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ABSTRACT 

 
Compressive Response of Tapered Curved Composite Plates 

 

Shaikh Mohammed Akhlaque-E-Rasul, Ph.D. 

Concordia University, 2010 

 

 

Tapered laminated structures have considerable potential for creating significant weight 

savings in engineering applications. In the present thesis, the ply failure and global 

buckling failure of internally-tapered curved laminates are considered. For the buckling 

analysis, four different analytical approaches are employed: (1) classical shell theories 

using Ritz method, (2) first-order shear deformation shell theories using Ritz method, (3) 

linear finite element analysis based on first-order shear deformation shell theories, and 

(4) non-linear finite element analysis. Due to the variety of tapered curved composite 

plates and the complexity of the analysis, no closed-form analytical solution is available 

at present regarding their response to compressive loading. Therefore, the Ritz method is 

used for the global buckling analysis considering uniaxial compressive load. Linear 

buckling analysis of the plates is carried out based on eight classical shell theories and six 

first-order shear deformation shell theories. To apply the first-order shear deformation 

shell theories, an appropriate set of shear correction factors has been determined. The 

buckling loads obtained using Ritz method are compared with the existing experimental 

and analytical results, and are also compared with the buckling loads obtained using finite 

element method. The strength characteristics and load carrying capability of the tapered 

curved plates are investigated considering the first-ply failure and delamination failure. 
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The commercial software ANSYS® is used to analyze these failures. Based on the ply 

failure and buckling analyses, the critical sizes and parameters of the tapered curved 

plates that will not fail before global buckling are determined.  

 

Linear buckling analysis is insufficient to take into account the effect of large deflections 

on the buckling loads. This effect can only be considered in the non-linear buckling 

analysis. However, very large number of load steps is required to determine the buckling 

load based on the non-linear analysis in which the stability limit load is calculated from 

the non-linear load-deflection curve. In the present thesis, a simplified methodology is 

developed to predict the stability limit load that requires the consideration of only two 

load steps. The stability limit loads calculated using the present simplified methodology 

are shown to have good agreement with that calculated from the conventional non-linear 

load-deflection curve.  

 

Parametric studies are carried out using the above mentioned four different types of 

analytical methods. In these studies, the effects of boundary conditions, stacking 

sequence, taper configurations, radius, and geometric parameters of the plates are 

investigated.  
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CHAPTER 1 

Introduction 

1.1  GENERAL 

Laminated composite structures are increasingly being used in many engineering 

applications due to their high specific stiffness and strength, low weight, and elastic 

tailoring design capabilities. In some specific applications the composite structure needs 

to be stiff at one location and flexible at another location. It is desirable to tailor the 

material and structural arrangements so as to match the localized strength and stiffness 

requirements by dropping the plies. Such a laminate is referred to as tapered laminate. 

Tapered laminated structures have received much more attention from researchers for 

creating significant weight savings in engineering applications. Complex structures like 

rotary blades, shovels, gun barrels and other taper-walled structures are frequently used 

and the loading conditions of these structures are complex in nature. The uniaxial 

compressive strength of fiber-reinforced polymer (FRP) composites is a very complex 

issue. Although FRP composites characteristically possess excellent ultimate and fatigue 

strength when loaded in tension in the fiber direction, compressive properties are typically 

not as good. This behavior is due to the fact that while tensile properties are fiber 

dominated, compressive properties are dependent upon other factors such as matrix 

modulus and strength, fiber/matrix interfacial bond strength, and fiber misalignment. An 

example of tapered plate under compressive load is shown in the Fig. 1.1.   
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        (a) Shovel of Phoenix Mars Lander 

 
(b) Cross section along X-axis 

 

Figure 1.1: A simple application and loading condition of tapered plate. 

 

Changes in the geometry of a structure or a mechanical component under compression 

result in the corresponding loss of its ability to resist loading. The behavior of structures 

under compression can be grouped into two main categories: (1) instability associated 

with a bifurcation of equilibrium or a limit point, and (2) local failure that is associated 

with material failure. The first category is called buckling. The point of transition from 

the usual deflection mode under load to an alternative deflection mode is referred to as 

the point of bifurcation of equilibrium. The lowest load at the point of bifurcation is 

called critical bifurcation buckling load. The second category can further be divided into 

two for a composite structure: ply failure and failure due to interface delamination. The 

above mentioned behavior of structures can be called as Type-I, Type-II and Type-III 

failures, which are caused by buckling, ply failure and delamination respectively. The 

failure types and the corresponding analyses are shown in the Fig. 1.2. 

 

Compressive 
 Load X 

Z 
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In the Fig. 1.2 two types of buckling are mentioned, that are, linear and non-linear. One 

major characteristic of non-linear buckling, as opposed to linear buckling (bifurcation 

buckling), is that non-linear buckling (snap through buckling) phenomenon includes a 

region of instability in the post-buckling region whereas linear buckling only involves 

linear, pre-buckling behavior up to the bifurcation (critical loading) point. In Fig. 1.3, the 

stability limit point is the non-linear buckling load. The linear buckling load is larger than 

that of the non-linear buckling load, because the equations for the strains of non-linear 

theory have more non-linear terms compared to the linear theory. The comparison of 

linear and non-linear buckling loads is given in the chapter five of the present thesis. 

Fig. 1.3 shows the differences between linear and non-linear buckling wherein F denotes 

the force and u denotes the deflection. 

 

 - Classical linear global 
    buckling  analysis  

 - First-ply failure analysis       - Calculation of interlaminar  
   stresses    

 - First-order linear global 
    buckling analysis 

 - Delamination failure analysis  

 - Non-linear analysis for buckling and post-buckling response  
   

Figure 1.2: Different types of failure of tapered curved plates under compressive load and 

corresponding analyses. 

 

Types of Failure under Compression 

Type-I, Buckling Type-II, Ply Failure (local) Type-III, Delamination Failure (local) 
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Figure 1.3: Non-linear versus linear buckling behavior. 

 

1.2  LITERATURE REVIEW 

In the following, a review of existing works on the i) analysis of tapered composite 

structures, ii) linear buckling analysis of shells, iii) analysis of shells using Ritz method, 

vi) buckling analysis of shells using finite element method, v) first-ply failure analysis of 

composite structures, vi) interlaminar stress and delamination failure analyses of 

composite structures, vii) non-linear buckling analysis of shells, and viii) prediction of 

critical load, is given. 

 

1.2.1 Analysis of Tapered Composite Structures  

A review of recent developments in the analysis of tapered laminated composite 

structures with an emphasis on interlaminar stress analysis, delamination analysis and 

parametric study has been presented by He et al [1]. From earlier research works 

concerning this type of structure, two major categories of work on tapered composites 
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can be identified. The first is to understand failure mechanisms encompassing the 

determination of the interlaminar stresses in the vicinity of ply drop-off, the calculation of 

strain-energy release rate associated with delamination within the tapered region, and the 

direct modeling of delamination progression by using finite elements. A large number of 

investigators have been engaged in conducting research on this subject. The list includes 

the works of Curry et al [2] and Hoa et al [3]. The second category is the investigations of 

the parameters of the tapered composite structures that have substantial influences on the 

structural integrity. Parametric studies of tapered composites were conducted by Daoust 

and Hoa [4], Llanos and Vizzini [5], and Thomas and Webber [6].  

 

A limited number of scientists have conducted research on tapered composite curved 

plates. Piskunov and Sipetov [7] have proposed a laminated tapered shell structure which 

accounts for the effects produced by transverse shearing strain. They have developed a 

shearing strain model to minimize the differences between the physicomechanical 

parameters (the values of the elasticity modulus, the shear modulus, the Poisson ratio, the 

thermal conductivity coefficient, the linear expansion coefficient, etc.) of the composite 

layers. Another work on tapered laminated shell structure was conducted by Kee and Kim 

[8], where the rotating blade is assumed to be a moderately thick, width-tapered in 

longitudinal direction and open cylindrical shell that includes the transverse shear 

deformation and rotary inertia, and is oriented arbitrarily with respect to the axis of 

rotation to consider the effects of disc radius and setting angle. The finite element method 

is used for solving the governing equations. 
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1.2.2  Linear Buckling Analysis of Shells 

A brief history of shell buckling is discussed by Lars and Eggwertz [9]. Euler’s formulae 

for determining the critical load of a compressed straight bar were published in the 

middle of the 18th century. The theory was further developed during the latter half of the 

19th century, when the stability of thin plates was also analyzed in an analogous way, 

Lars and Eggwertz [9]. A theory of shell buckling was first proposed in the beginning of 

the 20th century, by Lorenz [10] and Timoshenko [11], who presented solutions for 

axially compressed circular cylindrical shells. Ambartsumyan [12] has pioneered the 

anisotropic thin shell analysis and he has also considered the local stability and vibration 

in his formulations. Viswanathan et al [13] investigated elastic stability of thin laminated, 

flat and curved, long rectangular plates subjected to combined in-plan loads. Hilburger 

and Starnes [14] have worked on buckling behavior of compression-loaded composite 

thin cylindrical shells with reinforced cutouts. Michael [15] has presented non 

dimensional parameters and equations for buckling of symmetrically laminated thin 

elastic shallow shells.  

 

R. C. Tennyson [16] has conducted a brief review on static buckling theory for both 

geometrically perfect and imperfect anisotropic composite circular thin cylinders for 

various loading configurations. For comparison purposes, relevant experimental data are 

discussed, including combined loading test results and recommendations are made 

concerning the design of composite cylinders. A review work on the problem of buckling 

of uniform-thickness and moderately-thick, laminated, composite shells subjected to 

destabilizing loads has been carried out by Simitses [17]. The loads consist of uniform 
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axial compression, uniform lateral pressure and torsion applied individually or in 

combination.  The analysis is based on higher-order shear deformation (HOSD) shell 

theory and/or first-order shear deformation (FOSD) shell theory with or without a shear 

correction factor. Recommendations are also given for the moderately thick laminated 

shells to check the failure strength, delamination initiation and growth and their effect on 

the critical buckling loads.  

 

1.2.3 Analysis of Shells Using Ritz Method 

The problems of mechanics are solved by exact analytical methods, or approximate 

methods (energy methods, variational methods, numerical methods). First preference is 

given to exact solution; if it is not possible due to complexity of the structure then 

‘approximate analytical or numerical solutions’ are used. The variational methods of 

approximation include those of Rayleigh and Ritz, Galerkin, Petrov-Galerkin (weighted-

residuals), Kantorovich and the Finite Element Method (numerical method) which is a 

“piecewise” application of the Ritz and Galerkin methods. Analytical solutions such as 

Ritz solutions are of growing interest among scientists. 

 

Buragohain and Velmurugan [18] have developed an energy-based smeared stiffener 

model (SSM) to obtain equivalent stiffness coefficients of a composite lattice cylindrical 

thin shell with hexagonal lattice patterns. Using the equivalent stiffness coefficients, 

buckling analysis is carried out using Ritz method. Extensive finite element modeling 

covering different sizes have also been carried out to compare the buckling results with 

that of the Ritz method. Wong et al [19] have developed an analytical model using Ritz 
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method for the instability of orthotropic thin composite tubes subject to biaxial 

compressive loads under clamped-clamped boundary conditions. Six E-glass woven 

fabric-epoxy composite tubes with the same internal radius and different thicknesses and 

longitudinal lengths were fabricated and subjected to various combinations of external 

hydrostatic pressure and axial compressive load simultaneously. They have concluded 

that the buckling envelopes in normalization form provide useful design data on the 

strength of orthotropic composite tubes under a realistic range of biaxial loading 

conditions.   

 

Rao and Meyer-Piening  [20] have conducted the buckling analysis of a simply supported 

and uniform-thickness fiber reinforced plastic (FRP) faced cylindrical anisotropic 

sandwich panel subjected to combined action of axial compression and bending and shear 

using the Rayleigh-Ritz method. The values of the buckling coefficient are evaluated by 

varying the aspect ratio, fiber orientation angle, core-to-face thickness ratio, radius of 

cylindrical edge, bending load coefficient and shear load coefficient. Jaunky and Knight 

[21] have obtained buckling loads of uniform-thickness circular cylindrical composite 

panels using Sanders-Koiter’s, Love’s and Donnell’s shell theories with first-order shear-

deformation approach and Rayleigh-Ritz method that accounts for different boundary 

conditions and material anisotropy. Results obtained using the shell theories are 

compared with those obtained from finite element simulations, where the curved panels 

are modeled using nine node quadrilateral continuum based shell elements that are 

independent of any shell theory. The authors have compared the results obtained using 

Ritz method with that of the finite element method and have concluded that Donnell’s 
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theory could be in error for some lamination schemes and geometrical parameters. Barai 

and Durvasula [22] have studied the vibration and the buckling of uniform-thickness and 

simply-supported curved plates, made of hybrid (Graphite/epoxy, Kevlar/epoxy and 

Glass/epoxy) laminated composite materials, using first-order shear deformation theory 

and Reissner's shallow shell theory. The natural frequencies and critical buckling loads 

are calculated using Ritz method. The effects of curvature, aspect ratio, stacking 

sequence and ply-orientation are studied. 

 

1.2.4 Buckling Analyses of Shells Using Finite Element Method 

Since the time of mid-1960s when the curved shell finite elements were invented, the 

published literature on modeling of plates and shells analysis of structures has grown 

extensively. In the last four decades, numerous theoretical models have been developed 

and applied to various practical circumstances. It may be reasonable to state that no 

single theory has proven to be general and comprehensive enough for the entire range of 

applications. The pros and cons of different finite elements have been evaluated by the 

several reviewers. Yang et al [23] have reviewed the advances of the formulations for 

thin shell finite elements in the form of flat plates, axisymmetrical shells and curved 

shells. They also illustrated with some extensions and applications to cases such as static 

and dynamic responses, static and dynamic bucklings, laminated composites, random 

loadings and random structural and material properties. The review work of Kapania [24] 

deals with the development of various theories of modeling the thick laminated shells, 

development of various finite elements to model these shells, buckling and post-buckling 

analyses of perfect and imperfect laminated shells, and vibration and dynamic response 
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analyses of various laminated shells. Gilewski [25] has surveyed about 350 publications 

related to the finite element models of moderately thick shells, concentrating on those 

related to consistent displacement and stress/mixed/hybrid models. Noor and Burton [26] 

have assessed the computational models for multilayered composite shells. In their work, 

they have listed several references on finite element analysis of shells. Reddy and 

Robbins [27] have presented a review work on equivalent-single-layer and layerwise 

laminated plate theories, and their finite element models. Mackerle [28] has surveyed the 

linear and non-linear, static and dynamic analyses of structural elements; his listed papers 

have been published between 1992 and 1995.  Yang et al [29] have summarized the 

important literature on shell finite elements over 15 years (1985-2000).  Their survey 

includes the degenerated shell approach, stress-resultant-based formulations and Cosserat 

surface approach, reduced integration with stabilization, incompatible modes approach, 

enhanced strain formulations, 3-D elasticity elements, drilling degree of freedom 

elements, co-rotational approach, and higher-order theories for composites.  

 

Nine-node shell elements have advantages compared to eight-node elements. Nine-node 

elements can pass the constant curvature patch test with bilinear element geometry while 

eight-node shell elements cannot. A comparative study between these two types of 

elements has been carried out by MacNeal and Harder [30]. Parisch [31] has discussed 

special aspects of the nine-node Lagrange element. A modification of the stiffness is 

proposed which allows the application of the element like a Kirchhoff-type model to any 

plate problem. A case study of a variety of proposed element models is presented, and the 

accuracy is shown for various plate and shell problems. Belytschko et al [32] have 
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described the implementation of a nine-node Lagrange element with uniform reduced 

quadrature and spurious mode control for plates and shells. They have compared their 

results with that of full integration and selective reduced integration versions of the 

element. Lee and Hobbs [33] have suggested an automatic adaptive refinement procedure 

for the analysis of shell structures using the nine-node degenerated solid shell element.  

Chang et al [34] have examined a nine-node Lagrange shell element using a strain-based 

mixed method.  Kebari and Cassell [35] have presented a nine-node degenerate stress-

resultant shell element with six degrees of freedom at each node. Yeom  et al [36] have 

combined a nine-node shell element based on the assumed displacement formulation and 

an eight-node shell element based on a modified version of the Hellinger-Reissner 

principle with assumed linear transverse shear strain in order to eliminate locking . The 

results of their analysis are compared with the classical thin plate theory and other 

reference solutions. Jayasankar et al [37] have extended a nine-node degenerated shell 

element developed earlier for stress analysis to the free vibration analysis of thick 

laminated composites. In the present thesis work, a nine-node Lagrange shell element is 

used. 

 

MacNeal [38] has examined the cause of failure of finite elements and its remedy. It 

includes quantitative analyses of failure modes and illustrations of possible side effects 

found in proposed remedies, providing a practical understanding of finite element 

performance. This book is designed to enable users and practitioners to identify and 

circumvent the major flaws of finite elements, such as locking, patch-test failure, 

spurious modes, rigid-body failure, induced anisotropy and shape sensitivity. Chapellet 
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and Bathe [39] have presented fundamental considerations regarding the finite element 

analysis of shell structures. 

 

1.2.5 First-ply Failure Analysis of Composite Structures 

Reddy and Pandey [40] have developed finite-element computational procedure for the 

first-ply failure analysis of composite plates. The procedure is based on the first-order 

shear deformation theory and a tensor polynomial failure criterion that contains the 

maximum stress, maximum strain, Hill, Tsai-Wu and Hoffman failure criteria. According 

to their conclusions, all failure criteria that they have analyzed are equivalent in 

predicting the failure when laminates are subjected to in-plane loads. For laminates 

subjected to transverse load, the maximum strain and Tsai-Hill criteria predict different 

failure location. Tsai [41] has compared the popular failure criteria of fiber-reinforced 

composite materials. These criteria are empirical and should only be judged from the 

standpoint of the fitness to data and the ease of application. The criteria for orthotropic 

plies of unidirectional composites are extensions of those for isotropic materials. The 

quadratic criteria are considered to be the most suitable for both isotropic and composite 

materials. Macroscopic criteria are essential for design and for providing guidelines for 

materials improvements. He has concluded that the failure criteria for multidirectional 

laminates are valid up to the first-ply failure (before transverse cracking and delamination 

occur). Nahas [42] has reviewed the existing theories of failure of laminated fiber-

reinforced composite materials. He has mentioned that there exist at least 30 failure 

theories for laminated composites. Some of these theories are applied directly to the 

laminate while the rest of the theories are applied to the individual layers of the laminate. 
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In addition, he has reviewed the theories of the post-failure behavior of laminated 

composites, that is, the behavior of laminated composites beyond first-ply failure. For 

post-failure analysis there exist at least twelve theories, which are included in his survey. 

The World-Wide Failure Exercise (WWFE) contained a detailed assessment [43] of 19 

theoretical approaches for predicting the deformation and failure response of polymer 

composite laminates when subjected to complex states of stress. The leading five theories 

(Zinoviev, Bogetti, Puck, Cuntze and Tsai) are explored in greater detail to demonstrate 

their strengths and weaknesses in predicting various types of structural failure. According 

to the investigations of WWFE, Tsai-Wu theory is the best one that can be used to predict 

the first-ply failure of unidirectional laminates and any of the above mentioned five 

failure theories can be used for multidirectional laminates. In the present thesis work, 

Tsai-Wu failure theory is used to predict the first-ply failure of tapered curved plates. 

 

1.2.6  Interlaminar Stress and Delamination Failure Analyses of Composite 

Structures 

Interlaminar stress analysis can be divided into four distinct categories: considering an 

isotropic thin resin layer at the middle of two plies, analytical solutions obtained from 

equilibrium equations, numerical solutions and layerwise theory. Mortensen [44], He et al 

[45], and Fish and Lee [46] have analyzed the laminates using embedded resin layer. 

Analytical solutions include the works of Kassapoglou [47], and Waltz and Vinson [48].  

Pipes and Pagano [49] have employed finite-difference solution techniques for 

interlaminar stresses in the composite laminates under uniform axial extension. Results 

for material properties typical of a high modulus graphite-epoxy composite material 
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system are presented which explain the mechanism of shear transfer within a symmetric 

laminate. Curry [50], and Ganesan and Liu [51] have carried out the investigation of 

interlaminar stresses using finite element method. To accurately calculate the in-plane 

and transverse stresses, without integrating the equilibrium equations, Reddy's [52] 

layerwise theory can be used. Kant and Swaminathan [53] have reviewed the different 

methods used for the estimation of transverse/interlaminar stresses in laminated 

composite plates and shells. Both analytical and numerical methods are considered. The 

aspects considered by them are: effects of variation in geometric and material parameters, 

transverse shear and normal deformation, interface stress continuity and the interfacial 

bonding on the accuracy of prediction of transverse/interlaminar stresses. Salamon [54] 

has presented a review and assessment of the interlaminar delamination problem common 

to layered composite materials. The work covers calculation of interlaminar stresses from 

a homogeneous and microstructural material viewpoint. The observation of edge 

delamination and experimental efforts are discussed together with the fracture mechanics 

studies. 

 

A large-size defect, or stress concentration is the primary cause of delamination. The 

manufacturing errors or in-service and accidental loads lead to the delamination of the 

laminates. Dropped plies result in an abrupt change of thickness and produce a 

concentration of stresses which may cause delamination as explained by Curry [50].  The 

Compression After Impact (CAI) refers to the sequence of events whereby a low velocity 

transverse impact on a composite plate may also be the cause of internal delaminations. 

When the plate is subsequently loaded by in-plane compression, local buckling may 
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occur around these delaminations, reducing the residual compressive strength of the 

plate.   Publications focusing on the after-impact evaluation and on the after-impact repair 

of damaged structures are reviewed by Resnyansky [55]. Bolotin [56] has distinguished 

two kinds of delaminations, depending on their position in a structural member.  

Delaminations situated within the bulk of the material are rather like the cracks studied in 

conventional fracture mechanics. The edge delaminations in thick members may also be 

partially attributed to this type of delamination. Delaminations situated near the surface 

of a structural member are a special kind of crack-like defect. The behavior of surface 

delaminations is accompanied by their buckling. The local instability and crack growth 

may produce the global instability of structural components such as columns, plates and 

shells under compression. Therefore, he suggested the joint analysis of damage, fracture, 

local buckling and global stability to predict the load-carrying capacity of composite 

structures with delaminations. Bolotin [57] has surveyed the literature and the mechanical 

aspects of delaminations in laminate composite structures. He discussed the surface and 

internal delaminations of various origin, shape and location. He also analyzed the 

origination, stability, and post-critical behavior of delaminations under quasi-static, 

cyclic, and dynamic loads.  

In the present thesis work, interlaminar stresses are analyzed using the two methods: 

considering an isotropic thin resin layer at the middle of two plies and numerical 

solutions. Using the later, the origination of delamination, if any, is analyzed. But the 

local instability and crack growth are not considered in the present analyses. Considering 

the above mentioned isotropic thin resin layer, transverse interlaminar normal and shear 
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stresses developed at the locations of the ply drop-off are also calculated to see the stress 

state at those locations.   

 

1.2.7  Non-linear Buckling Analysis of Shells 

Linearized formulations are insufficient to explain and to account for many important 

phenomena such as the effect of large deformations, amplitude-dependent frequency, the 

catastrophic jump phenomena, subharmonic oscillations, and post-buckling behavior of 

structures. In large-deflection (non-linear) theory, the deflections are assumed to be finite 

though small. They are relatively large, however, when compared with that of small-

deflection theory. The strain-displacement relations include non-linear terms and 

therefore the equilibrium equations in terms of displacements are non-linear in nature. 

Donnell and Wa [58], in their approximate analysis of the effects of initial imperfections 

on the buckling behavior of compressed cylinders, derived a set of large-deflection 

equilibrium equations which is an extension of that derived by Von-Karman [59] for 

large deflections of flat plates. Donnell and Wa [58] are the first to suggest a simple non-

linear theory for analyzing the stability of cylindrical shells.  

 

Two distinct approaches have been followed in the literature in developing non-linear 

finite element analysis of laminated structures: i) laminate theory and ii) 3-D continuum 

formulation. In the laminate theory, the 3-D description is reduced to a 2-D description 

based on the assumption of small strains and moderate rotations, no change of geometry 

during loading, and the geometric non-linearity is in the form of Von-Karman strains. 

Analysis based on this theory can be found in the Ref. [60]. In the 3-D continuum 
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formulation full non-linear strains or only the Von-Karman non-linear strains are 

included as desired. There are two incremental continuum formulations that are used to 

determine the deformation and stress states: a) the total Lagrangian formulation in which 

the Green-Lagrange strain tensor and 2nd Piola-Kirchhoff stress tensor are used, and b) 

the updated Lagrangian formulation in which the Cauchy stress tensor and the 

infinitesimal Almansi strain tensor are used. Liao and Reddy [61] and Reddy [62] have 

investigated shell structures using 3-D continuum formulation. In the present thesis work, 

laminate theory is used in the formulation of non-linear buckling analysis. 

 

In the literature five types of solution methods have commonly been used to solve the 

non-linear problems of shell theory:  i) The small parameter method, ii) The successive 

approximation method, iii) the Picard iteration (or direct iteration) method, iv) the 

Newton-Raphson iteration method, and v) the Riks method (or the incremental/iterative 

solution method). The small parameter method was used by Kayuk [63-64]. The 

successive approximation method was used by Vorovich [65-66] in the non-linear shell 

theory to prove the solvability of boundary value problems. To the iteration algorithms 

used in the vicinity of regular shell states belong the Newton and Raphson methods [67-

68], which are based on the idea of linearization [69] in which one constructs a linearized 

operator at each iterative step. The convergence of Newton's method depends to a large 

extent on how successfully the initial approximation of the deformation matrix has been 

selected. This method was used in the Refs. [70] and [71] to solve the problems of shell 

theory. Application of Newton-Raphson method to complex structural systems has been 

carried out by Haeseler and Peitgen [72]. Originally and independently Riks [73] and 
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Wempner [74] proposed the earliest version of arc-length method. This arc-length 

method is also known as incremental/iterative solution method. Based on the 

conventional arc-length method, an improved arc-length method was proposed by Zhu 

and Chu [75]. Bruce and Siegfried [76] have introduced a general formulation for all arc-

length procedures. They have also compared their results with that of the Crisfield’s 

procedure [77]. Concerning the incremental strategies to solve the non-linear set of 

algebraic equations, a new arc-length-type method was formulated by Carrera [78]. In 

this work, he has compared the various types of path-following methods: the load control, 

the displacement control, and the arc-length-type methods. In the present non-linear 

analyses, the Crisfield’s procedure [77] is applied.  

 

To investigate the non-linear deformation and stability of shell structures, it is convenient 

to apply the Bubnov-Galerkin method [79]. Its implementation in the non-linear shell 

stability problems has been discussed by Vol'mir [80]. Karman and Tsien [81] 

implemented the non-linear statement of the problem for smooth cylindrical shells by 

using the Donnell’s equations. The review studies related to further development of 

stability investigations are contained in the monographs of Vol'mir [80] and Grigolyuk 

and Kabanov [82].   Riks [83] and Ramm [84] have given an overview of different path-

following methods with a broad literature review. Sze et al [85] have presented popular 

benchmark problems for geometric non-linear analysis of shells wherein eight sets of 

popularly employed benchmark problems were proposed and solved. Andrade et al [86] 

have formulated and implemented an eight-node hexahedral isoparametric element with 

one-point quadrature for the geometrically non-linear static and dynamic analysis of 
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plates and shells made of composite materials. Han et al [87] have presented the 

formulation of a non-linear composite nine-node modified first-order shear deformable 

element-based Lagrangian shell element for the solution of geometrically non-linear 

analysis of laminated composite thin plates and shells. Pradyumna et al [88] have 

employed a higher order finite element formulation for the non-linear transient analysis 

of functionally graded curved panels.  

1.2.8  Prediction of Critical Load 

Three types of buckling loads were defined by Chang and Chen [89], and Li [90]. These 

three types of buckling loads include, i) the classical buckling load (the bifurcation point 

or linear buckling load) of an ideal linear elastic structure, ii) the linearized buckling load, 

and iii) fully non-linear buckling load. The basic assumption of the linearized buckling 

analysis is that the structure behaves linearly before the critical load is reached. The 

linearized buckling load is estimated on a stressed structure under a certain load and 

considering the singularity of the tangent stiffness matrix. The details of the calculation 

of linearized buckling load are explained in the book of Bathe [91]. The fully non-linear 

buckling analysis employs a non-linear static analysis with gradually increasing loads to 

seek the load level at which the structure becomes unstable which is known as the 

stability limit load (snap through buckling). There have been few studies into the 

effectiveness of the above-mentioned different types of buckling loads. Batdorf [92] first 

idealized the cylindrical shell structure by neglecting the pre-buckling rotation and the 

hoop stress and calculated the critical stress for the axially loaded cylinders. Croll [93] 

has estimated the lower bound for the critical loads of cylindrical shells by neglecting the 

strain energy due to membrane action of the structure. Brush [94] has considered the 
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effect of pre-buckling rotations and improved the Batdorf’s approximation [92]. Li [90] 

has assumed the linear relation of load-displacement in pre-buckling state. He has also 

presented a survey of concepts and methods that have been used in the non-linear 

analysis of instability and collapse of structures. Almroth and Brogan [95] have discussed 

the practical applicability of the bifurcation buckling theory. Several example cases were 

presented in which results from a bifurcation buckling analysis were compared to the 

results obtained from a rigorous non-linear analysis. 

 

An improved scheme for critical load prediction has been developed by Brendel and 

Ramm [96] using the total Lagrangian formulation. Based on their methodology, Chang 

and Chen [89] combined the linear buckling loads with the loads obtained based on the 

minimum number of non-linear analyses to predict the critical loads of shell structures. 

They have estimated stability limit load by predicting and using the various linearized 

critical loads corresponding to respective pre-stress loads (in their analysis a pre-stress 

load is considered as the base load). In the present work, an improved methodology for 

the prediction of stability limit load is developed that requires the consideration of only 

two load steps instead of several load steps as in the case of existing methodology.  

 

1.3  OBJECTIVES OF THE THESIS 

None of the previously mentioned authors has worked on the response characteristics of 

tapered curved composite plates under compression. In the present thesis work, this 

response is considered for the purpose of studying the fundamental behavior of tapered 

curved composite plates. On the other hand, a large number of load steps are required to 
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calculate the stability limit load from the conventional non-linear load-deflection curve. 

A simplified methodology is introduced using two load steps to calculate the stability 

limit load of a curved plate. 

 

In the present thesis work, the buckling response of curved laminated plates with 

longitudinal internal ply-drop-off configuration is investigated. Longitudinal ply-drop-off 

tapers are identified as those in which the internal discontinuities of the laminate are 

parallel to the direction of the applied load. Taking account the findings of He et al [1], 

and Daoust and Hoa [4], different types of longitudinal cross sections as shown in Fig. 

1.4 are investigated. In the Fig. 1.4, htk and htn denote the thicknesses at the thick end and 

thin end respectively; Ltk, Ltap and Ltn denote the lengths of thick, taper and thin section 

respectively; R, b and b’ denote the radius, the width and the cord of curved plates 

respectively; and (uo, vo, wo) denotes the mid-plane displacement field with reference to 

the global coordinate system (x, y, z).  The taper configuration A is a simplified taper 

configuration having only one large resin pocket.  The taper configuration B has five 

resin pockets: four small resin pockets are distributed symmetrically with respect to mid-

plan and the fifth one is designed combining the two small resin pockets. Every small 

resin pocket is formed by dropping-off three composite plies and there are continuous 

composite plies above and below each resin pocket. The hybrid configuration is modeled 

combining the uniform-thickness and tapered sections as shown in the Fig. 1.4.  

 

The first objective of the present thesis work is to conduct the linear global buckling 

analysis of the tapered curved plates shown in Fig. 1.4 using Ritz method. Linear global 
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buckling analysis includes the classical and first order shear deformation shell theories. 

For the buckling analysis based on classical shell theory, namely Donnell’s, Love’s, 

Mushtari’s, Timoshenko’s, Vlasov’s, Sander’s, Koiter’s and Novozhilov’s theories are 

used. Six shell theories are used in the analysis based on first-order shear deformation 

theory, namely Donnel’s, Love’s, Moreley’s, Loo’s, Sander’s and Koiter’s theories. The 

relative efficiency and accuracy of these shell theories are assessed based on critical 

buckling loads obtained using Ritz method and finite element method. Buckling analysis 

results obtained using Ritz method are compared with the existing experimental and 

analytical results, and are also evaluated with that of the results obtained using ANSYS. 

The second objective is to determine the failure loads corresponding to local material 

failure of the tapered curved plates using ANSYS®. The first-ply failure load is calculated 

considering the first instance at which any layer or more than one layer fails at the same 

load. The initiation of delamination, if any, is analyzed using the transverse interlaminar 

stresses under compressive load. The third objective is to determine the critical sizes and 

parameters of the tapered curved plates based on the failure and buckling analyses. The 

fourth objective is to evaluate the stability limit load and ultimate strength of the tapered 

curved plate beyond the initial buckling. The mechanical structures undergo large 

deflection after they buckle. The effect of large deflection is considered in the non-linear 

analysis. A simplified methodology for non-linear buckling analysis is introduced to find 

out the stability limit load which requires only two load steps instead of large number of 

load steps. Non-linear buckling analysis is carried out using FEM. A parametric study 

that encompasses the effects of boundary conditions, stacking sequence, taper 
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configurations, radius and other geometric parameters of the plate is conducted. Finally, 

design guidelines for the tapered curved composite plates are established. 

 

Figure 1.4: Different longitudinal cross sections of curved plate. 

 

1.4  LAYOUT OF THE THESIS 

In the present chapter, a general discussion about the compressive strength of tapered 

curved composite plates, literature review on the a) analysis of tapered composite 

structures, b) linear buckling analysis of shells, c) analysis of shells using Ritz method, d) 

buckling analysis of shells using finite element method, e) first-ply failure analysis of 

composite structures, f) interlaminar stress and delamination failure analyses of 

composite structures, g) non-linear buckling analysis of shells, and h) prediction of 
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critical load,  objectives of the present thesis, and finally, the layout of the present thesis, 

are given. 

 

In chapter two, the Ritz method and eight classical shell theories are used for the global 

linear buckling analysis of thickness-tapered curved composite plates subjected to 

uniaxial compressive load. The results that obtained using Ritz method are compared 

with that of the existing studies. Finally, a parametric study is carried out. 

 

In chapter three, the Ritz method is used for the global buckling analysis based on six 

first-order shear deformation shell theories. To apply the first-order shear deformation 

shell theories to analyze the plates, an appropriate set of shear correction factors have 

been determined. The critical sizes and parameters of the tapered curved plates that will 

not fail before global buckling are determined. At the end, a parametric study is 

accomplished.  

 

In chapter four, a nine-node tapered curved finite element is developed based on six first-

order shear deformation shell theories. To apply the first-order shear deformation shell 

theories to analyze the tapered plates, an appropriate set of shear correction factors have 

been determined. Various boundary conditions are considered for different laminate and 

lay-up configurations. The buckling loads obtained using FEM are also compared with 

that of the existing experimental and analytical results. At the end, a parametric study is 

concluded.  
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In chapter five, non-linear buckling analysis is carried out using finite element method. 

To find out the stability limit load, a simplified methodology is introduced which requires 

only two load steps. Three types of plates are analyzed: uniform curved, tapered curved 

and hybrid (uniform and tapered) curved plates.  

 

In chapter six, conclusions, a summary of contributions, and suggestions for the future 

work are given. 

 

 

 

 

 

 

 

 

 

 

 



26 
 

Chapter 2 

Compressive Response of Thickness-Tapered Shallow Curved 

Composite Plates Based on Classical Shell Theory 

 

2.1  INTRODUCTION 

In this chapter, the compressive response of shallow curved composite plates with 

longitudinal internal ply-drop-off configurations is investigated. The Ritz method is used 

for the global buckling analysis considering uniaxial compressive load. Linear buckling 

analysis is carried out based on eight well-known classical shallow shell theories, namely 

Donnell’s, Love’s, Mushtari’s, Timoshenko’s, Vlasov’s, Sander’s, Koiter’s and 

Novozhilov’s theories. The strength characteristics and load carrying capability of the 

tapered curved plates are investigated considering the first-ply failure analysis using 

ANSYS®. Based on the failure and buckling analyses, the critical sizes and parameters of 

the tapered curved plates that will not fail before global buckling are determined. A 

parametric study is conducted that encompasses the effects of boundary conditions, 

stacking sequence, taper configurations, radius, and geometric parameters of the plates. 

 

2.2 FORMULATION 

Total potential energy criterion is used in order to analyze the stability problems. The 

curved plates of the Fig. 1.4 are considered to conduct the buckling analysis. Resin 

pockets are assumed to be the combination of hypothetical resin plies. Following 

assumptions are considered in the buckling analyses: 
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- The plate consists of arbitrarily laminated composite layers. 

- Material is homogeneous and elastic. 

- The plate is thin, shallow (htk / R « 1) and has no imperfection. 

 

 

Figure 2.1:  Orientation of fibers and laminate 

 

The tracer coefficients c1, c2, c3 and c4 are introduced to implement the eight different 

shell theories for shallow curved plates. The strain-displacement functions for different 

theories can be applied in the case of small deformations with the displacement fields (uo, 

vo, wo) that refer to the global coordinate system (x, y, z) as shown in Fig. 2.1: 
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(2.3) 

where T
xyyyxx ],,[ 000 γεε  and T

xyyyxx ],,[ κκκ  are the mid-surface strains and curvatures 

respectively. The superscript ‘T’ stands for transpose of the matrix. 

By setting, 

i) c1 = c2 = c3 = c4 = 0, equations that correspond to Donnel’s [97], 

Mushtari’s [97], Timoshenko’s [97] and Love’s [98] shell theories are obtained.  

ii) c1 = c3 = c4 = 1 and c2 = 0, equations that correspond to Vlasov’s [99] shell 

theory is obtained. 

iii) c1 = c2 = 0 and c3 = c4=1/2, equations that correspond to Sander’s [100] 

and Koiter’s [101] shell theories are obtained.            

iv) c1 = c4 = 0, c2 =1 and c3 =2, equations that correspond to Novozhilov’s 

[102] shell theory is obtained. 

The Fig. 2.1 describes the orientation of fibers and laminate. """ , zandyx  are the 

principal material directions oriented by θ (fiber orientation angle) degrees with respect 

to the ''' , zandyx  directions respectively. The local coordinate system ( ''' ,, zyx ) makes 

an angle of ψ  (taper angle) degrees with the global coordinate system (x, y, z).  

 

Hooke’s law for orthotropic materials in the principal material directions can be written 

as: 
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(2.4) 

where ij
"σ  and ij

"τ  are the normal stresses and shear stresses respectively and, ij
"ε  and 

ij
"γ  are the normal strains and shear strains respectively with i, j = """ ,, zyx  in the 

material coordinate system ),,( """ zyx . etcCC ...., 12
"

11
"  are the corresponding stiffness 

coefficients. 

Eq. (2.4) can be expressed as: 

{ } [ ]{ }""" εσ C=  (2.5) 

The stress transformation matrix due to fiber orientation angle θ  is of the following form 

[103]: 
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The stress transformation matrix due to taper angle ψ  can be written as: 

[ ]
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(2.7) 

The elastic properties of a layer are given in its principal material directions by the Eq. 

(2.4) but the final form of the governing equations are in the global coordinate system 
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(x,y,z). The layer properties should be transformed to global directions from the principal 

material directions as follows:  

--First, coordinate transformation corresponding to the rotation of x” and y” about z” axis 

(see Fig. 2.1) 

--Second, coordinate transformation corresponding to the rotation of x’ and z’ about y’ 

axis (see Fig. 2.1) 

Therefore, the stress tensor for a ply in the tapered laminate is formulated as: 

{ } [ ][ ][ ][ ] [ ] { }εσ σψσθσθσψ
TT TTCTT "=  (2.8) 

where [ σθT ] and [ σψT ] are the stress transformation matrices due to fiber orientation angle 

θ  and taper angle ψ  respectively.  

The above equation can be expressed in a short form: 

{ } [ ]{ }εσ C=  (2.9) 

Thus, the stiffness matrix [C] in the global coordinate system ( zyx ,, ) can be expressed 

by the stiffness matrix [C”] in the principal material coordinate system ( ","," zyx ) and 

the transformation matrices as: 

[ ] [ ][ ][ ][ ] [ ]TT TTCTTC σψσθσθσψ "=  (2.10) 

The reduced stiffness matrix is in the form: 
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(2.11) 

where,      Qij  = Cij  - Ci3 Cj3/ C33,      i , j = 1,2,6 (2.12) 

and Cij  is the coefficient of material stiffness matrix in the global coordinate system given 

by the Eq. (2.10). 
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The equations for coefficients of matrices [A], [B] and [D] for tapered laminate can be 

written as  

dzzzQDBA
h

h
ijijijij ),,1(),,( 2

2/

2/
∫

−

=         i , j = 1,2,6 
(2.13) 

In which, Aij is the stretching stiffness matrix coefficient, Bij is the coupling stiffness 

matrix coefficient, Dij is the bending stiffness matrix coefficient, and Qij  is calculated 

from the Eq. (2.12).  

The strain energy of the tapered shell structure is written in Cartesian co-ordinates as 

follows: 

dxdy
DB
BAb L
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where T
xyyyxxxyyyxx ],,,,,[][ 000 κκκγεεε =  (2.15) 

The potential energy due to the uniaxial compression is [104]: 
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where, λ  is the inplane normal compressive load in x direction. 

The approximate solutions for the displacements are expressed as a double series: 
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The functions Um(x), Un(y), Vm(x), Vn(y), Wm(x), and Wn(y) are so chosen as to satisfy 

the boundary conditions which are given in the Appendix A and the coefficients Umn, Vmn 

and Wmn are determined by the following stationary conditions: 

mnmn U
F

U ∂
∂

=
∂
∏∂  (2.20) 

mnmn V
F

V ∂
∂

=
∂
∏∂  (2.21) 

mnmn W
F

W ∂
∂

=
∂

∏∂  (2.22) 

 where ∏  and F are given by the Eqs. (2.14) and (2.16) respectively. 

The Eqs. (2.20) through (2.22) are, respectively, rewritten as: 
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Eqs. (2.23) through (2.25) are rearranged into matrix form: 
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Further details about the matrices ],[],[],[],[ 33221211
IJIJIJIJ GGLL  and so on are given in the 

Appendix A. The eigenvalues λ  are the values of buckling loads. The following indicial 

expressions were introduced [105] and used in Eq. (2.26):  
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nMmI +−= )1(   and jNiJ +−= )1(  (2.27) 

where  Mmi ......2,1, =  and Nnj ......2,1, = .

         

 

Eq. (2.26) can be written in the short form: 

0][][ =+ ZK λ
 

(2.28) 

where, [K] and [Z] are the stiffness matrix and geometric stiffness matrix respectively. 

Eq. (2.28) is solved using MATLAB® program as an eigenvalue problem for which the 

eigenvalues λ  are the values of buckling loads. The smallest value of λ  is the critical 

buckling load, crλ . 

 

2.3  VALIDATION 

To the author’s knowledge, no results are available yet in the literature on the buckling 

loads of the tapered curved composite plates under the action of uni-axial compression. 

Therefore the comparison with the existing works could not be made. In order to validate 

the formulation and analysis, first, the taper angle is set to be zero, and the resulting 

uniform-thickness laminates have been analyzed and the results have been compared with 

that available in the literature for the uniform-thickness laminates. For this purpose, a 

uniform-thickness cylindrical panel made of Morganite II/4617 having the mechanical 

properties of Ex” =137.89 x109 Pa (20.0 x106 psi), Ey”  = 14.48 x109 Pa (2.1 x106 psi), 

Gx”y” = 5.86 x 109 Pa (0.85x106 psi), υx”y” = 0.21 and the geometrical properties of  length 

L = 0.3048 m (12 inches), width b = 0.2032 m (8 inches), radius R = (0.3048 - h/2) m, 

thickness h = 1.50368 x 10-03 m (0.0592 inches) and taper angle ψ  = 0 degree which has 

been investigated by Wilkins [106] is considered. The plate is clamped at four edges (C4-

C4) and the boundary conditions (C4-C4) are given in the Appendix A. In the work of 
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Wilkins [106], experiments were carried out applying the experimental procedures of 

Southwell (S) and Moiré (Mo). Results of the present work are compared with that of the 

Ref. [106] for different laminate configurations in the Tables 2.1 and 2.2.  

From the Table 2.1 it is found that the result is converged when 9 terms are taken in the 

Ritz series. Most of the buckling problems in the present work have converged with 9 

terms. The results based on different shell theories are close to each other but the 

Novozhilov’s theory provides the most conservative result. As can be seen from Tables 

2.1 and 2.2, the present analytical results differ from that of the experimental ones with a 

maximum error of 15.9 percent, which is nominal for a linear buckling analysis. 

 

Table 2.1: The comparison of buckling load of uniform-thickness cylindrical panel 

Laminate 
Configurat-
ion 

No. of 
Terms in 
the Series 
(N x M) 

Wilkins [106] 
(x104 N/m) 

Present (x 104 N/m) 
Donnell, Love, 
Doubly, Mushtari, 
Timoshenko 

Vlasov Sander, 
Koiter Novozhilov 

Exp. Ritz Solution Ritz Solution Ritz Solution Ritz Solution 

[0/90]2s 

1x1 

15.5162 (S) 
 
 

634.6769 633.2735 634.5210 632.3378 
2x2 118.0114 117.7504 117.9824 117.5764 
3x3 20.6453 20.5996 20.6402 20.5692 
4x4 18.5656 18.5246 18.5611 18.4972 
5x5 18.1300 18.0899 18.1255 18.0632 
6x6 17.8980 17.8584 17.8936 17.8320 
7x7 17.8629 17.8234 17.8585 17.7971 
8x8 17.8235 17.7841 17.8191 17.7578 
9x9 17.8191 17.7797 17.8148 17.7535 

 

Table 2.2: The comparison of buckling loads for uniform-thickness cylindrical panel of 

different configurations 

Laminate Configuration 
Wilkins [106] 
(x 104 N/m) 

Present, Novozhilov 
(x 104 N/m) 

Exp. Ritz Solution 
[0/45/90/-45]s 15.5425 (Mo) 15.9825 
[0]6s 47.1485 (S) 54.6658 
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Next, uniform-thickness cylindrical panel made of T300/5208 graphite/epoxy having the 

mechanical properties of Ex” = 141.34 GPa (20.5 x106 psi), Ey” = 8.96 GPa (1.3 x106 psi), 

Gx”y” = 5.17 GPa (0.75 x106 psi) and υx”y” = 0.335 which is clamped (C3) in transverse 

direction and simply supported (S3) in longitudinal direction is considered. The boundary 

conditions (C3-S3) are given in the Appendix A. The dimensions of the plate are taken to 

be: length L = 0.3048 m (12 inches), the cord length 'b  = 0.3048 m, radius of the plate R 

= 0.3048 m, thickness h = 1.016x10-03 m (0.04 inches). Becker [107] has conducted the 

bifurcation (obtained from eigenvalue solution) buckling analysis of this curved plate 

using STAGS computer code. In the present study, the buckling analysis is carried out 

using Ritz method based on various shell theories and the results are compared with that 

given in the work of Becker [107]. The normalized buckling load is given in the Table 

2.3 where crλ is the critical buckling load. 

 

Table 2.3: The comparison of buckling loads of uniform-thickness curved plates applying 

different shell theories 

Laminate 
Configuration 

Becker [107] 
)/()( 3

"
2 hEL xcrλ  Present )/()( 3

"
2 hEL xcrλ  

Theory Exp. Donnell, Love, Doubly 
Mushtari, Timoshenko Vlasov Sander, 

Koiter Novozhilov 

[90/0]2s 33.30 24.50 34.950 34.866 34.949 34.816 
 

As can be observed from the Table 2.3, the present result is in good agreement with the 

theoretical buckling load given in the reference work. The present results are higher than 

that of the experimental results. According to Ref. [107], the bifurcation buckling loads 

may be 23 to 45 percent higher than the experimental buckling results because the 

occurrence of elastic instability is strongly influenced by the geometric nonlinearity, 
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geometric imperfections and the boundary conditions in the orthotropic laminates [16]. 

The results based on different shell theories are close to each other and the Novozhilov’s 

theory provides the most conservative result which is also observed from Table 2.1. 

Hence in the present chapter, the Novozhilov’s theory is used to calculate the buckling 

load using Ritz method.  

Further, a tapered plate with only two internally dropped plies has been analyzed using 

Ritz method based on Novozhilov’s theory. The mechanical properties and the 

dimensions are same as the last mentioned problem (Ref. [107]) and the clamped-simply 

supported (C3-S3) boundary conditions are considered. The results are compared with 

that of two uniform-thickness composite plates with lay-up configurations [90/0]2s and 

[90/0/90]s, respectively. The buckling loads for these three laminates under uni-axial 

compressive load are given in Table 2.4. As can be observed, the result for tapered 

laminate is between that of the 8-layers uniform-thickness laminate and that of the 6-

layers uniform-thickness laminate. 

 

Table 2.4: Critical buckling loads for tapered and uniform-thickness composite plates 

 
Plate Critical Buckling Load (x 104 N/m) 
8-Layers Uniform Plate 
[90/0]2s 

5.5532 

Tapered Plate 
[90/0]2s  - [90/0/90]s 

4.0214 

6-Layers Uniform Plate 
[90/0/90]s 

2.9161 
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2.4 FIRST-PLY FAILURE ANALYSIS 

The load carrying capability of the tapered curved plates is studied considering first-ply 

failure load. This type of failure analysis is considered in the present work to determine 

whether a layer has failed due to compressive loading before global buckling. The 

commercial software ANSYS® has been chosen to model the curved composite plates. 

Element SHELL99 is used for the first-ply failure analysis using ANSYS®. SHELL99 is 

an 8-node, 3-D shell element with six degrees of freedom (three translations and three 

rotations) at each node. It is designed based on the degenerated solid approach with shear 

deformation effect and to model thin to moderately-thick plate and shell structures with a 

side-to-thickness ratio of roughly 10 or greater. The tapered curved plates are meshed by 

eighty-one elements which are shown by numbering in the Fig. 2.2.  The first-ply failure 

analysis is carried out using ANSYS® based on the 3-D version of Tsai-Wu failure 

criterion. The first-ply failure refers to the first instant at which any layer or more than 

one layer fails at the same load. The same criterion is applied for both the composite ply 

and the resin pocket, the resin pocket is considered (imagined) to be made up of layers of 

isotropic resin material. Material properties [45] of composite ply and epoxy are given in 

the Tables 2.5 and 2.6 respectively, where Xt, Yt, Zt are the normal tensile strengths in the 

principal material directions ","," zyx  respectively; Ryz, Sxz, Txy are the shear strengths 

in the y”z”, x”z”, x”y” planes respectively; Xc, Yc, Zc are the normal compressive strengths 

in the principal material directions ","," zyx  respectively. 
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Table 2.5: Material properties of NCT/301 graphite-epoxy composite material 

 
Table 2.6: Material properties of epoxy material used in NCT/301 

Mechanical Property Value Strength Property Value 
Ex” =  Ey”  = Ez” 3.930 GPa Xt  = Yt = Zt 57.00 MPa 
Gx”y” = Gx”z” = Gy”z” 1.034 GPa Xc = Yc = Zc -104 MPa 

"""""" zyzxyx
ννν ==  0.370 Ryz = Sxz = Txy  22 MPa 

 

 

Figure 2.2: Finite element mesh. 

 
Four different sizes of square tapered composite plates with taper configuration B and 

made of NCT/301 graphite-epoxy composite material is considered. The lay-up is 

[0/90]9s at the thick end and [0/90]3s at the thin end which is defined as lay-up 

Mechanical Property Value Strength Property Value 
Ex” 113.900 GPa Xt 1621 MPa 

Ey” = Ez” 7.985 GPa Xc -1250 MPa 
Gx”y” = Gx”z” 3.137 GPa Yt = Zt 48.28 MPa 

Gy”z” 2.852 GPa Yc = Zc -200 MPa 
"""" zxyx

νν =  0.288 Ryz 25.00 MPa 

""zy
ν  0.400 Sxz = Txy 33.30 MPa 
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configuration LC1 in the Table 2.7. The mechanical properties of the composite and 

epoxy material are given in Tables 2.5 and 2.6 respectively. The geometric properties of 

the plates are: side length of the square plates varies from 85.9 to 859.4 mm, plate 

thickness at thick end htk = 4.5 mm and the radius R = 500 mm. The clamped-clamped 

(C4-C4) boundary conditions given in the Appendix A are considered. The results of 

failure analysis are tabulated in the Table 2.8.  

 

Table 2.7:  List of lay-up configurations  

 

Lay-up 
Configuration 

Ply Staking Sequence Lengths of the Hybrid 
Configuration (m) 

Thick 
Section 

Tapered 
Section 

Thin 
Section 

Thick 
Section 

Tapered 
Section 

Thin 
Section 

LC1 [0/90]9s Config.  B [0/90]3s 0.0382 0.1146 0.0382 
LC2 [±45]9s Config.  B [±45]3s 0.0382 0.1146 0.0382 
LC3 [02/±458]s Config.  B [02/±452]s 0.0382 0.1146 0.0382 

 
 

Table 2.8: Critical buckling load and first-ply failure load of tapered curved laminates 

with lay-up configuration LC1 and taper configuration B 

Taper 
Angle in 
Degree 

Side Length of the 
Square Plate 
(m) 

Buckling Load 
Using Ritz Method 

(x 104 N/m) 

First-ply Failure Load 
Using ANSYS® 
(x 104 N/m) 

Failure Location 
(FEN, FLN)* 

0.10 0.8594  14.20 48.05 1, 2 
0.50 0.1719  43.81 42.00 1, 2 
0.75 0.1146  70.69 43.50 9, 3 
1.00 0.0859  100.23 45.60 9, 3 

 
* FEN and FLN denote the failed element number and failed layer number at first-ply failure. 

 

The side length of square plates corresponding to taper angles is given in the Table 2.8. 

The first-ply failure loads are compared with the buckling loads. As can be seen from the 
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Table 2.8, the tapered curved plates corresponding to taper angles of 0.50, 0.75 and 1.0 

degrees will fail by first-ply failure before the global buckling. On the other hand, the 

plate corresponding to taper angle of 0.1 degree will fail first by buckling failure. 

Therefore, the maximum plate size should be (0.1754 x 0.1754) which is corresponding 

to taper angle of 0.49 degree and the critical length-to-height ratio (Ltap / htk) is to be 38.9. 

The failed layer numbers 2 and 3, respectively, are the second layer and the third layer at 

the thick end of the plates. All the tapered curved plates failed at the thick end where the 

minimum numbers of plies above or below the resin pockets. 

 

Next, the tapered plates of the Table 2.8 are analyzed for different radii using the same 

boundary conditions (C4-C4), ply-configuration (LC1) and material properties (Table 2.5 

and Table 2.6). The critical sizes of the tapered curved plates are determined 

corresponding to various radii. For the calculation of critical length-to-height ratio, the 

same procedure is applied as mentioned in the previous problem for the radius of 500 

mm. In the Fig. 2.3, radius versus critical length-to-height ratio of tapered curved plates is 

plotted. In this figure, Ltap denotes the taper length and htk denotes the thickness at the 

thick end. The stiffness of the tapered curved plate increases with the decrease of radius. 

Therefore, critical length-to-height ratio is to be increased with the decrease of radius to 

avoid the material failure. It can also be seen in the Fig. 2.3 that the critical length-to-

height ratio increases with the decrease of radius. The critical length-to-height ratio varies 

non-linearly with the change of radius. The design limit of the tapered curved composite 

plates with the lay-up configuration LC1 and the taper configuration B is determined and 

represented as the hatched area in the Fig. 2.3. Beyond this limit, tapered curved plate 
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with lay-up configuration LC1 and taper configuration B will not fail by first-ply failure 

before global buckling.   

 

Figure 2.3: The effect of critical length-to-height ratio on radius of the tapered curved 

composite plates with the ply configuration LC1 and the taper configuration B. 

 

2.5  PARAMETRIC STUDY 

In the parametric study two types of longitudinal cross-sections of the curved plates are 

considered, that are, taper configurations A and B and hybrid configuration as shown in 

the Fig. 1.4. The buckling analyses are carried out using Ritz method based on 

Novozhilov’s theory. The material properties of composite ply and epoxy that are the 

same as given in the Tables 2.5 and 2.6 respectively are used. 

2.5.1 Buckling Analyses of Tapered Curved Plates 

Tapered models shown in the Fig. 1.4 are considered with 36 and 12 plies at thick and 
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end is (0/90)9s, and that of the thin end is (0/90)3s; this lay-up configuration is defined as 

LC1. In the analyses of taper configurations, the height of thick end htk = 4.5 mm and the 

radius of curved plate R = 500 mm are considered. For the analyses of tapered curved 

plates only LC1 ply-configuration with clamped-clamped (C4-C4) boundary conditions 

are considered. Various parameters, namely ply drop-off, taper angle and length-to-radius 

ratio are investigated to see the effects of these parameters on buckling load of tapered 

curved plates. The results are shown in the following Figs. 2.4 through 2.6. 

2.5.1.1  Influence of Ply Drop-Off 

The effect of ply drop-off on critical buckling load is shown in the Fig. 2.4. To 

investigate this effect, the side length of square tapered plate is considered as 859.4 mm 

corresponding to taper angle of 0.1 degree. The thickness of the thick end is not changed 

and the taper angle is varied with the corresponding increase in the number of drop-off 

plies.  The plate can be considered as a uniform-thickness plate when the number of ply 

drop-off is set to zero and the taper configuration A is obtained by dropping-off twenty 

four plies. The plates are clamped-clamped (C4-C4) at four edges and the lay-up 

configuration is LC1. In the Fig. 2.4, crλ  denotes the critical buckling load. 

 

From the Fig. 2.4, it is observed that the uniform-thickness curved plate is stiffer than the 

uniform-thickness flat plate in terms of buckling behavior. It is also observed that the 

tapered flat plate is less stiff than uniform flat, but this behavior of the plate can be 

inverted if the tapered flat plate is made into a curved one. Buckling load of flat and 

curved plates varies linearly with the drop-off plies. It can be concluded from the Fig. 2.4 

that the tapered flat plate is more flexible than uniform flat plate, but the tapered curved 
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plate provides a better design option in terms of saving the material without any 

compromise of the strength. Similar type of conclusions can also be made for other types 

of taper configurations. 

 

 

Figure 2.4: The effect of ply drop-off on buckling load for clamped-clamped (C4-C4) 

plates. 

2.5.1.2  Influence of Taper Angle 

The effect of taper angle on buckling load of tapered curved plates using Ritz method is 

compared with the two different taper configurations, A and B. The comparison is shown 
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while keeping the thickness of thick section unchanged. The maximum and minimum 

edge lengths of the tapered curved square plate are 859.4 mm corresponding to the taper 
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Figure 2.5: Effect of taper angle on buckling load for clamped tapered curved laminates 

with the lay-up configuration LC1 and taper configuration B. 

 

As can be observed from Fig. 2.5, the critical buckling loads of two taper configurations 
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angle. The critical buckling load varies nonlinearly with the variation of taper angle.  
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lay-up configuration is LC1 and the clamped-clamped (C4-C4) boundary conditions are 

considered. The material properties of composite and epoxy are used same as given in the 

Tables 2.5 and 2.6 respectively. In the Fig. 2.6, R denotes the radius, htk denotes the 

thickness at thick end, crλ  denotes the critical buckling load, Ltap denotes the length of 

tapered plates and Ex” denotes the elastic modulus of composite material in the fiber 

direction. 

 

 

Figure 2.6: Effect of length-to-radius ratio on buckling load for the clamped tapered 

curved laminate with the lay-up configuration LC1 and the taper configuration B. 

 

As observed from Fig. 2.6, the normalized buckling loads increase with the increase of 
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2.5.2 Buckling Analyses of Hybrid Curved Plates 

Laminates with only taper section have been studied in the previous sections and the 

hybrid (combinations of tapered and uniform-thickness) sections are taken into account in 

the present sub-section of thesis. The tapered part of hybrid plates is modeled using the 

configuration B.  For the analysis of hybrid configuration three types of lay-up 

configurations, namely LC1, LC2 and LC3 given in the Table 2.7 are considered. For the 

buckling analysis, total plate length L = 229.2 mm, width b = 114.6 mm and the material 

properties of Tables 2.5 and 2.6 are considered. According to the first-ply failure 

analysis, the hybrid plates with the above mentioned lay-up configurations will not fail by 

first-ply failure before global buckling. Two parameters, namely radius-to-thickness ratio 

and boundary conditions are considered to see the influences of these parameters on 

buckling load of hybrid curved plates. The results are shown in the following Figs. 2.7 

through 2.11.  

2.5.2.1  Influence of Lay-Up Configurations  

The normalized buckling loads of three lay-up configurations are calculated using Ritz 

method as shown in the Figs. 2.7 - 2.8. The buckling loads are calculated for clamped-

clamped (C4-C4) boundary conditions. The buckling load is considered in the Figs. 2.7 - 

2.8 to see the influence of the lay-up configurations on R/htk. In these figures, R denotes 

the radius, htk denotes the thickness at thick end, crλ  denotes the critical buckling load, L 

denotes the total length of hybrid plates and Ex” denotes the elastic modulus of composite 

material in the fiber direction. From Figs. 2.7 - 2.8, the following observations are made: 

a) The lay-up configuration LC2 is the weakest one among all other lay-up 

configurations. 
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b) The rate of change of buckling load of lay-up LC3 is lesser than that of lay-up 

configuration LC1. Due to this type of characteristic, the critical buckling load of 

LC1 is higher than that of LC3 for the smaller radius-to-thickness ratio (R/htk < 

230 for clamped plate and R/htk < 265 for simply-supported plate). In case of 

larger radius-to-thickness ratio (R/htk > 230 for clamped plate and R/htk > 265 for 

simply-supported plate), LC3 is stronger than LC1. 

c) In all the cases, the normalized buckling loads decrease nonlinearly with the 

increase of radius-to-thickness ratio. The buckling coefficient becomes close to 

each other at the larger value of R/htk as the plate becomes thinner. 

d) All the lay-up configurations are R/htk dependent.  

 

 

Figure 2.7: Variation of buckling load with the change of radius-to-thickness ratio of the 

clamped-clamped (C4-C4) hybrid plates for different lay-up configurations. 
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Figure 2.8: Variation of buckling load with the change of radius-to-thickness ratio of 

simply supported (S4-S4) hybrid plates for different lay-up configurations. 

 

2.5.2.2  Influence of Boundary Conditions  

Normalized buckling load is calculated for the rectangle hybrid plates (with a 
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using Ritz method based on Novozhilov’s shell theory. Two boundary conditions are 

considered, that are, clamped at four edges (C4-C4) and simply supported at four edges 

(S4-S4). These boundary conditions are given in the Appendix A. The effect of radius-to-

thickness ratio on buckling coefficient for the above mentioned plates is shown in the 

Figs. 2.9 - 2.11. 
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load than the simply-supported plate. Simply supported plates have more degrees of 

freedom than the clamped ones which is the reason for less strength. All the lay-up 

configurations are both R/htk and boundary condition dependent. 

 

 

Figure 2.9: Comparison of buckling load of the hybrid plate with LC1 lay-up 

configuration for different boundary conditions. 

 

Figure 2.10: Comparison of buckling load of the hybrid plate with LC2 lay-up 

configuration for different boundary conditions. 
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Figure 2.11: Comparison of buckling load of the hybrid plate with LC3 lay-up 

configuration for different boundary conditions. 

 

2.6  CONCLUSIONS 
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boundary conditions, stacking sequence, taper configurations, radius, and geometric 

parameters of the plates. Among the important conclusions and observations one may list 
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a) The buckling results based on different shell theories are close to each other but 

the Novozhilov’s theory provides the most conservative result. 

b) The moderately thick and tapered curved composite plates may fail by first-ply 

failure before global buckling. Therefore the tapered curved plate should be larger 

than the corresponding critical size. The critical size depends on both radius and 

staking sequence of the curved plates. 

c) The tapered flat plate is more flexible than uniform flat plate, but the tapered 

curved plate provides a better design option in terms of saving the material without 

any compromise of the strength. 

d) The normalized buckling load is more dependent on length-to-radius ratio (Ltap/R) 

than the taper configuration.  

e) The buckling loads of all the lay-up configurations are both radius-to-thickness 

ratio (R/htk) and boundary condition dependent.  
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Chapter 3 

Ply Failure vs. Global Buckling of Tapered Curved Composite Plates 

3.1  INTRODUCTION 

In this chapter, approximate analytical solutions are developed using Ritz method for the 

global buckling response of tapered curved plates considering uniaxial compression. 

Buckling analysis of tapered curved plates is carried out based on six well-established 

First-order shear deformation Shell Theories (FST). Various boundary conditions, and 

different lay-up and taper configurations are considered. The critical buckling loads 

calculated using the Ritz method are compared with that of the existing experimental and 

analytical results. The failure strength characteristics and load carrying capability of the 

tapered curved plates are studied considering two predominant types of local failures, 

which are the first-ply failure and the delamination failure. Based on the failure and 

buckling analyses, the critical values of size and shape parameters of the plates such that 

they will fail only in global buckling mode are determined. A comprehensive parametric 

study is carried out and design guidelines for the tapered curved plates are established 

based on this study.  

 

3.2 FORMULATION  

To determine the stiffness matrix of a ply in a tapered laminate, three coordinate systems 

have been defined: principal material coordinate system ),,( """ zyx , local coordinate system 

),,( ''' zyx and global coordinate system (x, y, z). These systems are shown in Fig. 2.1.  
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After two successive stress and strain transformations, with the first to transform from 

),,( """ zyx  to ),,( ''' zyx  system and the second to transform from ),,( ''' zyx to (x, y, z) 

system, the stress-strain relationship in the global coordinate system (x, y, z) for a ply in a 

tapered laminate is determined as:  
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 (3.1) 

where ijσ  and ijτ  are the normal stresses and shear stresses respectively, and ijε  and 

ijγ  are the normal strains and engineering shear strains respectively with i, j = zyx ,,  

in the global coordinate system ( zyx ,, ).  

Eq. (3.1) can be written in short form as 

{ } [ ] { }xyzxyzxyz C εσ =  (3.2) 

Thus, the material stiffness matrix [C]xyz in the global coordinate system ( zyx ,, ) can 

be expressed by the material stiffness matrix """][ "
zyxC in the principal material coordinate 

system )",","( zyx and the transformation matrices as: 

[ ] [ ][ ][ ] [ ] [ ]TT
zyxxyz TTCTTC σψσθσθσψ """"=  (3.3) 

where [ σθT ] and [ σψT ] are the stress transformation matrices due to fiber orientation 

angle θ and taper angle ψ  respectively. The superscript T stands for transpose. 

In the case of small taper angle and moderately-thick plates, the normal stress zzσ  in the 

z-direction is very small compared to other stresses. Therefore, applying the condition 
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that 0=zzσ  in the Eq. (3.1), the corresponding reduced stiffness matrix is calculated and 

expressed after rearrangement as: 
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(3.4) 

where       ;/ 3333 CCCCQ jiijij −=     i, j = 1, 2, 4, 5, 6. (3.5) 

and ijC is the material stiffness coefficient in the global coordinate system given by the 

Eq. (3.3).   

The equations for coefficients of matrices [A], [B] and [D] for tapered laminate can be 

written as 

dzzzQDBA
h

h
ijijijij ),,1(),,( 2

2/

2/
∫

−

=         i , j = 1,2,4,5,6 (3.6) 

The strain-displacement relations corresponding to different shell theories are considered 

for the case of small deformations of a curved plate with radius R and written in terms of 

the mid-plane displacement field (uo, vo, wo) that refers to the global coordinate system 

(x, y, z) as shown in Fig. 2.1.  Further, xϕ  and yϕ  denote the rotations due to shear 

deformation. The tracer coefficients c1 and c2 are introduced to express the strain-

displacement relations corresponding to the six different shell theories for shallow 

)1/( <<Rhtk curved plate. The strain field can be expressed as: 
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with             
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(3.8) 

and
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(3.9)

 

where the column matrices T
xzyzxyyyxx ][ 00000 γγγεε  and 

To
xy

o
yy

o
xx ]00[ κκκ  are, 

respectively, the matrix of mid-plane strains and the matrix of curvatures. 

By setting, 

i) c1 = c2 = 0, equations that correspond to Donnell’s [108] and Morley’s 

[109] shell theories are obtained. 

ii) c1 = 0 and c2 = 1, equations that correspond to Love’s [98] and Loo’s 

[110] shell theories are obtained. 

iii) c1 = 1 and c2 = 1, equations that correspond to Sanders’s [100] and 

Koiter’s [101] shell theories are obtained. 
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In the case of shallow shells, the Koiter’s and the Sanders’s shell theories lead to the 

same expressions for strains and curvatures. In the present work, shallow tapered 

laminated shells are considered. Therefore, these two shell theories are referred to 

together as ‘Koiter-Sanders shell theory’. 

 

The force and moment resultants are written using the above mentioned strain field and 

the laminate stiffness matrices given in the Eq. (3.6), in the form: 
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(3.10a) 

The Eq. (3.10a) can be written in a short form as: 
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In the Eq. (3.10a) S1, S2 and S3 are the Shear Correction (SC) factors. For uniform plate 

the coefficients S1 and S2 are set to be equal to zero but the coefficient S3 is non-zero. 

Moreover, the value of S3 is considered to be 5/6 for uniform plate. For a tapered plate 

the coefficients S1, S2 and S3 will have non-zero values. There is no experimental or 

analytical work that is currently available as to what values of S1, S2 and S3 are 

appropriate for tapered laminated plates. Considering this, in the present work, all 

possible combinations of these SC factors (S1, S2 and S3) are considered and 

corresponding analyses are conducted. The number of permutations of three SC factors 
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by taking the two numerical values (1 and 5/6) at a time is to be 6. Accordingly, the 

following six sets of SC factors are considered in the buckling analysis and 

corresponding critical buckling loads are calculated. 

 S1=1, S2=1, S3=1  (3.11a) 

 S1=1, S2=1, S3=5/6  (3.11b) 

 S1=1, S2 =5/6, S3 =5/6  (3.11c) 

 S1=5/6, S2=5/6, S3 =5/6  (3.11d) 

 S1=5/6, S2 =5/6, S3 =1  (3.11e) 

 S1=5/6, S2=1, S3 =1  (3.11f) 

The set of SC factors that corresponds to the most conservative value of critical buckling 

loads is determined using the results of the analyses. This particular set of values is used 

futher onwards throughout the present work. For this purpose, a tapered plate with 

configuration B and having 36 layers at the thick end with [0/90]9s lay-up and 12 layers at 

the thin end with [0/90]3s lay-up, that is subjected to uni-axial end compressive loading 

has been analyzed using Ritz method. The plate is clamped at four edges (C4-C4) and the 

boundary conditions represented as C4 are given in the Appendix B. The dimensions of 

the square plate are (see Fig. 1.4): various values of the side length of the plate in the 

range of  from 85.94 mm to 171.90 mm are considered, plate thickness at thick end htk = 

4.5 mm and radius R = 500 mm. The material properties of the composite ply and epoxy 

are the same as given in Tables 2.5 and 2.6 respectively. The critical buckling load using 

six shear correction factors is shown in the Fig. 3.1 at the end of this section. 

 

The strain energy of a tapered plate is written in Cartesian co-ordinates as follows: 
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where                T
xzyzxyyyxxxyyyxx ][}{ 00000000 γγκκκγεεε =  (3.13) 

and [E’] is the stiffness matrix given in Eq. (3.10b). 

 

The potential energy corresponding to the uni-axial end compression λ  is 
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The approximate solutions for the displacement fields and rotations are expressed as a 

double series: 
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The functions Um(x), Un(y), Vm(x), Vn(y), Wm(x), Wn(y), Xm(x), Xn(y), Ym(x) and Yn(y) 

are so chosen as to satisfy the boundary conditions which are given in the Appendix B 

and the coefficients Umn, Vmn, Wmn , Xmn and Ymn are determined by the following 

stationary conditions: 
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where, ∏ and W are given by the Eqs. (3.12) and (3.14) respectively. 

 

Using the Eqs. (3.20) through (3.24) the following matrix equation is obtained: 
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(3.25) 

Further details about the matrices ],[],[],[],[ 33221211
IJIJIJIJ GGLL  and so on are given in the 

Appendix B. The eigenvalues λ  are the values of buckling loads. The following indicial 

expressions were introduced [105] and used in the Eq. (3.25):  

nMmI +−= )1(   and jNiJ +−= )1(  (3.26) 

where  Mmi ......2,1, =  and Nnj ......2,1, = .

         

 

Eq. (3.25) can be written in a short form: 

0][][ '' =+ ZK λ  (3.27) 
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where [K’] and [Z’] are the stiffness matrix and geometric stiffness matrix respectively of 

the tapered plate. Eq. (3.27) is solved using MATLAB® as an eigenvalue problem. The 

smallest value of λ  is the critical buckling load, crλ . 

The critical buckling loads of taper configuration B corresponding to various taper angles 

are plotted in the Fig. 3.1. It can be seen from Fig. 3.1 that the set (S1=1, S2=5/6, S3=5/6) 

given in the Eq. (3.11c) is the most conservative one in terms of critical buckling load. 

This set of shear correction factors will be used further onwards in the present work.  

 

Figure 3.1: Comparison of critical buckling load obtained using six sets of SC factors for 

the laminate with the taper configuration B based on Koiter-Sanders shell theory. 

 

3.3 VALIDATION  

The commercial software ANSYS® has been chosen to model the curved composite 

plates to compare the buckling loads obtained using Ritz method based on FST.  Element 

SHELL99 is used for the analyses using ANSYS®. SHELL99 is an 8-node, 3-D shell 

element with six degrees of freedom (three translations and three rotations) at each node. 

It is designed based on the degenerated solid approach with shear deformation effect and 
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to model thin to moderately-thick plate and shell structures with a side-to-thickness ratio 

of roughly 10 or greater. The tapered curved plates are meshed by using eighty-one 

elements which are shown by numbering in the Fig. 2.2.   

 

To the authors’ knowledge, no results are available yet in the literature on the buckling 

loads of the tapered curved composite plates under the action of uni-axial compression. 

Therefore the comparison with the existing works could not be made. However, in order 

to validate the formulation and analysis, first, the taper angle is set to be zero, and the 

resulting uniform-thickness laminates have been analyzed and the results have been 

compared with that available in the literature for the uniform-thickness laminates [107]. 

For this reason, a uniform-thickness cylindrical panel made of T300/5208 graphite/epoxy 

material having the mechanical properties of Ex” = 141.34 GPa (20.5 x106 psi), Ey” = 8.96 

GPa (1.3 x106 psi), Gx”y” = 5.17 GPa (0.75 x106 psi) and υ = 0.335 are considered. The 

plate is clamped (C3) in transverse direction and simply-supported (S3) in longitudinal 

direction. The boundary conditions C3 and S3 are given in the Appendix B. The 

dimensions of the plate are taken to be: length L = 0.3048 m (12 inches), cord 'b  = 

0.3048 m, radius R = 0.3048 m, thickness h = 1.016x10-03 m (0.04 inches). Becker [107] 

has conducted the bifurcation (obtained from eigenvalue solution) buckling analysis of 

this curved plate using STAGS computer code. In the present study, the buckling analysis 

is carried out using Ritz method based on various shell theories and the results are 

compared with that given in the work of Becker [107]. The buckling load is also obtained 

using ANSYS®. The normalized buckling load is given in the Table 3.1 wherein crλ  

denotes the critical buckling load. 
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As can be observed from the Table 3.1, the results obtained in the present work are in 

good agreement with the theoretical buckling load given in the reference work. The 

present results as well as the theoretical results given in Becker [107] are higher than the 

experimental result. According to Ref. [107], the bifurcation buckling load may be 23 to 

45 percent higher than the experimental result for the critical buckling load. The results 

obtained based on different shell theories are somewhat close to each other but the 

Koiter-Sanders shell theory provides the most conservative result. The result obtained 

using ANSYS® overestimates the critical buckling load. Therefore in the present study, 

the Koiter-Sanders shell theory is used to calculate the buckling load using Ritz method.  

 

Table 3.1:  Comparison of critical buckling loads for the uniform-thickness cylindrical 

plate 

Laminate 
Configuration 

Becker [107] )/()( 3
"

2 hEL xcrλ  Present )/()( 3
"

2 hEL xcrλ  

Exp. Theory 
(Bifurcation) 

Donnell, 
Morley 

Koiter- Sanders Love, Loo ANSYS® 

[90/0]2s 24.50 33.30 34.84 34.70 34.75 37.34 
 

Next, a tapered plate with only two (one above and corresponding one below the mid 

plane) internally-dropped plies has been analyzed using Ritz method based on Koiter-

Sanders theory. The plate has configuration [90/0]2s at thick end and [90/0/90]s at thin 

end. The material properties of the ply and the dimensions of the plate are the same as 

that mentioned before for the uniform-thickness cylindrical plate (Ref. [107]). The 

clamped-simply supported (C3-S3) boundary conditions are considered as in the previous 

case. The results obtained for critical buckling load are compared with that of two 
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uniform-thickness composite plates with lay-up configurations [90/0]2s and [90/0/90]s, 

respectively. The critical buckling loads for these three laminates under uni-axial end 

compressive load are given in Table 3.2. As can be observed, the result for the tapered 

laminate is between that of the 8-layers uniform-thickness laminate and that of the 6-

layers uniform-thickness laminate. 

 

Table 3.2: Critical buckling loads for tapered and uniform-thickness composite plates 

Plate Critical Buckling Load (x 104 N/m) 
8-Layers Uniform Plate 
[90/0]2s 

5.5366 

Tapered Plate 
[90/0]2s  - [90/0/90]s 

4.0094 

6-Layers Uniform Plate 
[90/0/90]s 

2.9074 

 

3.4 FIRST-PLY FAILURE ANALYSIS  

The strength in compression of the tapered curved plate is investigated considering first-

ply failure. This type of failure analysis is considered in the present work to determine 

whether any layer has failed (locally) due to compressive loading before the laminate as a 

whole fails on global buckling. First-ply failure analysis is carried out using ANSYS® 

based on the 3-D version of Tsai-Wu failure criterion given in the ANSYS® reference 

manual. The first-ply failure refers to the first instant at which any layer or more than one 

layer fails at the same load. The same criterion is applied for both the composite ply and 

the resin pocket. For this purpose, the resin pocket is considered (imagined) to be made 

up of layers of isotropic resin material. Material properties of composite ply and epoxy 

resin are given in the Tables 2.5 and 2.6 respectively. 
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Four square-shaped tapered composite plates of different sizes with taper configuration B 

(Fig. 1.4) and made of NCT/301 graphite-epoxy composite material are considered. The 

lay-up configuration for all the plates is [0/90]9s at the thick end and [0/90]3s at the thin 

end.  This laminate is referred to as the laminate with lay-up configuration LC1 in the 

Table 2.7 and further onwards. The side length of each of the square plates is as given in 

the Table 3.3, plate thickness at the thick end (htk) is 4.5 mm and the radius (R) of the 

plates is 500 mm. The clamped-clamped (C4-C4) boundary conditions as described in the 

Appendix B are considered. The results of first-ply failure analysis are summarized in the 

Table 3.3 along with the results of buckling analysis.  

 

In the Table 3.3, the first-ply failure loads are compared with the buckling loads. As can 

be seen from this table, the tapered curved plates corresponding to taper angles of 0.75 

and 1.0 degrees will fail by first-ply failure before the global buckling. On the other hand, 

the plates corresponding to taper angles of 0.1 and 0.50 degrees will not fail by first-ply 

failure even at the state of global buckling. Therefore, the maximum plate size should be 

corresponding to a taper angle of 0.53 degree and the critical length-to-height ratio (Ltap / 

htk) is to be 36. The failed layers numbered 2 and 3 respectively are the second layer and 

the third layer from the bottom surface of the laminate at the thick end of the plate. All 

the tapered curved plates failed at the thick end where the numbers of plies above or 

below the resin pockets are at minimum. 
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Table 3.3: Critical buckling loads and first-ply failure loads of tapered curved laminates 

with lay-up configuration LC1 and taper configuration B 

Taper Angle 
in Degrees 

Side Length of the 
Square Plate (m) 

Buckling Load Using 
Ritz Method (x 104 N/m) 

First-ply Failure Load Using 
ANSYS®  (x 104 N/m) 

Failure Location 
(FEN, FLN)* 

0.10 0.8594 14.08 48.05 1, 2 
0.50 0.1719 40.05 42.00 1, 2 
0.75 0.1146 59.37 43.50 9, 3 
1.00 0.0859 79.48 45.60 9, 3 

* FEN and FLN denote, respectively, the failed element number and failed layer number at first-ply 

failure. 

 

Next, the tapered plates that correspond to the Table 3.3 are analyzed considering 

different radii values using the same boundary conditions (C4-C4), lay-up configuration 

(LC1) and material properties (see Tables 2.5 and 2.6). The critical sizes of the tapered 

curved plates are determined corresponding to various radii values. For the calculation of 

the critical length-to-height ratio, the same procedure is applied as mentioned in the 

previous failure analysis for the plate with radius of 500 mm. In the Fig. 3.2, the values of 

the critical length-to-height ratio of tapered curved plates with various radii are plotted. In 

this figure, Ltap denotes the taper length and htk denotes the laminate thickness at the thick 

end. It is observed that the stiffness of the tapered curved plate increases with the 

decrease of radius. Therefore, critical length-to-height ratio is to be increased with the 

decrease of radius to avoid the material failure. It can also be seen in the Fig. 3.2 that the 

critical length-to-height ratio increases with the decrease of radius. The critical length-to-

height ratio varies non-linearly with the change of radius. The design limit of the tapered 

curved composite plates with the lay-up configuration LC1 and the taper configuration B 

is determined and represented as the hatched area in the Fig. 3.2. Beyond this limit, 

tapered curved plate with lay-up configuration LC1 and taper configuration B will not fail 



66 
 

by first-ply failure before global buckling.  Similar type of effect is also considered in the 

Fig. 2.3, where the critical length-to-height ratio (Ltap / htk) is to be 38.9 corresponds to 

taper angle of 0.49 degree.  

 

Figure 3.2: The relation between the critical length-to-height ratio and the radius of the 

tapered curved composite plate with the lay-up configuration LC1 and the taper 

configuration B. 

 

3.5 DELAMINATION FAILURE ANALYSIS 

The initiation of delamination, if any, is dictated by the transverse interlaminar stresses 

developed under compressive load. In ANSYS®, interlaminar transverse shear stresses in 

shell element are calculated based on the assumption that no shear is carried at the top 

and bottom surfaces of the element. These interlaminar shear stresses are only computed 

in the interior of the element and are computed using equilibrium requirements. 

Delamination at any interface between any two adjacent layers is said to have occurred 
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when any of the transverse stress components in any of the two layers adjacent to the 

interface becomes equal to or greater than its corresponding allowable strength.   Four 

square tapered composite plates of different sizes with taper configuration B and made of 

NCT/301 graphite-epoxy composite material are considered. The lay-up is [0/90]9s at the 

thick end and [0/90]3s at the thin end which together is defined as lay-up configuration 

LC1 in the Table 2.7. The material properties of the composite ply and epoxy material are 

given in the Tables 2.5 and 2.6 respectively. The side length of the square plate varies 

from 85.9 to 859.4 mm, plate thickness at the thick end (htk) is 4.5 mm and radius (R) of 

the plates is 500 mm. The clamped-clamped (C4-C4) boundary conditions described in 

the Appendix B is considered. The averaged maximum interlaminer shear stresses are 

calculated in the present work at the state of first-ply failure load or critical buckling load 

(considering the larger one) and the corresponding locations are tabulated in the Table 

3.4. The failed layers numbered 5 and 13 are, respectively, below and above the large 

resin pocket at the thin end.  

 

Table 3.4: Averaged maximum interlaminar shear stress of clamped-clamped (C4-C4) 

tapered curved laminate with lay-up configuration LC1 and taper configuration B  

Taper Angle 
in Degrees 

Side Length of 
Square Plate (m) 

Compressive End 
Load (x 104 N/m) 

Maximum Interlaminar 
Shear Stress, (MPa) 

Location 
(EN, LLN)** Remark 

0.10 0.8594  48.05 1.01 63, 5 No Initiation 
of  
Delamination  

0.50 0.1719  42.00 0.57 63, 5 
0.75 0.1146  59.37 0.99 55, 13 
1.00 0.0859  79.48 1.25 63, 5 

 
** EN and LLN denote, respectively, the element number and lower layer number adjacent to the interface 

where the interlaminer shear stress is maximum. 
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It is observed from the Table 3.4 that no initiation of delamination takes place for the 

taper configuration B and lay-up configuration LC1 at the states of first-ply failure or 

global buckling. This is so because the maximum interlaminer shear stress in both the 

cases is less than the corresponding allowable shear strength of the composite material.  

 

As an alternative approach, thin resin layers of thickness 0.0125 mm each are considered 

above the top resin pockets and below the bottom resin pockets as shown by the thick 

lines (thick lines are used to show these layers more clearly) in the Fig. 3.3; these thin 

resin plies are defined as ‘resin-rich layers’. The longitudinal cross-section across the 

middle of curved laminate is considered. The thin resin-rich layers having thickness of 

one-tenth of a composite ply are taken into account in the analysis and transverse 

interlaminar normal and shear stresses developed at the locations of the ply drop-off are 

calculated to determine the stress states at these locations.  The plate with a taper angle of 

1 degree corresponding to the data given in the Table 3.4 is investigated using the same 

boundary conditions (C4-C4), ply-configuration (LC1) and material properties (see 

Tables 2.5 and 2.6). The stresses are calculated under the compressive load of 79.48x104 

N/m which is the critical buckling load corresponding to taper angle of 1 degree. The 

stresses at the top thin ‘resin-rich layers’ in the global coordinate directions (x,y,z) are 

plotted in the Fig. 3.4.  
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Figure 3.3: Longitudinal cross-section of taper configuration B with thin resin-rich layers. 

 

 

Figure 3.4: The stresses at the top ‘resin-rich layers’ with lay-up configuration LC1 and 

taper configuration B for the taper angle of 1 degree. 

 

From the stress distributions in ‘resin-rich layers’ shown in the Fig. 3.4, it is observed 

that significant normal and transverse stresses are present at these locations. These 

stresses are localized close to the region near the ply drops which are the probable 

locations for the initiation of delamination. In the Table 3.4, only the locations of 

maximum interlaminer stresses are identified but the present alternate approach is 

required to observe the distribution of these stresses along longitudinal direction. The 

drop in the normal stress zzσ  at each ply drop-off location is relatively higher than that in 

the interlaminar shear stresses. In addition, the drop in zzσ  at the ply drop-off that is 

close to the thin end is relatively the largest. It is to mention that the plate analyzed in 
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Fig. 3.4 will fail by first-ply failure load before global buckling as shown in Table 3.3. 

This may be the cause of the trace of normal stress zzσ . A similar stress distribution has 

been observed at the bottom thin resin-rich layers.  

 

3.6 PARAMETRIC STUDY 

In the parametric study three types of longitudinal cross-sections of the curved plates are 

considered, that are, taper configurations A and B, and a hybrid configuration as shown 

in the Fig. 1.4. The Ritz solution is obtained based on Koiter-Sanders shell theory. The 

same material properties of composite ply and epoxy that are given in the Tables 2.5 and 

2.6 respectively are used. The sizes of the plates are so chosen that the plates will not fail 

by first-ply failure before global buckling. 

3.6.1 Buckling Analysis of Tapered Curved Plates 

Tapered models shown in the Fig. 1.4 are considered with 36 and 12 plies at thick and 

thin ends respectively, which results in 24 drop-off plies. The configuration at the thick 

end is [0/90]9s, and that of the thin end is [0/90]3s (this lay-up configuration is defined 

before as LC1). In the analyses of taper configurations, the thickness at the thick end htk is 

set to be 4.5 mm and the radius of curved plate R is set to be 500 mm. For all taper 

configurations only LC1 lay-up configuration with the boundary conditions of clamped at 

all four edges (C4-C4) are considered. The effects of various parameters, namely the ply 

drop-off parameters, taper angle and length-to-radius ratio on the critical buckling load of 

the tapered curved plates are investigated. The results are shown in the following Figs. 

3.5 through 3.7. 
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3.6.1.1  Influence of Ply Drop-Off 

The effect of ply drop-off on critical buckling load is shown in the Fig. 3.5. To 

investigate this effect, the side length of square tapered plate is considered as 859.4 mm 

corresponding to a taper angle of 0.1 degree. The thickness at the thick end is not 

changed and the taper angle is varied with the corresponding increase in the number of 

drop-off plies.  The plate can be considered as a uniform-thickness plate when the 

number of ply drop-off is set to zero and the taper configuration A is obtained by 

dropping off twenty-four plies. The plates are clamped (C4-C4) at the four edges and the  

lay-up configuration is LC1. In the Fig. 3.5, crλ denotes the critical buckling load. 

From the Fig. 3.5, it is observed that the uniform-thickness curved plate is many times 

stiffer than the uniform-thickness flat plate in terms of buckling behavior. It is also 

observed that the tapered flat plate is less stiff than uniform flat plate. However, this 

strength reduction can be compensated for if the tapered plate is made into a curved one. 

Buckling loads of flat and curved plates vary linearly with the number of ply drop-offs. It 

can be concluded from the Fig. 3.5 that the tapered curved plate provides a better design 

option in terms of saving the material without any compromise of the strength.  
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Figure 3.5: The effect of ply drop-off on critical buckling load for clamped-clamped (C4-

C4) plates. 

 

The weight savings provided by the tapered plate with respect to the uniform plate is 

expressed as: 

%100/)( ×−= QQP
s WWWW  (3.28) 

where WP and WQ are the weights of the flat plate corresponding to the points marked as 

‘P’ and ‘Q’ respectively in the  Fig. 3.5.  

Based on the Eq. (3.28), it is calculated that 29.40% weight of the flat plate can be saved 

by dropping-off 24 plies (at the location ‘Q’ in the Fig. 3.5). The strength of tapered 

curved plate with the taper configuration A (at the location ‘R’ in the Fig. 3.5) is 12.50 

times higher than that of the flat tapered plate (at the location of ‘Q’). Similar conclusions 

have also been arrived at for other taper configurations.  Similar type of effect is 

presented in previous chapter in Fig. 2.4, where the buckling loads are calculated based 
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on classical shell theory. In Fig. 2.4, the buckling loads for both of the uniform and 

curved plates are 1.24 % higher than that of the present FST-based solution. 

 

3.6.1.2  Influence of Taper Angle 

The effect of the taper angle of the plate on the critical buckling load is determined using 

Ritz method based on First-order shear deformation Shell Theory (FST). The results are 

also compared with that obtained using Ritz method based on Classical Shell Theory 

(CST) given in the Refs. [111-112] and using Finite Element Method (FEM) given in the 

Ref. [113]. The size of the plate is decreased with the increase of taper angle while 

keeping the thickness of the thick section unchanged. The maximum and minimum edge 

lengths of the tapered curved square plates are, respectively, 859.4 mm corresponding to 

a taper angle of 0.1 degree and 171.9 mm corresponding to a taper angle of 0.5 degree. 

The comparison of critical buckling loads is shown in the Fig. 3.6 wherein crλ  denotes 

the critical buckling load. 

As can be observed, in all the three cases the critical buckling load increases as the taper 

angle is increased, because the plates become shorter (without any change in the 

thickness of the thick section) with the increase of taper angle. The buckling loads given 

in the Refs. [112] and [113] are, respectively, calculated using Ritz method based on 

Novozhilov’s Classical Shell Theory (CST) and the nine-node Lagrange finite element 

based on First-order shear deformation Shell Theory (FST). In the case of buckling 

analysis based on the present FST based Ritz solution has more degrees of freedom 

compared to other two solutions (CST based Ritz solution and FST based FEM solution). 

For this reason, the buckling loads calculated using the present FST based Ritz solution 
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can be considered as the most conservative ones. At lower values of taper angle, the 

critical buckling loads calculated using the three different approaches do not vary 

significantly. On the other hand, at higher values of taper angle, the values of the critical 

buckling loads differ relatively much. Therefore it would be better to use the FST based 

Ritz solution for the thick and short plates. It can also be observed that in all the three 

cases, the critical buckling load varies nonlinearly with the variation of taper angle. 

 

Figure 3.6: Effect of taper angle on the critical buckling load of clamped-clamped (C4-

C4) tapered curved plate with lay-up configuration LC1 and taper configuration B. 

 

3.6.1.3  Influence of Length-to-Radius Ratio 

The buckling loads of plates of different sizes are calculated using the present FST based 

Ritz solution and are compared with the buckling loads obtained using ANSYS®. The 
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given in the Tables 2.5 and 2.6 respectively. The results are presented in the Table 3.5, 

wherein R denotes the radius of the plate and Ltap denotes the length of the taper section. 

 

Table 3.5: Critical buckling load of clamped-clamped (C4-C4) tapered curved laminate 

with lay-up configuration LC1 and the taper configuration B 

Taper Angle 
in Degrees 

Side Length of 
Square Plate (m) 

Ltap/R 
 

Critical buckling load (x 104 N/m) 
Ritz Solution ANSYS® 

0.10 0.8594 1.719 14.08 14.25 
0.20 0.4297 0.859 15.86 16.21 
0.30 0.2865 0.573 24.23 25.22 
0.50 0.1719 0.345 40.05 42.00 

 

As can be observed from Table 3.5, the critical buckling loads increase with the decrease 

of length-to-radius ratio. The plates become shorter with the decrease of this ratio which 

is the cause of increase of the critical buckling load. The critical buckling loads 

calculated using ANSYS® are higher than that obtained using Ritz method. In ANSYS® 

solution, an 8-node shell element (SHELL99) is considered based on the degenerated 

solid approach but the Ritz solution is developed based on the shear deformation shell 

theory which has more degrees of freedom than that of the element used in ANSYS®. 

This may be the main cause of dispersion between buckling load values. The difference 

between the boundary conditions imposed in the analytical solution using Ritz method 

and numerical solution using ANSYS® may also be a reason for the disagreement 

between the results obtained using Ritz method and ANSYS®. 

 

The results obtained using FST based Ritz solution given in the Table 3.5 are normalized 

and compared with that of the CST based Ritz solution (Refs. [111-112]) in the Fig. 3.7. 
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In this figure, R denotes the radius, htk denotes the thickness at the thick end, crλ  denotes 

the critical buckling load, Ltap denotes the length of taper section and Ex” denotes the 

elastic modulus of composite ply material in the longitudinal direction.  

 

Figure 3.7: Effect of length-to-radius ratio on buckling coefficient of the clamped-

clamped tapered curved plates with the lay-up configuration LC1 and the taper 

configuration B. 

 

The normalized buckling load called herein as the buckling coefficient decreases with the 

decrease of length-to-radius ratio of the tapered curved plate. The buckling coefficient 

calculated based on FST deviates away from that of CST with the increase of thickness of 

the plate as the rotations ( xϕ  and yϕ ) due to shear deformation play an important role. 

The difference between the critical buckling loads calculated using FST and CST is close 

to 10% corresponding to the moderately-long plate (Ltap/R = 0.35). This difference 

increases with the decrease of length-to-radius ratio (Ltap/R) as the plate becomes shorter.  
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3.6.2 Buckling Analysis of Hybrid Curved plates 

Laminates with only taper configuration have been studied in the previous sections of the 

present chapter. The hybrid configuration (consisting of both tapered and uniform-

thickness sections) is taken into account in the present sub-section. The tapered section of 

hybrid plate is considered to have the taper configuration B.  For the analysis of hybrid 

configuration three types of lay-up configurations, namely LC1, LC2 and LC3 given in the 

Table 2.7 are considered. For the buckling analysis, the total plate length L = 229.2 mm, 

width b = 114.6 mm and the material properties given in the Tables 2.5 and 2.6 are 

considered. According to the first-ply failure analysis, the hybrid plates with the above 

mentioned lay-up configurations will not fail by first-ply failure before global buckling. 

Various parameters, namely the stiffness ratio, radius-to-thickness ratio and boundary 

conditions are investigated as to their influences on the critical buckling load of hybrid 

curved plate. With the increase of radius-to-thickness ratio, the plate becomes more flat 

as the radius is increased without changing the thickness at the thick end. The results are 

shown in the following Figs. 3.8 through 3.17.  

3.6.2.1  The effect of the stiffness ratio 

The variations of critical buckling load of hybrid type plate (Fig. 1.4) are shown in the 

Fig. 3.8 as a function of stiffness ratio Ex”/Ey” for each lay-up configuration. The results 

were obtained by changing the value of Ex”. In the Fig. 3.8, Ex” and Ey” denote, 

respectively, the elastic moduli of composite ply material in the fiber direction and in the 

transverse to the fiber direction. As was expected, the critical buckling loads in all the 

three cases increase linearly with increasing stiffness ratio values. For the lower values of 

stiffness ratio, the values of the critical buckling loads of all the three lay-up 
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configurations are very close to each other. But for higher values of stiffness ratio the 

critical buckling loads of the three lay-up configurations differ much between themselves. 

The influence of shear deformation is characterized in the Fig. 3.8. This effect is more 

pronounced in the case of LC1. 

 

 

Figure 3.8: Effect of stiffness ratio on the critical buckling load of the clamped-clamped 

(C4-C4) hybrid curved plates. 

 

3.6.2.2  Influence of Lay-Up Configuration  

The normalized critical buckling loads (called as buckling coefficient) of three lay-up 

configurations LC1, LC2 and LC3 are calculated using the present FST based Ritz solution 

and ANSYS®, and the buckling coefficients are compared in the Figs. 3.9 - 3.11. The 

buckling loads are calculated for clamped-clamped (C4-C4) boundary conditions. The 

taper configuration B is considered for the taper section. The effect of radius-to-thickness 

ratio on the buckling coefficient is evaluated in the Figs. 3.9 - 3.11. In these figures, R 

denotes the radius, htk denotes the thickness at thick end, crλ  denotes the critical buckling 
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load, L denotes the total length of hybrid plates and Ex” denotes the elastic modulus of 

composite ply material in the fiber direction. From Figs. 3.9 - 3.11, the following 

observations are made: 

a) The lay-up configuration LC2 is the weakest one among all lay-up configurations. 

b) The rate of change of buckling coefficient of lay-up configuration LC3 is lesser 

than that of lay-up configuration LC1. The buckling coefficient of LC1 is higher than that 

of LC3 for smaller values of radius-to-thickness ratio (R/htk < 230 for clamped-clamped 

plate and R/htk < 250 for simply-supported plate). In the case of larger values of radius-to-

thickness ratio (R/htk > 230 for clamped-clamped plate and R/htk > 250 for simply-

supported plate), LC3 is stronger than LC1. 

c) In all the cases, the value of the buckling coefficient decreases nonlinearly with 

the increase of radius-to-thickness ratio. The values of buckling coefficient become close 

to each other at larger values of R/htk ratio as the plate becomes flatter. In the case of plate 

with larger radius, the effect of radius has less influence on the buckling coefficient and 

the buckling behavior of the plate largely depends on the orientation of fiber angle. For 

uniaxial compressive load, the fibers parallel to the direction of the applied load are the 

strongest ones and the fibers perpendicular to the direction of the applied load are the 

weakest ones. A quantitative comparison of relative stiffness of three lay-up 

configurations is given in the Table 3.6. Lay-up configuration LC3 is the strongest as it is 

made of two types of plies: moderately stiff plies and stiffest plies. Lay-up configuration 

LC2 is the weakest one as it is constructed of the moderately stiff plies only. On the other 

hand, lay-up configuration LC1 is the moderately stiff as two extreme types of plies 

namely, the weakest plies and strongest plies, are used to construct it.  
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d) The buckling behavior of all the lay-up configurations is strongly influenced by 

R/htk. 

 

 

Figure 3.9: Variations of critical buckling load with the radius-to-thickness ratio for the 

clamped-clamped (C4-C4) hybrid laminates with different lay-up configurations. 

 

 

Figure 3.10: Variations of critical buckling load with the radius-to-thickness ratio for 

simply-supported (S4-S4) hybrid laminates with different lay-up configurations. 
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Figure 3.11: Variations of critical buckling load with the radius-to-thickness ratio for the 

clamped-clamped (C4-C4) hybrid laminates with different lay-up configurations. 

 

Table 3.6:  Qualitative comparison of stiffness properties of lay-up configurations for 

higher values of radius-to-thickness ratio 

 Fiber Orientation 

Remark 900 ±450 00 
Stiffness for Uniaxial 
End Compression Weakest Moderate Strongest 

No. of  plies in  LC1 6 0 6 Moderate 
Configuration 

No. of  plies in  LC2 0 6+6 0 Weakest 
Configuration 

No. of  plies in LC3 0 4+4 4 Strongest 
Configuration 
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based Ritz solution and using ANSYS®.  From Figs. 3.12 – 3.14, the following 

observations are made: 

a) The normalized critical buckling loads of all lay-up configurations decrease with 

the increase of radius-to-thickness ratio of the plate. 

b) The lowest and highest values of buckling coefficients are obtained based on FST 

and CST respectively. The buckling coefficients calculated using ANSYS® are close to 

that of CST solution. In ANSYS® an 8-node shell element (SHELL99) is considered 

based on the degenerated solid approach but the Ritz solution is developed based on FST 

which has more degrees of freedom than the element used in ANSYS®. This is the reason 

for higher values of buckling coefficient obtained using ANSYS®.  In the case of 

classical shell theory (CST), shear strains are omitted which is the cause for the 

corresponding higher value of buckling coefficient compared to that of the other two 

solutions.  

c) On an average, buckling coefficient of all lay-up configurations (Figs. 3.12–3.14) 

obtained based on CST is 5.8% higher than that obtained using ANSYS®. On the other 

hand, buckling coefficients of LC1, LC2 and LC3 obtained based on FST are, respectively, 

5.22%, 13.51% and 9.38% lower than that obtained using ANSYS®.  
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Figure 3.12: Variations of buckling coefficient with the radius-to-thickness ratio for the 

clamped-clamped (C4-C4) hybrid laminates with LC1 lay-up configuration. 

 

 

 

 

Figure 3.13: Variations of buckling coefficient with the radius-to-thickness ratio for the 

clamped-clamped (C4-C4) hybrid laminates with LC2 lay-up configuration. 
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Figure 3.14: Variations of buckling coefficient with the radius-to-thickness ratio for the 

clamped-clamped (C4-C4) hybrid laminates with LC3 lay-up configuration. 
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The effect of boundary condition on the buckling coefficient for the above mentioned 

plates is shown in the Figs. 3.15 – 3.17. 
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supported plates allow rotations at the boundaries which is the reason for less strength. 

For lay-up configuration LC1 as can be seen in the Fig. 3.15, the buckling coefficient 

difference between the values of that correspond to the clamped-clamped plate and the 

simply-supported plate is in the range of about 42.66% - 53.14% and the average 

difference is 45.17%. In the case of lay-up configuration LC2 as can be seen in the Fig. 

3.16, the buckling coefficient difference between the values of that correspond to the 

clamped-clamped plate and the simply-supported plate is in the range of about 35.02% - 

46.83% and the average difference is 39.94%. On the other hand for the lay-up 

configuration LC3 as can be seen in the Fig. 3.17, the buckling coefficient difference 

between the values of that correspond to the clamped-clamped plate and the simply-

supported plate is in the range of about 36.22% - 54.58% and the average difference is 

44.84%. Buckling coefficients of all the lay-up configurations are strongly influenced by 

both R/htk ratio and boundary condition.  

 

 

Figure 3.15: Comparison of buckling coefficient of the hybrid laminate with LC1 lay-up 

configuration for different boundary conditions. 
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Figure 3.16: Comparison of buckling coefficient of the hybrid laminate with LC2 lay-up 

configuration for different boundary conditions. 

 
 
 

 

Figure 3.17: Comparison of buckling coefficient of the hybrid laminate with LC3 lay-up 

configuration for different boundary conditions. 
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3.7 CONCLUSIONS  

In the present chapter, the global buckling analysis of tapered curved laminated plates has 

been carried out using Ritz method based on six well-established first-order shallow shell 

theories, namely, Donnell’s, Moreley’s, Love’s, Loo’s, Koiter’s and Sander’s theories. 

Three types of tapered plates (two taper configurations A and B, and a hybrid 

configuration), three types of lay-up configurations (LC1, LC2 and LC3), and uniaxial end 

compressive load are considered. A detailed parametric study of the plates has been 

conducted that includes the effects of boundary conditions, stacking sequence, taper 

configurations, radius, and geometric parameters of the plates. The conclusions listed in 

the following are based on the results presented in this chapter: 

a) The moderately-thick and tapered curved composite plates fail by first-ply failure 

before global buckling. Therefore the dimensions of tapered curved plate should be larger 

than the corresponding critical size. The critical sizes depend on both radius and staking 

sequence of the plates. Such critical sizes have been determined in the present work. 

b) The tapered flat plate is more flexible than uniform flat plate, but the tapered 

curved plate provides a better design option in terms of saving the material without any 

compromise of the strength. 

c) The critical buckling loads of all lay-up configurations are considerably 

influenced by the stiffness ratio (Ex”/Ey”) of the ply material.  

d) Classical shell theory can be used to calculate with reasonable accuracy the 

critical buckling load of moderately-long plates for which Ltap/R > 0.35. The first-order 

shear deformation shell theory should be used for the calculation of critical buckling load 

of shorter plates for which Ltap/R < 0.35. 
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Chapter 4 

Compressive Response of Tapered Curved Composite Plates Based on a 

Nine-Node Composite Shell Element 

 

4.1 INTRODUCTION 

The prime objective of the present chapter is to conduct the linear global buckling 

analysis of the tapered curved plates (see Fig. 1.4) using finite element method based on 

first-order shear deformation shell theories. Six shell theories are used in the analysis, 

that are, Donnel’s, Moreley’s, Love’s, Loo’s, Koiter’s and Sander’s theories. The 

corresponding critical buckling loads are calculated and the most conservative value is 

obtained. The appropriate set of shear correction factors are determined as like chapter 

three and used in the buckling analyses. Buckling loads calculated using the finite 

element method are compared with that of the existing experimental results and analytical 

results for tapered curved composite plates based on Ritz solutions (which have been 

calculated in the chapters two and three). A parametric study that encompasses the 

influences of taper angle, length-to-radius ratio, stiffness ratio, stacking sequence, 

boundary conditions, radius and geometric parameters of the plates on the critical 

buckling load is conducted. 

 

4.2 FORMULATION  

The basic formulation based on first order shear deformation has been described in the 

chapter three using the Eqs. (3.1) through (3.10).  In the Eq. (3.10a), three Shear 
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Correction (SC) factors S1, S2 and S3 are given. The set of SC factors in Eq. (3.11) that 

corresponds to the most conservative value of critical buckling loads is reevaluated using 

the present FEM. This particular set of values is used further onwards throughout the 

present work. For this purpose, a tapered plate with configuration B and having 36 layers 

at the thick end with [0/90]9s lay-up and 12 layers at the thin end with [0/90]3s lay-up, that 

is subjected to uni-axial end compressive loading has been analyzed using FEM method. 

The plate is clamped at four edges (C4-C4) and the boundary conditions represented as 

C4 are given in the Appendix C. The dimensions of the square plate are (see Fig. 1.4): 

various values of the side length of the plate in the range of  from 85.94 mm to 171.90 

mm are considered, plate thickness at the thick end htk = 4.5 mm and the radius R = 500 

mm. The material properties of the composite ply and epoxy are the same as given in 

Tables 2.5 and 2.6 respectively. The critical buckling loads using these properties are 

calculated and presented at the end of this section. 

 

The total potential energy is expressed as the sum of strain energy U and the potential 

energy of external load W. For a plate of dimension bLtap ×  subjected to uni-axial 

compressionλ ,  

[ ]( )dxdyEU
b L

T
tap

∫ ∫=
0 0
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2
1 εε  (4.1) 
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and [E’] is the stiffness matrix given in Eq. (3.10b). 
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Figure 4.1: The nine-node shell element 

The nine-node Lagrange shell element with five degrees of freedom per node shown in 

Fig. 4.1 is used in the present analysis. The five degrees of freedom are: the translation 

displacements in x, y and z directions that are u, v and w respectively, and rotations about 

y and x axes that are xϕ  and yϕ  respectively which are due to shear deformation. The 

displacement fields and rotations are defined as: 

  ii iuNu ∑ =
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9

1
;  ii ivNv ∑=

=
9

1
;  ii i wNw ∑ =

=
9

1
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 (4.4) 

 

 
 
where ),( yxNi are the Lagrange shape functions. The shape functions are given in the 
Appendix C. 
 

The matrix of strains and curvatures,  is expressed as: 

 (4.5a) 

where 

 

 

(4.5b) 

]t (4.5c) 

 



91 
 

The matrix  is given in the Appendix C where  i = 1, 2, 3 … 9. 

The first variations of strain energy U and potential energy W that are given, respectively, 

by the Eqs. (4.1) and (4.3) are considered. For an element they are expressed as 

 (4.6) 

 (4.7) 

where  is the element nodal displacement matrix. The element stiffness matrix  

and the element geometric stiffness matrix [Ge] are given by 

 (4.8) 

 (4.9) 

The matrix  is given in the Appendix C. The equilibrium equation of an element 

is expressed as: 

The Eq. (4.10) is simplified using the Eqs. (4.6) through (4.9): 

0][][ =+ ∑∑ ee GK λ  (4.11) 

where the eigenvalues λ  are the values of buckling loads. The element stiffness matrix 

 and the element geometric stiffness matrix [Ge] are augmented considering all of the 

elements in the plate. Eq. (4.11) is solved using MATLAB® as an eigenvalue problem. 

The smallest value of λ  is the critical buckling load, crλ .  

 

e

e

e

e

u
W

u
U

∂

∂
=

∂

∂

 
(4.10) 
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The critical buckling loads corresponding to different values of shear correction factors 

are plotted in the Figs. 4.2 and 4.3. It can be seen from these figures that the critical 

buckling loads corresponding to all the six sets of shear correction factors are close to 

each other for lower values of taper angle. On the other hand, at higher values of taper 

angle, the values of the critical buckling loads differ relatively much.  Among all the 

cases, the set (S1=1, S2=5/6, S3=5/6) in the Eq. (3.11c) is the most conservative one in 

terms of critical buckling load. Similar conclusion has also been made using Ritz solution 

in the chapter three and this set of shear correction factors will be used further onwards in 

the present work. 

 

Figure 4.2: Comparison of critical buckling load obtained using six sets of SC factors for 

the clamped-clamped laminate with the configuration B based on Koiter-Sanders shell 

theory. 
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Figure 4.3: Comparison of critical buckling load obtained using six sets of SC factors for 

the simply-supported laminate with the configuration B based on Koiter-Sanders shell 

theory. 
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psi). In the Ref. [115] two sets of uniform meshes, one with 81 nodes (405 degrees of 

freedom) and the other with 289 nodes (1,445 degrees of freedom), have been used with 

different p (degree of polynomial) levels considering symmetric boundary conditions.  

 

Table 4.1: Vertical displacement at the center (-w×102 m) of the clamped-clamped (C4-

C4) cylindrical panel under transverse load 

Type of 
element Present 

Reddy [115] 
Mesh of 81 nodes Mesh of 289 nodes 

Full 
Integration 

Selective 
Integration 

Reduced 
Integration 

Full 
Integration 

Selective 
Integration 

Reduced 
Integration 

4-node ... 0.00858 0.02937 0.02941 0.01894 0.02896 0.02897 
9-node 0.02902 0.02977 0.02883 0.02883 0.02902 0.02883 0.02883 
25-node … 0.02882 0.02883 0.02883 0.02883 0.02883 0.02883 
81-node … 0.02883 0.02882 0.02882 0.02882 0.02883 0.02883 

 

The vertical displacement at the center of the shell is calculated considering symmetric 

boundary conditions and is compared in the Table 4.1. From the Table 4.1, it has been 

observed that the present result exactly matches with that of the reference. As can be seen 

from the Table 4.2 that the results based on different shell theories are close to each other 

but the Koiter-Sanders shell theory provides the lowest result for deflection. It is also 

shown in Table 3.1 that Koiter-Sanders shell theory provides the most conservative result 

for critical buckling load. 

 

Table 4.2: The comparison of vertical displacement at the center (-w×102 m) for uniform-

thickness clamped-clamped (C4-C4) cylindrical plate 

Reddy [115] (m) 
Present (m) 
Donnell, Morley Sander, Koiter Love, Loo 

0.0290 0.0292 0.0290 0.0291 
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Next, a tapered plate with only two (one above and corresponding one below the mid 

plane) internally-dropped plies has been analyzed using finite element method based on 

Koiter-Sanders shell theory. A uniform-thickness cylindrical panel [107] made of 

T300/5208 graphite/epoxy having the mechanical properties of Ex” = 141.34 GPa (20.5 

x106 psi), Ey” = 8.96 GPa (1.3 x106 psi), Gx”y” = 5.17 GPa (0.75 x106 psi), υx”y” = 0.335; 

clamped (C3) in transverse direction (at x = 0, L) and simply supported (S3) in 

longitudinal direction (at y = 0, b) are considered. The boundary conditions C3 and S3 

are given in the Appendix C. The dimensions of the plate are taken to be: the length L = 

0.3048 m (12 inches), the cord length 'b  = 0.3048 m, the radius R = 0.3048 m, the 

thickness h = 1.016x10-03 m (0.04 inches). Becker [107] has conducted the bifurcation 

(obtained from eigenvalue solution) buckling analysis of this curved plate using STAGS 

computer code. Akhlaque and Ganesan [116] have conducted the linear global buckling 

analysis of this plate using Ritz method based on Koiter-Sanders shell theory. The results 

are also compared with that of the two uniform-thickness composite plates with lay-up 

configurations [90/0]2s and [90/0/90]s, respectively. The buckling loads for these three 

laminates under uni-axial end compressive load are given in Table 4.3. As can be 

observed from this table, the result for tapered laminate is between that of the 8-layers 

uniform-thickness laminate and that of the 6-layers uniform-thickness laminate. The 

present result has also good agreement with that of the references. 

 

Table 4.3: Critical buckling loads for tapered and uniform-thickness composite plates 

Plate Type Buckling Load  )/()( 3
"

2 hEL xcrλ  

Present Becker [107] Akhlaque and Ganesan [116] 
8-Layers Uniform Plate, [90/0]2s 34.90 33.30 34.70 
Tapered Plate, [90/0]2s  - [90/0/90]s 25.30 - - 
6-Layers Uniform Plate, [90/0/90]s 18.32 - - 



96 
 

4.4 PARAMETRIC STUDY 

In the parametric study three types of longitudinal cross-sections of the curved plates are 

considered, that are, taper configurations A and B, and a hybrid configuration as shown 

in the Fig. 1.4. The finite element method is used based on Koiter-Sanders shell theory. 

The material properties of composite ply and epoxy used are the same as given in the 

Tables 2.5 and 2.6 respectively. Based on the convergence test, the mesh size used for the 

finite element analyses of taper configuration and hybrid configuration are 9×9 and 

15×15 respectively. The 9×9 finite element mesh is shown in the Fig. 4.4. 

 

 

Figure 4.4: The 9×9 finite element mesh for the tapered curved plate 
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4.4.1 Buckling Analysis of Tapered Curved Plates 

Tapered models shown in the Fig. 1.4 are considered with 36 and 12 plies at the thick end 

and the thin end respectively, which results in 24 drop-off plies. The configuration at the 

thick end is (0/90)9s, and that of the thin end is (0/90)3s (this lay-up configuration is 

referred to as LC1 in the Table 2.7). In the analyses of taper configurations, the thickness 

of the thick end htk is set to be 4.5 mm and the radius of the curved plate R is set to be 

500 mm. For all the taper configurations only LC1 lay-up configuration with clamped-

clamped (C4-C4) boundary conditions is considered. In Table 4.4 the number of elements 

of taper configuration B was determined based on mesh convergence test. Various 

parameters, namely ply drop-off parameters, taper angle, stiffness ratio and length-to-

radius ratio are investigated to see the influences of these parameters on the buckling 

loads of tapered curved plates. The results are shown in the following Figs. 4.5 through 

4.10. 

 

Table 4.4: Effect of mesh size on the critical buckling load of tapered curved plate with 

taper configuration B and LC1 lay-up configuration (taper angle = 0.5 degree and radius = 

500 mm) 

Mesh 9 x 7 9 x 8 9 x 9 
λ cr  (×104 N/m) 87.2299 87.1570 87.1162 

 

4.4.1.1  Influence of Ply Drop-Off 

The effect of ply drop-off on critical buckling load is shown in the Figs. 4.5 and 4.6. To 

investigate this effect, the side length of square tapered plate is considered as 859.4 mm 

corresponding to a taper angle of 0.1 degree. The thickness of the thick end is not 
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changed and the taper angle is varied with the corresponding increase in the number of 

drop-off plies.  The plate can be considered as a uniform-thickness plate when the 

number of ply drop-off is set to zero and the taper configuration A is obtained by 

dropping off twenty four plies. The plates are clamped (C4-C4) at four edges and the lay-

up configuration is LC1. In the Figs. 4.5 and 4.6, crλ denotes the critical buckling load. 

 

 

 

Figure 4.5: The effect of ply drop-off on critical buckling load for simply-supported 

plates. 
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Figure 4.6: The effect of ply drop-off on critical buckling load for clamped-clamped 

plates. 

From the Figs. 4.5 and 4.6, it is observed that the uniform-thickness curved plate is many 

times stiffer than the uniform-thickness flat plate in terms of buckling behavior. It is also 

observed that the tapered flat plate is less stiff than uniform flat plate. However, this 

strength reduction can be compensated for if the tapered plate is made into a curved one.  

It can be concluded from the Figs. 4.5 and 4.6 that the tapered curved plate provides a 

better design option in terms of saving the material without any compromise of the 

strength. Buckling loads of flat and curved plates vary linearly with the number of ply 

drop-off. The weight savings of the tapered plate with respect to the uniform plate is 

expressed as: 

%100/)( ×−= PQP
s WWWW  (4.12) 

where WP and WQ are the weights corresponding to the points marked as ‘P’ and ‘Q’ 

respectively in Fig. 4.6.  
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The gain of strength of the curved tapered plate with respect to the flat tapered plate can 

be expressed as: 

%100/)( ×−= QQR
s SSSG  (4.13) 

where SQ and SR are the strengths corresponding to the points marked as ‘Q’ and ‘R’ 

respectively in Fig. 4.6. 

Based on the Eq. (4.12), it is calculated that 21.96% weight can be saved by dropping-off 

18 plies (corresponding to the location of ‘Q’ in the Fig. 4.6). The gain of strength of the 

curved tapered plate with respect to the flat tapered plate is calculated by the Eq. (4.13). 

Considering the strength property shown in Fig. 4.6, the gain of strength of the tapered 

curved plate (corresponding to the location of ‘R’) with respect to the flat tapered plate 

(corresponding to the point ‘Q’) is 82.47%. The details of the calculations are given in 

the Appendix C. Similar conclusions have also been arrived at for other taper 

configurations. Similar type of effect is presented in previous chapters in Figs. 2.4 and 

3.5, where the buckling loads are calculated based on CST-based and FST-based Ritz 

solution respectively. In Fig. 2.4, the buckling loads for both of the uniform and curved 

plates are 0.80 % higher than that of the present FST-based FEM solution (Fig. 4.6). On 

the other hand, the buckling loads shown in Fig. 3.5 are 0.46 % lower than that of the 

present FST-based FEM solution (Fig. 4.6). 

 

4.4.1.2  Influence of Taper Angle 

The effect of taper angle of the curved plates on the critical buckling load is compared 

with that of obtained CST based Ritz solution and FST based Ritz solution. The 

comparison is shown in the Fig. 4.7 where the size of the plate is decreased with the 
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increase of taper angle while keeping the thickness of the thick section unchanged. The 

maximum and minimum edge lengths of the tapered curved square plate are 859.4 mm 

corresponding to a taper angle of 0.1 degree and 85.94 mm corresponding to a taper angle 

of 1.0 degree respectively. In the Fig. 4.7, crλ  denotes the critical buckling load.  

As can be observed from Fig. 4.7, the critical buckling load using three different methods 

increases as the taper angle is increased, because the plate becomes shorter (without 

changing the thickness) with the increase of taper angle. The buckling loads in the Refs. 

[112] and [116] are, respectively, calculated using Ritz method based on CST and FST. 

The buckling results FST based FEM solution are close to FST based Ritz solution as the 

both of these methods are based on first-order shear deformation theory. At lower values 

of taper angle, buckling loads obtained using different methods do not vary significantly. 

On the other hand, at the higher values of taper angle the critical buckling loads obtained 

using three different methods differ relatively much. It can also be observed that in all the 

three cases, the critical buckling load varies nonlinearly with the variation of taper angle. 

 

Figure 4.7: Effect of taper angle on the critical buckling load for clamped-clamped 

tapered curved plate with the taper configuration B and the LC1 lay-up configuration. 
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4.4.1.3  Influence of Length-to-Radius Ratio 

The normalized buckling loads of the plates of different sizes are calculated and 

compared with that of CST (Ritz) [112] and FST (Ritz) [116]. The lay-up configuration is 

LC1 and the clamped-clamped (C4-C4) boundary conditions are considered. The material 

properties of composite ply and epoxy are used same as given in the Tables 2.5 and 2.6 

respectively. The results are presented in the Fig. 4.8, wherein R denotes the radius of the 

plate, htk denotes the thickness at the thick end, crλ denotes the critical buckling load, Ltap 

denotes the length of taper section and Ey” denotes the elastic modulus of composite 

material in the fiber direction.  

 

The normalized buckling load called herein as the buckling coefficient decreases with the 

decrease of length-to-radius ratio of the tapered curved plate. Buckling coefficient using 

FST based FEM solution is close to that of the FST based Ritz solution. But buckling 

coefficients using FEM solution and FST based Ritz solution depart away from that of 

CST based Ritz solution with the increase of thickness of the plate as the rotations ( xϕ  

and yϕ ) play an important role with the increase of plate thickness. The buckling load 

using FEM is compared with the one using CST and the error is close to 10% 

corresponding to the moderately-long plate (Ltap/R = 0.25). The error percentage 

increases with the decrease of length-to-radius ratio (Ltap/R) as the plate becomes shorter. 

 



103 
 

 

Figure 4.8: Effect of length-to-radius ratio on buckling coefficient of the clamped-

clamped tapered curved laminate with the lay-up configuration LC1 and the taper 

configuration B. 
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Figure 4.9: Effect of stiffness ratio on critical buckling load for clamped-clamped tapered 

curved laminate with the taper configuration B. 

 

Figure 4.10: Effect of stiffness ratio on critical buckling load for simply-supported 

tapered curved laminate with the taper configuration B. 
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plate is considered to have the taper configuration B.  For the analyses of hybrid 

configuration three types of lay-up configurations, namely LC1, LC2 and LC3 given in the 

Table 2.7 are considered. For the buckling analyses, the total plate length L = 229.2 mm, 

width b = 114.6 mm and the material properties given in Tables 2.5 and 2.6 are 

considered. According to the first-ply failure analysis, the hybrid plates with the above 

mentioned lay-up configurations will not fail by first-ply failure before global buckling. 

Two parameters radius-to-thickness ratio and boundary condition are investigated as to 

their effects on the critical buckling load of hybrid curved plate. With the increase of 

radius-to-thickness ratio, the plate becomes more flat as the radius is increased without 

changing the thickness at the thick end. The results are shown in the following Figs. 4.11 

through 4.18.  

 

4.4.2.1  Influence of Lay-Up Configurations  

The normalized critical buckling loads of three lay-up configurations LC1, LC2 and LC3 

are calculated using finite element method and are compared in the Figs. 4.11 - 4.12. The 

buckling loads are calculated for clamped-clamped (C4-C4) boundary conditions. The 

effect of radius-to-thickness ratio on buckling load is also evaluated in the Figs. 4.11 - 

4.12. In these figures, R denotes the radius, htk denotes the thickness at the thick end, crλ

denotes the critical buckling load, L denotes the total length of hybrid plates and Ex” 

denotes the elastic modulus of composite material in the fiber direction.  



106 
 

 

Figure 4.11: Variation of buckling coefficients with the radius-to-thickness ratio for the 

clamped-clamped (C4-C4) hybrid laminates with different lay-up configurations. 

 

 

Figure 4.12: Variation of critical buckling load with the radius-to-thickness ratio for 

simply- supported (S4-S4) hybrid laminates with different lay-up configurations. 
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b) The rate of change of buckling load of lay-up configuration LC3 is lesser than that 

of lay-up configuration LC1. The buckling coefficient of LC1 is higher than that of 

LC3 for smaller values of radius-to-thickness ratio (R/htk < 245 for clamped-

clamped plate and R/htk < 260 for simply-supported plate). In the case of larger 

values of radius-to-thickness ratio (R/htk > 245 for clamped-clamped plate and 

R/htk > 260 for simply-supported plate), LC3 is stronger than LC1. 

c) In all the cases, the value of the buckling coefficient decreases nonlinearly with 

the increase of radius-to-thickness ratio. The values of buckling coefficient 

become close to each other at larger values of R/htk ratio as the plate becomes 

flatter. In the case of plate with larger radius, the effect of radius has less 

influence on the buckling coefficient and the buckling behavior of the plate 

largely depends on the orientation of fiber angle. For uniaxial compressive load, 

the fibers parallel to the direction of the applied load are the strongest ones and 

the fibers perpendicular to the direction of the applied load are the weakest ones. 

A quantitative comparison of relative stiffness of three lay-up configurations is 

given in the Table 3.6. Lay-up configuration LC3 is the strongest as it is made of 

two types of plies: moderately stiff plies and stiffest plies. Lay-up configuration 

LC2 is the weakest one as it is constructed of the moderately stiff plies only. On 

the other hand, lay-up configuration LC1 is the moderately stiff as two extreme 

types of plies namely, the weakest plies and strongest plies, are used to construct 

it.  

d) The buckling behavior of all the lay-up configurations is strongly influenced by 

R/htk. 
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Figs. 4.13 – 4.15 show the effect of the radius-to-thickness ratio on normalized critical 

buckling load. The normalized critical buckling loads corresponding to different values of 

radius-to-thickness ratio of hybrid curved plates are calculated using finite element 

method based on Koiter-Sanders shell theory. The buckling coefficients are compared 

with that obtained using Ritz method based on CST and using element SHELL99 of 

ANSYS®.  From Figs. 4.13 – 4.15, the following observations are made. 

 

a) The normalized critical buckling loads of all lay-up configurations decrease with 

the increase of radius-to-thickness ratio. 

b) The lowest and highest values of buckling coefficients are obtained using the 

present FEM solution and CST based on Ritz solution respectively. In the case of 

classical shell theory (CST), shear strains are omitted which is the cause for the 

corresponding higher values of buckling loads compared to that of the other two 

(present FEM and ANSYS) solutions. The buckling coefficient calculated using 

FEM is lower than that of the ANSYS®. Because FEM solution is based on a 

nine-node shell element which has more degrees of freedom than that of the 

SHELL99 of ANSYS®. 

c) On an average, the buckling coefficients of LC1 lay-up configuration (Fig. 4.13) 

obtained based on ANSYS® and the present FEM solution are, respectively, 5.5% 

and 6.47% lower than that obtained using CST based Ritz solution.  

d) On an average, the buckling coefficients of LC2 lay-up configuration (Fig. 4.14) 

obtained based on ANSYS® and the present FEM solution are, respectively, 4.2% 

and 10.67% lower than that obtained using CST based solution.  
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e) On an average, the buckling coefficients of LC3 lay-up configuration (Fig. 4.15) 

obtained based on ANSYS® and the present FEM solution are, respectively, 

4.07% and 7.70% lower than that obtained using CST based solution.  

 

Figure 4.13: Variation of buckling coefficient with the radius-to-thickness ratio for the 

clamped-clamped (C4-C4) hybrid laminates with LC1 lay-up configuration. 

 

Figure 4.14: Variation of buckling coefficient with the radius-to-thickness ratio for the 

clamped-clamped (C4-C4) hybrid laminates with LC2 lay-up configuration. 
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Figure 4.15: Variation of buckling coefficient with the radius-to-thickness ratio for the 

clamped-clamped (C4-C4) hybrid laminates with LC3 lay-up configuration. 

 

 

4.4.2.2  Influence of Boundary Conditions  
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buckling analyses are performed using finite element method based on Koiter-Sanders 

shell theory. Two types of boundary conditions are considered, that are, clamped at four 

edges (C4-C4) and simply supported at four edges (S4-S4). These boundary conditions 

are given in the Appendix C. The effect of radius-to-thickness ratio on the buckling 

coefficient for the above mentioned plates is shown in the Figs. 4.16- 4.18. 
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As observed from Figs. 4.16- 4.18 and as can be expected, the boundary condition has 

significant influence on the buckling coefficient. In terms of critical buckling load, the 

fully clamped plate has a higher buckling load than the simply-supported plate. Simply 

supported plates allow rotations at the boundaries which is the reason for less strength. 

For lay-up configuration LC1 as can be seen in the Fig. 4.16, the difference between the 

buckling coefficient values that correspond to the clamped-clamped plate and the simply-

supported plate is in the range of about 39.88% - 50.95% and the average difference is 

43.50%. In the case of lay-up configuration LC2 as can be seen in the Fig. 4.17, the 

difference between the buckling coefficient values that correspond to the clamped-

clamped plate and the simply-supported plate is in the range of about 31.78% - 42.58% 

and the average difference is 37.10%. On the other hand for the lay-up configuration LC3 

as can be seen in the Fig. 4.18, the difference between the buckling coefficient values that 

correspond to the clamped-clamped plate and the simply-supported plate is in the range 

of about 36.30% - 51.56% and the average difference is 42.92%. Buckling coefficients of 

all the lay-up configurations are strongly influenced by both R/htk ratio and the boundary 

condition.  
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Figure 4.16: Comparison of buckling coefficient of the hybrid laminate with LC1 lay-up 

configuration for different boundary conditions using FEM. 

 

 

Figure 4.17: Comparison of buckling coefficient of the hybrid laminate with LC2 lay-up 

configuration for different boundary conditions using FEM. 
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Figure 4.18: Comparison of buckling coefficient of the hybrid laminate with LC3 lay-up 

configuration for different boundary conditions using FEM. 

 

4.5 CONCLUSIONS  

In the present chapter, the buckling analysis of tapered curved laminated plates has been 
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compressive load are considered. A detailed parametric study of the plates has been 

conducted that includes the influences of boundary condition, stacking sequence, taper 

configuration, radius, and geometric parameters of the tapered curved plates. The 

conclusions listed in the following are based on the results presented in this chapter: 

a) Any of the previously mentioned shell theories can be used for the buckling 

analysis of uniform or tapered curved plates. But the Sander’s and the Koiter’s 

shell theories provide the most conservative result. 
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b) The uniaxial compressive strength can be increased significantly by making the 

tapered plate into a curved one and a considerable amount of material can also be 

saved. 

c) The critical buckling loads of all lay-up configurations are considerably influenced 

by the stiffness ratio (Ex”/Ey”) of the ply material. In the present analysis, the value 

of Ex” was varied without changing the value of Ey”. As a result, plate becomes 

stiffer in the longitudinal direction with the increase of the stiffness ratio (Ex”/Ey”) 

and this influenced significantly to increase the critical buckling load. 

d) In the case of present FEM solution, classical shell theory can be used to calculate 

with reasonable accuracy the critical buckling loads of moderately-long plates for 

which Ltap/R > 0.25. The first-order shear deformation shell theory should be used 

for the calculation of critical buckling loads of shorter plates for which Ltap/R < 

0.25. In the case of FST based Ritz solutions of chapter three, this ratio Ltap/R is to 

be 0.35. Because, the present FEM solution is closer to CST based Ritz solution 

compared to that of the FST based Ritz solution. For this reason, shorter plate can 

be used if the FEM based solution is being used in the calculation of critical 

buckling load. 

e) At higher values of radius, lay-up configurations LC3, LC1 and LC2 become the 

strongest, moderate and weakest laminates respectively. 

 

 



115 
 

Chapter 5 

Non-Linear Buckling Analysis of Tapered Curved Composite Plates 

Based on a Simplified Methodology 

 

5.1 INTRODUCTION 

The first objective of this chapter is to conduct the fully non-linear analysis of the tapered 

curved plate without considering the effect of ply failure on the response of the tapered 

curved plate using the finite element method based on first-order shear deformation shell 

theories. Two non-linear shell theories are used in the analysis, that are, Donnel’s and 

Sanders’s theories. The corresponding stability limit loads are calculated and the most 

conservative value is obtained. The second objective is to calculate the linearized 

buckling loads considering the singularity of the tangent stiffness matrix. The third 

objective is to determine the stability limit load using a simplified methodology that 

involves only two load steps. A parametric study that encompasses the effects of taper 

angle, length-to-height ratio, radius, radius-to-thickness ratio, and geometric parameters 

of the plates is also conducted. 

 

In the present work, the buckling response of curved composite plates with longitudinal 

internal ply-drop-off configurations as shown in Fig. 5.1 is investigated. Longitudinal-

ply-drop-off tapers are those in which the internal discontinuities of the laminate are 

parallel to the direction of the applied load. In the Fig. 5.1, htk and htn denote the 

thicknesses at the thick end and thin end respectively;  Ltk, Ltap and Ltn denote the lengths 
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of thick, taper and thin section respectively;  R, b and b’ denote the radius, the width and 

the cord length of curved plates respectively;  and (uo, vo, wo) denotes the mid-plane 

displacement field with reference to the global coordinate system (x, y, z). The taper 

configuration has five resin pockets: four small resin pockets are distributed 

symmetrically with respect to the mid-plane and the fifth one is designed combining the 

two small resin pockets. Every small resin pocket is formed by dropping-off three 

composite plies and there are continuous composite plies above and below each resin 

pocket. The hybrid configuration is obtained by combining the tapered and uniform-

thickness sections as shown in the Fig. 5.1 wherein L denotes the total length.  

 

 

Figure 5.1: Different longitudinal cross-sections of curved plate. 

 

 

 



117 
 

5.2 FORMULATION 

The basic formulation based on first order shear deformation has been described in the 

chapter three using the Eqs. (3.1) through (3.10).  In the Eq. (3.10a), three Shear 

Correction (SC) factors S1, S2 and S3 are given. It has been shown in the previous 

chapters three and four that the set (S1=1, S2= S3=5/6) in the Eq. (3.11c) is the most 

conservative one in terms of critical buckling load. This set of shear correction factors 

will be used in the present non-linear analyses. 

 

The total potential energy is expressed as the sum of strain energy U and the potential 

energy of external load W. For the tapered plate of dimension bLtap ×  subjected to uni-

axial compression Px, 
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where  and [E’] are given in the Eq. (3.10b). 

The nine-node Lagrange element with five degrees of freedom per node shown in Fig. 4.1 

is used in the analysis. The five degrees of freedom are: the translation displacements in 

x, y and z directions that are u, v and w respectively, and rotations about y and x axes that 

dyuPW
tapLxo

b

x =∫−= |
0

 (5.1) 
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are xϕ  and yϕ  which are due to shear deformation. The displacement fields and rotations 

are defined as: 

ii iuNu ∑=
=

9

1 ; ii ivNv ∑=
=

9

1 ; ii iwNw ∑=
=

9

1 ; ixi ix Nϕϕ ∑=
=

9

1 ;  iyi iy Nϕϕ ∑=
=

9

1  (5.3) 

 

where ),( yxNi are the Lagrange shape functions.  The shape functions are given in the 

Appendix C. 

 

The linear part of the matrix of strains and curvatures,  is expressed as: 

 
(5.4) 

]T 

where the matrix  is given in the Appendix D with i = 1, 2, 3 … 9  and the non-liner 

part of the matrix of strains and curvatures,  is expressed as: 

 (5.5) 

The matrices [H] and [S] are given in the Appendix D. The first variation of potential 

energy W given by Eq. (5.1), and the first and second variations of strain energy U given 

by Eq. (5.2) are considered. They are expressed as: 

 (5.6) 

 (5.7) 

 (5.8) 

where  is the element nodal displacement matrix.  

Further, element nodal load matrix ][ eF , element stiffness matrix  and element 

tangent stiffness matrix   are written as: 
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The matrices [H], [S], [NL] and [NN], and the matrix of shape functions [Ni] are given in 

the Appendix D. 

The equilibrium equations for an element are expressed as: 

The non-linear  Eq. (5.12) is simplified using the Eqs. (5.6), (5.7), (5.9) and (5.10) in 

terms of element stiffness matrix , element nodal load matrix }{ eF  and the element 

nodal displacement matrix }{ eu  as: 

{ }( )[ ] { } { }∑∑ = eee FuuK  (5.13) 

The Newton-Raphson solution procedure for the r-th iteration can be expressed as: 

{ }( ) { } { } { }( ) { } 111 ][][ −−− −=∂ rrrr
T uuKFuuK  (5.14) 

where [KT] denotes the tangent stiffness matrix of the structure, {F} denotes the load 

matrix of the structure, [K] denotes the stiffness matrix of the structure, and {u} denotes 

the displacement matrix of the structure. The solution at the r-th iteration is then given by 

ee u
W

u
U

∂
∂

=
∂
∂  (5.12) 
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{ } { } { }rrr uuu ∂+= −1  (5.15) 

The linearized buckling loads are determined considering the singularity of the tangent 

stiffness matrix. The details of linearized buckling analysis has been explained in the Ref. 

[91] which is summarized in the following.  

The stiffness matrices that correspond to two successive load steps represented by (t-∆t) 

and t are [t-∆tK]  and [tK] respectively, and the corresponding vectors of externally applied 

loads are {t-∆tPx}  and {tPx}. In the linearized buckling analysis it is assumed that the 

stiffness varies linearly with the linear variation of the applied load and at any load step τ,  

γ
τ

=
−
−
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 (5.16) 
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where γ  is a scaling factor. At the state of buckling, the tangent stiffness matrix is 

singular and the condition for calculating γ  is: 

0]det[ =Kτ  (5.18) 

or, equivalently, 

0}]{[ =uKτ  (5.19) 

Substituting from the Eq. (5.16) into the Eq. (5.19) , the eigenproblem is obtained as: 

}]{[}]{[ uKuK ttt Δ−Λ=  (5.20) 
and 

γ
γ 1−

=Λ  (5.21) 
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The eigenvalues iΛ  in the Eq. (5.21) are all positive and the smallest values ......, 21 ΛΛ   

are of interest. The linearized buckling load is given by: 

}){}({}{}{ 1 x
tt

x
t

x
tt

Bucklingx PPPP Δ−Δ− −Λ+=  (5.22) 

In the present work, the arc-length method of Ref. [77] is considered for the fully non-

linear buckling analysis. In the case of arc-length method, both the displacement and load 

are iterative according to Crisfield’s arc-length method [77] and the incremental 

displacement { }ru∂  is expressed in terms of displacement and load. Moreover, in the 

present work, post-buckling analysis is carried out without considering the effect of ply 

failure and the stability limit load (non-linear buckling load) is evaluated from the load-

deflection curve. Numerical integration is considered to evaluate the stiffness matrix and 

the tangent stiffness matrix using the appropriate Gauss quadrature.   

 

5.3 VALIDATION 

To the author’s knowledge, no results are available yet in the literature on the non-linear 

buckling analysis of the tapered curved composite plates under the action of uni-axial 

compression. Therefore the comparison with the existing works could not be made. In 

order to validate the formulation and analysis, first, the taper angle is set to be zero, and 

the resulting uniform-thickness plates have been analyzed and the results have been 

compared with that available in the literature for the uniform-thickness plates. For this 

purpose, the deflection of a shallow curved plate hinged on straight edges and free on the 

curved edges [62] is calculated using the Sanders’s shell theory. The geometric and 

material parameters used are: width b = 2×R×α (α = 0.1 rad.), radius R = 0.0254 m (1in.), 

length L = 0.508 m (20 in.), thickness h = 3.175x10-03 m (0.125 in.), elastic modulus E = 
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3.10 GPa (0.45×106 psi) and Poisson ratio υ = 0.3. Point load at the center of the plate is 

used with a load step of  P = - 444.82 N and a total of 12 load steps are considered. For 

this non-linear analysis, full integration of stiffness coefficients and symmetric boundary 

conditions are considered. The deflection versus load curve is compared in the Fig. 5.2 

for different mesh sizes (in the Fig. 5.2, for example, N9-6x6 represents the 6x6 mesh 

using nine-node element). As can be observed the results obtained using nine-node 

element are in close agreement with those given by Reddy [62].  

 

 

Figure 5.2: Deflection versus load curve for the hinged-free curved plate based on 

Sanders’s shell theory. 
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geometrical properties of  length L = 150 mm, width b = 157.05 mm, radius R = 150 mm, 

thickness h = 1 mm and cross sectional area at the curved end A = 157.05 mm2 has been 
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investigated by Kweon and Hong [118]. In this reference, continuum non-linear analysis 

has been carried out using 8-node degenerative shell element and updated Lagrangian 

formulation without considering the effect of ply failure. However, in the present study, 

fully non-linear analysis is carried out using nine-node Lagrange shell element and 

Sanders shell theory without considering the failure effect. The arc-length method is used 

to solve the non-linear equations. The load-deflection curve is plotted in the Fig. 5.3 from 

which the stability limit load is calculated as 129 MPa (the details of limit load 

calculation are given in the Appendix E) but in the Ref. [118] its value is given as 123.10 

MPa. Deflections calculated based on two shell theories are close to each other but 

Sanders’s theory provides a more conservative result. This shell theory will be used 

further onwards in the present work.   

 

 

Figure 5.3: Load-deflection curve for uniform-thickness curved plate with ply 

configuration [02/902]s. 
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Alternatively, the stability limit load of cylindrical panel with ply configuration [02/902]s 

is predicted from the linearized critical loads. The calculation of linealized critical load is 

performed based on a pre-stressed structure under a certain load vector {Fbase} and can be 

expressed as:  

{Fbase} = λbase{Fref} (5.23) 

where {Fref} denotes the reference pre-stress load vector and λbase denotes the scalar base 

load.  

To perform this type of linearized analysis, the selected load {Fbase} is first applied in a 

single load step and the modified Newton-Raphson equilibrium iteration is performed. 

The tangent stiffness matrix of the structure [KT] corresponding to the equilibrium state is 

obtained. At the succeeding step a trial load increment is applied and the stiffness matrix 

[K] due to stress and displacement increment of this trial load step is calculated. A basic 

assumption of the linearized analysis is that the structure behaves linearly before the 

critical load is reached. Based on this assumption, the pre-stressed load {Fbase} is applied 

to find out the corresponding critical load, so that the tangent stiffness matrix [KT] is 

completely degraded. To find out this additional load level, a generalized eigen-analysis 

procedure is applied. If the eigenvalue extraction based on this fundamental load level 

gives a critical scalar load ∆λcr, then the predicted and linearized critical scalar load λcr, 

shown in the Fig. 5.4, is given by 

λcr = ∆λcr  + λbase (5.24) 

At various base load levels, different linearized critical loads may be predicted, and if the 

stability limit does exist for the structure, the curve formed by connecting these predicted 

critical loads should intersect the non-linear load-deflection curve at the point of 
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instability. The curve is called as the ‘predicted-linearized-load curve’ for easy reference 

(Fig. 5.4). The shape of the curve can be made unique (Ref. [89]) if the linearized critical 

load is plotted against the scalar base load upon which the eigenvalue extractions are 

performed, denoted as λbase , as shown in Fig. 5.4 wherein the load per unit area are 

considered. In this figure, λcr denotes the critical linearized buckling load and A denotes 

the area at the curved end. A 45-degree base load line is plotted by considering the base 

load values along the y-axis correspondng to that of the x-axis. The predicted-linearized-

load curve will intersect with this 45-degree line at the point of instability and this 

intersection point is the stability limit load of the cylindrical panel with ply configuration 

[02/902]s. 

 

Figure 5.4: Predicted-linearized-load curve in base load system. 

 

It is proposed in the present work that the stability limit load can also be calculated by 

linear interpolation considering only two load steps. It is assumed that the slope of the 
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buckling analysis based on the pre-stress load (b1) is performed, and an approximated 

critical load (p1) is obtained (see Fig. 5.5). Then a suitable second base load (b2) is 

applied to the structure and iterations are carried out until equilibrium. This configuration 

of the structure is taken as the base state upon which another linearized buckling analysis 

is performed to obtain a new predicted critical load (p2). Finally, on a λcr-λbase graph, 

extrapolation from points (b1, p1) and (b2, p2) is made to find out the intersection point. 

The linear interpolation is expressed for the prediction of the stability limit load as: 

Stability ;
1 2

121

m
bmpLoadLimit

−
−

=  (5.25) 

12

12
2 bb

ppm
−
−

=  
(5.26) 

where m2 is the slope of the predicted-linearized-load curve, b1 and b2 are the base loads, 

and p1 and p2 are the linearized critical loads corresponding to the base loads b1 and b2 

respectively. 

 

Figure 5.5: Prediction of stability limit load using the simplified methodology for 

uniform-thickness curved plate with ply configuration [02/902]s. 
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In the Table 5.1, the stability limit load per unit area predicted based on the present 

simplified methodology is compared with that obtained using fully non-linear analysis. It 

is observed from the Table 5.1, the stability limit load per unit area predicted based on the 

simplified methodology is 6.76 % lower than that obtained from fully non-linear analysis 

(for corresponding load-deflection curve, see Fig. 5.3).    

 

Table 5.1: Comparison of stability limit load per unit area for the cylindrical panel with 

ply configuration [02/902]s 

Plate 
Type 

Stability Limit Load per Unit Area Based on 
Simplified Methodology (MPa) 

Stability Limit Load per Unit Area Based on 
Fully Non-Linear Analysis (MPa) 

Uniform 
Curved 120.27 129 

  

5.4 PARAMETRIC STUDY 

In the parametric study two types of longitudinal cross-sections of the curved plates are 

considered, that are, taper configuration and hybrid configuration as shown in the Fig. 

5.1. The non-linear buckling analysis is carried out using nine-node Lagrange shell 

element based on Sander’s theory. The material properties of composite material and 

epoxy used are the same as given in the Tables 2.5 and 2.6 respectively. Based on the 

convergence test, the number of elements used in the finite element analysis of taper 

configuration and hybrid configuration are 9×9 and 15×15 respectively. The 9×9 finite 

element mesh is shown in the Fig. 4.4. 
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5.4.1 Non-Linear Buckling Analyses of Tapered Curved Plates 

For the analysis of tapered curved plates, three types of non-linear buckling analyses are 

considered, that are, fully non-linear buckling, linearized buckling and simplified non-

linear buckling analysis. The fully non-linear buckling analysis employs a non-linear 

static analysis with gradually increasing load to seek the load level at which the structure 

becomes unstable and this load level is known as the stability limit load. The basic 

assumption of the linearized buckling analysis is that the structure behaves linearly before 

the critical load is reached. In case of simplified non-linear buckling analysis, the stability 

limit is calculated by linear interpolation considering only two load steps and it is 

assumed that the slope of the predicted-linearized-load curve is constant until the stability 

limit point.  

 

Taper configuration shown in the Fig. 5.1 is considered with 36 and 12 plies at thick and 

thin ends respectively, which results in 24 drop-off plies. The configuration at the thick 

end is [0/90]9s, and that of the thin end is [0/90]3s. In the fully non-linear analysis of taper 

configuration, the height of the thick end htk is to be taken as 4.5 mm and the radius of 

curved plate R is set to be 500 mm. Various values for parameters, namely the critical 

length-to-height ratio, radius, and taper angle are investigated to see the influences of 

these parameters on the buckling loads of tapered curved plates. The results are shown in 

the following Figs. 5.6 through 5.8. 

 

The fully non-linear analysis of clamped-clamped tapered curved square plate with the 

side length of 0.8594 m is carried out using the Crisfield’s arc-length method [77]. The 
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load-deflection curve is determined and is shown in the Fig. 5.6. The stability limit load 

is calculated at the point where the transverse deflection increased significantly with the 

small increment of compressive load and this value is to be equal to 9.5x104  N/m which 

is marked in the figure. 

 

Figure 5.6: Load-deflection curve for clamped-clamped tapered curved plate 

 

Alternatively, the stability limit load is calculated using linear interpolation considering 

the present simplified methodology. A linearized critical analysis based on the pre-stress 

load (b1) is performed, and an approximated critical load (p1) is obtained (see Fig. 5.7). 

Then a suitable second base load (b2) is applied to the structure and another linearized 

critical analysis is performed to obtain a new predicted critical load (p2). Finally, 

extrapolation from points (b1, p1) and (b2, p2) is made to find its intersection. The 

intersection point corresponds to the stability limit load of the tapered curved plate. 
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Figure 5.7: Prediction of the stability limit load of tapered curved plate using the 

simplified methodology. 

 

The values of the base loads b1 and b2, and the corresponding linearized critical loads p1 

and p2 are given in the Table 5.2. In this table, the stability limit loads predicted based on 

the present simplified methodology and using the Eq. (5.25) are compared with that 

obtained using the fully non-linear analysis. It is observed from the Table 5.2 that the 

stability limit load predicted based on the simplified methodology is 6.63 % lower than 

that obtained from the fully non-linear analysis (for load-deflection curve, see Fig. 5.6).  

 

Table 5.2: Comparison of stability limit load for tapered curved plate 

Plate Type 

Prediction of Stability Limit Load (N/m) Stability Limit 
Load Based on 
Fully Non-Linear 
Analysis (N/m) 

First load step Second load step Stability 
Limit Load 
(N/m) 

Base Load  
b1 

Critical Load  
p1 

Base Load  
b2 

Critical Load 
p2 

Tapered 
Curved 0.78x104 12.66x104 4.68x104 11.43x104 8.87 x 104 9.50x104 

 

 

2 4 6 8 10 12 14

x 104

2

4

6

8

10

12

14
x 104

Base Load (N/m)

P
re

di
ct

ed
 C

rit
ic

al
 L

oa
d 

(N
/m

)

Predicted-Linearized-Load
Base Load

Stability Limit

p1
p2

b1

b2



131 
 

5.4.1.1  Influence of Taper Angle 

The load carrying capability of the tapered curved plates is studied in the Ref. [116] 

considering first-ply failure load. This type of failure analysis is considered to determine 

whether a layer in the laminate has failed due to compressive loading before global 

buckling occurs. Element SHELL99 is used for the analyses using ANSYS®. First-ply 

failure analysis is carried out in the Ref. [116] using ANSYS® based on the 3-D version 

of Tsai-Wu failure criterion. Material properties of composite material and epoxy are 

given in the Tables 2.5 and 2.6 respectively. 

 

Four different sizes of square tapered composite plates with the taper configuration of 

Fig. 5.1 and made of NCT/301 graphite-epoxy composite material are considered. The 

lay-up is [0/90]9s at the thick end and [0/90]3s at the thin end. The side length of the 

square plate varies from 85.9 mm to 859.4 mm, plate thickness at the thick end (htk) is 4.5 

mm and radius (R) of the plate is 500 mm. The clamped-clamped (C4-C4) boundary 

conditions given in the Appendix D are considered. The side length of square plates 

corresponding to various values of taper angles are given in the Table 5.3. The first-ply 

failure loads are compared with the linear buckling and stability limit loads based on the 

present simplified methodology. From this table, the following observations are made: 

a) The tapered curved plates corresponding to the taper angles of 0.75 and 1.0 

degrees will fail by first-ply failure before the linear global buckling (see Table 

3.3). In the case of stability limit load, tapered plate corresponding to the taper 

angle of 1.0 degree will fail by first-ply failure.  
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b) On the other hand, the plates corresponding to the taper angles of 0.1 and 0.50 

degrees will not fail by first-ply failure if the linear buckling load is considered. 

The plates corresponding to the taper angles of 0.1, 0.50 and 0.75 degrees will not 

fail by first-ply failure if the stability limit load is considered. The maximum plate 

size should be corresponding to the taper angle of 0.53 and 0.79 degrees for linear 

buckling loads and stability limit loads respectively.  

c) The critical length-to-height ratio (Ltap / htk) is to be 36 (see Fig. 3.2) and 24 (see 

Fig. 5.8) for the linear buckling load and stability limit load respectively. 

d)  In terms of numerical values, the difference between the two loads (linear 

buckling load and stability limit load) decreases with decrease of plate size. This 

is so because the plate becomes stiffer with the decrease of plate size and the 

stability limit load of stiff plate is closer to the bifurcation-buckling load (linear 

buckling load).  

e) The failed layers with numbers 2 and 3, respectively, are the second layer and the 

third layer from the bottom at the thick end of the plates. All the tapered curved 

plates failed at the thick end where the number of plies above or below the resin 

pockets are at minimum. 

Table 5.3: Comparison of linear buckling load, stability limit load and first-ply failure 

load of tapered curved composite plates 

Taper 
Angle in 
Degree 

Side 
Length of 
the Square 
Plate  (m) 

Linear 
Buckling 
Load  [116] 

(N/m) 

Stability Limit Load 
Based on the Simplified 
Methodology (N/m) 

First-ply 
Failure Load 
[116]  (N/m) 

Failure 
Location 
(FEN, FLN)* 

0.10 0.8594 14.08 x104 8.87 x104 48.05 x104 1, 2 
0.50 0.1719 40.05 x104 25.68 x104 42.00 x104 1, 2 
0.75 0.1146 59.37 x104 42.55 x104 43.50 x104 9, 3 
1.00 0.0859 79.48 x104 59.61 x104 45.60 x104 9, 3 

 

* FEN and FLN denote the failed element number and failed layer number at first-ply failure. 
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Next, the tapered plates of the Table 5.3 are analyzed corresponding to different radii 

using the same boundary condition (C4-C4), laminate configuration, and the material 

properties of Tables 2.5 and 2.6. The critical sizes of the tapered curved plates are 

determined corresponding to various radii. For the calculation of critical length-to-height 

ratio, the same procedure is applied as that used in the previous case of the plate with the 

radius of 500 mm. In the Fig. 5.8, the plot of radius versus critical length-to-height ratio 

of tapered curved plates is given. In this figure, Ltap denotes the taper length and htk 

denotes the thickness of the plate at the thick end. From Fig. 5.8, the following 

observations are made:  

a) The critical length-to-height ratio of the plate increases with the decrease of 

radius. This is so because the stiffness of the tapered curved plate increases with 

the decrease of radius. The critical length-to-height ratio varies non-linearly with 

the radius. In the case of larger radius, shorter plate can be used under uni-axial 

compression, which will not fail before global buckling.  

b) The design limit for the tapered curved composite plates mentioned in the Table 

5.3 corresponds to the shaded area of the Fig. 5.8. Beyond this limit, tapered 

curved plate will not fail by ply failure before global buckling of the plate occurs. 

Dark shaded area represents the design limit predicted by the present simplified 

non-linear buckling (stability limit) analysis, and the dark and light shaded areas 

together represent the design limit corresponding to the linear buckling analysis.  

 



134 
 

 

Figure 5.8: The effect of the radius of the tapered curved composite plate on the critical 

length-to-height ratio. 

 

5.4.2 Non-Linear Buckling Analyses of Hybrid Curved Plates 

Laminates with only taper configuration have been studied in the previous section of this 

chapter and the laminates with the hybrid (combined tapered and uniform-thickness) 

configuration are taken into account in the present sub-section. The tapered part of hybrid 

plates is modeled using the taper configuration shown in the Fig. 5.1.  The lay-up 

configurations are given in the Table 2.7. For the buckling analyses, total plate length L = 

229.2 mm, width b = 114.6 mm and the material properties of Tables 2.5 and 2.6 are 

considered. According to the first-ply failure analysis, the hybrid  plates with lay-up 

configurations given in Table 2.7 will not fail by ply failure before global buckling. The 

results of the non-linear buckling analysis are shown in the following Figs. 5.9 through 

5.13.  

The  fully non-linear analysis of clamped-clamped hybrid curved plate with lay-up 

configuration LC1 and radius of 500 mm is carried out using the Crisfield’s arc-length 

method [77]. The load-deflection curve is determined and plotted in the Fig. 5.9 from 
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which the stability limit load is calculated at the point where the transverse deflection 

increased significantly with the small increment of compressive load and this value is to 

be equal to 19.0x104 N/m.  

 

Figure 5.9: Load-deflection curve for clamped hybrid curved plate 

 

Alternatively, the stability limit load is calculated by linear interpolation using the present 

simplified methodology. A linearized buckling analysis based on the pre-stress load (b1) 

is performed, and an approximated critical load (p1) is obtained (see Fig. 5.10). Then a 

suitable second base load (b2) is applied to the structure and another linearized buckling 

analysis is performed to obtain a new predicted critical load (p2). Finally, extrapolation 

from points (b1, p1) and (b2, p2) is made to find its intersection. The intersection point 

corresponds to the stability limit load of the tapered curved plate. 

The values of the base loads b1 and b2, and the corresponding linearized critical loads p1 
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present simplified methodology is compared with that obtained using fully non-linear 

analysis. It is observed from the Table 5.4, the stability limit load predicted based on 

simplified methodology is 8.94 % lower than that obtained from fully non-linear analysis 

(for the load-deflection curve, see Fig. 5.9).  

 

Figure 5.10: Prediction of the stability limit load of hybrid curved plate using simplified 

methodology. 

 

Table 5.4: Comparison of the stability limit load for hybrid curved plate 

Plate 
Type 

Prediction of Stability Limit Load (N/m) Stability Limit 
Load Based on 
Fully Non-Linear 
Analysis (N/m) 

First load step Second load step 
Stability Limit 
Load (N/m) Base Load  

b1 
Critical Load  
p1 

Base Load  
b2 

Critical Load 
p2 

Hybrid 
Curved 1.0x104 20.6x104 5.0x104 19.95x104 17.3 x104 19.0x104 

 

5.4.2.1  Influence of Radius-to-Thickness Ratio  

Figs. 5.11 through 5.13 show the influence of the radius-to-thickness ratio on the 
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0.5 1 1.5 2 2.5

x 105

0.5

1

1.5

2

2.5
x 105

Base Load (N/m)

P
re

di
ct

ed
 C

rit
ic

al
 L

oa
d 

(N
/m

)

Predicted-Linearized-Load
Base Load

Stability Limit

p1 p2

b1
b2



137 
 

stability limit loads corresponding to different radius-to-thickness ratio of hybrid  curved 

plates are calculated using simplified methodology based on Sander’s theory and these 

normalized loads are compared with the linear buckling loads obtained using Ritz method 

based on Classical Shell Theory (CST) and  First-order shear deformation Shell Theory 

(FST). In the Figs. 5.11 – 5.13, R denotes the radius, htk denotes the thickness of the plate 

at thick end, crλ denotes the stability limit load or critical linear buckling load, Ltap 

denotes the length of taper section and Ex” denotes the elastic modulus of the composite 

material in the fiber direction.  From Figs. 5.11 – 5.13, the following observations are 

made: 

a) All types of normalized loads decrease with the increase of radius-to-thickness 

ratio.  

b) The lowest and highest normalized loads are obtained using the simplified 

methodology and CST-based Ritz solution respectively. In the case of CST-based 

Ritz solution, shear strains are omitted which is the cause for higher buckling 

loads compared to that obtained using the other two methods. The normalized 

load using the simplified methodology is lower than that of the FST-based Ritz 

solution. Because the equations for the strains of non-linear shell theory which is 

linearized to calculate the stability limit load have more non-linear terms 

compared to the linear shell theory. 

c) Stability limit load of hybrid plates are strongly radius-to-thickness ratio 

dependent. 
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d) The stability limit load diverges away from the linear buckling load with the 

increase of radius-to-thickness ratio. This is so because the plate becomes more 

flexible with the increase of radius. 

 

Figure 5.11: Variation of buckling loads with the radius-to-thickness ratio of the 

clamped-clamped hybrid plate with lay-up configuration LC1. 

 

Figure 5.12: Variation of buckling loads with the radius-to-thickness ratio of the 

clamped-clamped hybrid plate with lay-up configuration LC2. 
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Figure 5.13: Variation of buckling loads with the radius-to-thickness ratio of the 

clamped-clamped hybrid plate with lay-up configuration LC3. 

 

5.5 CONCLUSIONS 

In the present chapter, fully non-linear and linearized buckling analyses have been carried 

out using finite element method based on two well known first-order shallow shell 

theories, namely, Donnel’s, and Sander’s theories. Three types of composite plates, that 

are, uniform-thickness, tapered and hybrid plates are considered under uni-axial 

compressive load. A detailed parametric study of curved (tapered and hybrid ) plates has 

been conducted that includes the influences of taper angle, critical length-to-height ratio, 

radius, radius-to-thickness ratio and geometric parameters of the plates on the buckling 

load. The conclusions listed herein, are based on all the numerical results presented. 
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a) Any of the above mentioned shell theories can be used for the buckling analysis of 

flat or tapered curved plates. However, the Sander’s shell theory provides the most 

conservative results. 

b) Stability limit load calculated based on the simplified methodology has agreement 

with that of the fully non-linear analysis. The present simplified methodology 

consumes reasonably shorter computational time compared to the standard fully 

non-linear analysis. 

c) The moderately thick and tapered curved composite plates may fail by ply failure 

before global buckling. Therefore, the tapered curved plate should be larger than 

the corresponding critical size. The critical size depends on both the radius and 

taper angle of the plate. 

d) Stability limit load of hybrid plate depends strongly on the radius-to-thickness 

ratio. 
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Chapter 6 

Conclusions, Contributions, and Future Work 

 

6.1  CONCLUDING REMARKS 

The objective of the present thesis work is to investigate the compressive response of 

shallow curved composite plates with longitudinal internal ply-drop-off configurations. 

For this purpose, three types of analyses, namely, global buckling (linear and non-linear), 

first-ply failure, and delamination failure analyses are considered. Three types of tapered 

plates (taper configurations A and B, and a hybrid configuration) and three types of lay-

up configurations (LC1, LC2 and LC3) are investigated. 

 

Linear global buckling is carried out using Classical Shell Theory (CST) based on Ritz 

method and using First-order shear deformation Shell Theory (FST) based on the Ritz 

method and Finite Element Method (FEM).  The classical linear buckling analysis is 

carried out based on eight well-known classical shallow shell theories, namely Donnell’s, 

Love’s, Mushtari’s, Timoshenko’s, Vlasov’s, Sander’s, Koiter’s and Novozhilov’s 

theories. The linear buckling analysis is also carried out based on six well-established 

first-order shear deformation shell theories, that are, Donnell’s, Moreley’s, Love’s, Loo’s, 

Koiter’s and Sander’s theories. The Ritz method is used to solve both of the CST and 

FST based linear buckling problems. A nine-node tapered curved composite finite 

element is developed based on the above mentioned six first-order shear deformation 

shell theories. In the case of different shell theories, the corresponding critical buckling 

loads are calculated and the most conservative value is obtained.  
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Linear buckling analysis is insufficient to take into account the effect of large deflections 

on the buckling loads of structural components. This effect can only be considered in the 

non-linear buckling analysis. However, very large number of load steps is required to 

determine the buckling load based on the non-linear analysis in which the stability limit 

load is calculated from the non-linear load-deflection curve. In the present thesis work, a 

simplified methodology is developed to predict the stability limit load that requires the 

consideration of only two load steps. The stability limit loads of the tapered curved plates 

are calculated using this simplified methodology.  

 

The strength characteristics and load carrying capability of the tapered curved plates are 

investigated considering the first-ply failure and delamination failure analyses using 

ANSYS®. First-ply failure analysis is carried out based on the 3-D version of Tsai-Wu 

failure criterion. The initiation of delamination, if any, is dictated by the transverse 

interlaminar stresses developed under compressive load. The interlaminar transverse 

shear stresses in shell element are calculated based on the assumption that no shear is 

carried at the top and bottom surfaces of the element. These interlaminar shear stresses 

are only computed in the interior of the element and are computed using equilibrium 

requirements.  

Based on the failure and buckling analyses, the critical sizes and parameters of the 

tapered curved plates that will not fail before global buckling are determined. Parametric 

studies that encompass the effects of boundary conditions, stacking sequence, taper 

configurations, radius and other geometric parameters of the plates are conducted. 
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Based on the present study, the following main concluding remarks are made: 

a) The buckling results based on different classical shell theories are close to each 

other but the Novozhilov’s shell theory provides the most conservative result. 

b) Any of the previously mentioned first-order shear deformation shell theories can be 

used for the buckling analysis of uniform or tapered curved plates. But the Sander’s 

and the Koiter’s shell theories provide the most conservative result. 

c) The moderately-thick and tapered curved composite plates can also fail by first-ply 

failure before global buckling. Therefore the dimensions of tapered curved plate 

should be larger than the corresponding critical size. The critical sizes depend on 

both radius and stacking sequence of the plates. Such critical sizes have been 

determined in the present work. 

d) The tapered flat plate is more flexible than uniform flat plate, but the tapered 

curved plate provides a better design option in terms of saving the material without 

any compromise of the strength.  

e) Uniaxial compressive strength can be increased significantly by making the tapered 

plate into a curved one and a considerable amount of material can also be saved. 

f) The critical buckling loads of all lay-up configurations are considerably influenced 

by the stiffness ratio (Ex”/Ey”) of the ply material.  

g) Classical shell theory can be used to calculate with reasonable accuracy the critical 

buckling loads of moderately-long plates for which Ltap/R > 0.35. The first-order 

shear deformation shell theory should be used for the calculation of critical 

buckling loads of shorter plates for which Ltap/R < 0.35. 
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h) The normalized buckling load is more dependent on length-to-radius ratio (Ltap/R) 

than the taper configuration.  

i) The buckling behavior of all the lay-up configurations are both radius-to-thickness 

ratio (R/htk) and boundary condition dependent. At higher values of radius, lay-up 

configurations LC3, LC1 and LC2 become the strongest, moderate and weakest 

laminates respectively. 

j) Stability limit load calculated based on the simplified methodology has agreement 

with that of the fully non-linear analysis. The present simplified methodology 

consumes reasonably shorter computational time compared to the standard fully 

non-linear analysis. 

 

6.2  CONTRIBUTIONS 

The remarkable contributions made in this thesis are summarized below: 

1) One of the important contributions of the present thesis is a systematic and 

thorough study of the compressive response of the tapered curved composite 

plates. The tapered curved plate provides a better design option in terms of saving 

the material without any compromise of the strength. The cost of the engineering 

products can be minimized by reducing the weight of the products. According to 

Bombardier [119], the extra cost of $41,000 to 69,000 USD per year per aircraft is 

needed for the extra Operating Empty Weight (OWE) of 500 kg of a regional jet.  

2) The second most important contribution is the present simplified methodology that 

consumes reasonably shorter computational time compared to the standard fully 

non-linear analysis. 
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3) The critical sizes and parameters of the tapered curved plates that will not fail by 

first-ply failure and delamination failure before global buckling are determined. 

This contribution is made for design purpose. 

4) To apply the first-order shear deformation shell theories to analyze the tapered 

plates, an appropriate set of shear correction factors have been determined. 

 

6.3  RECOMMENDATIONS 

The following recommendations for further study can be considered: 

1) A low velocity transverse impact on a composite plate may cause internal 

delaminations, which has not been considered in the present work. Therefore, 

Compression After Impact (CAI) of the tapered curved plates can be considered in 

the future work. 

2) The post-buckling response of tapered curved composite plates including 

progressive failure of the laminate under compressive and shear loadings. 

3) To quantify the effect of stochastic variability in the material properties on the 

progressive failure.  

4) The dynamic buckling analysis of the tapered curved composite plates. 
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APPENDIX A 

Boundary Conditions for Classical Shell Theory 

S3:     
at x=0, L 
u ≠ dw/dx ≠ 0; w = v = Nxx = Mxx = 0 

)sin(
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C3:   
at x=0, L 
u ≠ Mxx ≠ 0; w = v = Nxx = dw/dx = 0   
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C4:   
at x=0, L 
Mxx ≠ 0; w = v = dw/dx = 0 
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In general, the displacement functions are expressed in the Equations (2.17) through 

(2.19) and Um, Un, Vm, Vn, Wm and Wn are selected from the above expressions for 

different boundary conditions. L and b are the length and width of the plate respectively; 

Nij and Mij are the resultant force and moment respectively, where i, j = x, y.  The values 
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of Lamda, λi and Gama, γi can be found in Bertholate [103]. Si and Ci are the simply 

supported and clamped boundary conditions respectively with i= 3, 4.  

 

System Equations of Classical Shallow Shell Theories 

For balanced symmetric laminate, Bij=0 and A16=A26=0; applying these conditions to the 

equations (2.26), the following expressions of  st
IJL  and st

IJG  are obtained, where s, t = 1, 

2, 3: 
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The respective values of c1, c2, c3 and c4 are given in the section of formulation. 
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APPENDIX B   

 Boundary Conditions for First-order Shear Deformation Shell Theory 
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C3: 

  

at x = 0, L 
w = xϕ  = yϕ  = Nxx = v = 0 
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C4: 
at x = 0, L 
w = xϕ  = yϕ  =  v = 0 
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In general, the displacement functions are expressed as in the Equations (3.15) through 

(3.19) and functions Um, Un, Vm, Vn, Wm, Wn, xϕ  and yϕ  are selected from the above 

expressions for different boundary conditions. L and b are the length and width of the 

plate respectively; Nij and Mij are the resultant force and moment respectively, where i, j 

= x, y. The values of λi and γi can be found in Bertholet [103]. Si and Ci denote the 

simply-supported and clamped boundary conditions respectively, where i = 3, 4.  

  

 Different Edge Conditions of the Curved Plates 

C4

C4

C4

C4 S4

S4

S4

S4 C3

S3

S3

C3

Clamped-Clamped (C4-C4) Simply-Supported (S4-S4) Clamped-Simply Supported (C3-S3)

  

The details about the boundary conditions where S3, S4, C3 and C4 are, respectively, 

given by the  Eqs. (B1) through (B4). 

 

System Equations of First-order Shear Deformation Shell Theory 
For balanced symmetric laminate, B11= B12= B16= B22= B26= B66=0,  and A16=A26=0; 

applying these conditions to the Eq. (3.25), the following expressions for st
IJL are 

obtained: 
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where c1 and c2 are the tracer coefficients used to express the strain and curvature fields 

that correspond to different shell theories. In a similar manner, the equations for rest of 

the coefficients st
IJL  (s, t = 1, 2, 3, 4, 5) can be written.   

st
IJG  can be expressed as: 
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where L and b are the length and the width of a plate respectively and L denotes the total 

length of a plate, that is, L= Ltap for taper configurations A and B, and L = L for hybrid 

configuration (see Fig. 1.4).  
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APPENDIX C 

Shape Functions for the Nine-node Lagrange Element 
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where L  and b  are the length and the width of an element respectively with respect to 

local coordinates;  and   is the set of local coordinates. 
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Boundary Conditions for First-order Shear Deformation Shell Theory 

S3:  

at x = 0, L 
w = Mxx = yϕ  = Nxx = vo = 0          
at y = 0, b 
w = Myy = xϕ  = Nyy = uo = 0 

(C4) 

S4:  

at x = 0, L 
w = Mxx = yϕ  = uo = vo = 0               
at y = 0, b 
w = Myy = xϕ  = uo= vo = 0 

(C5) 

C3:  

at x = 0, L 
w = xϕ  = yϕ  = Nxx = vo = 0                   
at y = 0, b 
w = xϕ  = yϕ  = Nyy = uo= 0 

(C6) 

C4:  

at x = 0, L 
w = xϕ  = yϕ = uo =  vo = 0                   
at y = 0, b 
w = xϕ  = yϕ  = uo = vo = 0 

(C7) 

where (uo, vo, wo) constitute the mid-plane displacement field that refers to the global 

coordinate system (x, y, z) as shown in Fig. 2.1;  L and b are the length and width of a 

plate respectively;  Nij and Mij are the resultant forces and moments respectively, where i, 

j = x, y.  

 

Different Edge Conditions of the Curved Plates 

C4

C4

C4

C4 S4

S4

S4

S4 C3

S3

S3

C3

Clamped-Clamped (C4-C4) Simply-Supported (S4-S4) Clamped-Simply Supported (C3-S3)

 The details about the boundary conditions S3, S4, C3 and C4 are, respectively, given by 

the  Eqs. (C4) through (C7). 



154 
 

Calculation of the Weight Savings and the Gain of Strengths  

To calculate the weight of a tapered laminate, the laminate is divided into several 

segments based on the horizontal distribution of resin pockets. For example, taper 

configuration A has only one segment but the taper configuration B has three segments. 

The weight of all the segments is combined to get the weight of the laminate. The resin 

pocket is considered (imagined) to be made up of layers of isotropic resin material and 

the height of the resin pocket is equivalent to the number of drop-off plies.  

 

The weight of the uniform flat laminate which is to be made into the tapered one is: 

∑
=

××××+×+××=
N

n
cprpcrrul btLNCPNURPPDOnW

1
])([ ρρρ  

(C8) 

The weight of the tapered flat laminate can be expressed as: 

∑ ××××+×+×××= ])([ 2
1 btLNCPNURPDOPnW cprpcrrtl ρρρ  

(C9) 

The weight of the tapered curved laminate can be expressed as: 

∑ ×××××+×+×××= ])([ 2
1 ζρρρ RtLNCPNURPDOPnW cprpcrrtcl  

(C10) 

where ‘n’ denotes the number of segments, ‘PDO’ denotes the plies to be dropped-off, 

‘DOP’ denotes the dropped-off plies, rρ denotes the density of resin, ‘NURP’ denotes the 

number of uniform (imagined) resin plies, ‘NCP’ denotes the number of composite plies, 

cρ  denotes density of composite, Lrp denotes the length of the resin pocket, tcp denotes 

the thickness of the composite plies, ‘b’ denotes the width of the flat plate, ‘R’ denotes 

the radius of the curved plate, and ‘ζ ’ denotes the center angle of the curved plate. 

 

The properties mentioned in the Eqs. (C8) and (C9) for the plate with one segment used 

in the Fig. 4.6 are: 

n = 1, PDO = 18, rρ = 1050 kg/m3, NURP = 6, NCP = 12, cρ = 1480 kg/m3, Lrp = 0.8594 

m, tcp = 0.000125 m and b = 0.8594 m. 

Therefore, the weight of the uniform flat plate corresponding to the point ‘P’ in the Fig. 

4.6 is: 
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 8594.0000125.8594.0)14801210506105018( ××××+×+×=PW  

96.3=PW  Kg 
(C11) 

And the weight of the tapered plate corresponding to the point ‘Q’ in the Fig. 4.6 is: 

8594.000125.8594.)148012105061050182/1( ××××+×+××=QW  

09.3=QW  Kg 
(C12) 

The weight savings of the tapered plate with respect to the uniform plate is expressed as: 

%100/)( ×−= PQP
s WWWW  (C13) 

From the Eqs. (C11) through (C13), the weight savings of the plate used in the Fig. 4.6 

with 18 drop-off plies is 21.96 %. 

The gain of strength of a curved tapered plate with respect to a flat tapered plate can be 

expressed as: 

%100/)( ×−= RQR
s SSSG  (C14) 

From the Eq. (C14), the gain of strength of the plate used in the Fig. 4.6 with 18 drop-off 

plies is 82.47 %. 

APPENDIX  D 

Strain-Nodal Displacement Matrix 
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Matrices Required to Calculate  
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Matrices Required to Calculate  
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Boundary Conditions for First-order Shear Deformation Shell Theory 

 

For first-order shear deformation shell theory, the BCs of clamped-clamped (C4-C4) 

plate are mentioned below: 

at x = 0 
w = xϕ  = yϕ = uo =  vo = 0 
 
at x = L 
w = xϕ  = yϕ =  vo = 0;  uo ≠ 0 
        
at y = 0, b 
w = xϕ  = yϕ  = uo = vo = 0 

(D8) 

 

where (uo, vo, wo) denotes the mid-plane displacement field that refers to the global 

coordinate system (x, y, z) as shown in Fig. 2.1;  L and b are the length and width of the 

plate respectively;  Nij and Mij are the resultant force and moment respectively, where i, j 

= x, y. 
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APPENDIX  E 

The following Fig. E-1 is the re-plot of Fig. 5.3 of chapter five from which the stability 

limit load is calculated at the point where the transverse deflection increased significantly 

with the small increment of compressive load and this value is to be equal to 129 MPa.  

 

 

 

Figure E-1: Load-deflection curve for uniform-thickness curved plate with ply 

configuration [02/902]s. 

 

The neighborhood of limit load of the Fig. E-1 is plotted in the Fig. E-2 to show the 

critical point where the transverse deflection increased significantly with the small 

change of compressive load.  
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Figure E-2: Neighborhood of limit load for uniform-thickness curved plate with ply 

configuration [02/902]s. 
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