
Goal-oriented Behaviour for Intelligent Game Agents

Ying Ying She

A Thesis

In the Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy (Computer Science) at

Concordia University

Montréal, Québec, Canada

April 2011

c© Ying Ying She, 2011

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Ying Ying She

Entitled: Goal-Oriented Behavior for Intelligent Game Agents

and submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY (Computer Science)

complies with the regulations of this University and meets the accepted standards with respect to
originality and quality.

Signed by the final examining committee:

Chair
Dr. A.M. Hanna

External Examiner
Dr. H. Vangheluwe

External to Program
Prof. L. Hughes

Examiner
Dr. T. Fevens

Examiner
Dr. O. Ormandjieva

Thesis Supervisor
Dr. P. Grogono

Approved by
Chair of Department or Graduate Program Director
Dr. H. Harutyunyan, Graduate Program Director

April 13, 2011
Dr. Robin A. L. Drew, Dean
Faculty of Engineering and Computer Science

Abstract

Goal-oriented Behaviour for Intelligent Game Agents

Ying Ying She, Ph.D.

Concordia University, 2011

This thesis concerns our innovation in game AI techniques, mainly game agents’ modeling,

planning and learning. The research topic involves the development of a game design software —

Gameme. Our work mainly focus on the development of the core AI module.

In this thesis, after discussing the system design of Gameme, we explain our contributions in

two parts: off-line design and real-time processing. In off-line design, we present goal-oriented

behaviour design and related modeling methodology for game agents. The goal-oriented design

provides not only an intuitive behaviour design methodology for non-professional game designers

but also efficient support for real-time behaviour control. In particular, the goal-oriented design

can be used in modeling agents in different games.

The real-time processing component includes planning and learning mechanisms for game

agents. These mechanisms are placed in a layered architecture. Basically, a procedural plan-

ning mechanism allows game agents to have the ability of fast reaction to their environment. Then,

the creative transfer and adaptive learning mechanism trains game agents to learn from their ex-

perience and cooperate in teamwork. Furthermore, the unique emergent learning mechanism can

allow game agents to have the ability to analyze different PCs’ behaviour patterns and to find the

suitable strategy to defeat PCs in real-time.

Most of the experiments in this thesis are performed in fighting scenarios. We connected the

core AI module with a 3D graphics engine in order to have visual testing results. All test cases show

that our goal-oriented behaviour design along with planning and learning mechanisms can provide

fast, autonomous, collaborative and adaptive behaviour instructions for game agent in real-time

game play.

iii

Acknowledgments

I would like to give grateful thanks to my supervisor, Dr.Peter Grogono, for his supports

and guidance throughout my Master and Ph.D study. This research project would not have

been completed without his concise instructions and flexible supervision.

I would also like to express my appreciation to my parents for setting high expectation

and being consistently serious about my education. Finally, I would like to express my

deepest gratitude to my husband and son, thank you for the miracle of love&life and the

bounces of encouragement.

iv

Contents

List of Figures x

List of Tables xii

List of Abbreviations xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Main Scientific Contributions . 2

1.3 Structure of the Thesis . 4

2 Background 6

2.1 Introduction to Game Design . 6

2.1.1 Commercial Game and Serious Game 7

2.1.2 Game AI . 8

2.1.3 Game AI Middlewares . 9

2.1.3.1 AI.Implant . 9

2.1.3.2 Havok Behavior . 10

2.1.3.3 RenderWare AI Middleware 11

2.2 AI Techniques for Behaviour Design . 11

2.2.1 Finite State Machine . 12

2.2.1.1 Varieties of FSM . 13

2.2.2 Fuzzy-State Machines . 15

v

2.2.3 Rule-Based System . 15

2.3 AI Techniques for Planning and Learning . 16

2.3.1 Decision Tree . 16

2.3.2 Behaviour Tree . 17

2.3.3 Genetic Algorithms and Programming 19

2.4 Scripting Behaviour . 19

2.5 Agent Architectures . 21

2.6 Related Agent Planning and Learning Techniques 22

2.6.1 Procedural Reasoning Systems and BDI Agents 22

2.6.2 Transfer Learning . 24

2.6.3 Adaptive Behaviours . 25

2.6.4 Complex Adaptive Systems . 26

2.6.5 Emergence . 27

2.7 Discussion . 28

3 System Design 29

3.1 The Modular Structure of Gameme . 29

3.2 Design Patterns used in Gameme . 31

3.3 The Model of Agent Architecture . 35

3.4 Light-Weight Agent Architecture . 38

3.5 Layered Planning and Learning . 38

4 The Behaviour Design 41

4.1 Offline Knowledge Design . 41

4.2 Knowledge Representation for Game Agents 42

4.3 Behaviour Design . 43

4.4 Procedural Knowledge and Behaviour Design 44

4.5 Key Steps for Defining Behaviour . 44

4.5.1 Identify the Behaviour . 44

vi

4.5.2 How . 44

4.5.3 What . 45

4.5.4 When . 46

4.6 Modularity of the Behaviour Design . 47

5 Goal Oriented Behaviour Design 49

5.1 Goal and Behaviour . 49

5.2 Goal Oriented Design and Procedural Behaviour Design 50

5.3 General features of GOBD . 51

5.4 Atomic Components for GOBD . 52

5.5 Hierarchy of the Goal Oriented Behaviour Design 55

5.6 The Goal Oriented Behaviour Tree . 56

5.6.1 Why GOBTs? . 56

5.6.2 Formalization . 57

5.6.3 Properties . 58

5.6.4 Execution . 62

5.6.5 Editing . 66

5.6.5.1 Add or Delete Nodes . 66

5.6.5.2 Composition and Decomposition 67

5.6.6 Traversal . 70

5.6.7 AI Nature of the GOBT . 73

5.7 Example of generating GOBTs . 75

5.7.1 The Generation of GOBT “Eat” . 75

5.7.2 Extensions of GOBT “Eat” . 75

5.8 Conclusion . 76

6 Game Agent Modeling 81

6.1 The Nature of Game Agents . 81

6.1.1 The Environment of Game Agents 83

vii

6.2 Characters of Game Agents . 84

6.3 Modeling of Game Agents . 85

6.3.1 Beliefs . 85

6.3.2 Desires . 86

6.3.3 Plans . 87

6.3.4 Intentions . 87

6.3.5 Formal Representation of Knowledge Modules 87

6.4 Conclusion . 89

7 The Procedural Planning 91

7.1 Descriptive vs. Procedural . 91

7.2 PRS and PPS . 92

7.3 Features of Procedural Planning System . 92

7.4 The Interpreter of PPS . 93

7.5 The Planning Cycle . 95

7.6 Testing for Procedural Planning . 97

7.6.1 Visual testing result fro Planning . 99

7.7 Conclusion . 100

8 The Transfer and Adaptive Learning 102

8.1 Overview of the Learning Level . 102

8.2 Learning vs. Planning . 103

8.3 The Team Behaviour Control . 104

8.4 The Transfer and Adaptive Learning Mechanism 105

8.4.1 The Reward Function . 106

8.4.2 The Strategies . 107

8.4.3 The Transfer and Adaptive Learning Algorithms 107

8.4.4 Testing of the Adaptive and Transfer Learning 108

8.4.4.1 The Offline Design for Adaptive and Transfer Learning . . . 108

viii

8.4.4.2 The Real-time Testing for Adaptive and Transfer Learning . 109

8.5 Summary . 112

9 Emergent Learning 113

9.1 Determined vs. Adaptive . 113

9.2 Introduction of the Emergent Learning . 114

9.3 Emergent Learning Processes . 116

9.3.1 Behaviour Pattern . 117

9.4 Behaviour Pattern Emergence . 117

9.5 Behaviour Pattern Feedback . 118

9.6 Testing for the Emergence Learning . 119

9.6.1 The Offline Design for Emergent Learning 119

9.6.2 The Real-time Testing for Emergent Learning 120

9.7 Conclusion . 122

10 Conclusions and Future Work 123

10.1 The Gameme Design Perspective . 123

10.2 The Game AI Perspective . 124

10.3 Future Work . 125

Bibliography 127

ix

List of Figures

1 A Example of Finite State Machine . 13

2 A Behaviour Tree . 18

3 The Gameme System . 30

4 The Offline Design . 32

5 The Real-time Control . 33

6 Feature Inheritance in Programming . 35

7 The Model of Agent Architecture in Gameme 36

8 The Layered Planning and Learning for Game Agents(GA1 to GAn) 39

9 The Behaviour “How a cat eats a fish ?” . 45

10 Another Way to Decompose “How a cat eats a fish ?” 46

11 The Basic Logical Relationship between Nodes in GOBTs 58

12 The Structure of a GOBT . 59

13 The GOBT with OR Action Nodes . 61

14 Executing a GOBT . 63

15 Executing the GOBT of Figure 12 . 63

16 Executing orders of the GOBT of Figure 12 64

17 Another GOBT Example . 65

18 The Matching Composition . 69

19 The In-order Composition . 70

20 The Level Visiting . 72

21 The Depth Visiting . 72

x

22 The Generation of the GOBT “Eat” . 77

23 The GOBT “Eat” . 77

24 The GOBT “Eat” #1 . 78

25 The Full Picture of GOBT “Eat” #1 . 79

26 New Goals and States for GOBT “Eat”#1 79

27 The GOBT “Eat” #2 . 80

28 New Goal, States and Rule for GOBT “Eat” #2 80

29 The Model of Game Agent . 88

30 The PPS Planning Cycle . 94

31 Priority Queue: Monster is Invisible . 97

32 Priority Queue: Monster is Visible . 97

33 Procedural Planning Test Case 1-1 . 99

34 Procedural Planning Test Case 1-2 . 100

35 Procedural Planning Test Case 2-1 . 101

36 Procedural Planning Test Case 2-2 . 101

37 The Transfer and Adaptive Learning Process 103

38 A Intention(Priority Queue) of “Monster is Invisible” 109

39 Transfer Learning and No Transfer Learning 110

40 Two Team Adaptive Learning 1-1 . 111

41 Two Team Adaptive Learning 1-2 . 111

42 The Emergent Learning Mechanism . 116

43 The Testing Case Rendering in ORGE3D . 121

44 The NPC’s Power Change Based on Planning or Planning&Emergent Learning121

xi

List of Tables

1 Three Intentions of a Game Agent when Monster is Visible 109

2 PC’s action and power level . 119

3 NPC’s Reaction vs. PC’s Action . 120

xii

List of Abbreviations

Acronym Meaning Section Page

AI Artificial Intelligence 1.1 1

BBAI Behaviour-Based AI 4.3 43

BDI Belief-Desire-Intention 2.6.1 22

BT Behaviour Tree 2.3.2 17

CAS Complex Adaptive System 2.6.4 26

FSM Finite State Machine 2.2.1 12

FuSM Fuzzy-State Machine 2.2.2 15

GA Genetic Algorithm 2.3.3 19

GOBD Goal Oriented Behaviour Design 5.2 50

GOBT Goal Oriented Behaviour Tree 1.1 2

LOD Level of Detail 4.5.3 45

MAS Multi-Agent Systems 8.3 104

MVC Model-View-Controller 3.2 31

NPC Non-player Characters 1.1 2

OOD Object-Oriented Design 4.5.3 45

PC Player Characters 1.2 3

PPS Procedural Planning System 7.2 92

PRS Procedural Reasoning System 2.6.1 22

RBS Rule-based Systems 2.2.3 15

SDK Software Development Kit 2.1.3.2 10

TC Termination Condition 5.6.3 60

UI User Interface 3.1 29

xiii

Chapter 1

Introduction

1.1 Motivation

Game design is a multidimensional process. Usually, the design of a game has to include

different stages, such as computer science and visual arts techniques. Especially, in the

aspect of computer science, even a simple game character needs several computer graphics

and Artificial Intelligence (AI) techniques to prototype. So, in general, it is not easy for

people without professional game design training to develop a game. In addition, designing

games can be considered as just another way of learning while playing. It is a modern way

of learning. For example, playing serious games is a very interesting educational activity for

teenagers to understand certain topics of science. Designing a game can also enhance the

ability of solving diversified science problems for teenagers. However, without programming

knowledge, it is not easy to create a game since most game engines and tools require pro-

fessional computer science knowledge. Consequently, the motivation of our research is to

develop a system for people to generate games without programming.

In this thesis, I discuss my research into creating a programming-free game design system,

the Gameme System. The goal of developing Gameme is to keep creative control in the hands

of the game designers, without requiring a lot of custom programming and professional

design. There are of course many different aspects that I have to consider in order to build

1

Gameme, but I have chosen to focus upon what I perceive to be the most essential part of

Gameme: AI for games. Nowadays, game AI is something that is planned for, something

that developers are deliberately making as important as the graphics or the sound effects

[Buc05]. My research focuses mainly on the core AI module design since it is the “brain” of

the whole Gameme system. I believe, other than the fascinating multimedia experience of

game play, that the intelligence of game characters is another important factor in attracting

players for games.

Potential users of Gameme are nonprofessional game designers. The more intelligence

that Gameme provides, the less work that game designers have to do. However, simplifying

the procedure of game design does not mean simplifying game characters’ AI performance.

A game with truly smart non-player characters (NPC) will attract game players automat-

ically. The game AI research that we are doing should not only significantly promote the

intelligent level for games, but should also provide a practical, simple application for game

designers. So, in the development of the AI module in Gameme, we present an intuitive

way to prototype game agents’ behaviour—Goal Oriented Behaviour Design (GOBD) and

Goal Oriented Behaviour Trees (GOBT). After game designers create GOBTs for their game

stories, the core AI module can automatically generate related knowledge modules which are

used in behaviour processing mechanisms. Furthermore, we divert the complexity of game

design into the underlying AI core module in Gameme. There is a layered agent architecture

which is in charge of real-time behaviour control for game agents. This architecture provides

functionalities, such as planning and learning, for game agents.

1.2 Main Scientific Contributions

The background chapters of this thesis may appear to be somewhat eclectic, and other

chapters describe several design and mechanisms. Therefore, it is important that I describe

what I consider to be the main scientific contributions of the thesis. They can be divided

into a general theoretical framework and a few specific experiments. While I consider all the

methodologies and experiments described in this thesis to be scientifically sound and of at

2

least some interest, the two aspects which I claim to be the most important contributions in

this thesis are the following:

• Unified goal oriented game agent modeling

Game agent modeling might vary between different games. However, there are still

common features for game agents in most games. Game agents have to interact with

each other in order to achieve the playability of games. At least, the minimum interac-

tion is between NPCs and Player Characters (PC). During interactions, game agents

should have the ability to sense and react to their environment. The game agent

modeling methodology we introduce in Chapter 6 can be used to build game agents

in different games. By following this model, game developers can easily add basic

autonomous functionalities to game agents during the processes of modeling. In par-

ticular, the underlying procedural behaviour knowledge representation is an intuitive

design methodology which can be easily understand and used by game designers.

• Planning and learning for game agents

In this thesis, we present an agent architecture which is in charge of the real-time

behaviour control of game agents. There are two essential features for our design for

the architecture: it is layered and it is light-weight. This architecture performs planning

and learning mechanisms for game agents, and is based on goal-oriented behaviour

design created off-line.

– Procedural Planning

Game rendering requires fast behaviour processing in real-time. Some agent ar-

chitectures in traditional AI prefer to generate all agent behaviours in real-time.

However, it is not suitable for game agents since the Graphics and Sound en-

gine needs many system resources to render games. The procedural planning

we explain in Chapter 7 is based on goal-oriented procedural knowledge. It is a

reactive planning mechanism which mainly selects behaviours from goal-oriented

procedural knowledge designed off-line. The planning mechanism not only ensures

3

game agents have basic reactions during interaction with their environment, but

also provides elementary behaviours for game agents, allowing for further learning

mechanisms.

– Transfer and adaptive learning for game agents

Making game agents more intelligent and adaptive to different PCs has attracted

the attention of more and more game developers. Sometimes, simple reactive

behaviours are not adequate for advanced team behaviour control. We extend

the procedural knowledge processing from the planning level to the learning level.

Moreover, the idea of transfer learning has been used in team behaviour control.

Game agents can learn from their environment and previous experience for the

purpose of generating advanced team behaviours.

– Emergent learning for game agents

Emergence in games is a topic that has interested game designers and develop-

ers for many years. It would be fantastic if we could achieve natural and open

game play circumstances by emergent behaviours. However, emergence is still

not accepted by most game designers since there is a trade-off between off-line

game design and real-time emergence behaviours. Game designers have to be

very careful about the emergence output in real-time. We introduced our emer-

gence solution in Chapter 9. The emergent learning attempts to let NPCs learn

from PCs and to discover the most effective fighting reaction in terms of PC’s

behaviours. The emergent learning makes NPCs be able to use and combine their

basic behaviours to exhibit new behaviours to PCs. The emergent learning allows

significantly more freedom and creativity in game play.

1.3 Structure of the Thesis

This dissertation is organized the following way:

• Chapter 2 reviews the general notions related to game design and game AI. We review

4

related AI techniques based on different application aspects for game agents’ control.

A personal view of pros and cons is proposed in most sections.

• Chapter 3 provides an overview for modules inside Gameme. In particular, we discuss

our design approaches, such as light-weight and layered, for the agent architecture.

• Chapter 4 is the beginning of off-line game design. We introduce the procedural knowl-

edge representation as the behaviour description for game agents.

• Chapter 5 extends on the above remark for behaviour representation to the level of

goal-oriented design. Goal orientation is an important feature of most game agents. By

combining GOBD and procedural knowledge representation, the data structure GOBT

is presented with its characteristics and design methodology in this chapter.

• Chapter 6 provides a detailed definition for game agent modeling. The modeling is

based on the AI nature of game agents. We extends the BDI-like agent modeling

to a flexible level which can generate additional knowledge modules for game agents

planning and learning.

• Chapter 7 starts the explanation about real-time game agents’ behaviour processing

mechanisms. This chapter provides a detailed discussion of the planning mechanism

and related visual testing results.

• Chapter 8 discusses a mechanism and its testing result for game agents’ transfer and

adaptive learning. Especially, this mechanism can be used in team agents behaviour

control in real-time.

• Chapter 9 presents a emergent learning mechanism for game agents in order to enhance

the adaptability for NPCs when they face different PCs. Visual testing result is also

provided at the end of this chapter.

• Finally, Chapter 10 summarizes the main advances of knowledge that are provided by

the present work and concludes on the issues encountered in this study. Possible future

projects that would complement and extend this work are also suggested.

5

Chapter 2

Background

This chapter consists of a review of current notions about artificial intelligence (AI) tech-

niques which are related to game design. The goal is to present a fair description of the field,

so the research problem introduced in later Chapters can be fully appreciated. Apart from

the general introduction about game designs (Section 2.1), we present AI techniques which

are related to our research area in Sections 2.2 and 2.3. In Section 2.6, brief background

information regarding AI techniques that we used in our research is presented.

2.1 Introduction to Game Design

Game design is a process of designing contents and rules of a game. It is a multidisciplinary

cooperative project and includes different aspects of design. All these concepts are key

elements of game design, and make the game design process difficult and complicated.

• Software Engineering: The game is also a software system, and development requires

a series of software engineering concepts from design pattern to system architectures.

• Game Logic: The game logic is the brain of a game. It introduces AI into a game and

make it attractive to players.

• Interactive Storytelling: Most games have their own background stories, and game

6

players in games like actors and actresses in stories. So, game design has to adopt

some idea from interactive storytelling.

• Multimedia: Multimedia elements are essential if a game is to fascinate players.

• Networking: Playing games with real people is more interesting and challenging than

playing with in-game characters. It is the reason that modern game companies put

huge effort in developing networked extensions of games.

There are many taxonomies of computer games, and there is no unified way to classify

games. Generally speaking, games can be categorized into genres based on:

• Types of goals: Action, Adventure/role playing, Arcade, Strategy, Simulation, Driving

and Puzzle.

• Platform: PC, Xbox 360, PS2 and Cell phone games

• Other criteria: serious, commercial

2.1.1 Commercial Game and Serious Game

Games assume different forms, each with different types and degrees of learning [Ber06].

Game playing functionality is not limited to entertainment. Moscovich indicates that games

are classified in areas ranging from geometry and logic to probability, topology and perception

[MS01]. In addition, war games and sports games can develop player’s real time problem

solving ability. Computer games have been used to train for serious endeavors from childhood

to adulthood for a long time.

In contrast to commercial games, Bergeron [Ber06] defined a serious game as an interac-

tive computer application, with or without a significant hardware component, that

• has a challenging goal;

• is fun to play and/or engaging;

7

• incorporates some concept of scoring;

• imparts to the user a skill, knowledge, or attitude that can be applied in the real world.

The term “serious game” is relatively new in game industry; however, it has been used

in projects involving the use of games in education, training, health, and public policy.

Learning while playing is the characteristic of serious games. On the other hand, Learn-

ing while designing could also let people have the sense of achievement as playing games.

Gameme has similar functions that serious games offer, and is the embodiment of the concept

of education. It is designed to provide an environment that users could create a game step

by step. Especially, Gameme could let users enjoy the process of designing games without

worrying about techniques problems. So, Gameme is aimed for a large variety of audiences,

including primary or secondary education and unprofessional game designers.

2.1.2 Game AI

Artificial Intelligence has a long history of contributing to game development. Recently,

numerous AI methodologies for agent control have been introduced in the game industry.

Game AI is an essential element of game-play, and has become an important selling point of

games [LvL01, FL02].

Traditional AI research is concerned mainly with finding the best of a number of possible

situations. In contrast, the purpose of game AI departs from the major goal of traditional

AI. The goal of AI in games is not to compute optimal behaviour for winning against the

player but rather to endure so that the outcome is as believable and entertaining as possible

[Nar04]. The game AI focuses on creating entities which can act in a “human” way, no

matter whether they achieve the highs or lows of human action.

In recent years, the computer games industry has discovered AI as a necessary ingredient

to make games more entertaining and challenging and, vice versa, AI has discovered computer

games as an interesting and rewarding application area [LvL01]. One of the interesting uses

of AI is in the development of autonomous and believable agents in real-time strategy games.

8

Game agents have to deal not only with the militaristic aspects, but also the societal aspects

of the game. Also, level designers and game programmers use A* pathfinding algorithms to

steer agents’ tracks in maps. A* probably is the most common AI algorithm used in Game

AI. It is a heuristic search algorithm which uses a best-first search and finds the least-cost

path from a source node to a target node in a graph. A* can be optimal, and is usually

applied in sports game and strategy games.

2.1.3 Game AI Middlewares

How does a developer increase the quality and behaviour believability of the artificial in-

telligence in games? A number of software companies think they have a solution to that

problem: AI middleware [Dyb03]. This section is a review of popular game AI Middlewares.

Some commercial game AI design applications are already launched in the market. Com-

mercial game companies adopt these tools in their game design. These Game AI Middlewares

target games that have complex animation and character control needs.

In addition, most Game AI Middlewares provide an intuitive user interface for game

designers to work within. Game designers can work on either the programming model or

graphical user interface. In addition, some AI middlewares provide scripted programming

language for game designers, such as Lua and Python, in game AI design.

Different Game AI middlewares have different expertise. It is impossible to fulfill all the

requirement of AI application in games. Middlewares provide functionality in different AI

aspects, such as crowd simulation, path finding and animation control etc. Also, most AI

middlewares can be integrated with 3D graphics engines. Users of these AI middlewares

need professional game design and computer science knowledge.

2.1.3.1 AI.Implant

AI.Implant is one of the AI middlewares created by Presagis. It provides a sophisticated

animation control engine that incorporates AI into the game animation development process.

AI.Implant empowers game developers through the use of binary decision trees in game

9

characters behavioral control. AI.Implant is famous for crowd simulation and dynamic path

finding. The features of AI.Implant are listed on the Presagis web-site:1

1. The AI.Implant tool chain allows users to easily interactively, automatically or at run-

time, author the AI world including a navigation mesh (agent map) and perception

data of the simulated world used by agents to make them aware of their surroundings.

This world mark-up is used by the agents for dynamic path-finding, path planning and

as important meta-data used by agents for complex decision making such as finding

cover or hiding.

2. The AI.Implant IDE allows creation of rules used for decision making. Based on a

sense, think, do paradigm; both the environment attribution and agent to agent in-

teractions are used to perform complex adaptable behaviours even within dynamically

changing environments.

2.1.3.2 Havok Behavior

Havok Behavior is an AI middleware which enable artists to control over state-transition

logic and in-game animations which require a lot of programming in general. It empowers

artists through the use of graphical hierarchical finite state machines and blending trees. The

intuitive user interface and editing paradigm enables artists master this software easily. For

example, artists can author complex behaviours quickly by combining numbers of animation

assets into graphically created blended trees which are based on finite state machines with

branches of different motions.

Havok Behavior is an innovative, cross-platform development system for creating dynamic

event-driven character behaviors in a game. Havok Behavior accelerates the development of

cutting-edge character performance by coupling an intuitive composition tool for artists and

designers with a run-time Software Development Kit (SDK) for game programmers. To-

gether, the Behavior tool and SDK provide “what you see is what you get” results, accelerat-

ing the development of cutting-edge character performances for current and next-generation

1http://www.presagis.com/products/simulation/aiimplant/more/aiimplant_for_games/

10

http://www.presagis.com/products/simulation/aiimplant/more/aiimplant_for_games/

game titles.2

2.1.3.3 RenderWare AI Middleware

The RenderWare AI Middleware (RWAI) is a set of C++ base classes for AI. It is powered

by AI techniques, such as finite state machines and neural networks; and focuses on design-

ing and implementing character behaviour. In addition, RenderWare also provide physics,

graphics and path generation modules for game designers.

2.2 AI Techniques for Behaviour Design

AI has been incorporated into games for many years. The motivation that drives AI pro-

grammers in the game industry is to create AI that makes the game entertaining and keeps

the players playing, ultimately driving the sales of the game [Tog07]. Game developers have

used some AI techniques to give seemingly intelligent life to game characters from the early

classic games such as Pac Man to the modern games such as Sim City. The goal in game AI

is not to compute optimal behaviour for winning against the player; instead, the outcome of

game AI should be as believable and fun as possible [Nar04].

In the broadest sense, most game AI is used to control NPCs. For example, NPCs in

FX Fighter make use of rule-based AI which allows the computer opponents to recognize

patterns in PC’s attacks. This implies a learning process for NPCs based on PC’s action.

Also, the monster in Half Life has the ability to watch you, smell you, hear you, and track

you. In addition, monsters run away when they lose and fetch reinforcements. The AI used

in this game is designed to avoid hard-coded if-then decisions by using a modular AI system

which is a schedule-driven state machine, to provide flexibility for monsters.

The game AI research is a little bit disconnected between academic and industrial game

AI since these two fields have different goals and use different AI algorithms. Typically,

most games still rely on limited AI algorithms to provide the illusion of in-game intelligence.

For example, state machine and A* path-finding algorithms is used to control NPCs in the

2http://www.havok.com/index.php?page=havok-behaviour

11

http://www.havok.com/index.php?page=havok-behaviour

majority of games. On the other hand, academic game researchers are interested in using

more advanced AI algorithms in game research, such as machine learning, genetic algorithms,

and neural networks.

2.2.1 Finite State Machine

A Finite State Machine (FSM) or Finite State Automaton or simply “state machine” is an

abstract machine that can exist in one of several different and predefined states. A FSM also

can be defined as a set of conditions that determine when the sate should change. The actual

state determines how the state machine behaves [BS04]. A FSM can be represented by a

directed graph (digraph) in which the nodes symbolize states and the directed connecting

edges correspond to state transitions [Gou88].

We can use several rules as below to define the FSM shown in Figure 1.3

CGameObject door;

CGameAttribute open, close;

CGameSate doorState1, doorState2;

DoorState1=door+open;

DoorState2=door+close;

If DoorState1 then DoorState2;

If DoorState2 then DoorState1;

The most popular application of common AI techniques used in games is the FSM. The

application of FSMs to game programming can be dated back to the earliest days. Normally,

game programmers use FSMs to describe game characters’ behaviours. For example, in Pac

Man, a FSM is used to model the state transition of ghosts.

FSMs are easy and intuitive to describe when dealing with Moore-style machines [Sch04].

Also, since FSMs are straightforward, they are easy to program and debug. One of the

most important advantages of FSMs is that they can be acknowledged by non-programmers,

3http://en.wikipedia.org/wiki/Finite-state_machine

12

http://en.wikipedia.org/wiki/Finite-state_machine

Figure 1: A Example of Finite State Machine

for example, game designers. Game designers can prototype game characters’ behaviour

as FSMs before game programmers start programming. FSM algorithms simplify game

development, especially communication between game designers and programmers.

Nonetheless, FSM have some disadvantages.

• FSMs are not standardized. Game designers have to customize FSMs based on different

circumstances, such as goal directed design.

• The state diagram is not useful when states and transitions increase exponentially.

• FSMs provide no easy way to synchronize multiple modular behaviours [Cha07].

2.2.1.1 Varieties of FSM

Based on the pros and cons of FSMs, game programmers use different FSM-related algo-

rithms in games.

• Hierarchical FSMs

13

Sometimes, a given state in an FSM might be very complex. Hierarchical FSMs provide

an effective way to add complexity to a FSM system without unnecessary connectivity.

It groups similar states into more locally scoped area. By grouping similar states within

their own state machine, the “super state” that contains this new machine can also

house common functionality and shared data members [Sch04].

• Behavioural FSMs

Behavioural FSMs define the animation capabilities of an game object. Each state

consists of a collection of motion clips that represent a high-level behaviour, and each

directed edge represents a possible transitions between two behaviours [LK05].

• Message and Event Based FSMs

This FSM algorithm uses messages as triggers than checking transitions in a polling

model.

• FSMs with Fuzzy Transitions

FSMs can be written so that instead of events or some kind of perception trigger

causing transition in the machine, fuzzy determination (such as simple comparisons or

calculations) can be used to trigger state transitions [Sch04].

• Multiple-concurrent FSMs

This FSM algorithm is suitable for FSMs between multi-characters and multi-FSMs

controlling single character. It is a FSM for synchronizing and coordinating multiple

FSMs.

• Data Driven FSMs

This FSM algorithm can add new behaviours (states and transitions) into the system

without much programmer involvement. The constructions of this FSM can be done

by non-programmers, such as game designers and producers. There are two approaches

of this FSM algorithm, one is scripted FSM and the nother is visual editors.

14

2.2.2 Fuzzy-State Machines

Fuzzy-State Machines (FuSMs) are built on the notion of fuzzy logic, commonly defined as

a superset of conventional (Boolean) logic that has been extended to handle the concept of

partial truths [Sch04]. FuSMs combine state machine and fuzzy logic technologies to create

agents which can identify and respond to states which are within some decision threshold of

a predefined condition [JW01].

FuSMs are an enhancement of FSMs and are often used in simulation games. For example,

NPCs controlled by FSMs can avoid cube-shaped obstacles. NPCs controlled by FuSMs can

be defined to avoid cube-like objects in a game. Thus NPCs can keep away from any 3D

object embedded inside a cube. It is very useful, since typically, game developers use cube

as a wrapper, or “bounding box”, of 3D objects in collision detection.

FuSMs also provide the ability to model unpredictable elements in games. They extend

the usage of FSM in modeling game agents. However, they do not provide the game agent

with abilities to sense, react and adapt to their environment.

2.2.3 Rule-Based System

A game is defined by rules that result in a quantifiable outcome. Rules limit player behaviour

and define the game, and every game has a quantifiable outcome or goal [SZ03].

Rule-based systems (RBSs) constitute the best currently available means for codifying

the problem-solving know-how of human experts [HR85]. One advantage of RBSs is that

they mimic the way people tend to think and reason given a set of known facts and their

knowledge about the particular problem domain [Sch04]. Another advantage of this kind of

RBS is that it is fairly easy to program and manage because the knowledge encoded in the

rules is modular and rules can be coded in any order [Sch04].

The RBSs really comes down to a set of “if-then” style rules and a set of facts and as-

sertions [BS04]. Typically, RBSs have two components, working memory and rules memory.

The working memory stores known facts and assertions made by the rules while the rules

memory contains “if-then” rules. The rules operate over the facts stored in the working

15

memory. Usually, there is more than one rule associated with each object.

In addition, making inference is also very important for RBSs. There are two basic

inferencing algorithms; forward chaining and backward chaining.

The forward chaining consists of three phases:

1. Finding The Rule: This phase is a procedure of checking the “if-parts” and finding the

match rule in working memory.

2. Resolving Conflict Rules: During this phase, we have to examine all conflicts rules and

find out which one we should fire.

3. Firing Selected Rules: In this phase, we fire (execute) matching rules.

Backward chaining is the opposite of forward chaining in some ways. Instead of matching

“if-parts” of rules in working memory, backward chaining attempts to match a rule in the

“then-part”. This algorithm is goal driven and more difficult to implement than forward

chaining especially in fixed rules.

The technique RBS can be combined with FSM in creating the game world. It matches

the intuitive way that game designers describe game characters and scenarios in games.

However, a huge set of rules in games can cause searching difficulties for matching rules in

real-time. Game programmers have to design a efficient data structure to represent rules

and a customized algorithm to support real-time searching.

2.3 AI Techniques for Planning and Learning

2.3.1 Decision Tree

The decision tree is made up of connected decision points; the tree has a starting point;

for each decision, starting from the root, one of a set of ongoing options is chosen [Mil06].

Decision trees are a hierarchical graph that structure complex Boolean functions and use

them to reason about some situations [dB04]. Decision tree is a complement to the RBS in

16

making inference. Once constructed, a decision tree can also be decomposed into a set of

rules [dB04].

Decision trees are used as a analytical and visual decision making tool. In the decision

tree each internal node splits the instance space into two or more subspaces according to

a particular discrete function of the input attributes values [RM02]. Usually, decision trees

are constructed in a top-down manner.

Decision trees have been used to represent classifiers in various disciplines such as statis-

tics, machine learning, pattern recognition, and data mining. The technique was first used

in the game Black & White to determine the behaviour of creatures. The learning decision

tree in Black & White allows game agents to learn new behaviour in real-time.

Decision trees provide a fast, easily implemented and understandable decision-making

technique. They have advantages such as modularity and ease of creation. Also, the decision

tree is designed and used as white box model—if a given situation is provided, the explanation

for the situation is clearly replicated and implemented. Unfortunately, each decision tree is

unique and has little common structure with other decision trees and therefore is not able to

be reused in differing decision-making techniques [dB04]. In addition, decision trees require

large amounts of sample data from which to learn, and if the data contains errors, so will

the decision tree [dB04].

2.3.2 Behaviour Tree

People use natural language to describe their requirements as a behaviour in a complex

system. And the complex system exhibits as a set of behaviours. In general, the behaviour

tree is used to design complex systems in a graphical representation. The behaviour tree

(BT) provides a way of amplifying our ability to deal with complexity. Each behaviour

uses natural language expression and is represented as a tree node in the BT. BTs strictly

use the vocabulary of the natural language requirements but employ graphical forms for

behaviour composition in order to eliminate risk of ambiguity. By doing this they provide a

direct and clearly traceable relationship between what is expressed in the natural language

17

Figure 2: A Behaviour Tree

representation and its formal specification.

The BT has not been widely used in game design. Sometimes, the use of behavioural

FSMs cannot fulfill all circumstances of game scenarios. The behaviour tree can be used as a

supplementary model in game design and describe complex scenarios in games. In contrast,

FSMs are better for describing single game objects’ states and transitions; and BTs are

better for describing scenarios and storytelling.

For example, Dromey [Dro07] used behaviour tree notation to describe a scenario about

“car entering garage”, as shown in Figure 2. The whole BT can be described as:

When a car arrives, If the gate is open the car proceeds; Otherwise if the gate is closed,

When the driver presses the button it causes the gate to open. [Dro07]

18

2.3.3 Genetic Algorithms and Programming

Herbert Spencer coined the term “survival of the fittest” in 1864, 5 years after Charles

Darwin published On the origin of Species in 1859.

Genetic programming, a concept coined by Koza [Koz92], is a variation of genetic algo-

rithms that uses parse trees instead of binary strings to represent potential problem solu-

tions [Pil04]. Genetic programming now routinely delivers high-return human-competitive

machine intelligence and can automatically create a general solution to a problem in TEX

form of a parameterized topology [Koz07]. Genetic programming can automatically create a

general solution to a problem in the form of a parameterized topology whose nodes or edges

represent components and where the parameter values of the components are specified by

mathematical expressions containing free variables.

There are probably more published academic papers concerning generic algorithms/pro-

gramming than anyone could read in a lifetime, and the variety of different types of algorithms

is dizzying. For this reason we will here limit the discussion to the particular class of genetics

algorithms (GA) that is used in game research.

In games, GA and GP (Genetic Programming) are simply a method of finding an optimum

solution to a problem [BS04]. The most unpredictable element in game is the player. This

allows the game AI to adapt to a situation the game designers might not have been able

to predict [BS04]. In addition, GAs have been used with competitive convolution, in which

the fitness guiding search is based on the outcome of competition between members of the

population [RB96]. This has been applied into pursuer-evader and complex competition

games. Also, GAs and other artificial life algorithms were used in games which have to

hatch, raise and train NPCs.

2.4 Scripting Behaviour

A scripting language is any programming language that is created to simplify any complex

task for a particular program [Toz02a]. Usually, scripting languages are embedded in the

19

applications they control. “Scripts” are distinct from the core code of the application, which

is usually written in a different language, and are often created or at least modified by the

end-user [Lou08]. Scripting languages can either be compiled or interpreted. Scripting files

are run from within the game by virtual machine.

Scripting language can assist the development process in many ways [Buc05]:

• They can be used as a quick and easy way of reading variables and game data from

initialization files.

• They can save time and increase productivity.

• They can increase creativity.

• They provide extensibility.

Scripting languages, such as Lua and Python, are rapidly gaining popularity in game

development. Some popular game engines have their own preference in scripting language,

such as UnrealScript in Unreal engine.

Usually, scripting language is worked as AI behaviour language which is a complementary

programming language to C++ or Java in game development. A more advanced scripting

language increase the interaction between the script and the executable, enabling you to not

only initialize variables but to create game logic or even game objects, all from one or more

script files [Buc05].

Scripts are the technique of choice in the game industry for implementing game AI,

because they are understandable, predictable, adaptable to specific circumstances, easy to

implement, easily extendible, and usable by non-programmers [Toz02b]. The use of scripting

language vary from simple configuration to entire scripted driven engine [Poi02]. In general,

scripting language can be used to describe state machines. Actually, most people find it is

easier to use scripting language than C++ in representing FSMs and RBSs.

Scripts are generally static and tend to be quite long and complex [Ber02], which can

lead to real-time implementation problems. First, due to the the complexity in behaviour

description, there could be some weakness in logic. Usually, game players could find out these

20

weakness easily and find out the way to achieve supposed tough goals quickly. Second, the

static scripting behaviour of game agents do not have the ability to forecast unpredictable

behaviours from different game players. The static scripting can reduce the playability and

entertainment value of games. In addition, since some scripting codes are written by people

with very limited programming language skills, programs exhibiting redundancy, inefficiency

and deadlock programs often lead to extra work for game programmers.

2.5 Agent Architectures

Agent architectures are blueprints of control systems of agents, depicting the arrangement of

basic control components and, hence, the functional organization of the overall agent control

system [SA04]. The assortment of architectures used by the autonomous agents community

reflects our collective knowledge about what methodological devices are useful when trying

to build an intelligence [Bry01]. AI Architectures are typically built to deal with restrictions

and constraints by using classical, symbolic, or hierarchical AI models.

Different agent architecture design methodologies are introduced in the history of AI.

Most agent architectures are symbolic, connectionist or hybrid. We can classify them based

on their foundational distinctions.

• Cognitive architectures

SOAR [LRN86, LRN87], ACT-R [ABB+04], and PRODIGY [VCP+95] are cognitive

architectures. These architectures act like certain cognitive system, and try to simulate

and understand human cognition. Usually, they not only cognise different intelligent

behaviours, but cognise as a whole. They are not parameter tuning systems. Some

of them only focus on internal information cognitions, and are lacking in perception,

reaction and learning functionalities from external resources.

• Layered architectures

Subsumption architecture [Bro91], ICARUS [DSAS03], and GRL [Hor00] are layered

21

architectures. These architectures are widely used in the area of simulation and

robotics.

Subsumption architecture was the early cornerstone of layered architectures. Sub-

sumption architectures provides a way to decompose intelligent behaviours into a set

of simple behaviours. In general, it is a bottom-up architecture which allows agents

to operate with increasing competence. For example, in robot behaviour control, low

layers of this architecture can provide fast-adapting mechanisms such as reflexes while

higher layers take care of overall goal achievement. Modularity is an important feature

of this architectures. It not only has modular structure but also generates intelligent

behaviour on a modular basis.

2.6 Related Agent Planning and Learning Techniques

2.6.1 Procedural Reasoning Systems and BDI Agents

The Procedural Reasoning System (PRS) was first created to control autonomous robots.

Georgeff, Lansky and Schoppers [MPG87] described the PRS as a system for reasoning about

and performing complex tasks in dynamic environments, and showed how it could be applied

to control an autonomous mobile robot. The reasoning system that controls the robot is

designed to exhibit the kind of behaviour expected of a rational agent, and is endowed

with the psychological attitudes of belief, desire and intention [GL87]. The Procedural

Reasoning System integrates both reactive and goal-directed deliberative processing in a

distributed architecture [Jon08]. Within this system, a specific detection strategy can be

pursued based on available situational data, but rapidly modified or replaced in response to

incoming information.

The PRS used the Belief-Desire-Intention (BDI) software model. At any instant, the

actions being considered by PRS depend not only on its current desires or goals, but also

on its beliefs and previously formed intentions [MPG87]. The PRS has the ability to reason

about its internal and external status, and reflect it on modify its desires and intentions.

22

The PRS provides agents ability in surviving in dynamically complex environments.

The PRS is a reactive planning system which consists of five components [Mye01]:

• A database containing current Beliefs or facts about the world;

• A set of current Goals to be realized;

• A set of plans, called Acts, describing how sequences of actions and tests may be

performed to achieve certain goals or to react to particular situations;

• Intentions containing those plans that have been chosen for (eventual) execution;

• An Interpreter that manipulates these components, selecting appropriate Acts for ex-

ecution based on the system’s beliefs and goals, creating the corresponding intentions,

and then executing them.

In general, the PRS is associated with BDI agents [RG91b, RG95, Bra99]. The BDI

software model is a reasoning architecture designed for programming intelligent agents. The

BDI agent model includes Beliefs, Desires, Intentions, and Plans.

PRS and its variants exist both as a planning engine and as a set of development tools

[Bry01]. Many academic researchers appreciate the easy programming and modularized

structure of PRS in their projects. Implementations of the PRS and BDI agent abstract

semantics include dMARS [dKLW97], RCS [GI90], IRTNMS [RG91a], and others. Appli-

cation areas include diagnosis for space shuttle, factory process control, business process

management and network management monitoring.

However, there are still some limitations of PRS and BDI models.

• BDI agents lack of learning competence. The BDI agents’ plans are based only on its

current resources such as beliefs, desires and intentions. They cannot look forward or

learning from their experience.

• BDI agents lack the ability to adapt successfully to changing circumstances.

23

• There is no explicit mechanism for multiple agent reasoning. The BDI agent model

does not provide a clear structure for inter-agents communication.

Some researchers propose to use BDI agent alone without embracing the PRS. They use

the BDI model as the representation of agents which embed in hierarchical reasoning struc-

ture. The design of multiple layer reasoning system is varied based on different application

purposes. Usually, each layer of these these hybrid architecture has different reasoning con-

cerns. For example, Sloman and Logan [SL98] designed an architecture which is describable

in terms of the “higher level” mental concepts applicable to human beings. This architecture

has three layers: the reactive layer; the deliberative layer; and the reflective layer.

2.6.2 Transfer Learning

Learning in one context or with one set of materials impacts on performance in another

context or with other related materials [PS92]. It is a fundamental human capability. Com-

puter scientists have been adapting this educational theory for computer science research for

decades. For example, in the early stage, transfer of learning was described using production

modeling, introduced into the analysis of human computer interaction by Card, Moran and

Newell [CNM83]. A production model describes actions at the interface in terms of a set of

if-then rules, in which a user recognizes some condition and then performs an appropriate

action [Tet87].

As an AI research topic, the transfer learning leverages learned knowledge from a source

task to a related but different target task. Recent work in transfer learning has succeeded

in making reinforcement learning algorithms more efficient by incorporating knowledge from

previous tasks [TKS08]. Formally defined, reinforcement learning is the learning of a mapping

from situations to actions with the main objective being to maximize the scalar reward or

reinforcement signal [Sut88]. Informally, reinforcement learning is defined as learning by

trial-and-error from performance feedback from the environment or an external evaluator

[Eng07]. If reinforcement learning algorithms can learn new tasks from limited experience,

agents may be able to learn reliably on-line in the real world [TKS08]. One approach to

24

enabling such learning is to employ transfer learning to reuse knowledge gathered in previous

tasks to learn a novel task better or faster [TKS08]. Transfer learning usually provides either

a full model of different tasks or an explicit relation mapping of source task into the target

task. Rather than having to learn each new task from scratch, the goal is to enable an agent

to take advantage of its past experience to speed up new learning [Sto07].

Behaviour creation for AI game agents typically involves generating behaviours and then

debugging and adapting them through experimentation [OR08]. This is typically a com-

plex and time-consuming process that requires many iterations to achieve the desired effect

[OR08]. For the developer of game AI, the use of transfer learning means that less time is

spent in the design, coding and debugging in multi-agent behaviours; instead, more time is

spent in “teaching” game agents to behave from previous or related experience. Banerjee

and Stone present the idea of transfer learning on knowledge basis by using the technique of

value-function transfer where general features are extracted from the state space of a previous

game and matched with the completely different state space of a new game [BS07]. Sharma

et al. present a multilayered architecture, which used a novel combination of Case-Based

Reasoning and Reinforcement Learning, to achieve transfer learning while playing against

the game AI across a real-time strategy game [SHS+07].

2.6.3 Adaptive Behaviours

In general, research on adaptive behaviours places emphasis on mechanisms that can be ex-

pressed in computational, physical, or mathematical models. In addition to elaborated and

human-specific abilities, adaptive agents explicitly take into account environmental feed-

back. Research in adaptive behaviours is an approach complementary to traditional AI,

in which basic abilities allow agents to survive and perform their mission in unpredictable

environments.

The adaptive mechanism was first introduced in the area of intersection of computer

science and commerce by Sandholm [San03]. Pardoe et al. [PSSTT06] explored the use of

an adaptive auction mechanism: one that learns to adjust its parameters in response to

25

past empirical bidder behaviour so as to maximize an objective function such as auctioneer

revenue.

We apply adaptive behaviour to NPCs’ modeling for the purpose of creating human-like

intelligent game characters. NPCs have to be attractive by showing unpredictable behaviour

when they face different PCs. Scripting non-player characters is typically labor-intensive

and results in simplistic NPC behaviours [CSS+06]. Hard-code off-line behaviours cannot

guarantee NPCs’ real-time adaptive intelligence. The capability of presenting unpredictable

behaviours requires NPCs to be able to adapt to a dynamic game environment. Furthermore,

one of the key impact on game environment is PCs’ behaviours. Their in-game strategies

directly lead to diversity of real-time game scenarios. Therefore, the adaptation of NPCs is a

topic focused on behaviour adaptation relative to PCs’ in-game behaviours. In general, the

off-line NPCs’ modeling are not adequate, the real-time game AI system plays an important

role in creating NPCs’ adaptive behaviour.

2.6.4 Complex Adaptive Systems

A system is an assembly of elements hooked together to produce a whole in which the at-

tributes of the elements contribute to a behaviour of the whole [Jon03]. A complex system

is any system featuring a large number of interacting components (agents, processes, etc.)

whose aggregate activity is nonlinear (not derivable from the summations of the activity of

individual components) and typically exhibits hierarchical self-organization under selective

pressures [Roc99]. Before being studied in computer science, complex systems were investi-

gated in physics, biology, and even philosophy. Complex Adaptive Systems (CAS) are special

cases of complex system. The CAS is a system of units which has reactive, goal-oriented and

planning abilities. CASs require agents that can observe and learn from their environment

and adapt to it. In general, examples of CAS includes the human immune system, ecosystem,

weather system and others which are constantly adapting to their environments.

In general, explicitly analyzing the input and output data is a way to understand mech-

anisms of a system. CASs have the feature of simple input but amplified output. Many

26

CASs have the property that a small input can produce major predictable, directed changes

in an amplifier effect [Hol95]. The output is the global behaviour that the CAS presents.

The behaviour of a whole CAS abounds in nonlinearities which do not satisfy the super-

position principle. In most cases, CAS are characterized by behaviours such as emergence,

adaptation, self-similarity and self-organization.

Agents are interconnected units in CASs. They interact with each other and their en-

vironment in an unplanned and unpredictable way. Mass interactions of agents can lead to

the emergence of regularities and start to form a pattern which feeds back to the system and

further iterates them. Emergence gives agents opportunities to learn from their experience,

improve further activities and adapt to their environment. The adaptation ability of agents

is an evolutionary ability which allows agents to live in their environment.

The CAS is a model for thinking about the world around us; furthermore, it can be a

model for designing virtual reality world in games. Nowadays, games have become more

and more complex in the way that they simulate different reality systems. We consider

shaping characteristics of CASs into building game agents. By cross-disciplinary comparison

of different CASs, we can abstract some general models of CASs into game design in order

to create intelligent game agents. In this thesis, we introduce an autonomous adaptive game

agent modeling theory along with a layered agent processing architecture for the purpose of

creating autonomous adaptive game agents.

2.6.5 Emergence

Over 2,000 years ago, Aristotle first recognized the profound concept that a whole can be

more than the sum of its parts. Emergence is what happens when an interconnected system of

relatively simple elements self-organizes to form more intelligent, more adaptive higher-level

behavior [Joh01]. The intuitive way to explain emergence is the way CASs and patterns

arise out of a multiplicity of relatively simple interactions. Emergent behaviours cannot

be predefined when we design systems, and they are not predicable in low level of system

control, but occur at higher levels of system control. Systems that exhibit emergence have

27

a common set of elements, such as agents, rules or regularities. Simple sets of rules applied

to large-scale systems can result in complex high-order organizations, such as an ant colony

and world wide web.

We are everywhere confronted with emergence in complex adaptive systems—for exam-

ple, ant colonies, networks of neurons, the immune system, the Internet, and the global

economy—where the behavior of the whole is much more complex than the behavior of the

parts [Hol00]. In general, techniques that can be used to explore emergence in various com-

plex systems include AI and machine learning. In addition, some techniques that already

or can be used in emergent phenomena of games include decision trees, neural networks,

flocking, and evolutionary algorithms.

Emergence can be applied to games can be in various ways. Sweetser mentions that

emergence can be embedded in the development of game world, characters and agents,

emergent narrative and social emergence [Swe07]. We study the emergence for intelligent

agents in games. It is based on the concept of Agent Based System(ABS). ABSs are based

on the idea that the complex, global behaviour of a system is derived from the collective

simple, low-level interactions of the agents that make up this system [Swe07]. Agents interact

in the game environment, forming more complex behaviours as a collective. In games, the

conditions of having emergence is to let game agents be capable of learning and adapting

to their environment. In this thesis, we introduce a mechanism to offer learning abilities for

game agents in order to let them adapt to their counterparts’ actions.

2.7 Discussion

Game design applications are very popular in commercial or serious game development.

People adopts various AI techniques in game development in order to have impressive game

performance. In this chapter, we discuss AI techniques that have been used in Game AI.

However, these techniques are not completely suitable for our research approach. We exam-

ined techniques and chose some of them for our use. In later chapters, we customized these

AI techniques to what can actually been done in practice for Gameme.

28

Chapter 3

System Design

This chapter discusses system design methodologies for Gameme. Section3.1 provides an

overview of the modules of Gameme. Section3.2 describes two design patterns that we used

in the development of Gameme. In Sections3.3, 3.4, and 3.5, we describe the design and

methodological choices we made to whole the agent architecture in Gameme.

3.1 The Modular Structure of Gameme

The Gameme system that we are developing is a game design application. Potential users of

Gameme are non-professional game designers who may not have any programming knowl-

edge. As shown in Figure 3, the Gameme system uses a modular architecture consisting of

three components: the User Interface(UI) module; the Core AI module; and the Graphics &

Sound module. The advantage of a modular architecture is that we can develop, implement

and maintain various components as stand-alone programs. The architecture allows multiple

parallel processing development cycles for the modules and the use of off-the-shelf products

without having to alter their source code[Szi07].

We use AI techniques in describing the whole game logic, which includes game agents’

profiles, relationships among agents, etc. A game created by Gameme is a set of game logics

which is a ramification of the core AI module in Gameme. The core AI module, performing

29

Figure 3: The Gameme System

as a AI middleware, interacts with the UI module and the Graphics & Sound module. The

idea of the core design is that the core is composed of a set of discrete sub-modules, such as

the perception module, the knowledge module, the control module and the action module.

These modules perform together as generators and controllers of the game logic. The detailed

description of each module in the core AI module is in Section3.3.

In Gameme, there are two controls over game agents: off-line game agents’ behaviour

designs and real-time behaviour control. The core AI module takes on most of the tasks

for these two controls. During the off-line design, pure game logic is created based on the

game designers’ ideas. The pure game logic describes game agents in a particular knowledge

format. It represents predefined game agents’ profiles, and relies on the core AI module to

implement it. In addition, the core AI module not only generates knowledge representations

of game agents, but also controls logical relationships among game agents. The real-time

control is game environment changes reflected on game agents’ behaviour change during

game play. The behaviour control is mainly done by planning and learning mechanisms in

30

the control module of the core AI module. Planning and learning mechanisms implement

real-time controls over the knowledge module in order to output intelligent behaviours for

game agents. Furthermore, during game rendering, the pure AI logic data is sent to the

Graphics & Sound engine for multimedia rendering. Thus a game player can view a real 3D

graphics game characters with different behaviours.

Figure 4 and Figure 5 depict communication among modules, game designers and game

players.

• In offline design, game designers design games by using the UI. The UI design data

simply describes UI objects that created by the game designers. The UI module sends

UI design data to the AI core module. The AI core module generates pure game logic

based on information transfered from the UI module.

During offline design, game designers could also test game scenarios or the whole game.

The graphics & sound module receives the pure game logic and renders the general

game environment. Importantly, during interactions of NPCs and PCs, the core AI

module sends their decisions of NPCs’ behaviours to the graphics & sound module for

visual rendering result.

• In real-time, game players play the game by controlling PCs. Behaviour changes of

PCs affects behaviours of NPCs since the core AI module makes reasoning decisions

for NPCs based on PCs’ status. The Graphics & sound module gets information from

the core AI module, and renders the pure game logic data in the desired multimedia

format.

3.2 Design Patterns used in Gameme

• Model-View-Controller Pattern

The Gameme architecture uses the Model-View-Controller (MVC) pattern. The Model

component is the pure game logic created by Gameme. The View components are rep-

resentations of the game seen from different perspectives. The Controller component

31

Figure 4: The Offline Design

32

Figure 5: The Real-time Control

33

sends messages to the model and the views. The “one model, multiple view” repre-

sented in Gameme is described below.

– One model

The pure game logic is used to represents the whole game world. It could be

considered as the original model of the game world. It not only represents game

agents’ behaviour but also represents relationships among game agents. It exists

in the core AI module.

– Game Designers’ view

Game designers have a designer view of the game. They design games by edit-

ing graphics elements in the UI. The designer view can be either a set of game

logic which expresses the pure logical relationship of game contexts in graphical

representations, or the rendering of particular scenes or scenarios in a game with

editing options.

– Game Players’ view

The player view, on the other hand, is the rendering of the whole game without

any evidence of Gameme. The rendering is the execution of Graphics & Sound

engines which are controlled by the pure game logic from the core AI module.

Game players can only manipulate player characters in order to let the game

story continue.

• Adapter Pattern

In order to let the AI module communicate with the 3D graphics engine, we use the

Adapter pattern to translate knowledge from the pure logic format to the format that

3D graphics engine can understand, or vice versa. From the object-oriented point

of view, we design the this adapter pattern as a multi-inheritance class structure as

in Figure 6. The class CXman inherits from both class CGameCharacter and class

34

COgreCharacter. The class CGameCharacter is associated with the Gameme AI mod-

ule; the class COgreCharacter is associated with the OGRE 3D Graphics engine.1

Figure 6: The CXman class inherits features from the Gameme AI core module and the
OGRE 3D graphics engine.

3.3 The Model of Agent Architecture

We defined an agent architecture model, shown in Figure 7, to be used in the design of the

planning and learning system. This architecture was inspired by Nilsson’s Teleo-Reactive

Architecture [Nil01]. There are three parts of this architecture: the perception module;

1http://www.ogre3d.org/.

35

http://www.ogre3d.org/

Figure 7: The Model of Agent Architecture in Gameme

the control module and knowledge module; and the action module. These modules combine

the functionalities of sensor, goal processing, decision making, and sending. The sensor

functionality is to perceive state changes in each agent and deposit these perceptions into

the architecture. The goal processing and decision making functionality consists of evaluating

agents’ statuses and making decisions for agents. Decisions are sent to agents regarding their

next execution actions.

The agent architecture runs in cycles. In each cycle:

• The perception module accepts information from working memory. The game envi-

ronmental information, game agents’ information and states are sent to the perception

module. For example, the input information includes agents’ position, current state of

36

agents etc. In addition, since the perception module is directly used in connecting with

Graphics & Sound engines it should have the ability to fill data. It fills data to pure

game logic data, and sends these data to the control module for the agents’ planning

and learning.

• The knowledge module mainly contains off-line design knowledge for game agents,

and can be combined dynamically and hierarchically to increase the flexibility and

adaptability of game characters either in off-line or in real-time.

• The control module include planning and learning mechanisms which operate on data

in knowledge modules in order to manipulate game agents’ real-time behaviours. It is

the key portion in the agent architecture. For example, in agents’ planning processes,

the control module allocates information to preloaded rules and priority factor tables;

proposes possible actions based on rules. Finally, it decides which game state is to be

executed in this cycle and sends it to the perception module for memorizing and to the

action module for sending.

• The action module is similar to a trigger for agents’ activity. It sends decision to

agents. For example, the decision might define the next state in a goal for an agent.

The model for the game agent architecture design is extended in the planning and learn-

ing processes design. One important feature is that we separate the knowledge module

with perception, control and action modules. Only the control module has the ability to

access data in the knowledge module. It is different from other agent architectures which

embed sensing and acting functionalities in the representation of knowledge. We consider

the Gameme system is a game design system that needs to be improved step by step. We

might need to add more modules into this system. Keeping different modules with explicit

functionalities can be convenient for further extensions. In addition, keeping the knowledge

module isolated from perception and action modules can avoid retrieving data from outside

of game agents unnecessarily.

37

3.4 Light-Weight Agent Architecture

The core AI module needs to complete planning and learning for the entire game world

without interrupting the overall performance of the game. The trade-off between off-line

design and real-time goal reasoning is the key point. The agent architecture in the core

AI module must therefore be “light-weight” in the sense that it uses minimal resources. A

light-weight and functional agent architecture is the most important aspect in the agent

architecture design. It is designed to have planning and learning in real-time as soon as

possible.

The better the arrangement of predefined pure game logics, the lighter the real-time game

rendering architecture can be. For instance, GOBTs are based on lower level production

rules in the knowledge module. This data structure arrangement make transformations and

searches among them very convenient. Also, the execution order of GOBTs for each goal

is made off-line, which also reduces time spent in real-time planning at certain levels. For

example, if the control module decides on no change of current goal for an agent at runtime,

no search for the next action is necessary. The agent only has to execute the next state in

the execution order of the current goal. In addition, the data processed in the PPS is also

important in the light-weight reasoning. The pure game logic data transfer in the whole

agent architecture is made to be as simple as possible. Most of them are primitive data

types; string variables are used in many places. Theses data will be transfered into the

format that Graphics & Sound engines can understand through an adapter program before

rendering in a multimedia style.

3.5 Layered Planning and Learning

Multiple agents’ planning and learning should prepare for the unexpected, and have adaptive

interaction protocols. For preparing for unexpected situations, game agents should have the

ability to react in cooperate or competition scenarios. For preparing adaptive interaction

protocol, game agents should have the ability to learn from their mistakes and build up their

38

Figure 8: The Layered Planning and Learning for Game Agents(GA1 to GAn)

own experience to be able to act smarter in time.

Layered learning is a multi-agent learning paradigm designed to allow agents to learn

to work together in a real-time, noisy environment in the presence of both teammates and

adversaries [SV98]. In our research project, we present a multi-layer architecture for game

agents’ planning and learning as shown in Figure 8.

In the layered architecture, the lower level focuses on the individual game agent’s be-

haviour planning. The upper level focuses on game agents’ learning in order to adapt the

game environment. The important feature of this architecture is that knowledge planned in

one layer feeds into the knowledge in the next learning layer. The learning level revises the

planning outcome by processing it in adaptive and transfer learning algorithms in order to

provide dynamic performance for the team of game agents. In addition, the emergent learn-

ing mechanism analyzes game players, and lead NPCs to have intelligent strategies versus

39

PCs.

In addition, the hierarchical layered learning structure adopts the modularity advantage

of the subsumption architecture [Bro91]. The subsumption architecture layers control mod-

ules, allowing high-level controllers to override lower-level ones [Sto07]. The modular based

bottom-up planning and learning architecture divides complex team behaviour control into

manageable individual agent behaviour control.

40

Chapter 4

The Behaviour Design

4.1 Offline Knowledge Design

Game design is a complicated and time consuming process. After game designers describe

the detailed characteristic of each type of game characters, the game developers have to

formalize these character descriptions by using a unified knowledge format. This knowledge

is the individual information embedded in each game character. The knowledge is usually a

substitute for the game character in computer programs.

In order to have dynamic planning and learning results, knowledge defined off-line is

essential for game agents’ behaviour control. Since limited time is available for agent planning

and learning in games, we do not propose that agents perform much searching in real-time.

So off-line knowledge design is very important because it provides the foundation for real-

time planning.

In addition, we do not apply dynamic processing at every level of the goal planning

and learning. For certain low-level goals, our implementation is based on static execution

orders. This is also a consideration of design of a light-weight agent architecture. So,

knowledge modules in Gameme should be defined off-line and retrieved and parameterized

by the interpreter and coordinator in real-time.

41

4.2 Knowledge Representation for Game Agents

A game world is a virtual world that contains different characters. Most of the convincing

performance given by NPCs in games come not only from their outward appearances and

animations but also from the programming that drives their behavior [dB04]. During game

development, developers have to translate game designers’ idea into computer programs in

order to make the virtual world vividly present in computers. First, we have to find a way

to describe characters in the virtual game world.

The knowledge representation is a set of ontologies or symbolic representations about

the game world. It is a medium between the virtual human design game world and the real

data computation. A suitable knowledge representation for game agents leads to intelligent

agents behaviours in real-time. The knowledge not only describes game agents’ behaviours,

but also is the foundation of planning and learning for game agents. It affects the efficiency

and correctness of agents’ behaviour control in real-time.

As Sowa [Sow00] defines it, knowledge representation is a multidisciplinary subject that

applies theories and techniques from three other fields:

1. Logic provides the formal structure and rules of inference,

2. Ontology defines the kinds of things that exist in the application domain,

3. Computation supports the applications that distinguish knowledge representation from

pure philosophy.

Agent is a term borrowed from philosophy, meaning an actor or an entity with goals and

intentions that brings about changes in the world [Bry01]. In our research project, game

agents are NPCs and PCs. We designed a knowledge representation to describe game agents

and relationships among them. In detail, the knowledge representation is used to describe

behaviours of game agents.

42

4.3 Behaviour Design

In general, the term Behaviour refers to an object’s action or reaction. Behaviour repre-

sentation is the foundation of the description of the whole game system. A game agent’s

behaviours are related to its environment which refers to its neighboring game agents. When

people are playing games, game agents’ behaviours is presented as the result of interaction

among PCs and NPCs. However, these behaviours are not generated in real-time but defined

off-line. Each game agent has a set of predefined behaviours represented by certain knowl-

edge representation. In real-time, planning and learning mechanisms select and combine

appropriate behaviours for game agents.

We used Behaviour-Based AI (BBAI) as a reference to the behaviour design in our sys-

tem. BBAI is a methodology concerning modular decomposition of behaviours. Brooks’s

subsumption architecture was one of the earliest attempts to describe a mechanism for de-

veloping BBAI. The BBAI is the decomposition of intelligence into simple, robust, reliable

modules [Bry03]. In Brooks’s original proposal, these modules are finite state machines

organized into interacting layers, which are themselves organized in a linear hierarchy or

stack [Bry03]. However, the BBAI is not suitable for complicated behaviour reasoning and

multiple agent systems, since it is strongly related to reaction planning.

Based on the idea of BBAI, we consider that complicated game agents’ behaviours could

be depicted as a combination of several simple behaviours.

• It is a modular design methodology which is akin to object-oriented design. Game

designers can create different complex behaviours based on a set of basic behaviours.

• Our agent planning and learning mechanisms operate between modular behaviours.

• The decomposition of complex behaviours into atomic behaviours can be easily ma-

nipulated by game designers and engineered by game programmers.

43

4.4 Procedural Knowledge and Behaviour Design

The game environment is much simpler than the real world in which we live. However, it is

still too dynamic to anticipate all circumstances. Game knowledge has to be represented in

certain particular concise format. We have to consider how to arrange simple behaviours to-

gether when design games. This is an important distinction because representing knowledge

is only useful if there’s some way to manipulate the knowledge and make inferences from it

[Jon08]. By finding the relevant planning and learning procedures, game agents may stand a

better chance of achieving its goal effectively. So, the way to represent the knowledge has to

be based on the most effective way to use it. Since Gameme uses a procedural planning and

learning system to control game agents, representing knowledge as procedures is a suitable

solution.

4.5 Key Steps for Defining Behaviour

In this section, we discuss several key steps that must be taken when people define behaviour

based on procedural knowledge. Designing intelligence for game agents requires identifying

the behaviour, finding out how and when to do it, and what is necessary to do.

4.5.1 Identify the Behaviour

When we design a behaviour, it is not enough to observe the action or reaction of game

agents. In addition, it is important to identify the behaviour. Moreover, we must have an

explainable relationship between the cause and result of the behaviour. In some situations,

cause and result behaviours could be added to the procedure.

4.5.2 How

Knowledge about “how” to do something is procedural knowledge [TA98]. It is about the

procedure used to carry an action out. It is an intuitive way to describe a plan for game

44

agents to react to their environment. The way to design each module in a procedure is a

process of behaviour decomposition.

Game designers can organize a set of simple behaviours into an execution procedure. For

example, in order to present “how a cat eats a fish”, we can describe that in order to “eat

the fish”, the cat has to follow a course of behaviours which are “look for the fish” and “find

the fish”. This procedure can be described as in Figure 9.

Figure 9: The Behaviour “How a cat eats a fish ?”

Using procedural notion for behaviour design is not only appropriate to off-line game

design but also particularly important for reasoning about how to achieve a given goal. By

directly setting the particular procedure in game design, the game agent can effectively access

steps for particular goals in real-time game rendering.

4.5.3 What

After the behaviour decomposition, there is a series of behaviours listed in a procedure. We

can consider each behaviour in the procedure as a module. Game designers have to decide

what granularity that each module in the procedure would be.

The way to decide Level of Detail (LOD) of each module in a procedure is a process of

behaviour specification. LOD was introduced by Clark [Cla76]. This technique describes how

to represent a 3D object at different levels of complexity as it moves away from the viewer

or according to other metrics. The metric we used to specify the LOD of each module in a

procedure is making each module have the same level as the submodule under it.

The fundamental problem of using a modular approach is deciding what belongs in a

module—how many modules should there be, how powerful should they be, an so on [Bry03].

It is a design issue also occurs in Object Oriented Design (OOD). Different people might

45

have different ways to decompose behaviours. In general, we suggest that game designers

should decompose behaviours based on the same LOD. For example, we can have another

way to describe “how a cat eats a fish” in Figure 10. However, the new behaviour “MEW”

does not represent a necessary step in the procedure of “How a cat eats a fish”. Or, we

can say the behaviour “MEW” does not have the same LOD as other behaviours in the

same level. The solution is we could add the behaviour “MEW” as a sub-behaviour in the

behaviour “Find the Fish”.

Figure 10: Another Way to Decompose “How a cat eats a fish ?”

4.5.4 When

The way to decide transition conditions between behaviours is a process of rules definition.

Game designers have to point out when one behaviour has to be executed or transmit to

the next behaviour. It is a simple decision-making and reaction planning process. At any

given time, we have to explain under what circumstances the game agent need to do another

action.

Since our consideration is to reduce the complexity in the design level and provide a

powerful real-time planning and learning agents’ learning and planning architecture, we use

rules to control the decision making process between behaviours. Each rule contains an

antecedent and a consequent.

IF antecedent THEN consequent

For example, there is an arrow between two modules in Figure 9. The arrow denotes that

there is a transition between the two behaviours. The responsibility of a rule is behaviour

46

arbitration. Game designers can specify that the rule for behaviour transition between

behaviours. For example, we have three rules (R1, R2, and R3) to arbitrate three behaviours

in the Figure 9.

• R1: IF the cat feels hungry THEN the cat looks for the fish.

• R2: IF the cat smells the fish THEN the cat goes to the fish position.

• R3: IF the cat arrives the fish position THEN the cat eats the fish.

4.6 Modularity of the Behaviour Design

Modularity is one of the most important aspects of procedural behaviour design. It simplifies

the off-line game design process, and provide explicit information for game agents’ behaviour

control in real-time.

• Behaviours in different modules can be developed and maintained as a way of separating

concerns.

We could have two different GOBTs (see Section 5.6) “Eat” and “Fight” for an agent,

which describe detail procedures (subgoals) for achieving goals eating and fighting.

• In addition, knowledge in modules demonstrates maintainability by enforcing logical

boundaries between components in the same modules.

If an agent has a series of goals, these goals can be approximately classified to sev-

eral categories based on their trigger properties. For example, in Section 7.6, the

agent Xman has Goals “Idle”,“Eat” and “Rest” grouped together and goals “Evade”,

“Defense” and “Fight” grouped together. The trigger property we used for this dis-

crimination is whether or not the monster is visible. These two groups of goals are

stored in two priority queues, and ordered based on priority factors of itself. Also, the

details of each goal can be established and maintained separately.

47

• This explicitly modular structure gives the interpreter in the planning level and the

coordinator in the learning level a clear idea of how to interact with different modules,

and what it can get from modules in real-time data processing.

For example, given a set of Strategies for a team of game agents to defeat the adversarial

team, the coordinator can evaluate the current situation of the team, and decide which

Strategies has the best match for the team to defeat the opponent.

• The modular knowledges can be combined and decomposed either in off-line or in

real-time.

As different features of game agents, a set of basic behaviours knowledge modules can

be selected and combined in order to represent different game agents. Especially, in

real-time, modulars can be retrieved from existing modules in order to create new

knowledge. For example, the Experience record that we discussed in the learning layer

is created in real-time by combining several knowledge modules. The bidirectional arcs

in Figure 37 on page 103 between Experience and other knowledge modules indicate

the composable aspect of modular knowledge.

• Modules in our system have a pure logical knowledge format.

The knowledge representation in our system is kept as its own format without any

knowledge of the 3D graphics engine to which it is connected. This is a consideration

for routine system development and future system extension and maintenance. So the

game can be debugged and tested within the AI module initially; if the tests pass,

3D graphics engines can be connected for full game testing. For example, in Figure 6

on page 35, we present the Adapter pattern used in our program in order to have

communication between pure AI logic modules and the 3D graphics engine.

48

Chapter 5

Goal Oriented Behaviour Design

The procedural behaviour design is the starting point for describing game agents. We have

to provide a clear indication of the guiding principle for designing game agents. In this

chapter, the goal oriented design approach is incorporated into our design methodology. In

addition, we provide a new data structure called Goal Oriented Behaviour Tree to realize

our idea about goal oriented design for game agents.

5.1 Goal and Behaviour

First, we have to provide a clear idea about the relationship between the terms goal and

behaviour. Basically, game designers design possible goals and behaviours for game agents.

And, all in-game goals and behaviours are based on game agents’ pre-designed knowledge. In

real-time, goals that a game agent possesses are affected by its knowledge and environment.

Game agents’ pursuit goals are embodied in their behaviours which are responses to the

environment in real-time. When a discrepancy is revealed in a game agent’s current goal

and the state of the environment, the game agent’s current goal changes. Or, we can say

the reason of changing goal is the conflict between the game agent’s current goal and the

discordant voice from their environment. Along with the changes of goals, game agents’

next behaviour would be changed. On the other hand, after perceiving the environment,

49

if there is no obvious reason to change their current goal, the game agent’s reaction to the

environment is the next behaviour toward its current goal.

5.2 Goal Oriented Design and Procedural Behaviour

Design

Game design is a goal-oriented design since playing a game requires achieving goals. The

intuitive way to design a game is to set goals for players to achieve. The goal oriented design

can be the starting point of the entire game design. We designate goal oriented as the key

point in modeling game agents’ behaviour.

We introduce Goal Oriented Behaviour Design (GOBD) as a methodology for construct-

ing intelligent game agents. Game development is similar to component based development

which combines large-grained components, running in their own threads of control, into

large-scale applications. A goal in a game can be divided into a serious of sub-goals. And,

the process of designing a game consists of a serious of subsystem design, and each subsystem

has its own goal.

In engineering, an autonomous device can be goal-oriented; in artificial intelligence, agent

rational behaviour is also goal-oriented. In order to pursuit a goal, game agents have to im-

plement a series of actions toward their purpose. These actions can be arranged in procedures

as game agents’ behaviours.

The procedural knowledge provides the essential model for creating behaviour for game

agents. However, it is not adequate to depict intelligent game agents and their environment.

For example, there are different ways to achieve the same goal. We cannot simply list all

these procedures because this would lead to real-time reasoning inefficiency for game agents.

A suitable data structure is needed to arrange goals. So, we provide a symbolic, behaviour-

based, goal oriented and autonomous model, GOBT for game agents’ behaviour design.

GOBT is a tree data structure created in off-line game design. The GOBT can be

decomposed or combined as requirements of game agent’s prototype. The root of a GOBT

50

is a particular goal for a game agent. A whole GOBT describes how to perform sets of

behaviours or subgoals in order to fulfill a certain goal. The unique data structure—GOBT

is discussed in Section 5.6. Parts of this chapter were originally published as [SG08a].

5.3 General features of GOBD

Goal Oriented Behaviour Design is an incremental process. GOBD allows combining top-

down and bottom-up aspects (top-down thinking and bottom-up acting [SP06]) to model

game agents’ behaviour. The key principles of GOBD are listed below.

• Goal identification

Goal identification is a process of looking for necessary goals for the game agent. It

is a top-down approach which starts by considering top-level goals. After determining

top goals, game designers have to decompose top goals to a sequence of sub-goals.

There may of course be more than one possible way of decomposing a goal. Identifying

essential goal decompositions is also very important. Game designers have to avoid

redundancy in goal identification.

• Top-down and bottom-up convergence

The GOBD obtains benefit from the combination of top-down and bottom-up princi-

ples. Goal identification is a top-down analysis process which designate the series of

subgoals for top goals. The bottom-up approach provides basic components of these

goals, constructing paths to achieve these goals.

• Modularity and hierarchy

GOBD inherits modularity approach from the procedural behaviour design. The mod-

ularity approach subdivides a goal into small components, and makes overlap among

components as small as possible. In addition, modularity offers benefits such as aug-

mentation and exclusion. Game designers can add new modules to an existing module

51

in order to extend additional behaviours to the game agents. In contrast, deleting

certain behaviours can simplify the behaviour procedure to achieve a goal.

In addition, the hierarchical approach is introduced into the GOBD. The hierarchical

approach distributes goals in a tree hierarchy. Higher level goals are more abstract

than lower level goals. Also, higher level goals are the consequence of achievement of

lower level goals. The hierarchical approach provides straightforward clues for game

agent’s behaviour control.

Game designers can combine behaviour design as modular and hierarchical approaches.

Modularity and hierarchy are two main design methodologies for game agents be-

haviours. They not only affect the design complexity of game agents, but also affect

the real-time planning and learning algorithms. Both game agents’ planning and learn-

ing are based on off-line design knowledge. These knowledge modules are retrieved by

planning and learning mechanisms in real-time. The behaviour design systematically

places knowledge in modules and hierarchical structures, which leads to explicit search-

ing mechanisms for planning and learning in real-time.

5.4 Atomic Components for GOBD

To design a complex structure, one powerful technique is to discover viable ways of de-

composing it into semi-independent components corresponding to its many functional parts

[FP99]. The design of each component can then be carried out with some degree of indepen-

dence of the design of others, since each will affect the others largely through its function

and independently of the details of the mechanisms that accomplish the function [FP99].

In this section, we introduce the basic component design for GOBD. It is the bottom-up

approach which construct components for intelligent agents.

The GOBD is influenced by Object-Oriented Design (OOD) techniques for objects and

their behaviour. Our design ideas are:

• All entities in a game are objects.

52

• Each object can have different actions.

• An action a can have several attributes with values.

• A state S is composed of object(s) in certain action(s) .

• A rule R denote the transition from one game state (antecedent) to another game state

(consequent).

• A goal G is triggered by a game rule.

• A GOBT consists of goals and states as its tree nodes.

However, GOBD applies techniques for building plans and decomposing behaviours that

are analogous but not identical to the OOD methodology for building inheritance hierarchy.

In GOBD, the behaviour hierarchies in GOBT denotes paths to pursuit goals. There is no

correspondence between the OOD notion of inheritance and the GOBT hierarchies.

We have to provide functionality to allow game designers to create various entities for

the game during the design process. We have to provide the functionality of dynamically

creating various classes in the underlying C++ source code. In our system, we defined seven

basic classes as below. These classes represent basic components for the GOBD. In detail,

combination of these classes in C++ code describe GOBTs for game agents.

• Class CGameObject

A game object can be any entity in a game. It can be a player, in game character or

simply a tree in the game.

We simulate the way of dynamically creating objects by using C++. The GameObject

class can be used to represent various entities in the game. Each type of entity is a

class; also it is a subclass of GameObject class. The GameObject class is a super class

for all classes defined in the system.

• Class CGameAttribute

53

Objects of Class CGameAttribute represent simple attributes of a game object; such

as color, brightness, position (x, y, z) etc.

• Class CGameAction

Objects of Class CGameAction represent actions of a game object, such as “Hidden”,

“Visible”, “Run”, and “Walk”. A game action consists of a number of game attributes.

For example, when an Game Object is Running, it has its own specific lighting, position

and other attributes.

Action = Attribute1 + · · ·+ AttributeN (N ≥ 1)

• Class CGameActionList

An object of Class CGameActionList represents a group of actions.

GameActionList = GameAction1 +GameAction2 + · · ·+GameActionN (N ≥ 1)

• Class CGameObjectList

An object of Class CGameObjectList represents a group of objects.

GameObjectList = GameObject1 +GameObject2 + · · ·+GameObjectN (N ≥ 1)

• Class CGameState

An object of Class CGameState represents state(s) of an object or a group of ob-

jects. For example, we can represent the fighting (GameAction) status of a monster

(GameObject) as an object of the Class CGameState.

GameState =


GameObject+GameAction

GameState = GameObject+GameActionList

GameState = GameObjectList+GameActionList

• Class CGameRule

Game rules consist of an antecedent and consequent in the form:

IF antecedent THEN consequent

54

Objects of CGameState class can be used to represent as antecedent or consequent in

game rules. The antecedent or consequent is a composition of game states by using

logic set operators AND, OR, NOT.

• Class CGameGoal

A game goal can be a node in the GOBT. Each game goal is associated by a game

rule.

• Class CGameGOBT

The object of Class CGameGOBT represents a GOBT which contains game goals.

• Class PriorityQ

In order to cooperate with game agents’ modeling and autonomous reasoning, we

design the Class PriorityQ. Objects of this class represent the Intentions of game

agents (Section 6.3.4) .

5.5 Hierarchy of the Goal Oriented Behaviour Design

Hierarchical structure is a traditional software engineering approach which makes software

design systematical and coherent. Many large systems can be decomposed as hierarchical

structures, including software systems. This is why trees and hierarchies appear so often

in software engineering. Using a hierarchical approach in the behaviour design can reduce

complexity of procedures. The data structure GOBT is a tree hierarchy which represents

game agents behaviours in the way of achieving goals.

The hierarchy structure helps game designers organize game agents’ behaviours in an

intuitive way. The decomposition of a goal into sequences of subgoals makes both game

design and programming easy and efficient. Conversely, a hierarchy can be used to collect

information for planning and learning. The hierarchy structure makes paths of access a goal

node in the tree explicit.

55

5.6 The Goal Oriented Behaviour Tree

We provide a symbolic, behaviour-based, goal oriented, and autonomous model, Goal Ori-

ented Behaviour Tree (GOBT), in Gameme. GOBTs are a graphical representations used

to denote complex game systems. The GOBT is a data structure created in off-line game

design. However, GOBT is not simply a data structure such as FSM or RBS. It is customized

for goal oriented behaviour design in game development.

5.6.1 Why GOBTs?

In order to fit the goal oriented nature of game design, we design the data structure GOBT

to describe game agents. The fundamental idea behind GOBT is that intelligent behaviour

can be created through a collection of simple behaviour modules; a complex goal can be

accomplished by a collection of simpler sub-goals. The GOBT captures fragments of be-

haviours and puts them in tree hierarchies, and describes how to perform a set of behaviours

in order to fulfill certain goals.

The GOBT is intuitively reactive in nature, meaning that, ultimately, the tree architec-

ture can simply map inputs to goals without planning. The basic premise of reactivity is

that we begin with a simple behaviour or goal at lower levels of GOBTs, and once we have

succeeded there, we extend with higher-level goals.

Translation of discrete behaviours into a GOBT and the subsequent integration of be-

haviours into the hierarchical structures in GOBT help us uncover problems with original

textual game design ideas. The GOBD gives game designers guidelines to follow for editing

all transitions between behaviours.

In addition, the GOBT is no less efficient than a well-written script. The clear AI logical

relationships presented in GOBTs is easier to introspect than scripting.

56

5.6.2 Formalization

A Goal Oriented Behaviour Tree (GOBT) has three components: a condition C, and goal,

G, and an action, A. A GOBT is written as a triple, (C,G,A). The condition and action of

a GOBT may both be GOBTs: thus GOBTs have a recursive structure. Here is the formal

definition:

A GOBT consists of either:

• a single node, which may be:

– a simple condition, C, or

– a conjunction, C1 ∧ C2 ∧ · · · ∧ Cn, or

– a disjunction, C1 ∨ C2 ∨ · · · ∨ Cn, or

– an action, A; or

• a tree, or triple, (C,G,A).

Furthermore, a node may be continuous, in which case it is marked with a star. For

example, B? indicates that B is evaluated continuously (see Section 5.6.3).

The basic logical relationship of a goal G and its condition C and action A is shown in

Figure 11. The diagram expresses the rules:

IF condition is TRUE THEN goal is TRUE ;

IF goal is TRUE THEN action is performed.

A GOBT may also be represented by a tree diagram. For this purpose:

• The triple (C,G,A) is drawn as a tree with root G (Goal), left subtree C (Condition),

and right subtree A(Action): see Figure 11.

• In general, each node is drawn as an oval, possibly with a name inside it.

In particular, a continuous node is drawn as a double-oval, possibly with a name inside

it.

57

Figure 11: The Basic Logical Relationship between Nodes in GOBTs

• A directed edge (upwards) refers to the link from a condition C of the node to the

node itself; a directed edge (downwards) refers to the link from a node to its action A.

Figure 12 shows an example of a GOBT. The node B1 is the root of the GOBT. If we

assume that the node B1 is the current goal node, then nodes B2 and B3 are conditions

of B1, and B4 is the action of B1. Furthermore, B2 is the goal node of the subtree in the

dashed circle; or we can say B2 is the root of the subtree. The corresponding expression,

according to the formalism, is:

((B5, B2, (B9, B6, B10)) ∨B3, B1, (B7?, B4, (B11 ∧B12, B8, B13))).

A GOBT may be executed. Informally, execution consists of the following steps:

1. Evaluate the condition and store the Boolean result in the goal.

2. If the goal is TRUE, then perform the action.

3. Return the result.

5.6.3 Properties

A GOBT is a data structure which has the following special properties.

58

Figure 12: The Structure of a GOBT

59

• The GOBT is a directed tree in which each node has exactly one parent. A GOBT

consists of a root and a set of zero, one, or more subtrees.

• There is exactly one root node in a GOBT. The root node of a GOBT should be a

goal G, and is the node without parents.

• A node except the root node can either be a goal G or a condition C or action A of its

parent.

• A leaf node in GOBTs has no successor.

• A continuous node has a corresponding Termination Condition (TC). Each continuous

node is continuously executed by single steps; in each step, the TC is continuously

evaluated. The continuous node is executed continuously only so long as its TC remains

FALSE. If the TC becomes TRUE, the continuous node is terminated, and the follow-

up node will be TRUE and executed. For example, B7 in Figure 12 is a continuous

node.

• An AND nodes have the same parent, have edges direct to their parent, and are

connected by arcs. The logical relationship between B11 and B12 in Figure 12 is

conjunction.

• A OR node is a node without an arc connected to other nodes with the same parent; if

we consider the nodes indicated as B2 and B3 in Figure 12, their logical relationship

is disjunction.

As well as specifying the tree-structure properties of GOBTs, we also have to consider

the logical rationality when constructing GOBTs.

• GOBT G1 is equal to GOBT G2 (G1 = G2) if and only if they have exactly same nodes

and structure.

• A Node N1 is equal to another node N2 (N1 = N2) if and only if they both have

same name and value. The node could be a goal node, a condition node or an action

node.

60

Figure 13: The GOBT with OR Action Nodes

• Usually, leaf nodes are states S (see Section 5.4). Using goal nodes as leaves is not

recommended in GOBTs. If so, the goal node is set to TRUE, and its condition and

action are set to NULL.

• Several condition nodes with the same parent can either be AND or OR nodes.

• Several action nodes with the same parent node can either be AND or OR nodes.

Especially, disjunction nodes have their special execution order.

For each goal G, game designers have to provide precise description to indicate its

actions A. Conjunction actions means these actions have to be executed synchronously.

For example, after fulfilling a goal, a game agent can dance and sing at the same time.

In the GOBT, nodes with value dance and sing are two conjunction action nodes.

On the other hand, if we do not specify execution order of disjunction action nodes, it

could lead to a confusing situation since there is no clear indication for which action

should be executed first. So, we define if there are several action nodes with the same

parent node are disjunction nodes, the execution order is from the most left node to

the most right node. For example, in Figure 13, action nodes are executed as the order

B3 → B4 → B5.

• A goal node could have no condition, action or both. In these situations, the link

connected the goal node and its condition or action node should be set as NULL.

61

5.6.4 Execution

We now consider the process of executing GOBTs more carefully. The execution of GOBTs

shows how a GOBT work in order to fullfill a goal (root). In off-line game design, execution of

GOBTs can be used to validate the designation of GOBTs. Game designers can test different

execution paths toward the root in GOBTs. In addition, executing GOBTs can create goal

execution orders of GOBTs off-line (see Section 6.3.3). Furthermore, goal execution orders

are stored as plans for the usage of real-time game agents’ planning and learning.

Informally, execution is performed as follows. Given a GOBT node N :

• if N is a simple condition, evaluate it and return the result;

• if N is a simple action, perform it and return TRUE ;

• otherwise, the node is a triple N = (C,G,A). In this case:

– execute C recursively and assign its value to G;

– if G is TRUE, then execute A;

– return G.

Formally, the procedure for execution is named exec, and the result of executing a node

N is the Boolean value of exec(N). Figure 14 shows its definition. Note that exec is called

recursively on both subtrees, ensuring that all nodes are processed. Figure 15 shows the

execution of the GOBT in Figure 12 by this procedure, assuming that all conditions yield

TRUE (all eval(N) functions return TRUE). Recursive calls of exec are shown indented. In

addition, if there is goal nodes without condition or action, functions eval(N) or perform(N)

returns TRUE in order to let the execution procedure proceed.

Here are some of the other possibilities for executing the GOBT of Figure 12:

• If B5 is FALSE, then B2 is set to FALSE, the tree rooted at B6 is not executed, and

action B10 is not performed. However, B3 is TRUE and therefore B2∨B3 is TRUE,

so everything else remains unchanged.

62

bool exec(N):
if N is a condition then

return eval(N)
else if N is an action then

perform(N)
return TRUE

else
let N = (C,G,A)
G := exec(C)
if G then

exec(A)
return G

Figure 14: Executing a GOBT

exec(B1)
exec(B2)

exec(B5)
B2 := exec(B5)
exec(B6)

exec(B9)
B6 := exec(B9)
exec(B10)

exec(B3)
B1 := exec(B2) ∨ exec(B3)
exec(B4)

exec(B?
7)

B4 := exec(B?
7)

exec(B8)
exec(B11)
exec(B12)

B8 := exec(B11) ∧ exec(B12)
exec(B13)

return B1

Figure 15: Executing the GOBT of Figure 12

63

• Assuming B1 is TRUE and B7 is FALSE, then B4 is set to FALSE, and the tree

rooted at B8 is not executed. No actions in the right subtree of B1 are performed.

• If either B11 or B12 is FALSE, action B13 is not performed.

We could also use the execution of GOBTs to generate execution orders (Section 6.3.3)

for GOBTs. For each GOBT, there could be more than one execution order. The number of

execution orders in a GOBT depends on the number of disjunction condition nodes. And,

it is notable that a set of conjunction nodes can only generate one execution order. For

example, there are two execution orders in Figure 16 for Figure 12.

We have to do some modifications in the exec(N) function in order to output execution

orders for GOBTs.

• We do not have to evaluate conditions (function exec(N)) as well as perform actions

(function perform(N)) since what we need is to output the name of each node in

execution orders.

• In practice, we have to assume all conditions are TRUE in order to let the exec(N)

function traverse the whole GOBT and generate execution orders.

• In addition, during the execution of the exec(N) function, each disjunction condition

node leads to a new execution order. For example, in Figure 12, nodes B2 and B3 are

list in two execution orders since they are OR nodes of the same parent. But, nodes

B11 and B12 are bonded together in one execution order since they are AND nodes

of the same parent.

• (B5 → B2 → (B9 → B6 → B10)) → B1 → (B7? → B4 → ((B11 ∧ B12) → B8 →
B13))

• B3→ B1→ (B7? → B4→ ((B11 ∧B12)→ B8→ B13))

Figure 16: Executing orders of the GOBT of Figure 12

64

Figure 17: Another GOBT Example

There is no lazy evaluation in the execution of GOBTs. Most languages use the following

equivalences (“lazy evaluation”):

P ∧Q ≡ if P then Q else false

P ∨Q ≡ if P then true else Q

Thus Q is not evaluated if P is false in P ∧Q or if P is true in P ∨Q.

However, this may cause problems in the execution of GOBTs. Consider the GOBT in

Figure 17, the interesting feature of this GOBT is that the conditions B2 and B3 both have

actions, B6 and B8. The designer might assume that both of these actions will be performed

before B4.

Suppose B5 and B7 are TRUE, action B6 is performed, and exec(B2) returns TRUE.

There is no need to execute B3 because we know that B2 ∨B3 is TRUE anyway. But then

action B8 will not be executed, even though B7 is TRUE. This the designer’s assumption is

incorrect if lazy evaluation is used.

A similar example could be constructed with a conjunction, B2 ∧ B3. In this case, the

question is whether B3 is executed when B2 is FALSE and we therefore know that B2∧B3

must be FALSE. In both of these examples, the key point is that B7 = TRUE does not

65

ensure that B8 is executed.

Furthermore, lazy evaluation might lead to incomplete execution orders generated for a

GOBT since it could not guarantee traverse each node in a GOBT when all conditions are

TRUE.

5.6.5 Editing

During off-line game design, operations of adding or deleting goals G or states S from

GOBTs happen all the time. In this section, we introduce basic editing operations for

GOBTs. These operations are embodiments of GOBD’s properties, such as exclusion and

augmentation. Game designers could add, delete, combine or decompose nodes of GOBTs

as the development of game scenario.

5.6.5.1 Add or Delete Nodes

Game designers can add or delete nodes from GOBTs. Since GOBTs have distinct logic

expression and execution procedure, game designers cannot simply add or delete nodes from

GOBT; at the same time, logic relationship among relative nodes (parent, sibling and de-

scendants nodes) should be considered in order to prevent confusion of the logic.

Here, we list different situations in deleting a node from a GOBT.

• Deleting a goal node means deleting a goal for a game agent.

– Deleting a root node means deleting a whole GOBT from the behaviour design

of a game agent.

– Deleting a goal node in a GOBT means cutting the whole subtree which has the

goal node as its root from a GOBT. For example, in Figure 12, if we delete the

node B2, it leads to delete the whole subtree which has B2 as the root.

• Deleting a condition or action node.

66

– If it is the only condition or action node of a goal node, we have to set the link

from goal node to this node as NULL.

– If it is a conjunction condition node or action node, the logic relationship should

be rearranged for its sibling nodes. For example, in Figure 12, if we delete the

node B11, the node B12 becomes the only condition node for the node B8. The

conjunction relationship no longer exists.

– If it is a disjunction condition node, one possible execution path to the goal no

longer exists. For example, if we delete the node B3 in Figure 12, the execution

order included B3 in Figure 16 should be deleted also.

– If it is a non-leaf condition or action node, we also have to cut all its descendants

nodes.

As in deleting a node in a GOBT, adding a node to a GOBT should consider the logic

effect on the structure of the GOBT. Here, we list situations of adding a node to a GOBT.

• It is not allowed to add a second root to a GOBT.

• If we add a goal node as a leaf node in a GOBT, links to condition and action of this

node should be set as NULL.

• Adding a goal node to be a non-leaf node in a GOBT, we have to add this node’s

condition and action nodes as well. Actually, it is the same as adding a new subtree

to the GOBT (see Section 5.7.2).

• Adding a condition or action node to a GOBT. We have to reconsider the logic re-

lationship with its sibling nodes. Game designers have to specify this node as either

conjunction or disjunction with its siblings.

5.6.5.2 Composition and Decomposition

In the previous section, we introduce situations of adding or deleting a node from a GOBT.

In this section, cases of composition and decomposition of GOBTs are presented. As usual,

67

game designers should still consider logic relationships among GOBTs which are composed

or decomposed.

Here, we present two most used composition cases for GOBTs.

• Matching Composition

The matching composition combines two GOBTs by adding a GOBT to be a subtree of

another GOBT based on a matching point. The matching point refers to the position

of a node in one of the GOBTs. This operation requires deleting a node in the matching

point of a GOBT and adding another GOBT at the matching point. In Figure 18, we

delete the node S2 in the GOBT G1, and add the GOBT G2 as a subtree to GOBT

G1 at the position of the matching point, giving the new GOBT G3.

The deleted node S1 and the subtree root G2 could be something in common. In

practice, game designers might need to extend a GOBT by changing a condition or

action node to a goal node. The matching composition could be the choice. For

example, from Figure 26 to Figure 27, game designers delete the node S5 in Figure 26

and add the new GOBT with goal node G4 as the root. Nodes S5 and G4 has the same

value, but different node type. By using the matching composition in GOBTS, game

designers extend the GOBT For the purpose of describing more complicate behaviour

of game agents.

• In-order Composition

In-order composition occurs when several GOBTs are used to describe several different

goals. One goal has to be processed after the accomplishment of another goal. The

solution is to create a new GOBT, and a new node will be created as the root of the

new GOBT. The root of the new GOBT represents a new goal.

In-order Composition: if we have GOBTs G1 and G2, then we can con-

struct a new GOBT (G1, G, G2).

In Figure 19, the GOBT G2 has to trigger after G1 (GOBT with root G1) is executed.

Composition consists of creating a new GOBT with new root node G. The GOBT G1

68

Figure 18: The Matching Composition

69

Figure 19: The In-order Composition

becomes the left subtree of the root G and the GOBT G2 becomes the right subtree

of the root G.

5.6.6 Traversal

Traversals of GOBTs offer search guideline for game agents behaviour control. The traversal

procedure in a GOBT corresponds to the exec function in Section 5.6.4 which visits each node

in a GOBT. In this section, we give a detail description for two basic operations in GOBT

traversals. Normally, these two traversals operations work together to get the autonomous

search to work.

70

• Level Visiting

This operation visits conditions of a goal node successively. Since AND nodes and OR

nodes represent different logic relationship for nodes which have the same parent node,

we discuss two situations in the level visiting.

Since nodes B2, B3 and B4 are AND nodes, the level visiting orderis : B1 → B2 →

B3→ B4 in Figure 20. If there is a condition that is FALSE, the traversal terminates

and returns a FALSE value to the goal node B1. If all conditions are TRUE, the goal

node is set to be TRUE ; and the action node Bm is performed.

IF (B2 ==TRUE AND B3 ==TRUE AND B4 ==TRUE)

THEN (B1 is TRUE)

AND (perform Bm)

Nodes B5 to Bn are OR nodes, so each OR node corresponds to a execution order. If

one of the OR node is TRUE, the goal node B1 is set TRUE and action node Bm is

performed. For example, the node B5 is a OR node, so there is an execution order for

the GOBT in Figure 20:

IF (B5 ==TRUE) THEN (perform Bm)

• Depth-order Visiting

In the depth-order visiting, we always attempt to verify that the current goal node is

TRUE. So we have to start accessing the condition node of the current, and recursively

verify all conditions/sub-conditions nodes of the goal node are TRUE. If there is a node

is FALSE, the traversal is terminated and returns a FALSE value to the action node.

Figure 21 indicates this visiting process. In order to verify B1 is TRUE, we have to

start with B2; for B2, we have to check B5 and so on checking B9. If B9 is TRUE,

then B5 is set to be TRUE and B10 is executed, then B2 is set to be TRUE, and

finally, B1 is set to be TRUE.

71

Figure 20: The Level Visiting

Figure 21: The Depth Visiting

72

5.6.7 AI Nature of the GOBT

In this section we discuss the key reasons about how game AI developers can benefit from

the form of hierarchical logic of a GOBT.

The GOBT is an agent control structure that directs the agent towards a goal in a manner

that takes into account changing environment circumstances. Every node except the root

is the regression of its parent node through the action node linking to it. It matches the

goal oriented design for game scenarios in working backward from a goal condition; a goal’s

condition is its left children. It is executed by searching for the shallowest True node and

executing the result nodes linking to nodes; a goal’s result is its right children.

In addition, the GOBT is a simple automatic system which has the ability of regressing

conditions through continuous nodes. Initially, the termination condition (TC) is FALSE

for a continuous node. The GOBT keeps evaluating the TC in each step. If the TC keeps

being FALSE, no further execution for the follow-up node. The game agents still executes

the action denoted by the continuous node. Once the TC becomes TRUE, the game agent

turns to execute the follow-up node of the continuous node.

The GOBT provides a solution for state-space search which offers the basic search mech-

anism for game agents’ planning and learning. Each node in the GOBT represents a goal

or state. The GOBT decomposes the root goal state into sequences of subgoals. Execution

orders for each GOBT indicates the paths of traversing the tree in order to accomplish the

root goal. For condition nodes, the logical relationship with its sibling, parent and result

nodes shows what would be taken as the next action in the execution order. The depth and

level traverses provide different possible operations for search in GOBTs.

In addition, the AND-OR nodes used in the GOBT extends the goal state-space search

to achieve more problem reduction. Successors of AND nodes represent goals to be jointly

achieved, and successors of OR nodes represent different ways of fulfilling a goal. The

AND-OR nodes allow us to represent both cases in which a whole set of subgoals should be

achieved, and in which any of subgoals could achieve a goal.

Furthermore, traversals of GOBT directs real-time planning and learning mechanisms to

73

find right paths in achieving goals. The level traversal could guarantee all AND nodes are

TRUE before the upper level goal node becomes TRUE. The depth traversal could ensure

goal regression into the root goal node.

The GOBT is a hierarchical logic model which is customized for game development. We

can extend the usage of GOBTs to control complex agents. It is arguable that the very same

behaviours could be built with a FSM as the GOBT example. Indeed, FSMs have become

extremely popular over the last decade in game industry, and have been used to build some

successful games. However, FSMs still have problems, and game developers are seeking more

reliable logic models.

• GOBTs can have multiple conditions and action nodes. With OR and AND nodes,

GOBTs can describe complex logical relationship in more simpler hierarchical structure

than FSMs.

• GOBTs are deliberately based on the natural aspect of the tree traversal. They are

capable of searching ahead in real-time, and provide different solutions for agents’

behavioural reasoning. On the other hand, an FSM is a linear automation, and cannot

provide long-term goal planning.

• GOBTs are suitable for design logic in layers and modules. It is similar to providing

options for game designers to design logic in different levels of detail. It can avoid

agents’ behavioural planning and decision being affected by minor animation details

in games.

• GOBTs provide flexibility in scale. The composition and decomposition of GOBTs

is much easier than that of FSMs. FSMs, even hierarchical ones, are not suitable for

many levels of logic.

74

5.7 Example of generating GOBTs

5.7.1 The Generation of GOBT “Eat”

This section describes the creation of the GOBT “Eat” by following three steps in Figure 23.

This GOBT describes the procedure of eating food for a game agent Xman. First, the Xman

has to look for food. And, after finding the food, he goes to the food position and eats it.

1. The first step is to decide main goal and subgoals.

2. The second step is to expand the goal sequence by adding rules and states to generate

the GOBT.

3. The third step is to generate execution order for a GOBT.

Besides normal nodes, we also define continuous nodes in this GOBT. For instance, the

S3 node in GOBT “Eat”. It keeps looking for food. The TC for this node is “find food”.

If so, the node G2, which is the follow-up node in the execution order, becomes TRUE.

Figure 22 on page 77 shows the resulting GOBT.

5.7.2 Extensions of GOBT “Eat”

We prefer modular design for game agents’ behaviour. GOBTs suits for modular design and

maintenance. Game designers can create different GOBTs individually, and combine GOBTs

when it is necessary. In addition, nodes in a GOBT can be replaced by other GOBTs as the

requirements of behaviour extensions.

For example, after game designers create the GOBT “Eat” as Figure 22, they may think

about adding two more conditions before Xman is ready to eat food. Xman has to check the

enemy status; indeed, he has to feel hungry. So, game designers remodel the original GOBT

as in Figure 24 on page 78. There is a new node (the node “G”) is created to be the root

of the GOBT “Eat”#1. And, the original GOBT “Eat” could be added into the GOBT

“Eat”#1 as a module. Furthermore, if game designers want to change the state “S4” to a

75

goal “G4” in order to have more actions on Xman. The GOBT “Eat”#1 could be changed

as GOBT “Eat”#2 in Figure 27 on page 80. If the Xman checks there is no Monster around,

he should be in Idle status.

5.8 Conclusion

Taking inspiration from robotics, we present an approach of GOBD which can be used in

agents’ behavioural design. GOBTs and related goal processing architecture allow game

agents handle goal-directed behaviours gracefully. The GOBT is one of the sub-modules

of the core AI module in Gameme. Inside Gameme, agents are capable of planning and

learning their own goals based on environmental information. Agents are directed toward

a goal based on continuous evaluation of perceptual inputs. We believe the GOBT data

structure and the goal processing architecture with the arbitrator can be applied to a wide

range of game types.

76

Figure 22: The Generation of the GOBT “Eat”

Goals for “Eat”:
G1: Xman eats food
G2: Xman goes to food
G3: Xman searchs food
G3 → G2 → G1

Rules for “Eat”:
R1: If food is reachable, eat it
R2: If food is visible, go to it
R3: If there is no food, search for it

States for “Eat”:
S1: eating food
S2: go to food (TC=arrive food position)
S3: search for food (TC=find food)
S4: there is no food

Execution Order (Section 6.3.3) :
S4→ G3→ S3∗ → G2→ S2∗ → G1→ S1

Figure 23: The GOBT “Eat”

77

Figure 24: The GOBT “Eat” #1

78

Figure 25: The Full Picture of GOBT “Eat” #1

New goals and states for the GOBT “Eat”#1:
G: Xman is ready for food
S5: There is no Monster around
S6: Xman feels hungry

New rule for GOBT “Eat”#1:
R: If “there is no Monster around” ∧ “Xman is hungry”,

Xman is ready for food
Execution Order (Section 6.3.3) :
(S5 ∧ S6)→ (G ∧ (S4→ G3→ S3∗ → G2→ S2∗))→ G1→ S1

Figure 26: New Goals and States for GOBT “Eat”#1

79

Figure 27: The GOBT “Eat” #2

New goals and states for the GOBT “Eat”#2:
G4: There is no Monster around
S7: Xman checks whether Monster is in surrounding area
S8: Xman is Idle

New rule for GOBT “Eat”#2:
R4: If Xman checks there is no Monster around, he is in Idle

Figure 28: New Goal, States and Rule for GOBT “Eat” #2

80

Chapter 6

Game Agent Modeling

Modeling is the act (or process) of identifying appropriate phenomena and concepts and of

choosing appropriate abstractions in order to construct a model (or a set of models) which

reflects appropriately on the universe of discourse being modeled [Bjo07]. When modeling

game agents, we analyze the domains of game agents, and identify characters of game agents.

Finally, we specify the abstract model of game agents. The abstraction of game agents that

we describe in this chapter is not for a specific game: it can be used in modeling characters

in many games.

6.1 The Nature of Game Agents

The term “agent” was introduced into the computer industry in the 1990s. An agent is a

system that tries to fulfill a set of goals in a complex, dynamic environment [Mae94]. An

agent is situated and involved in the environment: it can sense and act upon the environment.

An agent’s goals can take many different forms: they can be “end goals”, or particular states

the agent tries to achieve; they can be a selective reinforcement or reward that the agent

attempts to maximize; they can be internal needs or motivations that the agent has to keep

within certain viability zones, and so on [Mae94].

Game development has as a main goal the building of intelligent entities. It turns out

81

that such entities are very important in the game world. We consider these entities as game

agents. As the game industry has developed, the agent concept has been associated more and

more with game characters’ design. We already use the term game “agents” to designate

NPCs and PCs. Usually, PCs are characters controlled by human players. By contrast,

NPCs are in game characters whose behaviour is not controlled by human players.

A PC may be based on a real person or a fictional person. Behaviours created by different

human players have huge differences. PC’s behaviours have a certain level of uncertainty.

However, PCs’ real-time behaviour are still traceable. In order to confine PC’s behaviours,

game designers might provide a set of basic behaviours to human players. Human players can

arrange these basic behaviours to create complicate behaviours in real-time. For example, in

fighting games, human players can combine different basic KongFu actions together to form

complex actions.

A NPC is a game character designed by game designers off-line. It may have similar

basic behaviours as PCs in the same game. However, the NPC is completely controlled by

the game in real-time. In our system, the core AI module control NPCs’ behaviours. The

AI module has the capability to provide real-time planning, learning, and team behaviours

control for NPCs. With the knowledge of the basic behaviour set, the AI module can find

the correct reaction for NPCs in order to interact with PCs.

Nowadays, simple code and simple data structures are not sufficient for game characters.

Game agents are parts of the virtual reality world, know things, and carry out reasoning.

Both knowledge and reasoning are important for game agents because they enable intelligent

behaviours that would be very hard to achieve otherwise.

We have already discussed the knowledge representation: Goal Oriented Behaviour De-

sign (GOBD) for game agents. The GOBD provides the general format to describe knowledge

for game agents. Game agents can benefit from knowledge expressed in the form of GOBD

and recombining information to suit different purpose. Also, game agents can combine gen-

eral knowledge with current percepts to infer hidden aspects of current state by reasoning.

82

In addition, during the interaction with the environment, game agents can learn new knowl-

edge about their environment and adapt to changes in the environment by updating relevant

knowledge.

We use the agent concept for game characters as a tool to analyze and design the game

system. So, both the game environmental factors and agent theory are counted into the

game agent modeling. In this chapter, we provide a brief explanation of how to model game

agents based on GOBD.

6.1.1 The Environment of Game Agents

Usually, a game is a virtual reality world which consists of different game agents. Game

agents interact with each other and generate a vivid game environment. The behaviour is

the result from the interaction dynamics between the agent and the environment [Ste94]. In

our discussion of the modeling of the game agent, we have to start by specifying the game

environment.

In general, game environment is different based on miscellaneous game genres. However,

PCs and NPCs are main entities in the game environment. We consider the environment

for a game agent to be other game agents’ activities which affect the game agent’s activities.

The environment is the main factor that leads game agents to change their goals. In detail,

NPC’s action induce the human player change PC’s action. On the other hand, the PC’s

action result in the NPC’s action change.

In this research project, we pay particular attention to NPCs’ behaviour control. PCs’

behaviour is the decisive factor in game environment which affects NPCs’ behaviour. In

detail, we create a fighting game environment that we use throughout the main testing cases

in this research project.

83

6.2 Characters of Game Agents

An intelligent game agent operating in a game environment will often need to interact with

other game agents to achieve its goals. Agent modeling—the ability to model and reason

other agents’ knowledge, beliefs, goals, and actions—is central to intelligent interaction.

If we are to understand the interactions of a large numbers of agents, we must first be

able to describe the capabilities of individual agents [Hol95]. Nwana provides a typology for

software agents [Nwa96]; for example, agents can be classified based on mobility, deliberative

or reactive, roles.

Since each game type has its own strengths and deficiencies, the best way for modeling

game agents is to use hybrid agents modeling. The hybrid agent combines two or more

agent philosophies within a single agent. The key hypothesis for having hybrid agents or

architectures is the belief that, for some applications, the benefits accrued from having the

combination of philosophies within a singular agent is greater than the gains obtained from

the same agent based entirely on a singular philosophy [Nwa96]. These philosophies can

be flexible based on different game types. Different game types refer to different game

environment for game agents. The flavor of the game environment directly affects the design

for game agents.

After reviewing different agent philosophies, we include autonomous, adaptive, and col-

laborative philosophies in the modeling of NPCs in our project. These agent philosophies

often relate well to the way we naturally think about complex tasks, and thus agents can be

useful to model such tasks in games.

• Autonomous agents are systems that inhabit a dynamic, unpredictable environment

in which they try to satisfy a set of time-dependent goals or motivations [Mae94].

An autonomous agent is a system situated within and part of an environment that

senses that environment and acts on it, over time, in pursuit of its own agenda and so

as to reflect what it senses in the future [FG96]. Such agents can produce everyday

phenomena such as ant colonies, traffic jams, stock markets, forest ecosystems, and

supply chain systems [Ode00].

84

• Adaptation implies sensing the environment, discovering the problem solving strategies

and reconfiguring in response. Agents are said to be adaptive if they improve their com-

petence at dealing with these goals based on experience [Mae94]. It can be the choice

of different problem-solving-rules when agents face alternate interaction characters.

• Collaboration happens when game agents are grouped and working together against

antagonistic game agents.

We use these philosophies in the modeling of NPCs. This classification allow us to employ

AI methodologies to agents which creates an in-game complex environment.

6.3 Modeling of Game Agents

In developing an agent to act as a gaming NPC or PC, we are particularly interested in

developing a suitable structure for supporting varied in-game behaviours. The BDI agent

model (see Section 2.6) consider agents to have beliefs, desires and intentions. In order to

cooperate with game development and GOBD design methodology, we consider each game

agent is a BDI-like agent which consists of four basic components (B, D, I, P) (beliefs,

desires, intentions, plans) connected by an interpreter as showed in Figure 29.

6.3.1 Beliefs

The first component is a database of beliefs B, or knowledge. It is the information of the

game agent itself and its opponents. Each agent has its own beliefs including external and

internal beliefs. External beliefs consist of other agents’ knowledge which affects behaviours

of the agent. External beliefs comprise the information perceived by the game agent. Or, we

can say external beliefs form the environmental information for the game agent. The internal

beliefs form the internal factors of the agent. In addition, for a team of game agents, external

beliefs refer to the opponent’s status; internal beliefs refer to the game agent’s own status.

A game agent’s current external and internal beliefs are used as parameters of both the

planning and learning algorithms. The separation of internal and external beliefs for each

85

game agent comes from the nature of game agents. Game agents have their current desire to

pursue a goal. However, environmental factors could affect their next reaction; furthermore,

change their intentions. The internal beliefs represents game agents’ personal status. It

could help the planning and learning algorithms to find the most suitable solution for game

agents. For example, when a group of game agents fight with the PC, the PC launches an

all-out offensive. Since each game agent has different level of power, agents might choose to

fight (high power), defense (medium power) or escape (low power). So, the external beliefs

refers to the PC’s fighting status which is offense; the internal beliefs refer to each game

agent’s power level which is high, medium or low power .

6.3.2 Desires

The second component is a set of desires D, or goals. Goals are the embodiment of a

game agent’s personality. Each game agent has a number of embedded goals. These goals

were prototyped by game designers. They are predefined off-line and take forms of GOBTs.

Conventionally, we use the root name of GOBT as the goal name. Game agent’s current goal

is its motivational state of action. If a game agent has a set of goals, these goals represent

the availability of real-time behaviours that planning and learning algorithms can retrieve.

Goals provide restrictions for game agents in order to achieve consistent behaviours. We

restrict each agent to pose only one goal at a time. Planning and learning algorithms decide

whether or not to change the game agent’s current goal in real-time. For example, a game

agent must choose either to sleep or to eat even if both of these goals are desirable.

The idea of specifying desires for each game agent tightly is consistent with the GOBD.

Game designers can start modeling game agents by defining goals and GOBTs. The com-

ponent plans is generated automatically after the creation of GOBTs. One extra task is to

specify goal priorities for the purpose of creation the component intentions.

86

6.3.3 Plans

The third component is a list of plans P , or goal execution orders. Plans are abstracted from

GOBTs. They are in the form of a set of goals or states in sequences. Plans are associated

with GOBTs. For example, we list two plans (execution orders) for a GOBT in Figure 16

on page 64. Each plan is a list of subgoals or states toward achieving a particular goal.

Each GOBT contains execution orders which are sets of behaviours or goals, which in turn

are the execution sequence of achieving the highest level goal (the root of the GOBT). The

execution order supplies quick, simple control in situations where actions reliably follow one

from another. For each GOBT, there can be several execution orders to indicate different

ways to achieve the same goal. For example, in Figure 12 on page 59, in order to achieve the

root goal B1, we could start from either leaf node B5 or B3. Consequently, goal execution

orders could be different for each leaf node.

6.3.4 Intentions

The final main component is a set of priority queues of intentions I, or priority factors.

A priority queue for an agent indicates that only one desire (goal) is actually driving the

agent’s activity at a time, but multiple desires (goals) may be on the priority queue. Different

priority queues represent different intentions for game agents. For example, in Figure 32 on

page 97 and Figure 31 on page 97, based on the visibility of Monster, the game agent Xman

has two priority queues to indicate different intentions in different circumstances. Priority

factors in the same priority queue represent importances of goals for an agent. In Figure 32,

different desires have different priority values.

6.3.5 Formal Representation of Knowledge Modules

Formally, knowledge modules used in game agents’ planning and learning are defined as

below. We assume that there are N game agents in a team, and M records in the experience

database.

87

Figure 29: The Model of Game Agent

First, beliefs, desires, intentions and plans (B,D,I,P) are the four basic modules used to

model a game agent. These four modules contain not only off-line design information but

also real-time statuses for a game agent.

• A set of beliefs, B = {Be, Bi} (Section 6.3.1).

Be refers to external beliefs; Bi refers to the internal beliefs.

• A set of desires, D (Section 6.3.2)

• A set of intentions, I (Section 6.3.4)

In the processes of learning and planning, a team of game agents intentions can be

specified as Cartesian products
∏
Ik,

∏
I

′

k and
∏
I

′′

k (k ∈ [1, N]) which are outputs of

planning level, first learning revision and second learning revision.

88

• A set of plans, P . (see Section 6.3.3)

In order to cooperate with game agents learning precesses, we extended basic knowledges

modules to these three modules as below. Modules experience, strategies and behaviour pat-

tern rearrange game agents’ real-time status as referential information for learning processes

and enhance game agents behaviour from individual behaviour to team behaviour.

• A set of scalar experience, Ej (j ∈ [1,M]); A set of reward values, γj (j ∈ [1,M]) (see

Section 8.4).

In the learning level, in order to process game agents learning, we add an additional

knowledge module experience which is regarding a team of game agents’ previous per-

formance. Records in the experience serve as the source task for the transfer learning.

• A set of production rules strategies, S. (see Section Figure 8.4.2)

Strategies are used in the learning process for game agents adaptive learning. A set of

production rules is predefined by game agents in order to control team behaviours in

the adaptive learning.

• The behaviour pattern is denoted as ω. (see Section Figure 9.3.1)

Behaviour patterns are reference factor for game agents’ emergent learning. It is ab-

stracted from game agents’ real-time performance during a period of time. It is a

supplementary knowledge module which is abstracted in real-time and used to opti-

mize game agents behaviour in emergent learning.

6.4 Conclusion

We present a methodology to model game agents in this chapter. This methodology is based

on procedural behaviour representation and GOBD. In order to add basic autonomous ability

to game agents, we adopt the idea of BDI-like agent design. Each game agent has four

basic knowledge components, beliefs, desires, intentions, plans, or showed as (B,D,I,P).

89

Furthermore, in order to cooperate with further game agents’ planning and learning, we

defined a list of additional knowledge modules, such as experiences E, strategies S and

behaviour patterns ω. These modules are all based on those four basic components in game

agents. In fact, game agents’ planning and learning processes described in Chapters 7,

8 and 9 are processes of manipulating these knowledge modules for the purpose of game

agents’ behaviour control.

90

Chapter 7

The Procedural Planning

As we discussed layered planning and learning in Section 3.5 and showed in Figure 8 on

page 39, the planning layer is the lowest layer in the Layered Planning and Learning structure.

This layer focuses on individual game agent’s planning. We provide a detailed explanation

of game agents’ procedural planning in this chapter. Parts of this chapter were originally

published as [SG08b] and [SG09c].

7.1 Descriptive vs. Procedural

The concept of distinguishing between procedural and descriptive has been advocated for a

long time, and it still has exploratory power. For game designs based on Gameme, game

designers have the rough and symbolical design of the whole game during the game design

phase. Then, Gameme has to transfer the game designer’s idea into C++ code that can

actually run the game in computers. It is a process from loose validation to strict validation.

Consequently, we consider that the process of generating a game is a process that moves

from the descriptive stage to the procedural stage. If we zoom in to the agent’s control level,

the descriptive (or logical) planning of agent’s activity, which describes states of agents in

different situations, has to become the procedural (or presentation) format, which specifies

how the planning should be presented in real-time.

91

7.2 PRS and PPS

After reviewing a couple of traditional agent architectures, we adopted procedural agent

control into game development. The Procedural Planning System (PPS) is based on the

PRS [GL87] which has been used in robotics for about a decade. PPS and PRS are similar

in spirit. However, the embodiment of the procedural knowledge philosophy in the two

systems is different. PRS is a general-purpose reasoning system designed in a broad range

of control systems. The PPS is a redesigned game agent planning system that relies on

goal-oriented pre-designed plans and provides reactive planning in real-time. In addition,

the PPS supports modular GOBTs as primitives, which have their own design methodology.

7.3 Features of Procedural Planning System

The planner’s search is the last obstacle in reliably planning fast enough for real-time [Ork05].

The PPS is a simplified and efficient game agent architecture. It is ideal for planning where

actions can be defined by predetermined procedures that are possible in the game envi-

ronment. This simplifies the game agent architecture because it selects plans based on the

run-time environment and the highest priority goals instead of generating plans. While plan-

ning is more about selection than search or generation, the interpreter ensures that changes

to the environment do not result in inconsistencies in the plan [Jon08].

In addition, the PPS can efficiently avoid slow planning in dynamical game environment.

All predetermined plans are early selections based on possible circumstances during the game

design process. Early selection of goals can eliminate most search in unnecessary branches,

making goal-driven search more effective. While the selection is the main planning operation

in each planning cycle, the 3D engine can accept the planning and learning result in real

time, and render the correct visual reaction for game agents.

The planning repeatedly operates over a short processing cycle. Each game agent can

only focus on one goal at a time. So the partial plan is a part of a goal’s execution order of an

agent. The interpreter decides either switch to another goal or stay with the same goal in the

92

next planning cycle. If there is no change for the current goal, the game agent will continue

to execute the next state in the same plan. This result is intentional goal oriented planning

in which game agents’ activities are expanded in a manner analogous to the execution of

subroutines in procedural programming systems.

The dynamical procedural planning has two aspects of consideration. The first one is

multi-goal planning; and the second one is multi-agent planning. These two aspects require

that the planning system have the ability to create plans that consider information about

not only its own status but also other agents’ information related to it.

7.4 The Interpreter of PPS

The PPS consists of four main components connected by an interpreter, as shown in the

center of Figure 29.

The interpreter is an inference mechanism which controls other components in the PPS

in the reacting planning process. The interpreter exchanges information with these four

components (Beliefs, Desires, Intentions, Plans), and drives the process cycle of sensing,

reacting, and planning.

The interpreter is the key component in the PPS. It repeatedly executes the set of activ-

ities depicted in Figure 30. In planning cycles of the PPS, certain goals are established and

sent to the game rendering engine or the learning level. There are seven interpreter activities

included in the PPS.

1. The external beliefs are sensed. Also, the interpreter includes current intention which

were memorized in the previous planning cycle.

2. The external beliefs are used as conditions to search for matching results in rules related

to GOBTs.

3. If the agent needs to change its current intention, several candidate priority queues are

checked, and the top goal in the queue is chosen.

93

Figure 30: The PPS Planning Cycle

94

4. Based on the new goal, the new state of the agents can be found in execution orders.

5. On the other hand, if there is no need to change current intention, the agent’s next

state are obtained from execution orders directly.

6. After planning, the agent’s new state is sent to the action module.

7. Finally, the agent’s new intention is recorded for the next round of planning.

Each game agent has an interpreter. The interpreter is responsible for managing the

sensing, planning and reacting processes of each game agent. The procedural planning layer

is a reactive module that provides functionality of goal selection. It has a unified mechanism

for making decisions, but the output is different for each agent based on their own situations.

A procedural knowledge based game agent is represented as {B, D, I, P}, a tuple of

four elements: Beliefs, Desires, Intentions, and Plans. The interpreter of each agent can be

represented as a function

G : B ×D × I × P 7→ Ik

with the output of new intention Ik of this agent. The Ik is a priority queue which indicates

the next intention and the desire (the top goal in the priority queue) for the game agent. k

is the agent ID in a team.

7.5 The Planning Cycle

The planning level is a process concerned with decentralized team behaviour. It provides

each game agent with an opportunity to develop its personality. In order to have the most

appropriate reaction, each game agent takes into account the opponent’s status Be and its

own status Bi. Essentially, the planning is based on the idea of “external belief decides the

current Intention, internal belief decides the current Desire”. Initially, the game agent has

its current intention Ik and desire Dcurrent. The Dcurrent is the top goal in the Ik priority

queue.

Here is the planning algorithms that the interpreter executes in each planning cycle.

95

1. Analyze current Be;

2. If Be has no change, no change in the current Ik , and go to step 4.

3. Else, The interpreter decides which new intention Inew the game agent should divert

its attention to. Then, the interpreter retrieves the Inew from the predefined knowledge

and replaces it with current intention, Ik = Inew.

4. Analyze current Bi;

5. While the priority queue of current Ik is not empty, check the top goal Dcurrent;

• If Dcurrent is not matching Bi, pop Dcurrent;

• Otherwise, return Dcurrent as current goal;

6. If the priority queue Ik is empty, the interpreter can’t find a matching goal. It returns

the previous status (before last pop) of the priority queue as Ik;

Goal arbitration happens all the time during planning. Some hybrid architectures con-

sider this problem to be in the domain of “deliberation” or “introspection”—the highest

level of a three-layered architecture [Bry03]. But the PPS in Gameme treats this problem

as a general problem of goal selection. The interpreter is a reactive module that provides

functionality of goal selection.

The planning level provides intuitive reaction for game agents, and leaves deliberative

agent behaviour process to the learning level. It is the design methodology regarding light-

weight game agent architectures. In addition, not every game agent needs further behaviour

control from learning level. Game designers might consider having game agents with simple

and fast behaviour reaction. The separation of planning and learning processes also is the

consideration of different intelligent levels in designing behaviours for game agents.

96

Figure 31: Priority Queue: Monster is Invisible

Figure 32: Priority Queue: Monster is Visible

7.6 Testing for Procedural Planning

During each cycle of planning, beliefs typically cause the change of the goal attention (priority

queue), and then change the goal (the goal in the top of the priority queue). In the latter

example, suppose that the Xman detects that the monster becomes visible (external beliefs),

but its current goal is “Eat” in the priority queue (Monster-Invisible) and Xman is in less

power status (internal beliefs). Consequently, during the planning for the next state of Xman,

the interpreter decides to switch to the priority queue (Monster-Visible) and to choose the

goal “Evade” based on Xman’s power level.

The agents’ behaviours are defined statically off-line and planned dynamically in real-

time. Game agents have to react to the environment appropriately and quickly in real-time.

Usually, game designers define several goals for an agent. These goals can be grouped in

97

two priority queues based on the visibility of the Monster. If the monster is invisible, Xman

can select either “Rest”,“Eat” or “Idle”. If the monster is visible, Xman has goals “Evade”,

“Defense” and “Fight”. Figure 31 and Figure 32 indicate goals and their priorities queues

for Xman.

During planning, the agent has to make correct decisions based on knowledge changes.

We treat distance between the monster and Xman as the external beliefs, and Xman’s power

value as the internal beliefs. Xman can gain power when it is eating and resting; keep power

when it is idle; and other activities (goals) reduce the power value.

In the Xman example, if the monster is invisible at the beginning, the Xman focuses on

the queue Monster-Invisible as in Figure 31 on page 97. If Xman detects the monster, it

switches to the queue Monster-Visible as in Figure 32 on page 97. Here, we explain how the

interpreter works when Xman meets a monster.

(1) The interpreter decides to focus on the Monster-Visible. The priority queue is ini-

tialized. If Xman is not in the full power level, the top goal “Chase” is popped.

Heap[1..3] = [3(Chase)][2(Fight), 1(Evade)]
Pop−→ Heap[1..2] = [2(Fight)][1(Evade)]

(2) The goal “Fight” becomes top goal in the queue. If Xman is in medium power level,

the goal “Fight” becomes the current goal.

Heap[1..2] = [2(Fight)][1(Evade)].

(3) If Xman is still in the medium power level, the interpreter changes nothing in the

queue that it is focusing on. So Xman keeps fighting with the monster, and the goal “Fight”

remains active.

(4) If Xman defeats the monster, the interpreter detects that the monster is not around.

So it switches to the queue Monster-Invisible. The queue is initialized. After fighting, the

power level of Xman is not full, so the top goal “Rest” is popped. And the goal “Eat”

becomes the current goal.

H[1..3] = [3(Rest)][2(Eat), 1(Idle)]
Pop−→ H[1] = [2(Eat)][1(Idle)]

98

7.6.1 Visual testing result fro Planning

We use the open source 3D graphics engine OGRE to simulate the game scenario. The 3D

modeled robot is used to represent the monster; and the 3D model jaiqua is used represent

Xman. The monster is controlled by a human player. The monster can move around in the

scene, and Xman’s behaviours is controlled by the procedural planning mechanism. These

results show that the agent planning is efficient, and there was no delay in 3D animation

rendering.

Xman’s behaviour is controlled by its PPS. In Figure 33, when the monster was close,

and Xman was in low power status, Xman ran away from the monster. And in Figure 34 on

page 100, Xman ran out of the range of his range of visibility of the monster, Xman switched

to the priority queue Figure 31, and sneaked around since Xman was still in low power level.

Figures 35 and 36 on page 101 show interactions of two Xman and the Monster. When a

Monster is visible, two Xmans have reactions based on their own power level.

Figure 33: When the monster is visible, Xman runs away.

99

Figure 34: When the monster is invisible, Xman sneaks around.

7.7 Conclusion

We have presented a “Procedural Planning” technique to be used in the game agent archi-

tecture of Gameme. The main contribution is the procedural knowledge approach used for

game agent planning in real-time. It allows action selection to be reactive within a com-

plex runtime game environment, rather than relying on memory of predefined plans. Also,

the procedural planning benefits from the modular design from the knowledge design to the

whole system architecture. In addition, the idea of handling a light-weight agent architecture

by aspects of balancing off-line and real-time design and usage of the controller pattern is

also useful in other game agent systems. Evaluating this type of system requires applying

them to real situations. Our visual testing results indicate the efficiency and flexibility of

procedural planning. It is suitable for game agents’ real-time planning and further extension

in complex behaviour control.

100

Figure 35: Two Xmans are both in medium power; they both stagger.

Figure 36: The Xman in the left side has medium power, so it staggers. The Xman in the
right side has less power, so it runs away.

101

Chapter 8

The Transfer and Adaptive Learning

As the game industry has evolved, game players have wanted NPCs to act more and more

intelligently and unpredictably. Game players prefer NPCs to appear as though they under-

stand their environment and adapt to changes in the environment. Dynamic NPC behaviour

require on-the-fly decision to be made by the NPC not only to react in their environment

but also to learn from their environment. To create such abilities, functionalities provided by

the planning level are not enough for NPCs. So, we turn to the level of learning in Figure 8

on page 39. Parts of this chapter were originally published as [SG09d] and [SG09b].

8.1 Overview of the Learning Level

The learning layer extends individual game agent’s planning to a multi-agent learning, espe-

cially the team cooperation in real-time. The functionalities of transfer learning and adap-

tation are two main aspects of the coordinator. Our approach combines both the transfer

learning and the adaptive mechanism in order to optimize the team behaviour in real-time.

The transfer learning is applied to coach the team based on its Experience. The adaptive

mechanism is used to enhance the whole team performance by Strategies.

In games, designing NPCs that are unlikely to lose requires building highly adaptive

models that can substantially adapt to opponents with a rapid shifts in play strategies.

102

The adaptive mechanism updates and optimizes the transfer learner. The adaptive mecha-

nism involves reevaluating the assumptions made about the team’s experience, and making

decisions for each agent as the purpose of maximizing the team performance.

Figure 37: The Transfer and Adaptive Learning Process

8.2 Learning vs. Planning

The planning level is more about action selection while the learning is more about action

reinforcement. The planning level provides real-time reaction for each game agent. However,

in the planning level, each game agent has a limited viewpoint, and therefore has an incom-

plete capability to solve global problems, such as team cooperations and adaptation. The

learning process is based on the output from the previous planning level. It centralizes each

NPC’s procedural planning result, and revises them for the adaptive and transfer learning

103

purpose. These learning mechanisms extends individual game agent’s planning to a level of

team behaviour control.

In general, learning occurs on a wider scale than the planning process, and considers more

resources than the planning level, inclduding, for example, behaviour patterns, Experience

and Strategies. These resources are accumulated from a number of rounds of learning cycles.

In addition, the cooperator in the learning layer analyzes interactions between PCs and

NPCs, generates PC’s behaviour pattens, and maps the most suitable Intentions to NPCs.

8.3 The Team Behaviour Control

In the domain of multi-agent system, communication is an important characteristic for sup-

porting both coordination and the transfer of information [Jon08]. After having individual

planning abilities, game agents should have abilities of cooperation in team work. Most

Multi-Agent Systems (MAS) assume that agents can interact via a well-defined language or

through observation of one another’s actions. In this learning level, game agents cooperate

in a team. Agent’s cooperation is controlled by the coordinator inside the team. In addition,

the team interacts with their opponent by observing opponent’s action Be.

The squad behaviour control requires different agent control mechanisms used in the

learning layer. In the planning layer, every game agent has an interpreter for the individual

agent’s planning. In addition, in the learning layer, there is a coordinator which is used for

the whole team behaviour control. The coordinator interacts with all knowledge components

in each learning cycle. At each learning cycle, the coordinator perceives each game agents’

planning result Ik (k ∈ [1, N]), and groups them together as
∏
Ik in the process of learning.

The team learning process is an incremental process. It requires at least two revised

stages to get the best result for the transfer learning. An important component of this

incremental design involves different steps of reevaluating assumptions made about game

agents.

104

• The first evaluation compares planning assumptions with game agents previous expe-

rience.

• In order to have a best team performance, even when assumptions about game agents

can be successfully revised based on their past behaviour (Experience), the process still

requires further revision regarding the total of team strategies intended to defeat the

opponent. So, we define a second revision for the team based on Strategies defined in

the adaptive mechanism.

8.4 The Transfer and Adaptive Learning Mechanism

In the learning layer, the transfer learning is based on the output from the previous planning

level, and provides revised control over the whole team. Key aspects that contribute to the

ability to achieve the desired transfer learning include recognizing the applicability of existing

knowledge to novel situations and mapping from source knowledge to target knowledge.

Transfer learning is essentially an online machine learning algorithm. The source or

target tasks implemented by the same group of game agents. So the process of task mapping

from source to target is not the main concern of this research project. We focus mainly

on the design of how to optimize existing experience in order to adapt it to the real-time

game environment [SG09b]. In addition to Beliefs, Desires, Intentions and Plans, there is a

knowledge component added in this level, the Experience.

For the transfer learning, we consider adding Experience as an additional factor in the

decision making. Experience is the training data source which is a combination of a series of

successful team performance. It is presented as a small database of experienced records. In

general, the jth record in the experience database is represented as a tuple of three objects,

Ej =
{
γj, Be,

∏
Ik

}
,

where j is the record ID of this experience record, k is the game agent ID in a team. The

experience records are grouped based on different Be values.

There are two stages to create Experience for a team.

105

1. The first stage focuses mainly on Experience accumulation.

It first happens during early rounds of interaction between the team and the opponent.

It is a period of establishing learning reference. During this period, the reward func-

tion calculates reward value γ. Records combining of the reward value, corresponding

intentions and external beliefs are stored into the Experience database.

2. The second stage is a stage of Experience application.

It is a process of replacing current game agents’ intentions with the intentions in the

experience database.

These two stages may overlap each other: in particular, the experience database is up-

dated sometimes in order to keep records for best performance. Transfer learning does not

provide an overall model for different target tasks; however, it trains target tasks based on

real-time updated best models. The coordinator updates the experience when it gets a better

experience record than the existing record in the same external knowledge Be level.

8.4.1 The Reward Function

The reward function is the objective function for the transfer learning. It conducts a reward

value γ which corresponds to a record in the experience database. The reward function

counts in the internal and external beliefs changes. It specifies the reward from combats

between the team and the PC. The reward value γ is used in the transfer learning which

makes effort to maximize the team performance. It can be described as

R : B ×
∏

Ik 7→ γ.

So the transfer learning function can be represented as

T :
∏

Ik ×B ×
∏

Ej →
∏

I ′k

where j is the record ID of this experience record and k is the game agent ID in a team.

106

8.4.2 The Strategies

In the learning level, we adopt the idea of adaptive mechanism used in the control of team

behaviour. We add another new knowledge module Strategies in this mechanism. The team

behaviour changes in response to observed opponent’s behaviour. In detail, Strategies is a

number of production rules which steer the team of agents’ behaviour. It is the highest level

control over the team. These strategies treat the team as a whole; and the opponent of the

team is the cause of the whole team’s behaviour change.

Strategies can be represented as production rules with conditions and results. Conditions

are different situations of the opponent Be, and results are the team intention
∏
I

′′

k corre-

sponding to the opponent. In Section 8.4.4, we provide examples of strategies for a team of

agents. The adaptive mechanism can be represented as

A :
∏

I ′k ×B × S →
∏

I
′′

k .

8.4.3 The Transfer and Adaptive Learning Algorithms

Figure 37 describes the coordinator’s work flow during each learning cycle. The first revised

process are steps 1 and 2. The second revised process are steps 3 and 4.

1. The
∏
Ik sent from the planning layer; the γcurrent is calculated.

2. The γcurrent is compared with γj in Ej which has the same Be. If γj > γcurrent,
∏
I ′k is

retrieved from Ej, and replaced the current
∏
Ik. Else, the current

∏
Ik is assigned to∏

I ′k.

3. The
∏
I ′k is revised based on team Strategies. Some game agents’ I ′k might have to

change in order to match the whole team behaviour.

4. If the second revised process requires change in the
∏
I ′k, related intentions is retrieved

from knowledge modules and replace the existing I ′k.

5. The second revised
∏
I

′′

k is output from the learning layer.

107

8.4.4 Testing of the Adaptive and Transfer Learning

In this section, we present testing results of transfer and adaptive learning process for two

teams of game agents when they fight with a human player controlled monster. These testing

results are both based on the basic procedural planning. Each team always tries to keep

every member alive and to stay together when it fights with the monster. We first present

the off-line design of game agents, and then present the real-time planning and learning for

each team.

8.4.4.1 The Offline Design for Adaptive and Transfer Learning

We use the open source 3D graphics engine OGRE to simulate the game scenario. The

3D modeled robot is used to represent the monster. And, there are two teams of game

agents which are 3D models called ninjas and jaiquas. For the monster, game players can

manipulate the monster in three statuses: Secure, Fighting and Ease. Game agents in these

two teams react to the monster. Monster and game agents gain power when they are not

involving in fighting. They both lose power during fighting. In particular, the power level

that the monster loses depends on the fighting intensity (Intense/Moderate) of the game

agents.

Game agents have different goals based on their own power level and the visibility of the

monster. Figure 38 indicates a priority queue (Intention) when the monster is invisible to

the game agent. On the other hand, when the monster is visible, a game agent has different

actions base on the fighting status of the monster. Table 1 indicates three priority queues;

each row is a priority queue. Furthermore, in the adaptive learning, team strategies are used

to control the whole team of agents. In this example, we defined three strategies.

• If more than half members of the team in low power, the whole team executes Escape

• If more than half members of the team in medium power, the whole team executes

Moderate Fight

• If more than half members of the team in high power, the whole team executes Intense

108

High Power Medium Power Low Power
Monster is Secure Intense Fight(2) Intense Fight(2) Moderate Fight (1)
Monster is Fight Moderate Fight(2) Escape (1) Escape (1)
Monster is Ease Intense Fight(2) Intense Fight(2) Moderate Fight (1)

Table 1: Three Intentions of a Game Agent when Monster is Visible

Fight

Figure 38: A Intention(Priority Queue) of “Monster is Invisible”

8.4.4.2 The Real-time Testing for Adaptive and Transfer Learning

In Figure 39 on page 110, we show the result of applying transfer learning to a battle

between a monster and two teams. The game agents’ performances are evaluated based

on the monster’s power. There are two curves in this figure; one is performance without

transfer learning while the other is with transfer learning. In the no-transfer-learning case, a

human player randomly controls the monster to fight with these two teams which is only in

procedural planning status without transfer learning ability. We recorded the movement of

the monster, and use it in the transfer-learning case. The blue curve indicates that after the

experience accumulation (first ten game trials), the transfer-learning reduces the monster

power more than the no-transfer-learning case.

109

Figure 39: Transfer Learning and No Transfer Learning

In addition, we present the result of applying adaptive mechanism to these two teams in

Figures 40 and 41 on page 111. Each team’s overall reaction to the monster is also affected

by those three team strategies defined in Section 8.4.4.1. When two members of the team

jaiquas are in low power level, the team strategy making the whole team escape away from

the monster even there is one jaiqua which is in medium power. The opposite situation

happens with the team of Ninjas. They are all in high level, and so fight intensely.

Furthermore, the examples demonstrated in this section suggest a way of applying this

multilayered agent processing system in game design. We point out that our approach

provides a formal idea regarding a systematical game agents’ procedural reasoning system.

At the same time, the off-line game design still has very important impact on game agents’

real-time performance. In order to have intelligent and autonomous game agents, we cannot

underestimate either off-line design or real-time processing in games.

110

Figure 40: When the team of jaiquas has more than half member in low power, the whole
team escape.

Figure 41: The team of ninjas is all in high power, they continue to fight with the robot
intensely.

111

8.5 Summary

We present an approach of achieving team behaviour control by applying transfer and adap-

tive learning in real-time. Our idea of the planning and learning mechanism allows NPCs

to react from game environment, learn from their experience and communicate with their

opponent. Most importantly, this approach can reduce off-line NPCs’ adaptability design.

Our experiment demonstrates online transfer and adaptive learning in a scenario of a combat

game. We show that our agents are capable of improving their team performance when they

face unpredictable PCs.

112

Chapter 9

Emergent Learning

Intelligent goal-oriented game agents reasoning about their behaviours in relation to goals

must consider not only the current situation but also previous and future situations. The

players’ actions spread throughout the whole game world, affecting not only the immediate

target but nearby elements of the game world as well [Swe07]. The uncertainty of PCs’

behaviours directly affect NPCs’ behaviours. Intelligent game design requires NPCs to have

flexibility in order to accommodate different game players. Emergent learning happens in

the learning layer, as shown in Figure 8 on page 39. This learning technique can be the

complementary learning ability to NPCs which intend to perform flexibility for different

PCs. This chapter introduce an approach of emergent learning for game agents’ control.

Parts of this chapter were originally published as [SG09a].

9.1 Determined vs. Adaptive

We can distinguish between determined and adaptive systems by checking their input and

output. Johns points out that a feature of determined systems is that the relationship

between the inputs and the outputs is linear [Jon03]. However, complex adaptive systems

(CASs) are not determined systems. CAS do not have to be complicated. The fascinating

feature of CASs is “simple input, complex output”.

113

The off-line game design is a determined design process which defines atomic or composite

goals for game agents. It is a partially complete design which provides the basic knowledge

for game agents. Game designers have to provide an explicit goal directed procedure for each

goal in GOBTs. The capability of adaptation does not mean that game agents have to learn

and adapt to everything from scratch. In complex situations, game agents cannot afford to

learn every fact in a realistic environment. The knowledge design gives game agents some

initial built-in knowledge which determines the basic reaction of game agents. The planning

and learning processes are biased towards deterministic knowledge which is relevant to their

goals.

For the purpose of presenting adaptive abilities, we can add some specific adaptive fea-

tures in knowledge representation of game agents. These features include multi-dimensions,

modularity and prioritization for the arrangement of goals. They serve as the static founda-

tion for the adaptive learning mechanism in the layered architecture. The multidimensional

goals refers to the tree structure of GOBTs. For each goal, there can be different paths

(Plans) to achieve it. Also, the modularity feature of GOBTs adds the flexibility in goal

combination and decomposition. In addition, the prioritization process in intentions allows

agents to have a global scale for decision making in real-time.

In most cases, meticulous off-line knowledge design cannot guarantee satisfying real-time

NPCs’ intelligent adaptation to PCs. It is not easy to predict every possible situation,

especially with different human players. Both adaptive features in off-line design and adap-

tive mechanisms in real-time agent control are important. In this chapter, we introduce a

learning mechanism which has adaptive functionality for dynamically generating emergent

behaviours for NPCs. As long as game agents have the ability of dynamic behaviour control,

they are able to have adaptation ability for different PCs.

9.2 Introduction of the Emergent Learning

The emergent leaning means adjusting or combining agents’ basic behaviours to exhibit

adaptive strategies to the game player. Emergent learning for game agents is an adaptive

114

learning strategy that mainly focuses on the interaction between game agents and human

players, and results in rational and acceptable unplanned behaviour of game agents. The

emergent learning is used to enhance the replayability of games by Behaviour Patterns.

In general game play, human players play games by controlling PCs that interact with

NPCs. The NPCs’ action is followed by the PCs’ action which decides the next states that

the NPCs face. The uncertainty of PCs is the cause of the dynamic environment that NPCs

should interact with. So, it is not reasonable to provide game agents with either a full model

of different tasks or an explicit relation mapping from a source task to a target task as general

transfer learning mechanisms do. For example, when a team of NPCs fight with a PC, since

different human players have different tactics in manipulating the PC, the real-time transfer

learning is much more adaptable than off-line training for NPCs.

Emergent leaning has features such as iterative, incremental and sub-optimal. It requires

a number of revised iterations in order to achieve satisfactory reactions. After a period

of incremental learning, NPCs’ adaptabilities can have certain levels of enhancement. The

emergent learning leads to the effectiveness of suboptimality for agents’ performance. NPCs

do not have to be perfect all the time. Within each iteration of learning, they only have to

present their slight improvement with respect to their adversaries in the system. In addition,

NPCs should have the ability to present different in-game strategies when they interact with

different PCs. The goal of using the emergent learning is to provide NPCs capabilities of

optimizing their behaviours when they face diverse human players.

The learning process of game agents has its own characteristics compared to conventional

AI learning mechanisms. If game agents only have capabilities of action selection based on

current PC’s behaviour, their adaptability will be very restricted in real-time. However,

designing a complicated learning process is not suitable for game agents. We have to be

concerned about the real-time efficiency of behaviour control since the core AI module has

to output game agents’ next actions to the graphics and sound module for visual rendering.

The emergent learning algorithm we discuss here considers Behaviour Patterns as a long

term factor in learning algorithms, and selects the most suitable actions for NPCs.

115

9.3 Emergent Learning Processes

The emergent learning includes two interdependent processes, which are behaviour pattern

emergence and adaptive behaviour feedback. They run in cycles, and improve NPCs’ be-

haviour step by step. For example, when a human player starts to play a game, it is not

easy to abstract the playing habits right away. Usually, it takes several rounds of playing to

emerge PC’s behaviour pattern. Then, the behaviour pattern can be fed back to the NPC

to obtain the next behaviour. After several rounds of interactions, new behaviour patterns

may be abstracted for new adaptive learning. The adaptive learning can be represented as

the function

H : Iplanning ×Be× ω 7→ Ilearning.

Figure 42: The Emergent Learning Mechanism

116

9.3.1 Behaviour Pattern

The behaviour pattern is the regularized model of a PC’s behaviour. The pattern here focuses

on characteristics of the ways in which game players can participate in the game. It describes

features of how the game player manipulates the PC and thereby affects NPCs.

The pattern is abstracted on the basis of consecutive amounts of interactions between the

PC and NPC. It is mutable. It can be updated over time since the PC does not always keep

the same strategy all the time. In general, game players attempt to make some decisions

regarding their future actions. They can learn from trial-and-error cases in certain rounds

of interactions with NPCs, and change their further strategies. Because the PC’s behaviour

is regular and predicable, the pattern can reflect the playing style of the game player.

On the other hand, game designers cannot embed all possible PC’s behaviour pattern

into NPCs’ knowledge. Since PC’s strategies changes over time, it is possible to lessen the

possibility for adaptive learning by introducing the behaviour pattern to NPCs, thereby

giving NPCs adaptive learning abilities.

9.4 Behaviour Pattern Emergence

The operation of emergence is the process of abstracting and classifying behaviour patterns.

For example, in Kung-Fu fighting games, the behaviour pattern is discerned from the most

used action permutation of the game player. NPCs develop their fighting actions based on

the pattern. They can then choose the most effective fighting reaction in terms of PC’s

behaviour pattern.

The potential for emergence is compounded when the elements of a system have some

capacity for adaptation and learning [Swe07]. PCs and NPCs do not merely coexist in games;

they communicate and interact with each other in a relationship of interdependent. Adaptive

learning is the key aspect to present capacity to deal with unpredictable PCs’ behaviour.

We explore the possibilities of applying emergence in the interaction of PCs and NPCs.

The emergence phenomena follow a different set of dynamics. The PCs’ behaviour

117

changes over time. However, in some specific games, it is possible to detect the regular-

ity in game players’ habits in controlling PCs. In detail, we design an emergent learning

process for game agents’ control. Figure 42 on page 116 shows the whole learning process.

The PC’s behaviour pattern emerges from interactions between PC and NPC in a number

of continuous interaction cycles. The NPC learns a mapping from the PC’s behaviour pat-

tern to its next action, so that it follows the next action selection policy to optimize its

performance overtime.

Behaviour patterns emerge from PC’s real-time states in certain period. The PC has a

total of n possible states Si which are in the set S (i ∈ [1, n] and n > 1). The PC selects

one state Si each time to interact with the NPC in real-time. In real-time, the Si is the

Be which affect NPC’s real-time action. The behaviour pattern is abstracted from real-time

PC’s states which contains m continuous states. We consider these states as a permutation

σ written in one-line notation. The permutation σ is said to contain the behaviour pattern ω

if there exits subsequence of entries of σ that has the same relative order as ω. The function

E maps PC’s actions (in consecutive times t) to a behaviour pattern.

E :
∏

Bet 7→ ω.

9.5 Behaviour Pattern Feedback

The behaviour pattern feedback is a process of mapping PC’s state to corresponding NPC’s

next intention based on the behaviour pattern ω. As interactions between PC and NPC,

the NPC have to develop a policy

π : Be
ω→ Ilearning,

which optimize the NPC’s next intention for the adaptation purpose. At each time t, the

NPC perceives the PC’s state Si (Be) and its planning result Iplanning sent from the planning

level. The NPC either chooses Ilearning ∈ $ based on the behaviour pattern ω or keeps

Iplanning from the planning result.

118

In detail, a PC’s behaviour pattern is ω = {S1, S2, ..., Sk}, and the corresponding NPC’s

reactive intentions is $ = {I1, I2, ..., Ik}. The feedback is designed as these steps,

1. Accept the NPC’s planning result Iplanning.

2. Check whether the behaviour pattern ω is empty or not. If ω = ∅, go to step 4 case 1.

3. If PC’s current state Scurrent = S1, schedule next k − 1 intentions of the NPC as

{I2, I3, ..., Ik}. Go to step 4 case 2.

4. case 1: Enqueue the next intention Iplanning the 3D engine rendering buffer;

case 2: Enqueue intentions {I2, I3, ..., Ik} to the 3D engine rendering buffer;

9.6 Testing for the Emergence Learning

In this section, we present an example of procedural planning and emergent learning process

for integrations between a PC and a NPC. The PC is controlled by a human player; the

NPC can learn from the PC’s behaviours and present the adaptability to fight with the

PC. Initially, the PC has a number of actions; each action has its own action ID, shown

in Table 2. The human player can select one action or a combination of several actions to

defeat the NPC. In particular, a combination of actions can have twice the attack power of

a single action. The human player can define their own action combination, such as { Jump

→ HighKick → Kick }.

9.6.1 The Offline Design for Emergent Learning

ID 1 2 3 4 5 6
Name Idle Jump Spin SideKick Kick HighKick
Power 0 1 1 2 3 4

Table 2: PC’s action and power level

119

NPC’s Reaction
PC’s Action High Power Medium Power Low Power

Idle Attack Attack Attack
Jump HighKick Attack Block
Spin Attack Block Stealth
SideKick Kick Jump Escape
Kick High Kick Stealth Escape
HighKick Crouch Stealth Escape

Table 3: NPC’s Reaction vs. PC’s Action

The NPC has its predefined knowledge, such as reactions regarding the PC’s different

actions. Also, these reactions may be different depending on the NPC’s power level. For

example, in Table 3, if PC is “Idle”, the NPC’s intention is “Attack” when the NPC is in

high power level. These rules give the planning process ideas about action selection in the

planning level. Furthermore, with the emergence of NPC’s behaviour pattern, the adaptive

learning process can refine the NPC’s reaction in order to have adaptability to this PC’s

fighting strategy. For example, if the learning process abstracts PC’s behaviour pattern

ω = {Jump→ HighKick→ Kick},

the NPC can schedule its next defense reactions based on this pattern, such as

$ = {HighKick→ Crouch→ HighKick}.

This learning result intends to provide the best solution to defeat the PC regardless the

internal belief Bi (Power level) of the NPC. It is an emergent learning process which enhance

the adaptive and dynamic features of NPCs.

9.6.2 The Real-time Testing for Emergent Learning

In Figure 43, we use the 3D Game engine OGRE to simulate the interactions between PC

and NPC. There are two “Ninja” 3D models. One is controlled by a human player(PC) and

another one is controlled by the emergent learning mechanism (NPC). In order to demon-

strate the benefit of using emergent learning for the NPC, we test our approach with same

120

Figure 43: The Testing Case Rendering in ORGE3D

Figure 44: The NPC’s Power Change Based on Planning or Planning&Emergent Learning

121

set of PC’s actions. In the first case, the NPC only has the basic procedural planning abil-

ity; in the second case, the NPC has procedural planning and emergent learning abilities.

Initially, the NPC’s power level is 100. It was reduced as the PC keep attacking the NPC.

The PC has a behaviour pattern { Jump → HighKick → Kick }. The testing results shown

in Figure 44 indicate that the planning and emergent learning process makes the NPC lose

less power than with the planning process alone.

9.7 Conclusion

Games have become more complicated in presenting dynamic game playing. Game designers

intend to simulate reality worlds in game in order to attract more players. We cannot define

games as fully complex systems since it is still simpler than CASs such as human immune

systems. Also, game playing cannot be fully unpredictable or nonlinear as general CASs.

We still have to set some restriction in games. However, if we can adopt some features from

CASs to games, games can become more attractive in the way of presenting virtual reality

worlds.

The emergent learning is a high-level behaviour control which consider long-term effi-

ciency for game agents’ performance. Our testing result shows that the emergent learning

mechanism is suitable for real-time NPC’s behaviour control. Emergent learning has huge

potential use for game agents’ behaviour control in various games. Especially, the algorithm

of abstracting behaviour patterns can be different based on different game types. Also, game

designers may have to make balance between adaptive and determined behaviour for NPCs.

Predicable NPCs’ behaviour is still an important aspect in the game play. At the same time,

the off-line game design still has very important impact on game agents’ real-time perfor-

mance. In order to have intelligent and autonomous game agents, we cannot underestimate

the effectiveness of either off-line design or real-time processing in games.

122

Chapter 10

Conclusions and Future Work

In this thesis, we have presented the design for a game development system—Gameme.

This chapter consists of two main sections, summarizing the main contributions and open

directions for future research from two different perspectives: that of the design for Gameme

and that of game AI. Within each section, our contributions will be discussed in the context

of a number of open research topics. A final section summarizes and discuss future research

directions.

10.1 The Gameme Design Perspective

The development of Gameme is a project that includes building different modules from dif-

ferent computer science subjects. For example, the AI core module is based on artificial

intelligent theories; the Graphics & Sound module is composed of multimedia engines; the

UI module is related to user interface design technologies. We prototype relationships among

modules in Chapter 3. These modules could be developed and tested separately, and com-

bined as needed. In experiments that we presented in this thesis, the core AI module is

connected with the ORGE 3D engine for the purpose of providing visual game scenarios.

We focus mainly on the development of the core AI module in Gameme since it is the

logical control module in Gameme. We designed and customized AI methodologies to build

123

the AI core module. Goal oriented is the common feature of most game agents. So, GOBD

becomes our main idea in describing game agents’ behaviours. GOBT is the data structure

we designed in order to characterize goals for game agents. Also, game agents are not inde-

pendent of their environment; they have to interact with other in-game entities. We extend

the GOBD and GOBT to model game agents as BDI-like agents, and give them the basic

sense-reaction abilities. After design the off-line game agents’ modeling, we embedded plan-

ning and learning mechanisms in a layered architecture for real-time game agents’ behaviour

control. The planning mechanism is about creating game agents’ basic personality. And, the

transfer, adaptive and emergent learning mechanisms provide advanced behaviour control

for game agents. The real-time agents’ behaviour processing extends the original procedural

knowledge processing from simple planning to advanced learning. We test planning and

learning mechanisms in fighting scenarios. NPCs could cooperate as a team, or learn from

their previous experience in order to have better strategies to fight with PCs. Furthermore,

NPCs could analyse different PCs’ behaviours, and find the best action combinations to

defeat PCs.

10.2 The Game AI Perspective

We develop the core AI module in Gameme as our research project. However, all method-

ologies in Gameme can still be separately applied in computer games development. The four

potential contributions to game AI that can be found in this thesis are: the methods for goal

oriented design; procedural planning; transfer and adaptive learning; and emergent learning.

• We have combined goal oriented design and procedural knowledge representation to

model game agents. In game AI, the GOBD can not only apply in describing game

agents’ behaviours, but also use in game story telling. For example, in adventure

games, game players have to fulfill different in-game task in order to proceed. These

tasks could also be describe by as goal oriented procedures. Game designers could

benefit from the intuitive and clear design methodology of GOBD.

124

• Procedural planning enables game agents to have basic autonomous characteristics.

The planning mechanism has the feature of fast reaction to the environment since it

selects the next action from off-line design knowledge instead of generating new action.

The planning outcome might not be suitable for the creation of intelligent game agents.

However, there is still demand for game agents with simple behaviours in games. Using

this planning mechanism can reduce the time spent in logical control of game agents,

and leave more system resources to be used by multimedia rendering.

• We provided a framework for transfer and adaptive learning for team cooperation in

this thesis. The key for transfer learning is to set up reasonable source knowledge,

and apply it to the target knowledge. In our experiments, experience is accumulated

and selected as source knowledge. The adaptive learning provides a coordination over

a team instead of individuals in the team. The transfer and adaptive learning has

huge potential in game AI. Game developers could use these learning idea by choosing

different source knowledge or target beneficiaries.

• Emergence is a fascinating phenomena which attracts game designers’ attention. The

emergent learning we discuss in this thesis is one of the aspects that emergent learning

could devote to games. We use emergent learning to let NPCs have flexible behaviours

when they face various PCs. Emergence and feedback are two important steps in this

learning. NPCs could have the ability to use or combine their basic actions to exhibit

new behaviours. For the application of emergence is not limited to the behaviour

control over game agents. Game designers could extend the emergence effects to other

areas, such as story line, narrative and physics interactions, in games.

10.3 Future Work

Our future work would be the continuing development of Gameme. Gameme is an open-

ended research project. There are many aspects that we could add to Gameme. In addi-

tion, we could build new theories and experiment with them in Gameme for the purpose

125

of proposing new concepts into other game development. Here, we present a short term

research proposal for Gameme.

• For the core AI module, more AI methodologies will be added into this module. Indeed,

there are lots of new AI features that we could add into this module. We plan to provide

Gameme with the ability to build particular types of games, such as fighting games. By

using the same idea regarding goal oriented design, we would like to have a methodology

to describe story lines in games. Then, more multi-agent control theory would be

added to control NPCs. In addition, we would like to extend our learning mechanisms

to support PCs. Games created by Gameme could provide certain information to help

PCs in battle with NPCs.

• For the UI module, an intuitive user interface would be added to Gameme. Our

approach is to have training processes as simple as possible for Gameme’s users. The

interface should be simple and clear. Non-professional game designers could master

the UI in a very short time.

• For the Graphics & Sound module, we would like to import more 3D models along

with their animation data to Gameme. Currently, our visual testing cases are limited

to a couple of 3D models provided by the ORGE 3D engine. With more 3D models,

we could have more in-game characters to be chosen by game designers.

126

Bibliography

[ABB+04] John R. Anderson, Daniel Bothell, Michael D. Byrne, Scott Douglass, Christian

Lebiere, and Yulin Qin. An integrated theory of the mind. PSYCHOLOGICAL

REVIEW, 111:1036–1060, 2004.

[Ber02] Lee Berger. Scripting: Overview and code generation. In Steve Rabin, editor,

AI Game Programming Wisdom, pages 505–510. Charles River Media, 2002.

[Ber06] Bryan Bergeron. Developing Serious Games. Charles River Media, 2006.

[Bjo07] Dines Bjorner. Software Engineering 3: Domains, Requirements, and Software

Design, page 106. Springer Verlag, 2007.

[Bra99] Michael E. Bratman. Intention, Plans, and Practical Reason. CSLI Publications,

1999.

[Bro91] Rodney A. Brooks. Intelligence without reason. In Proceedings of the 12th

International Joint Conference on Artificial Intelligence, pages 569–595. Morgan

Kaufmann, 1991.

[Bry01] Joanna Joy Bryson. Intelligence by Design: Principles of Modularity and Coor-

dination for Engineering Complex Adaptive Agents. PhD thesis, Massachusetts

Institute of Technology, 2001.

[Bry03] Joanna Joy Bryson. The behavior-oriented design of modular agent intelligence.

Agent Technologies, Infrastructures, Tools, and Applications for E-Services,

2003.

127

[BS04] David M. Bourg and Glenn Seemann. AI for Game Developers. O’Reilly, first

edition, July 2004.

[BS07] Bikramjit Banerjee and Peter Stone. General game learning using knowledge

transfer. In Proceedings of the 20th International Joint Conference on Artificial

Intelligence, pages 672–677, January 2007.

[Buc05] Mat Buckland. Programming Game AI by Example. Wordware Publishing, 2005.

[Cha07] Alex J. Champandard. 10 reasons the age of finite state machines is over. Game

AI For Developers

(http://aigamedev.com/), 2007.

[Cla76] James H. Clark. Hierarchical geometric models for visible surface algorithms.

Communication of the ACM, 19(3):547–554, 1976.

[CNM83] Stuart K. Card, Allen Newell, and Thomas P. Moran. The Psychology of Human-

Computer Interaction. L. Erlbaum Associates Inc, 1983.

[CSS+06] Maria Cutumisu, Duane Szafron, Jonathan Schaeffer, Matthew McNaughton,

Thomas Roy, Curtis Onuczko, and Mike Carbonaro. Generating ambient be-

haviors in computer role-playing games. IEEE Intelligent Systems, 21:19–27,

2006.

[dB04] Penny Baillie de Byl. Programming Believable Characters for Computer Games.

Charles River Media, 2004.

[dKLW97] Mark d’Inverno, David Kinny, Michael Luck, and Michael Wooldridge. A formal

specification of dMARS. In Intelligent Agents IV. Lecture Notes in Artificial

Intelligence, volume 1365, pages 155–176. Springer Verlag, 1997.

[Dro07] R. Geoff Dromey. Principles for engineering large-scale software-intensive sys-

tems. Invited talk for ASWEC, 2007.

128

(http://aigamedev.com/)

[DSAS03] Pat Langley Daniel, Daniel Shapiro, Meg Aycinena, and Michael Siliski. A value-

driven architecture for intelligent behavior. In Proceedings of the IJCAI-2003

Workshop on Cognitive Modeling of Agents and Multi-Agent Interactions, 2003.

[Dyb03] Eric Dybsand. AI middleware: Getting into character. part 1 biographic tech-

nologies’ ai.implant.

http://www.gamasutra.com/, July 2003.

[Eng07] Andries P. Engelbrecht. Computational Intelligence An Introduction, page 83.

John Wiley & Sons, Ltd, 2007.

[FG96] Stan Franklin and Art Graesser. Is it an agent, or just a program?: A taxon-

omy for autonomous agents. In Proceedings of the third International Workshop

on Agent Theories,Architectures and Languages, pages 21–35. Springer-Verlag,

1996.

[FL02] Kenneth D. Forbus and John Laird. AI and the entertainment industry. IEEE

Intelligent Systems, 17:15–16, July 2002.

[FP99] Gerhard Fischer and Leysia Palen. Design = the sciences of the artificial.

Center for Lifelong Learning and Design, University of Colorado, Boulder,

http://l3d.cs.colorado.edu/courses/csci7212-99/pdf/

science-of-the-art.pdf\, 1999.

[GI90] M. P. Georgeff and F. F. Ingrand. Real-time reasoning: the monitoring and

control of spacecraft systems. In Proceedings of the Sixth Conference on Artificial

Intelligence Applications, pages 198–204. IEEE Press, 1990.

[GL87] Michael P. Georgeff and Amy L. Lansky. Reactive reasoning and planning. In

AAAI, pages 677–682, 1987.

[Gou88] Ronald J. Gould. Graph Theory. Benjamin/Cummings Publishing Inc., 1988.

129

http://www.gamasutra.com/
http://l3d.cs.colorado.edu/courses/csci7212-99/pdf/science-of-the-art.pdf\
http://l3d.cs.colorado.edu/courses/csci7212-99/pdf/science-of-the-art.pdf\

[Hol95] John H. Holland. Hidden Order: How Adaptation Builds Complexity, pages 5,7.

Addison-Wesley Publishing Company, 1995.

[Hol00] John H. Holland. Emergence: From Chaos To Order, page 2. Oxford University

Press, 2000.

[Hor00] Ian Douglas Horswill. Functional programming of behavior-based systems. Au-

tonomous Robots, 9:83–93, 2000.

[HR85] Frederick Hayes-Roth. Rule-based systems. Communications of the ACM,

28:921–932, 1985.

[Joh01] Steven Johnson. Emergence: The Connected Lives of Ants, Brains, Cities, and

Software. Scribner, 2001.

[Jon03] Wendell Jones. Complex adaptive systems. Beyond Intractability, Eds.Guy

Burgess and Heidi Burgess, Conflict Research Consortium, University

of Colorado, Boulder,

http://www.beyondintractability.org/essay/complex_adaptive_

systems/, 2003.

[Jon08] M. Tim Jones. Artificial Intelligence: A System Approach. Infinity Science Press

LLC, 2008.

[JW01] D. Johnson and J. Wiles. Computer games with intelligence. In Proceedings of

the 10th IEEE International Conference on Fuzzy Systems,, pages 1355–1358,

2001.

[Koz92] John R. Koza. Genetic Programming I : On the Programming of Computers by

Means of Natural Selection. MIT Press, 1992.

[Koz07] John R. Koza. Introduction to genetic programming. In Proceedings of Genetic

and Evolutionary Computation Conference(Companion), pages 3323–3365, 2007.

130

http://www.beyondintractability.org/essay/complex_adaptive_systems/
http://www.beyondintractability.org/essay/complex_adaptive_systems/

[LK05] Manfred Lau and James J. Kuffner. Behavior planning for character animation.

In Eurographics ACM SIGGRAPH Symposium on Computer Animation, 2005.

[Lou08] Ronald Loui. In praise of scripting: Real programming pragmatism. IEEE

Computer, 41, July 2008.

[LRN86] John E. Laird, Paul S. Rosenbloom, and Allen Newell. Chunking in SOAR: The

anatomy of a general learning mechanism. Machine Learning, 1(1), November

1986.

[LRN87] John E. Laird, Paul S. Rosenbloom, and Allen Newell. SOAR: an architecture

for general intelligence. Artificial Intelligence, 33, September 1987.

[LvL01] John E. Laird and Michael van Lent. Human-level AI’s killer application: Inter-

active computer games. AI Magazine, 22(2):15–26, 2001.

[Mae94] Pattie Maes. Modeling adaptive autonomous agents. Artificial Life, 1:135–162,

1994.

[Mil06] Ian Millington. Artificial Intelligence for Games. Morgan Kaufmann, 2006.

[MPG87] Marcel J. Schoppers Michael P. Georgeff, Amy L. Lansky. Reasoning and plan-

ning in dynamic domains: An experiment with a mobile robot. Technical report,

Technical Note 380, Artificial Intelligence Center, SRI International, 1987.

[MS01] Ivan Moscovich and Ian Stewart. 1000 Play Thinks: Puzzles, Paradoxes, Illu-

sions and Games. Workman Publishing Company, 2001.

[Mye01] K. L. Myers. Procedural reasoning system user’s guide. Technical report, Arti-

ficial Intelligence Center, Technical Report, SRI International, 2001.

[Nar04] Alexander Nareyek. Artificial intelligence in computer games. Game Develop-

ment, 1(10), February 2004.

131

[Nil01] N. Nilsson. Teleo-reactive programs and the triple-tower architecture. Electronics

Transactions in Artificial Intelligence, pages 99–110, 2001.

[Nwa96] Hyacinth S. Nwana. Software agents: An overview. Knowledge Engineering

Review, 11:205–244, 1996.

[Ode00] James Odell. Agents (part 2): Complex systems. Executive Report, Cutter

Consortium, 3(6), 2000.

[OR08] Santi Ontanon and Ashwin Ram. Adaptive computer games: Easing the autho-

rial burden. In Steve Rabin, editor, AI Game Programming Wisdom 4, pages

617–631. Charles River Media, 2008.

[Ork05] Jeff Orkin. Agent architecture considerations for real-time planning in games. In

Artificial Intelligence and Interactive Digital Entertainment. AAAI Press, 2005.

[Pil04] Nelishia Pillay. A first course in genetic programming. The SIGCSE Bulletin,

36(4), 2004.

[Poi02] Falko Poiker. Creating scripting languages for nonprogrammers. In Steve Rabin,

editor, AI Game Programming Wisdom, pages 520–529. Charles River Media,

2002.

[PS92] David N. Perkins and Gavriel Salomon. Transfer of learning. In International

Encyclopedia of Education. Pergamon Press, 1992.

[PSSTT06] David Pardoe, Peter Stone, Maytal Saar-Tsechansky, and Kerem Tomak. Adap-

tive mechanism design: A metalearning approach. In The Eighth International

Conference on Electronic Commerce, pages 92–102, August 2006.

[RB96] Christopher D. Rosin and Richard K. Belew. A competitive approach to game

learning. In Proceedings of the Ninth Annual Conference on Computational

Learning Theory, pages 292–302. ACM Press, 1996.

132

[RG91a] Anand S. Rao and Michael P. Georgeff. Intelligent real-time network manage-

ment. Technical report, Australian Artificial Intelligence Institute. Technical

Note 15, 1991.

[RG91b] Anand S. Rao and Michael P. Georgeff. Modeling rational agents within a BDI-

architecture, 1991.

[RG95] Anand S. Rao and Michael P. Georgeff. Bdi agents: From theory to practice. In

Proceedings of the First International Conference on Multi-agent Systems, pages

312–319, 1995.

[RM02] Lior Rokach and Oded Maimon. Top-down induction of decision trees

classifiers—a survey. IEEE Transactions on System, Man and Cybernetics: Part

C, 1(11), November 2002.

[Roc99] Luis M Rocha. Complex systems modeling: Using metaphors from nature in

simulation and scientific models. Technical report, Los Alamos National Labo-

ratory, Novemeber 1999.

[SA04] Matthias Scheutz and Virgil Andronache. The apoc framework for the compar-

ison and evaluation of agent architecture. In Proceedings of AAAI Workshop on

Intelligent Agent architecture, pages 66–73. AAAI Press, 2004.

[San03] Thomas Sandholm. Making markets and democracy work: A story of incen-

tives and computing. In Proceedings of the International Joint Conference on

Artificial Intelligence, pages 1649–1671, 2003.

[Sch04] Brian Schwab. AI Game Engineering Programming. Thomson Delmar Learning,

2004.

[SG08a] Yingying She and Peter Grogono. Goal oriented behavior trees: A new strategy

for controlling agents in games. In Proceedings of the 4th International North

133

American Conference on Intelligent Games and Simulation, pages 108–112. EU-

ROSIS, August 2008.

[SG08b] Yingying She and Peter Grogono. The procedural planning system used in the

agent architecture of games. In Proceedings of the 2008 Conference on Future

Play: Research, Play, Share, pages 256–257. ACM, November 2008.

[SG09a] Yingying She and Peter Grogono. The adaptive learning mechanism design

for game agents’s real-time behavior control. In Proceedings 2009 IEEE In-

ternational Conference on Intelligent Computing and Intelligent Systems, pages

792–795. IEEE Press, November 2009.

[SG09b] Yingying She and Peter Grogono. An approach of real-time team behavior

control in games. In Proceedings of the 21st IEEE International Conference

on Tools with Artificial Intelligence, pages 546–550. IEEE Computer Society,

November 2009.

[SG09c] Yingying She and Peter Grogono. A procedural planning system for goal ori-

ented agents in games. In Advanced in Artificial Intelligence, 22nd Canadian

Conference on Artificial Intelligence, pages 245–248. Springer, May 2009.

[SG09d] Yingying She and Peter Grogono. A real-time transfer and adaptive learning

approach for game agents in a layered architecture. In Lecture Notes in Computer

Science, Proceedings of the 9th International Conference on Intelligent Virtual

Agents, pages 545–546. Springer-Verlag, September 2009.

[SHS+07] Manu Sharma, Michael Holmes, Juan Santamaria, Arya Irani, Charles Isbell,

and Ashwin Ram. Transfer learning in real-time strategy games using hybrid

CBR/RL. In Proceedings of the 20th International Joint Conference on Artificial

Intelligence, pages 1041–1046, January 2007.

134

[SL98] Aaron Sloman and Brian Logan. Architectures and tools for human-like agents.

In Proceedings of the Second European Conference on Cognitive Modeling, pages

58–65. University Press, 1998.

[Sow00] John F. Sowa. Knowledge Representation: Logical, Philosophical, and Compu-

tational Foundations. Pacific Grove, 2000.

[SP06] Ingo Schnabel and Markus Pizka. Goal-driven software development. In Pro-

ceedings of the 30th Annual IEEE/NASA Software Engineering Workshop, pages

59–65. IEEE Computer Society, 2006.

[Ste94] Luc Steels. A case study in the behavior-oriented design of autonomous agents.

In Proceedings of the third international conference on Simulation of adaptive

behavior : from animals to animats 3, pages 445–452. MIT Press, 1994.

[Sto07] Peter Stone. Learning and multiagent reasoning for autonomous agents. In

Proceedings of the 20th International Joint Conference on Artificial Intelligence,

pages 13–30, January 2007.

[Sut88] R. S. Sutton. Learning to predict by the method of temporal difference. Machine

Learning, 3:9–44, 1988.

[SV98] Peter Stone and Manuela Veloso. Using decision tree confidence factors for

multiagent control. In RoboCup-97: Robot Soccer World Cup I, pages 99–111.

Springer Verlag, 1998.

[Swe07] Penny Sweetser. Emergence in Games, pages 19, 36, 39, 40, 79, 132. Charles

River Media, 2007.

[SZ03] Katie Salen and Eric Zimmerman. Rules of Play, Game Design Fundamentals.

The MIT Press, 2003.

[Szi07] Nicolas Szilas. An implementation of real-time 3D interactive drama. ACM

Computers in Entertainment, April 2007.

135

[TA98] E. Turban and J. Aronson. Decision Support Systems and Intelligent Systems.

Prentice Hall, 1998.

[Tet87] Linda Tetzlaff. Transfer of learning: Beyond common elements. ACM SIGCHI

Bulletin, 17:205–210, 1987.

[TKS08] Matthew E. Taylor, Gregory Kuhlmann, and Peter Stone. Autonomous transfer

for reinforcement learning. In Proceedings of the 7th International Joint Con-

ference on Autonomous Agents and Multiagent Systems, pages 283–290, 2008.

[Tog07] Julian Togelius. Optimization,Imitation and Innovation: Computational Intelli-

gence and Games. PhD thesis, University of Essex, September 2007.

[Toz02a] Paul Tozour. How not to implement a basic scripting language. In Steve Rabin,

editor, AI Game Programming Wisdom, pages 548–554. Charles River Media,

2002.

[Toz02b] Paul Tozour. The perils of ai scripting. In Steve Rabin, editor, AI Game Pro-

gramming Wisdom, pages 541–547. Charles River Media, 2002.

[VCP+95] Manuela Veloso, Jaime Carbonell, Alicia Perez, Daniel Borrajo, Eugene Fink,

and Jim Blythe. Integrating planning and learning: The PRODIGY architecture.

Journal of Experimental and Theoretical Artificial Intelligence, 7:81–120, 1995.

136

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Main Scientific Contributions
	Structure of the Thesis

	Background
	Introduction to Game Design
	Commercial Game and Serious Game
	Game AI
	Game AI Middlewares
	AI.Implant
	Havok Behavior
	RenderWare AI Middleware

	AI Techniques for Behaviour Design
	Finite State Machine
	Varieties of FSM

	Fuzzy-State Machines
	Rule-Based System

	AI Techniques for Planning and Learning
	Decision Tree
	Behaviour Tree
	Genetic Algorithms and Programming

	Scripting Behaviour
	Agent Architectures
	Related Agent Planning and Learning Techniques
	Procedural Reasoning Systems and BDI Agents
	Transfer Learning
	Adaptive Behaviours
	Complex Adaptive Systems
	Emergence

	Discussion

	System Design
	The Modular Structure of Gameme
	Design Patterns used in Gameme
	The Model of Agent Architecture
	Light-Weight Agent Architecture
	Layered Planning and Learning

	The Behaviour Design
	Offline Knowledge Design
	Knowledge Representation for Game Agents
	Behaviour Design
	Procedural Knowledge and Behaviour Design
	Key Steps for Defining Behaviour
	Identify the Behaviour
	How
	What
	When

	Modularity of the Behaviour Design

	Goal Oriented Behaviour Design
	Goal and Behaviour
	Goal Oriented Design and Procedural Behaviour Design
	General features of GOBD
	Atomic Components for GOBD
	Hierarchy of the Goal Oriented Behaviour Design
	The Goal Oriented Behaviour Tree
	Why GOBTs?
	Formalization
	Properties
	Execution
	Editing
	Add or Delete Nodes
	Composition and Decomposition

	Traversal
	AI Nature of the GOBT

	Example of generating GOBTs
	The Generation of GOBT ``Eat''
	Extensions of GOBT ``Eat''

	Conclusion

	Game Agent Modeling
	The Nature of Game Agents
	The Environment of Game Agents

	Characters of Game Agents
	Modeling of Game Agents
	Beliefs
	Desires
	Plans
	Intentions
	Formal Representation of Knowledge Modules

	Conclusion

	The Procedural Planning
	Descriptive vs. Procedural
	PRS and PPS
	Features of Procedural Planning System
	The Interpreter of PPS
	The Planning Cycle
	Testing for Procedural Planning
	Visual testing result fro Planning

	Conclusion

	The Transfer and Adaptive Learning
	Overview of the Learning Level
	Learning vs. Planning
	The Team Behaviour Control
	The Transfer and Adaptive Learning Mechanism
	The Reward Function
	The Strategies
	The Transfer and Adaptive Learning Algorithms
	Testing of the Adaptive and Transfer Learning
	The Offline Design for Adaptive and Transfer Learning
	The Real-time Testing for Adaptive and Transfer Learning

	Summary

	Emergent Learning
	Determined vs. Adaptive
	Introduction of the Emergent Learning
	Emergent Learning Processes
	Behaviour Pattern

	Behaviour Pattern Emergence
	Behaviour Pattern Feedback
	Testing for the Emergence Learning
	The Offline Design for Emergent Learning
	The Real-time Testing for Emergent Learning

	Conclusion

	Conclusions and Future Work
	The Gameme Design Perspective
	The Game AI Perspective
	Future Work

	Bibliography

