips. An example of this summation approximation 

is shown in Figure 5.8 for experiment E11. The strips are divided by straight vertical lines 

through the middle of adjacent pressure taps. 

 

 

Figure 5.8 Subdivided areas for the calculation of the pressure force on the 

sidewall of the expansion. The sidewall force for experiment E11 is Fw = 52.6 N. 

 

The forces exerted by the sidewall on the flowing water have been calculated for all the 

experiments. It has been assumed that the forces exerted by the two sidewalls are equal in the 

application of the momentum concept. For experiments E11 throughout E16 the forces are 52.63, 
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51.71, 40.54, 34.69, 29.58 and 19.80 N, respectively. What is more interesting is to further find 

η(ξ)
2
 in the mean value theorem for definite integrals [see Equations (3.11) and (3.12)]. Notice 

that η(ξ)
2
 represents the average value that the depth of flow squared η

2
(x) takes at one or more 

points x =  ξ  in the x interval [0, 323.3] mm of the expansion (see Table 4.1).  

                                                      

 
2

2/cos2
)( L

Fw




       (5.8) 

  may also be referred to as the water surface measured above the channel bottom. 

The dimensionless form 
*  can be calculated from dividing η by the depth of flow at 

CS2 (see Equation (3.16c)], ranging from 1.00 to 1.06 for experiments E11 to E16. Once 
*  is 

known, calculations for the depth of flow at CS3 or y3 and hence the coefficient of energy losses 

for the expansion can be done. When 
*  is as large as 1.06, kE has negative values, which is 

unphysical. One possible explanation for the unphysical results is that some physical processes 

have caused energy losses but have not been allowed for in the theory presented in Chapter 3. 

  

  

 

 

  



67  

 

Chapter Six Results for Experiments with a Hump 

 

6.1 Introduction 

The preceding chapter has discussed the results for the experiments with a flat-bottom expansion. 

In this chapter, an extra hump is incorporated on the bottom of the expansion. The conditions of 

new experiments with the hump are described in Section 6.2. Section 6.3 provides a comparison 

of the energy loss coefficient between experiments of subcritical flow in the expansion with and 

without the hump. An adverse pressure gradient is responsible for flow separation and turbulent 

eddy motion. Section 6.4 discusses the role that the hump plays in pressure distributions in the 

direction of flow. Given the possibility that the flow pattern is asymmetric relative to the 

expansion geometry, the distributed pressures on the two sidewalls of the expansion are 

examined in Section 6.5. The purpose is to show the similarity of water pressures between the 

two sidewalls. 

 

6.2 Experimental Conditions 

A total of 10 experiments were conducted with a hump incorporated on the bottom of a gradual 

expansion (Figure 3.4). This expansion has the same horizontal dimensions (Table 4.1) as the 

one used for the experiments (Table 5.2) described in Chapter 5. The hump has a crest height of 

5.0  inches. The conditions of the 10 experiments (H25–H34) are described in Table 6.1. The 

range of discharges is from Q = 11.80 to 12.76 L/s. These Q values were obtained from 

measurements using the 30° V-notch weir (Figure 4.4). The discharge was controlled by a valve 

of the pumping system (Figure 4.1). The average discharge is 12.20 L/s. Verifications of the V-

notch discharge measurements have been shown in Figure 5.1.  
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For each of the 10 experiments listed in Table 6.1, the upstream depth of flow y1 was 

measured in two different ways. One way was that the depth was obtained from the difference 

between the initial reading (the channel bottom) and the final reading (the water surface) of a 

point gauge. The precision of the point gauge is 0.1 mm. The other way was that a scale tape was 

used to directly measure the depth. The tape had a lower precision, but measuring the depth in 

two different ways was for verification purposes. The range of the upstream depth of flow is 

from 14.78 to 24.58 cm, and the average is 19.53 cm. The depth was controlled by the 

downstream gate (Figure 4.3). 

The ratio of the hump‟s crest height to the upstream flow depth, 1/ y , has values 

between 0.052 and 0.086. The average value is 0.067. If the ratio is too high, it is possible that 

the approaching flow is choked by the hump. Such a condition must be avoided. 

 

Table 6.1 Conditions of the experiments with a hump fitted on the bottom. The 

water temperature was CT 5.22  . 

 

 

Experiment Q  (L/s) y 1 (cm) δ/y 1 v 1 (cm/s) Fr 1 Re

H26

H25 11.80 23.86 28.92 0.19 187443

H27

H28

H29

H30

H31 11.80 17.27 0.074 39.95 0.31 206312

H33

H34

H32 220003

12.15 16.36 0.078 43.44 0.34 216422

11.92 14.78 0.086 47.16 0.39

223476

12.64 18.33 0.069 40.31 0.30 216709

12.76 17.18 0.074 43.43 0.33

30.98 0.21

212918

12.64 21.24 0.060 34.78 0.24 207255

12.64 19.40 0.065 38.09 0.28

0.053

190966

11.80 24.58 0.052 28.07 0.18 185995

11.80 22.27 0.057
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At the upstream cross section of the experimental channel (Figure 3.4), the maximum 

value for the flow velocity is v1 = 47.16 cm/s. The upstream velocity (v1) has been calculated by 

dividing the discharge by the cross-sectional area at upstream [Equation (3.16a)]. In order to 

smooth out small surface waves, which disturbed the flow in some of the experiments, point- 

gauge measurements were obtained at up to four points across the width of the channel. The 

average velocity at the upstream cross section is 37.51 cm/s. The minimum velocity is 28.07 

cm/s. For all the experiments, the flow was subcritical, with the Froude number (Fr) less than 

one. The actual values for the Froude number varied from 0.18 to 0.39. The Froude number is 

calculated using Equation (3.9). 

For all the experiments, the Reynolds number (Re) was kept at high values (Table 6.1). 

Thus, the flow was fully turbulent, with negligible viscous effects. This is important as the focus 

of the present study is on expansion losses. The average Reynolds number is 206750, and the 

lower and upper limits are 185995 and 220003, respectively. The Reynolds number is given in 

Equation (5.2). 

 

6.3 Measured Energy Loss Coefficients 

The flow energy lost in the expansion with the hump has been determined for experiments H25– 

H34 (Table 6.1), following the procedures described in Section 5.4. The energy loss coefficient 

kE values for the experiments are plotted in Figure 6.1. For comparison purposes, the kE values 

for the experiments without the hump (Table 5.2) are also plotted in the figure. 

Clearly, the kE values for the experiments with the hump are plotted below those for the 

experiments without the hump. Specifically, because of the presence of the hump, the energy 

loss coefficient drops from the 0.46–0.62 range to the 0.06–0.29 range. Notice that the two sets 
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of experiments have similar values for the Froude number, ranging from 0.24 to 0.43 for the 

experiments without the hump, and ranging from 0.18 to 0.39 for the experiments with the hump. 

The Reynolds number has similar values as well. The hump helps suppress flow separation and 

associated turbulent eddy formation that is known to dissipate energy in the flow. 

 Among the 10 experiments listed in Table 6.1, the experiment H32 has produced the 

lowest energy loss coefficient. This particular experiment had the highest Froude number; 

surface waves disturbed the flow and resulted in errors in measurements. For this reason, the 

energy loss coefficient for experiment H32 seems unrealistic. 

 

Figure 6.1 Energy loss coefficients (indicated by the symbol Δ) for the 

experiments with the hump. The energy loss coefficients (indicated by the 

symbol □) for the experiments without the hump are plotted for comparison. 
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6.4 Pressure Gradient in the Direction of Flow 

The water pressure gradient in the direction of flow, 
dx

dp
, is one of the most important factors 

that determine the behaviour of flow, particularly flow separation from the solid sidewalls of a 

channel expansion. In the expansion there are 45 pressure openings, with 20 drilled through each 

of the two sidewalls and 5 through the channel bottom (Figure 4.2). The positions of the pressure 

openings are shown in Figure 6.2. For each of the 10 experiments listed in Table 6.1, the 

pressure gradient between every parity adjacent pressure openings along each row of pressure 

openings is calculated. The pressure gradient is taken as the difference in pressure between the 

two openings, Δp, divided by the distance between them, ΔL. Since the pressure opening rows 

are not horizontal but tilt up by a small angle of ε = 2.54° from the horizontal direction, the 

pressure gradient is resolved into the horizontal direction as 

cos
L

p

dx

dp




      (6.1) 

 

 Figure 6.2 Positions of the pressure openings. The expansion is 

between x = 0 and x = 323.3 mm 
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The pressure gradient given in Equation (6.1) varies from point to point along each row 

of pressure openings, becoming the strongest at a certain point (Table 6.2). Notice that A1–A5 

represents the five pressure openings (from upstream to downstream; hereafter the same sequent 

order) on the top row. B1–B5 corresponds to the five pressure openings on the second row from 

the top. C1–C5 symbolises the five pressure openings on the third row from the top. D1–D5 

denotes the five pressure openings on the fourth row from the top. Z1–Z5 represents the five 

pressure openings on the channel bottom. 

The negative values for the pressure gradient shown in Table 6.2 mean that the pressure 

drops in the direction of the flow. The adverse pressure gradients shown in Table 5.2 for the 

experiments with a flat bottom have been converted into favourable pressure gradients by the 

hump for all the experiments listed in Table 6.1, except for experiment H32. This experimental 

evidence suggests that flow separation has been suppressed if not eliminated completely. 

 

 Table 6.2 The strongest pressure gradient along each row of the 

pressure openings for experiments H25 to H34, listed in Table 6.1. 

 

 

A1-A5 B1-B5 C1-C5 D1-D5 Z1-Z5

H25 -0.037 -0.047 -0.047 -0.043 -0.089

H26 -0.037 -0.043 -0.047 -0.051 -0.05

H27 -0.052 -0.036 -0.047 -0.032 -0.085

H28 -0.046 -0.036 -0.051 -0.032 -0.074

H29 -0.033 -0.047 -0.051 -0.032 -0.082

H30 -0.036 -0.037 -0.059 -0.043 -0.082

H31 -0.043 -0.037 -0.059 -0.043 -0.0698

H32 ⁪ -0.032 -0.051 -0.047 -0.074

H33 -0.051 -0.037 -0.055 -0.055 -0.074

H34 -0.036 -0.034 -0.043 -0.047 -0.074

Experiment 
Minimum Pressure gradient
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6.5 Distribution of Pressure Forces on the Sidewalls 

Application of the momentum principle entails the evaluation of all the forces, including 

the pressure forces exerted by the two sidewalls of the expansion on the flowing water. The 

pressure openings are symmetric between the two sidewalls. It would be interesting to exam to 

what extent the pressure distributions on the two sidewalls are symmetric. For this purpose, the 

pressures measured at the corresponding openings on the two sidewalls are shown in Figure 6.3. 

The data are plotted virtually through the straight diagonal line, meaning that the pressure 

distributions are indeed symmetric. In other words, if two points, one on each of the two 

sidewalls, are at the same elevation about the channel bottom and the same distance from the 

inlet of the expansion, the pressures at the two points are equal. Due to disturbances from 

surface, there are a very small number of exceptions. 

To further confirm this symmetric feature of the pressure distributions, a correlation 

analysis is carried out. Let pL and pR denote the pressures measured at the corresponding pressure 

openings on the sidewall to the left and to the right (facing downstream), respectively. The 

correlation between pL and pR may be expressed as 

 
  

    







22
,

RRLL

RRLL

RL

pppp

pppp
ppCorrel    (6.2) 

When all the individual pressure openings for all the experiments listed in Table 6.1 are 

included, there are 191 pressure data records. They are perfectly correlated, with a correlation 

coefficient of as high as 0.999 [Equation (6.2)]. Thus, for the purpose of determining the 

pressure forces, it is sufficient to obtain pressures on one sidewall. 

 The total forces acting on the fluid element in the expansion have been evaluated for all 

the experiments listed in Table 6.1. The dimensionless parameter * [Equations (3.13) and 
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(3.18c)] has values in the range of 0.96 to 0.99 for all the experiments, except experiment H32 

(Table 6.1) for which the parameter is 1.13. This parameter value is unrealistic. The forces are 

used to determine the theoretical values for the depth of flow y3 at the outlet of the expansion for 

all the experiments. The computational procedures are similar to those followed in Chapter 5. In 

comparison with the measured y3 values for the experiments (Table 6.1), the theoretical values 

contain errors of 6% on average. 

 

 
Figure 6.3 Comparison between water pressures measured at corresponding 

pressures openings through the sidewall to the left and the sidewall to the right 

(facing downstream). The pressure is expressed in height (cm) of water column. 
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Chapter Seven  Discussion and Conclusion 

 

7.1 Discussion 

Sudden expansions are perhaps easy to build but are known to give a poor hydraulic 

performance. Accordingly, the energy loss coefficient kE for   a sudden expansion will have 

higher values than a gradual expansion of the same dimension. This expected result has not been 

predicted by the formula for kE of Henderson (1966). The formula is intended for a sudden 

expansion; it is expected to produce kE values higher than the experimental kE values for the 

gradual expansion. However, it produces the opposite effect (Figure 5.2). This means that the 

formula of Henderson (1966) has underestimated the flow energy lost in a sudden expansion; 

possibly, the assumption that Fr1 is small enough for Fr1
4
 and higher powers to be neglected is 

invalid. 

 It is logical that the hydraulic performance of expansions can be improved by proper 

modifications to their geometry in the horizontal or in the vertical or in both dimensions. The 

effectiveness of horizontal modifications is inconclusive; inconsistent experimental evidence has 

been reported in the literature (e.g. Hinds 1927; Smith and Yu 1966; Swamee and Basak 1992). 

Vertical modifications represent a good alternative. This study has produced experimental 

evidence that the incorporation of a simple hump onto the channel bottom of an expansion is able 

to make desirable changes to water surface profiles in the expansion. In a flat-bottom expansion, 

water-surface profiles have positive slopes (about 1%) in the direction of flow (Experiments E11 

to E16 in Table 5.1), which tend to trigger flow separation. Such a tendency is suppressed by the 

presence of the hump. 
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There is no doubt that experimental measurements are essential for the design of 

expansions. Nevertheless, it is not always possible to simultaneously ensure all relevant 

hydraulic similarities (Houghtalen et al. 2010). Besides, laboratory experiments are expensive 

and time-consuming to carry out. Thus, theoretical analyses play an important supplementary 

role. In this regard, the present study has made a contribution by formulating the energy 

behaviour of flow in expansions. This formulation would be useful for the optimisation of 

expansion parameters and for the design of laboratory experiments of subcritical flow in 

expansions. 

Several empirical formulae have been suggested for estimates of the energy head loss in 

an expansion. Chow (1959, page 464–468) summarised Formica‟s experimental results of 

subcritical flow through sudden expansions, and estimated the head loss from

 

  gvCh LL 2/
2

  

where CL is a coefficient and v is the change in velocities between the inlet and outlet of the 

expansion. This formula is similar to the head loss due to sudden enlargement in a pipe, given by

  gvhL 2/
2

  (Houghtalen et al. 2010). The above expressions can be derived from the 

momentum considerations (see e.g. Daugherty and Franzini 1977). Another way to express the 

head loss is a coefficient, kE, times the change in velocity head between the inlet and outlet of the 

expansion, i.e.   gvvkh EL 2/
2

3

2

2   (see e.g. Morris and Wiggert 1972. This expression is the 

same as the expression for the energy head in a pipe diffuser, where the diffuser angle 

determines the coefficient kE (Houghtalen et al. 2010). In the special case where turbulent flow 

passes through a horizontal pipe, with its cross-sectional area enlarged suddenly from A2 to A3, 

the energy loss in the expansion is given by the Borda-Carnot relationship of the form

 

  gvAAhL 2//1
2

2

2

321 (see e.g. Douglas et al., 2005, p. 354). Obviously, the energy loss 
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coefficients in the above-mentioned different expressions will have different values, and may 

lead to confusion. 

In this study, the energy loss formulation is according to Equation (3.22b). Here, an 

emphasis is given to the difference in kE between the case of a flat-bottom expansion and the 

case of the expansion with an extra hump. The median values for kE are 0.56 and 0.23 for the 

former and latter cases. The difference of 0.33 may be interpreted as the coefficient of energy 

head saving from using the hump. To demonstrate the significance of this saving, numerical 

sample calculations are provided below. 

Consider the design case of a trapezoidal expansion given in Vittal and Chiranjeevi 

(1983). The total discharge is Q = 357 m
3
/s. The side slope of the trapezoidal section is 1:2 

(Vertical:Horizontal) or m = 2. The bottom width of the section is b = 23 m. The Manning‟s 

coefficient is taken as n = 0.022 (typical value for natural channels, Chow 1959). The 

longitudinal slope of the natural channel bed So = 0.002 (typical value). For these give 

conditions, the normal depth yn can be obtained from the Manning‟s equation (S.I. unit) for 

uniform flow 

2/13/21
SR

nA

Q
h        (7.1) 

where A is the cross-sectional area, given by   nn ymybA  , and Rh is the hydraulic radius, 

given by     




 

22
2/ nnnnh myybymybR . The value for yn is 3.21 m. The flow area is A 

= 94.44 (m
2
). The top width is T = 36.88 (m). The corresponding hydraulic depth is D = 2.56 

(m). The cross-sectional mean velocity is V = 3.78 (m/s). The Froude number is Fr = 0.75. This 
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means the flow is subcritical. The energy head saving, given by 
 

g

AQ
H

2

/
33.0

2

 , will be 

22.13 (m). The corresponding power saved will be 227 (kWatt). 

 

7.2 Concluding Remarks 

In this study laboratory experiments have been conducted to investigate the energy behaviour of 

open-channel flow in expansions. A theoretical formulation of the flow energy has also been 

derived from the momentum and energy principles. The flow in the experiments is subcritical, 

with the Froude number in the range of 0.18 to 0.43, and is turbulent, with the Reynolds number 

ranging from 1.8510
5
 to 2.4810

5
. The measurements produced from the experiments include 

the depth of flow, distributed pressure and discharge, which are of good quality. Analyses of the 

experimental and theoretical results lead to the following conclusion. 

(1) A hump fitted onto the channel bottom of an expansion is effective at enhancing the 

recovery of flow energy head. The mechanics of head recovery is such that the otherwise 

adverse pressure gradient is converted to favourable pressure gradient by the hump. This 

conversion inhibits the occurrence of flow separation and the formation of energy-

dissipating turbulent eddies. From the flow energy perspective, the presence of the hump 

promotes the transfer of kinetic to potential energy, as the flow passes over the hump. 

Part of the flow energy is forced to preserve as elevation head, a source available for the 

downstream. 

(2) From the kinetic point of view, the vertical geometric feature of a hump causes the flow 

to accelerate, and neutralises the decelerating effects of the expanding width in the 

horizontal. This is clear from the changes in cross-sectional area derived from flow depth 

measurements. 
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(3) The usefulness of a hump can be quantified using the head recovery coefficient, defined 

as 1 ‒ kE. With a flat-bottom expansion, the energy head recovery is at the level of 44% 

(the median value) of the approaching flow velocity head. By installing the extra hump, 

the head recovery is increased to the level of 77%. Given the simplicity of such a hump, 

it is considered a great advantage over an expensive optimisation of expansion geometry 

in the horizontal. The performance improvement of the optimisation is not even 

conclusive. 

(4) For the purpose of expansion design, theoretical calculations of flow energy recovery can 

be done by combining the momentum and energy principles, following a simplified 

procedure. First, the pressure forces at the inlet and outlet of the expansion can be 

evaluated using the hydrostatic approximations. Experimental data show that the errors of 

such approximations are typically 5% or lower. The depths required as input are easy to 

measure. Secondly, the pressures at two corresponding positions on the two sidewalls of 

the expansion are perfectly symmetric, with a correlation coefficient of as high as 0.999, 

and therefore it is sufficient to evaluate the pressure force on only one sidewall. Third, to 

evaluate this sidewall pressure force, the depth at the inlet of the expansion can be used, 

together with a scale-up factor (*). Empirical values for this scale-up factor have been 

obtained. 

(5) Theoretical values for the depth of flow at the outlet of the expansion and for the energy 

loss coefficient are in reasonable agreement with the experimental data. One of the 

experimental challenges is the control of disturbances caused by water surface waves to 

the flow in the expansion, which become severe when the Froude number exceeds 0.4. 
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Fortunately, it has been shown that the Froude number does not have a strong influence 

on the flow energy behaviour. 

 

7.3 Suggestion for Future Research 

The present study has assumed that the flow velocities at the inlet to the expansions are uniform. 

Future studies should consider the influence of distributed flow velocities at the inlet, and 

remove the assumption that the energy coefficient is unity. For this purpose distributed flow 

velocities at selective cross sections in expansions need to be measured. Future studies should 

also investigate the effects of expansions of different dimensions and configurations on flow 

behaviour. For this purpose, the dual approach of combining laboratory experiments with 

numerical modelling would be effective. With experimental data available for calibration and 

validation, numerical modelling of flow behaviour in expansions using CFD code is a worthy 

undertaking. 
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