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ABSTRACT

Optimization-Based Control Methodologies with Applicasan Autonomous Vehicle

Behnam Gholitabar Omrani

This thesis includes two main parts. In the first part, themzaintribution is to
develop nonsingular rigid-body attitude control laws gsan convex formulation, and
implement them in an experimental set up. The attitude mgoproblem is first pa-
rameterized in terms of quaternions, and then two polynbeoaatrollers using an SoS
Lyapunov function and an SoS density function are developeglaternion-based poly-
nomial controller using backstepping is also designed t&enthe closed-loop system
asymptotically stable. Moreover, the proposed quaterbased controllers are imple-
mented in a Quanser helicopter, and compared to the polgi@mntrollers and a PID
controller experimentally.

The main contribution of the second part of this thesis isnalgically solve the
Hamilton-Jacobi-Bellman equation for a class of third ordenlinear optimal control
problems for which the dynamics are affine and the cost is mqtiadn the input. One
special advantage of this work is that the solution is diyembtained for the control input
without the computation of a value function first. The valuedtion can however also be
obtained based on the control input. Furthermore, a Lyapturation can be constructed
for a subclass of optimal control problems, yielding a prostfificate for stability. Using

the proposed methodology, experimental results of a pdtwimg problem implemented



in a Wheeled Mobile Robot (WMR) are then presented to verify thecg¥eness of the

proposed methodology.
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Chapter 1

Introduction

This chapter includes a review of the relevant literaturévem main topics of the thesis:
the attitude control of a rigid body and inverse optimalitgtirod. The main contributions

and the structure of this thesis are also stated in this ehapt

1.1 Literature Review

This section will be broken into two subsections. The first paesents a review of the
relevant literature on the attitude control of a rigid boayd the second part will review

the literature of inverse optimality approach.

1.1.1 Attitude Control of a Rigid Body

An attitude recovery maneuver is used when a malfunctiectdfthe attitude of the rigid
body and throws it into a spin. The primary task of the atgtaedntrol system is to stabi-
lize the attitude of the rigid body, specially satellitepagst external torque disturbances
generated by aerodynamic drag effects, solar radiatiowanted wind torques, a sud-

den seizure of a momentum wheel, and so on. In most rigid bpglications such as



satellite, spacecraft, robot manipulators and high peréorce air vehicles, large angle
maneuvers are required to be performed for different missido this aim, an attitude
recovery should be implemented to bring back the rigid badthe zero attitude state
vector, subject to any initial condition. To fully simulede attitude problem, a rigid body
is characterized by nonlinear attitude kinematics.

Attitude dynamics and its control has been an importantctapthe control field
since the first humans made an artificial satellite, Sputmdiich was build and launched
on October ¥, 1957. The actual numbers of journal and conference pateetmical re-
ports and books published in this area is in hundreds and quérwhelming. Therefore,
the literature review given in the following paragraphsl give a brief review of attitude
control of a rigid body.

Several research studies have been conducted in the padetages that inves-
tigate attitude control problem using a variety of contthniques ranging from the
classical PIDI[1], [2] and[[3], and feedback linearizaticontrol [18] , to adaptive and
optimal control [4], [5] and[[5], and intelligent-baseditattle control approaches such
as neural networks [7] and][8], and fuzzy logic¢ [9], [10] add]]. The attitude control
problem was first developed by Meyer [12] and![13], and thes @dended by several
researchers. Using a Lyapunov approach, Meyer [13] focosegbpropriate attitude rep-
resentations of spacecraft dynamic models.[ In [14] Crout¢bnels Meyer’s work, and
presents necessary and sufficient conditions for the dtattiiity of a spacecraft in the
case that the gas jet actuators yield one, two, or three ertkemt torques.

A general framework for the analysis of the attitude tragkoontrol problem for
a rigid body is presented in [15], where a large family of glity stable control laws
are obtained by using the globally nonsingular quaterneprasentation in a Lyapunov
function candidate. I [16] the rigid body attitude confpobblem with external torques

is transformed into an equivalent linear form implemergdi) three double integrators.
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The Linearizing transformations themselves are formdlatevector algebra, requiring
no integrators for implementation. Tsiotras in/[17] appléeLyapunov function that in-
cludes a sum of quadratic and logarithmic terms in the amgicities and kinematic
parameters resulting in a linear control design. The proldé the attitude recovery of
flexible spacecraft is also investigated [in][18] and [19hgsihe feedback linearization
control and generating the control error signal based oxtia¢ernion addition.

Recently, backstepping approach, sliding mode controllimesr H., control, opti-
mal and adaptive control have also been applied to attitode@ problems. Backstep-
ping control approach is mostly used in attitude problerus,td its remarkable capability
in designing cascaded systems. The advantage of intedpat&stepping compared with
other control methods lies in its design flexibility, due t® iecursive use of Lyapunov
functions. The main concept of backstepping control has bgamined in general in [20]
and [21], and then has been utilized in several attituderobptoblems. For example,
[22] proposes a robust nonlinear attitude control methodiicraft based on partitioned
backstepping. Reference [23] presents a solution to thdgmobf controlling relative at-
titude in a leader-follower spacecraft formation, withdemn optimality in rotation path
for the follower spacecraft. Referencesl|[24] and [25] focasdackstepping approach
for controlling the attitude of the European Student Eanthiter (ESEO). In these papers
a tracking controller is presented to stabilize the atétafla micro satellite via integrator
backstepping and quaternion feedback. The backsteppm@agh was also applied to
attitude control of satellites i [28], [29] and [30].

Sliding mode control is also one of the most important apghnea to handle the
attitude control problems with large uncertainties, nosdirities, and bounded external
disturbances. The main drawback of the sliding mode corgiitd discontinuous switch-
ing control law (sign function) which results in chatterinigp [31], [32], [33], and [34]

sliding mode controller have been investigated for atgtedntrol problem in term of
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Euler angles, Rodrigues parameters, Modified Rodrigues deas) and Quaternions,
respectively. The most recent work in [35] also studies tptinoal sliding mode control
laws using integral sliding mode control (ISM) for some sgaaft attitude tracking prob-
lems. In this paper, integral sliding mode control combgnihe first order sliding mode
and optimal control is applied to quaternion-based spadfieattitude tracking maneuvers
with external disturbances and an uncertainty inertia imatr

Using a control Lyapunov function approach,[36] desigrbglly stabilizing feed-
back laws that have desirable optimality with respect td tawsctions, penalizing state
errors and control effort. Their performance is also corapdo the performance of pre-
viously developed proportional-derivative type contralt. It is shown that the new
control laws achieve the same or greater stabilizationwételess control effort. In[[37]
a discrete optimal control problem for attitude dynamics oigid body with symmetry,
applied to a 3D pendulum, is presented. The symmetry in titedg dynamics system
yields a conserved quantity, causing a fundamental singula optimal control prob-
lems. Using an inverse optimal adaptive Control, the attittrdcking control problem
of a rigid body with external disturbances and an uncertantia matrix is addressed in
[38]. This is achieved by the inverse optimality approacthaut solving the associated
Hamilton Jacobilsaacs partial differential equation clise In [6] a nonlinear optimal
controller has been devised for the attitude tracking gnwbbf spacecraft maneuvers
through HamiltonJacobi formulation, applying a penaltyamgular velocities and attitu-
dinal kinematics. Reference [39] presents attitude cowiral satellite using a statistical
game (Minimal Cost Variance) control. Throughout the sirtiakes, statistical game con-
trol has an extra degree of freedom to improve the performaartd reduce the overshoot
compared to eithdfl; control andH,/H; control.

Nonlinear adaptive control is also one of the recent coratpgroaches in attitude



control problem. Adaptive control method is a natural ceda@manipulate uncertain pa-
rameters and has been applied to the attitude trackingatqrtblem of spacecraft [40].
For instance,[[41] presents a nonlinear adaptive contwlfta the attitude control of
satellites using gyro torquers such that large rotatiorealenvers can be performed. The
problem of adaptive attitude tracking control for a rigichspcraft with uncertain inertia
matrix is addressed in [42] and [43]. Using MRP attitude reprgation and the back-
stepping approach, the adaptive attitude tracking coptrablem for a rigid spacecraft
subject to inertia uncertainty is investigated(in![42]. &3] a nonlinear adaptive control
law based on a backstepping design technique is deriveldarantrol of the pitch angle.
In nonlinear optimal control theory, nonlineldg, control method is a potential ap-
proach to the attitude control problem with external disturces. To usE. approach, a
control problem is expressed as a mathematical optimizatioblem, where the desired
controller is obtained by solving this optimal probleids, control mainly includes two
issues. The first issue is to make a given system stable argbtoed one is to ensure
that theL,-gain, from the disturbance input to the controlled outpdtthe closed-loop
system is not larger than a certain value [44]. However, tammrawback of this method
is the difficulty in solving the associated Hamilton-Jaetdaiacs (HJI) partial differential
equation, although there have been a few numerical appesdotsolve the HJI equation.
A linear Ho-control method based on the linearization of a space statiodel is used in
[45]. In [46] a state feedbadH.-suboptimal control problem for a rigid spacecraft with
three control torques and disturbances is addressed. Timdtbla-Jacobi inequality as-
sociated with a corresponding state feedbdgksuboptimal control problem is globally
solved in this paper. Reference [47] extends the resultskifdad [46] to the attitude
tracking control problem of a rigid spacecraft with extdrdigturbances. Using the in-

verse optimal control method, it is shown that a nonlindgroptimality with respect to



the extended disturbance is achieved without obtainingextdsolution to the HJI equa-
tion.

The aforementioned approaches so far are mainly based guhga and storage
functions for analysis. The main drawback of these appresdh that finding or con-
structing a Lyapunov function is not trivial, and there doesexist a general systematic
method to find a Lyapunov function for a given system. Thegsftinding or constructing
a Lyapunov function is inevitably restricted to some speafructure of known systems
with small state dimensions. For a general nonlinear systemf (x), in the case in
which both vector fieldf and the Lyapunov function candidat#eare polynomial, the
Lyapunov conditions are basically polynomial non-neggticonditions, which can be
NP hard to check [48]. However, most recently a new companatly efficient nonlinear
method using sum of squares (SoS) approach was proposedidy P&]. Using this
approach, the non-negativity conditions are relaxed to&oticate functions (of appro-
priate polynomials) in the form of semidefinite programm{8@P) (see_3.313 for more
detail). Therefore, using SoS approach, not only the Lyapaonditions are checked, but
also a suitable Lyapunov function can be constructed. Tegarbthe SoS decomposition
problem to the corresponding SDP formulation, a freelyitalsée MATLAB toolbox, the
software SOSTOOLS [50] has been developed. This recenbagpiphas so far been used
for several applications including aircrafts [54b2], satellites[[54], and Robots [55].

Two of the most recent approaches in nonlinear control ar® B@punov based
controller [56] and SOS density function based control%&f]| First and foremost, the
key idea that enables us to utilize SoS in solving the atitprbblem is that the rigid
body model using either quaternions or MRP can be represéyt@dlynomial vector
fields [54]. For a general nonlinear systers= f(x) + g(x)u, where f(x) andg(x) are
polynomials, searching for a control Lyapunov function ancbntroller simultaneously

is not a convex problem. However, using a so-called Densitgtionp(x) [57] leads to a
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convex formulation. Moreover, for a nonlinear system infdren of x = f (X)x+g(x)u, an
SOS Lyapunov based controller can also be used to find a poighoontroller satisfying
conditions of the Lyapunov’s stability theorem [20]. As tmest recent work in [54], an
SOS Lyapunov based control has been used to design a polgihomtroller for a rigid-

body attitude problem, using Modified Rodrigues ParameMRH).

1.1.2 Optimal Control Problems: An Inverse Optimality Approach

The sufficient condition for solving an optimal control pleim is to find the solution of
the Hamilton-Jacobi-Bellman (HJB) equation. There is noeystic analytical solution
at present for HIB equation, which is a nonlinear partidedgntial equation. Therefore,
finding a value function that satisfies the HJB equation fayr@inear system is quite chal-
lenging. Avoiding solving the HJB directly, inverse optiliais an alternative method
to solve the nonlinear optimal control problem. The invespémal problem is differ-

ent from the direct one in the point that the latter seeks drotber which minimizes a

given cost, while the former is concerned with finding a colfér which minimizes some
meaningful cost dependent on the controller [69]. Usingiae optimality approach, it

can be shown that a controllefx) is inverse optimal with respect to a cost functional

t
J(x,u) :t”ﬂ(l,{/o (I(x)+uTR(x)u)} (1.1)
wherex andu are the state vector and the control input vector, respygtix) is positive
definite and radially unbounded, af{x) is a positive definite matrix for ait. Inverse
optimal control method not only finds a stabilizing contralv| but also determind$x)
andR(x) yielding a meaningful cost function. Therefore, the ineeoptimal problem is
easier than the direct one in whitfx) andR(x) are given, and also where one has to

solve an HJI partial differential equation.

Optimal control problems and inverse optimality have beewlisd in the sixties
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focusing mostly on linear quadratic problems driven by sapagce applications (see for
example[[70] and [71]). Nonlinear optimal control probleb@sed on the concept of the
inverse optimality have been revisited by several reseascéuch as [72]-[75] and [21].
In terms of applications| [72] presents an inverse optimatmwl| approach for regulation
of a rotating rigid spacecraft by solving a HIB equation. Tdsulting design includes a
penalty on the angular velocity, orientation, and the aarbrque, where the weight in
the penalty on the control depends on the current state amdaees for states away from
the origin. Inverse optimal stabilization of a class of noeér systems is also investigated
in [73] resulting in a controller optimal with respect to aanéengful cost function. The
main drawback of the inverse optimality approach used i) ff@l [73] is that the one
requires the knowledge of a control Lyapunov function anthhikzing control law of a
particular form.

Focusing on the inverse optimal control of nonlinear systeth a structural un-
certainty, [76] derives a Lyapunov-based theorem for aalglasymptotic stability which
yields a less conservative condition for the inverse ogtitoatrol problem. In[[74] an
optimal feedback controller for bilinear systems is obgdirthat minimizes a quadratic
cost function. The proposed inverse optimal control desgiso applied to the problem
of the stabilization of an inverted pendulum on a cart withizumtal and vertical move-
ment, where the control performance of the system can bly éased using the proposed
guadratic cost function.

Using a control Lyapunov function (CLF) and Sontag’s formufeerse optimal
tracking control is experimentally applied to a nonholommobile robots with two ac-
tuated wheels and an autonomous surveillance aerial bhirf8j and [77], respectively.
The proposed optimal controllers minimizing a meaningfstcfunction guarantee the
robustness of these systems with respect to large undetairin [78] an inverse op-

timal adaptive controller, based on a Lyapunov analysideigloped to asymptotically
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minimize a meaningful performance index. Using the resgladaptive controller based
on inverse optimality, the generalized coordinates of dinear Euler-Lagrange system
asymptotically track a desired time-varying trajectorgpiee LP (linear in the parame-
ters) uncertainty linear in the dynamics. A Lyapunov analysalso provided to derive
a cost functional with a positive integrand that penalibesdtates and control, and has a
terminal penalty on the parameter estimation error.

A sufficient condition for an optimal control problem is todithe solution to a
Hamilton-Jacobi-Bellman (HJB) equation [79], which is a noe&r partial differential
equation and difficult to solve analytically. Therefore,t@ml control problems are gen-
erally solved by numerical techniques. However, there isxgiicit solution for a given
general format of the control input as a derivative of theugaiunction if the dynamic
model is affine and the cost is quadratic in the input. This id@s first used in [80] to
solve a class of second order problems, and will then be d&teto a class of third order
optimal problems in chaptd 4.

The experimental motivation of this theoretical work confiesn the dynamics
model of a Wheeled Mobile Robot (WMR) on tie- y plane for path following of the
straight liney = 0 at a constant velocity, as showrFig2.4. Given this nonlinear system,
our interest is to simultaneously search for a general fdrenaontrol input, in terms of
the states and the nonlinear tesim(y), and a functionQ(x) that together satisfy the
HJB equation. Therefore, it is assumed that the cost fumétidhe sum of a quadratic
term in the input and the states and an unknown t&xx) that should be determined.
Moreover, the resulting value function will also be a locgapunov function that proves
the asymptotic stability of the WMR dynamic model. This pathdwing problem and
its experimental setup is discussed in more detail in Cha@teiThe proposed method
in this paper is more general for a class of third order nealirsystems, where the path

following problem is an special case of our optimal control.
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Departing from previous methods, the proposed method stktasis can directly
find a solution for the control input without the computatioha value function (see
Chapter[# for more detail). The value function can howeves bis obtained based on
the control input. Furthermore, a Lyapunov function can @estructed for a subclass of
optimal control problems, yielding a proof certificate ftasility. The proposed method-
ology will then be applied to the dynamic model of a Wheeled NMéoRobot (WMR) on

thex —y plane for path following of the straight line= 0 at a constant velocity.

1.2 Contributions of the Thesis

The main contributions of this thesis are the following:

e To develop nonsingular rigid-body attitude control lawsngsa convex formula-
tion, and implement them in an experimental set up. The shpsaposes and
compares, both numerically and experimentally, two SumafeBes (SoS)-based
controller design approaches for large attitude recovémga bodies. The pro-
posed quaternion-based controllers are also implementadluanser helicopter,

and compared to the polynomial controllers and a PID cdetrekperimentally.

e To analytically solve the Hamilton-Jacobi-Bellman equatfor a class of third
order nonlinear optimal control problems for which the dyinas are affine and
the cost is quadratic in the input. The proposed solutiorhotkis based on the
notion of inverse optimality with a variable part of the costbe determined in
the solution. One special advantage of the proposed meshibhi the solution is
directly obtained for the control input without the comgida of a value function
first. The value function can however also be obtained basdtecontrol input.

Furthermore, a Lyapunov function can be constructed forkalass of optimal
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Figure 1.1: Structure of the Thesis

control problems, yielding a proof certificate for staliliThe proposed approach
is also implemented in a Wheeled Mobile Robot (WMR) for path felfgy of a

line to experimentally verify the effectiveness of this hmedology.

1.3 Structure of the Thesis

The thesis is structured as showrtiig [1.1. In Chaptef 12, a brief review of the kinematics
equations of motion for a rigid body is given. The experinaésetup for 1-DOF model

of a Quanser helicopter and path following of a Wheeled MoRiéot (WMR) are also

11



explained. Moreover, the dynamic model for path followirfgttze straight liney = 0
of a WMR on a plane is stated in this chapter. Next, the rigidybattitude problem
is first parameterized in terms of quaternions. Then polyiabeontrollers based on
an SoS Lyapunov function, an SOS density function and a beggsg controller are
proposed to make the closed-loop system asymptoticalbjestad practical application
implemented in a Quanser helicopter is also presented iy Ylee numerical simulation
results in Chaptef]3. Subsequently, using an inverse optymmakthod a class of third
order nonlinear optimal control problems is analyticatyved in Chaptef 4. A practical
application to a WMR path following problem is also preseritedxperimentally verify
the effectiveness of the proposed methodology. Finallychesions are drawn in Chapter

[B. Chapterl 4, and part of Chapter 2 are mainly based on the folippaper:

e Behnam Gholitabar Omrani, Camille Alain Rabbath, and Luis Rpg#s, "An In-
verse Optimality Method to Solve a Class of Third Order Opti@antrol Prob-
lems”, accepted to be published in tAeceedings of the 49th IEEE Conference on

Decision and ContrglAtlanta, Georgia, December 15-17, 2010
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Chapter 2

Preliminaries and Experimental Setup

This chapter includes two main sections. In the first sedtioematics equations of mo-
tion for a rigid body is described using different commonresgntations such as quater-
nions, Modified Rodrigues Parameter (MRP) and Euler angles aftiiude dynamics and
experimental set up of a 1-DOF rigid body for Quanser hebeofs then described. In
the second section, the dynamic model for path followingbfam of a Wheeled Mobile
Robot (WMR) is given. A system identification and an experimiesgtup of a Wheeled

Mobile Robot (WMR) is also presented.

2.1 Attitude Kinematics and Dynamics of a Rigid Body

In this section, reference frames are first defined, and timemiatics equations of motion
for arigid body using different representations are bridfbcussed. Moreover, a brief re-
view of the gradient and the divergence properties is giwdmch will be used throughout

this thesis.
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Figure 2.1: lllustration of the orbitdf, and inertialF reference frames (adopted from

[66])
2.1.1 Reference Frames

Since attitude dynamics refers to the orientation of oneregfce frame with respect to
another due to external forces and torques, the definitiorfefence frames, or coordi-
nate systems, are important. To fully describe an attitadeet of reference frames are
defined here. The most common reference frames used forildagcthe attitude of a

rigid body, specially satellites, are the inertial frame prbital frame, the body frame,

and the principal axis frame [66].

Inertial Frame
An inertial frame is a non-rotating reference frame in a fispdce. A common
representation of an inertial frame is Earth-Centered iggiECI) frame, in contrast to

the Earth-centered Earth-fixed (ECEF) frames which rotaenimertial space in order

14



to remain fixed with respect to the surface of the Earth. EGhé&as illustrated irFig.
@J). Theiy axis points from the center of the Earth to the vernal equittoai, axis is
aligned with the Earth’s rotation axis and perpendiculahtequatorial plane, an’g;lis

in the equatorial plane completing a right-hand triad. Tats lalso denote unit vectors.

Orbital Frame

The orbital frame is a non-inertial frame attached to thdereof mass of the rigid
body, and moves with the body in orbit. The motion of the fraslepends only on the
orbit and is not effected by body rotations. As illustrate&ig. 2.1, theO, axis points the
direction from the spacecraft to the Earth (nadir dire()ti@y is the direction opposite
to the orbit normal, an®, completes the orthonormal triad @, and Ox. Note that
this frame is non-inertial because of orbital accelerasind the rotation of the reference

frame.

Body Frame

A body frame has its origin at the center of a rigid body. Sitigs frame is fixed
to the rigid body, it is a non-inertial frame. Body frames aseful for relating objects on
a rigid body relative to one another. It also describes howgid body is oriented with

respect to an external frame (such as the orbital or indréades).

Principal Axis

This frame is a specific body-fixed reference frame with thessaadigned such that
the moment of inertia matrix is diagonal. These moments eitia are called the prin-
cipal moments of inertia. In dynamic modeling, it is usefublescribe the system in the

principal axes frame.
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Figure 2.2: Euler Angles (rolp, pitch 8, and yawy) [62]

2.1.2 Attitude Kinematics

There are several common ways to describe the attitude aficabbbdy like Direction

cosine matrix, Euler axis and angle, Modified Rodrigues Patan{iMRP), Euler angles,
and quaternions_[65]. The three commonly used represensatised in a rigid body
attitude control is briefly discussed here: Euler AnglesdMed Rodrigues Parameters,

and Quaternions.

Euler Angles

The Euler angle rotation is defined as successive anguktions about the three
orthogonal frame axes. The first rotation is about any axiee Jecond rotation is about
either of two axes not used for the first rotation, and therlatstion is about either of two
axes not used for the second rotation. There are totally tk’aferder combination by

which the rotation can be performed. However, It is commatetiine the Euler roll angle
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() about thex body axis, the pitch anglé] about they body axis, and the yaw anglgy)
about thez body axis. Note that the transformation from one referenamé to another
iS non-unique, and also that any other definition is accéptab long as it follows the
correct order of the rotations. Suppose we will perform thergation of a body frame
Fy, relative to a fixed inertial framg; using the transformatiogy — 8 — @ successively
about thez, y, andx body axes, as shown Fig.[2.2. The corresponding principal rotation

matrices are expressed in the following matrix form [65]

1 0 O cCo 0 - Cy Sy O
R«®) |0 Cop Sp| RO |0 1 0 |.R()|-Sy Cy 0 (2.1)
0 —Sp Co S 0 CO 0o 0 1

whereSa = Sin(a), andCa = Coq ). For this transformation, the rotation matrix will

be described by

Xp
| = ] ][] ¥] = [se] | o2
Z
where
CocCy CoOsy _s6
[Rwecp} = | —CoSPY+SpSOCY CeCy + SpSOSy  SpCo (2.3)

SpSY +CeSECY —SeCyY +CeSeSy CeCo

The roll-pitch-yaw derivatives are then transformed to ltloely angular ratesy,

wy, andw; by the following equation

| Rl R fof ) el [o] i [o]-
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Finally, the attitude kinematics of a rigid body using Ewdegles for the roll-pitch-

yaw ( — 8 — @) transformation is given by

) 1 sin(@)tan(8) cog@)tan(8)| |w

6| =1(0 coqo) —sin(g) wy | - (2.5)

17} 0 sin(@p)sedB) cog@)sedh)| |w;
As seen in[(2)5) using Euler angles for the representaticattitide kinematics results
in singularities at® = +90°, making the Euler angles impractical and inconvenient for

describing large angle rotations.

Quaternions

The attitude determination of rigid bodies by use of the guabn parameters has
several advantages over the use of other representatiosteadl of trigonometric func-
tions, quaternions uses algebraic relations to deterrhmelements of the rotation ma-
trix. Moreover, the computations are faster and there angularities as may occur in
the MRP representation or Euler formulation. Fewer multggions are also required for
propagating successive incremental relations [58]. Thsmg quaternions has a better
numerical properties [84]. However, a disadvantage is dhnat of the four elements is
redundant, and that in general there is no obvious physiweatgretation of the rotation
geometry ([64] and [59]) (see subsectibn _3.3.1 for moreildgta

A quaternion is a scalar plus a vector, totaling four elemevithile the vector (with
three elements) defines an axis of the rotation, the scaarezit defines the magnitude
of the rotation angle about the axis of the rotation. The fdation is based on Euler’s
theorem which states that any rotation of a body (or cootdisgstem) with respect to
another can be described by a single rotation through sogie about single fixed axis
[59]. The four-element quaternion set, g, can then be détechfrom the Euler axis and

angle,(€,A), whereA denotes the principal angle, ar@l = (e1,e,e3)T denotes the
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principal unit vector corresponding to Euler’s theorem][6he quaternion vector
T T
0=l0 | = |00 @ @ o (2.6)

can then be written as [64]
- A A
d="€sin(3) , do=cog?), (2.7)

where the condition

Q=|d =@+ +ag+d=1

is automatically satisfied, and can be used for numericatabof machine computations.
The inverse rotation is also given by the complex conjugatpas
T
q= [qo _qT} . (2.8)
Note that ifq represents a given attitude of a rigid body, themrepresents the same atti-
tude. Therefore, althougi# —q mathematically, they both represent the same physical
attitude [24]. The kinematics equation in terms of quatameican then be expressed as

[66]

T
q= % T lw (2.9)
q* +q0|3><3
0 - o
T=|am 0 -q (2.10)
-2 oz O

whereW = (V\&,V\g,,WZ)T is the vector of the angular velocities of the rigid body. The
kinematics equation of the attitude recovery problem imtepf quaternions is finally
obtained as

q=r(qw (2.11)
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where

—01 —02 —0O3

% o —O3 0O (2.12)
as o —1
2 d1 Qo |

Note that the matriX (q) is linear, while the polynomial matrix entries using MRP
representatio2(o) (2.17) are nonlinear in a quadratic form. This indicate$ theater-
nions requires fewer computational operations rather Mi&R. Moreover, to convert the

Euler angles to quaternions the following conversion athor is used

G|  [cosw/2)co88/2)co8w/2) +sin(@/2)sin(6/2)sin(w/2)
| _ |sinig/2c086/2)008p/2) ~cosg/2sin®/2siny/2)|

g2 coq@/2)sin(6/2)cogY/2) +sin(@/2)cog 0 /2)sin(Y/2)
O3 _cos((p/Z)cos(G/Z)sin(w/Z) —sin(@/2)sin(0/2)sin(y/2)

Modified Rodrigues Parameters
Modified Rodrigues Parameters (MRP) is the most recent methddsaribing a
rigid body attitude. MRP is also not a unique representatotié¢ transformation. The

MRP vector ¢) is defined by using the principal rotation elements as
d
azétan(z). (2.14)
MRP can also be defined in terms of quaternions elements as

d1/(1+ o)
0= |02/(14+qo)| - (2.15)

da/(1+0p)
As seen i 2.5 MRP has geometry singularitiesbat +-360, which corresponds to

Jo = —1. Thus, for any rotation more than a complete revolution MBBYesentation
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encounters a singularity. The attitude kinematics of aripdy in terms of the MRP can
be expressed as

o=Q(o)w (2.16)

wherew = (Wx,wy,wz)T is the vector of the angular velocities of the rigid body atibe

principal body axes,

1- 024202 2(0102—03) 2(0103+ 02)
Q(0) = |2(0201+03) 1—0%2+202 2(0203—01)| » (2.17)

2(0301— 02) 2(0302+01) 1— 02+ 202

and g2 = 0? + 0% + 03. Note also that the polynomial matrix entries @fo) @.17)

is quadratic with cross terms, which numerically poses nomm@putational challenges
rather than a linear matrix. Three different methods ofiat® kinematics representations
have been discussed in this subsection. Now the attitudendips and experimental set

up of a 1-DOF rigid body for Quanser helicopter is descrilvethe next subsection.

2.1.3 Quanser Helicopter

The Quanser helicopter [68] is shownhig2.3. Using this experimental set up, the ob-
jective is to implement the SoS controller synthesis predas ChaptelrI3 for stabilizing
the pitch angle of the Quanser helicopter. The quaternaset attitude parameterization

for a one Degree of Freedom (1-DOF) rigid body is the simglifiersion of[(3.2), where
01 = g3 =W =W, = 0, given by

qO 00 _% qO 0
G|=|00 % ||aq|+|0M, (2.18)
W, 00 0]|W i

wherely for the Quanser helicopter is@8kg.n?). This set up is used to both apply
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R

Hitlye

Figure 2.3: Quanser Helicopter of HYCONS Laboratory in Cod@btniversity [68]

and compare the proposed controllers in Chddter 3. Moretiweas shown in[[68] that
the encoder, which measures the pitch angle, works withtdtedsaccuracy 0£0.0293
degrees. A filter has also been designed by Quanser Inc. twvesamy noisy inputs and

outputs. See [68] for more detail about the Quanser helkrsatup.

2.1.4 Mathematical Preliminaries

This subsection briefly reviews mathematical prelimirgvidaich will be used throughout

this thesis. The gradient{/) and the divergencev( f) are defined as follows.

oV oV o

WV = [_axl""’_axn]’ V(X): %"~ % (2.19)
o afl dfn . n n

VA= et g T A7 (2.20)
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These two vector mathematical operators also have some pagerties. The

divergence is a linear operator, i.e
v.(aA+bB) =av.A+bv.B (2.21)

where(a,b) and(A,B) are real numbers and vector fields, respectively. The darerg

operator also satisfies the product rule as follows

V(pf)=v(¢).f+¢(v.T) (2.22)

where¢ and f are a scalar valued function and a column vector field, reésedc As

one of the gradient properties we have

V(%) =a¢p?tv(e) (2.23)
wherea is a real number. Moreover, given= F(x) written explicitly as
T
Y= R R - Fn(x) (2.24)
where{F(x) : Z" — %™}, the jacobian matrix is defined by
ok . R
0Xq 0Xn
‘](Xl?"' ;Xn) = . (225)
9Fm . OFm
X1 0Xn

mxn

The symbolv?f (x) denotes the Hessian matrix for a scalar valued fundtiof of

a state vectox € #", defined as follows

(210 92f(0 . 0*f(X)]
dx% 0X10%2 0X10%n
02f(x)  92f(x) 9%f(x)
, ot ..
v2f(x) = [‘9 f<x>] — | P 9% ek | (2.26)
0% 0X; . . . .
%f(x)  9%f(x)  9%f(x)
| 0Xn0X1  O0Xn0X2 0xg nxn

The functionf(x) is convex if v2f(x) is a positive semidefinite matrix for every
x € #". Moreover, the functiorf (x) is stictly convex ifv2f (x) is positive definite. We

will use the above notation and properties throughout tiesis.
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Figure 2.4: Wheeled Mobile Robot (WMR)

2.2 Path Following Control Problem

Path following control problems are primarily concernedhvthe design of control laws
that drive an object, such as robot arm, wheeled mobile raibgb, aircraft, to reach and
follow a specified geometric path, where the time is not ingoar[26]. Note also that
Path following is more flexible than reference-tracking enéhthe vehicle is required to
follow a reference signal which is a given function of timen gath following control

problem smoother convergence to the path is achieved ancbotiteol signals are less
likely pushed into saturation, when compared to trajectomgking [27]. Thus, the path

following control problem is defined as follows.

Definition 2.2.1. The control objective of the path following problem is to &tiae output
to follow a geometric path without a timing law assigned toTiherefore, the vehicle is

required to converge to and follow a certain path that is sfed.
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Consider now the wheeled mobile robot (WMR) showirig[2.4, where the center
of gravity (C.G.) of the WMR coincides with the origin of the body frame, lochteidway
between the two driving wheels. The heading angle of the WMd&sis given byy. The
objective is to design a controller for the WMR to follow theasght liney =0 at a
constant velocity. The dynamic model for path following bétstraight liney = 0 of a

WMR on theX —Y plane is represented as follows

1 (2.27)

whereV is the constant velocity of the WMR, ardis the moment of inertia of
the WMR for rotation around theaxis. The control inputi is also the torque generated

about the z-axis. Therefore, the state vector

XZ[xl Xo x3}T=[y W W}T (2.28)

contains the positiog, the heading anglgy, and the angular velocity, respectively.

2.2.1 Wheeled Mobile Robot (WMR) Experimental Setup

Fig[2.3 shows the experimental Wheeled Mobile Robot (WMR) in HYCONS Gon-
cordia University. The experimental set up includes a canffeéig.2.9), an Inertial Mea-
surement Unit (IMU) 3DM-GX1 Fig[2.8), Xbee wireless communication modules [81],
and one Arduino Atmega328 board [82] as well as a WMR and a seoraputer. The
experimental structure of wheeled mobile robot is also showrig[2.6, which illus-

trate how each part of set up communicate with the rest of yjges. The camera is
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Figure 2.5: HYCONS Wheeled Mobile Robot

directly connected to the computer giving the positig@mdy of the WMR after digital
image processing [83]. The other two states including ttrealimg angleyy and the an-
gular velocityw are measured by the IMU with frequency 5£), and are then sent to
the server wirelessly using the Xbee modules. The servepatenprocesses all the data
usingMAT LABand aMEX file (written inC+ +), and then sends the resulting control
input[4.51 to the Arduino boardr{g[2.7) installed on the WMR and connected to the ser-
vos. Moreover, to power the system including servos, Ardiliioard, and Xbee wireless
communication, a rechargeable Lithium-ion polymer (lipa)tery is usedRig[2.9). It
is also worthwhile to mention that, due to hardware and waglcommunication limita-
tions, the maximum frequency that the total system can leand@ z. The experimental
results indicates that using this sampling rate of dataii® gatisfying to implement the
proposed controllers on WMR set up.

It is also assumed that the forward velocity= \# = constant whereV; and
V5, are the velocity of the left wheel and the right wheel, retipely. Moreover, due to
saturation (as seen fablé2.1), the control input range is 6QBW M) changing between
+300 (PWM), where+300 (PW M) and —300 (PW M) indicate the maximum and the
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Arduino Board
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Figure 2.6: Experimental structure of Wheeled Mobile Robot

minimum possible turning speed, respectively. Therefdréhere is no control input
(u=0), the WMR follows the liney = 0. Moreover,Tabl€.1 andFig[2.10 show the
system identification for the WMR that we use to implement tbigneal control problem

defined in sectiori 4. The forward velocity of our WMR is also8B0m/s).
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Figure 2.7: Two Xbee wireless communication modules cotato the server computer
(left) and Arduino Atmega328 board connected to Xbee madrlght)

”~

[

R ‘ -~

S -~
143
1

% MicroStram”
&

Figure 2.8: Inertial Measurement Unit (IMU) 3DM-GX1 (lefind Xbee wireless com-
munication modules installed on IMU (right)

Table 2.1: WMR ldentification Table

Control Input u (PWM) Period T (sec) AngularVeIocidy/(zT")

50 12.5 0.5024
100 7 0.8971
150 5.5 1.1418
200 4.5 1.3959
250 4 1.57

300 3.5 1.7943
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Figure 2.9: Security camera (left) and rechargeable ligteba(right)
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Figure 2.10: WMR Identification
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Chapter 3

Large Attitude Control of Rigid Bodies

Using Quaternions

3.1 Introduction

The main contribution of this chapter is to develop nonsiagrgid-body attitude control
laws using a convex formulation, and implement them in aregrgental set up. In work,
Gollu etal. in [54] solved the attitude control problem with singulgritvhere a Mod-
ified Rodrigues Parameter(MRP)-based polynomial contrbléex been designed. The
objective of this chapter is to tackle the same attitude lpralwithout singularity, using
a quaternion-based attitude model. To solve the attituctevexy problem without singu-
larity, this chapter proposes not only Sum of Squares (Sg&punov based control law
(the same method proposed by Gadtal. in [54]) but also an SOS density function based
controller. First and foremost, the key idea that enablde use SoS technique in solving
the attitude problem is that the rigid body model using eitheaternions or MRP can be
represented by polynomial vector fields, which was first uis¢®4]. Thus, the rigid-body

attitude model is first parameterized in terms of quateiiamd then quaternion-based
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polynomial controllers using an SOS Lyapunov function aeddity function are pro-
posed to make the closed-loop system asymptotically stabdl@olynomial controller

based on backstepping is also developed. All these methedben compared in a nu-
merical simulation for a satellite with given specific parders. Moreover, a practical
application implemented in a Quanser helicopter is presketd verify effectiveness of
the proposed methodology. The proposed SoS Lyapunov bas&wlousing both quater-
nion and MRP representations is applied to a Quanser Hedicagtd then is compared

with a PID controller.

3.2 Background

Two of the most recent approaches in nonlinear control ame 8uSquares (SoS) Lya-
punov based controllers [66] and SOS density function besattollers[57]. For a gen-
eral nonlinear system= f(X) + g(x)u, wheref (x) andg(x) are polynomials, searching
for a control Lyapunov function and a controller simultansly is not a convex prob-
lem. However, using a so-called density functm(x) [57] leads to a convex formulation.
Moreover, for a nonlinear system in the form&" f(x)x+ g(x)u, an SoS Lyapunov
function [56] can also be used to find a polynomial controdlatisfying conditions of
Lyapunov’s second stability theorem [20]. These contralhods use the Sum of Squares
(SoS) decomposition technique to find the required contqalii for some specific non-
linear systems. First and foremost, the key idea that esald¢o use SoS in solving the
attitude recovery problem is that the rigid body model usitger quaternions or Modi-
fied Rodrigues Parameters (MRP) can be represented by polghesactor fields, which
was first used in [54]. Using an SoS Lyapunov function, Gellal. in [54] solved the

attitude control problem with singularity, where a MRP-lmhpelynomial controller has
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been designed. The objective of this chapter is to tacklsdnee attitude problem with-
out singularity, using a quaternion-based attitude modelsolve the attitude recovery
problem without singularity, this chapter proposes noydhé same method of [54] but
also an SOS density function-based controller first propdgeRantzeetal. in [57]. A
guaternion-based controller using backstepping for MIMiDlimear systems is also de-
signed. The proposed methods using both MRP and quatermoesentation are then
compared in a numerical simulation implemented in a Quamskzopter. To the best of
the author’s knowledge, this is the first time that an SoStg®lynomial controller has
been implemented. Here we are interested in quaternidmsrridtan MRPs becausggthe
latter has a geometric singularity while the former one haersingular representation;
i) the polynomial matrix entries using quaternions are livgaite they are nonlinear for
the MRP representation.

The remainder of this chapter is organized as follows. 8e@@i3 presents a dis-
cussion of why we are interested in quaternions rather tharMRP representation, and
then the state space model of a rigid body in terms of quatesns given in the general
nonlinear formx'= f(x) 4+ g(x)u. The control objective and a brief review of the Sum
of Squares (SoS) Decomposition Method are also given in@d8t3. In section[ 314,
quaternion-based polynomial controllers using an SoS wwyap function, an SoS den-
sity function, and backstepping are developed to asynuatibtistabilize the closed-loop
system. A numerical simulation of a satellite as well as gol@mentation in the Quanser

Helicopter will also be presented in sectionl3.5. Finallguenmary is given.

3.3 Preliminaries on Attitude Control Problem

This section first presents a discussion of why we are iniles quaternions rather than

MRP representation, and then the quaternion-based attituateol problem is stated. A
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brief introduction to the Sum of Squares (SoS) Decomposifiethod is also given in

this section.

3.3.1 Why Quaternions?

There are several common ways to represent the attitudegifidoody such as direction
cosine matrix, Euler axis and angle, MRP, Euler angles, amadeguions. However, the
attitude determination of rigid bodies using the quatermparameterization has several
advantages over the use of other representations. Firsfoamahost, the key idea that
enables us to use SoS in solving the attitude problem is hieatigid body model using
either quaternions or MRP can be represented by polynomiédréelds. Thus, since in
this chapter an SoS approach is explored, only quaternimhd&RP representations are
considered. We are interested in quaternions rather than bB#R&use of the following

advantages:

1. While quaternions avoid singularity, any three-paramatgtude representation
like MRP has always a singularity [64], which implies thatyttshould be avoided
in situations where large-angle recovery maneuvers arepte From a practical
point of view, singularity avoidance during rigid body mass, specifically for an
attitude maneuver of a satellite, is critical, and thus guabns are widely used to

determine the attitude [65].

2. Quaternions have a better numerical properties [84].pbynomial matrix entries
using quaternions are of first order (linear) while they aselimear in a quadratic
form for the MRP representation, meaning that using quaiamrequires fewer

computational operations when implemented in a microEsme
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3. It will be shown that using SoS polynomial controllersdxasn the quaternion pa-
rameterization stabilizes the closed-loop system in leifirgg time with smaller
overshoot rather than using MRP representation-basedotlens; both numeri-
cally and experimentally (refer to_3.5). Note that thesailtesare based on the

particular simulations of this chapter with respect toetéint initial conditions.

3.3.2 Attitude Control Problem Definition

As discussed in sectidn_3.8.1, the quaternion representafirigid bodies has several
advantages over the use of other polynomial represensatidherefore, a quaternion-
based attitude problem is presented here. The kinematiggieq of the attitude recovery
problem in terms of quaternions has been obtained in equ@idl). Assuming X, Y,

and Z are the principal axes of inertia, the attitude dynardirived by Euler's moment

equations/[65] can be expressed in the forrwvet i+ gau as

Vi (Mwwz| |20 0] [My

viy | = ('Zﬁ'x)wzwX +10 % o [My] - (3.1)
: ly—]

Wy (Z) Wiy 00 % M,

whereu = (My, My, M;)T is the vector of the control torques acting on the rigid baahyg
the principal moments of inerti, Iy, andl, are the components of the inertia tensor
| = diag(lx, ly,lz). Combining dynamics and kinematics equatidns (2.11) ari), (e

state space model of the rigid body is now represented inehergl nonlinear form of
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x=f(x)+guas

W f ﬁ 0 0
Vil fa 0 ¢ 0
Wit fa 0 0 % M,
do| = |fa] +]{0 0O O] [My|, (3.2)
G fs 0 0 0| M,
G fo 0 0O
ds| |[f7] [0 O O
where
_Iy_lz.
f]_: WyWZ
Lo
f2 - IZ_ IX- W2WX
ly |
L IZ -
1_
fa= > _Q1WX—QZWy—QSWz]
1_
fs = = | dowx — Gawy + qzwz}
1_
fo = > QSWx+QOWy—Q1Wz}
1_
fr=3 —qzwx+qlwy+qowz]

and the state vector= (Wy, Wy, Wz, o, 1, d2, q3)T contains the angular velocities, and the
quaternions. The control input vector= (My, My, M.)T contains the required moments
generated about ax&sy, andz, respectively. Moreover, we assume that the desired set-
point for the systeni(312) is where the angular velocitigs- (wx,wy,wz)T and Euler an-
glesBy = (Roll, Pitch, Yaw)t are zero. Using the express[on 2.13, the p6int (0,0,0)7
equivalently transforms tgqq = (1,0,0,0)". Therefore, through this chapter the desired
set-point is assumed to bg = (0,0,0,1,0,0,0)T. The attitude control problem to be

solved is now stated as follows.
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Problem Statement 3.3.1.Given the attitude dynamics of the rigid body (3.2), design
a nonlinear attitude controller to asymptotically stah# the closed-loop system around

the desired set-point with respect to any initial condition.

The next section will give a brief review of the sum of squadesomposition

method.

3.3.3 Sum of Squares (SoS) Decomposition Method

As proposed by Parrila_[49], in the case of polynomial fuos a tractable sufficient
condition of positive definiteness is the existence of a sdiragoares decomposition.
In fact, the condition thaP(x) is a Sum of Squares is computationally tractable while
non-negativity is not. A polynomiaP(x),x € #VN, is a sum of squares if there exists

polynomialsfi(X),..., fm(X) such that([48]

PO = 5 . 33)

Moreover, being SoS is equivalent to the existence of aigesemidefinite matrixQ,

and a properly chosen vector of monomia(s) such that/[48]

P(x) = ZT (x) QZ(x). (3.4)

Note also thaP(x) being SoS implies tha®(x) > 0, but the converse is not generally
correct, i.e. if a polynomial functioR(x) is not SoS, it does not necessarily imply the
negative definiteness &fx). Using SoS decomposition method, for a given polynomials

P(x) and¢ (x), where¢ (X) is positive definite, the following expression
P(x) —¢(x) isaSoS (3.5)

guarantees the positive definitenes®0f). The proof is straightforward as follows. The

expressiorP(x) — ¢ (x) being SoS implies tha(x) > ¢ (x). Therefore, since(x) > 0,
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the polynomialP(x) is positive definite. Using SoS decomposition method, anskte
of Lyapunov’s stability theorem for handling systems witiualities [48], which follows
from the application of the Positivstellensatz Theoremnasv presented. Consider a
general nonlinear system

x = f(x,u) (3.6)
with the following equalities
Q=0 for i=1--,N (3.7)

wherex € Z" andu € #™ are the states and the control inputs of the system, resphcti
It is also assumedl(0,0) = 0.The following theorem, which is the simplified version of a

theorem from([48], can be used to prove that the above systasymptotically stable.

Proposition 3.3.1.[48] Suppose that for the above system there exist polyrndomma-

tions V(x), a(x), and a positive definite functigh(x) such that
V(X)—¢(x) isSoS (3.8)
—a—vf(x u)+ S iQi—¢(x) isSoS (3.9)
0X ) I;al | . .
Then, the origin is asymptotically stable.

Proof. See[[48]. [

To convert the SoS decomposition problem to the correspgréemidefinite Pro-
gram (SDP) formulation, a freely-available MATLAB toolbake software SOSTOOLS
[50] has been developed. The above definitions are now ussave the attitude control

problem.
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3.4 Attitude Control Problem Solution

The objective of this section is to propose three differeethuds to solve the attitude
control probleni_3.3]1, and to compare them. These methatigde SOS Lyapunov
based control, SOS density function based control, anddb@gging. Thus, in this sec-
tion quaternion-based polynomial controllers using an $§&unov function and an
SOS density function are proposed to make the closed-lostersyasymptotically sta-
ble. A backstepping method for the MIMO nonlinear systeniss a@eveloped. All these

methods are then compared in simulations and experiments.

3.4.1 SoS Lyapunov Based Control

The rigid body model(312) is parameterized as the follovstage dependent linear-like

form
x=A(X)X+gu (3.10)
with i ]
0 azo 0 0 00O
0 0 a3 0 00O
azy 0 0 0 00O
AX)= |-qi/2 —02/2 —g3/2 0 0 0 O, (3.11)
Qo/2 —03/2 /2 0 0 0 O
d3/2 /2 —q/2 0 0 0 O
|—%2/2 q/2 d/2 0 0 0 O
where
ly— I,
61122[ i }Wz (3.12)
X
l;—1
azsz[zl X}Wx (3.13)
y



ag1 — ['X_'V}V\@. (3.14)

I2

To design a controller using an SoS Lyapunov function, thigrmmial vector fields
should have an equilibrium point at the origin [52], i.e. sthte variables should con-
verge to zero. Each state variable should, therefore, liegtirom its trim condition (or

desired set-point) to the origin. Let us denote this tramsé&tion by
X=Xx—X, (3.15)

wherex andx* denote the original state and the trim point of the originates respec-
tively. Note that the derivatives of the new shifted varesbare the same as the original
ones. Therefore, using the shifted state vexter(Wy, Wy, Wy, o, G1, G2, Gs)", the dynamic

model becomes
%= f(R)+gu=AR)X+gu, (3.16)

where the polynomial matrii(X) is given by

i 0 aio 0 0 0O (5

0 0 a3 0000

azy 0 0 0 00O

AX)=| —a1/2 —Gp/2 —G3/2 000 O,

(Go+1)/2 —Gs/2 G/2 0000

Gs/2  (Go+1)/2 —Gi/2 0 0 0 O

| —02/2 G/2  (G+1)/2 0 0 0 0

with the quaternion constraint
Q=03+G+65+G=1. (3.17)
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Note that, since the desired set-poinkjs= (0,0,0,1,0,0,0), the only state which needs
to be shifted is related to the scalar components of the quatesq,. Therefore, expres-
sionsay o, agy, andag; are the same as ih (3112), (3.13), and (B.14), respectielythe

rigid body model[(3.16), a Lyapunov-based controller williznbe designed to asymptoti-
cally stabilize the closed-loop system. The objective i o find a quaternion-based
state feedback controller for the rigid body nonlinear md@e18) which guarantees
asymptotic stability. For this, the following theorem, whiis the simplified version of a

theorem from|[[56], is stated.

Theorem 3.4.1.[66] Given A(X) and g for the systend (3.116) with the quaternion con-
straint Q (3.17) if one can find a symmetric matrix P and a polynomialrma¢ (X) such

that £»(X) is a sum of squares and
FT(P—gl)F isSoS (3.18)
—FT(PAT(R) + AP+ (gK(R) T + gK(R) + £2(R)1F +a(X)Q — ¢ (x) is S0S(3.19)
whereg; and g x) are a constant and a polynomial multiplier, respectiveign the state
feedback controller which stabilizes the closed-loop sysgegiven by
ux) = K(R)P 1% (3.20)

Proof. It follows from the proof of [56] withP(X) = P, Z(X) = X, andM = 1. More-
over, since the quaternion-based model needs to satisfgaigtraintQ (3.17), using
the proposition 3.3]1 a polynomial expressa®)Q is also added to the SoS relaxation,

wherea(x) is a polynomial multiplier. O

Therefore, given the nonlinear systém (3.16) and solvieg3bS problem in The-
orem[3.4.11, one can find the control input (3.20), which makesclosed-loop system

asymptotically stable.
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3.4.2 SoS Density Function-Based Control

It is well-known that for a general nonlinear system, th@faearch for a controller and
a Lyapunov function is not convex. For the case of nonlingatesns with polynomial

or rational vector fields, a so-called density funct(x), which is also interpreted as a
dual to the Lyapunov function, has first been proposed ih, [&7§l has been extended in
[52]-[53]. The main result of [52], which formulates thenosearch as a convex problem

with constraints, is stated as follows.

Theorem 3.4.2.[62] Given the systemt = f(X) 4+ g(x)u with a constraintQ(x), where
(f +gu)(x) € CH(#", %", (f +9u)(0) =0, and &Xx) is a polynomial multiplier, suppose
there exists a non-negative functipiix) € C1(#" — {0}, %"), referred to as the density
function, such thap(x)(f +gu)(x)/|x| is integrable on{x € Z" : |x| > 1}, and for almost
all x

v.[p(f+gu)](x)+a(x)Q(x) > 0. (3.21)
Then, for almost all initial states(R), the trajectory x(t) exists for € [0,c) and tends
to zero as t— «. Moreover, if the closed-loop equilibrium=x 0 is stable, then the

conclusion remains valid evengfx) takes negative values.

Proof. It follows from the proof of [57]. Moreover, since the systemsubject to a
constraintQ(x), using the application of the Positivstellensatz Theorepolgnomial
a(x)Q(x) is also added to the resulting expression, wtegpg is a polynomial multi-

plier. [

In order to jointly search for the density function and thatcoller, the following
parameterization is considered [57]

PO =i+ un = (3.22)
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where p(x),t(x), andw(x) are polynomialst(x) is positive, ands is chosen to satisfy
the integrability condition in Theorem 3.4.2. By pluggingd2) in (3.21) and using the
gradient and the divergence properties.in (R.22)-(2.2®) first component of condition
3.27) is written as [57]

1

v.[p(f+gu)](x)=v. :

X

( )S<fp+gw><x>]

1 1
=9 () (P OW0-+ (1wl

~+

_ —t(x)%v(t(x))(fp-l-gw)(x)-l—t(%)sv.(fp—f—gw)(x)
T t(X)V.(fp+gw)(x) —sv (t(x)).(fp+gw)(x)| > 0.
(3.23)
Sincet(x) is positive, we only need to satisfy the following inequalit
t(X)V.(fp-+gw)(x) —sv (t(x)).(f p+gw)(x) > 0. (3.24)

Assuming thatf (x) andg(x) in the above equation are polynomials, using SoS

relaxation the inequality (3.21) is satisfied if
t(X)V.(fp+gw)(x) — sV (t(x)).(fp+gw)(x) + a(x)Q(x) — ¢ (x) is SoS (3.25)

where¢ (x) is a positive definite polynomial function. Note also thaics all state vari-
ables should converge to zero, each state variable showldifbed by the transformation
in (3.15). A good first candidate fa(x) is the Control Lyapunov Function (CLF) for the
linearized system

X = Ax+ Bu. (3.26)

Given linear dynamicéA, B), to find CLF we consider the following candidate Lyapunov
function

t(x) =V (x) = x"Rx, (3.27)



wherex is the state vector, ariglis a symmetric positive definite matrix which needs to be
obtained. Obviously, sinde > 0, V(x) is positive definite for atk. However, to guarantee
that the closed-loop system is asymptotically staY'z(I@() needs to be negative definite.

Now assumindQ = R~ and the control input
u= GRX, (3.28)
the derivative oW (x) with respect to time along the trajectories of 3.26 is givgn b
V(x) =x" Rx+ X' Rx

=x" (ATR+RG'B'R+RA+RBGRx

=x"R(QA” + G"B' + AQ-+ BG)Rx. (3.29)

Then, to satisfy/ (x) < 0, we only need to solve the following Linear Matrix Ineqtiat
(LMIs)
AQ+QAT +BG+G'B"<0 , Q=Q" >0. (3.30)

The SoS density function approach for solving the attitunlerol problem is now

summarized in the following algorithm.

Algorithm 1. Using SoS density function approach, the following stepgryposed to

obtain a polynomial control input for the attitude contrabblem [3.16):

1. Given a linearized modélA, B), matrices Q and G are obtained by solving the

LMIs (3.30)
2. A positive definite functiorix) will then be given by() =V (x) = x' Q~1x

3. Search for polynomials(g) and w(x), as defined in(3.22), to satisfy the SoS prob-
lem [3.25)
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4. The control input () = "% is then obtained, which makes the closed loop system

(3.18) asymptotically stable.

3.4.3 Backstepping Approach for MIMO Nonlinear System
Consider the general backstepping system
z=a(2)+B(2¢ (3.31)

{ = fa(z,0)+0a(z. U (3.32)
where [ZT,ZT]T € Z" M is the state vector, ard € ™ is the control input vector. The
functionsa € 2", B € ™™, fa € #™, andgy € ™ ™M are smooth, and and f; vanish
at the origin. The attitude control problef (3.16) can bdtemiin a cascade connection
of two subsystems, as shown in (3.31)-(3.32). Thereforeptiective of this subsection
is to stabilize the systenm) (3131)-(3132) using backsteppipproach. Using the control
input

U =0a(z ) Hu—fa(z )] (3.33)
whereg, is a nonsingular diagonal matrix, the systém (B.81)-(3c32)be reduced to the
following system

z=a(2)+B(2¢ (3.34)
{=u (3.35)

whereu € Z™M is the control input vector, which needs to be obtained. Wherstate! is
scalar (and consequently the inpuis also scalar), the systein (3.34)-(3.35) is reduced to
the integrator backstepping system as shown ih [20]. Hereonsider a MIMO nonlinear
system. To stabilize the systein (3.34) dnd (B3.35) at thémtige following backstepping

approach is given.
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Theorem 3.4.3.Given the systeni (3.84) arld (3.35), suppose there is aigiabiktate
feedback law] = ¢(z) € #™ for the subsysten (3.84) such thgD) = 0. Let V(z) be a
Lyapunov function for the subsystdm (3.34) such th{a} \ positive definite and

M2 a@)+pa0e)] <-wi (336

where Wz) is positive definite, ang? = vV = [g—;’l g—m . Then, the feedback law

u=22[az)+B@02)] - (%p(@) Ky (3.37)
where k> 0 and
y=0-0@) = [t 0@ - In— ()], (3.38)

stabilizes the originz' =0, {T =0) , and a Lyapunov function for the closed-loop
system is

Ve(z.0) = V(@) + Yy (3.39)

Proof. Suppose the subsysteim (3.34) can be stabilized asym{iiohiga state feedback
control { = ¢(z) with @(0) = 0. Suppose, moreover, that there is a Lyapunov function
V(z) for the subsysten (3.84) such thafz) is positive definite and satisfids (3136). By
adding and subtracting(z)¢(z), and performing the change of varialyle- { — ¢(z), we

obtain the system

2= |a(2+B(2)9(2)| +B(2)y (3.40)
y=u-9(2) (3.42)

where
o2 = 222+ B2)1) (3.42)

and‘;—f € #™ " is the jacobian matrix as defined [N{2.25). Letting: u— ¢ reduces the
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system[(3.40) and (3.41 to

(3.43)

(3.44)

which has the same form as the system we started from withxiteppgon that we now
know the subsysterh (3.43) is asymptotically stable to tigérowheny = 0. Now, for the
system[(3.43) and (3.44), let us consider the candidateun@pfunction [(3.3B) which is

positive definite. Then, the derivative \¢f is

Ve=M2a0) 1 o] + 2Py vy
< -W(2) + a\;—(zz)ﬁ (2)y+v'y. (3.45)
Choosing
v=—(2p@) (3.46)
wherek > 0, implies that
Ve < —W(2) —ky'y. (3.47)

This also shows that the origia™ =0, T = 0) is asymptotically stable. Finally, com-

bining (3.46) andi = v + @ results in the control inpu (3.87). This finishes the prod

The attitude control probleri (3.1L.6) can now be written indbaeral backstepping
format (3.31){(3.3R). The functiores(z) and3(z) are expressed as

.
G(Z)=[0 00 o} (3.48)
and ~ -
—01 -0 —03
(Go+1) —03 o)
B(2) ) ) ) (3.49)
@B (Gt —G
G G (Go+1)]
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wherez and{ are the vectors of shifted quaternions and angular vedsgitespectively.
Moreover,f;(§, w) andga(g§, w) are the same as in expressidnsl(3.1).

In summary, to solve the attitude recovery problém (3.1@gbackstepping, a
Lyapunov functiorV (x), whereV > 0 and its derivative is negative definite, should first
be found for the subsystein (3131). Once one can find this lyapfunction, the control
input (3.33) can be obtained, which makes the overall sy§8edd )-[3.32) asymptotically

stable.

3.5 Simulations and Experiments

This section presents two examples of attitude controllprob, including a numerical
simulation and an experimental result on the pitch contf@ Quanser helicopter [68].
The numerical simulation of a rigid satellite with specifiertial elements is covered in
the first subsection, and then the theoretical results ofibsis are applied to a Quanser
Helicopter in the second subsection. In the numerical satraris, given a satellite with
specific parameters, the proposed polynomial control lawlss chapter are designed and
compared. Moreover, the SoS Lyapunov function-based albers using quaternion and
MRP representations are implemented in the Quanser he#icaid then are compared

with a PID controller.

3.5.1 Numerical Simulation

The proposed controllers in Sectidns 3.4.1, 3.4.2[and|&ke3ow applied to a rigid

satellite with the inertia tensdr= diag(1,1.2,0.8)(kg.m?), considered as a small satel-
lite. The objective is to make the satellite asymptoticathble subject to a nonzero initial
attitude. Since there is no singularity using quaternitims,controller design is applica-

ble to any arbitrary initial states. Let us assume the iratigular velocities and the initial
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Euler angles are as follows
Wo = (0,0,0)T , 6= (Roll,Pitch Yaw™ = (80°,50°, —120°)" .

The desired Euler angles afg = (0,0,0)". Using the expressidn 2113, the initial and

desired orientations of the satellite in terms of quatersicorrespond to
6o = (0.11190.5717,—0.3426 —0.737)" , 63=(1,0,0,0)T.

Now, given the attitude recovery dynamic model (8.16) wiik tjuaternion constraint
Q (@.17) and the numerical values of the parameters, the piatebased polynomial

controllers using different methods are obtained as failow

SoS Lyapunov Based Control

Substituting the given inertia tensor [0 (3.16), the masik(X) andg become

0 0.4w; 0 0000

0 0 ~016w, 0 0 0 O

—0.25w 0 0 0000

AR)=| —@/2 —GJ/2 -6/2 0000
(Go+1)/2 —G3/2 G2/2 00 0 0

63/2  (6b+1)/2 —G/2 0000

- —Ge/2 /2 (Go+1)/2 0 0 0 O
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0 0

Given these matrices and the state feedback controllectstau[3.20), the SOS-
TOOLS Toolbox [50] will now be used to solve the SoS Lyaputaged control in theo-
rem[3.4.1. Using the MATLAB code in Appendix_8.7), the diagbmatrix

P = diag(1.05,0.99,1.11,1.19,1.23,1.22,1.23),

whereP > 0, and the following polynomial control input vectt = (My, My,M,)T are

obtained

M(X) = — 0.62¢ — 0.63x1x3 — 0.04x1XoXg — 0.61%1%5
— 0.08x1X3x7 — 0.51x3 (X4 — 1)2 + 0.31x3 (X4 — 1)
— 0.5%1X3 — 0.53%1x2 — 0.37%1 — 0.05x2%3 (X4 — 1)
—0.19%9x3 — 0.02%2(Xg4 — 1)X7 — 0.11XX5Xg
— 0.02¢x7 4 0.03x8x5 + 0.05%3x5%7 — 0.03%3Xe

+0.01(x4 — 1)x5 — 0.43%5 — 0.59x; X2

49



M(y) =— 0.76x%x2 — O.OZX%XG + 0.06x1%2%5 — 0.04x1X3(X4 — 1)
—0.16x3%3 — 0.01x1 (X4 — 1)X7 — 0.1x1X5%g — 0.01x1 X7
—0.77% — 0.8x2x3 — 0.62(X4 — 1)2 4 0.41x2(x4 — 1)
—0.72x2 — 0.61xx5 — 0.43%2 4 0.01x3(x4 — 1)Xs
+ 0.03x3x5 — 0.04x3XeX7 + 0.01(X4 — 1)xg — 0.5%g

— 0.5%xx2

M (2) = — 0.5x3x3 4 0.05x1%2 (X4 — 1) 4 0.27x1%2 + 0.03x1 X35
— 0.05%3x5%7 — 0.02x1Xg — 0.493x3 — 0.03x3%7
+ 0.02¢2x3X6 + 0.02¢2(Xg — 1)X5 + 0.04XoXs
— 0.43%3(x4 — 1)+ 0.18x3(xq — 1) — 0.44x3x2
— 0.48x3x5 — 0.33x3 — 0.36x7 — 0.44x3x2

—0.49G +0.01(x4 — 1)x7.

SoS Density Function-Based Control

Since(f,qg) in (3.2) are polynomial vector fields, a polynomial conteolbased on
the SoS density function for the same satellite can also beyded. As discussed in
Sectiori 3.4, a positive polynomial functitX) should first be found. A good candidate
for t(X) is a Control Lyapunov function for the linearized system[afl@3 around the
desired set-point. Linearizing the nonlinear system (Bylédds a linear state space model

in the formx = A/X+ gu with

04*3 O4>)<4
A= )
0.25l 3%3 03*4

where matrices O and | are the zero and identity matricepentisely. Solving LMIs

(3.30) and using YALMIP and SeDuMi, a symmetric positive digdé matrixR is obtained
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as follows )
1.02 O 0

0O 102 O
0 0 102

046 O 0
0O 046 O

0
0
0
R=1 0 0 0 1 0 0 ©
0
0
0

0 0 046 0 0 102

The positive definite polynomia(X) will thus beV (X) = X' RX. The next step is to search
for polynomialsp(X) andw(X), as defined in(3.22), to satisfy (3]125). For thigX) and

w(X) are assumed to be polynomials. It is assumedpfi&tis a constant while the three
elements of vectow(X) are second-degree polynomials. Using the SOSTOOLS Toolbox

[50] and assuming
s>3 , p=10"° , ¢=wit+wi+ws, (3.50)
the following control inputs are obtained

M (x) =0.00301 (0o — 1) — 0.14c; — 0.00203 + 0.0040W,
+0.00603W, — 0.03(Co — 1)Wx — 0.35wx — 0.004n W,
M(y) = — 0.01¢W, + 0.0032G0 — 0.170s + 0.00403wx
— 0.04(qo — 1)Wy + 0.003n,w;, — 0.42wy
M(z) =0.002302 — 0.01g3wy — 0.1 73 — 0.03(qgo — 1) W,

+0.004w,Wy — 0.420;.

Backstepping
The attitude control problem (3.116) can also be solved by#ekstepping method
outlined in theorern 3.4.3. Rewriting attitude problém (3.ib6the general backstepping
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format (3.31)-[(3.3R), the functiores(z), B(z), and(fa(§,w),ga(G, w)) are the same as in
expressiond (3.48), (3.49), aid (3.1), respectively. Njwen the subsystem

—01 —02 —0s3
. Go+1) -4 §
G- t@+a@u-t|®T TRy, (351)
G  (Got+l) —Ga

—0p a1 (Go+1)

NI =

wherew is the control input, a stabilizing control law should beabéd to make this
subsystem asymptotically stable. For this, the SoS prolatetheoren1 3.4]1 is solved
to find an SoS Lyapunov based controller (3.20). Solving 89§ problem using the
SOSTOOLS Toolbox [50], the controller law is obtained as
T
w=¢(q) = [—qul —p2G2  —H3G3 (3.52)
wherep, L, andus are positive constants. Replacing the control input (3.8 e first

subsystem (3.51), the closed-loop system for the first @teByis given by

65+ + a4
. —Go(Go+1
- Go(Go+1) (3.53)
—03(Go+1)
_—Q4(QO+1)_
Now, using the Lyapunov function
U WU SR S
V(@) = (@+a&E+a+a) >0, (3.54)

the derivative oV (§) with respect to time along the trajectories[of (3.53) is chted as

. A~ aV 4 A A A A A A A A A
V(4) = 0? 4= (Gobo + G161 + Gobo + Gabia)
1, . X X
=3 (uﬂﬁ + 1205+ usq%) - (3.55)
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The polynomial functio’V appears to be negative semidefinitéBiﬁ{xml =0=03=
0,40 € #Z}. However, due to the quaternion constraing (Go + 1)+ G2 + 63+ 63 = 1,

V is not defined over the lin& ={x|G, = G2 = Gz = 0,Go € R}, except at the origin.
Therefore,V becomes zero only at the poiffi, = 61 = G = §3 = 0) and is negative
definite. Thus, the closed-loop systdm (3.53) is asymgtiyistable. Using the resulting
¢(§) andV(§), the control law[(3.37) can now be obtained to stabilize trexall system.
Assumingk = 1 = up = Uz = 1 and the given inertia tensor, the following control inputs

are obtained.

Uy = — 2Wy — 2.501 — (0o — 1) Wx + GaWy — 02w,
— 0.4wyW; — 2001
Up :1.2( — 2wy — 2.502 — OaWy — (G0 — 1)wy
+ 1wz + 0.16w,wy — 2qoq2>
us =0.8( — 2W; — 2.503 + QaWx — Q1Wy — (Go — 1)W;

The state trajectories for the three approaches are shdwg i 1,Fig[3.2,Fig[3.3,
andFigl3.4. Fig/3.1 shows that all the quaternion elements converge to aatbthat the
quaternion constraint is always verifiedig3.2 shows the time response of the angular
velocities converging to zero. The time response of therobiriputs is also shown in
Figl3.3 andrFig[3.4. It is important to notice the small magnitude of the isgpitorques
for stabilizing the satellite. From a practical point ofwiet implies that the satellite will
require lower power.

Figl3.3 compares the time response of the Euler angles using MR&dband
Quaternion-based controllers. It shows that using steeidack controllers based on the

quaternion parameterization stabilizes the closed-lgsfes in less settling time with a
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Figure 3.1: Time response of quaternions and associatestragrt for SoS Lyapunov
based control, SoS density function based control, andstegging approach

smaller overshoot rather than using MRP-based controlMseover, using MRP rep-
resentation results in a singularity which is not desirablgractical applications, specif-
ically satellite applications. Moreover, frofig/3.3 it is observed that the quaternion-
based polynomial controller using SoS Lyapunov-basedagmpr has the best responses
in terms of settling time, overshoot and smoothndsig 3.5 also shows that using the
backstepping controller makes the closed-loop system pjially stable. As shown
in Figl3.3 andrFig3.4, the control inputs for backstepping approach is mughéyi than
other two SoS-based approaches, resulting in higher cvetrsesponses compared with
other two SoS-based approaches. It is worthwhile to notethiese results are based on

our particular simulations with respect to different iaittconditions.
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Figure 3.2: Time response of angular velocities for SoS uyap based control, SoS

density function based control, and backstepping approach

3.5.2 Experimental Results on Quanser Helicopter

The proposed SoS Lyapunov based confrol (3.20) using batemqmion and MRP rep-

resentations is now applied to a Quanser Helicopter [68]e ®bjective is to design

a quaternion-based polynomial controller for stabilizthg pitch angle of the Quanser

helicopter, and then compare it with the nonlinear MRP-basedroller and the PID

controller. The quaternion-based attitude parametéoizdor a one Degree of Freedom

(DOF) rigid body is the simplified version df (3116) as
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Figure 3.3: Time response of control inputs for SoS Lyapubased control and SoS
density function based control

ao 00 —Q2/2 qo 0
G| =10 0 (G+1)/2| [g2| +| O | My, (3.56)
Wy 00 0 Wy 1/|y

wherely for the Quanser helicopter is@28kg.n?). Given [3.56) and assumirgg= 0.01,

the following quaternion-based polynomial control inpubbtained
My = — 0.0205 — 0.03wy (0o — 1)% — 0.02wy 03
—0.03wy —0.01q, .

The Quanser helicopter experimental results for the pitgileaand the control in-
put are shown irFig/3.8. It shows that the time trajectory of the pitch angle amal t

control input for the PID controller is more oscillatory thAoth quaternion-based and
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Figure 3.4: Time response of control inputs for backstegpipproach

MRP-based SoS controllers. While the two quaternion-based/iP-based controllers
have been designed using the SoS technique, a tuned PIDlbentras also been found
experimentally. Note that, contrary to the tuned lineartaaler, the resulting quaternion-
based and MRP-based controllers have been implemented ars€uwelicopter without
being tuned.Tabl&.1 also shows the maximum overshoot and settling time dae2t®
(deg) initial pitch angle for the three different controleamplemented in the Quanser
Helicopter. The results demonstrate experimentally thaiguaternion-based state feed-
back controller stabilizes the closed-loop system in lestisg time and with a smaller

overshoot than the MRP-based SoS controller and the PIDattamtr
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Figure 3.5: Time response of Euler angles using QuaterraodsMRP parameters for
SoS Lyapunov based control, SoS density function basedatpand backstepping

3.6 Summary

The objective of this chapter was to develop nonsingulad4igpdy attitude control laws
using a convex formulation, and to implement them in an expantal set up. The at-
titude recovery problem was first parameterized in termsuafternions, and then two

polynomial controllers using an SoS Lyapunov function am&aS density function were

Table 3.1: Max. overshoot and settling time due to 25 (dagalmpitch angle for two SoS
Lyapunov-based controllers and a PID controller impleraéim the Quanser Helicopter

Control Method || Max. Overshoot(deg) Settling Time (sec
SoS (quaternions 5 5
SoS (MRPs) 10 11
PID 13 16
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Experimental Data of the Pitch Angle (Quanser Helicopter)
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Figure 3.6: Comparison of time trajectory of pitch angle andnt@d Input for
Quanser Helicopter using Quaternion-based and MRP-basgaonaial controllers (SoS
Lyapunov-based approach), and PID controller

developed. A quaternion-based polynomial controller gisiackstepping has also been
designed. The simulation results show that the proposelinean controllers guarantee
the asymptotic stability of states subject to any initiahdidion. Moreover, the numeri-
cal simulation as well as the experimental results impldeeim a Quanser Helicopter
verify that the quaternion-based controller stabilizes ¢losed-loop system in less set-
tling time and with smaller overshoot than the MRP-basedrotiat. These results have
been observed based on our specific simulations and expgeghnesults on the Quanser

helicopter with respect to a set of different initial comnatits.
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3.7 Appendix

The MATLAB code for designing an SoS Lyapunov-Based Contraisgng SOSTOOLS
and SeDuMi is as follows:

clc

clear all;

B T T A e L2 R o L LR L L LR B L e
%% Define Performance Parameters and Polynomial Variables
R T L e L 2 e o L L L L L B L e
% x1=wx ; x2=wy ; x3=wz ; x4=qo ; xb=ql ; x6=¢q2 ; x7=03
pvar x1 x2 x3 x4 x5 x6 x7

X = [X1;x2;x3;x4;x5;%x6;X7];

n = length(X);

pvar vl v2 v3 v4 v5 v6 v7

V = [vl;v2;v3;v4;v5;v6;Vv7];

R T I i L A L A

%% Define System Dynamics

T I L A L

J = diag([1,1.2,0.8]);

A= 0 ((J(5)=J3(9))/I(1))x3 0 0 0 0O
0 0 ((J(9)-J3(1))/I(5B)kxl 0 0 0 O
((J(1)-J3(5))/I(9)kx2 0 0 0 0 0O
—x5/2 —x6/2 —X712 0 0 0 O
(x4+1)/2 —x7/2 X6 /2 0 0 0 O
X712 (x4+1)/2 —x5/2 0 0 0O
—X6/2 X5 /2 (x4+1)/2 0 0 0 O]
B = [1/J(1) 0 0
0 1/J(5) 0
0 0 1/3(9)
0 0 0
0 0 0
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0 0 0

0 0 0];
m = size(B,2);
Program = sosprogram ([X;V]);
OB/ 8 S8 S8/ S/ B/ 8 88/ 8 S 8/ 8/ 8 S 8 8 S8 S8/ B/ S/ 8 68/ 6 S/ S/ S/ Y S/ 8/ S/ 8/sS/ 8/
%% Define Lyapunov Function and Controller Parameters
B s T T o s i T I N R e )
% Define P=P’

for i = 1:n,
for j = 1:n,
if i>=j,
eval(['pvar p’ num2str(i) -’ num2str(j)]);
eval ([ 'Program=sosdecvar (Program ,pium2str(i) -’ num2str(j) ');’'1);
eval(['P(i,j) = p’ num2str(i) '_' num2str(j) ';'1);
eval(['P(j,i) = p’ num2str(i) '~ num2str(j) ';'1);
end
end
end

% Define K(x)
for i = 1:m,
for j = 1:n,
[Program, Kij]=sospolyvar(Program,monomials(X,0:2));
K(i,j) = Kij;
end
end
OB/ S/ S/8/8/ S/ S/ S/ 8/8Y S/ S/ 8/8/ /S S/ 88/ S/ S/ S8/ 88/ S/ /8888 /8o
%% Define Inequalities and run SOS program
B s o s T o s A T T T I T e T )
% V(x)=x"TPx , Q=P{-1}
| = eye(size(P));
el=0.1;
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[Program , e2]=sospolyvar(Program,monomials(X,2));

Program = sosineq (Program ,¥(P—elxl)%xV);
Program = sosineq(Program,e2);
[Program ,phi]=sospolyvar (Program ,[x172;x272;x372;%X%;x572;x6"2;x7"2]);
const = x472+x572+x672+x7°21;
[Program , mono] = sospolyvar(Program,monomials(X,1));
V_dot=V’" x(P+xA’+AxP+K’«B’+BxK+e2x | ) xV+monoxconst ;
Program = sosineq (Program ,®ot);
Program = sossolve (Program);
sosgetsol (Program,e2);
R I T s N I T O T T T T T T e T )
%% Retrieve Solution Variables
B s T T s i T T T I T T T T T )
% Retrieve P
for i = 1:n,

for j = 1:n,

P(i,j) = sosgetsol(Program ,P(i,j));

end
end
P = double (P)
% Retrieve K
for i = 1:m,

for j = 1:n,

K(i,j) = sosgetsol(Program ,K(i,j));

end
end
L s T s N I T O T T T T T T L T )
%% Control Input
B T s T s i T T o T T T T T T T )
U=Kxinv (P)xX
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The MATLAB code for designing an SoS density function-baSeadtroller using
SOSTOOLS and SeDuMi is also as follows:

clc

clear all

B s I T T s i T e A T T T A 2

%% Variabla and Constant Definition

B s I i i I I I R T T o 2

pvar wx wy wz qo ql g2 g3

x=[wx ; wy ; wz ; gqo ; gl ; 92 ; q3];

Ix = 1;ly = 1.2;1z = 0.8;

B s T T I I T T I T T T T T 2 )

%% Dynamic Equations

B o s T o I R T T I T T T I T 2 T

f = [((ly—=I1z)/Ix)xwyxwz ;
((lz=Ix)/1y) xwzxwx ;
((Ix=1y )/ 1z)xwxxwy ;
0.5« ( — glxwx—q2xwy—Qq3+wz) ;
0.5%( (go+1)wx—q3*xwy+q2xwz) ;
0.5%( q3xwx+(qo+1xwy—qlxwz) ;
0.5x(—g2xwx+qlxwy+(qo+1kwz) ];

g =1 1/Ix 0 0;
0 1/1ly 0;
0 0 1/ly;
0 0 0;
0 0 0;
0 0 0;
0 0 0; 1;

T T T A L B B L
%% SoS Programming
B A T T s T T N T T A L R
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p = 10°-6;
s = 5;
program = sosprogram(x);

[program, w(1,1)] = sospolyvar(program,monomials(x,0)2

[program, w(2,1)] sospolyvar (program , monomials(x,Q)2
[program, w(3,1)] = sospolyvar(program,monomials(x,0)2
p_-lin=[1.0226 —0.0000 0.0000 0.0000 0.4593 0.0000-0.0000
—0.0000 1.0226 —-0.0000 0.0000 0.0000 0.4593-0.0000
0.0000 -0.0000 1.0226 0.0000-0.0000 0.0000 0.4593
0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
0.4593 0.0000 —-0.0000 0.0000 1.0226-0.0000 -0.0000
0.0000 0.4593 0.0000 0.00006-0.0000 1.0226 0.0000
—0.0000 -—-0.0000 0.4593 0.0000-0.0000 0.0000 1.0226];
t = xX'xp_linxx;
[program , phi]=sospolyvar (program ,[wx"2;wy"2;wz"2;0®;91°2;92"°2;93"2]);
fg = fxp+g*w;
divergent =diff (fg (1) ,wx)+diff (fg(2),wy)+diff (fg(3),wz)+
diff (fg(4),qo)+diff (fg(5),ql)+diff (fg(6),q2)+
diff (fg(7),q3);
gradian = [diff (t,wx) diff (t,wy) diff (t,wz) diff (t,qgo)
diff (t,ql) diff (t,q2) diff (t,q3)];
const = qo"2+ql”"2+qg2°2+q3721;
[program , mono] = sospolyvar(program,monomials(x,1));

final_f = txdivergent-sxgradian<fg—phi+monoxconst;

program = sosineq(program, finafl);
program = sossolve (program);
sosgetsol (program ,w(1))
sosgetsol (program ,w(2))

sosgetsol (program ,w(3))
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Chapter 4

An Inverse Optimality Approach To A
Third Order Optimal Control Problem

4.1 Introduction

The main contribution of this chapter is to analyticallnsothe Hamilton-Jacobi-Bellman
equation for a class of third order nonlinear optimal cdnproblems for which the dy-
namics are affine and the cost is quadratic in the input. Topgsed solution method is
based on the notion of inverse optimality with a variabld pathe cost to be determined
in the solution. The main idea was first proposed in [80] tesal class of second order
problems. This chapter will extend the work In [80] to solvelass of nonlinear third
order optimal control problems. One special advantageisftbrk is that the solution is
directly obtained for the control input without the compida of a value function first.
The value function can however also be obtained based omtiietinput. Furthermore,
a Lyapunov function can be constructed for a subclass aofingpttontrol problems, yield-
ing a proof certificate of stability. Finally, using the poged methodology, experimental

results for a path following problem implemented in a Whedlabile Robot (WMR)

65



are then presented to verify the effectiveness of the pexpogethodology.

4.2 Background

Optimal control problems are generally solved by numeteahniques since the optimal
controller is the solution of the Hamilton-Jacobi-Bellm&iB) equation [79], which is a
nonlinear partial differential equation that is difficudtsolve analytically. However, there
is an explicit solution for the input as a derivative of théueafunction if the dynamic
model is affine and the cost is quadratic in the input. This id@s first used in_[80] to
solve a class of second order problems. This chapter wiirekthe work in[[80] to solve
a class of nonlinear third order optimal control problems.

Departing from previous methods, the proposed method sctipter can directly
find a solution for the control input without the computatioha value function. The
value function can however also be obtained based on theotamput. Furthermore, a
Lyapunov function can be constructed for a subclass of @gtaontrol problems, yield-
ing a proof certificate for stability. The method can be agxplio a class of third order
nonlinear systems that will be defined in the next sectiois.dssumed that the cost func-
tion is the sum of a quadratic term in the input and the statdsaa unknown ternQ(x)
that should be determined. For a third order nonlinear systethe assumed class, our
interest is then to simultaneously search for a controltel @ cost function tern@(x)
that together satisfy the HIB equation. The methodologlybeilapplied to the dynamic
model of a Wheeled Mobile Robot (WMR) on tie- y plane for path following of the
line y =0 at a constant velocity, as shownhig[2.4. This path following problem will
be investigated in sectidn 4.4.

The remainder of this chapter is organized as follows. Intieel.3 a third order

nonlinear optimal control problem is defined, and then thenmasult is derived. An
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interesting special case of the general optimal contrdblera is also presented in that
section. The effectiveness of the proposed method will logvehin several examples in
section 4.4. Using the proposed methodology, experimeesailts for a path following
problem implemented in a Wheeled Mobile Robot (WMR) are thengmtesl, followed

by some concluding remarks.

4.3 Optimal Control Problem Definition and Solution

Consider the following optimal control problem
min ) = | (@ + g8+ ad+ Q) + 1) o
S.t. Xl(t) = fl(Xz)
X2(t) = f2(X3) (4.1)
Xg(t) =CuU
X(0) =Xo, UEX
wherec > 0,01 > 0,02 > 0,03 > 0,r > 0,x(t) =[x1 % x3|" € #3c %#°is the state
vector, where# 2 includes a neighborhood of the origin. The scalar inpblongs to the
set of Lebesgue integrable functions. The functifafix,) is class#¢! with a bounded

derivative andf(x3) is continuous. These functiorig(xp) and fa(x3) are not identically

zero and are assumed to be zeraat0 (f1(0) = f»(0) = 0). The term
L (x1, %2, X3, U) = Qg + 0% + 4G + Q(X) + ru (4.2)

which is a function of all the states and the input, is calleglirunning cost. The optimal
control problem formulated here is to find, if possible, atooinlaw u(x) and a cost

function L(x1,X2,X3,u) such thatu minimizes the performance indekx,u) = J;’ L dt,
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and [4.2) is nonnegative and has a minimumyat x, = x3 = u= 0. Let the optimal cost

function be defined by

V (X, X2, X3) = irl}f/ L(x1,X2,X3,u) dt (4.3)
0

The main result is now stated.

Theorem 4.3.1.Given the optimal control problenh (4.1), if there exist gaka, ko, ks,
k4, and kg satisfying

=2 - g% (4.4)
r r r
kl = Ck3k4 , k2 = Ck3k5 (4.5)
kg7 (x2) + K2 (xa) — 2¢ Tkaf1 (X2)Xa o (X3) > O (4.6)
and
2rc s / f2(xa) dXg + 2rc~ Lkaxa F1 (o) + 2rkaks / f1(x) dxp 4y > O 4.7)

wherey is an integration constant verifying

y= —2rc1{ / ks f2(x3) dx3 + Ckyks / f1(x2) dxz] (4.8)

X2:X3:0

then the control input

u= —k1X1 — kzXz — k3X3 — k4f1(X2) — k5 f2(X3) (4.9)
solves the HIB equation for problem (4.1) with

Q(X) =rk3f2(x0) + rk&f2(xs) — 2rc tkaxs f1 (x2) f2(x3)

(4.10)
+ 2rk1koXqXo + 2rk1 kax1 X3 + 2rkoksxoxs
which yields the nonnegative running cost
L (X1, X2, %3, ) =13 F{(x2) + k& f3(x3) — 2rc ™ kaxa f1(¥2) f2(Xa)
(4.11)

+ 1 (kgxy + koxo + kaxz)2 + ru?
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with a minimum at x= x = x3 = u= 0. The resulting optimal cost function(¥) =

J(x,u*), where u is the optimal controller, will be given by

2
V(x) = r(\/k1k4x1+ \/k2k5x2+\/k3c:1x3>
—|—2I’Ci1 <k5/f2(X3) dX3—|—k4X3f1(X2)) (4.12)

+ 2I’k4k5/ fl(Xg) dxo+vy.

The function \(x) will also be a local Lyapunov function for the systém](4.1)-pro
vided it is positive definite. Furthermore, the trajectariwill converge to one of the

minimizers of Xy, Xo, X3, U(X1, X2,X3)), i.€, t0 a point(x, X2, X3) such that
L(X1,X2,X3,U(X1,X2,X3)) = 0. (4.13)

If L(x1,X%2,X3,U(X1,X2,X3)) iS convex, then the trajectories will converge to the origin f

all initial conditions.

Proof. To solve the optimal control problem (4.1), the HIB equation

iﬂf H (X1, X2, X3, Vi, ; Vi, Vs, U) = 0 (4.14)
where
H = qoé+03+0sx5+ Q(X) + Vi, f1(x2)
(4.15)
+ Vi, f2(Xg) + Vi, Cu+ ru?
with
ov(x) .
V. = =12 4.1
Xi aXi ) I 9 73 ( 6)

should be solved. A necessary condition for optimality is

H
(Z—u =0 — Vi, = —2rc tu(x). (4.17)
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Using a structure of the control input asfin (4.9), the ina&kof expression(4.17) yields
V(x) = —2rc L / U(x) dxs + h(xz, X)
= +2rc % (kaxa + koXo + Ka f1(%2)) (4.18)
+ 2rct / (k3X3 +ks fg(Xg)) dxz + h(Xl, X2)
whereh(xy,X2) is an arbitrary function ok; andx,. Differentiating with respect tsy and
X yields
Vy, = 2rc ™ tkyxg + hy, (4.19)

Vy, = 2rc ™ xg(kp + ka1 (%2) ) +hy, (4.20)

wheref](x2), hy,, hx, are the derivatives ofy (x2) andh(xa, x2) with respect toc, x1, and

Xo, respectively. Replacin§ (4.9), (4117). (4.19) and (4.20)i134) yields
Q(X) + (g — rki)x] + (02 — rk3)X5 + (03 — rk3)x3
+2rc ™ tkyxg f1 + 2rc xa fa (ko + ke f1) + hy, f1 4 hy, 2

— 2I'k1k2X1X2 — 2I’k1k3X1X3 — 2I‘k2k3X2X3

(4.21)
— 2rkgkaxa f1 — 2rkskaxafo —r (K2 f2 + k2 £2)
— 2rky fl(k]_X]_ + k2X2) — 2rks f2(k1X1 + k2X2)
— 2rk3k4X3 f1 — 2rk3k5X3 f2 =0
where the arguments were removed for simplicity. Choosing
hX2 = 2rkaks f1 + 2rk5(k1x1 + k2X2), (4.22)
yields
h(Xl, X2> :2rk4k5/ f]_(Xz) dxo + 2rkgky X1 Xo
(4.23)

+ rkskoxg + g(x1)
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and

hxl = 2rkskyxo + g’(xl) (4.24)

where we choose

g/(X]_) = 2I’k4k1X1 . (4.25)
Finally, replacing[(4.22)and (4.24) in(4]21) yields aftearranging

Q(X) + (dz —rkE)X§ + (02 — rkZ)XG + (0 — Tk3)5
+ 2rxaf1(kic ™t — kaka) + 2rxa f1(ksky — koka)

(4.26)
+ 2rxs fz(kzc_l — k3k5) — 2I’k1k2X1X2 — 2I’k1k3X1X3

— 2rkokaxoxz + 2rc kgxa f] f2 — rk2 f2 — rk2f2 = 0.

Using (4.4) and((415) irn_(4.26) leads to the expresdion [4.COmbining [4.2),[(4]6) and

(4.10) yields the nonnegative running cdst (4.11). Repta@n23) in (4.18) and taking
into account[(4]5) yields the value functidn (4.12). NotibatV is class¢* given the

continuity and smoothness assumptions on the functigixs) andfz(x3). Therefore, the
optimal costV (x) in (4.12) is finite for any bounded initial condition Moreover, since
V(x) = [y Ldt, whereL > 0, V(x) needs to be a nonnegative function. The condition
(@.7) impliesV(x) > 0. Notice also tha¥ = —L(x1,x2,x3,u) < 0. Therefore, the cost
functionV (x) becomes a Lyapunov function for the system dynamics in @rdyided it
is positive definite. Finally, since the optimal cd4tx) is finite for all initial conditions,
then the trajectories will converge to one of the minimizefr (x1, X2, X3, U(X1,X2,X3))
becausd. > 0 and lim_,. L = 0 (since the integral of is finite). If L is convex, then
the trajectories must converge to the origin because thlgnois the only minimizer of
L. Expression[(4]8) makes the cost functd(x) zero at the equilibrium point = 0
satisfying the boundary condition of the H¥B») = 0. This finishes the proof. [
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Remark 4.3.1. It is interesting that the square of the nonlinearity tern#éx) and 2(x3)
appear in the running cost function, though this would bediffito predict. In fact, in
most of the research papers on optimal control the cost Wguratludes only quadratic

terms on the states.

An interesting special case of the optimal control probl@hd) is presented in
the following corollary wheref;(x3) = axs. This case can be applied to some important

mobile robotics such as path following problems, which w#lshown in the next section.

Corollary 1. For the following optimal control problem

00

min ) = [ (@06 + a8+ @b+ Q) + D)t
st x(t) = f(x2)
Xo(t) = axs (4.27)
x3(t) =cu
X(0)=x9, UEX
where a>0,c>0, f(0)=0, 1 >0, g > 0, g3 > 0, and r> 0, if there exist gains;kor
i=1,---,5verifying (4.4),[(4.5),
ky>0 , f'(x2) <0.5ackk,?! (4.28)
and
rac ksx3 + 2rctkyxaf (xz)2rk4k5/ f(x)dxo+y>0 (4.29)
wherey is an integration constant verifying(@) = O, then the control inpu{(419) solves
the HJB equation corresponding {0 (4127) with the nonnegatimning cost
L (X1, X2, X3, U) =T (KiXq + KXo + KaXs)? -+ rk3 £2(xo)
(4.30)

+1x5(a?k€ — 2ac Tka f'(x2) ) +1uU?.
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Moreover, the resulting value function is

2
V(X) = r (\/k1k4x1+ v/ Koks %o + \/k3C_1X3>

+rac tksxg + 2rctkaxa f (xo) (4.31)
+mm@/ummm+y

The function V is also a local Lyapunov function provided ipositive definite. Further-

more, the trajectories will converge to one of the minimizErk(xy, X2, X3, U(X1,X2,X3)),

i.e, to apointxy, X2, X3) such that I(x1, X, X3, U(X1,X2,X3)) = 0. If L(X1,X2, X3, U(X1, X2, X3))

is convex, then the trajectories will converge to the origindll initial conditions.

Proof. Making f2(x3) = axg expressions[(4.11) an@ (4]12) result [n (4.30) &nd (4.31),
respectively. Moreover, sindé(x) = [, Ldt, whereL > 0, V(x) needs to be a positive
semidefinite function. The condition_(4129) impliggx) > 0. If the functionV(x) is
positive definite, it will be a Lyapunov function since cawsits [4.28) imply thaV =
—L(x1,X2,X3,u) < 0. The rest of the proof follows the same argument as the pbof

theoreni 4.3]1. O

In the next section, the effectiveness of the proposed rdethibbe shown in sev-

eral examples.

4.4 Examples and Numerical Simulations

Example 4.4.1. Linear System
Consider a triple backstepping integrator system with
c=1, fh)=x , flx)=Xxs. (4.32)
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This linear system has open-loop equilibrium points at
Xy =constant , Xp=x3=0. (4.33)

Assumingq: = gz = r = 1 andq, = 4, the gains satisfyind (4.4)-(4.7) are obtained as
follows

ki=ks=ks=1,ky =ks=2. (4.34)
This results in the control input
U= —X1 — 3% —3X3
and the running cost is given by
L (X1, X, X3, U) = (X1 -+ 2% + X3)% + X3 -+ 2x5 + U°.

This running cost functioil.(x) is strictly convex because the Hessian matrixt ©f) is

positive definite as follows

4 10 8
v2L(x) = [10 28 22 >0. (4.35)
8 22 24

The value function is also
V (X) =(X1 + 2X2 + X3)% 4 X5 + X5 + (X2 + X3)?
121
=x"Px=x" |2 & 3|x.
1 3 3
Obviously, the functiorV(x) is positive definite sinc® > 0. This value function is also
radially unbounded. Moreover, the derivative of the valuection is
V(X) = — (X1 + 2% 4 X3)% — X3 — 24 — (X1 + 3X2 + 3%3)?
=x'Zx
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where

-2 -5 -4
Z=|-5 —14 -11 (4.36)
—4 —11 -12

Thus, V(x) is negative definite sinc& < 0. Therefore, the value function is a
global Lyapunov function, and the system is globally asytipally stable. Note that
for a triple integrator model using the control input (4.8), usual quadratic form of the
statesV (X) = X2 + x3 + X3 cannot be a Lyapunov function, and thus there should exist

cross terms in the states.

Example 4.4.2. Nonlinear System

Consider a nonlinear system with
c=1 , fi(x)=24+sin(x) , f(x3)=x3+xs. (4.37)
This nonlinear system has the open-loop equilibrium pants
Xy =constant , xp=x3=0. (4.38)
The control gains corresponding to
Q=0g=r=1 , 02=9 (4.39)

are

kg = ko = 3kg = 3kg = ks = 3 (4.40)

which satisfy all the constraints (4.4)-(4.7). Usibg (418 control input is given by

U= —Xg — 5% — 4xg — Sin(x2) — 333 (4.41)
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with the running cost

L (X1, X2, X3, U) =(X1 + 3%2 4 X3)% 490G + X3)2 + U?
—2(2+ cogx2)X3(X3 + 1)

(4.42)
=(X1 + 3% + X3)?+ (2% + Sin(%2)) %2

+x5(x5+1) (9(x§ +1)-2(2+ Cos(xz))) :

Since the resulting running cost is a sum of squares, andriigne minimizer at the
origin satisfying[4.IB), it is positive definite for all tiséatesx € %°. Moreover, the value

function withy given by [4.8) is obtained as

V (X) = (X1 + 3% + X3)2 + 1.5%3 + 3x5 + 6x5
+6(1—cogX2))+2x3(2%2 + sin(x2))
—(X1+ 32+ X3)2 + X5+ 2x5 + 1.5x3
+ (X3 + 2%2) %+ (X3 + sin(xz))2
+4sir?(%2) (2 +sirf(%2))
>W(x) = x12 + x22 + x3%,
SinceV (x) > W(x) > 0, the resulting value function is positive definite. Theweafunc-
tion V(x) is also radially unbounded. Therefore, Sinte) = —L(x,u) < 0, this value
function is a global Lyapunov function. The equilibrium pbk = 0 is globally asymp-
totically stable. Figi4.d shows the time response of the states [x; X x3]T, the
running costL(x,u), and the Lyapunov functiolW (x) subject to the initial condition
Xo=[10 m/2 1. Asseen, all the states asymptotically converge to thempnighere
V(x) > 0,V (o) =0, and the value function has the minimunmxat= x = x3 =u=0.

For comparison, an LQR controller is also designed for aalized model of the
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Figure 4.1: Time response of the states, the input, the ngntwstL (x,u), and the Lya-
punov functionV (x) for Examplé4.4.2 subject to initial conditiog = [10 /2 1T

given nonlinear system with the weighting matrices in theniag cost function corre-
sponding to a second order Taylor series approximation efréimning cost. The lin-

earized model is given by= Ax+ Bu, where

0 30
A=10 0 1
00O

andB=[0 O IT. Using a second order Taylor series approximation of theltiag

running cost((4.42) yields

L(X1,%2,X3,U) =X2 + 18X3 + 4x5 4 6X1 X0 + 2X1X3 + 6XoX3 + UP
(4.43)
=x" Qx+u'Ru
Now we consider two weighting matrices with and without Imgvcross terms in the

quadratic Lyapunov functiob(x) (4.43) as follows
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1 00 1 3 1
QQRiag=10 9 0| : QLQRyss= |3 18 3
0 01 1 3 4

andR= 1. TheLQR(A,B,Q,R) controllers are obtained as

KLQRyq, = [1.0000 46766 32176 w00

KLOR,ooe = [1.0000 54233 38531.

The time response of the states and the control input for @R and the proposed
HJB-based controllef(4.9) subject to the initial conditign=[10 7 1]T is shown in
Figi4.2. It indicates that, compared to the LQR controllersngishe proposed optimal
controller stabilizes the system with less overshoot irstages, and also with less control
effort. Simulation results also show that the bigger theahcondition is, the more oscil-
latory is the response of the system using LQR controllersti@ other hand, using the
proposed optimal controller the change of initial condii@o not affect the smoothness
of state responses and the control effort.

These controllers (optimal and LQR controllers) are alsogared in the presence
of a partial loss of control authority, shownhig/4.3. Fig/4.3 shows the time response of
states and control inputs with 85% loss of control authaitigject to the initial condition
Xo=[10 m 1]T. Simulation results show that the proposed HJB-based domtndxs
with up to 85% loss of control authority, whereas the LQR oaligr designed for a linear
model of the given nonlinear system with the weighting neatiin the running cost
function corresponding to a second order Taylor seriescqupiation of the running cost

cannot stabilize the system at this percentage of failure.
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Figure 4.2: Time response of the states and the control ifgrutQR and HJB-based
controllers for Example4.4.2 subject to the initial coruatitx, = [10 7 1]7

79




time (sec)

Figure 4.3: Time response of states and control inputs wi 8ss of control au-
thority for HIB-based controller and LQR controller subjéatthe initial condition
Xo=[10 m 1T
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Example 4.4.3. Wheeled Mobile Robot (WMR) Simulation

Following corollanf1, lea=c =1, f(xp) = sin(xp). This system is the dynamic
model for path following of the lingg = 0 of a WMR on a plane, moving at a constant
unitary velocity. According td-ig[2.4, the state vector

XZ[xl X2 x3}T=[y W W}T (4.45)

contains the positiow, the heading angle¢y € (—m, ], and the angular velocity, re-

spectively. This nonlinear system has the open-loop dxiiiin points at
y=constant , w=0 , ¢=0m. (4.46)
fork=0,1,2,---. The optimal controller correspondingge =gz =r =1 andg, =4 is
U= —X1 — 2x2 — 3x3 — Sin(X2)
with the following running cost

L(X1,%2,X3,U) = (X1 + 2%2 4+ X3)2 + Sir?(xo)
(4.47)
+%5(4—2cogxp) ) +U2.

The running cost(x) is a nonnegative function since it is a sum of squares. Nate th
for xo € (—m, 1] the resulting running cost functidr(x;, X2, X3, U(x)) has two minimizer
at the origin(0,0,0) and the point—2r, 11,0). Furthermore, the value function with

given by [4.8) is obtained as
V(X) = (X1 + 2% + X3)2 + 234 + 2x3Sin(X2)
+4(1—cogx))
— (X1 + 20+ Xa)°+ (X3 + sin(x) ) *+3

+4sirf (%) (1+sirf(%))
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whereV (x) is positive definite forx; € (—1t, ) since the resulting value function is a
sum of squares, and is equal to zero only at the origin. Maedtie derivative of the

value function
V(X) = —L(X) = — (X1 + X2 +X3)% — sirP(x2) — X5 (4 — 2cogx2) )
— (Xl + 2Xp 4 3X3 + sin(xz))z

is negative definite fox, € (—rt, ) becausd.(x) is nonnegative, and is equal to zero
only at the origin. Therefore, the value function is a locghpunov function in the largest
invariant set oD = {X| (x1,X3) € %2, |x2| < m}. Note however that there is no guarantee
that the closed-loop system converges to the origin subgeany initial condition in the
setD.

Figld.4 shows the trajectories of the path following system ef MR subject to

different initial conditions. It can be seen from the figunattthe trajectories converge
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Figure 4.5: Region of Attraction for the given WMR

to the desired patly = O for the given initial conditions. However, note that sirtbe
running cost is not convex, one only has the guarantee teatMMR will follow the
straight line and that for a set of initial conditions it widlllow the line in the direction
corresponding tgy = 0. Moreover, fonp € (—11, 11], the direction corresponding th= 11
also makesin(y) = 0 leading to a minimum of the running cost. The estimatedoregi
of attraction (ROA) for the trajectories of WMR is also shownFig/4.5. This ROA
has been found numerically using simulation with a set dedgint initial conditions. It
shows that for which sets of initial conditions the trajes of the WMR converge to
the origin. Simulation results of the estimated ROA alsonshitat the stateg; andx,
are bounded, as seenhig/4.5, but the state; can be extended to-o, +). The time
response of the running cost, the Lyapunov function, thestand the control input for

T
the system subject to the initial conditiegn = [2 /2 o] are also shown ifrig/4.8.
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As seen, both functions(x,u) andV (x) are positive and converge to zerotas oo.

For comparison, an LQR controller is also designed for aalized model of the
given nonlinear system with the weighting matrices in theniag cost function corre-
sponding to a second order Taylor series approximationeofuhning cost. Linearizing
the resulting cost functior_(4.47), we again consider twagivéeng matrices with and

without having cross terms given by, respectively,

100 1 21
QQRiag= 10 4 0| , QLQRwss= 1|2 5 2
0 01 1 2 3

andR= 1. TheLQR(A,B,Q,R) controllers are then obtained as

KLQRyay = [1.0000 30550 26665
KloRuee=[1 3 3.

The trajectories of the path following system of the WMR, sabje the initial con-
ditonx,=[7 7m/8 1T, is shown inFig/41 for both LQR and HJB-based controllers.
It indicates that using both controllers stabilizes theegivmionlinear system. However,
compared to LQR controllers, the proposed HIB-based ctetuades a bit less control

effort, although the difference is not significant.

4.5 Experimental Results

In this section a practical application is presented tofyehe effectiveness of the pro-
posed methodology experimentally. The experimental skagbeen explained in more

detail in Section 2.2]1. The kinematics equations of the WMRhex — y plane are
y(t) =V sin(y)
Pt)=w

(4.48)
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Figure 4.6: Time response of the states, the input, the mgnoostL(x,u), and the
Lyapunov functionV (x) for the path following model of the WMR subject tg =
2 m/2 QT
and the dynamic equation of the WMR is given by
W(t) =cu (4.49)

wherec = 0.0066, and/ = 0.083(m/s) is the constant velocity of the WMR. The
objective is to find optimal control gairs (4.9) for a nonnagarunning cost(4.11), which
force the WMR to follow the desired path= 0. According toFig/2.4 the states contain
the positiony, the heading anglg/, and the angular velocity. Since the constanig
andb in the WMR model are small values, it experimentally makeseda select large

controller gainK; compared to example 4.4.3. Choosing
t1 = 300°, gp = 207, g3 = 36,1 = 1, (4.50)
and usingl(44)c(415) and (4.128)-(4129) yields the follegvbptimal control input

u= —300y — 20y — 9091w — 4.2sin(P). (4.51)
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Figure 4.7: Control input and trajectory of the path follogrigsystem of the WMR for
LQR and HJB-based controllers subject to the initial condit, = [7  7rm/8 1T

Fig/4.8 shows the experimental trajectories of the WMR followihg liney = 0
subject to the following different initial condition¥o, Yo, Wo)
(a) =(0.85,—m/3,0) , (b)=(-0.7,—1/2,0)
(c) = (0.80,71/6,0) , (d)=(-0.65m/4,0) (4.52)
(e) =(0.5,—1/2,0). (4.53)
As shown inFig/4.8, the trajectories converge to the desired path 0. Note

however that since the running cost is not convex, one ondytha guarantee that the

WMR will follow the straight line and that for a set of initiabaditions it will follow

86



3.5

X (m)

051

0 1 1 1 J
-1 -0.5 0 0.5 1

Y (m)
Figure 4.8: Experimental WMR Trajectories

the line in the direction corresponding go= 0. The direction corresponding tp = 1T
also makesin(y) = 0 leading to a minimum of the running cost. The results of this
paper cannot exclude the possibility of the trajectoriasveaying to this solution. The
time response of the experimental control input is showRigi4.9. As seen from this
figure, the higher the distance to the line and the higher daglimg angle of the WMR
in its initial condition, the larger is the control input. $d notice that the control input is
always bounded, and does not saturate. As discussed inSEER.1), due to hardware
and wireless communication limitations, the maximum feswey that the total WMR
system can handle is Bz However, The experimental results kig/4.8 andFig/4.9
indicate that using this sampling rate of data is quite §atig to implement the proposed
controllers on WMR setup. It is also worthwhile to note that ttme trajectories of the
WMR and the experimental control inputs are not smooth becafisaving noise in the

experimental setup.
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Figure 4.9: Experimental control inputs for the WMR

4.6 Summary

The solution to a class of third order nonlinear optimal colnproblems has been pre-
sented in this chapter using the concept of inverse optiyndlhe optimal controller and
part of the running cost are computed to satisfy the HIB éguatOnce the running
cost is computed, a local Lyapunov function can be constdufrtom the value function.
Compared to the LQR controller associated with the weightioes in the running cost
function corresponding to a second order Taylor seriescequpition of the running cost,
simulation results show that using the proposed HJB-basgch@jpcontroller leads to a
smoother responses in states and control effort in some.cAspractical application to
a WMR path following problem has also been presented to exgerially verify the ef-

fectiveness of the proposed methodology. However, it has Baown that the proposed
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method does not always guarantee that the trajectoriexc@nilerge to a given equilib-
rium point for all initial conditions. Although the propasenethod is restricted to a class
of third order optimal control problems, it can potentiatlg extended to higher order

systems assuming that the dynamics are affine and the castdsaiic in the input.
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Chapter 5

Conclusions

In this chapter the main conclusions of this work and the piaaefuture work are stated.
In Chapter[2, the kinematics equation of motion for a rigidyhds been described us-
ing different common representations such as quaternidodified Rodrigues Parameter
(MRP) and Euler angles. Here we were interested in quatesnather than MRPs be-
cause not only the latter has a geometric singularity, lsat e polynomial matrix entries
using quaternions are linear while they are nonlinear ferNtRP representation. Thus,
a quaternion-based attitude model will pose fewer comjmutat challenges. A system
identification and an experimental setup of a Wheeled MobiledRQ/VMR) as well as
the setup the Quanser helicopter have also been preser@dpter[ .

In Chapter[B, the main objective was to develop nonsingutad-thody attitude
control laws using a convex formulation, and to implemeenthn an experimental set
up. The attitude recovery problem was first parameterizeédrims of quaternions, and
then two polynomial controllers using an SoS Lyapunov fiomcand an SoS density func-
tion were developed. A quaternion-based polynomial cdlietrasing backstepping has
also been designed. The simulation results show that thEopeal nonlinear controllers

guarantee the asymptotic stability of states subject toimitial condition. Moreover,
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the numerical simulation as well as experimental resulfgemented in a Quanser Heli-
copter verify that the quaternion-based controller sizdsl the closed-loop system in less
settling time and with smaller overshoot than the MRP-basettoller. A few interesting

extensions to the research work in Chapter 3 would be theAfoitn

e Decrease the number of feedback states, specifically indke of sensor fail-

ures,while maintaining the stability

e Adding external disturbances to the system.

In Chapter[4, the solution to a class of third order nonlingdineal control prob-
lems was presented using the concept of inverse optimalibe main contribution of
this chapter was to analytically solve the Hamilton-Jad®éilman equation for a class of
third order nonlinear optimal control problems for whicle tiynamics are affine and the
cost is quadratic in the input. One special advantage ofatbik is that the solution is di-
rectly obtained for the control input without the computatof a value function first. The
optimal controller and part of the running cost are comptibeshtisfy the HIB equation.
Once the running cost is computed, a local Lyapunov funat&m be constructed from
the value function, yielding a proof certificate for statyiliMoreover, simulation results
show that using the proposed HJIB-based optimal controbelsiéo smooth responses in
states and control effort. A practical application to a WMRhpallowing problem was
also presented to experimentally verify the effectiverefsthe proposed methodology.
However, it has been shown that the proposed method doesvaytsaguarantee that the
trajectories will converge to a given equilibrium point ff initial conditions. Although
the proposed method is restricted to a class of third ordémapcontrol problems, it can
potentially be extended to higher order systems assumatgtth dynamics are affine and
the cost is quadratic in the input. Also adding noise and tairgy parameters can be an

interesting extension to this work.
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