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ABSTRACT

Optimization-Based Control Methodologies with Applications to Autonomous Vehicle

Behnam Gholitabar Omrani

This thesis includes two main parts. In the first part, the main contribution is to

develop nonsingular rigid-body attitude control laws using a convex formulation, and

implement them in an experimental set up. The attitude recovery problem is first pa-

rameterized in terms of quaternions, and then two polynomial controllers using an SoS

Lyapunov function and an SoS density function are developed. A quaternion-based poly-

nomial controller using backstepping is also designed to make the closed-loop system

asymptotically stable. Moreover, the proposed quaternion-based controllers are imple-

mented in a Quanser helicopter, and compared to the polynomial controllers and a PID

controller experimentally.

The main contribution of the second part of this thesis is to analytically solve the

Hamilton-Jacobi-Bellman equation for a class of third ordernonlinear optimal control

problems for which the dynamics are affine and the cost is quadratic in the input. One

special advantage of this work is that the solution is directly obtained for the control input

without the computation of a value function first. The value function can however also be

obtained based on the control input. Furthermore, a Lyapunov function can be constructed

for a subclass of optimal control problems, yielding a proofcertificate for stability. Using

the proposed methodology, experimental results of a path following problem implemented
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in a Wheeled Mobile Robot (WMR) are then presented to verify the effectiveness of the

proposed methodology.
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Chapter 1

Introduction

This chapter includes a review of the relevant literature ontwo main topics of the thesis:

the attitude control of a rigid body and inverse optimality method. The main contributions

and the structure of this thesis are also stated in this chapter.

1.1 Literature Review

This section will be broken into two subsections. The first part presents a review of the

relevant literature on the attitude control of a rigid body,and the second part will review

the literature of inverse optimality approach.

1.1.1 Attitude Control of a Rigid Body

An attitude recovery maneuver is used when a malfunction affects the attitude of the rigid

body and throws it into a spin. The primary task of the attitude control system is to stabi-

lize the attitude of the rigid body, specially satellite, against external torque disturbances

generated by aerodynamic drag effects, solar radiation, unwanted wind torques, a sud-

den seizure of a momentum wheel, and so on. In most rigid body applications such as
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satellite, spacecraft, robot manipulators and high performance air vehicles, large angle

maneuvers are required to be performed for different missions. To this aim, an attitude

recovery should be implemented to bring back the rigid body to the zero attitude state

vector, subject to any initial condition. To fully simulatean attitude problem, a rigid body

is characterized by nonlinear attitude kinematics.

Attitude dynamics and its control has been an important topic in the control field

since the first humans made an artificial satellite, SputnicI , which was build and launched

on October 4th, 1957. The actual numbers of journal and conference papers,technical re-

ports and books published in this area is in hundreds and quite overwhelming. Therefore,

the literature review given in the following paragraphs will give a brief review of attitude

control of a rigid body.

Several research studies have been conducted in the past fewdecades that inves-

tigate attitude control problem using a variety of control techniques ranging from the

classical PID [1], [2] and [3], and feedback linearization control [18] , to adaptive and

optimal control [4], [5] and [6], and intelligent-based attitude control approaches such

as neural networks [7] and [8], and fuzzy logic [9], [10] and [11]. The attitude control

problem was first developed by Meyer [12] and [13], and then was extended by several

researchers. Using a Lyapunov approach, Meyer [13] focusedon appropriate attitude rep-

resentations of spacecraft dynamic models. In [14] Crouch extends Meyer’s work, and

presents necessary and sufficient conditions for the controllability of a spacecraft in the

case that the gas jet actuators yield one, two, or three independent torques.

A general framework for the analysis of the attitude tracking control problem for

a rigid body is presented in [15], where a large family of globally stable control laws

are obtained by using the globally nonsingular quaternion representation in a Lyapunov

function candidate. In [16] the rigid body attitude controlproblem with external torques

is transformed into an equivalent linear form implementable by three double integrators.
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The Linearizing transformations themselves are formulated in vector algebra, requiring

no integrators for implementation. Tsiotras in [17] applies a Lyapunov function that in-

cludes a sum of quadratic and logarithmic terms in the angular velocities and kinematic

parameters resulting in a linear control design. The problem of the attitude recovery of

flexible spacecraft is also investigated in [18] and [19] using the feedback linearization

control and generating the control error signal based on thequaternion addition.

Recently, backstepping approach, sliding mode control, nonlinearH∞ control, opti-

mal and adaptive control have also been applied to attitude control problems. Backstep-

ping control approach is mostly used in attitude problems, due to its remarkable capability

in designing cascaded systems. The advantage of integratorbackstepping compared with

other control methods lies in its design flexibility, due to its recursive use of Lyapunov

functions. The main concept of backstepping control has been examined in general in [20]

and [21], and then has been utilized in several attitude control problems. For example,

[22] proposes a robust nonlinear attitude control method for aircraft based on partitioned

backstepping. Reference [23] presents a solution to the problem of controlling relative at-

titude in a leader-follower spacecraft formation, with focus on optimality in rotation path

for the follower spacecraft. References [24] and [25] focus on a backstepping approach

for controlling the attitude of the European Student Earth Orbiter (ESEO). In these papers

a tracking controller is presented to stabilize the attitude of a micro satellite via integrator

backstepping and quaternion feedback. The backstepping approach was also applied to

attitude control of satellites in [28], [29] and [30].

Sliding mode control is also one of the most important approaches to handle the

attitude control problems with large uncertainties, nonlinearities, and bounded external

disturbances. The main drawback of the sliding mode controlis its discontinuous switch-

ing control law (sign function) which results in chattering. In [31], [32], [33], and [34]

sliding mode controller have been investigated for attitude control problem in term of

3



Euler angles, Rodrigues parameters, Modified Rodrigues parameters, and Quaternions,

respectively. The most recent work in [35] also studies two optimal sliding mode control

laws using integral sliding mode control (ISM) for some spacecraft attitude tracking prob-

lems. In this paper, integral sliding mode control combining the first order sliding mode

and optimal control is applied to quaternion-based spacecraft attitude tracking maneuvers

with external disturbances and an uncertainty inertia matrix.

Using a control Lyapunov function approach, [36] designs globally stabilizing feed-

back laws that have desirable optimality with respect to cost functions, penalizing state

errors and control effort. Their performance is also compared to the performance of pre-

viously developed proportional-derivative type control laws. It is shown that the new

control laws achieve the same or greater stabilization ratewith less control effort. In [37]

a discrete optimal control problem for attitude dynamics ofa rigid body with symmetry,

applied to a 3D pendulum, is presented. The symmetry in the attitude dynamics system

yields a conserved quantity, causing a fundamental singularity in optimal control prob-

lems. Using an inverse optimal adaptive Control, the attitude tracking control problem

of a rigid body with external disturbances and an uncertain inertia matrix is addressed in

[38]. This is achieved by the inverse optimality approach without solving the associated

Hamilton JacobiIsaacs partial differential equation directly. In [6] a nonlinear optimal

controller has been devised for the attitude tracking problem of spacecraft maneuvers

through HamiltonJacobi formulation, applying a penalty onangular velocities and attitu-

dinal kinematics. Reference [39] presents attitude controlof a satellite using a statistical

game (Minimal Cost Variance) control. Throughout the simulations, statistical game con-

trol has an extra degree of freedom to improve the performance, and reduce the overshoot

compared to eitherH1 control andH2/H1 control.

Nonlinear adaptive control is also one of the recent controlapproaches in attitude
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control problem. Adaptive control method is a natural choice to manipulate uncertain pa-

rameters and has been applied to the attitude tracking control problem of spacecraft [40].

For instance, [41] presents a nonlinear adaptive control law for the attitude control of

satellites using gyro torquers such that large rotational maneuvers can be performed. The

problem of adaptive attitude tracking control for a rigid spacecraft with uncertain inertia

matrix is addressed in [42] and [43]. Using MRP attitude representation and the back-

stepping approach, the adaptive attitude tracking controlproblem for a rigid spacecraft

subject to inertia uncertainty is investigated in [42]. In [43] a nonlinear adaptive control

law based on a backstepping design technique is derived for the control of the pitch angle.

In nonlinear optimal control theory, nonlinearH∞ control method is a potential ap-

proach to the attitude control problem with external disturbances. To useH∞ approach, a

control problem is expressed as a mathematical optimization problem, where the desired

controller is obtained by solving this optimal problem.H∞ control mainly includes two

issues. The first issue is to make a given system stable and thesecond one is to ensure

that theL2-gain, from the disturbance input to the controlled output,of the closed-loop

system is not larger than a certain value [44]. However, the main drawback of this method

is the difficulty in solving the associated Hamilton-Jacobi-Isaacs (HJI) partial differential

equation, although there have been a few numerical approaches to solve the HJI equation.

A linearH∞-control method based on the linearization of a space station model is used in

[45]. In [46] a state feedbackH∞-suboptimal control problem for a rigid spacecraft with

three control torques and disturbances is addressed. The Hamilton-Jacobi inequality as-

sociated with a corresponding state feedbackH∞-suboptimal control problem is globally

solved in this paper. Reference [47] extends the results of [45] and [46] to the attitude

tracking control problem of a rigid spacecraft with external disturbances. Using the in-

verse optimal control method, it is shown that a nonlinearH∞ optimality with respect to
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the extended disturbance is achieved without obtaining a direct solution to the HJI equa-

tion.

The aforementioned approaches so far are mainly based on Lyapunov and storage

functions for analysis. The main drawback of these approaches is that finding or con-

structing a Lyapunov function is not trivial, and there doesnot exist a general systematic

method to find a Lyapunov function for a given system. Therefore, finding or constructing

a Lyapunov function is inevitably restricted to some specific structure of known systems

with small state dimensions. For a general nonlinear systemẋ = f (x), in the case in

which both vector fieldf and the Lyapunov function candidateV are polynomial, the

Lyapunov conditions are basically polynomial non-negativity conditions, which can be

NP hard to check [48]. However, most recently a new computationally efficient nonlinear

method using sum of squares (SoS) approach was proposed by Parrilo [49]. Using this

approach, the non-negativity conditions are relaxed to SoScertificate functions (of appro-

priate polynomials) in the form of semidefinite programming(SDP) (see 3.3.3 for more

detail). Therefore, using SoS approach, not only the Lyapunov conditions are checked, but

also a suitable Lyapunov function can be constructed. To convert the SoS decomposition

problem to the corresponding SDP formulation, a freely-available MATLAB toolbox, the

software SOSTOOLS [50] has been developed. This recent approach has so far been used

for several applications including aircrafts [51]−[52], satellites [54], and Robots [55].

Two of the most recent approaches in nonlinear control are SOS Lyapunov based

controller [56] and SOS density function based controller [57]. First and foremost, the

key idea that enables us to utilize SoS in solving the attitude problem is that the rigid

body model using either quaternions or MRP can be representedby polynomial vector

fields [54]. For a general nonlinear system ˙x = f (x)+ g(x)u, where f (x) andg(x) are

polynomials, searching for a control Lyapunov function anda controller simultaneously

is not a convex problem. However, using a so-called Density functionρ(x) [57] leads to a
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convex formulation. Moreover, for a nonlinear system in theform of ẋ= f (x)x+g(x)u, an

SOS Lyapunov based controller can also be used to find a polynomial controller satisfying

conditions of the Lyapunov’s stability theorem [20]. As themost recent work in [54], an

SOS Lyapunov based control has been used to design a polynomial controller for a rigid-

body attitude problem, using Modified Rodrigues Parameters (MRP).

1.1.2 Optimal Control Problems: An Inverse Optimality Approach

The sufficient condition for solving an optimal control problem is to find the solution of

the Hamilton-Jacobi-Bellman (HJB) equation. There is no systematic analytical solution

at present for HJB equation, which is a nonlinear partial differential equation. Therefore,

finding a value function that satisfies the HJB equation for a nonlinear system is quite chal-

lenging. Avoiding solving the HJB directly, inverse optimality is an alternative method

to solve the nonlinear optimal control problem. The inverseoptimal problem is differ-

ent from the direct one in the point that the latter seeks a controller which minimizes a

given cost, while the former is concerned with finding a controller which minimizes some

meaningful cost dependent on the controller [69]. Using inverse optimality approach, it

can be shown that a controlleru(x) is inverse optimal with respect to a cost functional

J(x,u) = lim
t→∞

{∫ t

0

(
l(x)+uTR(x)u

)}
(1.1)

wherex andu are the state vector and the control input vector, respectively, l(x) is positive

definite and radially unbounded, andR(x) is a positive definite matrix for allx. Inverse

optimal control method not only finds a stabilizing control law, but also determinesl(x)

andR(x) yielding a meaningful cost function. Therefore, the inverse optimal problem is

easier than the direct one in whichl(x) andR(x) are given, and also where one has to

solve an HJI partial differential equation.

Optimal control problems and inverse optimality have been studied in the sixties
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focusing mostly on linear quadratic problems driven by aerospace applications (see for

example [70] and [71]). Nonlinear optimal control problemsbased on the concept of the

inverse optimality have been revisited by several researchers such as [72]-[75] and [21].

In terms of applications, [72] presents an inverse optimal control approach for regulation

of a rotating rigid spacecraft by solving a HJB equation. Theresulting design includes a

penalty on the angular velocity, orientation, and the control torque, where the weight in

the penalty on the control depends on the current state and decreases for states away from

the origin. Inverse optimal stabilization of a class of nonlinear systems is also investigated

in [73] resulting in a controller optimal with respect to a meaningful cost function. The

main drawback of the inverse optimality approach used in [72] and [73] is that the one

requires the knowledge of a control Lyapunov function and a stabilizing control law of a

particular form.

Focusing on the inverse optimal control of nonlinear systems with a structural un-

certainty, [76] derives a Lyapunov-based theorem for a globally asymptotic stability which

yields a less conservative condition for the inverse optimal control problem. In [74] an

optimal feedback controller for bilinear systems is obtained that minimizes a quadratic

cost function. The proposed inverse optimal control designis also applied to the problem

of the stabilization of an inverted pendulum on a cart with horizontal and vertical move-

ment, where the control performance of the system can be easily tuned using the proposed

quadratic cost function.

Using a control Lyapunov function (CLF) and Sontag’s formula, inverse optimal

tracking control is experimentally applied to a nonholonomic mobile robots with two ac-

tuated wheels and an autonomous surveillance aerial blimp in [69] and [77], respectively.

The proposed optimal controllers minimizing a meaningful cost function guarantee the

robustness of these systems with respect to large uncertainties. In [78] an inverse op-

timal adaptive controller, based on a Lyapunov analysis, isdeveloped to asymptotically

8



minimize a meaningful performance index. Using the resulting adaptive controller based

on inverse optimality, the generalized coordinates of a nonlinear Euler-Lagrange system

asymptotically track a desired time-varying trajectory despite LP (linear in the parame-

ters) uncertainty linear in the dynamics. A Lyapunov analysis is also provided to derive

a cost functional with a positive integrand that penalizes the states and control, and has a

terminal penalty on the parameter estimation error.

A sufficient condition for an optimal control problem is to find the solution to a

Hamilton-Jacobi-Bellman (HJB) equation [79], which is a nonlinear partial differential

equation and difficult to solve analytically. Therefore, Optimal control problems are gen-

erally solved by numerical techniques. However, there is anexplicit solution for a given

general format of the control input as a derivative of the value function if the dynamic

model is affine and the cost is quadratic in the input. This idea was first used in [80] to

solve a class of second order problems, and will then be extended to a class of third order

optimal problems in chapter 4.

The experimental motivation of this theoretical work comesfrom the dynamics

model of a Wheeled Mobile Robot (WMR) on thex− y plane for path following of the

straight liney= 0 at a constant velocity, as shown inFig.2.4. Given this nonlinear system,

our interest is to simultaneously search for a general form of a control input, in terms of

the states and the nonlinear termsin(ψ), and a functionQ(x) that together satisfy the

HJB equation. Therefore, it is assumed that the cost function is the sum of a quadratic

term in the input and the states and an unknown termQ(x) that should be determined.

Moreover, the resulting value function will also be a local Lyapunov function that proves

the asymptotic stability of the WMR dynamic model. This path following problem and

its experimental setup is discussed in more detail in Chapter2. The proposed method

in this paper is more general for a class of third order nonlinear systems, where the path

following problem is an special case of our optimal control.
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Departing from previous methods, the proposed method in this thesis can directly

find a solution for the control input without the computationof a value function (see

Chapter 4 for more detail). The value function can however also be obtained based on

the control input. Furthermore, a Lyapunov function can be constructed for a subclass of

optimal control problems, yielding a proof certificate for stability. The proposed method-

ology will then be applied to the dynamic model of a Wheeled Mobile Robot (WMR) on

thex−y plane for path following of the straight liney= 0 at a constant velocity.

1.2 Contributions of the Thesis

The main contributions of this thesis are the following:

• To develop nonsingular rigid-body attitude control laws using a convex formula-

tion, and implement them in an experimental set up. The thesis proposes and

compares, both numerically and experimentally, two Sum of Squares (SoS)-based

controller design approaches for large attitude recovery of rigid bodies. The pro-

posed quaternion-based controllers are also implemented in a Quanser helicopter,

and compared to the polynomial controllers and a PID controller experimentally.

• To analytically solve the Hamilton-Jacobi-Bellman equation for a class of third

order nonlinear optimal control problems for which the dynamics are affine and

the cost is quadratic in the input. The proposed solution method is based on the

notion of inverse optimality with a variable part of the costto be determined in

the solution. One special advantage of the proposed method is that the solution is

directly obtained for the control input without the computation of a value function

first. The value function can however also be obtained based on the control input.

Furthermore, a Lyapunov function can be constructed for a subclass of optimal
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Figure 1.1: Structure of the Thesis

control problems, yielding a proof certificate for stability. The proposed approach

is also implemented in a Wheeled Mobile Robot (WMR) for path following of a

line to experimentally verify the effectiveness of this methodology.

1.3 Structure of the Thesis

The thesis is structured as shown inFig.1.1. In Chapter 2, a brief review of the kinematics

equations of motion for a rigid body is given. The experimental setup for 1-DOF model

of a Quanser helicopter and path following of a Wheeled MobileRobot (WMR) are also

11



explained. Moreover, the dynamic model for path following of the straight liney = 0

of a WMR on a plane is stated in this chapter. Next, the rigid-body attitude problem

is first parameterized in terms of quaternions. Then polynomial controllers based on

an SoS Lyapunov function, an SOS density function and a backstepping controller are

proposed to make the closed-loop system asymptotically stable. A practical application

implemented in a Quanser helicopter is also presented to verify the numerical simulation

results in Chapter 3. Subsequently, using an inverse optimality method a class of third

order nonlinear optimal control problems is analytically solved in Chapter 4. A practical

application to a WMR path following problem is also presentedto experimentally verify

the effectiveness of the proposed methodology. Finally, conclusions are drawn in Chapter

5. Chapter 4, and part of Chapter 2 are mainly based on the following paper:

• Behnam Gholitabar Omrani, Camille Alain Rabbath, and Luis Rodrigues, ”An In-

verse Optimality Method to Solve a Class of Third Order Optimal Control Prob-

lems”, accepted to be published in theProceedings of the 49th IEEE Conference on

Decision and Control, Atlanta, Georgia, December 15-17, 2010
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Chapter 2

Preliminaries and Experimental Setup

This chapter includes two main sections. In the first section,kinematics equations of mo-

tion for a rigid body is described using different common representations such as quater-

nions, Modified Rodrigues Parameter (MRP) and Euler angles. The attitude dynamics and

experimental set up of a 1-DOF rigid body for Quanser helicopter is then described. In

the second section, the dynamic model for path following problem of a Wheeled Mobile

Robot (WMR) is given. A system identification and an experimental setup of a Wheeled

Mobile Robot (WMR) is also presented.

2.1 Attitude Kinematics and Dynamics of a Rigid Body

In this section, reference frames are first defined, and then kinematics equations of motion

for a rigid body using different representations are brieflydiscussed. Moreover, a brief re-

view of the gradient and the divergence properties is given,which will be used throughout

this thesis.
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Figure 2.1: Illustration of the orbitalFo and inertialFi reference frames (adopted from
[66])

2.1.1 Reference Frames

Since attitude dynamics refers to the orientation of one reference frame with respect to

another due to external forces and torques, the definition ofreference frames, or coordi-

nate systems, are important. To fully describe an attitude,a set of reference frames are

defined here. The most common reference frames used for describing the attitude of a

rigid body, specially satellites, are the inertial frame, the orbital frame, the body frame,

and the principal axis frame [66].

Inertial Frame

An inertial frame is a non-rotating reference frame in a fixedspace. A common

representation of an inertial frame is Earth-Centered Inertial (ECI) frame, in contrast to

the Earth-centered Earth-fixed (ECEF) frames which rotate inan inertial space in order

14



to remain fixed with respect to the surface of the Earth. ECI frame is illustrated inFig.

(2.1). Theîx axis points from the center of the Earth to the vernal equinox, the îz axis is

aligned with the Earth’s rotation axis and perpendicular tothe equatorial plane, and̂iy is

in the equatorial plane completing a right-hand triad. The hats also denote unit vectors.

Orbital Frame

The orbital frame is a non-inertial frame attached to the center of mass of the rigid

body, and moves with the body in orbit. The motion of the framedepends only on the

orbit and is not effected by body rotations. As illustrated in Fig. 2.1, theÔz axis points the

direction from the spacecraft to the Earth (nadir direction), Ôy is the direction opposite

to the orbit normal, and̂Oy completes the orthonormal triad tôOz and Ôx. Note that

this frame is non-inertial because of orbital accelerationand the rotation of the reference

frame.

Body Frame

A body frame has its origin at the center of a rigid body. Sincethis frame is fixed

to the rigid body, it is a non-inertial frame. Body frames are useful for relating objects on

a rigid body relative to one another. It also describes how a rigid body is oriented with

respect to an external frame (such as the orbital or inertialframes).

Principal Axis

This frame is a specific body-fixed reference frame with the axes aligned such that

the moment of inertia matrix is diagonal. These moments of inertia are called the prin-

cipal moments of inertia. In dynamic modeling, it is useful to describe the system in the

principal axes frame.
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Figure 2.2: Euler Angles (rollφ , pitchθ , and yawψ) [62]

2.1.2 Attitude Kinematics

There are several common ways to describe the attitude of a rigid body like Direction

cosine matrix, Euler axis and angle, Modified Rodrigues Parameter (MRP), Euler angles,

and quaternions [65]. The three commonly used representations used in a rigid body

attitude control is briefly discussed here: Euler Angles, Modified Rodrigues Parameters,

and Quaternions.

Euler Angles

The Euler angle rotation is defined as successive angular rotations about the three

orthogonal frame axes. The first rotation is about any axis. The second rotation is about

either of two axes not used for the first rotation, and the lastrotation is about either of two

axes not used for the second rotation. There are totally 12 sets of order combination by

which the rotation can be performed. However, It is common todefine the Euler roll angle
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(φ ) about thex body axis, the pitch angle (θ ) about they body axis, and the yaw angle (ψ)

about thez body axis. Note that the transformation from one reference frame to another

is non-unique, and also that any other definition is acceptable as long as it follows the

correct order of the rotations. Suppose we will perform the orientation of a body frame

Fb relative to a fixed inertial frameFi using the transformationψ → θ → φ successively

about thez, y, andx body axes, as shown inFig. 2.2. The corresponding principal rotation

matrices are expressed in the following matrix form [65]

Rx(φ)




1 0 0

0 Cφ Sφ

0 −Sφ Cφ



,Ry(θ)




Cθ 0 −Sθ

0 1 0

Sθ 0 Cθ



,Rz(ψ)




Cψ Sψ 0

−Sψ Cψ 0

0 0 1




(2.1)

whereSα = Sin(α), andCα =Cos(α). For this transformation, the rotation matrix will

be described by




xb

yb

zb



=
[
Rψ

][
Rθ

][
Rφ

]




X

Y

Z



=
[
Rψθφ

]




X

Y

Z




(2.2)

where

[
Rψθφ

]
=




CθCψ CθSψ −Sθ

−CφSψ +SφSθCψ CφCψ +SφSθSψ SφCθ

SφSψ +CφSθCψ −SφCψ +CφSθSψ CφCθ




(2.3)

The roll-pitch-yaw derivatives are then transformed to thebody angular rateswx,

wy, andwz by the following equation



wx

wy

wz



=
[
Rφ

][
Rθ

][
Rψ

]




0

0

ψ̇



+
[
Rφ

][
Rθ

]




0

θ̇

0



+
[
Rφ

]




φ̇

0

0



. (2.4)
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Finally, the attitude kinematics of a rigid body using Eulerangles for the roll-pitch-

yaw (ψ → θ → φ ) transformation is given by



φ̇

θ̇

ψ̇



=




1 sin(φ)tan(θ) cos(φ)tan(θ)

0 cos(φ) −sin(φ)

0 sin(φ)sec(θ) cos(φ)sec(θ)







wx

wy

wz



. (2.5)

As seen in (2.5) using Euler angles for the representation ofattitude kinematics results

in singularities atθ = ±90◦, making the Euler angles impractical and inconvenient for

describing large angle rotations.

Quaternions

The attitude determination of rigid bodies by use of the quaternion parameters has

several advantages over the use of other representations. Instead of trigonometric func-

tions, quaternions uses algebraic relations to determine the elements of the rotation ma-

trix. Moreover, the computations are faster and there are nosingularities as may occur in

the MRP representation or Euler formulation. Fewer multiplications are also required for

propagating successive incremental relations [58]. Thus,using quaternions has a better

numerical properties [84]. However, a disadvantage is thatone of the four elements is

redundant, and that in general there is no obvious physical interpretation of the rotation

geometry ([64] and [59]) (see subsection 3.3.1 for more details).

A quaternion is a scalar plus a vector, totaling four elements. While the vector (with

three elements) defines an axis of the rotation, the scalar element defines the magnitude

of the rotation angle about the axis of the rotation. The formulation is based on Euler’s

theorem which states that any rotation of a body (or coordinate system) with respect to

another can be described by a single rotation through some angle about single fixed axis

[59]. The four-element quaternion set, q, can then be determined from the Euler axis and

angle,(−→e ,λ ), whereλ denotes the principal angle, and−→e = (e1,e2,e3)
T denotes the
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principal unit vector corresponding to Euler’s theorem [64]. The quaternion vector

q=
[
qo q̃T

]T
=
[
qo q1 q2 q3

]T
(2.6)

can then be written as [64]

q̃=−→e sin(
λ
2
) , qo = cos(

λ
2
), (2.7)

where the condition

Ω = |q|= q2
o+q2

1+q2
2+q2

3 = 1

is automatically satisfied, and can be used for numerical control of machine computations.

The inverse rotation is also given by the complex conjugate of q as

q̄=
[
qo −q̃T

]T
. (2.8)

Note that ifq represents a given attitude of a rigid body, then−q represents the same atti-

tude. Therefore, althoughq 6=−q mathematically, they both represent the same physical

attitude [24]. The kinematics equation in terms of quaternions can then be expressed as

[66]

q̇=
1
2


 −q̃T

q∗+qoI3×3


W (2.9)

q∗ =




0 −q3 q2

q3 0 −q1

−q2 q1 0




(2.10)

whereW = (Wx,Wy,Wz)
T is the vector of the angular velocities of the rigid body. The

kinematics equation of the attitude recovery problem in terms of quaternions is finally

obtained as

q̇= Γ(q)W (2.11)
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where

Γ(q) =
1
2




−q1 −q2 −q3

qo −q3 q2

q3 qo −q1

−q2 q1 qo




. (2.12)

Note that the matrixΓ(q) is linear, while the polynomial matrix entries using MRP

representationΩ(σ) (2.17) are nonlinear in a quadratic form. This indicates that quater-

nions requires fewer computational operations rather thanMRP. Moreover, to convert the

Euler angles to quaternions the following conversion algorithm is used




q0

q1

q2

q3




=




cos(φ/2)cos(θ/2)cos(ψ/2)+sin(φ/2)sin(θ/2)sin(ψ/2)

sin(φ/2)cos(θ/2)cos(ψ/2)−cos(φ/2)sin(θ/2)sin(ψ/2)

cos(φ/2)sin(θ/2)cos(ψ/2)+sin(φ/2)cos(θ/2)sin(ψ/2)

cos(φ/2)cos(θ/2)sin(ψ/2)−sin(φ/2)sin(θ/2)sin(ψ/2)




. (2.13)

Modified Rodrigues Parameters

Modified Rodrigues Parameters (MRP) is the most recent method of describing a

rigid body attitude. MRP is also not a unique representation to the transformation. The

MRP vector (σ ) is defined by using the principal rotation elements as

σ = ê tan(
Φ
4
). (2.14)

MRP can also be defined in terms of quaternions elements as

σ =




q1/(1+qo)

q2/(1+qo)

q3/(1+qo)



. (2.15)

As seen in 2.15 MRP has geometry singularities atΦ = ±360, which corresponds to

qo = −1. Thus, for any rotation more than a complete revolution MRP representation
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encounters a singularity. The attitude kinematics of a rigid body in terms of the MRP can

be expressed as

σ̇ = Ω(σ)w (2.16)

wherew= (wx,wy,wz)
T is the vector of the angular velocities of the rigid body about the

principal body axes,

Ω(σ) =
1
4




1−σ2+2σ2
1 2(σ1σ2−σ3) 2(σ1σ3+σ2)

2(σ2σ1+σ3) 1−σ2+2σ2
2 2(σ2σ3−σ1)

2(σ3σ1−σ2) 2(σ3σ2+σ1) 1−σ2+2σ2
3



, (2.17)

andσ2 = σ2
1 +σ2

2 +σ2
3 . Note also that the polynomial matrix entries forΩ(σ) (2.17)

is quadratic with cross terms, which numerically poses morecomputational challenges

rather than a linear matrix. Three different methods of attitude kinematics representations

have been discussed in this subsection. Now the attitude dynamics and experimental set

up of a 1-DOF rigid body for Quanser helicopter is described in the next subsection.

2.1.3 Quanser Helicopter

The Quanser helicopter [68] is shown inFig.2.3. Using this experimental set up, the ob-

jective is to implement the SoS controller synthesis proposed in Chapter 3 for stabilizing

the pitch angle of the Quanser helicopter. The quaternion-based attitude parameterization

for a one Degree of Freedom (1-DOF) rigid body is the simplified version of (3.2), where

q1 = q3 =Wx =Wz = 0, given by




q̇o

q̇2

Ẇy



=




0 0 −q2
2

0 0 qo
2

0 0 0







qo

q2

Wy



+




0

0

1
Iy




My, (2.18)

whereIy for the Quanser helicopter is 0.028(kg.m2). This set up is used to both apply

21



Figure 2.3: Quanser Helicopter of HYCONS Laboratory in Concordia University [68]

and compare the proposed controllers in Chapter 3. Moreover,It was shown in [68] that

the encoder, which measures the pitch angle, works with the stated accuracy of±0.0293

degrees. A filter has also been designed by Quanser Inc. to remove any noisy inputs and

outputs. See [68] for more detail about the Quanser helicopter setup.

2.1.4 Mathematical Preliminaries

This subsection briefly reviews mathematical preliminaries which will be used throughout

this thesis. The gradient (▽V) and the divergence (▽. f ) are defined as follows.

▽V =
[ ∂V

∂x1
, · · · ,

∂V
∂xn

]
, V(x) : R

n → R (2.19)

▽. f =
∂ f1
∂x1

+ · · · +
∂ fn
∂xn

, f (x) : R
n → R

n (2.20)
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These two vector mathematical operators also have some basic properties. The

divergence is a linear operator, i.e

▽.
(
aA+ bB

)
= a▽.A+b▽.B (2.21)

where(a,b) and(A,B) are real numbers and vector fields, respectively. The divergence

operator also satisfies the product rule as follows

▽.
(
ϕ f

)
= ▽

(
ϕ
)
. f +ϕ

(
▽. f

)
(2.22)

whereϕ and f are a scalar valued function and a column vector field, respectively. As

one of the gradient properties we have

▽

(
ϕα)= αϕα−1

▽(ϕ) (2.23)

whereα is a real number. Moreover, giveny= F(x) written explicitly as

y=
[
F1(x) F2(x) · · · Fm(x)

]T
(2.24)

where
{

F(x) : Rn −→ Rm
}

, the jacobian matrix is defined by

J(x1, · · · ,xn) =




∂F1
∂x1

· · · ∂F1
∂xn

...
. . .

...

∂Fm
∂x1

· · · ∂Fm
∂xn




m×n

. (2.25)

The symbol▽2 f (x) denotes the Hessian matrix for a scalar valued functionf (x) of

a state vectorx∈ Rn, defined as follows

▽
2 f (x) =

[
∂ 2 f (x)
∂xi∂x j

]
=




∂ 2 f (x)
∂x2

1

∂ 2 f (x)
∂x1∂x2

· · · ∂ 2 f (x)
∂x1∂xn

∂ 2 f (x)
∂x2∂x1

∂ 2 f (x)
∂x2

2
· · · ∂ 2 f (x)

∂x2∂xn

...
...

. ..
...

∂ 2 f (x)
∂xn∂x1

∂ 2 f (x)
∂xn∂x2

· · · ∂ 2 f (x)
∂x2

n




n×n

. (2.26)

The function f (x) is convex if▽2 f (x) is a positive semidefinite matrix for every

x∈ Rn. Moreover, the functionf (x) is stictly convex if▽2 f (x) is positive definite. We

will use the above notation and properties throughout this thesis.
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Figure 2.4: Wheeled Mobile Robot (WMR)

2.2 Path Following Control Problem

Path following control problems are primarily concerned with the design of control laws

that drive an object, such as robot arm, wheeled mobile robot, ship, aircraft, to reach and

follow a specified geometric path, where the time is not important [26]. Note also that

Path following is more flexible than reference-tracking, where the vehicle is required to

follow a reference signal which is a given function of time. In path following control

problem smoother convergence to the path is achieved and thecontrol signals are less

likely pushed into saturation, when compared to trajectory-tracking [27]. Thus, the path

following control problem is defined as follows.

Definition 2.2.1. The control objective of the path following problem is to force the output

to follow a geometric path without a timing law assigned to it.Therefore, the vehicle is

required to converge to and follow a certain path that is specified.
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Consider now the wheeled mobile robot (WMR) shown inFig.2.4, where the center

of gravity (C.G.) of the WMR coincides with the origin of the body frame, located midway

between the two driving wheels. The heading angle of the WMR isalso given byψ. The

objective is to design a controller for the WMR to follow the straight line y = 0 at a

constant velocity. The dynamic model for path following of the straight liney = 0 of a

WMR on theX−Y plane is represented as follows

ẏ(t) =V sin(ψ)

ψ̇(t) = ω

ω̇(t) =
1
Iz

u

x(0) = x0, u∈ U

(2.27)

whereV is the constant velocity of the WMR, andIz is the moment of inertia of

the WMR for rotation around thez axis. The control inputu is also the torque generated

about the z-axis. Therefore, the state vector

x=
[
x1 x2 x3

]T
=
[
y ψ w

]T
(2.28)

contains the positiony, the heading angleψ, and the angular velocitẏψ, respectively.

2.2.1 Wheeled Mobile Robot (WMR) Experimental Setup

Fig.2.5 shows the experimental Wheeled Mobile Robot (WMR) in HYCONS lab, Con-

cordia University. The experimental set up includes a camera (Fig.2.9), an Inertial Mea-

surement Unit (IMU) 3DM-GX1 (Fig.2.8), Xbee wireless communication modules [81],

and one Arduino Atmega328 board [82] as well as a WMR and a server computer. The

experimental structure of wheeled mobile robot is also shown in Fig.2.6, which illus-

trate how each part of set up communicate with the rest of the system. The camera is
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Figure 2.5: HYCONS Wheeled Mobile Robot

directly connected to the computer giving the positionsx andy of the WMR after digital

image processing [83]. The other two states including the heading angleψ and the an-

gular velocityω are measured by the IMU with frequency (50Hz), and are then sent to

the server wirelessly using the Xbee modules. The server computer processes all the data

usingMATLABand aMEX file (written inC++), and then sends the resulting control

input 4.51 to the Arduino board (Fig.2.7) installed on the WMR and connected to the ser-

vos. Moreover, to power the system including servos, Arduino board, and Xbee wireless

communication, a rechargeable Lithium-ion polymer (lipo)battery is used (Fig.2.9). It

is also worthwhile to mention that, due to hardware and wireless communication limita-

tions, the maximum frequency that the total system can handle is 50Hz. The experimental

results indicates that using this sampling rate of data is quite satisfying to implement the

proposed controllers on WMR set up.

It is also assumed that the forward velocityV = V1+V2
2 = constant, whereV1 and

V2 are the velocity of the left wheel and the right wheel, respectively. Moreover, due to

saturation (as seen inTable2.1), the control input range is 600(PWM) changing between

±300 (PWM), where+300 (PWM) and−300 (PWM) indicate the maximum and the
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Figure 2.6: Experimental structure of Wheeled Mobile Robot

minimum possible turning speed, respectively. Therefore,if there is no control input

(u = 0), the WMR follows the liney = 0. Moreover,Table2.1 andFig.2.10 show the

system identification for the WMR that we use to implement the optimal control problem

defined in section 4. The forward velocity of our WMR is also 0.083 (m/s).
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Figure 2.7: Two Xbee wireless communication modules connected to the server computer
(left) and Arduino Atmega328 board connected to Xbee modules (right)

 

Figure 2.8: Inertial Measurement Unit (IMU) 3DM-GX1 (left)and Xbee wireless com-
munication modules installed on IMU (right)

Table 2.1: WMR Identification Table

Control Input u (PWM) Period T (sec) Angular Velocityψ (2π
T )

50 12.5 0.5024
100 7 0.8971
150 5.5 1.1418
200 4.5 1.3959
250 4 1.57
300 3.5 1.7943

28



Figure 2.9: Security camera (left) and rechargeable lipo battery (right)
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Figure 2.10: WMR Identification
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Chapter 3

Large Attitude Control of Rigid Bodies

Using Quaternions

3.1 Introduction

The main contribution of this chapter is to develop nonsingular rigid-body attitude control

laws using a convex formulation, and implement them in an experimental set up. In work,

Gollu et al. in [54] solved the attitude control problem with singularity, where a Mod-

ified Rodrigues Parameter(MRP)-based polynomial controllerhas been designed. The

objective of this chapter is to tackle the same attitude problem without singularity, using

a quaternion-based attitude model. To solve the attitude recovery problem without singu-

larity, this chapter proposes not only Sum of Squares (SoS) Lyapunov based control law

(the same method proposed by Golluet al. in [54]) but also an SOS density function based

controller. First and foremost, the key idea that enables usto use SoS technique in solving

the attitude problem is that the rigid body model using either quaternions or MRP can be

represented by polynomial vector fields, which was first usedin [54]. Thus, the rigid-body

attitude model is first parameterized in terms of quaternions, and then quaternion-based
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polynomial controllers using an SOS Lyapunov function and density function are pro-

posed to make the closed-loop system asymptotically stable. A polynomial controller

based on backstepping is also developed. All these methods are then compared in a nu-

merical simulation for a satellite with given specific parameters. Moreover, a practical

application implemented in a Quanser helicopter is presented to verify effectiveness of

the proposed methodology. The proposed SoS Lyapunov based control using both quater-

nion and MRP representations is applied to a Quanser Helicopter, and then is compared

with a PID controller.

3.2 Background

Two of the most recent approaches in nonlinear control are Sum of Squares (SoS) Lya-

punov based controllers [56] and SOS density function basedcontrollers [57]. For a gen-

eral nonlinear system ˙x= f (x)+g(x)u, where f (x) andg(x) are polynomials, searching

for a control Lyapunov function and a controller simultaneously is not a convex prob-

lem. However, using a so-called density functionρ(x) [57] leads to a convex formulation.

Moreover, for a nonlinear system in the form of ˙x = f (x)x+ g(x)u, an SoS Lyapunov

function [56] can also be used to find a polynomial controllersatisfying conditions of

Lyapunov’s second stability theorem [20]. These control methods use the Sum of Squares

(SoS) decomposition technique to find the required control input for some specific non-

linear systems. First and foremost, the key idea that enables us to use SoS in solving the

attitude recovery problem is that the rigid body model usingeither quaternions or Modi-

fied Rodrigues Parameters (MRP) can be represented by polynomial vector fields, which

was first used in [54]. Using an SoS Lyapunov function, Golluet al. in [54] solved the

attitude control problem with singularity, where a MRP-based polynomial controller has
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been designed. The objective of this chapter is to tackle thesame attitude problem with-

out singularity, using a quaternion-based attitude model.To solve the attitude recovery

problem without singularity, this chapter proposes not only the same method of [54] but

also an SOS density function-based controller first proposed by Rantzeret al. in [57]. A

quaternion-based controller using backstepping for MIMO nonlinear systems is also de-

signed. The proposed methods using both MRP and quaternion representation are then

compared in a numerical simulation implemented in a Quanserhelicopter. To the best of

the author’s knowledge, this is the first time that an SoS-based polynomial controller has

been implemented. Here we are interested in quaternions rather than MRPs becausei) the

latter has a geometric singularity while the former one has anonsingular representation;

ii) the polynomial matrix entries using quaternions are linearwhile they are nonlinear for

the MRP representation.

The remainder of this chapter is organized as follows. Section 3.3 presents a dis-

cussion of why we are interested in quaternions rather than in a MRP representation, and

then the state space model of a rigid body in terms of quaternions is given in the general

nonlinear form ˙x = f (x)+ g(x)u. The control objective and a brief review of the Sum

of Squares (SoS) Decomposition Method are also given in Section 3.3. In section 3.4,

quaternion-based polynomial controllers using an SoS Lyapunov function, an SoS den-

sity function, and backstepping are developed to asymptotically stabilize the closed-loop

system. A numerical simulation of a satellite as well as an implementation in the Quanser

Helicopter will also be presented in section 3.5. Finally, asummary is given.

3.3 Preliminaries on Attitude Control Problem

This section first presents a discussion of why we are interested in quaternions rather than

MRP representation, and then the quaternion-based attitudecontrol problem is stated. A
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brief introduction to the Sum of Squares (SoS) Decomposition Method is also given in

this section.

3.3.1 Why Quaternions?

There are several common ways to represent the attitude of a rigid body such as direction

cosine matrix, Euler axis and angle, MRP, Euler angles, and quaternions. However, the

attitude determination of rigid bodies using the quaternion parameterization has several

advantages over the use of other representations. First andforemost, the key idea that

enables us to use SoS in solving the attitude problem is that the rigid body model using

either quaternions or MRP can be represented by polynomial vector fields. Thus, since in

this chapter an SoS approach is explored, only quaternions and MRP representations are

considered. We are interested in quaternions rather than MRPbecause of the following

advantages:

1. While quaternions avoid singularity, any three-parameter attitude representation

like MRP has always a singularity [64], which implies that they should be avoided

in situations where large-angle recovery maneuvers are present. From a practical

point of view, singularity avoidance during rigid body missions, specifically for an

attitude maneuver of a satellite, is critical, and thus quaternions are widely used to

determine the attitude [65].

2. Quaternions have a better numerical properties [84]. Thepolynomial matrix entries

using quaternions are of first order (linear) while they are nonlinear in a quadratic

form for the MRP representation, meaning that using quaternions requires fewer

computational operations when implemented in a microprocessor.
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3. It will be shown that using SoS polynomial controllers based on the quaternion pa-

rameterization stabilizes the closed-loop system in less settling time with smaller

overshoot rather than using MRP representation-based controllers, both numeri-

cally and experimentally (refer to 3.5). Note that these results are based on the

particular simulations of this chapter with respect to different initial conditions.

3.3.2 Attitude Control Problem Definition

As discussed in section 3.3.1, the quaternion representation of rigid bodies has several

advantages over the use of other polynomial representations. Therefore, a quaternion-

based attitude problem is presented here. The kinematics equation of the attitude recovery

problem in terms of quaternions has been obtained in equation (2.11). Assuming X, Y,

and Z are the principal axes of inertia, the attitude dynamics derived by Euler’s moment

equations [65] can be expressed in the form of ˙w= fa+gau as



ẇx

ẇy

ẇz



=




(
Iy−Iz

Ix
)wywz

( Iz−Ix
Iy

)wzwx

(
Ix−Iy

Iz
)wxwy



+




1
Ix

0 0

0 1
Iy

0

0 0 1
Iz







Mx

My

Mz



, (3.1)

whereu= (Mx,My,Mz)
T is the vector of the control torques acting on the rigid body,and

the principal moments of inertiaIx, Iy, and Iz are the components of the inertia tensor

I = diag(Ix, Iy, Iz). Combining dynamics and kinematics equations (2.11) and (3.1), the

state space model of the rigid body is now represented in the general nonlinear form of
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ẋ= f (x)+guas 


ẇx

ẇy

ẇz

q̇o

q̇1

q̇2

q̇3




=




f1

f2

f3

f4

f5

f6

f7




+




1
Ix

0 0

0 1
Iy

0

0 0 1
Iz

0 0 0

0 0 0

0 0 0

0 0 0







Mx

My

Mz



, (3.2)

where

f1 =
[ Iy− Iz

Ix

]
wywz

f2 =
[ Iz− Ix

Iy

]
wzwx

f3 =
[ Ix− Iy

Iz

]
wxwy

f4 =
1
2

[
−q1wx−q2wy−q3wz

]

f5 =
1
2

[
q0wx−q3wy+q2wz

]

f6 =
1
2

[
q3wx+qowy−q1wz

]

f7 =
1
2

[
−q2wx+q1wy+qowz

]

and the state vectorx= (wx,wy,wz,qo,q1,q2,q3)
T contains the angular velocities, and the

quaternions. The control input vectoru= (Mx,My,Mz)
T contains the required moments

generated about axesx, y, andz, respectively. Moreover, we assume that the desired set-

point for the system (3.2) is where the angular velocitieswd = (wx,wy,wz)
T and Euler an-

glesθd =(Roll,Pitch,Yaw)T are zero. Using the expression 2.13, the pointθd =(0,0,0)T

equivalently transforms toqd = (1,0,0,0)T . Therefore, through this chapter the desired

set-point is assumed to bexd = (0,0,0,1,0,0,0)T . The attitude control problem to be

solved is now stated as follows.
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Problem Statement 3.3.1.Given the attitude dynamics of the rigid body (3.2), design

a nonlinear attitude controller to asymptotically stabilize the closed-loop system around

the desired set-point with respect to any initial condition.

The next section will give a brief review of the sum of squaresdecomposition

method.

3.3.3 Sum of Squares (SoS) Decomposition Method

As proposed by Parrilo [49], in the case of polynomial functions a tractable sufficient

condition of positive definiteness is the existence of a sum of squares decomposition.

In fact, the condition thatP(x) is a Sum of Squares is computationally tractable while

non-negativity is not. A polynomialP(x),x ∈ RN, is a sum of squares if there exists

polynomialsf1(x), ..., fm(x) such that [48]

P(x) =
m

∑
i=1

f 2
i (x). (3.3)

Moreover, being SoS is equivalent to the existence of a positive semidefinite matrixQ,

and a properly chosen vector of monomialsZ(x) such that [48]

P(x) = ZT(x)QZ(x). (3.4)

Note also thatP(x) being SoS implies thatP(x) ≥ 0, but the converse is not generally

correct, i.e. if a polynomial functionP(x) is not SoS, it does not necessarily imply the

negative definiteness ofP(x). Using SoS decomposition method, for a given polynomials

P(x) andϕ(x), whereϕ(x) is positive definite, the following expression

P(x)−ϕ(x) is a SoS (3.5)

guarantees the positive definiteness ofP(x). The proof is straightforward as follows. The

expressionP(x)−ϕ(x) being SoS implies thatP(x) ≥ ϕ(x). Therefore, sinceϕ(x) > 0,
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the polynomialP(x) is positive definite. Using SoS decomposition method, a extension

of Lyapunov’s stability theorem for handling systems with equalities [48], which follows

from the application of the Positivstellensatz Theorem, isnow presented. Consider a

general nonlinear system

ẋ= f (x,u) (3.6)

with the following equalities

Ωi = 0, for i = 1, · · · ,N (3.7)

wherex∈Rn andu∈Rm are the states and the control inputs of the system, respectively.

It is also assumedf (0,0) = 0.The following theorem, which is the simplified version of a

theorem from [48], can be used to prove that the above system is asymptotically stable.

Proposition 3.3.1. [48] Suppose that for the above system there exist polynomial func-

tions V(x), a(x), and a positive definite functionϕ(x) such that

V(x)−ϕ(x) is SoS (3.8)

−
∂V
∂x

f (x,u)+
n

∑
i=0

aiΩi −ϕ(x) is SoS. (3.9)

Then, the origin is asymptotically stable.

Proof. See [48].

To convert the SoS decomposition problem to the corresponding Semidefinite Pro-

gram (SDP) formulation, a freely-available MATLAB toolbox, the software SOSTOOLS

[50] has been developed. The above definitions are now used tosolve the attitude control

problem.
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3.4 Attitude Control Problem Solution

The objective of this section is to propose three different methods to solve the attitude

control problem 3.3.1, and to compare them. These methods include SOS Lyapunov

based control, SOS density function based control, and backstepping. Thus, in this sec-

tion quaternion-based polynomial controllers using an SOSLyapunov function and an

SOS density function are proposed to make the closed-loop system asymptotically sta-

ble. A backstepping method for the MIMO nonlinear system is also developed. All these

methods are then compared in simulations and experiments.

3.4.1 SoS Lyapunov Based Control

The rigid body model (3.2) is parameterized as the followingstate dependent linear-like

form

ẋ= A(x)x+gu (3.10)

with

A(x) =




0 a12 0 0 0 0 0

0 0 a23 0 0 0 0

a31 0 0 0 0 0 0

−q1/2 −q2/2 −q3/2 0 0 0 0

qo/2 −q3/2 q2/2 0 0 0 0

q3/2 qo/2 −q1/2 0 0 0 0

−q2/2 q1/2 qo/2 0 0 0 0




, (3.11)

where

a12 =
[ Iy− Iz

Ix

]
Wz (3.12)

a23 =
[ Iz− Ix

Iy

]
Wx (3.13)
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a31 =
[ Ix− Iy

Iz

]
Wy . (3.14)

To design a controller using an SoS Lyapunov function, the polynomial vector fields

should have an equilibrium point at the origin [52], i.e. allstate variables should con-

verge to zero. Each state variable should, therefore, be shifted from its trim condition (or

desired set-point) to the origin. Let us denote this transformation by

x̂= x−x∗, (3.15)

wherex andx∗ denote the original state and the trim point of the original state, respec-

tively. Note that the derivatives of the new shifted variables are the same as the original

ones. Therefore, using the shifted state vector ˆx= (ŵx, ŵy, ŵz, q̂o, q̂1, q̂2, q̂3)
T , the dynamic

model becomes

˙̂x= f (x̂)+gu= A(x̂) x̂+gu, (3.16)

where the polynomial matrixA(x̂) is given by

A(x̂) =




0 a12 0 0 0 0 0

0 0 a23 0 0 0 0

a31 0 0 0 0 0 0

−q̂1/2 −q̂2/2 −q̂3/2 0 0 0 0

(q̂o+1)/2 −q̂3/2 q̂2/2 0 0 0 0

q̂3/2 (q̂o+1)/2 −q̂1/2 0 0 0 0

−q̂2/2 q̂1/2 (q̂o+1)/2 0 0 0 0




,

with the quaternion constraint

Ω = q̂2
o+ q̂2

1+ q̂2
2+ q̂2

3 = 1. (3.17)
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Note that, since the desired set-point isxd = (0,0,0,1,0,0,0), the only state which needs

to be shifted is related to the scalar components of the quaternionsqo. Therefore, expres-

sionsa12, a32, anda31 are the same as in (3.12), (3.13), and (3.14), respectively.For the

rigid body model (3.16), a Lyapunov-based controller will now be designed to asymptoti-

cally stabilize the closed-loop system. The objective is now to find a quaternion-based

state feedback controller for the rigid body nonlinear model (3.16) which guarantees

asymptotic stability. For this, the following theorem, which is the simplified version of a

theorem from [56], is stated.

Theorem 3.4.1. [56] Given A(x̂) and g for the system (3.16) with the quaternion con-

straint Ω (3.17) if one can find a symmetric matrix P and a polynomial matrix K(x̂) such

that ε2(x̂) is a sum of squares and

̥
T(P− ε1I)̥ is SoS (3.18)

−̥
T(PAT(x̂)+A(x̂)P+(gK(x̂))T +gK(x̂)+ ε2(x̂)I)̥+a(x)Ω−ϕ(x) is SoS(3.19)

whereε1 and a(x) are a constant and a polynomial multiplier, respectively, then the state

feedback controller which stabilizes the closed-loop system is given by

u(x̂) = K(x̂)P−1 x̂. (3.20)

Proof. It follows from the proof of [56] withP(x̂) = P, Z(x̂) = x̂, andM = I . More-

over, since the quaternion-based model needs to satisfy theconstraintΩ (3.17), using

the proposition 3.3.1 a polynomial expressiona(x)Ω is also added to the SoS relaxation,

wherea(x) is a polynomial multiplier.

Therefore, given the nonlinear system (3.16) and solving the SoS problem in The-

orem 3.4.1, one can find the control input (3.20), which makesthe closed-loop system

asymptotically stable.

40



3.4.2 SoS Density Function-Based Control

It is well-known that for a general nonlinear system, the joint search for a controller and

a Lyapunov function is not convex. For the case of nonlinear systems with polynomial

or rational vector fields, a so-called density functionρ(x), which is also interpreted as a

dual to the Lyapunov function, has first been proposed in [57], and has been extended in

[52]-[53]. The main result of [52], which formulates the joint search as a convex problem

with constraints, is stated as follows.

Theorem 3.4.2. [52] Given the systeṁx = f (x)+g(x)u with a constraintΩ(x), where

( f +gu)(x) ∈C1(Rn,Rn), ( f +gu)(0) = 0, and a(x) is a polynomial multiplier, suppose

there exists a non-negative functionρ(x) ∈C1(Rn−{0},Rn), referred to as the density

function, such thatρ(x)( f +gu)(x)/|x| is integrable on{x∈Rn : |x| ≥ 1}, and for almost

all x

▽.
[
ρ( f +gu)

]
(x)+a(x)Ω(x)> 0. (3.21)

Then, for almost all initial states x(0), the trajectory x(t) exists for t∈ [0,∞) and tends

to zero as t−→ ∞. Moreover, if the closed-loop equilibrium x= 0 is stable, then the

conclusion remains valid even ifρ(x) takes negative values.

Proof. It follows from the proof of [57]. Moreover, since the systemis subject to a

constraintΩ(x), using the application of the Positivstellensatz Theorem apolynomial

a(x)Ω(x) is also added to the resulting expression, wherea(x) is a polynomial multi-

plier.

In order to jointly search for the density function and the controller, the following

parameterization is considered [57]

ρ(x) =
p(x)
t(x)s , u(x) =

w(x)
p(x)

(3.22)
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where p(x), t(x), andw(x) are polynomials,t(x) is positive, ands is chosen to satisfy

the integrability condition in Theorem 3.4.2. By plugging (3.22) in (3.21) and using the

gradient and the divergence properties in (2.22)-(2.23), the first component of condition

(3.21) is written as [57]

▽.
[
ρ( f +gu)

]
(x) = ▽.

[
1

t(x)s( f p+gw)(x)

]

= ▽

(
1

t(x)s

)
( f p+gw)(x)+

1
t(x)s▽.( f p+gw)(x)

=−
s

t(x)s+1▽
(
t(x)

)
( f p+gw)(x)+

1
t(x)s▽.( f p+gw)(x)

=
1

t(x)s+1

[
t(x)▽.( f p+gw)(x)−s▽

(
t(x)

)
.( f p+gw)(x)

]
> 0.

(3.23)

Sincet(x) is positive, we only need to satisfy the following inequality

t(x)▽.( f p+gw)(x)−s▽
(
t(x)

)
.( f p+gw)(x)> 0. (3.24)

Assuming thatf (x) and g(x) in the above equation are polynomials, using SoS

relaxation the inequality (3.21) is satisfied if

t(x)▽.( f p+gw)(x)−s▽
(
t(x)

)
.( f p+gw)(x)+a(x)Ω(x)−ϕ(x) is SoS (3.25)

whereϕ(x) is a positive definite polynomial function. Note also that since all state vari-

ables should converge to zero, each state variable should beshifted by the transformation

in (3.15). A good first candidate fort(x) is the Control Lyapunov Function (CLF) for the

linearized system

ẋ= Ax+Bu. (3.26)

Given linear dynamics(A,B), to find CLF we consider the following candidate Lyapunov

function

t(x) =V(x) = xTRx, (3.27)
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wherex is the state vector, andR is a symmetric positive definite matrix which needs to be

obtained. Obviously, sinceR> 0, V(x) is positive definite for allx. However, to guarantee

that the closed-loop system is asymptotically stable,V̇(x) needs to be negative definite.

Now assumingQ= R−1 and the control input

u= GRx, (3.28)

the derivative ofV(x) with respect to time along the trajectories of 3.26 is given by

V̇(x) =ẋTRx+xTRẋ

=xT(ATR+RGTBTR+RA+RBGR
)
x

=xTR
(
QAT +GTBT +AQ+BG

)
Rx. (3.29)

Then, to satisfẏV(x)< 0, we only need to solve the following Linear Matrix Inequalities

(LMIs)

AQ+QAT +BG+GTBT < 0 , Q= QT > 0. (3.30)

The SoS density function approach for solving the attitude control problem is now

summarized in the following algorithm.

Algorithm 1. Using SoS density function approach, the following steps areproposed to

obtain a polynomial control input for the attitude control problem (3.16):

1. Given a linearized model(A,B), matrices Q and G are obtained by solving the

LMIs (3.30)

2. A positive definite function t(x) will then be given by t(x) =V(x) = xTQ−1x

3. Search for polynomials p(x) and w(x), as defined in (3.22), to satisfy the SoS prob-

lem (3.25)
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4. The control input u(x) = w(x)
p(x) is then obtained, which makes the closed loop system

(3.16) asymptotically stable.

3.4.3 Backstepping Approach for MIMO Nonlinear System

Consider the general backstepping system

ż= α(z)+β (z)ζ (3.31)

ζ̇ = fa(z,ζ )+ga(z,ζ )U (3.32)

where
[
zT ,ζ T

]T
∈ Rn+m is the state vector, andU ∈ Rm is the control input vector. The

functionsα ∈Rn, β ∈Rn×m, fa ∈Rm, andga ∈Rm×m are smooth, andα and fa vanish

at the origin. The attitude control problem (3.16) can be written in a cascade connection

of two subsystems, as shown in (3.31)-(3.32). Therefore, the objective of this subsection

is to stabilize the system (3.31)-(3.32) using backstepping approach. Using the control

input

U = ga(z,ζ )−1
[
u− fa(z,ζ )

]
, (3.33)

wherega is a nonsingular diagonal matrix, the system (3.31)-(3.32)can be reduced to the

following system

ż= α(z)+β (z)ζ (3.34)

ζ̇ = u (3.35)

whereu∈Rm is the control input vector, which needs to be obtained. When the stateζ is

scalar (and consequently the inputu is also scalar), the system (3.34)-(3.35) is reduced to

the integrator backstepping system as shown in [20]. Here weconsider a MIMO nonlinear

system. To stabilize the system (3.34) and (3.35) at the origin, the following backstepping

approach is given.
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Theorem 3.4.3.Given the system (3.34) and (3.35), suppose there is a stabilizing state

feedback lawζ = φ(z) ∈ Rm for the subsystem (3.34) such thatφ(0) = 0. Let V(z) be a

Lyapunov function for the subsystem (3.34) such that V(z) is positive definite and

∂V(z)
∂z

[
α(z)+β (z)φ(z)

]
≤−W(z) (3.36)

where W(z) is positive definite, and∂V
∂z = ▽V =

[
∂V
∂z1

· · · ∂V
∂zn

]
. Then, the feedback law

u=
∂φ
∂z

[
α(z)+β (z)φ(z)

]
−
(∂v

∂z
β (z)

)T
−ky (3.37)

where k> 0 and

y= ζ −φ(z) =
[
ζ1−φ1(z) · · · ζm−φm(z)

]T
, (3.38)

stabilizes the origin(zT = 0 , ζ T = 0) , and a Lyapunov function for the closed-loop

system is

Vc(z,ζ ) =V(z)+
1
2

yTy . (3.39)

Proof. Suppose the subsystem (3.34) can be stabilized asymptotically by a state feedback

control ζ = φ(z) with φ(0) = 0. Suppose, moreover, that there is a Lyapunov function

V(z) for the subsystem (3.34) such thatV(z) is positive definite and satisfies (3.36). By

adding and subtractingβ (z)φ(z), and performing the change of variabley= ζ −φ(z), we

obtain the system

ż=
[
α(z)+β (z)φ(z)

]
+β (z)y (3.40)

ẏ= u− φ̇(z) (3.41)

where

φ̇(z) =
∂φ
∂z

[
α(z)+β (z)ζ

]
(3.42)

and ∂φ
∂z ∈ Rm×n is the jacobian matrix as defined in (2.25). Lettingν = u− φ̇ reduces the
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system (3.40) and (3.41 to

ż=
[
α(z)+β (z)φ(z)

]
+β (z)y (3.43)

ẏ= ν (3.44)

which has the same form as the system we started from with the exception that we now

know the subsystem (3.43) is asymptotically stable to the origin wheny= 0. Now, for the

system (3.43) and (3.44), let us consider the candidate Lyapunov function (3.39) which is

positive definite. Then, the derivative ofVc is

V̇c =
∂V(z)

∂z

[
α(z)+β (z)φ(z)

]
+

∂V(z)
∂z

β (z)y+νTy

≤−W(z)+
∂V(z)

∂z
β (z)y+νTy . (3.45)

Choosing

ν =−
(∂V

∂z
β (z)

)T
−ky (3.46)

wherek> 0, implies that

V̇c ≤−W(z)−kyTy. (3.47)

This also shows that the origin(zT = 0 , ζ T = 0) is asymptotically stable. Finally, com-

bining (3.46) andu= ν + φ̇ results in the control input (3.37). This finishes the proof.

The attitude control problem (3.16) can now be written in thegeneral backstepping

format (3.31)-(3.32). The functionsα(z) andβ (z) are expressed as

α(z) =
[
0 0 0 0

]T
(3.48)

and

β (z) =
1
2




−q̂1 −q̂2 −q̂3

(q̂o+1) −q̂3 q̂2

q̂3 (q̂o+1) −q̂1

−q̂2 q̂1 (q̂o+1)




(3.49)
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wherez andζ are the vectors of shifted quaternions and angular velocities, respectively.

Moreover, fa(q̂,w) andga(q̂,w) are the same as in expressions (3.1).

In summary, to solve the attitude recovery problem (3.16) using backstepping, a

Lyapunov functionV(x), whereV > 0 and its derivative is negative definite, should first

be found for the subsystem (3.31). Once one can find this Lyapunov function, the control

input (3.33) can be obtained, which makes the overall system(3.31)-(3.32) asymptotically

stable.

3.5 Simulations and Experiments

This section presents two examples of attitude control problems, including a numerical

simulation and an experimental result on the pitch control of a Quanser helicopter [68].

The numerical simulation of a rigid satellite with specific inertial elements is covered in

the first subsection, and then the theoretical results of thethesis are applied to a Quanser

Helicopter in the second subsection. In the numerical simulations, given a satellite with

specific parameters, the proposed polynomial control laws in this chapter are designed and

compared. Moreover, the SoS Lyapunov function-based controllers using quaternion and

MRP representations are implemented in the Quanser helicopter, and then are compared

with a PID controller.

3.5.1 Numerical Simulation

The proposed controllers in Sections 3.4.1, 3.4.2 and 3.4.3are now applied to a rigid

satellite with the inertia tensorI = diag(1,1.2,0.8)(kg.m2), considered as a small satel-

lite. The objective is to make the satellite asymptoticallystable subject to a nonzero initial

attitude. Since there is no singularity using quaternions,this controller design is applica-

ble to any arbitrary initial states. Let us assume the initial angular velocities and the initial
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Euler angles are as follows

wo = (0,0,0)T , θ0 = (Roll,Pitch,Yaw)T = (80◦,50◦,−120◦)T .

The desired Euler angles areθd = (0,0,0)T . Using the expression 2.13, the initial and

desired orientations of the satellite in terms of quaternions correspond to

θo = (0.1119,0.5717,−0.3426,−0.7371)T , θd = (1,0,0,0)T .

Now, given the attitude recovery dynamic model (3.16) with the quaternion constraint

Ω (3.17) and the numerical values of the parameters, the quaternion-based polynomial

controllers using different methods are obtained as follows.

SoS Lyapunov Based Control

Substituting the given inertia tensor in (3.16), the matricesA(x̂) andg become

A(x̂) =




0 0.4wz 0 0 0 0 0

0 0 −0.16wx 0 0 0 0

−0.25wy 0 0 0 0 0 0

−q̂1/2 −q̂2/2 −q̂3/2 0 0 0 0

(q̂o+1)/2 −q̂3/2 q̂2/2 0 0 0 0

q̂3/2 (q̂o+1)/2 −q̂1/2 0 0 0 0

−q̂2/2 q̂1/2 (q̂o+1)/2 0 0 0 0
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g=




1 0 0

0 0.83 0

0 0 1.25

0 0 0

0 0 0

0 0 0

0 0 0




.

Given these matrices and the state feedback controller structure (3.20), the SOS-

TOOLS Toolbox [50] will now be used to solve the SoS Lyapunov-based control in theo-

rem 3.4.1. Using the MATLAB code in Appendix 3.7), the diagonal matrix

P= diag(1.05,0.99,1.11,1.19,1.23,1.22,1.23) ,

whereP > 0, and the following polynomial control input vectorM = (Mx,My,Mz)
T are

obtained

M(x) =−0.62x3
1−0.63x1x2

2−0.04x1x2x6−0.61x1x2
3

−0.08x1x3x7−0.51x1(x4−1)2+0.31x1(x4−1)

−0.5x1x2
6−0.53x1x2

7−0.37x1−0.05x2x3(x4−1)

−0.19x2x3−0.02x2(x4−1)x7−0.11x2x5x6

−0.02x2x7+0.03x2
3x5+0.05x3x5x7−0.03x3x6

+0.01(x4−1)x5−0.43x5−0.59x1x2
5
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M(y) =−0.76x2
1x2−0.02x2

1x6+0.06x1x2x5−0.04x1x3(x4−1)

−0.16x1x3−0.01x1(x4−1)x7−0.1x1x5x6−0.01x1x7

−0.77x3
2−0.8x2x2

3−0.62x2(x4−1)2+0.41x2(x4−1)

−0.72x2x2
6−0.61x2x2

7−0.43x2+0.01x3(x4−1)x5

+0.03x3x5−0.04x3x6x7+0.01(x4−1)x6−0.5x6

−0.59x2x2
5

M(z) =−0.5x2
1x3+0.05x1x2(x4−1)+0.27x1x2+0.03x1x3x5

−0.05x1x5x7−0.02x1x6−0.49x2
2x3−0.03x2

2x7

+0.02x2x3x6+0.02x2(x4−1)x5+0.04x2x5

−0.43x3(x4−1)2+0.18x3(x4−1)−0.44x3x2
5

−0.48x3x2
7−0.33x3−0.36x7−0.44x3x2

6

−0.49x3
3+0.01(x4−1)x7 .

SoS Density Function-Based Control

Since( f ,g) in (3.2) are polynomial vector fields, a polynomial controller based on

the SoS density function for the same satellite can also be designed. As discussed in

Section 3.4.2, a positive polynomial functiont(x̂) should first be found. A good candidate

for t(x̂) is a Control Lyapunov function for the linearized system of (3.16) around the

desired set-point. Linearizing the nonlinear system (3.16) yields a linear state space model

in the form ˙̂x= Al x̂+guwith

Al =


 O4∗3 O4∗4

0.25I3∗3 O3∗4


 ,

where matrices O and I are the zero and identity matrices, respectively. Solving LMIs

(3.30) and using YALMIP and SeDuMi, a symmetric positive definite matrixR is obtained
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as follows

R=




1.02 0 0 0 0.46 0 0

0 1.02 0 0 0 0.46 0

0 0 1.02 0 0 0 0.46

0 0 0 1 0 0 0

0.46 0 0 0 1.02 0 0

0 0.46 0 0 0 1.02 0

0 0 0.46 0 0 0 1.02




.

The positive definite polynomialt(x̂) will thus beV(x̂) = x̂TRx̂. The next step is to search

for polynomialsp(x̂) andw(x̂), as defined in (3.22), to satisfy (3.25). For this,p(x̂) and

w(x̂) are assumed to be polynomials. It is assumed thatp(x̂) is a constant while the three

elements of vectorw(x̂) are second-degree polynomials. Using the SOSTOOLS Toolbox

[50] and assuming

s≥ 3 , p= 10−6 , ϕ = w2
x +w2

y +w2
z , (3.50)

the following control inputs are obtained

M(x) =0.003q1(qo−1)−0.14q1−0.002q2q3+0.004q2wz

+0.006q3wy−0.03(qo−1)wx−0.35wx−0.004wywz

M(y) =−0.01q1wz+0.003q2q0−0.17q2+0.004q3wx

−0.04(qo−1)wy+0.003wxwz−0.42wy

M(z) =0.002q1q2−0.01q1wy−0.17q3−0.03(qo−1)wz

+0.004wxwy−0.42wz.

Backstepping

The attitude control problem (3.16) can also be solved by thebackstepping method

outlined in theorem 3.4.3. Rewriting attitude problem (3.16) in the general backstepping
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format (3.31)- (3.32), the functionsα(z), β (z), and( fa(q̂,w),ga(q̂,w)) are the same as in

expressions (3.48), (3.49), and (3.1), respectively. Now,given the subsystem

˙̂q= f (q̂)+g(q̂)w=
1
2




−q̂1 −q̂2 −q̂3

(q̂o+1) −q̂3 q̂2

q̂3 (q̂o+1) −q̂1

−q̂2 q̂1 (q̂o+1)




w, (3.51)

wherew is the control input, a stabilizing control law should be obtained to make this

subsystem asymptotically stable. For this, the SoS problemin theorem 3.4.1 is solved

to find an SoS Lyapunov based controller (3.20). Solving thisSoS problem using the

SOSTOOLS Toolbox [50], the controller law is obtained as

w= φ(q̂) =
[
−µ1q̂1 −µ2q̂2 −µ3q̂3

]T
(3.52)

whereµ1, µ2, andµ3 are positive constants. Replacing the control input (3.52) in the first

subsystem (3.51), the closed-loop system for the first subsystem is given by

˙̂q=




q̂2
2+ q̂2

3+ q̂2
4

−q̂2(q̂o+1)

−q̂3(q̂o+1)

−q̂4(q̂o+1)




. (3.53)

Now, using the Lyapunov function

V(q̂) =
1
2

(
q̂2

o+ q̂2
1+ q̂2

2+ q̂2
3

)
> 0, (3.54)

the derivative ofV(q̂) with respect to time along the trajectories of (3.53) is calculated as

V̇(q̂) =
∂V(q̂)

∂ q̂
˙̂q=

(
q̂o ˙̂qo+ q̂1 ˙̂q1+ q̂2 ˙̂q2+ q̂3 ˙̂q3

)

=−
1
2

(
µ1q̂2

1+µ2q̂2
2+µ3q̂2

3

)
. (3.55)
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The polynomial functioṅV appears to be negative semidefinite inS=
{

x|q̂1 = q̂2 = q̂3 =

0, q̂o ∈ R
}

. However, due to the quaternion constraintΩ = (q̂o+1)2+ q̂2
1+ q̂2

2+ q̂2
3 = 1,

V̇ is not defined over the lineS=
{

x|q̂1 = q̂2 = q̂3 = 0, q̂o ∈ R
}

, except at the origin.

Therefore,V̇ becomes zero only at the point(q̂o = q̂1 = q̂2 = q̂3 = 0) and is negative

definite. Thus, the closed-loop system (3.53) is asymptotically stable. Using the resulting

φ(q̂) andV(q̂), the control law (3.37) can now be obtained to stabilize the overall system.

Assumingk= µ1 = µ2 = µ3 = 1 and the given inertia tensor, the following control inputs

are obtained.

u1 =−2wx−2.5q1− (qo−1)wx+q3wy−q2wz

−0.4wywz−2qoq1

u2 =1.2
(
−2wy−2.5q2−q3wx− (qo−1)wy

+q1wz+0.16wzwx−2qoq2

)

u3 =0.8
(
−2wz−2.5q3+q2wx−q1wy− (qo−1)wz

+0.25wxwy−2qoq3

)

The state trajectories for the three approaches are shown inFig.3.1,Fig.3.2,Fig.3.3,

andFig.3.4. Fig.3.1 shows that all the quaternion elements converge to zero,and that the

quaternion constraint is always verified.Fig.3.2 shows the time response of the angular

velocities converging to zero. The time response of the control inputs is also shown in

Fig.3.3 andFig.3.4. It is important to notice the small magnitude of the required torques

for stabilizing the satellite. From a practical point of view, it implies that the satellite will

require lower power.

Fig.3.5 compares the time response of the Euler angles using MRP-based and

Quaternion-based controllers. It shows that using state-feedback controllers based on the

quaternion parameterization stabilizes the closed-loop system in less settling time with a
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Figure 3.1: Time response of quaternions and associated constraint for SoS Lyapunov
based control, SoS density function based control, and backstepping approach

smaller overshoot rather than using MRP-based controllers.Moreover, using MRP rep-

resentation results in a singularity which is not desirablein practical applications, specif-

ically satellite applications. Moreover, fromFig.3.5 it is observed that the quaternion-

based polynomial controller using SoS Lyapunov-based approach has the best responses

in terms of settling time, overshoot and smoothness.Fig.3.5 also shows that using the

backstepping controller makes the closed-loop system asymptotically stable. As shown

in Fig.3.3 andFig.3.4, the control inputs for backstepping approach is much bigger than

other two SoS-based approaches, resulting in higher overshoot responses compared with

other two SoS-based approaches. It is worthwhile to note that these results are based on

our particular simulations with respect to different initial conditions.
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Figure 3.2: Time response of angular velocities for SoS Lyapunov based control, SoS
density function based control, and backstepping approach

3.5.2 Experimental Results on Quanser Helicopter

The proposed SoS Lyapunov based control (3.20) using both quaternion and MRP rep-

resentations is now applied to a Quanser Helicopter [68]. The objective is to design

a quaternion-based polynomial controller for stabilizingthe pitch angle of the Quanser

helicopter, and then compare it with the nonlinear MRP-basedcontroller and the PID

controller. The quaternion-based attitude parameterization for a one Degree of Freedom

(DOF) rigid body is the simplified version of (3.16) as
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Figure 3.3: Time response of control inputs for SoS Lyapunovbased control and SoS
density function based control




˙̂qo

q̇2

ẇy



=




0 0 −q2/2

0 0 (q̂o+1)/2

0 0 0







q̂o

q2

wy



+




0

0

1/Iy




My, (3.56)

whereIy for the Quanser helicopter is 0.028(kg.m2). Given (3.56) and assumingε = 0.01,

the following quaternion-based polynomial control input is obtained

My =−0.02w3
y −0.03wy(qo−1)2−0.02wyq

2
2

−0.03wy−0.01q2 .

The Quanser helicopter experimental results for the pitch angle and the control in-

put are shown inFig.3.6. It shows that the time trajectory of the pitch angle and the

control input for the PID controller is more oscillatory than both quaternion-based and
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Figure 3.4: Time response of control inputs for backstepping approach

MRP-based SoS controllers. While the two quaternion-based and MRP-based controllers

have been designed using the SoS technique, a tuned PID controller has also been found

experimentally. Note that, contrary to the tuned linear controller, the resulting quaternion-

based and MRP-based controllers have been implemented on Quanser helicopter without

being tuned.Table3.1 also shows the maximum overshoot and settling time due toa 25

(deg) initial pitch angle for the three different controllers implemented in the Quanser

Helicopter. The results demonstrate experimentally that the quaternion-based state feed-

back controller stabilizes the closed-loop system in less settling time and with a smaller

overshoot than the MRP-based SoS controller and the PID controller.
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3.6 Summary

The objective of this chapter was to develop nonsingular rigid-body attitude control laws

using a convex formulation, and to implement them in an experimental set up. The at-

titude recovery problem was first parameterized in terms of quaternions, and then two

polynomial controllers using an SoS Lyapunov function and an SoS density function were

Table 3.1: Max. overshoot and settling time due to 25 (deg) initial pitch angle for two SoS
Lyapunov-based controllers and a PID controller implemented in the Quanser Helicopter

Control Method Max. Overshoot(deg) Settling Time (sec)
SoS (quaternions) 5 5

SoS (MRPs) 10 11
PID 13 16
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Figure 3.6: Comparison of time trajectory of pitch angle and Control Input for
Quanser Helicopter using Quaternion-based and MRP-based polynomial controllers (SoS
Lyapunov-based approach), and PID controller

developed. A quaternion-based polynomial controller using backstepping has also been

designed. The simulation results show that the proposed nonlinear controllers guarantee

the asymptotic stability of states subject to any initial condition. Moreover, the numeri-

cal simulation as well as the experimental results implemented in a Quanser Helicopter

verify that the quaternion-based controller stabilizes the closed-loop system in less set-

tling time and with smaller overshoot than the MRP-based controller. These results have

been observed based on our specific simulations and experimental results on the Quanser

helicopter with respect to a set of different initial conditions.
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3.7 Appendix

The MATLAB code for designing an SoS Lyapunov-Based Controller using SOSTOOLS

and SeDuMi is as follows:

c l c

c l e a r a l l ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Def ine Per formance Parameters and Po lynomia l V a r i a b l e s

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% x1=wx ; x2=wy ; x3=wz ; x4=qo ; x5=q1 ; x6=q2 ; x7=q3

pvar x1 x2 x3 x4 x5 x6 x7

X = [ x1 ; x2 ; x3 ; x4 ; x5 ; x6 ; x7 ] ;

n = l eng th (X ) ;

pvar v1 v2 v3 v4 v5 v6 v7

V = [ v1 ; v2 ; v3 ; v4 ; v5 ; v6 ; v7 ] ;

%%%%%%%%%%%%%%%%%%%%%%%%

%% Def ine System Dynamics

%%%%%%%%%%%%%%%%%%%%%%%%

J = diag ( [ 1 , 1 . 2 , 0 . 8 ] ) ;

A = [ 0 ( ( J (5)− J ( 9 ) ) / J ( 1 ) )∗ x3 0 0 0 0 0

0 0 ( ( J (9)− J ( 1 ) ) / J ( 5 ) )∗ x1 0 0 0 0

( ( J (1)− J ( 5 ) ) / J ( 9 ) )∗ x2 0 0 0 0 0 0

−x5 / 2 −x6 / 2 −x7 / 2 0 0 0 0

( x4 +1 ) / 2 −x7 / 2 x6 / 2 0 0 0 0

x7 / 2 ( x4 +1 ) / 2 −x5 / 2 0 0 0 0

−x6 / 2 x5 / 2 ( x4 +1 ) / 2 0 0 0 0 ] ;

B = [ 1 / J ( 1 ) 0 0

0 1 / J ( 5 ) 0

0 0 1 / J ( 9 )

0 0 0

0 0 0
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0 0 0

0 0 0 ] ;

m = s i z e(B , 2 ) ;

Program = sosprogram ( [X;V ] ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Def ine Lyapunov Func t i on and C o n t r o l l e r Parameters

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Def ine P=P’

f o r i = 1 : n ,

f o r j = 1 : n ,

i f i >=j ,

eva l ( [ ’ pvar p ’ num2str ( i ) ’ ’ num2str ( j ) ] ) ;

eva l ( [ ’ Program= s o s d e c v a r ( Program , p ’num2str ( i ) ’ ’ num2str ( j ) ’ ) ; ’ ] ) ;

eva l ( [ ’P ( i , j ) = p ’ num2str ( i ) ’ ’ num2str ( j ) ’ ; ’ ] ) ;

eva l ( [ ’P ( j , i ) = p ’ num2str ( i ) ’ ’ num2str ( j ) ’ ; ’ ] ) ;

end

end

end

% Def ine K( x )

f o r i = 1 :m,

f o r j = 1 : n ,

[ Program , K i j ]= s o s p o l y v a r ( Program , monomials (X , 0 : 2 ) ) ;

K( i , j ) = K i j ;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Def ine I n e q u a l i t i e s and run SOS program

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% V( x )= x ˆ TPx , Q=P {̂−1}

I = eye( s i z e( P ) ) ;

e1 = 0 . 1 ;
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[ Program , e2 ]= s o s p o l y v a r ( Program , monomials (X , 2 ) ) ;

Program = s o s i n e q ( Program ,V’∗ ( P−e1∗ I ) ∗V) ;

Program = s o s i n e q ( Program , e2 ) ;

[ Program , ph i ]= s o s p o l y v a r ( Program , [ x1 ˆ 2 ; x2 ˆ 2 ; x3 ˆ 2 ; x4ˆ 2 ; x5 ˆ 2 ; x6 ˆ 2 ; x7 ˆ 2 ] ) ;

c o n s t = x4 ˆ2+ x5 ˆ2+ x6 ˆ2+ x7 ˆ2−1;

[ Program , mono ] = s o s p o l y v a r ( Program , monomials (X , 1 ) ) ;

V dot=−V’ ∗ ( P∗A’+A ∗P+K’ ∗B’+B∗K+e2∗ I ) ∗V+mono∗ c o n s t ;

Program = s o s i n e q ( Program , Vdot ) ;

Program = s o s s o l v e ( Program ) ;

s o s g e t s o l ( Program , e2 ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% R e t r i e v e S o l u t i o n V a r i a b l e s

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% R e t r i e v e P

f o r i = 1 : n ,

f o r j = 1 : n ,

P ( i , j ) = s o s g e t s o l ( Program , P ( i , j ) ) ;

end

end

P = doub le ( P )

% R e t r i e v e K

f o r i = 1 :m,

f o r j = 1 : n ,

K( i , j ) = s o s g e t s o l ( Program ,K( i , j ) ) ;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Con t ro l I n p u t

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

U=K∗ i nv ( P )∗X

62



The MATLAB code for designing an SoS density function-basedController using

SOSTOOLS and SeDuMi is also as follows:

c l c

c l e a r a l l

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Var i ab l a and Cons tan t D e f i n i t i o n

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

pvar wx wy wz qo q1 q2 q3

x =[wx ; wy ; wz ; qo ; q1 ; q2 ; q3 ] ;

I x = 1 ; Iy = 1 . 2 ; I z = 0 . 8 ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Dynamic Equa t i ons

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f = [ ( ( Iy −I z ) / I x ) ∗wy∗wz ;

( ( Iz−I x ) / I y ) ∗wz∗wx ;

( ( Ix−I y ) / I z ) ∗wx∗wy ;

0.5∗(−q1∗wx−q2∗wy−q3∗wz ) ;

0 . 5∗ ( ( qo +1)∗wx−q3∗wy+q2∗wz ) ;

0 . 5∗ ( q3∗wx+( qo +1)∗wy−q1∗wz ) ;

0.5∗(−q2∗wx+q1∗wy+( qo +1)∗wz ) ] ;

g = [ 1 / Ix 0 0 ;

0 1 / Iy 0 ;

0 0 1 / Iy ;

0 0 0 ;

0 0 0 ;

0 0 0 ;

0 0 0 ; ] ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% SoS Programming

%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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p = 10ˆ−6;

s = 5 ;

program = sosprogram ( x ) ;

[ program , w( 1 , 1 ) ] = s o s p o l y v a r ( program , monomials ( x , 0 : 2) ) ;

[ program , w( 2 , 1 ) ] = s o s p o l y v a r ( program , monomials ( x , 0 : 2) ) ;

[ program , w( 3 , 1 ) ] = s o s p o l y v a r ( program , monomials ( x , 0 : 2) ) ;

p l i n = [1 .0226 −0.0000 0.0000 0.0000 0.4593 0.0000−0.0000

−0.0000 1.0226 −0.0000 0.0000 0.0000 0.4593 −0.0000

0.0000 −0.0000 1.0226 0.0000−0.0000 0.0000 0.4593

0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

0.4593 0.0000 −0.0000 0.0000 1.0226−0.0000 −0.0000

0.0000 0.4593 0.0000 0.0000−0.0000 1.0226 0.0000

−0.0000 −0.0000 0.4593 0.0000−0.0000 0.0000 1 . 0 2 2 6 ] ;

t = x ’ ∗ p l i n ∗x ;

[ program , ph i ]= s o s p o l y v a r ( program , [ wx ˆ 2 ; wy ˆ 2 ; wz ˆ 2 ; qoˆ 2 ; q1 ˆ 2 ; q2 ˆ 2 ; q3 ˆ 2 ] ) ;

fg = f ∗p+g∗w;

d i v e r g e n t = d i f f ( fg ( 1 ) , wx)+ d i f f ( fg ( 2 ) , wy)+ d i f f ( fg ( 3 ) , wz)+ . . .

d i f f ( fg ( 4 ) , qo )+d i f f ( fg ( 5 ) , q1 )+d i f f ( fg ( 6 ) , q2 )+ . . .

d i f f ( fg ( 7 ) , q3 ) ;

g r a d i a n = [d i f f ( t , wx ) d i f f ( t , wy ) d i f f ( t , wz ) d i f f ( t , qo ) . . .

d i f f ( t , q1 ) d i f f ( t , q2 ) d i f f ( t , q3 ) ] ;

c o n s t = qo ˆ2+ q1 ˆ2+ q2 ˆ2+ q3 ˆ2−1;

[ program , mono ] = s o s p o l y v a r ( program , monomials ( x , 1 ) ) ;

f i n a l f = t ∗ d i v e r g e n t−s∗ g r a d i a n∗ fg−ph i +mono∗ c o n s t ;

program = s o s i n e q ( program , f i n a lf ) ;

program = s o s s o l v e ( program ) ;

s o s g e t s o l ( program ,w( 1 ) )

s o s g e t s o l ( program ,w( 2 ) )

s o s g e t s o l ( program ,w( 3 ) )
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Chapter 4

An Inverse Optimality Approach To A

Third Order Optimal Control Problem

4.1 Introduction

The main contribution of this chapter is to analytically solve the Hamilton-Jacobi-Bellman

equation for a class of third order nonlinear optimal control problems for which the dy-

namics are affine and the cost is quadratic in the input. The proposed solution method is

based on the notion of inverse optimality with a variable part of the cost to be determined

in the solution. The main idea was first proposed in [80] to solve a class of second order

problems. This chapter will extend the work in [80] to solve aclass of nonlinear third

order optimal control problems. One special advantage of this work is that the solution is

directly obtained for the control input without the computation of a value function first.

The value function can however also be obtained based on the control input. Furthermore,

a Lyapunov function can be constructed for a subclass of optimal control problems, yield-

ing a proof certificate of stability. Finally, using the proposed methodology, experimental

results for a path following problem implemented in a WheeledMobile Robot (WMR)
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are then presented to verify the effectiveness of the proposed methodology.

4.2 Background

Optimal control problems are generally solved by numericaltechniques since the optimal

controller is the solution of the Hamilton-Jacobi-Bellman (HJB) equation [79], which is a

nonlinear partial differential equation that is difficult to solve analytically. However, there

is an explicit solution for the input as a derivative of the value function if the dynamic

model is affine and the cost is quadratic in the input. This idea was first used in [80] to

solve a class of second order problems. This chapter will extend the work in [80] to solve

a class of nonlinear third order optimal control problems.

Departing from previous methods, the proposed method in this chapter can directly

find a solution for the control input without the computationof a value function. The

value function can however also be obtained based on the control input. Furthermore, a

Lyapunov function can be constructed for a subclass of optimal control problems, yield-

ing a proof certificate for stability. The method can be applied to a class of third order

nonlinear systems that will be defined in the next section. Itis assumed that the cost func-

tion is the sum of a quadratic term in the input and the states and an unknown termQ(x)

that should be determined. For a third order nonlinear system in the assumed class, our

interest is then to simultaneously search for a controller and a cost function termQ(x)

that together satisfy the HJB equation. The methodology will be applied to the dynamic

model of a Wheeled Mobile Robot (WMR) on thex− y plane for path following of the

line y= 0 at a constant velocity, as shown inFig.2.4. This path following problem will

be investigated in section 4.4.

The remainder of this chapter is organized as follows. In section 4.3 a third order

nonlinear optimal control problem is defined, and then the main result is derived. An
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interesting special case of the general optimal control problem is also presented in that

section. The effectiveness of the proposed method will be shown in several examples in

section 4.4. Using the proposed methodology, experimentalresults for a path following

problem implemented in a Wheeled Mobile Robot (WMR) are then presented, followed

by some concluding remarks.

4.3 Optimal Control Problem Definition and Solution

Consider the following optimal control problem

min J(x,u) =
∫ ∞

0
(q1x2

1+q2x2
2+q3x2

3+Q(x)+ ru2)dt

s.t. ẋ1(t) = f1(x2)

ẋ2(t) = f2(x3)

ẋ3(t) = cu

x(0) = x0, u∈ U

(4.1)

wherec> 0, q1 ≥ 0, q2 ≥ 0, q3 > 0, r > 0, x(t) = [x1 x2 x3]
T ∈ W 3 ⊂ R3 is the state

vector, whereW 3 includes a neighborhood of the origin. The scalar inputu belongs to the

setU of Lebesgue integrable functions. The functionf1(x2) is classC 1 with a bounded

derivative andf2(x3) is continuous. These functionsf1(x2) and f2(x3) are not identically

zero and are assumed to be zero atx= 0
(

f1(0) = f2(0) = 0
)
. The term

L(x1,x2,x3,u) = q1x2
1+q2x2

2+q3x2
3+Q(x)+ ru2 (4.2)

which is a function of all the states and the input, is called the running cost. The optimal

control problem formulated here is to find, if possible, a control law u(x) and a cost

function L(x1,x2,x3,u) such thatu minimizes the performance indexJ(x,u) =
∫ ∞

0 L dt,
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and (4.2) is nonnegative and has a minimum atx1 = x2 = x3 = u= 0. Let the optimal cost

function be defined by

V(x1,x2,x3) = inf
u

∫ ∞

0
L(x1,x2,x3,u)dt (4.3)

The main result is now stated.

Theorem 4.3.1.Given the optimal control problem (4.1), if there exist gains k1, k2, k3,

k4, and k5 satisfying

k2
1 =

q1

r
, k2

2 =
q2

r
, k2

3 =
q3

r
, (4.4)

k1 = ck3k4 , k2 = ck3k5 (4.5)

k2
4 f 2

1 (x2)+k2
5 f 2

2 (x3)−2c−1k4 f ′1(x2)x3 f2(x3)≥ 0 (4.6)

and

2rc−1k5

∫
f2(x3)dx3+2rc−1k4x3 f1(x2)+2rk4k5

∫
f1(x2)dx2+ γ ≥ 0 (4.7)

whereγ is an integration constant verifying

γ =−2rc−1
[∫

k5 f2(x3)dx3+ck4k5

∫
f1(x2)dx2

]

x2=x3=0
(4.8)

then the control input

u=−k1x1−k2x2−k3x3−k4 f1(x2)−k5 f2(x3) (4.9)

solves the HJB equation for problem (4.1) with

Q(x) = rk2
4 f 2

1 (x2)+ rk2
5 f 2

2 (x3)−2rc−1k4x3 f ′1(x2) f2(x3)

+2rk1k2x1x2+2rk1k3x1x3+2rk2k3x2x3

(4.10)

which yields the nonnegative running cost

L(x1,x2,x3,u) = rk2
4 f 2

1 (x2)+ rk2
5 f 2

2 (x3)−2rc−1k4x3 f ′1(x2) f2(x3)

+ r(k1x1+k2x2+k3x3)
2+ ru2

(4.11)
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with a minimum at x1 = x2 = x3 = u = 0. The resulting optimal cost function V(x) =

J(x,u∗), where u∗ is the optimal controller, will be given by

V(x) = r

(√
k1k4x1+

√
k2k5x2+

√
k3c−1x3

)2

+2rc−1
(

k5

∫
f2(x3)dx3+k4x3 f1(x2)

)

+2rk4k5

∫
f1(x2)dx2+ γ .

(4.12)

The function V(x) will also be a local Lyapunov function for the system (4.1) pro-

vided it is positive definite. Furthermore, the trajectories will converge to one of the

minimizers of L(x1,x2,x3,u(x1,x2,x3)), i.e, to a point(x1,x2,x3) such that

L(x1,x2,x3,u(x1,x2,x3)) = 0. (4.13)

If L(x1,x2,x3,u(x1,x2,x3)) is convex, then the trajectories will converge to the origin for

all initial conditions.

Proof. To solve the optimal control problem (4.1), the HJB equation

inf
u

H(x1,x2,x3,Vx1,Vx2,Vx3,u) = 0 (4.14)

where

H = q1x2
1+q2x2

2+q3x2
3+Q(x)+Vx1 f1(x2)

+Vx2 f2(x3)+Vx3cu+ ru2
(4.15)

with

Vxi =
∂V(x)

∂xi
, i = 1,2,3 (4.16)

should be solved. A necessary condition for optimality is

∂H
∂u

= 0 −→ Vx3 =−2rc−1u(x) . (4.17)
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Using a structure of the control input as in (4.9), the integral of expression (4.17) yields

V(x) =−2rc−1
∫

u(x)dx3+h(x1,x2)

=+2rc−1x3
(
k1x1+k2x2+k4 f1(x2)

)

+2rc−1
∫ (

k3x3+k5 f2(x3)
)

dx3+h(x1,x2)

(4.18)

whereh(x1,x2) is an arbitrary function ofx1 andx2. Differentiating with respect tox1 and

x2 yields

Vx1 = 2rc−1k1x3+hx1 (4.19)

Vx2 = 2rc−1x3
(
k2+k4 f ′1(x2)

)
+hx2 (4.20)

where f ′1(x2), hx1, hx2 are the derivatives off1(x2) andh(x1,x2) with respect tox2, x1, and

x2, respectively. Replacing (4.9), (4.17), (4.19) and (4.20) in (4.14) yields

Q(x)+(q1− rk2
1)x

2
1+(q2− rk2

2)x
2
2+(q3− rk2

3)x
2
3

+2rc−1k1x3 f1+2rc−1x3 f2(k2+k4 f ′1)+hx1 f1+hx2 f2

−2rk1k2x1x2−2rk1k3x1x3−2rk2k3x2x3

−2rk4k3x3 f1−2rk5k3x3 f2− r(k2
4 f 2

1 +k2
5 f 2

2 )

−2rk4 f1(k1x1+k2x2)−2rk5 f2(k1x1+k2x2)

−2rk3k4x3 f1−2rk3k5x3 f2 = 0

(4.21)

where the arguments were removed for simplicity. Choosing

hx2 = 2rk4k5 f1+2rk5(k1x1+k2x2), (4.22)

yields

h(x1,x2) =2rk4k5

∫
f1(x2)dx2+2rk5k1x1x2

+ rk5k2x2
2+g(x1)

(4.23)
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and

hx1 = 2rk5k1x2+g′(x1) (4.24)

where we choose

g′(x1) = 2rk4k1x1 . (4.25)

Finally, replacing (4.22)and (4.24) in (4.21) yields afterrearranging

Q(x)+(q1− rk2
1)x

2
1+(q2− rk2

2)x
2
2+(q3− rk2

3)x
2
3

+2rx3 f1(k1c−1−k3k4)+2rx2 f1(k5k1−k2k4)

+2rx3 f2(k2c−1−k3k5)−2rk1k2x1x2−2rk1k3x1x3

−2rk2k3x2x3+2rc−1k4x3 f ′1 f2− rk2
4 f 2

1 − rk2
5 f 2

2 = 0.

(4.26)

Using (4.4) and (4.5) in (4.26) leads to the expression (4.10). Combining (4.2), (4.6) and

(4.10) yields the nonnegative running cost (4.11). Replacing (4.23) in (4.18) and taking

into account (4.5) yields the value function (4.12). NoticethatV is classC 1 given the

continuity and smoothness assumptions on the functionsf1(x2) and f2(x3). Therefore, the

optimal costV(x) in (4.12) is finite for any bounded initial conditionx. Moreover, since

V(x) =
∫ ∞

0 L dt, whereL ≥ 0, V(x) needs to be a nonnegative function. The condition

(4.7) impliesV(x) ≥ 0. Notice also thaṫV = −L(x1,x2,x3,u) ≤ 0. Therefore, the cost

functionV(x) becomes a Lyapunov function for the system dynamics in (4.1)provided it

is positive definite. Finally, since the optimal costV(x) is finite for all initial conditions,

then the trajectories will converge to one of the minimizersof L(x1,x2,x3,u(x1,x2,x3))

becauseL ≥ 0 and limt→∞ L = 0 (since the integral ofL is finite). If L is convex, then

the trajectories must converge to the origin because the origin is the only minimizer of

L. Expression (4.8) makes the cost functionV(x) zero at the equilibrium pointx = 0

satisfying the boundary condition of the HJBx(∞) = 0. This finishes the proof.
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Remark 4.3.1. It is interesting that the square of the nonlinearity terms f2
1 (x2) and f22 (x3)

appear in the running cost function, though this would be difficult to predict. In fact, in

most of the research papers on optimal control the cost usually includes only quadratic

terms on the states.

An interesting special case of the optimal control problem (4.1) is presented in

the following corollary wheref2(x3) = ax3. This case can be applied to some important

mobile robotics such as path following problems, which willbe shown in the next section.

Corollary 1. For the following optimal control problem

min J(x,u) =
∫ ∞

0
(q1x2

1+q2x2
2+q3x2

3+Q(x)+ ru2)dt

s.t. ẋ1(t) = f (x2)

ẋ2(t) = ax3 (4.27)

ẋ3(t) = cu

x(0) = x0, u∈ U

where a> 0, c> 0, f (0) = 0, q1 ≥ 0, q2 ≥ 0, q3 > 0, and r> 0, if there exist gains ki for

i = 1, · · · ,5 verifying (4.4), (4.5),

k4 > 0 , f ′(x2)≤ 0.5ack2
5k−1

4 (4.28)

and

rac−1k5x2
3+2rc−1k4x3 f (x2)2rk4k5

∫
f (x2)dx2+ γ ≥ 0 (4.29)

whereγ is an integration constant verifying V(0) = 0, then the control input (4.9) solves

the HJB equation corresponding to (4.27) with the nonnegative running cost

L(x1,x2,x3,u) = r(k1x1+k2x2+k3x3)
2+ rk2

4 f 2(x2)

+ rx2
3

(
a2k2

5−2ac−1k4 f ′(x2)
)
+ru2 .

(4.30)
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Moreover, the resulting value function is

V(x) = r

(√
k1k4x1+

√
k2k5x2+

√
k3c−1x3

)2

+ rac−1k5x2
3+2rc−1k4x3 f (x2)

+2rk4k5

∫
f (x2)dx2+ γ .

(4.31)

The function V is also a local Lyapunov function provided it is positive definite. Further-

more, the trajectories will converge to one of the minimizersof L(x1,x2,x3,u(x1,x2,x3)),

i.e, to a point(x1,x2,x3) such that L(x1,x2,x3,u(x1,x2,x3))= 0. If L(x1,x2,x3,u(x1,x2,x3))

is convex, then the trajectories will converge to the origin for all initial conditions.

Proof. Making f2(x3) = ax3 expressions (4.11) and (4.12) result in (4.30) and (4.31),

respectively. Moreover, sinceV(x) =
∫ ∞

0 L dt, whereL ≥ 0, V(x) needs to be a positive

semidefinite function. The condition (4.29) impliesV(x) ≥ 0. If the functionV(x) is

positive definite, it will be a Lyapunov function since constraints (4.28) imply thaṫV =

−L(x1,x2,x3,u) ≤ 0. The rest of the proof follows the same argument as the proofof

theorem 4.3.1.

In the next section, the effectiveness of the proposed method will be shown in sev-

eral examples.

4.4 Examples and Numerical Simulations

Example 4.4.1. Linear System

Consider a triple backstepping integrator system with

c= 1 , f1(x2) = x2 , f2(x3) = x3 . (4.32)
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This linear system has open-loop equilibrium points at

x1 = constant , x2 = x3 = 0. (4.33)

Assumingq1 = q3 = r = 1 andq2 = 4, the gains satisfying (4.4)-(4.7) are obtained as

follows

k1 = k3 = k4 = 1, k2 = k5 = 2. (4.34)

This results in the control input

u=−x1−3x2−3x3

and the running cost is given by

L(x1,x2,x3,u) = (x1+2x2+x3)
2+x2

2+2x2
3+u2 .

This running cost functionL(x) is strictly convex because the Hessian matrix ofL(x) is

positive definite as follows

▽
2L(x) =




4 10 8

10 28 22

8 22 24



> 0. (4.35)

The value function is also

V(x) =(x1+2x2+x3)
2+x2

3+x2
2+(x2+x3)

2

=xTPx= xT




1 2 1

2 6 3

1 3 3




x.

Obviously, the functionV(x) is positive definite sinceP> 0. This value function is also

radially unbounded. Moreover, the derivative of the value function is

V̇(x) = − (x1+2x2+x3)
2−x2

2−2x2
3− (x1+3x2+3x3)

2

=xTZx
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where

Z =




−2 −5 −4

−5 −14 −11

−4 −11 −12




(4.36)

Thus, V̇(x) is negative definite sinceZ < 0. Therefore, the value function is a

global Lyapunov function, and the system is globally asymptotically stable. Note that

for a triple integrator model using the control input (4.9),an usual quadratic form of the

statesV(x) = x2
1 + x2

2 + x2
3 cannot be a Lyapunov function, and thus there should exist

cross terms in the states.

Example 4.4.2. Nonlinear System

Consider a nonlinear system with

c= 1 , f1(x2) = 2x2+sin(x2) , f2(x3) = x3
3+x3 . (4.37)

This nonlinear system has the open-loop equilibrium pointsat

x1 = constant , x2 = x3 = 0. (4.38)

The control gains corresponding to

q1 = q3 = r = 1 , q2 = 9 (4.39)

are

3k1 = k2 = 3k3 = 3k4 = k5 = 3 (4.40)

which satisfy all the constraints (4.4)-(4.7). Using (4.9), the control input is given by

u=−x1−5x2−4x3−sin(x2)−3x3
3 (4.41)
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with the running cost

L(x1,x2,x3,u) =(x1+3x2+x3)
2+9(x3

3+x3)
2+u2

−2(2+cos(x2)x
2
3(x

2
3+1)

=(x1+3x2+x3)
2+

(
2x2+sin(x2)

)2
+u2

+x2
3(x

2
3+1)

(
9(x2

3+1)−2
(
2+cos(x2)

))
.

(4.42)

Since the resulting running cost is a sum of squares, and has only one minimizer at the

origin satisfying (4.13), it is positive definite for all thestatesx∈R3. Moreover, the value

function withγ given by (4.8) is obtained as

V(x) =(x1+3x2+x3)
2+1.5x4

3+3x2
3+6x2

2

+6
(
1−cos(x2)

)
+2x3

(
2x2+sin(x2)

)

=(x1+3x2+x3)
2+x2

3+2x2
2+1.5x4

3

+(x3+2x2)
2+

(
x3+sin(x2)

)2

+4sin2(x2
2 )

(
2+sin2(x2

2 )
)

≥W(x) = x12+x22+x34 ,

SinceV(x)≥W(x)> 0, the resulting value function is positive definite. The value func-

tion V(x) is also radially unbounded. Therefore, SinceV̇(x) = −L(x,u) < 0, this value

function is a global Lyapunov function. The equilibrium point x= 0 is globally asymp-

totically stable. Fig.4.1 shows the time response of the statesx = [x1 x2 x3]
T , the

running costL(x,u), and the Lyapunov functionV(x) subject to the initial condition

xo = [10 π/2 1]T . As seen, all the states asymptotically converge to the origin, where

V(x)> 0,V(∞) = 0, and the value function has the minimum atx1 = x2 = x3 = u= 0.

For comparison, an LQR controller is also designed for a linearized model of the
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Figure 4.1: Time response of the states, the input, the running costL(x,u), and the Lya-
punov functionV(x) for Example 4.4.2 subject to initial conditionxo = [10 π/2 1]T

given nonlinear system with the weighting matrices in the running cost function corre-

sponding to a second order Taylor series approximation of the running cost. The lin-

earized model is given by ˙x= Ax+Bu, where

A=




0 3 0

0 0 1

0 0 0




andB= [0 0 1]T . Using a second order Taylor series approximation of the resulting

running cost (4.42) yields

L(x1,x2,x3,u) =x2
1+18x2

2+4x2
3+6x1x2+2x1x3+6x2x3+u2

=xTQx+uTRu
. (4.43)

Now we consider two weighting matrices with and without having cross terms in the

quadratic Lyapunov functionL(x) (4.43) as follows
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QLQRdiag =




1 0 0

0 9 0

0 0 1




, QLQRcross=




1 3 1

3 18 3

1 3 4




andR= 1. TheLQR(A,B,Q,R) controllers are obtained as

KLQRdiag = [1.0000 4.6766 3.2176]

KLQRcross= [1.0000 5.4233 3.8531] .
(4.44)

The time response of the states and the control input for the LQR and the proposed

HJB-based controller (4.9) subject to the initial conditionxo = [10 π 1]T is shown in

Fig.4.2. It indicates that, compared to the LQR controllers, using the proposed optimal

controller stabilizes the system with less overshoot in thestates, and also with less control

effort. Simulation results also show that the bigger the initial condition is, the more oscil-

latory is the response of the system using LQR controllers. On the other hand, using the

proposed optimal controller the change of initial conditions do not affect the smoothness

of state responses and the control effort.

These controllers (optimal and LQR controllers) are also compared in the presence

of a partial loss of control authority, shown inFig.4.3.Fig.4.3 shows the time response of

states and control inputs with 85% loss of control authoritysubject to the initial condition

xo = [10 π 1]T . Simulation results show that the proposed HJB-based control works

with up to 85% loss of control authority, whereas the LQR controller designed for a linear

model of the given nonlinear system with the weighting matrices in the running cost

function corresponding to a second order Taylor series approximation of the running cost

cannot stabilize the system at this percentage of failure.
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Figure 4.2: Time response of the states and the control inputfor LQR and HJB-based
controllers for Example 4.4.2 subject to the initial condition xo = [10 π 1]T
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Example 4.4.3. Wheeled Mobile Robot (WMR) Simulation

Following corollary 1, leta= c= 1, f (x2) = sin(x2). This system is the dynamic

model for path following of the liney = 0 of a WMR on a plane, moving at a constant

unitary velocity. According toFig.2.4, the state vector

x=
[
x1 x2 x3

]T
=
[
y ψ w

]T
(4.45)

contains the positiony, the heading angleψ ∈ (−π,π], and the angular velocitẏψ, re-

spectively. This nonlinear system has the open-loop equilibrium points at

y= constant , w= 0 , ψ = 0,π . (4.46)

for k= 0,1,2, · · · . The optimal controller corresponding toq1 = q3 = r = 1 andq2 = 4 is

u=−x1−2x2−3x3−sin(x2) ,

with the following running cost

L(x1,x2,x3,u) =(x1+2x2+x3)
2+sin2(x2)

+x2
3

(
4−2cos(x2)

)
+u2 .

(4.47)

The running costL(x) is a nonnegative function since it is a sum of squares. Note that

for x2 ∈ (−π,π] the resulting running cost functionL(x1,x2,x3,u(x)) has two minimizer

at the origin(0,0,0) and the point(−2π,π,0). Furthermore, the value function withγ

given by (4.8) is obtained as

V(x) =(x1+2x2+x3)
2+2x2

3+2x3sin(x2)

+4
(
1−cos(x2)

)

=(x1+2x2+x3)
2+

(
x3+sin(x2)

)2
+x2

3

+4sin2(x2
2 )

(
1+sin2(x2

2 )
)
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Figure 4.4: WMR Trajectories

whereV(x) is positive definite forx2 ∈ (−π , π) since the resulting value function is a

sum of squares, and is equal to zero only at the origin. Moreover, the derivative of the

value function

V̇(x) =−L(x) = − (x1+x2+x3)
2−sin2(x2)−x2

3

(
4−2cos(x2)

)

−
(
x1+2x2+3x3+sin(x2)

)2

is negative definite forx2 ∈ (−π , π) becauseL(x) is nonnegative, and is equal to zero

only at the origin. Therefore, the value function is a local Lyapunov function in the largest

invariant set ofD =
{

x|(x1,x3) ∈R2 , |x2|< π
}

. Note however that there is no guarantee

that the closed-loop system converges to the origin subjectto any initial condition in the

setD.

Fig.4.4 shows the trajectories of the path following system of the WMR subject to

different initial conditions. It can be seen from the figure that the trajectories converge
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Figure 4.5: Region of Attraction for the given WMR

to the desired pathy = 0 for the given initial conditions. However, note that sincethe

running cost is not convex, one only has the guarantee that the WMR will follow the

straight line and that for a set of initial conditions it willfollow the line in the direction

corresponding toψ = 0. Moreover, forψ ∈ (−π,π], the direction corresponding toψ = π

also makessin(ψ) = 0 leading to a minimum of the running cost. The estimated region

of attraction (ROA) for the trajectories of WMR is also shown in Fig.4.5. This ROA

has been found numerically using simulation with a set of different initial conditions. It

shows that for which sets of initial conditions the trajectories of the WMR converge to

the origin. Simulation results of the estimated ROA also show that the statesx1 andx2

are bounded, as seen inFig.4.5, but the statex3 can be extended to(−∞,+∞). The time

response of the running cost, the Lyapunov function, the states, and the control input for

the system subject to the initial conditionx0 =
[
2 π/2 0

]T
are also shown inFig.4.6.
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As seen, both functionsL(x,u) andV(x) are positive and converge to zero ast → ∞.

For comparison, an LQR controller is also designed for a linearized model of the

given nonlinear system with the weighting matrices in the running cost function corre-

sponding to a second order Taylor series approximation of the running cost. Linearizing

the resulting cost function (4.47), we again consider two weighting matrices with and

without having cross terms given by, respectively,

QLQRdiag =




1 0 0

0 4 0

0 0 1




, QLQRcross=




1 2 1

2 5 2

1 2 3




andR= 1. TheLQR(A,B,Q,R) controllers are then obtained as

KLQRdiag = [1.0000 3.0550 2.6665]

KLQRcross= [1 3 3] .

The trajectories of the path following system of the WMR, subject to the initial con-

dition xo = [7 7π/8 1]T , is shown inFig.4.7 for both LQR and HJB-based controllers.

It indicates that using both controllers stabilizes the given nonlinear system. However,

compared to LQR controllers, the proposed HJB-based controller uses a bit less control

effort, although the difference is not significant.

4.5 Experimental Results

In this section a practical application is presented to verify the effectiveness of the pro-

posed methodology experimentally. The experimental setuphas been explained in more

detail in Section 2.2.1. The kinematics equations of the WMR on thex−y plane are

ẏ(t) =V sin(ψ)

ψ̇(t) = w
(4.48)
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Figure 4.6: Time response of the states, the input, the running costL(x,u), and the
Lyapunov functionV(x) for the path following model of the WMR subject toxo =
[2 π/2 0]T

and the dynamic equation of the WMR is given by

ẇ(t) = cu (4.49)

wherec= 0.0066, andV = 0.083(m/s) is the constant velocity of the WMR. The

objective is to find optimal control gains (4.9) for a nonnegative running cost (4.11), which

force the WMR to follow the desired pathy= 0. According toFig.2.4 the states contain

the positiony, the heading angleψ, and the angular velocityω. Since the constantsV

andb in the WMR model are small values, it experimentally makes sense to select large

controller gainsKi compared to example 4.4.3. Choosing

q1 = 3002 , q2 = 202 , q3 = 36, r = 1, (4.50)

and using (4.4)-(4.5) and (4.28)-(4.29) yields the following optimal control input

u=−300y−20ψ −909.1ω −4.2sin(ψ) . (4.51)
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Fig.4.8 shows the experimental trajectories of the WMR followingthe liney = 0

subject to the following different initial conditions(y0,ψ0,w0)

(a) = (0.85,−π/3,0) , (b) = (−0.7,−π/2,0)

(c) = (0.80,π/6,0) , (d) = (−0.65,π/4,0) (4.52)

(e) = (0.5,−π/2,0) . (4.53)

As shown inFig.4.8, the trajectories converge to the desired pathy = 0. Note

however that since the running cost is not convex, one only has the guarantee that the

WMR will follow the straight line and that for a set of initial conditions it will follow
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the line in the direction corresponding toψ = 0. The direction corresponding toψ = π

also makessin(ψ) = 0 leading to a minimum of the running cost. The results of this

paper cannot exclude the possibility of the trajectories converging to this solution. The

time response of the experimental control input is shown inFig.4.9. As seen from this

figure, the higher the distance to the line and the higher the heading angle of the WMR

in its initial condition, the larger is the control input. Also notice that the control input is

always bounded, and does not saturate. As discussed in Section (2.2.1), due to hardware

and wireless communication limitations, the maximum frequency that the total WMR

system can handle is 50Hz. However, The experimental results inFig.4.8 andFig.4.9

indicate that using this sampling rate of data is quite satisfying to implement the proposed

controllers on WMR setup. It is also worthwhile to note that the time trajectories of the

WMR and the experimental control inputs are not smooth because of having noise in the

experimental setup.
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4.6 Summary

The solution to a class of third order nonlinear optimal control problems has been pre-

sented in this chapter using the concept of inverse optimality. The optimal controller and

part of the running cost are computed to satisfy the HJB equation. Once the running

cost is computed, a local Lyapunov function can be constructed from the value function.

Compared to the LQR controller associated with the weight matrices in the running cost

function corresponding to a second order Taylor series approximation of the running cost,

simulation results show that using the proposed HJB-based optimal controller leads to a

smoother responses in states and control effort in some cases. A practical application to

a WMR path following problem has also been presented to experimentally verify the ef-

fectiveness of the proposed methodology. However, it has been shown that the proposed
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method does not always guarantee that the trajectories willconverge to a given equilib-

rium point for all initial conditions. Although the proposed method is restricted to a class

of third order optimal control problems, it can potentiallybe extended to higher order

systems assuming that the dynamics are affine and the cost is quadratic in the input.
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Chapter 5

Conclusions

In this chapter the main conclusions of this work and the potential future work are stated.

In Chapter 2, the kinematics equation of motion for a rigid body has been described us-

ing different common representations such as quaternions,Modified Rodrigues Parameter

(MRP) and Euler angles. Here we were interested in quaternions rather than MRPs be-

cause not only the latter has a geometric singularity, but also the polynomial matrix entries

using quaternions are linear while they are nonlinear for the MRP representation. Thus,

a quaternion-based attitude model will pose fewer computational challenges. A system

identification and an experimental setup of a Wheeled Mobile Robot (WMR) as well as

the setup the Quanser helicopter have also been presented inChapter 2.

In Chapter 3, the main objective was to develop nonsingular rigid-body attitude

control laws using a convex formulation, and to implement them in an experimental set

up. The attitude recovery problem was first parameterized interms of quaternions, and

then two polynomial controllers using an SoS Lyapunov function and an SoS density func-

tion were developed. A quaternion-based polynomial controller using backstepping has

also been designed. The simulation results show that the proposed nonlinear controllers

guarantee the asymptotic stability of states subject to anyinitial condition. Moreover,
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the numerical simulation as well as experimental results implemented in a Quanser Heli-

copter verify that the quaternion-based controller stabilizes the closed-loop system in less

settling time and with smaller overshoot than the MRP-based controller. A few interesting

extensions to the research work in Chapter 3 would be the following:

• Decrease the number of feedback states, specifically in the case of sensor fail-

ures,while maintaining the stability

• Adding external disturbances to the system.

In Chapter 4, the solution to a class of third order nonlinear optimal control prob-

lems was presented using the concept of inverse optimality.The main contribution of

this chapter was to analytically solve the Hamilton-Jacobi-Bellman equation for a class of

third order nonlinear optimal control problems for which the dynamics are affine and the

cost is quadratic in the input. One special advantage of thiswork is that the solution is di-

rectly obtained for the control input without the computation of a value function first. The

optimal controller and part of the running cost are computedto satisfy the HJB equation.

Once the running cost is computed, a local Lyapunov functioncan be constructed from

the value function, yielding a proof certificate for stability. Moreover, simulation results

show that using the proposed HJB-based optimal controller leads to smooth responses in

states and control effort. A practical application to a WMR path following problem was

also presented to experimentally verify the effectivenessof the proposed methodology.

However, it has been shown that the proposed method does not always guarantee that the

trajectories will converge to a given equilibrium point forall initial conditions. Although

the proposed method is restricted to a class of third order optimal control problems, it can

potentially be extended to higher order systems assuming that the dynamics are affine and

the cost is quadratic in the input. Also adding noise and uncertainty parameters can be an

interesting extension to this work.

91



Bibliography

[1] L. Fortuna, G. Muscato, and M.G. Xibilia, ”A Comparison Between HMLP and HRBF for Attitude

Control”, IEEE Transactions on Neural Network, vol. 12, no. 2, 2001

[2] ”Spacecraft Robust Attitude Tracking Design: PID Control Approach”,Proceedings of the American

Control Conference, Anchorage, AK, May 8-10, 2002

[3] H. Bang, M. Tahk, and H. Choi, ”Large Angle Attitude Control of Spacecraft with Actuator Satura-

tion”’, Control Engineering Practice, Volume 11, Issue 9,pp. 989-997, 2003

[4] B.T Costic, D.W. Dawson, M.S. De Queiroz, and et al, ”Quaternion-based attitude tracking controller

without velocity measurement”,Journal of Guidance, Control, and Dynamics, vol.24, pp. 1214-1222,

2001

[5] H. Wong, M.S. De Queiroz, and V. Kapila, ”Adaptive tracking control using synthesized velocity

form attitude measurements”,automatica, vol.37, pp. 947-953, 2001

[6] R. Sharma, and A. Tewari, ”Optimal nonlinear tracking ofspacecraft attitude maneuvers”,IEEE

Transactions on Control Systems Technology, vol.12, pp. 677-682, 2004

[7] H. Leeghim, Y. Choi, and H. Bang, ”Adaptive Attitude Control of Spacecraft Using Neural Net-

works”, Acta Astronauticavol. 64, Issues 7-8, pp. 778-786, 2009

[8] L. Fortuna, G. Muscato, and M.G.Exibilia, ”A comparisonbetween HMLP and HRBF for attitude

control”, IEEE Transaction Neural Networks, vol.12, pp. 318-328, 2001

[9] A. Satyadas, and K. KrishnaKumar, ”EFM-based controllers for space station attitude control: appli-

cation and analysis”,Genetic Algorithm and Soft Computing, vol.8, pp. 152-171, 1996

92



[10] P. Guan,X.J. Liu, F. Lara-Rosano, and J.B. Chen, ”Adaptive fuzzy attitude control of satellite based

on linearization”,Proceedings of the American Control Conference, vol.2, pp. 1091 - 1096, 2004

[11] L. Yingying, and Z. Jun, ”Fuzzy attitude control for flexible satellite during orbit maneuver”,Inter-

national Conference on Mechatronics and Automation, pp. 1239-1243, ICMA 2009

[12] G. Meyer, ”Design and global Analysis of Spacecraft Attitude Control”, tech. rep., NASA Ames

Research Center, NASA TR R-361, 1971

[13] ”On the useo fE ulers theorem on rotations for the syntheiis of attitude control systems”, Ames Res.

Cen., Moffet Field, CA, NASA Tech. Note NASA TN. D-3643, 1966.

[14] P. Crouch, ”Spacecraft Attitude Control and Stabilization: Applications of Geometric Control Theory

to Rigid Body Models”,IEEE Transactions on Automatic Control, vol. 29, Issue 4, pp321-331, 1984

[15] J. Wen, and K. Kreutz-Delgado, ”The Attitude Control Problem”, IEEE Transaction Automatic Con-

trol, vol. 36, pp. 11481162, 1991

[16] W. Dwyer, ”Exact Nonlinear Control of Large Angle Rotational Maneuvers”,IEEE Transaction on

Automatic Control, Vol. AC-29, No. 9, September 1984

[17] P. Tsiotras, ”Stabilization and Optimality Results for the Attitude Control Problem”,AIAA Journal

of Guidance, Control, and Dynamics, vol. 19, no. 4, pp. 772-779 1996

[18] S. Tafazoli, and K. Khorasani ”Attitude Recovery of Flexible Spacecraft Using Nonlinear Control”,

IEEE TENCON, vol. 4, pp. 585-588, 2004

[19] S. Tafazoli, and K. Khorasani, ”Nonlinear Control and Stability Analysis of Spacecraft Attitude

Recovery”,IEEE Transactions on Aerospace and Electronic Systems, Volume 42, Issue 3, pp 825-

845, 2006

[20] H.K. Khalil, ”Nonlinear Systems”, Prentice-Hall Inc., Upper Saddle River, NJ, second edition, 1996

[21] R.A. Freeman, and P.V. Kokotovic, ”Inverse Optimalityin Robust Stabilization”,SIAM Journal on

Control and Optimization, vol. 34, no. 4, pp. 1365-1391, 1996

93



[22] S. Bi, H. Ji, and S. Chen, ”Robust Attitude Control of Aircraft Based on Partitioned Backstepping”,

IEEE International Conference on Control and Automation, Christchurch, New Zealand, December

9-11, 2009

[23] R. Kristiansen, P.J. Nicklasson, and J. Tommy Gravdahl, ”Quaternion-Based Backstepping Control of

Relative Attitude in a Spacecraft Formation”,Proceedings of the 45th IEEE Conference on Decision

and Control, Manchester Grand Hyatt Hotel San Diego, CA, USA, December 13-15, 2006

[24] R. Kristiansen, P.J. Nicklasson, and J.T. Gravdahl, ”Satellite Attitude Control by Quaternion-Based

Backstepping”,IEEE Transactions on Control Systems Technology, Vol. 17, No. 1, January 2009

[25] R. Kristiansen, and P.J. Nicklasson, ”Satellite Attitude Control by Quaternion-Based Backstepping”,

American Control Conference,June 8-10, USA, 2005

[26] A.P. Aguiar, D.B. Dacic, J.P. Hespanha, and P. Kokotovic, ”Path-following or reference-tracking?

An answer based on limits of performance”,in Processing 5th IFAC/EURON Symposium Intell. Au-

tonomous Vehicle, Lisbon, Portugal, July 2004

[27] A. Pedro Aguiar, and Joao P. Hespanha, ”Trajectory-Tracking and Path-Following of Underactuated

Autonomous Vehicles With Parametric Modeling Uncertainty”, IEEE TRANSACTIONS ON AUTO-

MATIC CONTROL, vol. 52, no. 8, August 2007

[28] B. Wie, H. Weiss, and A. Araposthatis, ”Quaternion feedback regulator for spacecraft eigenaxis

rotation”,Journal of Guidance and Control Dynamics, vol. 12, no. 3, pp. 375380, 1988

[29] S.M. Joshi, A.G. Kelkar, and Y.Wen, ”Robust attitude stabilization of spacecraft using nonlinear

quaternion feedback”,IEEE Transaction on Automatic Control, vol. 40, no. 10, pp. 18001803, Octo-

ber 1995

[30] H.B. Jensen, and R. Wisniewski, ”Quaternion feedback control for rigid-body spacecraft”,the Pro-

cessing of AIAA Guidance and Navigation Control Conference, Montreal, QC, Canada, 2001.

[31] S.N Singh, and A.Iyer, ”Nonlinear decoupling sliding mode control and attitude control of space-

craft”, IEEE Transaction on Aerospace and Electronic Systems, vol. 25, pp. 621-633, 1989

[32] Y.P. Chen, and S.C. Lo, ”Sliding-mode control design for spacecraft attitude tracking maneuvers”,

IEEE Transaction on Aerospace and Electronic Systems, vol. 29, pp. 1328-1333, 1993

94



[33] J.L Crassidis, and F.L. Markley, ”Sliding mode controlusing Modified Rodrigues Parameter”,Jour-

nal of Guidance, Control, and Dynamics, vol. 19, pp. 1381-1383, 1996

[34] R.D. Robinet, and G.G. Parker, ”Spacecraft Euler parameter tracking of large-angle maneuver via

sliding mode control”,Journal of Guidance, Control, and Dynamics, vol. 19, 1996

[35] C. Pukdeboon, and A.S.I. Zinober, ”Optimal Sliding Mode Controllers for Attitude Tracking of

Spacecraft”,18th IEEE International Conference on Control Applications, Part of 2009 IEEE Multi-

conference on Systems and Control, Saint Petersburg, Russia, July 8-10, 2009

[36] S. Bharadwaj, M. Osipchuk, K.D. Mease, F.C. Park, ”Geometry and Inverse Optimality in Global

Attitude Stabilization”,Journal of Guidance, Control and Dynamic, vol. 21, no. 6, pp. 930939, 1998.

[37] T. Lee, N. H. McClamroch, and M. Leok, ”Optimal AttitudeControl for a Rigid Body with Symme-

try”, Proceedings of the American Control Conference, New York City, USA, July 11-13, 2007

[38] W. Luo, Y. Chu, and K. Ling, ”Inverse Optimal Adaptive Control for Attitude Tracking of Space-

craft”, IEEE Transactions on Automatic Control, vol. 50, no. 11, November 2005

[39] J.H. Lee, R.W. Diersing, and C.H. Won, ”Satellite Attitude Control Using Statistical Game Theory”,

The Processing of the American Control Conference, Seattle, Washington, USA, June 11-13, 2008

[40] M. Krstic, I. Kanellakopoulos, and P. Kokotovic, ”Nonlinear and Adaptive Control Design”, New

York: Wiley, 1995.

[41] A. Iyer, Sahjendra, and N. Singh, ”Nonlinear adaptive attitude control of satellite using gyrotorquers”,

Proceeding of the 29th Conference on the Decldon and Control, Honolulu, Hawaii, December 1990

[42] C. Li, and G. Ma, ”Adaptive Backstepping Control for Attitude Tracking of a Spacecraft”,Symposium

on IEEE International Industrial Electronics,pp. 83-88, 2007

[43] S.N. Singh, and W. Yim, ”Nonlinear Adaptive SpacecraftAttitude Control using Solar Radiation

Pressure”,IEEE Transactions on aerospace and Electronic Systems, vol. 41, no. 3, July 2005

[44] W. Su, C. E. Souza, and L. Xie, ”H∞ Control for Asymptotically Stable Nonlinear Systems”,IEEE

Transactions on Automatic Control, vol. 44, no. 5, May 1999

95



[45] M. Elgersma, G. Stein, M.R. Jackson, and J. Yeichner, ”Robust controllers for space station momen-

tum management”,IEEE Control Systems, vol. 12, no. 5, pp. 1422, 1992.

[46] W. Kang, ”NonlinearH∞ control and its applications to rigid spacecraft”,IEEE Transactions Auto-

matic Control, vol. 40, pp. 12811285, 1995

[47] W. Luo, Y.C. Chu, and K.V. Ling, ”H∞ Tracking Control of a Rigid Spacecraft”,Proceeding of the

2004 American Control Conference, Boston, Massachusetts, June 30-July 2, 2004

[48] A. papachristodoulou and S. Prajna, ”A Tutorial on Sum of Squares techniques for Systems Analy-

sis”, Proceedings of American Control Conference, pp. 2686-2700, 2005.

[49] P.A. Parrilo, ”Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness

and Optimization”, PhD dissertation, Calif. Inst. Technol., Pasadena, CA, 2000

[50] S. Prajna, A. Papachristodoulouand, P. Seiler, and P.A. Parrilo, ”Sum of Squares Optimization Tool-

box for MATLAB, User’s Guide”, 2004.

[51] K. Krishnaswamy, G. Papageorgiou, S. Glavaski, and A. Papachristodoulou, ”Analysis Of Aircraft

Pitch Axis Stability Augmentation System Using Sum Of Squares Optimization”,Proceeding of

American Control Conference, USA, June 8-10, 2005

[52] A. Ataei-Esfahani, ”Robust Control Design for Aircrafts: Case Studies Using Semidefinite Program-

ming Approach”,A Thesis in Mechanical Engineering, Pennsylvania State University, 2006.

[53] A. Ataei-Esfahani, and Q, Wang, ”Robust Nonlinear Control Design for a Hypersonic Aircraft Using

Sum of Squares method”,Proceedings of the ASME 2010 Dynamic Systems and Control Conference

(DSCC), September 12-15, Cambridge, Massachusetts, USA, 2010

[54] N. Gollu and L. Rodrigues, ”Control of Large Angle Attitude Maneuvers for Rigid Bodies Using

Sum of Squares”,IEEE proceedings American Control Conference, pp. 3156-3161, 2007.

[55] H. Ichiharay, and M. Kawata, ”Attitude Control of Acrobot by Gain Scheduling Control Based on

Sum of Squares”,2010 Proceeding of American Control Conference, Baltimore, MD, USA, June

30-July 02, 2010

96



[56] S. Prajna, A. Papachristodoulou and F. Wu, ”Nonlinear Control Synthesis by Sum of Squares Opti-

mization: A Lyapunov-based Approach”,Proceeding of the ASCC, pp. 157-165, 2004.

[57] S. Prajna, A. Papachristodoulou and A. Rantzer, ”Nonlinear Control Synthesis by Convex Optimiza-

tion”, IEEE Transactions on Automatic Control, Vol. 49, no.2, pp. 310-314, 2004.

[58] V.A. Chobotov, ”Spacecraft Attitude Dynamics and Control”, Krieger Publishing Company, pp. 1-32,

Malabar, Florida, 1991.

[59] C. Grubin, ”Derivation of the Quaternion Scheme via theEuler angle and Axis”, Journal Spacecraft

and Rockets, vol. 7, no. 10, October, 1970

[60] B. Wie, ”Space Vehicle Dynamics and Control”, AIAA Education Series, Second Edition, Blacks-

burg, Virginia, 2008

[61] N. Gollu, ”Development of Novel Satellite Attitude Determination and Control Algorithms based on

Telemetry Data from an Earth Satellite”, PHD Thesis, Concordia University, 2008

[62] Pichwick, World Wide Web,http://fr.wikipedia.org/wiki/Angles_d’Euler

[63] T. Wen, S. Seereeram, and D.S. Bayard, ”Nonlinear Predictive Control applied to Spacecraft Attitude

Control”, Proceedings of the American Control Conference, 1997

[64] P.C. Hughes, ”Spacecraft Attitude Dynamics”, John Wiley & Sons, Inc., TL1050.H84, pp. 93-100

1986.

[65] M.J. Sidi, ”Spacecraft Dynamics and Control: A Practical Engineering Approach”, Cambridge Uni-

versity Press, pp. 318-327, 1997.

[66] A.J. TurnerAn, ”Open-Source, Extensible Spacecraft Simulation And Modeling Environment Frame-

work”, MSc Thesis, Aerospace Engineering Department, Virginia Polytechnic Institute and State

University, USA, 2003

[67] A. Rantzer, ”A dual to Lyapunovs stability theorem”, System Control Letter, vol. 42, no. 3, pp.

161168, 2001

97

http://fr.wikipedia.org/wiki/Angles_d'Euler


[68] R. Endress, ”Modeling and Control of Two Degrees of Freedom Quanser Helicopter”, MSc Thesis,

Department of Mechanical and Industrial Engineering, Montreal, Quebec, Canada, 2008

[69] T. Fukao, ”Inverse optimal tracking control of a nonholonomic mobile robot”,in Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, pp. 14751480,

2004

[70] R. Kalman, ”When is a linear control system optimal”,ASME Transactions, Journal of Basic Engi-

neering, vol. 86, pp. 51-60, 1964

[71] F. Thau, ”On the inverse optimum control problem for a class of nonlinear autonomous systems”,

IEEE Transactions on Automatic Control, vol. 12, no. 6, pp. 674681, 1967

[72] M. Krstic, and P. Tsiotras, ”Inverse optimal stabilization of a rigid spacecraft”,IEEE Transactions

on Automatic Control, vol. 44, Issue 5, pp. 1042-1049, 1999

[73] J. Guojun, ”Inverse Optimal Stabilization of a Class ofNonlinear Systems”,Proceedings of the 26th

Chinese Control Conference, pp. 226-230, 2007

[74] M. Kanazawa, S. Nakaura, and M. Sampei, ”Inverse optimal control problem for bilinear systems:

Application to the inverted pendulum with horizontal and vertical movement”,IEEE Conference on

Decision and Control, pp. 2260-2267, 2009

[75] K. Hongkeun, B. Juhoon, S. Hyungbo, and J.H. Seo, ”Locally optimal and globally inverse optimal

controller for multi-input nonlinear systems”,IEEE American Control Conference,pp. 4486-4491,

2008

[76] X. Cai, and Z. Han, ”Inverse optimal control of nonlinear systems with structural uncertainty”,IEEE

Proceedings of Control Theory and Applications, vol. 152, pp. 79-83, China, January 2005

[77] T. Fukao, T. Kanzawa, and K. Osuka, ”Inverse optimal tracking control of an aerial blimp robot”,

Proceedings of the 5th International Workshop on Robot Motion and Control, pp. 193-198, June

23-25, 2005

[78] K. Dupree, P.M. Patre, M. Johnson, and W.E. Dixon, ”Inverse optimal adaptive control of a nonlinear

Euler-Lagrange system, part I: Full state feedback”,Proceedings of the 48th IEEE Conference on

98



Decision and Control, held jointly with the 28th Chinese Control Conference, pp. 321-326, 15-18

December, China, 2009

[79] D.E. Kirk, ”Optimal Control Theory: An Introduction”,Dover Publications Inc., pp. 86-96, 1998

[80] L. Rodrigues, ”An Inverse Optimality Method to Solve a Class of Second Order Optimal Control

Problems”, submitted toAutomatica.

[81] D. Egan, ”The Emergence of ZigBee in Building Automation and Industrial Controls”,IEE Comput-

ing & Control Engineering, vol. 16, no. 2, pp. 14-19, 2005

[82] D. V. Gadre, ”Programming and Customizing the AVR Microcontroller”, mcgraw-Hill, ISBN 0-07-

134666-X, 2001

[83] R.C. Gonzalez, and R.E. Woods, ”Digital Image Processing”, Prentice Hall, SBN 0201180758. ,

2002

[84] O. Egeland, and J. T. Gravdahl, ”Modeling and Simulation for Automatic Control”, Trondheim,

Norway: Marine Cybernetics, 2002.

99


	Introduction
	Literature Review
	Contributions of the Thesis
	Structure of the Thesis

	Preliminaries and Experimental Setup
	Attitude Kinematics and Dynamics of a Rigid Body
	Path Following Control Problem

	Large Attitude Control of Rigid Bodies Using Quaternions
	Introduction
	Background
	Preliminaries on Attitude Control Problem
	Attitude Control Problem Solution
	Simulations and Experiments
	Summary
	Appendix

	An Inverse Optimality Approach To A Third Order Optimal Control Problem
	Introduction
	Background
	Optimal Control Problem Definition and Solution
	Examples and Numerical Simulations
	Experimental Results
	Summary

	Conclusions

