
DETECTING AND MODELING
POLYMORPHIC SHELLCODE

A THESIS

IN

THE DEPARTEMENT

OF

CONCORDIA INSTITUTE OF INFORMATION SYSTEMS ENGINEERING

(CIISE)

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF APPLIED SCIENCE IN INFORMATION SYSTEMS

SECURITY

AT

CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

NOVEMBER 2010

c©NBOU OMAR, 2010

Abstract

Detecting and Modeling Polymorphic Shellcode

Omar Nbou

In this thesis, we address the problem of modeling and detecting polymorphic engines

shellcode. By polymorphic engines, we mean programs having the ability to transform

any piece of malware into many instances consisting of different code but having the same

functionality as the original malware. Typically, polymorphic engines work by encrypting

the target malware using various encryption techniques and providing a decryption module

in order to execute the newly encrypted instance. Moreover, those engines have the ability

to mutate their decryption routine making them unique from one instance to another and

hard to detect. Our analysis focuses on polymorphic shellcode, which is shellcode that

uses a polymorphic engine to mutate while keeping the original function of the code the

same. We propose a new concept of signatures, shape signatures, which cope with the

highly mutated nature of those engines. Those signatures try to identify the constant part

as well as the mutated part of the deciphering routines. This combination is able to cope

with the highly mutated nature of those engines in a much more efficient way compared

to traditional signatures used in most intrusion detection systems. The second part of the

thesis aims at modeling those polymorphic engines by showing that they exhibit common

characteristics. The analysis of bit positions and byte composition of decoders shows us

that polymorphic decoders exhibit a specific byte composition and can be mapped.

iii

Table of Contents

List of Figures . vii

List of Tables . x

1 Introduction . 1

1.1 Motivations . 1

1.2 Problem Statement . 3

1.3 Objectives . 4

1.4 Contributions . 5

1.5 Approach . 6

1.6 Research Issues and Results . 6

1.7 Organization . 8

2 Background . 10

2.1 Related Work . 10

2.1.1 No-Operational Instruction Detection 11

2.1.2 Return Address Detection . 12

2.1.3 Static Binary Code Analysis . 14

iv

2.1.4 Emulation-Based Detection . 14

2.1.5 Signature-Based Detection . 16

2.2 Polymorphic Engines . 23

2.3 Conclusion . 26

3 Genetic Algorithms . 27

3.1 Main Components . 28

3.2 Breeding . 30

3.2.1 Selection . 30

3.2.2 Crossover . 31

3.2.3 Replacement . 32

3.3 Schema Theorem . 33

3.4 Conclusion . 35

4 Shape Signatures . 37

4.1 Population Generation . 38

4.2 Genetic Algorithm for Signature Detection 39

4.2.1 Crossover . 40

4.2.2 Reproduction and Recombination 43

4.2.2.1 Reproduction Sequence 43

4.2.2.2 Parent Selection . 45

4.2.2.3 Reproduction . 45

4.2.3 Fitness Function . 46

4.2.4 Selection . 51

v

4.2.5 Replacement . 52

4.2.6 Search and Termination . 52

4.3 Signature/Pattern Extraction . 53

4.3.1 Patterns extraction . 54

4.3.2 Filtering Process . 56

4.4 Changing-Length Decoders . 57

4.5 Fast Messy Genetic Algorithms . 59

4.5.1 Initialization Phase . 60

4.5.2 Building Block Filtering and Juxtaposition 62

4.5.3 Filtering . 64

4.5.4 Engine . 65

4.6 Results . 65

4.7 Filtering . 68

4.7.1 Levensthein Distance . 68

4.7.2 Filtering Process . 69

4.8 Validation . 70

4.9 Interpretation . 75

4.10 Conclusion . 75

5 Analysis of Shape Signature Positions . 77

5.1 Approach . 78

5.2 Results . 79

5.3 Interpretation . 83

vi

5.4 Verification . 86

5.5 Conclusion . 90

6 Decoder Analysis Composition . 92

6.1 Byte Spectrum Analysis . 92

6.2 Results . 93

6.3 Interpretation . 107

6.4 Analysis . 108

6.5 Byte Spectrum Extraction . 110

6.6 Byte Spectrum Analysis Approach . 114

6.7 Results . 116

6.8 Interpretation . 119

6.9 Network Traffic Results . 119

6.10 Interpretation . 121

6.11 Rules of Composition . 123

6.12 Verification . 123

6.13 Conclusion . 126

7 Conclusion . 127

Bibliography . 130

vii

List of Figures

3.1 Chromosome Representation in Binary . 28

3.2 Chromosome Representation in Hexadecimal 29

3.3 Single-Point Crossover . 32

4.1 N-Point Crossing Points for a Chromosome 41

4.2 Random Crossing-Points Effects . 42

4.3 36-Byte Decoder Example . 47

4.4 Decoder’s Genes . 48

4.5 Correlation Process . 49

4.6 Summary of the Engine . 53

4.7 Decoder’s Building Blocks . 55

4.8 Pattern Extraction . 56

4.9 Different Length . 57

4.10 Various Length Decoders’ Building Blocks 58

4.11 Extended Decoder . 61

4.12 Non-Logical Building Blocks . 61

4.13 Initial Decoder . 63

viii

4.14 Final Decoder . 64

5.1 ADM Mapping . 85

5.2 Tapion Mapping . 85

5.3 Shikata Ga Nai Mapping . 86

6.1 Shikata Byte Spectrum for Set 1000 1 . 93

6.2 Shikata Byte Spectrum for Set 1000 2 . 94

6.3 Shikata Byte Spectrum for Set 1000 3 . 94

6.4 Shikata Byte Spectrum for Set 5000 1 . 95

6.5 Shikata Byte Spectrum for Set 5000 2 . 95

6.6 Shikata Byte Spectrum for Set 5000 3 . 96

6.7 Shikata Byte Spectrum for Set 10000 1 96

6.8 Shikata Byte Spectrum for Set 10000 2 97

6.9 Shikata Byte Spectrum for Set 10000 3 97

6.10 ADMmutate Byte Spectrum for Set 1000 1 98

6.11 ADMmutate Byte Spectrum for Set 1000 2 99

6.12 ADMmutate Byte Spectrum for Set 1000 3 99

6.13 ADMmutate Byte Spectrum for Set 5000 1 100

6.14 ADMmutate Byte Spectrum for Set 5000 2 100

6.15 ADMmutate Byte Spectrum for Set 5000 3 101

6.16 ADMmutate Byte Spectrum for Set 10000 1 101

6.17 ADMmutate Byte Spectrum for Set 10000 2 102

6.18 ADMmutate Byte Spectrum for Set 10000 3 102

ix

6.19 Tapion Byte Spectrum for Set 1000 1 . 103

6.20 Tapion Byte Spectrum for Set 1000 2 . 103

6.21 Tapion Byte Spectrum for Set 1000 3 . 104

6.22 Tapion Byte Spectrum for Set 5000 1 . 104

6.23 Tapion Byte Spectrum for Set 5000 2 . 105

6.24 Tapion Byte Spectrum for Set 5000 3 . 105

6.25 Tapion Byte Spectrum for Set 10000 1 . 106

6.26 Tapion Byte Spectrum for Set 10000 2 . 106

6.27 Tapion Byte Spectrum for Set 10000 3 . 107

6.28 Tapion Byte Spectrum . 111

6.29 Shikata Ga Nai Byte Spectrum . 111

6.30 ADMmutate Byte Spectrum . 112

x

List of Tables

4.1 Window Extraction for a Gene . 48

4.2 Extracted Windows from Genes . 55

4.3 Genes Extraction . 63

4.4 Extracted Patterns for Shikata Ga Nai . 65

4.5 Extracted Patterns for Tapion . 66

4.6 Extracted Patterns for ADMmutate . 66

4.7 Final Shape Signatures for Polymorphic Engines 70

4.8 Detection for Shikata Ga Nai Signatures 71

4.9 Average Detection for Shikata Ga Nai Signatures 71

4.10 Detection for ADMmutate Signatures . 72

4.11 Average Detection for ADMmutate Signatures 73

4.12 Detection for Tapion Signatures . 74

4.13 Average Detection for Tapion Signatures 74

5.1 Shape Signature Position Analysis for Shikata Ga Nai 79

5.2 Average Shape Signature Position Analysis for Shikata Ga Nai 80

5.3 Shape Signature Position Analysis for Tapion 81

xi

5.4 Average Shape Signature Position Analysis for Tapion 81

5.5 Shape Signature Position Analysis for ADMmutate 82

5.6 Average Shape Signature Position Analysis for ADMmutate 83

5.7 Detection for Shikata Ga Nai Signatures 87

5.8 Detection for Tapion Signatures . 88

5.9 Detection for ADMmutate Signatures . 89

5.10 Average Detection for Engines without and with Position Verification . . . 90

6.1 Shikata Ga Nai Meaningful Most Repeated Bytes 113

6.2 ADMmutate Meaningful Most Repeated Bytes 114

6.3 Tapion Meaningful Most Repeated Bytes 114

6.4 Composition Results for Shikata Ga Nai 116

6.5 Composition Results for ADMmutate . 117

6.6 Composition Results for Tapion . 118

6.7 Average Composition Results for the Engines 118

6.8 Composition for Network Dumps Against Shikata Ga Nai Byte Spectrum . 120

6.9 Composition for Network Dumps Against ADMmutate Byte Spectrum . . . 120

6.10 Composition for Network Dumps Against Tapion Byte Spectrum 121

6.11 Average Composition Results Against Engines’ Spectrums 121

6.12 Ratios for Network Dumps Against Polymorphic Engines Byte Spectrums . 122

6.13 Ratios for Polymorphic Engines Decoders’ Composition 122

6.14 Shikata Ga Nai Correlation for Composition 124

6.15 ADMmutate Correlation for Composition 124

xii

6.16 Tapion Correlation for Composition . 125

6.17 Average Correlation for Composition . 125

6.18 Composition Correlation for Network Dumps against Byte Spectrums . . . 126

xiii

Chapter 1

Introduction

1.1 Motivations

Remote exploitation remains one of the most important threats for information systems

security. The growing number of software programs developed without taking into consid-

eration security aspects, makes code injection attacks a very appealing way for attackers to

compromise systems. A code injection attack can be described as the exploitation of a com-

puter bug caused by the processing of invalid data. The number of vulnerabilities found

in computer programs has become so important that computer industry and researchers

shifted their attention to detecting exploits rather than improving the software programs.

As a consequence, tools such as Network Intrusion Detection Systems (NIDS) and anti-

viruses are used to ensure the detection of such abnormalities or exploits. Huge databases

are kept up-to-date for the sake of fingerprinting or generating signatures that can help in

identifying such pieces of malware. The challenge for an attacker is to find and exploit

vulnerabilities as quickly as possible before a signature could be generated. However, at-

1

tackers have recently discovered very efficient techniques to evade NIDS and anti-viruses

by developing polymorphic engines. As such, a traditional structure for a buffer overflow

based exploit, consisting of a No Operation Performed section (NOP), a shellcode and a

return address, moves into a new structure consisting of:

• Obfuscated NOP section using multi-argument no-operation instructions

• Decoder or decryption routine (subject to mutation from one instance to another)

• Encrypted shellcode (where the encryption keys are modified from one instance to

another)

• Return address

Thus, known signatures or piece of malware can be easily concealed through the use of a

powerful polymorphic engine. Many approaches are taken when it comes to detect poly-

morphic engines. Some of them focus on detecting the NOP section whereas others draw

attention to detecting the return address in the payload. Models using static binary analysis

and emulation techniques are also used as detection mechanisms as well as signature-based

models. The results are the same for all those detection systems: polymorphic engines

are able to evade them. Hackers are improving their polymorphic algorithms and making

their engines more and more powerful. However, we believe that there is a strong need in

improving the current signature-based detection into models that cope with the new threats

resulting from the use of polymorphic engines. So far, most signature-based detection

models fail against polymorphic engines because they do not take into into account the

polymorphic nature or are not able to express it in their detection mechanism. We strongly

2

believe that the issue for signature-based detection is to implement a signature model that

is able to cope or express that polymorphic nature efficiently. If this condition is fullfilled,

signature-based detection could become very efficient against such engines and could bring

interesting results. In this respect, improvement of detection mechanisms against such en-

gines is becoming challenging and important in the area of malware detection.

1.2 Problem Statement

A polymorphic engine has the ability to generate many instances of the same piece of mal-

ware with a high degree of uniqueness. In other words, all the generated instances look

very different from each other but yet achieve the same functionalities. As a consequence,

the use of traditional signature becomes completely useless against such polymorphic tech-

niques. Song et al. [3] show that in order to cope with such polymorphic behavior, tradi-

tional signature detection system need to model a space in the order of O(28n) sequences.

They extended the analysis by developing two metrics: variation strength and propagation

strength. The former measures the degree of exploration of the byte spectrum, which sim-

ply means measuring the degree of variety in the bytes used from one instance to another.

The latter measures the degree of uniqueness in the instances generated from one poly-

morphic engine. Their results show that most powerful polymorphic engines exhibit high

degrees of variation and propagation strength. As such, we believe that there is a need to

improve the concept of signature in order to better catch the highly mutating nature of those

engines. Obviously, one can conclude that traditional signature detection models (with bit

per bit pattern-matching) are completely useless.

3

1.3 Objectives

The main objective of the thesis is to propose a new approach to a more efficient detec-

tion and modeling of polymorphic engines. More specifically, we aim at achieving the

followings:

• Study the state of the art proposals in the area of polymorphic shellcode detection

and modeling

• Propose a new model of signature to better cope with polymorphism

• Elaborate a model based on evolutionary algorithms to extract those signatures

• Validate the proposed approach through experimentation

• Model polymorphic engines by extracting common exhibited characteristics:

– Study the bits positions of the newly extracted signatures to show the possi-

bility of effectively mapping the decoders by locating the areas subject to high

mutation and areas corresponding to the extracted signatures

– Propose experimental approaches in order to validate the conclusions drawn

from studying bit positions

– Analyze the bytes composition to show that each polymorphic engine exhibits

a specific composition that uniquely characterizes it

– Provide experimental results showing repeated patterns in terms of byte com-

position for each engine

4

1.4 Contributions

The main contributions of the thesis can be summarized as follows:

• Comparative study of the state of the art techniques in terms of polymorphic shell-

code detection. We identify five main families of detection mechanisms: no-

operational instruction detection, return address detection, static binary code anal-

ysis, emulation-based detection and signature-based detection.

• Proposal of a new model of signatures that better deals with polymorphism tech-

niques. We believe the approach that consists of identifying invariant elements of

polymorphic decoders as well as mutated part is original. In fact, signature-based

detection techniques could be enhanced and should not be exluded.

• Different modeling approaches for polymorphic engines. By different, we mean

characterizing each engine through its byte composition as well as mapping its de-

coders. The mapping consists of showing that we can effectively predict the areas

that are subject to high mutations as well as areas that correspond to the newly gen-

erated signatures.

• Providing new elements about polymorphic engines’ behavior, such as byte compo-

sition characteristics and mapping of their decoders that could constitute new leads

for modeling those engines.

5

1.5 Approach

We revise the notion of signature by taking into account the mutation points as well as

the invariant codes. This will lead us to what we call shape signature. The general ap-

proach of the thesis is to develop first a genetic algorithm [16] engine that extracts what we

call shape signatures. By shape signatures, we mean signatures that locate constant parts

as well as mutated parts of polymorphic decoders. Then, we analyze the bit position of

those signatures in order to show that we can map the general shape of polymorphic de-

coders. By mapping, we mean that we can consistently predict the areas of high mutation

as well as the areas containing the shape signatures. The aim is to show that the positions

of those signatures do not occur along the whole decoder. They rather shift in a predefined

area of the decoder. With respect to that, we are able to effectively locate areas along the

decoder that are subject to high mutation as well as area that corresponds to constant pat-

terns. Finally, we analyze the byte occurrences of those polymorphic engines and show that

the same bytes keep repeating themselves. By identifying three main elements, which are

the NOP elements, the byte spectrum, and the other bytes, we identify those polymorphic

decoders in terms of their byte composition by extracting rules of compositions that char-

acterize them. The aim is to show that we can differentiate those polymorphic decoders, in

terms of composition, from a regular NOP section or any random sequence of bytes.

1.6 Research Issues and Results

The main issue, when it comes to signature detection, is to cope with the ability of

polymorphic engines to generate polymorphic decoders that require an order of O(28n)

6

sequences to catch all polymorphic behaviors with n being the decoder’s length. We know

from [10, 11, 12, 13] that those engines leave artefacts in their mutation processes due,

mainly, to consistency constraints. By consistency constraint, we mean that no matter how

random the engine might look, it must be consistent by creating polymorphic decoders that

perform their job reliably. From a hacker’s perspective, the challenge is to avoid having a

too long sequence of those invariant codes that could constitute a reliable signature. Having

those two elements in mind, the issue is to come with a model that is able to express them.

It is complex and challenging because the two elements are contradictory and yet they

are related. The methodology that we follow is to extract moulds that better characterize

the polymorphic decoder. Instead of trying to identify all the possible instances that a

polymorphic engine could generate, we look for a higher-level or more abstract model that

can better define all those possible instances. As a consequence, we come with a new model

of signatures called shape signatures that is able to detect constant parts, due to consistency

constraints, and mutated parts due to polymorphism. In this regard, we make use of a

genetic algorithm that is able to extract shape signatures from large sets of polymorphic

decoders. The obtained results are very promising in the sense that the model of shape

signatures holds.

The next step is to find a way to model polymorphic shellcode generated by polymorphic

engines. The modeling of such engines is challenging because similar work is very rare.

Thus having a reliable starting point that we could build on or improve from is key. The

shape signatures could constitute the foundation from which we can elaborate the model-

ing of polymorphic shellcode. As such, we study the bits’ position of the newly extracted

7

shape signatures and come to the conclusion that polymorphic decoders could be mapped

effectively. By doing so, we mean that we could predict where the shape signatures ap-

pear, as well as the mutated parts, along the decoder’s space. Our modeling is extended

by analyzing the byte composition of polymorphic decoders. The motivation is to find a

way to characterize those decoders by analyzing their byte spectrums. Our results show

that polymorphic decoders exhibit a constant pattern in their composition allowing us to

recognize them uniquely.

1.7 Organization

In Chapter 2, we present a detailed description of related work on detecting and modeling

polymorphic engines. We propose a classification of such approaches in order to provide

the reader with a better overview of how researchers detect and model polymorphic en-

gines. We also present some of the techniques used by the most powerful polymorphic

engines known until today such as ADMmutate [14], Shikata Ga Nai [15] and Tapion [27].

The aim is to show how hackers improve their evasion techniques. In Chapter 3, we pro-

vide a detailed description on the theory of genetic algorithms. The description is purely

theoretical and will help to familiarize the reader with such evolutionary technique. In

Chapter 4, we define the new concept of shape signature and explain how it relates to ge-

netic algorithms. Therein, we describe in details some of the inner-workings of the engine,

then discuss and validate the obtained shape signatures. Chapter 5 explains how decoders

generated from polymorphic engines can be mapped. By mapping, we mean that we can

consistently predict the areas of high mutation as well as the areas containing the shape sig-

8

natures. Chapter 6 is dedicated to composition analysis of decoders generated from those

engines. By composition, we mean examining the byte spectrum produced by polymor-

phic decoders. Finally, some concluding remarks as well as a discussion of future work are

presented in Chapter 7.

9

Chapter 2

Background

2.1 Related Work

We find various approaches when it comes to analyzing polymorphic engines, more specifi-

cally polymorphic shellcode in the context of a buffer overflow based exploit. The proposed

mechanisms for detecting or modeling such engines use a wide variety of techniques that

are often unrelated. However, we believe that a classification can better summarize how

the problem is approached. In this respect, we have been able to identify five families or

categories:

• NOP section detection: This basically includes techniques for detecting the no-

operation instructions that precede the piece of malware

• Return address detection: It can be summarized as attempts to detect the possible

existence of a return address and thus of an exploit

10

• Static binary code analysis: It includes techniques that consist of converting network

data into binaries and then analyze the flow of executed instructions

• Emulation-based detection technique: In this category, network data is transformed

into a binary format that will be executed in a safe environment. During the execu-

tion, attempts are made in order to detect polymorphic behavior

• Signature-based detection: This denotes the technique adopted in this thesis. It in-

volves searching for known malicious patterns in executable code

We aim at describing the major research proposals for each category to give the reader

a better insight of the state of the art in the field. For each description, we detail the

approaches and give their limitations with respect to polymorphic engines.

2.1.1 No-Operational Instruction Detection

Buffer overflow based exploits usually consist of three major sections: the NOP section,

the shellcode section, and the return address. Even though polymorphic shellcode based

exploits present a slightly different structure (with the addition of the decoder routine), the

no-operation section is still present. As a consequence, the detection focuses on identifying

the NOP section since polymorphic techniques are so difficult to model and predict. [17,

18] note in their analysis that the rate of detecting the no-operation section is higher than

the rate of trying to find a signature or analyzing the flow of execution of such malware.

Their results are promising since the NOP section consists of mainly repeating the same

op-code for a certain number of times. Consequently, when having the latter pattern, we

can effectively detect a NOP section. However, the release of ADMmutate polymorphic

11

engine [14] makes this approach completely obsolete since it is found that the number

of x86 no-operation instructions do not consist of only three or four instructions but to

more than sixty instructions. Thus any combination of these instructions could constitute

a NOP section without having to repeat the same instruction. Consequently, the intrusion

detection systems NGSEC [19] and Snort [20] released functionalities incorporating such

instructions, expanding their no-operation instruction library. Based on the new library of

no-operation instructions, they elaborated algorithms to detect the occurrence of such in-

structions and thus the NOP section. Initially the results were promising until the discovery

of multi-argument no-operation instructions [21]. Basically, it is a no-operation instruction

that takes arguments. The arguments could be any piece of byte, even though they do not

belong to the NOP library. Having regular instructions inserted between sequences of no

operation instructions, the NOP section is completely obfuscated. The detection of these

instructions fail since it becomes impossible to identify a sequence of contiguous NOP

instructions. Consequently, the no-operational instruction detection becomes impossible

when dealing with multi-argument NOPs.

2.1.2 Return Address Detection

The second category deals with detecting the return address part for buffer overflow based

exploits. The idea is interesting in the sense that it assumes that the range of addresses

for a process, when executed, lies in specific areas of the memory. As such, Buttercap [1]

aims at performing such detection technique by identifying the range of possible return

memory addresses for existing buffer-overflow vulnerabilities. However, the method has

12

many limitations:

• It relies heavily on the target operating system. In fact, the techniques for complet-

ing an exploit differ from one operating system to another, thus, implementing such

detection mechanism is challenging.

• In some cases, the completion of an exploit does not require the use of a return

address as it is the case for Windows-based systems. SEH based exploits [22] are a

perfect example.1

• All new versions of Linux, Windows and Mac respective operating systems come

with Address Space Layout Randomization2 (ASLR) [23]. As a consequence, new

ranges of addresses have to be considered and explored making the detection prone

to false positives.

• ASLR is created in order to make the guess of the return address in the presence

of vulnerable programs nearly impossible. However, new exploitation techniques

beating the ASLR exist. Thus, the range of address to consider is even bigger and

hard to predict leading to an increase of both false positives and false negatives in the

detection.

We come to the conclusion that such an approach is very hard to implement, consequently,

its efficiency is highly questionable.

1SEH: Structured Exception Handlers are exceptions that a program cannot handle itself, then control is
passed to a SEH address that has code that can be used to show a dialog box explaining that the program has
crashed

2ASLR: technique which involves randomly arranging the positions of key data areas such as the base of
the executable, position of libraries, heap, and stack, in a process’s address space

13

2.1.3 Static Binary Code Analysis

Before addressing the topic of static binary code analysis, it is important to mention that

we do not intend to question its efficiency. Static binary code analysis is indeed a powerful

method for analyzing binaries. Having seen the inefficiency of previous approaches (No-

operational instruction detection and return address detection), some initiatives considered

treating polymorphic shellcode as executables or binaries. As a consequence, static binary

code analysis is considered as a reliable technique to perform such task. In such approach,

disassembling techniques are used in order to transform network data into binary code. The

control flow of the code is then analyzed statically in order to detect patterns or features that

could characterize polymorphic shellcode behavior. By static, we mean that the translated

binary is not executed. The approach is restricted to analyzing the disassembled binary.

Consequently Payer et al. [6], Chinchani et al. [25] and Kruegel et al, [26] developed

interesting mechanisms performing such tasks. However, the process of translation is itself

very challenging. In fact, most of the time, the conversion from network data into binaries is

prone to errors making the conclusions that could be drawn from such detection techniques

highly questionable. Moreover, powerful polymorphic engines implement techniques that

resist static analysis such as self-modifying code. In fact, Polychronakis et al. [4] give a

complete description on how static binary code analysis could be easily evaded.

2.1.4 Emulation-Based Detection

It is important to mention that we do not challenge the efficiency of emulation-based tech-

niques but rather question their efficiency in detecting polymorphic shellcode. In order to

14

defeat static analysis evasion techniques of polymorphic shellcode, emulation-based detec-

tion is proposed as an enhancement of the previous approach. Polychronakis et al. [4] are

the first to propose such detection. Their approach differs from the previous ones in the

sense that they do not stop to the translation from network data to binaries and the anal-

ysis of the disassembled binary. In addition. they execute the binary resulting from the

translation in a safe environment and try to identify polymorphic shellcode behavior from

the execution. Such approach faces many problems in the context of polymorphic shell-

code detection. The process of emulation itself presents many problems. The most obvious

one is the risk of facing infinite loops when trying to emulate the execution of the newly

translated binaries. Most of the time, the newly translated binaries do not correspond, in

reality, to executable code leading to many bugs and inconsistencies in the execution. Of-

ten the inconsistencies result in infinite loops during the execution. Moreover, there is real

difficulty in identifying where the polymorphic shellcode starts and where it stops. As a

consequence, we can question the reliability of conclusions that can be drawn from such

an approach. The second problem faced with this detection is the ability for polymorphic

engines to evade it. We mention just some few evasion techniques to show the flaws that

can be faced with emulation detection. As we have mentioned previously, there is a risk

with emulation to face infinite loops. One solution proposed by Lanjua et al. [7] and Zang

et al. [28] consists in imposing a threshold limiting the number of executed instructions

so that infinite loops are avoided. Consequently, the implementation of endless but actu-

ally finite loop in the shellcode can evade such detection. Thus, before the shellcode is

detected, the execution ends, causing a false negative. Moreover, a way of detecting poly-

morphic shellcode behavior, using emulation, is the decoding process. When the decoding

15

routine is launched, the decryption process is done at regular time interval revealing a de-

coding behavior that could be detected. Tapion [27], as an example, possesses a decryption

mechanism involving a random CPU time usage. Moreover, most powerful polymorphic

engines have techniques that involve executing the shellcode in a random fashion disturb-

ing the flow of execution. Thus, possible analysis of shellcode behavior using emulation is

highly questionable. For these reasons, we believe that emulation based detection is not a

reliable solution in order to deal with polymorphic shellcode.

2.1.5 Signature-Based Detection

This category is close to the approach adopted in this thesis. In the following, we present

and discuss some related research proposals. In this setting, it is to mention the result

proposed by Song et al. [3] on the impossibility of detecting and modeling polymorphic

shellcode using conventional signatures. Their work is important in the sense that it is

the most successful attempt in understanding and quantifying the strength of polymorphic

shellcode. In this paper, the authors present a quantitative analysis of the strengths and

limitations of polymorphic shellcode. They also consider the impact of this analysis on the

current practices in intrusion detection. Their analysis provides a new and useful way to

understand the limitations of the current generation of signature-based techniques. Con-

sequently, the authors developed two metrics: variation strength and propagation strength

in order to quantify the strength of a polymorphic engine. The first metric measures the

degree of exploration of the byte spectrum, which simply means measuring the degree of

variety in the bytes used from one instance to another. The second metric measures the

16

degree of uniqueness in the instances generated from one polymorphic engine. The au-

thors state that most powerful polymorphic engines exhibit high degrees of variation and

propagation strength. Based on that, they come to the conclusion that current generation

of signature-based techniques are limited and inadequate for detecting polymorphic shell-

code. As stated by Song et al. in [3], we need to model a space in the order of O(28n)

sequences to cope with polymorphism. In fact, better models of signatures should be pro-

posed in order to deal with the high degree of mutation of polymorphic shellcode. Our

motivations are based on the fact that even when they mutate, polymorphic engines leave

artefact making them potentially subject to detection. Moreover, the created polymorphic

decoders must be consistent by performing their task which is decoding the encrypted shell-

code. Consequently, any technique or attempt to make the decoder look highly random or

polymorphic is greatly reduced by this consistency constraint. Finally, the mutation tech-

niques themselves are subject to detection. Based on that, a model of signature that takes

into consideration the possible mutating zone and the constant part is able to effectively

express the behavior of a polymorphic engine. The polymorphic characteristic is expressed

through the mutating part and the constraint of consistency is expressed through the con-

stant part. The conclusions drawn concerning the ability of polymorphic engines to possess

high variation and propagation strengths are valid. However, the analysis should also take

into consideration the fact that perfectly polymorphic decoder cannot be created because

of the consistency constraints that we have mentioned before. The authors assume the

existence of perfect polymorphic decoders in the algorithms they used in their genetic al-

gorithms techniques without taking into consideration that there is a constraint factor. In

other words, the decoders must be consistent in the sense that they must perform their work

17

as decoders. Consequently, any attempt to make the decoder look polymorphic is subject

to those constraints reducing the performance (in terms of making the decoder look poly-

morphic). Otherwise, the generated sequences of bytes will not make any sense since they

will correspond to random instructions without any meaning or task. This constraint factor

is not taken into consideration in the experiments conducted in [3]. We believe the experi-

ments could have been more reliable by not even touching the decoders sequence of bytes

and just analyzing them as they are. In this respect, our analysis draws much important

conclusions in order to model polymorphic decoders. For these reasons, signature-based

detection and modeling of polymorphic shellcode should not be abandoned.

Autograph [10] is a tool for signature generation against worms. It basically consists

of two main phases: a first phase called suspicious flow selection and a second phase

called signature generation. We elaborate more on the second phase since it is the one

related to signature-based detection. However, we quickly describe the first phase to give

an insight on its semantics. The first phase aims at identifying meaningful data to analyze.

Basically, it acts as a filter to detect network packets that correspond to a worm behavior.

The focus is on successful flows from IPs that make unsuccessful connection to more than

S destinations. In other words, it identifies the scanning functionality proper to all worms.

Autograph relies on the assumption that worms should exhibit common byte patterns that

uniquely identify them. Based on this, the suspicious flows identified from the first phase

are divided into small blocks. Each small block is ranked according to its occurrences; the

higher is the occurrence, the higher is the prevalence. Obviously, this process becomes very

ineffective against worms encoding their contents using a polymorphic engine since finding

18

such common patterns is itself challenging for highly polymorphic engine. Moreover, the

use of traditional pattern matching is not suited against polymorphic engines. We will show

in the sequel that our shape signatures are much more effective against those engines.

Honeycomb [11] is a complex system for automating the process of signature generation

for Network Intrusion Detection Systems (NIDS). It applies pattern-matching techniques

and protocol conformance checks on many levels of the protocol hierarchy. We are not

elaborating on the honeycomb architecture but we focus on the algorithms used in their

pattern matching for the sake of generating attack signatures. The signature creation algo-

rithm operates in the following manner. For each incoming packets, the following steps are

executed:

• The connection state is checked for the new packet: when a connection exists, the

state is updated; otherwise, a new state is created.

• The type of packet is verified: when the packet is outbound, the process stops; other-

wise, the process continues.

• A protocol analysis is then performed at both the network and transport layers for

IP, TCP and UDP headers. The analysis aims at detecting anomalies that correspond

to misbehavior. The techniques used for detection of such abnormal traffic are com-

mon ones used by all NIDS. Once the packet is identified as abnormal, an analysis

signature is created at this point.

• For each stored connection or each previous recorded packets:

19

– Honeycomb [11] compares the header to match possible IP addresses, TCP

sequence numbers, common destination ports, etc. In other words, any infor-

mation that might relate the packet to a previous connection is investigated.

– Once a connection is found, Honeycomb performs pattern detection on the data

part or the exchange messages for a possible final signature.

As we can see, there are many problems that can be stated for the system such as the re-

liability of how packets are related to each other but at this point, we solely focus on the

pattern detection technique used by Honeycomb. Pattern matching is based on the LCS

algorithm [54] (Longest Common Subsequence). The whole issue is to know if the LCS

algorithm is effective against polymorphic engines. The LCS is very efficient in finding

common parts exhibited by a polymorphic engine. However, if the engine is very polymor-

phic, those common parts tend to be very small and sparse. Thus, it becomes ineffective

when generating a reliable signature.

Polygraph [12] is a framework for generating signature attacks against polymorphic

worms. We believe that this framework is the closest one, in its approach and design,

to our work. The main architecture of Polygraph is discussed briefly as we focus on the

way signatures are generated rather than the whole framework. The architecture consists

of a network tap, which is deployed at a key point of a network such as a bridge point that

links a network to the Internet. Then, traffic passes through a flow classifier that converts

reassembled flows into contiguous byte flows. The next phase consists in analyzing the

recorded traffic so that the suspicious flows are distinguished from the innocent ones. The

distinction is based on detection techniques used by regular NIDS. The next phase is the

20

core of the framework, which is the Polygraph signature generator. As we have mentioned

previously, we are not going into the details of how the data is gathered. Let us investigate

the algorithms used in order to perform pattern matching. Polygraph relies on three main

techniques for signature generation:

• Conjunction signatures

• Token subsequence signature

• Bayes signature

The conjunction signatures consist of extracting all common tokens or chunks of bytes for

the gathered data without taking into consideration the order in which they appear (their

relative order). These tokens are labeled as the first phase signatures. The used algorithm

is the Smith-Waterman local sequence alignment [55] for alignment issues. The next phase

consists of the token subsequence signature. It uses the previously extracted tokens and

tries to identify an order in which the tokens appear. Finally, the last phase of the algorithm

is the creation of Bayes signatures. In this phase, each token is associated with a score and

an overall threshold. These signatures exhibits the following probabilities:

• The probability that the token is in the suspicious flow

• The probability that the token is in the innocent flow

In our opinion, the pattern extraction mechanism used by Polygraph is the most efficient

one among the signature-based detection mechanisms, especially the ability to try to find

a sequence, or an order, in which the tokens appear. However, Polygraph fails in detect-

ing highly polymorphic engines or worms for the following reasons. The algorithm relies

21

heavily on the first phase of extracting common tokens. If the engine is highly polymorphic

those tokens are very small in size and important in number. Knowing that highly poly-

morphic engines are using the whole byte spectrum, the number of common tokens is very

high. Consequently, the signatures generated lead to many false positives when used in the

detection process, and Polygraph is unable to extract a reliable pattern.

Hamsa [13] is a network-based automated signature generation system for polymorphic

worms. Hamsa , like most signature-based detection frameworks, looks for invariant se-

quences of polymorphic malware. Even though, the algorithm for token extraction is quite

similar to Polygraph [12], Hamsa differentiates itself in the sense that it looks for executable

code instead of byte strings. In other words, it is not a simple token extraction, the engine

tries to analyze the extracted tokens and see if they correspond to something meaningful.

The basic steps that the engine goes through are the following:

• Extract the basic blocks

• Generate the corresponding Control Flow Graph (CFG)3

• Color the code on each node of the CFG

• Records fingerprints into a table

• If the number of fingerprints exceeds a certain threshold, they are identified as mal-

ware code
3CFG: In a control flow graph each node in the graph represents a straight-line piece of code without any

jumps or jump targets. Directed edges are used to represent jumps in the control flow.

22

However, we can see that hamsa encounters the same problems as Polygraph [12]. When

encountering a highly polymorphic engine, those tokens tend to be very small and impor-

tant in number as stated previously. Highly polymorphic engines are using the whole byte

spectrum, and so the number of common tokens is very high. Consequently, the number of

fingerprints generated tends to increase leading to a high rate of false positives.

To summarize, most of signature-based detection mechanisms rely heavily on the invari-

ant codes that polymorphic engines are subject to. We believe the idea to be relevant in

the sense that those invariant codes come from the consistency constraint that polymorphic

shellcode needs to fulfill. However, attackers are also aware of this observation. Accord-

ingly, they implement engines that aim at inserting highly mutating code in between those

invariant codes. This makes the detection mechanism useless, at best, subject to a high

rate of false positive. We believe that the concept of signatures needs to be improved by

incorporating signatures that detect invariant codes as well as mutated zones.

2.2 Polymorphic Engines

This thesis focuses on the most powerful polymorphic engines that are known so far. Our

choice is based on the work done by Song et al. [3] since it is the only known work that

has been successfuk in quantifying and measuring polymorphic engines. We also take into

account the latest developments done in the area of polymorphic engines. In this regard,

the choices come down to the following three engines: Tapion [27], Shikata Ga Nai [15]

and ADMmutate [14]. In this section, we survey these three engines and the techniques that

23

are used in order to make them polymorphic.

Tapion [27] was created by Piotr Bania to avoid code detection. It is probably, so far, the

most powerful polymorphic engine since it incorporates a wide panel of evasion techniques.

More specifically, it is the only engine possessing the ability to evade emulation-based

techniques. Whereas the other two engines are resistant to most detection mechanisms,

they do not possess functionalities designed to evade emulation-based detection. Its main

techniques of polymorphism are the following:

• The decryption key is generated in a random fashion

• There is a swapping of shellcode blocks or pieces

• The decoder’s length is constantly changing from one instance to another

• It uses multiple decryptor layers, thus performing the decryption of the shellcode as

well as some of its decoder parts

• There is garbage padding in between instructions in order to prevent the detection of

long invariants codes

• The garbage padding is unpredictable or random

• It uses random register in order to prevent detection. This is an important feature

since many polymorphic engines are very often vulnerable to signature detection

because of register usage

• Anti-emulation techniques are used such as performing decryption at random inter-

vals and pseudo-infinite loops

24

The next engine is Shikata Ga Nai[15]. It is the official polymorphic engine of the Metas-

ploit framework [15] for its shellcode generator. It exhibits the following features:

• It uses a polymorphic XOR additive feedback encoding against a four byte key

• The key is chosen according to a context-key selection. In other words, a memory

map is created and then a sequence of bytes is selected from it to fit the desired

key-length

• It uses dynamic instruction substitution and dynamic block ordering. The aim is to

create on-the-fly decoders that look different from one instance to another

• Permutations of about 1.3 millions are used by the engine from one instance to an-

other

• It selects dynamically the registers

The last engine, namely ADMmutate[14] was developed by the so-called ADM CREW.

It is one of the breakthrough in polymorphic engines since it is the first ,historically, to

implement new generation of polymorphic techniques that constitute the basic foundations

for all the newly implemented polymorphic engines. It uses the following main techniques:

• Non-operational padding: which is padding of NOP instruction in between instruc-

tions. The padding is done using various non-operational instructions (being single or

multi-byte argument), making them appear random and immune to possible pattern

detection

25

• Out-of-order decoder generation: specifying where certain core instructions may be

located in the decoder. This is mainly done by extending or reducing the length of

the decoder to shift the bit positions of those operational instructions

• Random generation of instructions: randomly selecting instructions without disturb-

ing the execution flow. This allows to explore the whole byte spectrum preventing

the use of the same instructions from one instantiation to another. It also prevents

against static binary code analysis as well as emulation detection

• Random key selection: selecting randomly keys, thus avoiding any prediction on how

keys and offsets are selected

In summary, we described the main techniques of polymorphism used by the aformen-

tioned engines. It is important to notice that each of these engines perform its own mutation

techniques even tough at the end the goal is the same which is creating polymorphic de-

coders capable of evading detection.

2.3 Conclusion

Polymorphic engines constitute a real threat in the sense that they are able to defeat various

types of detection mechanisms. Whether using network detection, emulation techniques

or any of the discussed mechanisms, hackers always find ways to improve evasion tech-

niques. Consequently, it is important not to drop any of the discussed mechanisms but

rather improve them in order to cope with polymorphic engines. Most importantly, it ap-

pears necessary to model those engines in order to better understand their inner workings.

26

Chapter 3

Genetic Algorithms

In this section, we discuss the main elements that compose any Genetic Algorithm (GA)

[16]. Moreover,we will discuss how these concepts will be applied in this thesis. Genetic

algorithms is a popular technique in evolutionary computation trying to emulate the natural

process of evolution. It is an established technique that is known to be efficient in heuristic

search problems. The main challenge in the use of GA is to adequately define the problem.

In our case, the problem consists in finding a common pattern for a given population of

decoders for a specific polymorphic engine. Our choice is motivated by the fact that poly-

morphic engines behave like entities in nature. They are able to generate from a common

basis multiple instances. During the process of instantiation, the generated entities are sub-

ject to mutations making them unique in terms of bytes. Yet, those same entities belong or

come from the same polymorphic engine.

27

3.1 Main Components

GA have two distinct elements: the individuals and the populations. An individual rep-

resents a single solution whereas a population represents the set of individuals currently

involved in the search process. A chromosome can be seen as the raw genetic information

of an individual (its genotype) that can be decomposed into genes. Figure 3.1 illustrates

a representation of a chromosome (encoded by bit strings); genes are the subdivisions or

building blocks that form the chromosome.

Figure 3.1: Chromosome Representation in Binary

Genes are in fact the basic instructions for building a GA whereas a chromosome rep-

resents a sequence of genes. They are bit string of arbitrary lengths. Each individual in a

GA can be valued or quantified by a fitness function. The fitness function is the value of

an objective function to indicate how good the individual is, as well as how close he is to

the optimal one. A population is a collection of individuals that are going to be evaluated

according to the criterion defined by the fitness function. A population has two important

aspects that must be considered:

• The initial population generation

28

• The population size

For each problem, the size of the population depends on the complexity of the defined

problem that needs to be solved. In theory, the initial population should have a large pool

of genes in order to explore the whole search space. All the possible combination of genes

should be present. Consequently, the initial population is often chosen randomly. In our

case, polymorphic engines claims to generate such randomness, thus solving the problem

of exploring the whole search space. In fact, Song et al. [3] have shown that a powerful

polymorphic engine (which is the case of the chosen engines) is able to effectively explore

the whole byte spectrum. On the other hand, our fitness function tries to identify common

patterns to each gene in their reproduction process. In this respect, we can have a glimpse

of the main components that will compose the genetic algorithm engine for shape signature

extraction.

The encoding is another important aspect of GA. It deals with representing each in-

dividual gene according to a specific alphabet. Since we are dealing with shellcode, an

appropriate representation of the genes is the hexadecimal alphabet (0-9, A-F). Figure 3.2

gives us an idea of how the chromosomes (which corresponds to shellcode) are encoded.

Figure 3.2: Chromosome Representation in Hexadecimal

29

3.2 Breeding

The breeding process is the core engine of GA. Through this process, the search creates

new possible fitter individuals. Three steps characterize it:

1. Parents’ selection

2. Crossing of parents to create new individuals

3. Creating the new population by replacing the old individuals by the new ones

Once the process terminates, the newly created population inherits characteristics from the

previous one. The most important idea to keep in mind is that the genetic information is

passed on from one generation to another in the breeding process.

3.2.1 Selection

Selection consists of choosing parents from the population for crossing or reproduction.

The purpose of the selection is to focus on fitter individuals hoping that their offsprings

(childs generated from the reproduction process) have higher fitness. The method randomly

selects chromosomes from the population according to their fitness values. The higher the

fitness, the more chances an individual has to be selected. The selection pressure is the

degree of how much we favor the best individuals (the ones with the highest fitness values).

In other words, it is the threshold set, in terms of fitness value, for deciding which individ-

uals are selected for reproduction. One important issue in selection is the convergence rate

of GA, which depends largely on the selection pressure value. The convergence rate ex-

presses how close we are towards finding the solution. The higher the selection pressure is,

30

the higher the convergence rates are. The problem is that high selection pressure results in

quick convergence toward a solution that might be wrong. A low selection pressure results

in a low convergence rate slowing down the GA by generating unnecessarily time to find

the optimal solution.

Two types of selection schemes can be distinguished: proportionate selection and

ordinal-based selection. Proportionate selection picks out individuals based upon their

relative fitness selection. On the other hand, ordinal-based selection selects individuals

based on their rank within a population. As a consequence, a predefined threshold must be

defined in order to decide which individuals must be selected.

3.2.2 Crossover

The crossover is the process of taking two parents and producing a child from them. In

other words, it is a reproduction process. After the reproduction, the child goes through

a selection process that determines its fitness or ability to live for the next rounds. The

crossover can be defined (roughly) in three steps:

1. Random selection of two individuals as parents

2. Selection of a crossing sites along the string length

3. The position values are swapped between the two strings in a random fashion

In fact, there are many techniques of crossover (single point, two point, n-points, etc). In

our case, we use an n-points crossover with constant crossing points. Consequently, we

31

choose to cross the string every n-bit as we will explain latter in this thesis. Figure 3.3

illustrates the concept of crossover using a single point crossover.

Figure 3.3: Single-Point Crossover

3.2.3 Replacement

The last stage of the breeding process is the replacement. The reproduction process ends

up with four individuals: the two parents and the two offsprings. However, not all of them

can constitute the new population. We need to determine which individuals goes through

the next rounds. We can clearly see that the way we replace individuals, determines the con-

vergence of the solutions. In fact, there are many replacements techniques but they all fall

into two main categories: generational updates and steady state updates. The generational

update consists of generating N children from a population of N parents to form the next

population at the next stage. We replace all the old population with the new one making

inter-generational reproduction impossible. The second family of replacement techniques

is steady state updates where new individuals are inserted into the new population instead

32

of completely erasing the old population.

As a conclusion, these are the main elements that constitute a genetic algorithm engine.

We can already see that our problem can fit into this type of evolutionary algorithms. In

the next section, we describe John Hollands schema theorem [29]. The aim is to show

how effective the genetic information is passed and how effective we could be in finding

patterns. The schema is also important since it is a kind of introduction into the concept of

shape signatures.

3.3 Schema Theorem

The schema theorem is based on John Hollands schema theorem [16, 29] which describes

a scheme as a template for describing a subset of chromosomes with similar sections. The

schema consists of bits or hexadecimal characters and meta-characters (wildcards). The

schema is a kind of template for describing similarities among patterns in chromosomes.

Holland derived an expression that describes the extent at which those schemata are passed

from one generation to another. A good schema propagates in next generations in an in-

creasing fashion. As a consequence, schemata that are low-order well-defined and above

average fitness are preferred and constitute building blocks of the GA.

A schema is a similarity template describing subset of string displaying similarities at

certain positions. In our case, it is formed by the following ternary alphabet 0-9, A-F,

X with X being a wildcard allowing the description of all possible similarities among

string of a particular length and alphabet. The GA model in schema theory is based

33

on proportionate selection in which the probability of selecting a solution in a current

population is proportional to its fitness. The schema theorem is called the Fundamental

Theorem of Genetic Algorithm. For a given schema H , let:

- m(H, t) be the relative frequency of the schema H in the population of the tth generation

- F (H) be the mean fitness of the elements of H

- O(H) be the number of fixed bits in the schema H , called the order of the schema

- σ(H) be the distance between the first and the last fixed bits of the schema called the

definition length of the schema

- f is the mean fitness of the current population

- Pc is the crossover probability

- Pm is the mutation probability

- l is the length of the code

Then:

E[m(H, t + 1)] ≥ m(H, t)
F (H)

f
[1− Pc

σ(H)

l − 1
−O(H)Pm]

The main information that can be derived from the schema theorem formula is that the

number of individuals matching a schema H grows at each time step like the ratio of the

fitness F (H) and the mean fitness of the current population f . Consequently, an above

average schema, i.e, a schema with F (H) > f , will proliferate successfully in the next

generation. At the opposite, a below average schema will not.

34

If we relate the formula to polymorphic engines, we can consider a schema as a potential

pattern. If we use a traditional signature matching mechanism, a pattern must match a

polymorphic decoder’s portion bit per bit. Knowing from Song et al.[3] that polymorphic

decoders exhibit a high variation and propagation rate, we expect to get F (H) < f since

the diversity and uniqueness of generated shellcode is so high that the schemata are always

below average. Consequently, those schemata are not able to proliferate resulting on the

impossibility to generate a signature for a polymorphic decoder. On the other hand, if

we change the model of signature by trying to detect the mutation points by considering

wildcards in the pattern and the constant points, we are able to increase the fitness of the

schema leading to potential above average schemata (with F (H) > f). Thus, they are able

to proliferate and candidate signatures could be found.

3.4 Conclusion

Genetic algorithms offer a convinient way of studying and representing polymoprhic de-

coders. The way genetic information is passed (in our case, the genetic information is

mainly the byte) allows us to extract possible common patterns for each polymorphic en-

gine. The search heuristic property of GA is very useful for search problem. In our case,

the challenge is to look for common patterns. In the case of polymorphic engines, the

addition of meta-characters with regular hexadecimal characters makes the extraction of

shape signatures accuurate and precise where constant parts can be represented by regular

hexadecimal characters whereas mutated part can be represented by wildcard characters.

This model of signature is potentialy able to generate above average schemata compared to

35

a traditional signature model, leading to potential signatures.

36

Chapter 4

Shape Signatures

In this chapter, we detail the functioning of the genetic algorithm engine and how it

allows us to extract the shape signatures. Our starting point is the fact that polymorphic en-

gines, even when they mutate, leave artefacts making them potentially subject to detection.

[10, 11, 12, 13] have shown the validity of such assumption. Moreover, those engines must

obey the structure of assembly language by decoding the encrypted shellcode properly.

Thus, any polymorphism technique attempt to make the decoder look highly random is

greatly reduced by the consistency constraint. Finally, the mutation techniques themselves

are subject to detection. In order to evade detection mechanism based on traditional signa-

ture detection, highly polymorphic engines pad mutated zones in between those potentially

detectable parts and constantly change their byte positions. Consequenty, signature-based

detection work done so far [10, 11, 12, 13] is either failing at extracting signatures or having

too small tokens leading to a high false-positives. Based on this, we define a new concept

of signature called shape signatures. This type of signatures takes into consideration, in

their detection mechanism, the possible mutated zone and the constant part. We believe

37

that this combination is able to effectively express the behavior of a polymorphic engine by

taking into account their high polymorphism (through the mutated part) and the constraint

of consistency (the constant part). We are able to explore the whole decoder space by using

GA. Thus, even with a shift of bit position, we are still able to detect potential patterns.

The way signatures are extracted through our GA engine is explained in details in 4.3. Be-

fore detailing the engine, it is important to stress the fact that we are basically dealing with

two families of polymorphic engine: fixed-length decoder engines and changing length de-

coder engines. They both rely on the same pattern extraction technique but present some

differences regarding the crossing point selection. In the next section, we present the com-

mon points between the two engines and explain the differences when dealing with both

families.

4.1 Population Generation

Our detection is based on the deciphering engine. Consequently, we select a well-known

polymorphic engine and run it against a single shellcode. Knowing the size of the shellcode,

we extract from the output generated by the engine the deciphering part and store it in a

file. If the engine generates various length deciphering decoders or adds jumps or padding,

we do not alter the obtained output to preserve the genetic information carried by each

member of the population of decoders. By doing so, we get a large-size population of

deciphering routines for a specific polymorphic engine. This constitutes the input or initial

population. The binary representation for the GA is obviously an hexadecimal one (since

we are dealing with shellcodes). The decoders are the chromosomes for the GA. Assuming

38

the polymorphic engine is for example Shikata Gai Nai[15], we call P the population

generated from it. Accordingly P = {D1, D2, D3, . . . , Dn} where Dm is a decoder and n

the size of the population. At each epoch, reproduction must occur through crossovers and

recombination. To this end, we need to define what type of crossover is used and how the

recombination occurs. After each epoch, the fitness function evaluates each individual and

proceeds with the selection and replacement of population. The next sections are dedicated

to the detailed explanation of how these steps are executed. For each polymorphic engine,

we generate a set of 1000 decoders. Based on that initial population set, we extract the

signatures. We can observe the strength of a polymorphic engines by only generating very

few instances of polymorphic shellcode and compare their differences. At the same time,

we need to evaluate their full strength by generating an important number of instances.

Consequently, we believe the number 1000 to be a good compromise between performance

and evaluation. For experimental testing, we create three new sets of 1000, three sets of

5000 and three new sets of 10000 decoders in order to validate the various results we come

across.

4.2 Genetic Algorithm for Signature Detection

In this section, we detail how the genetic algorithm engine works with respect to our

problem, which is the extraction of valid shape signatures. We detail the crossover process,

then describe how the reproduction and recombination phase are executed. Afterwards, we

define the fitness function of the GA and explain the selection and replacement phases.

39

4.2.1 Crossover

Since the size of the decoders is relatively important, especially when an hexadecimal

encoding is used, we need multiple crossover points. Those multiple crossover points gen-

erate the building blocks for reproduction, and thus, for signature detection. The motiva-

tion behind the use of multiple crossovers is closely related to the Schema Theorem [29],

which states that good schemata with short definition length propagate and grow rapidly

in the population. Usually, when a crossover (being single point or n-point) is chosen, the

crossing point tends to be random across the decoder at each iteration. In our case, this

randomness leads to invalid genes or building blocks. Indeed, if the crossing point is cho-

sen randomly at each round, we end up with sequences of bytes mixing with each other.

Consequently, the generated genes do not make sense semantically. By defining a n-point

crossover with fixed crossing point, we generate genes that remain the same across rounds

preserving their semantics. In other words, at each round, the same crossing point is chosen

for each chromosome in the current population (at each n bits, we choose a crossing point

at that position). Let D1 ∈ P and L1 be the length of D1 where D1 is a decoder from a

population P . Let m be the crossing point length with m < L1. Accordingly, a crossing

point at each m bits is defined in Figure 4.1.

40

Figure 4.1: N-Point Crossing Points for a Chromosome

To illustrate the inability of using random crossing points, let consider two decoders D1

and D2 of the same length. In this example, we use a single-point crossover and assume the

selection and the fitness evaluation to occur at epoch 0. The two chromosomes go through

the process of reproduction and recombine to produce two offsprings. Figure 4.2 illustrates

how the use of random crossing point leads to the creation of non-logical chromosomes.

41

Figure 4.2: Random Crossing-Points Effects

In summary, if the crossing point keeps changing, we end up with non-logical build-

ing blocks. This because the shellcode chunks keeps mixing with one another and so the

detection of patterns becomes impossible. Thus, it is important to keep the crossing point

42

constant to generate logical building blocks for the reproduction. We can then work on

them in order to extract common patterns that might exist. In our GA engine, the user is

asked to input the crossing point. Usually, a crossing point of length m such that m is

approximately one fourth of L (where L is the decoder’s length) is a good candidate for the

pattern extraction or signature detection. This choice is justified by the following reasons.

According to Song et al. [3], in average no more than
1

3
of any polymorphic decoder is

subject to transformation or mutations. We have also to recall the schema theorem [16,

29] property stating that low-order, well-defined average fitness schemata will combine to

form high-order, above order fitness schemata. By taking into account those two factors,

we have come to the conclusion that a crossing point of length m ≡ L

4
, with L being the

decoder’s length, is an appropriate choice.

4.2.2 Reproduction and Recombination

In this section, we detail how the reproduction and recombination processes occur. We

also describe the reproduction sequence generation, the process of parents’ selection for

pairing and the reproduction process itself.

4.2.2.1 Reproduction Sequence

Our N -points crossing technique generates logical building blocks that are used for the

reproduction, recombination and evaluation process. The next question that remains is

how the reproduction and thus the recombination occur. Let Dn and Dm be two elements

belonging to a population P of decoders. Let m be the crossing point length for the engine.

The two decoders are assumed to be of the same length. It is important to mention that

43

some polymorphic engines generate various length shellcodes. Consequently, we need to

transform the GA [16] into a Fast Messy Genetic Algorithm (FMGA) [30]. The latter

algorithm is detailed in section 4.5. Being fixed or variable length decoder engine, the

reproduction/recombination process deals with decoders using a unified length. After that,

a sequence of reproduction must be defined.

Our reproduction algorithm performs the following operations. At each epoch or round,

a random reproduction sequence is generated for the given population. Our function repro-

duction sequence takes as input the number of building blocks or genes generated using the

N -points crossover, let call it N . It creates a N ×N matrix with the indexes referencing to

the genes for both parents. Whenever a value of 1 is encountered in the matrix, the corre-

sponding genes must be associated. It randomly creates the reproduction sequence between

genes. It is important to mention that all the genes are used only once in the recombination.

Let Dn and Dm be the parents and m be the crossing point. We generate N genes for each

parent. Let A = {0, 1, 2, . . . , N − 1} and B = {0, 1, 2, . . . , N − 1} be two arrays repre-

senting the indexes of genes for the parents used for reproduction. Each time we select an

index for a parent, the corresponding genes is retrieved from the pool of selection. At the

end, all the genes are used and paired together to produce two offsprings. The reproduction

of two parents results always in two offsprings. This is justified by the fact that we want to

increase the accuracy of the signature or pattern detection by using all the genes from each

decoder or chromosome and not just some chunks. The generated reproduction sequence

remains constant for one round or epoch. In the next round, the reproduction sequence is

changed.

44

4.2.2.2 Parent Selection

At each epoch or round, we need to select who is going to reproduce with whom. We

assume at this stage that the selection, using the fitness function has occurred. Once the

reproduction sequence has been produced, a function called pairing, which takes as in-

put the population at the corresponding epoch, is responsible for pairing the parents ac-

cording to the produced reproduction sequence. The function generates a pool of in-

dexes POOL = {0, 1, 2, . . . , S} where S is the size of the population. Indexes are

picked up randomly and removed from the pool. Afterwards, they are used to generate

a long sequence called PAIRING until the pool is emptied. If S is an even number, then

PAIRING = 〈p1, p2, p3, . . . , pS〉. If S is odd, then PAIRING = 〈p1, p2, p3, . . . , pS+1〉where

pi is a random index from POOL. Afterwards, we generate the pairs of parents for repro-

duction by taking each two index successively from the pairing sequence resulting in re-

production pairs (pi, pi+1). At the end, all members or individuals from the population are

melting together; it is important to make sure that none of the individuals from a population

in a certain epoch is missed.

4.2.2.3 Reproduction

At this point, we have the reproduction sequence as well as the pairing sequence. The

next phase is to perform the reproduction. The reproduction sequence determines how the

genes are mixed together in order to produce a new offspring. The pairing sequence deter-

mines with whom each parent is going to melt. Having those parameters, the reproduction

takes place.

45

4.2.3 Fitness Function

The fitness function is the core element of the engine, since it constitutes the basis for

the selection process when moving from one epoch to another. As such, the solution can-

didates are selected at the end of the GA to give us the final signatures or patterns. The

fitness function is based on the schema theorem [29]. Consequently, it deals with the

following alphabet: {0, 1, . . . , 9} × {A,B, . . . , F} × {X} where X is a wildcard. The

fitness function is based on a sliding window technique. The fitness function works on

the genes or building blocks generated from the reproduction. Our engine must be able

to detect patterns among new offsprings based on the ternary alphabet described earlier.

This pattern should be able to detect changing parts of shellcode chunks as well as fixed

parts. The fitness function takes as input a population of decoders. For each single de-

coder, the function works on its building blocks generated from the reproduction Let D

be an individual from a population P at an epoch n and let m be the crossing point

length such that: D = {d1, d2, d3, . . . , dj} where dj is a building block or gene of the

decoder. Let w be the sliding window with w < m. Let us define the operator ⊗. Let

Σ = {0, 1, . . . , 9} ∪ {A,B, . . . , F} and let Σ+ be the set of all non-empty finite hexadeci-

mal sequences (over σ). Then, ⊗ : Σ+ × N+ → P(Σ+) where P is the power set.

The operator ⊗ is defined in the following manner: we use functional programming el-

ement to define our operator such as rec1,hd2,tl3 and @4. n-seq is a function taking two

arguments: a building block and the sliding window.

1rec: means recursive function
2hd: hd is a single list element and means head of list
3tl: means rest of the list
4@: means concatenation

46

⊗(dj, w) = let rec n-seq(dj, w) =

if m = 0 then <>

else hd(dj)@n− seq(tl(dj), w − 1)

in

let r = n− seq(dj, w))

in

{r} ∪ ⊗(tl(dj), w)

end

end

Consequently, ⊗(dj, w) = {w1, w2, w3, . . . , wj} with ∀wi ∈ ⊗(dj, w), we have wi =

w. Each wi is a sub-sequence from the building block dj . In order to illustrate this, we

consider the following example. Let assume that we have a decoder D of length 36 bytes

illustrated in Figure 4.3 .

Figure 4.3: 36-Byte Decoder Example

The crossing point length is such that m = 9. Thus, each 9 bytes, we have the building

blocks or genes. Figure 4.4 illustrates the generation of genes for each decoder:

47

Figure 4.4: Decoder’s Genes

Thus D = {d1, d2, d3, d4} where di = Genei. We have a sliding window w = 5, (w <

m). By applying the operator ⊗ we get the following for ⊗(di, w) = {w1, w2, w3, w4, w5}.

Table 4.1 shows the windows extraction for a gene:

Table 4.1: Window Extraction for a Gene

Gene 1

w1 = DF863

w2 = F863C

w3 = 863C4

w4 = 63C40

w5 = 3C409

w6 = C409

w6 is discarded since w6 < w. The same applies for the other building blocks. Since

the defined fitness function is based on the schema theorem [29], it checks for correlation

between hexadecimal values as well as wildcard. The problem inherent to wildcards is the

fact that they should not be used extensively. Otherwise, each fragment of shellcode, when

compared with another, produces a positive correlation. Therefore, we check that at least
2

3

of the bytes correlate with each others. If it is the case, then the fitness value increases. For

instance: let wi = “A8DFFFFF” and wj = “A8E9FFFF”. The function compares

48

each character with each other. If
2

3
or more of the characters are similar, then we have a

candidate pattern. Figure 4.5 illustrates the idea:

Figure 4.5: Correlation Process

Here we can see that 6 out 8 hexadecimal values correlate. Consequently the following

pattern “A8XXFFFF” is a candidate since
6

8
≥ 2

3
. If the correlation is total, then we

have a pattern with no mutation part. The correlation function checks for fixed bits as well

as mutated bits. Let define the operator ⊕ that performs that correlation:

• wi ⊕ wj = 1 , if the two segments correlate for
2

3
or more.

• wi ⊕ wj = 0 , if the two segments correlate for strictly less than
2

3
.

The operator is such that:

⊗ on (u, v) = let hu = hd(u)

hv = hd(v)

in

(hu = hv)@ on (tl(u), tl(v)

end

49

Then correlation is such that:

correlation(u, v, w) = let l =on (u, v)

in
∑n

i=0 li
w

end

The fitness value computation proceeds in the following manner. Let F (Dn) =

(wdi
, wdj

, w) be the fitness function value where: wdi
, wdj

are windows extracted from

respectively di, dj such that wdi
= ⊗(d1, w) and wdj

= ⊗(dj, w). w is the window size

and Dn a decoder or chromosome from the current population. Thus, the following is the

formula for the fitness function:

F (Dn) =
n∑

i=0

[∀w ∈ wdi
⊕

m∑
j=0

(∀w ∈ wdj
)] with i 6= j

In other words, when dealing with a decoder, the following steps are followed in the corre-

lation process:

1. Generate the windows for each gene or building block.

2. For each gene and for each of its windows, apply the correlation function against

windows from other genes of the same decoder. The process continues until all

windows are checked.

3. At the end of the process, compute the fitness value for the decoder.

Having defined the fitness function, we need to explain the selection process that results

from it.

50

4.2.4 Selection

The selection phase is another core element of the engine. Since we base the fitness

function and more generally our GA engine on the schema theorem [29], the selection

process must be a proportionate one. In other words, the selection must pick up individuals

based on their relative fitness values. This make sense since such selection is recommended

when the final optimal solution is unknown .After applying the fitness function, we get the

correlation value for each member of the population at a certain epoch or round. In the

next step, we compute the probability of each member based on their fitness value. We

basically compute the total fitness for all members of the population and then compute their

individual probabilities. By doing so, we got their relative probability of being selected.

Let P be the population such that: P = {D1, D2, D3, . . . , Dn} with Dn being a decoder

or chromosome. After applying the fitness function, we get the individual fitness value for

each member. Let FIT be the individual fitness for each population members such that:

FIT = {F1, F2, F3, . . . , Fn} with Fn = F (Dn) (F being the fitness function defined in

the previous section). Let F (total) be the total fitness value for all population members.

F (total) =
∑

Fi. The individual probability of each member is Pi =
Fi

F (total)
. Let P

be the list ofprobabilities for each member of the population: P = {P1, P2, P3, . . . , Pn}

with Pi =
Fi

F (total)
. This process respects the requirement of being proportionate. Having

the relative probabilities of selection for each population member, we need to proceed with

the selection. The selection goes by setting a threshold probability corresponding to the

probability of selecting an individual for the initial population. At epoch 0 or at t = 0, if

the total population is total init, then the threshold is thresh =
1

total init
. If the probability

51

of an individual is greater or equal to the threshold, then the individual is selected for the

next round, otherwise he is dropped.

4.2.5 Replacement

The next step of the engine is the replacement process. There are two main types of re-

placements: generational updates and steady state updates. In our GA, generational update

is selected, which means that the old population is replaced entirely by the new one mak-

ing inter-generational reproduction impossible. The reason behind this choice is that we are

aiming to look for possible pattern extraction and see if they propagate from one generation

to another. Thus, it is more convenient to work on the building blocks that have passed the

selection test to see if they are again reproduced with blocks from another decoder.

4.2.6 Search and Termination

Our engine runs for 1000 rounds or epochs, once that number has been reached, the

last population is our candidate for signatures or patterns. Figure 4.6 summarizes the

functioning of the engine.

52

Figure 4.6: Summary of the Engine

At this stage, we have described how the engine operates. However, we still do not

have the final signatures. In the next section, we discuss the extraction of signatures from

the pool of candidate solutions at the end of the engines rounds.

4.3 Signature/Pattern Extraction

Once the engine or GA ends, we have a set of decoders that are candidate solutions

for signatures or patterns for the analyzed polymorphic engine. The problem is that those

decoders or chromosomes are not the solution themselves. The building blocks constituting

the decoder contain pieces of shellcode that are patterns and others that are not. The main

reason behind that is the fact that a decoder can pass the selection by having some of

53

its genes containing patterns and others that do not. Our aim is to traverse the whole

solution population and extract those patterns. Once the patterns are extracted, we need

to verify their validity. In other words, we need to check the pattern’s validity against the

initial population, which have not been altered by the reproduction process. Moreover, the

building blocks that we have do not contain wildcards. Accordingly, we need to include

them in the pattern extraction.

4.3.1 Patterns extraction

Pattern extraction is somehow similar to the correlation function (fitness function), but

with some differences. Let S be the final population or solution population such that

S = {S1, S2, S3, . . . , Sn}, each Si being a decoder or chromosome. The function extracts

patterns according to the following steps:

• Take each decoder and extract its building blocks knowing the window size.

• From each window generated from a single gene (by applying the operator ⊗), we

check if it is correlated against all other windows from other genes of the same de-

coder. The correlation algorithm is the same as the one from the fitness function.

• If a correlation exists,then the analyzed window is a candidate pattern.

• Generate a signature by replacing the uncorrelated parts by a wildcard.

• Insert the signature into the pool of patterns. If the signature already exists,discard

it, otherwise, insert it into the pool of patterns.

• Repeat the process until all the genes or building blocks are traversed.

54

• Repeat the process until all the decoders are traversed (until the whole population is

checked against our extraction algorithm).

At the end of the process, we have the signatures. Let us illustrate the extraction mechanism

by taking the following example. Let D be a member of the last population with w = 6

and n = 8. From the crossing length n, we get the genes or building blocks presented in

Figure 4.7.

Figure 4.7: Decoder’s Building Blocks

Now we need to apply the operator ⊗ against all the genes to generate their windows:

Table 4.2: Extracted Windows from Genes

Gene 1 Gene 2 Gene 3

w1 = D9FF64 w
′
1 = DEFF54 w

′′
1 = 86403C

w2 = 9FF645 w
′
2 = EFF54A

w3 = FF6455 w
′
3 = FF54AE

We just focus on w1 for the correlation. By checking w1 against all other windows, we

see that it correlates at
2

3
(or more) with w

′
1. Figure 4.8 illustrates the pattern extraction

process.

55

Figure 4.8: Pattern Extraction

Then, the same process is repeated with all the other windows from the same decoder

and the whole process is repeated until all the solution population is traversed. At the end

of the extraction, we get the signatures or patterns from the studied polymorphic engines.

4.3.2 Filtering Process

The importance of the filtering process resides in the fact that we need to check the

validity of the final signatures against the initial population who has not been altered by the

reproduction process. The filtering consists in taking each extracted patterns and checking

if it is present in more than 190 decoders out of 200 decoders selected from the initial

population. Before showing the experimental results, we need to explain first how the

engines work against changing-length decoders. The process that we have described so far

is exactly the same. The only difference with changing-length decoders is the fact that we

apply some algorithms prior to launching the engine, to generate a population of decoders

of the same length.

56

4.4 Changing-Length Decoders

For polymorphic engines that generate changing length decoders, the process is very

similar to the signature detection described in section 4.3. However, some steps for gener-

ating fixed-length decoder are performed before the engine launching. In this section, we

describe how this transformation is done.

The problem with changing length decoders is that the described N -point crossover gener-

ates for each decoder a different number of building blocks or genes during the reproduction

process. As a consequence, we generate a reproduction sequence for a population that has

each of its members having a different number of genes or building blocks. One solution

would be to drop some genes along the reproduction process, but we might lose some ex-

isting patterns. In fact, dropping some genes is inevitable. Accordingly, we must find a

way to include as much genes as we can for each decoder. In order to explain why the fixed

N -point crossover does not work, let take the following example. Let D1 and D2 be two

decoders from an initial population with different lengths, illustrated in Figure 4.9.

Figure 4.9: Different Length

Let assume that the crossing-point length n = 10. The resulting building blocks or

57

genes are shown in Figure 4.10 .

Figure 4.10: Various Length Decoders’ Building Blocks

The generation of a reproduction sequence becomes complicated when dealing with a

population that has a large number of individuals. Consequently, we need to drop some

genes from one of the decoder (probably the one with the biggest length) in order to couple

the two decoders. Even if we are able to overcome the population size problem, we still

need to drop a large number of genes in order to make the reproduction successful, which

is not a good idea. In fact, we must ensure that we can take the maximum number of

genes. Genetic algorithms have a special class of algorithms called Fast Messy Genetic

Algorithms (FmGA) [30] that deals with an initial population of individuals with various

lengths.

58

4.5 Fast Messy Genetic Algorithms

Fast messy genetic algorithms are a class of genetic algorithms dealing with populations

of variable length. It is developed by Goldberg, Deb and Kargupta [30]. It contains three

main phases:

• The initialization phase: It deals with defining a sizing equation. More precisely, it

determines to which size or length we should extend the decoders in order to make

them all having the same length. The sizing equation must overcome what is called

the noise problem. In our case, the noise problem is generating logical length and

crossing point so that in the next phase, we are able to generate logical building

blocks.

• The Building Block Filtering (BBF) phase: It produces the genes or building blocks

so that they respect the sizing equation. It represents an important phase since it

generates logical building blocks in order to ensure that the pattern or signature ex-

traction produces logical output. Moreover, it ensures that we can take the maximum

number of genes that could be taken from each gene to make the deletion bits very

low for each decoder regardless of their lengths.

• The juxtaposition phase: In this phase, we take the building blocks produced from

the previous phase and combine them together to form the final decoders.

These are the main phases that are added to the genetic algorithm when dealing with a

population composed of chromosomes having different length.

59

4.5.1 Initialization Phase

Our initialization phase consists of deriving the sizing equation. The process goes

through the following phases:

• Extract the minimum length decoder and the maximum length decoder.

• Check if the minimum length is a prime number:

– If true, then the minimum length is the crossing point

– Otherwise, the user is asked to input his crossing length. The crossing length

that is entered must be a multiple of the minimum length. In other words,

minimum length mod5 crossing length = 0.

• Generate the length to which all decoders extend to. This length is the next number

greater than the maximum length decoder such that it is a multiple of the crossing

point.

Executing this phase generates logical building blocks. To illustrate the idea, let take the

following example. Assume we have a decoder of length l and we want to extend the

decoder to a length that is not a multiple of the crossing point length. Thus, we have to

extend the decoder by a length α as illustrated in Figure 4.11.

5mod: modulo

60

Figure 4.11: Extended Decoder

If 1 + α is not a multiple of the crossing point length, then we end up with non-logical

building blocks as presented in Figure 4.12 .

Figure 4.12: Non-Logical Building Blocks

We can see that Gene 3 does not make sense. The extended block is added to an original

portion of the decoder. Thus, in terms of bytes or shellcode, Gene 3 does not make any

sense since the bytes are mixed up with one other. Consequently, we must choose the

length of reference to which all decoders will extend to in a way to avoid such non-logical

building blocks. After identifying the maximum length in the pool of decoders, we choose

the length of reference to be the next greatest number after the maximum such that it is a

multiple of the crossing point. As an example, if we know the maximum length is 62 and

61

the crossing point 6, then the length of reference becomes 66. At this stage, we can still

get non-logical building blocks. Our next phase definitely ensures the production of logical

building blocks for each decoder.

4.5.2 Building Block Filtering and Juxtaposition

From the sizing equation or initialization, we came out with two important parameters:

the crossing point length N and the length to which the decoders must be extended to

denoted by L. In order to ensure the selection of logical building blocks, this phase goes

through the following processes:

• Create, for each decoder, a pool of indexes that refers to each bit position of the

decoder, let call it POOL such that POOL = {p1, p2, p3, . . . , pn} where pn refers to a

bit position of the decoder.

• Initialize a variable called le to zero, then while(le×N < L):

– Pick a random index from POOL.

∗ If index + cross length < length of the decoder, create a building block

of length N having the selected index as a starting point and add it to a

pool of genes called GENES. Delete the selected index from POOL and

increment le.

∗ Otherwise, select another index.

– Repeat the process until le×N > L (until a decoder of size L is obtained).

• Repeat the process until we traverse the whole population.

62

At the end, we obtain a decoder that is not be affected by the crossing-point problem that

we have described previously. Moreover, since for each decoder we are trying to reach a

length greater than the maximum length decoder, the rate of bit deletion is very low. Let

us illustrate the process by the following example. We assume we have a population of

decoders such that the maximum length decoder is 25 and the minimum length decoder is

16. Our crossing point is N = 8. Thus, L = 32, which represents the next greater number

than 25 such that it is multiple of N . Let us see how the process goes through a decoder

D1 of length 17 as illustrated in Figure 4.13 .

Figure 4.13: Initial Decoder

In this case, we have: POOL = {0, 1, 2, 3, ..., 16}. We proceed with the Building Block

Filtering (BBF), le = 0 and loop until le × N > L. The following Table 4.3 details the

genes extraction:

Table 4.3: Genes Extraction

Index Selected Verification Gene Extracted Genes’ Pool

Index 3 3 + N = 11 < 17 B1 = F5490FFF B1

Index 11 11 + N = 19 > 17 None B1

Index 7 7 + N = 15 < 17 B2 = 0FFFFA88 B1, B2

Index 4 4 + N = 12 < 17 B3 = 5490FFFF B1, B2, B3

Index 1 1 + N = 9 < 17 B4 = 9FF5490F B1, B2, B3, B4

At the end, we end up with the following decoder shown by Figure 4.14 .

63

Figure 4.14: Final Decoder

We can see that the decoder contains logical building blocks and are not be affected by

the N -point crossing over. The main reason behind this is the fact that the crossing point

is always in a bit position that generates logical building blocks (since the building blocks

are multiple of the crossing point length).

The juxtaposition phase is embedded within the BBF phase since it only consists of

appending the genes between them to form a new decoder.

4.5.3 Filtering

The filtering takes place before the BBF process. We describe first the BBF phase be-

cause of its importance even though the filtering happens before. In this respect, filtering

comes when the length of a decoder is not long enough to reach the length L derived from

the sizing equation. Thus such decoders are eliminated from the initial population. This

operation of elimination constitutes the filtering part of the FMGA [30].

64

4.5.4 Engine

At the end of the FMGA process [30], we end up with a population of decoders having

the same length, the process of pattern and signature extraction remains the same. Having

decoders of the same length, the process described in previous sections for pattern extrac-

tion takes place.

4.6 Results

We test the engine against the three polymorphic engines; one engine generating fixed

length decoders and the two others generating changing-length decoders. Shikata Ga Nai is

our choice for the fixed length decoder engine , ADMmutate and Tapion are our choice for

changing-length decoders. For the Shikata Ga Nai engine, we got the following patterns at

the end of the engine:

Table 4.4: Extracted Patterns for Shikata Ga Nai

Patterns

Xd9742

d97424

97424f

7424f4

XXb116

XXd974

424f4X

24f4XX

Xb116X

b116XX

For Tapion engine, we get the following patterns at the end of the engine:

65

Table 4.5: Extracted Patterns for Tapion

Patterns

X9fXd9fXd9

Xd9fXd9fXd

d9fXd9fXdX

9fXd9fXdXe

9fXd9fXd9X

d9fXdXfXd9

d9fXd9XXd9

d9fXd9fXd9

9fXd9XXd9f

d9fXdXeXd9

Xd9eXd9fXd

d9eXd9fXdX

fXd9fXd9fX

XfXd9fXd9f

dXfXd9fXd9

d9XXd9fXd9

d9fXX9fXd9

dXeXd9fXd9

9XXd9fXd9f

9fXdXfXd9f

d9fXd9fXX9

9fXd9fXdXf

XXX9bdbe3d

0f8fXXfXff

f8fXXfXfff

8fXXfXffff

For ADMmutate, we get the following results:

Table 4.6: Extracted Patterns for ADMmutate

Patterns

XX81c3
X81c3X
81c3XX
83c601
XX9640

66

Table 4.6 – part II
Patterns

X96409
964096
4096XX
64096X
83cXX1
8Xc6X1
XX83c6
X83c60
3c601X
e8XXff
964XX6
c601XX
XX4096
9X4X96
X4096X
964X9X
X64X96
X83cX0
83cX0X
X9X409
9X409X
96XX96
X964X9
964X96
64X96X
8XXfff
XXffff
X9640X
9640XX
96X0X6
Xfffff
X96X09
96X09X
83cX01
83XX01
XX6409
X64096
6409XX
ffffff
8XcX01

67

We can see from these results that we need another filtering for the patterns. As an exam-

ple, let take the results from Shikata Ga Nai. We get: “d97424”, “7424f4” and “97424f”.

In fact, those patterns correspond to one long signature which is : “d97424f4”. We see that

the signatures need to be merged. Another problem that we observe for the signatures is

the similarities between them. Let us take the case of ADMmutate, we can see the follow-

ing patterns: “964096”, “964X9X” and “9X4X96”. In fact, they somehow correspond to

the same signature. Consequently, they must be reduced to one signature corresponding

to “964096”. At the end, we need to implement an automated mechanism in order to deal

with such similarities and then filter the patterns. Fortunaltely, the Levensthein distance

[31] can help us in the matter as explained hereafter.

4.7 Filtering

The filtering process goes through three main phases, but before explaining them in de-

tail, we dedicate the next section for introducing briefly the concept of Levensthein distance

[31]

4.7.1 Levensthein Distance

The Levensthein distance is used to compute the amount of difference between two

strings. It consists of giving the minimum number of operations needed to transform one

string to another. The operations consist of insertion, deletion and substitution of a sin-

gle character.The concept was developed by Vladimir Levensthein and it is often used to

measure or determine how similar are two strings.

68

4.7.2 Filtering Process

The filtering process goes through three main phases. The phases are the following:

• Locate patterns having the less number of wildcard characters and compute the lev-

ensthein distance against all other patterns:

– If the distance is less or equal to 2 then probably the two strings are very similar

(in the form “964096” and “964X9X”). The signature that is checked against is

deleted.

– Otherwise, it means that the two patterns are completely different and thus kept.

• Take the input from the last operation and merge signatures if they can be merged.

• Take the input from the merging and take each single signature and compare it with

all the others. We check the number of common bits at the same position without

taking into consideration the wildcard characters X.

– If the number is greater or equal than
2

3
of the string, then take the one with less

wildcards and drop the other.

• Take the input from the three level of filtering and repeat again the three filtering

phases. If from one round to another, the number of signatures remains the same

then the process is stopped.

After the engine generated the patterns (see previous Section 4.6), we apply to the output

the filtering process in order to extract the final Shape Signatures. We get the following

signatures at the end presented in Table 4.7.

69

Table 4.7: Final Shape Signatures for Polymorphic Engines

Shikata Ga Nai Tapion ADMmutate

XXd97424f4XX f8fXXfXffff e8XXfff

XXb116XX XfXd9fXd9fX Xffffff

XXX9bdbe3d XX964096XX

XX83c601XX

XX81c3XX

4.8 Validation

The results we got previously were extracted from a single set of 1000 decoders. In

order to validate the results, we need to test the signatures against the sets that we have

generated. As a reminder, we have generated 3 new sets of each 1000 decoders, 3 new

sets of each 5000 decoders and 3 new sets of each 10000 decoders for each polymorphic

engine. The validation consists of analyzing each decoders from each set and check if the

shape signatures that we have extracted exist. We then provide the rate of detection for each

set. At the end, we average the various rates from each set to give the final rate of detection

for each signature. The detection rates for the extracted signature applied on Shikata Ga

Nai polymorphic engine and the corresponding average rates are presented in Table 4.8

and Table 4.9 respectively.

70

Table 4.8: Detection for Shikata Ga Nai Signatures

Sets Signatures Rate of Detection

1000 1 XXd97424f4XX 100 %
XXb116XX 0 %

1000 2 XXd97424f4XX 100 %
XXb116XX 0 %

1000 3 XXd97424f4XX 100 %
XXb116XX 0 %

5000 1 XXd97424f4XX 100 %
XXb116XX 0 %

5000 2 XXd97424f4XX 100 %
XXb116XX 0 %

5000 3 XXd97424f4XX 100 %
XXb116XX 0 %

10000 1 XXd97424f4XX 100 %
XXb116XX 0 %

10000 2 XXd97424f4XX 100 %
XXb116XX 0 %

10000 3 XXd97424f4XX 100 %
XXb116XX 0 %

Table 4.9: Average Detection for Shikata Ga Nai Signatures

Signatures Rate of Detection

XXd97424f4XX 100 %

XXb116XX 0 %

The detection rates for the extracted signatures applied on ADMmutate polymorphic

engine and the corresponding averages rates are presented in Table 4.10 and Table 4.11

respectively.

71

Table 4.10: Detection for ADMmutate Signatures

Sets Signatures Rate of Detection

1000 1 XX81c3XX 99.4 %
XX83c601XX 80.2 %
XX964096XX 80.2 %
Xffffff 98.88 %
e8XXfff 98.88 %

1000 2 XX81c3XX 98.7 %
XX83c601XX 78.7 %
XX964096XX 80 %
Xffffff 98 %
e8XXfff 98 %

1000 3 XX81c3XX 99.5 %
XX83c601XX 78.25 %
XX964096XX 77.4 %
Xffffff 99 %
e8XXfff 99 %

5000 1 XX81c3XX 99.2 %
XX83c601XX 78.9 %
XX964096XX 79.5 %
Xffffff 98.5 %
e8XXfff 98.5 %

5000 2 XX81c3XX 99 %
XX83c601XX 79.3 %
XX964096XX 78.25 %
Xffffff 98 %
e8XXfff 98 %

5000 3 XX81c3XX 99.16 %
XX83c601XX 79 %
XX964096XX 79 %
Xffffff 98.14 %
e8XXfff 98.14 %

10000 1 XX81c3XX 99.16 %
XX83c601XX 78.6 %
XX964096XX 79 %
Xffffff 98.24 %
e8XXfff 98.24 %

10000 2 XX81c3XX 99 %
XX83c601XX 78.54 %
XX964096XX 79.7 %
Xffffff 98.46 %
e8XXfff 98.46 %

10000 3 XX81c3XX 99.1 %
XX83c601XX 78.8 %
XX964096XX 79 %

Continued on next page

72

Table 4.10 – continued from previous page
Sets Signatures Rate of Detection

Xffffff 98.43 %
e8XXfff 98.43 %

Table 4.11: Average Detection for ADMmutate Signatures

Signatures Rate of Detection

XX81c3XX 99.13 %

XX83c601XX 79 %

XX964096XX 79.11 %

Xffffff 98.4 %

e8XXfff 98.4 %

The detection rates for the extracted signatures applied on Tapion polymorphic engine

and the corresponding average rates are presented in Table 4.12 and Table 4.13 respec-

tively.

73

Table 4.12: Detection for Tapion Signatures

Sets Signatures Rate of Detection

1000 1 XXX9bdbe3d 98.7 %
XfXd9fXd9fX 76 %
f8fXXfXffff 100 %

1000 2 XXX9bdbe3d 98.6 %
XfXd9fXd9fX 78 %
f8fXXfXffff 100 %

1000 3 XXX9bdbe3d 98.5 %
XfXd9fXd9fX 74.7 %
f8fXXfXffff 100 %

5000 1 XXX9bdbe3d 98.54 %
XfXd9fXd9fX 76.4 %
f8fXXfXffff 100 %

5000 2 XXX9bdbe3d 98.56 %
XfXd9fXd9fX 76.36 %
f8fXXfXffff 100 %

5000 3 XXX9bdbe3d 98.4 %
XfXd9fXd9fX 77.24 %
f8fXXfXffff 100 %

10000 1 XXX9bdbe3d 98.63 %
XfXd9fXd9fX 76.79 %
f8fXXfXffff 100 %

10000 2 XXX9bdbe3d 98.47 %
XfXd9fXd9fX 76.31 %
f8fXXfXffff 100 %

10000 3 XXX9bdbe3d 98.59 %
XfXd9fXd9fX 75.47 %
f8fXXfXffff 100 %

Table 4.13: Average Detection for Tapion Signatures

Signatures Rate of Detection

XXX9bdbe3d 98.55 %

XfXd9fXd9fX 76.36 %

f8fXXfXffff 100 %

74

4.9 Interpretation

The average rates of detection we get against the three polymorphic engine are very

promising. Even when tested against all the sets, the signatures produced are valid. The

only exception is the signature “XXb116XX”, which must be dropped, generated for

Shikata Ga Nai which has a 0% rate of detection. But, overall the results prove that the

extracted shape signature holds since we get high average rates of detection for all engines

with 76.36% being the lowest rate. This confirms that the GA engine is very effective

and that our concept of Shape Signature holds. We are able to locate invariant parts of

polymorphic shellcode as well as mutated parts and incorporate them into a signature.

4.10 Conclusion

We can conclude by saying that genetic algorithms are very efficient in detecting patterns

of polymorphic engines. The Schema Theorem [29] holds since we are able to effectively

extract reliable signatures. Our concept of shape signature suits polymorphic engines. The

ability to detect constant parts as well as mutated part is able to effectively cope with

the polymorphic nature of such engines. Our assumption that shape signatures are able

to produce above average schemata is verified . The results show that, as opposed with

traditional models of signatures, which require a huge number of sequences to cope with

polymorphism according to Song et al. [3] (in the order of O(28n) with n being the length

of the decoder), our model generates a very limited number of signatures. The average

detection resulting from the experiments shows that the shape signatures produces very

interessting rates. The rest of the thesis is dedicated to modeling polymorphic engines. We

75

show that the decoders generated from those engines do not look as random as they claim to

be. In fact, we can consistently predict the location of the shape signature as well as areas

of high mutation allowing us to map their decoders. Moreover, those engines possesse

unique compositions, in terms of bytes, that can help us characterize them uniquely.

76

Chapter 5

Analysis of Shape Signature Positions

In this Chapter, we explain how decoders generated from polymorphic engines can be

mapped. By mapping, we mean that we can consistently predict the areas of high mutation

as well as the areas containing the shape signatures. Our genetic algorithm engine for

extracting shape signatures shows some promising results. Usually, highly polymorphic

engines make those signatures appear at different bit positions using sliding techniques.

Moreover, they also have the ability to change their length, making the change of positions

even more effective. However, the constraint of consistency makes the sliding or changing

of bit positions not as random as it might appear. In other words, the shape signatures

extracted cannot appear just at any bit positions otherwise the consistency of the decoder is

compromised. In other words, even when changing its length, an engine must respect the

structure of assembly language. The ability of some engines to change their length might

make those signatures appear at very different positions. However, even when the length

of the decoder changes, it must appear at positions that do not break the consistency of the

decoder with respect to the length of the decoder. By analyzing each time the bit positions

77

relatively to the length of decoder, we might be able to model those polymorphic engines.

In fact, we believe that the signatures do not cover a large space of the decoder (in terms of

bit positions) as it is claimed rather, they have a small area in which they shift positions.

5.1 Approach

Basically, we can differentiate two types of polymorphic engines: fixed-length engines

e.g. Shikata Ga Nai and changing-length engines e.g. ADMmutate. The challenge is to

define a model for analyzing the starting and ending positions for the extracted signatures

for both models. In order to do this, we define what we call relative positions. Let us

assume we have a decoder of length L. The signature starts at a bit position s and ends at a

bit position e. Then, the relative start is:
s

L
× 100 and the relative end is

e

L
× 100. In order

to analyze the shape signature positions, we go through the following steps:

• For each decoder for a specific engine, we record the relative start and the relative

end for each shape signature found.

• We compute the mean relative start and the mean relative end for each signature.

• Then, we compute the standard deviation for the recorded relative starts and relative

ends to quantify the gap between the measurements.

• Finally, we average the results for each measurements to get the final mean relative

start, mean relative end, standard deviation for the relative starts and relative ends.

The process is applied for each set of population that is generated for each single polymor-

phic engine. The average results computed in the last steps allow computing the final mean

78

relative start, the final mean relative end, the final standard deviation for relative starting

positions and the final standard deviation for relative ending positions.

5.2 Results

In this section, we present the results for the three polymorphic engines. The following

notations are used in the tables summarizing the obtained results:

• MRS: Mean Relative Start.

• MRE: Mean Relative End.

• STD DEV MRS: Standard Deviation for Mean Relative Start.

• STD DEV MRS: Standard Deviation for Mean Relative End.

The shape signature position analysis for the extracted signatures applied on Shikata Ga

Nai polymorphic engine and the corresponding average shape signature position analysis

are presented in Table 5.1 and Table 5.2 respectively.

Table 5.1: Shape Signature Position Analysis for Shikata Ga Nai

Sets Signatures MRS MRE STD DEV MRS STD DEV MRE

1000 1 XXd97424f4XX 27.825 48.196 12.247 12.247

1000 2 XXd97424f4XX 27.492 47.862 12.238 12.238

1000 3 XXd97424f4XX 27.177 47.548 12.119 12.119

5000 1 XXd97424f4XX 27.408 47.779 12.158 12.158

5000 2 XXd97424f4XX 27.666 48.037 12.112 12.112

5000 3 XXd97424f4XX 27.914 48.284 11.997 11.997

10000 1 XXd97424f4XX 28.063 48.434 11.915 11.915

10000 2 XXd97424f4XX 27.843 48.213 11.964 11.964

10000 3 XXd97424f4XX 27.728 48.098 12.104 12.104

79

Table 5.2: Average Shape Signature Position Analysis for Shikata Ga Nai

Signatures MRS MRE STD DEV MRS STD DEV MRE

XXd97424f4XX 27.679 48.05 12.094 12.094

The shape signature position analysis for the extracted signatures applied on Tapion

polymorphic engine and the corresponding average shape signature position analysis are

presented in Table 5.3 and Table 5.4 respectively.

80

Table 5.3: Shape Signature Position Analysis for Tapion

Sets Signatures MRS MRE STD DEV MRS STD DEV MRE

1000 1 f8fXXfXffff 97.836 98.92 0.61 0.507
XfXd9fXd9fX 45.466 46.537 28.866 28.889
XXX9bdbe3d 1.5 2.482 0.845 0.911

1000 2 f8fXXfXffff 97.806 98.909 0.622 0.522
XfXd9fXd9fX 43.611 44.707 28.832 28.858
XXX9bdbe3d 1.508 2.505 0.83 0.897

1000 3 f8fXXfXffff 97.755 98.816 0.651 0.541
XfXd9fXd9fX 46.945 48.039 28.622 28.638
XXX9bdbe3d 1.546 2.548 0.938 1.014

5000 1 f8fXXfXffff 97.818 98.915 0.626 0.533
XfXd9fXd9fX 45.036 46.123 28.685 28.701
XXX9bdbe3d 1.517 2.51 0.916 0.982

5000 2 f8fXXfXffff 97.793 98.892 0.633 0.534
XfXd9fXd9fX 44.439 45.531 28.884 28.901
XXX9bdbe3d 1.507 2.502 0.909 0.971

5000 3 f8fXXfXffff 97.811 98.911 0.623 0.528
XfXd9fXd9fX 45.041 46.13 29.001 29.022
XXX9bdbe3d 1.528 2.523 0.882 0.95

10000 1 f8fXXfXffff 97.812 98.911 0.625 0.534
XfXd9fXd9fX 44.694 45.783 29.133 29.15
XXX9bdbe3d 1.533 2.526 0.878 0.945

10000 2 f8fXXfXffff 97.815 98.91 0.624 0.528
XfXd9fXd9fX 45.345 46.433 29.231 29.246
XXX9bdbe3d 1.518 2.51 0.879 0.944

10000 3 f8fXXfXffff 97.798 98.898 0.625 0.533
XfXd9fXd9fX 45.083 46.173 28.887 28.905
XXX9bdbe3d 1.537 2.533 0.887 0.952

Table 5.4: Average Shape Signature Position Analysis for Tapion

Signatures MRS MRE STD DEV MRS STD DEV MRE

f8fXXfXffff 97.805 98.902 0.626 0.526

XfXd9fXd9fX 45.073 46.162 28.904 28.923

XXX9bdbe3d 1.521 2.515 0.885 0.951

81

The shape signature position analysis for the extracted signatures applied on ADMmu-

tate polymorphic engine and the corresponding average shape signature position analysis

are presented in Table 5.5 and Table 5.6 respectively.

Table 5.5: Shape Signature Position Analysis for ADMmutate

Sets Signatures MRS MRE STD DEV
MRS

STD DEV
MRE

1000 1 XX81c3XX 46.03 50.116 7.277 7.353
XX83c601XX 62.158 67.377 9.172 9.175
XX964996XX 62.285 67.503 9.047 9.03
Xffffff 96.47 99.957 0.499 0.154
e8XXfff 94.769 98.256 0.695 0.232

1000 2 XX81c3XX 46.146 50.284 7.778 7.946
XX83c601XX 61.723 66.981 9.028 9.026
XX964996XX 62.475 67.706 8.408 8.405
Xffffff 96.443 99.96 0.495 0.151
e8XXfff 94.725 98.242 0.686 0.228

1000 3 XX81c3XX 46.086 50.198 7.24 7.298
XX83c601XX 62.194 67.437 8.617 8.581
XX964996XX 62.45 67.677 8.969 8.963
Xffffff 96.447 99.953 0.502 0.16
e8XXfff 94.74 98.246 0.697 0.232

5000 1 XX81c3XX 46.379 50.475 7.451 7.613
XX83c601XX 62.374 67.573 8.768 8.768
XX964996XX 62.372 67.564 8.688 8.695
Xffffff 96.485 99.966 0.481 0.134
e8XXfff 94.777 98.259 0.692 0.231

5000 2 XX81c3XX 46.271 50.385 7.678 7.862
XX83c601XX 62.226 67.434 8.749 8.746
XX964996XX 62.304 67.527 8.797 8.799
Xffffff 96.47 99.965 0.489 0.14
e8XXfff 94.758 98.253 0.695 0.232

5000 3 XX81c3XX 46.279 50.395 7.872 8.062
XX83c601XX 62.522 67.747 8.798 8.798
XX964996XX 62.395 67.604 8.81 8.808
Xffffff 96.472 99.966 0.485 0.137

Continued on next page

82

Table 5.5 – continued from previous page

Sets Signatures MRS MRE STD DEV
MRS

STD DEV
MRE

e8XXfff 94.759 98.253 0.691 0.23

10000 1 XX81c3XX 46.267 50.382 7.819 8.001
XX83c601XX 62.335 67.554 8.887 8.883
XX964996XX 62.259 67.483 8.807 8.818
Xffffff 96.467 99.962 0.499 0.145
e8XXfff 94.757 98.252 0.705 0.235

10000 2 XX81c3XX 46.057 50.157 7.31 7.402
XX83c601XX 62.271 67.498 8.83 8.834
XX964996XX 62.359 67.583 8.869 8.875
Xffffff 96.468 99.964 0.492 0.14
e8XXfff 94.756 98.252 0.704 0.235

10000 3 XX81c3XX 46.301 50.41 7.421 7.543
XX83c601XX 62.563 67.788 8.79 8.789
XX964996XX 62.509 67.736 8.774 8.783
Xffffff 96.465 99.963 0.489 0.143
e8XXfff 94.752 98.251 0.695 0.232

Table 5.6: Average Shape Signature Position Analysis for ADMmutate

Signatures MRS MRE STD DEV MRS STD DEV MRE

XX81c3XX 46.2 50.311 7.54 7.675

XX83c601XX 62.263 67.487 8.849 8.844

XX964996XX 62.378 67.598 8.796 8.797

Xffffff 96.465 99.962 0.492 0.145

e8XXfff 94.754 98.251 0.695 0.232

5.3 Interpretation

As we can see for the three engines, the relative positions for both start and end for a

signature are very similar for each set of population. The same applies for their standard

deviations. We can deduce that the area where the signatures appear in average seems to

83

be the same for each set of population. The standard deviation shows us the differences in

terms of positions for each signature. In other words, it shows us the area of shift for each

shape signature. Consequently, we can see that, in reality, the shape signatures do not cover

the whole dimensions of a decoder (in terms of bits positions). They rather cover a small

area in which they shift positions. The changing length ability of some engines might seem

to make those engine covering a large area of the decoders. However, if we look at the

relative positions with respect to the decoder length, we see that it is not the case. Based

on those results, we can confirm our assumption that the constraint of consistency of the

decoder, is an important factor that allows to effectively map the structure of a polymorphic

decoder. Based on this, we can map the decoders for each of the polymorphic engines by

locating :

• The shape signatures

• Their area of shift

• The zone of high mutations of the decoder

• The potential zone of mutations

The following Figures 5.1, 5.2 and 5.3 summarize the analysis:

84

Figure 5.1: ADM Mapping

Figure 5.2: Tapion Mapping

85

Figure 5.3: Shikata Ga Nai Mapping

5.4 Verification

In this section, we verify whether our conlusions in terms of shape signatures bit posi-

tions hold or not. For that purpose, we try to identify if there is a correlation between the

detection rate of each signature for each polymorphic engine and the detection rate of the

same signatures by taking into account their position in the decoder. We aim at verifying

their actual location based on the previous results, especially the average shape signature

position analysis value. If the correlation between the two rates is the same, then we can

safely confirm that our modeling holds and that the polymorphic engines effectively com-

ply with the consistency constraint, which restrain their shape signatures to shift with only

a small extent within the decoder’s dimension. We test each polymorphic engine for all the

sets and then average the results at the end.

The detection for the extracted signatures with and without position verification applied on

Shikata Ga Nai polymorphic engine is presented in Table 5.7.

86

Table 5.7: Detection for Shikata Ga Nai Signatures without and with Position Verification

Sets Signatures Detection Detection with Position Verification

1000 1 XXd97424f4XX 100 % 100 %

1000 2 XXd97424f4XX 100 % 100 %

1000 3 XXd97424f4XX 100 % 100 %

5000 1 XXd97424f4XX 100 % 100 %

5000 2 XXd97424f4XX 100 % 100 %

5000 3 XXd97424f4XX 100 % 100 %

10000 1 XXd97424f4XX 100 % 100 %

10000 2 XXd97424f4XX 100 % 100 %

10000 3 XXd97424f4XX 100 % 100 %

The detection for the extracted signatures with and without position verification applied

on Tapion polymorphic engine is presented in Table 5.8.

87

Table 5.8: Detection for Tapion Signatures without and with Position Verification

Sets Signatures Detection Detection with Position Verification

1000 1 XXX9bdbe3d 98.7 % 98.7 %
XfXd9fXd9fX 76 % 76 %
f8fXXfXffff 100 % 100 %

1000 2 XXX9bdbe3d 98.6 % 98.6 %
XfXd9fXd9fX 78 % 78 %
f8fXXfXffff 100 % 100 %

1000 3 XXX9bdbe3d 98.5 % 98.5 %
XfXd9fXd9fX 74.7 % 74.7 %
f8fXXfXffff 100 % 100 %

5000 1 XXX9bdbe3d 98.54 % 98.54 %
XfXd9fXd9fX 76.4 % 76.4 %
f8fXXfXffff 100 % 100 %

5000 2 XXX9bdbe3d 98.56 % 98.56 %
XfXd9fXd9fX 76.36 % 76.36 %
f8fXXfXffff 100 % 100 %

5000 3 XXX9bdbe3d 98.4 % 98.4 %
XfXd9fXd9fX 77.24 % 77.24 %
f8fXXfXffff 100 % 100 %

10000 1 XXX9bdbe3d 98.63 % 98.63 %
XfXd9fXd9fX 76.79 % 76.79 %
f8fXXfXffff 100 % 100 %

10000 2 XXX9bdbe3d 98.47 % 98.47 %
XfXd9fXd9fX 76.31 % 76.31 %
f8fXXfXffff 100 % 100 %

10000 3 XXX9bdbe3d 98.59 % 98.59 %
XfXd9fXd9fX 75.47 % 75.47 %
f8fXXfXffff 100 % 100 %

The detection for the extracted signatures with and without position verification applied

on ADMmutate polymorphic engine is presented in Table 5.9.

88

Table 5.9: Detection for ADMmutate Signatures without and with
Position Verification

Sets Signatures Detection Detection with Position Verification

1000 1 XX81c3XX 99.4 % 99.4 %
XX83c601XX 80.2 % 80.2 %
XX964096XX 80.2 % 80.2 %
Xffffff 98.88 % 98.88 %
e8XXfff 98.88 % 98.88 %

1000 2 XX81c3XX 98.7 % 98.7 %
XX83c601XX 78.7 % 78.7 %
XX964096XX 80 % 80 %
Xffffff 98 % 98 %
e8XXfff 98 % 98 %

1000 3 XX81c3XX 99.5 % 99.5 %
XX83c601XX 78.25 % 78.25 %
XX964096XX 77.4 % 77.4 %
Xffffff 99 % 99 %
e8XXfff 99 % 99 %

5000 1 XX81c3XX 99.2 % 99.2 %
XX83c601XX 78.9 % 78.9 %
XX964096XX 79.5 % 79.5 %
Xffffff 98.5 % 98.5 %
e8XXfff 98.5 % 98.5 %

5000 2 XX81c3XX 99 % 99 %
XX83c601XX 79.3 % 79.3 %
XX964096XX 78.25 % 78.25 %
Xffffff 98 % 98 %
e8XXfff 98 % 98 %

5000 3 XX81c3XX 99.16 % 99.16 %
XX83c601XX 79 % 79 %
XX964096XX 79 % 79 %
Xffffff 98.14 % 98.14 %
e8XXfff 98.14 % 98.14 %

10000 1 XX81c3XX 99.16 % 99.16 %
XX83c601XX 78.6 % 78.6 %
XX964096XX 79 % 79 %
Xffffff 98.24 % 98.24 %
e8XXfff 98.24 % 98.24 %

10000 2 XX81c3XX 99 % 99 %
XX83c601XX 78.54 % 78.54 %
XX964096XX 79.7 % 79.7 %
Xffffff 98.46 % 98.46 %
e8XXfff 98.46 % 98.46 %

10000 3 XX81c3XX 99.1 % 99.1 %
XX83c601XX 78.8 % 78.8 %

Continued on next page

89

Table 5.9 – continued from previous page
Sets Signatures Detection Detection with Position Verification

XX964096XX 79 % 79 %
Xffffff 98.43 % 98.43 %
e8XXfff 98.43 % 98.43 %

The average detection for the three polymorphic engines’ shape signatures is summa-

rized in the following Table 5.10:

Table 5.10: Average Detection for Engines without and with Position Verification

Engine Signatures Detection Detection with Position Verification

Shikata Ga Nai XXd97424f4XX 100 % 100 %

Tapion XXX9bdbe3d 98.55 % 98.55 %
XfXd9fXd9fX 76.36 % 76.36 %
f8fXXfXffff 100 % 100 %

ADMmutate XX81c3XX 99.13 % 99.13 %
XX83c601XX 79 % 79 %
XX964096XX 79.11 % 79.11 %
Xffffff 98.4 % 98.4 %
e8XXfff 98.4 % 98.4 %

5.5 Conclusion

According to the results, there is a strong correlation between the rate of signature detection

and the rate of the same signatures detection by taking into consideration their expected

location. This confirms that the mapping of polymorphic engines decoders holds. More

generally, it confirms the previous assumption that polymorphic engines’ shape signatures,

do not explore the whole decoder’s dimensions (in terms of bit positions) but rather shift in

a defined area of the decoder. The main reason behind this is the constraint of consistency

they must obey. In other words, the fact that the decoder obey to some semantics reduces

90

the ability of shifting the bits in a random fashion. In the next chapter, we try to characterize

even more polymorphic decoders by looking at their byte composition. The aim is to find

out if we can differentiate those polymorphic decoders, from their compositions, from any

other random sequence of bytes.

91

Chapter 6

Decoder Analysis Composition

In this Chapter, we try to improve the modeling of polymorphic engines by exploring their

byte compositions. In the previous Chapter, we have successfully shown that it is possible

to consistently predict shape signature locations and areas of high mutations making poly-

morphic shellcode decoder subject to consistency constraints. In this chapter, we explore

the byte composition of the studied polymorphic engines. Additionally, we show that it is

possible to characterize polymorphic shellcode from its byte composition.

6.1 Byte Spectrum Analysis

Before starting analyzing the decoder composition, we need to conduct some experi-

ments in order to check the nature of bytes that are used in the three polymorphic engines’

decoders. From the analysis, we can then start to develop a mechanism in order to analyze

the composition of those engines. The experiment consists of recording, for each engine,

the number of occurrences for each byte from {0× 00, . . . , 0× FF}. We define, for each

92

studied polymorphic engine, three samples: a population number of 1000 decoders, a pop-

ulation number of 5000 decoders and a population number of 10000 decoders. For each

sample, we generate three different sets resulting in total of 9 samples. Finally, we conduct

the experiments on each sample and record the results.

6.2 Results

Hereafter, we examine the results of byte spectrum analysis that we obtain for each engine.

The x-axis refers to the byte spectrum {0 × 00, . . . , 0 × FF} while the y-axis examines

the number of occurences of those bytes. The sets are named in the following manner:

“Set A B” where A refers to the population number and B to the set label (1st, 2nd, . . .) .

The byte occurences of each set for the Shikata Ga Nai byte spectrum are illustrated in the

charts from Figure 6.1 to Figure 6.9.

Figure 6.1: Shikata Byte Spectrum for Set 1000 1

93

Figure 6.2: Shikata Byte Spectrum for Set 1000 2

Figure 6.3: Shikata Byte Spectrum for Set 1000 3

94

Figure 6.4: Shikata Byte Spectrum for Set 5000 1

Figure 6.5: Shikata Byte Spectrum for Set 5000 2

95

Figure 6.6: Shikata Byte Spectrum for Set 5000 3

Figure 6.7: Shikata Byte Spectrum for Set 10000 1

96

Figure 6.8: Shikata Byte Spectrum for Set 10000 2

Figure 6.9: Shikata Byte Spectrum for Set 10000 3

The spectrums illustrated in Figure 6.1 to Figure 6.9 are very similar in their shapes,

which shows that there is a pattern in terms of byte occurrences for Shikata Ga Nai. As

expected, the whole byte spectrum is explored (with the exception of the null byte). Let us

97

consider the most repeated bytes as the bytes that are greater or equal than the population

number in terms of number of occurrences. One can notice that the same most repeated

bytes are present across the various sets. Let see in the following whether the observations

made for the Shikata Ga Nai are still valid for ADMmutate. The byte occurence of each set

for the ADMmutate polymorphic engine are illustrated from Figure 6.10 to Figure 6.18 .

Figure 6.10: ADMmutate Byte Spectrum for Set 1000 1

98

Figure 6.11: ADMmutate Byte Spectrum for Set 1000 2

Figure 6.12: ADMmutate Byte Spectrum for Set 1000 3

99

Figure 6.13: ADMmutate Byte Spectrum for Set 5000 1

Figure 6.14: ADMmutate Byte Spectrum for Set 5000 2

100

Figure 6.15: ADMmutate Byte Spectrum for Set 5000 3

Figure 6.16: ADMmutate Byte Spectrum for Set 10000 1

101

Figure 6.17: ADMmutate Byte Spectrum for Set 10000 2

Figure 6.18: ADMmutate Byte Spectrum for Set 10000 3

Again, the same observations for Shikata Ga Nai are also verified for ADMmutate. We

have an identical shape for all sets’ byte spectrums. The most repeated bytes are constant

across the various sets. As for the spectrums for Tapion, the byte occurence of each set are

102

illustrated from Figure 6.19 to Figure 6.27 .

Figure 6.19: Tapion Byte Spectrum for Set 1000 1

Figure 6.20: Tapion Byte Spectrum for Set 1000 2

103

Figure 6.21: Tapion Byte Spectrum for Set 1000 3

Figure 6.22: Tapion Byte Spectrum for Set 5000 1

104

Figure 6.23: Tapion Byte Spectrum for Set 5000 2

Figure 6.24: Tapion Byte Spectrum for Set 5000 3

105

Figure 6.25: Tapion Byte Spectrum for Set 10000 1

Figure 6.26: Tapion Byte Spectrum for Set 10000 2

106

Figure 6.27: Tapion Byte Spectrum for Set 10000 3

We can observe that Tapion does not deviate from the previous observations. Given

these results, we can conclude that polymorphic engines, indeed, explore the whole byte

spectrum. However, they exhibit a similar pattern in terms of byte occurrences. Moreover,

the same most repeated bytes are present across sets of different population size. Thus,

we can use this valuable information as an important parameter in the analysis of byte

composition.

6.3 Interpretation

While observing the number of occurrences of bytes for each polymorphic engine, one

can notice that the most repeated bytes are constant across the various sets. Some of them

are found in their respective shape signatures, however, others are not. The most important

issue here is to investigate what this valuable information can be useful for and how it can

107

help in understanding or modeling polymorphic engines. So far, we have studied the shape

signatures and their bit position analysis. Now, we need another way to study polymorphic

engines in order to integrate byte occurrences. The most important observation that one

can make about those repeated bytes for each engine is that most of them are not NOP

instructions (being single argument or multi argument). Based on that, it seems that an

analysis of those engines in terms of composition could reveal interesting information about

polymorphic engines.

6.4 Analysis

Let us consider a decoder as a zone of high polymorphism, we can define three main ele-

ments characterizing those decoders:

• Nop Area

• Byte Spectrum

• Other Bytes

By Nop Area, we mean the nop elements being single or multi byte arguments. A sin-

gle byte argument NOP consists of a single x86 no-operation instruction whereas a multi

byte argument NOP is a no-operation instruction that can take arguments. In this case,

the Nop Area includes the no-operation instruction plus its argument. The arguments do

not necessarily belong to the category of x86 no-operation instructions . As an example,

the following sequence 0× 3541424344 is considered a Nop Area as well as the single

instruction 0× 41. The Byte Spectrum consists of the bytes that characterize the polymor-

108

phic engines. The process of extracting those bytes is detailled in section 6.5. Finally, by

Other Bytes we mean the bytes that are neither part of Nop Area nor the Byte Spectrum.

Based on these elements, some logical assumptions that characterize a decoder in terms of

composition have to be defined.

The first assumption to be made is that a decoder should have in excess (in terms of byte

occurences) either the Nop Area or the Byte Spectrum and never the Other Bytes. Another

important assumption is that the Byte Spectrum must not be neither very low nor null. The

threshold for what we consider low is addressed in Sections 6.8 and 6.9 .The Nop Area, in

terms of composition, should be recognizable, from a regular NOP section that might pre-

ceed the decoder. In other words, the decoder must not be composed of NOPs exclusively.

The aim of this composition analysis is to check whether we can differentiate the decoders,

in their compositions, from a regular NOP section and from any random sequence of bytes.

In summary, our assumptions are as follows:

1. Nops Area or Byte Spectrum should be the most present elements in terms of compo-

sition.

2. Byte Spectrum must not be null.

3. Byte Spectrum should have an acceptable amount (the threshold issue is addressed in

sections 6.8 and 6.9).

4. Nop Area should be recognizable from a regular NOP section.

109

6.5 Byte Spectrum Extraction

The byte spectrum elements correspond to the most repeated bytes for a polymorphic

decoder. In terms of occurences, their number is greater or equal than the population size.

Byte spectrum figures have shown that those bytes remain the same across sets of popu-

lation for each polymorphic engines. Consequently, analyzing one spectrum for a specific

set is enough. This statement is reinforced by the fact that the shapes of byte occurrences

are the same for all engines. For Shikate Ga Nai and ADMmutate, we see that the num-

ber of bytes exceeding the population size is relatively small compared to other bytes.

Moreover, among these same most repeated bytes, the differences in terms of occurrences

between bytes are relatively small. However, the case of Tapion is interesting since we can

make for it the opposite claim; the number of most repeated bytes is large and the gaps

between the number of bytes execeeding the population size and the other bytes are wide.

This is mainly due to the ability of Tapion to generate a lot of padding. However, some

bytes clearly distinguish themselves from others by having a number of occurences that

is relatively important. By analyzing Tapion spectrum, presented in Figure 6.28, we can

distinguish many levels that exceed the population number.

110

Figure 6.28: Tapion Byte Spectrum

The red line in Figure 6.28 shows the population size and the black line the distin-

guishable bytes in terms of occurrences.The aim is to extract those meaningful most re-

peated bytes. This problem is not encountered for Shikata Ga Nai and ADMmutate, which

spectrums are illustrated in Figure 6.29 and Figure 6.30 respectively.

Figure 6.29: Shikata Ga Nai Byte Spectrum

111

Figure 6.30: ADMmutate Byte Spectrum

Therein, the number of bytes exceeding the population size (above the red line) is small

and the differences in terms of byte occurrences between those most repeated bytes are very

small. The following algorithm deals with that by extracting the most meaningful bytes:

1. Select the bytes exceeding the population size (the population size corresponds to the

number of decoders).

2. Select, among those bytes, the minimum occurrence (denoted by Min) and the max-

imum occurrence (denoted by Max).

3. Compute
Min

Max
:

• If
Min

Max
< 0.2 then select only bytes that have their occurrence being at least

10% of Max.

• Otherwise take all the bytes exceeding the population size.

112

The threshold of 0.2 allows us to recognize engines that are able to generate a lot of

padding. If an engine is having the ratio
Min

Max
< 0.2, then we know that the engine is

generating a lot of padding. Thus we need to apply a filter that permits the extraction of the

most meaningful bytes. This is done by selecting bytes with an occurence of at least 10%

of Max. From the tests conducted, the values chosen seem to be adequate for selecting the

most meaningful bytes. By doing so, we are able to extract the bytes for each polymor-

phic engines’ decoders shown in Tables 6.1, 6.2 and 6.3 for respectively Shikata Ga Nai,

ADMmutate and Tapion.

Table 6.1: Shikata Ga Nai Meaningful Most Repeated Bytes

Shikata Ga Nai

03
11
24
31
74
83
b1
c9
d9
f4

113

Table 6.2: ADMmutate Meaningful Most Repeated Bytes

ADMmutate

01 c1
06 c6
17 c8
31 c9
40 e0
46 e2
81 e8
83 eb

87 f8
8c ff

96
c0

Table 6.3: Tapion Meaningful Most Repeated Bytes

Tapion

09 dd

21 de

3b e1
81 e9
8b f1
c0 f5
c1 f6
c7 fc

c9 fd

d9 f9
db ff

6.6 Byte Spectrum Analysis Approach

In order to analyze the decoders in terms of composition, we inspect the decoder’s

structure in terms of bytes. The main elements used (Nops Area, Byte Spectrum and

114

Other Bytes) are the same as defined in previous section 6.4. For each specific polymorphic

engine, the algorithm performs the following steps for each sets of population:

1. Separate the Byte Spectrum from possible NOP elements.

2. Identify the Nops Area of the decoder by counting the number of bytes being NOP

elements.

3. Identify the Byte Spectrum by counting the corresponding bytes.

4. Count the Other Bytes.

5. Compute the composition rates:

• Nops Area =

∑
Nop elements∑

Bytes
.

• Byte Spectrum =

∑
Byte Spectrum elements∑

Bytes

• Other Bytes =

∑
Other Bytes elements∑

Bytes

6. Record the compositions.

7. After analyzing all the population members, compute average compositions and stan-

dard deviation for each composition.

The composition rates will help us to better understand the bytes’ structure of a polymor-

phic decoder. After analyzing all the sets of population for a specific polymorphic engine,

we average the results to get a final composition. If the final compositions verify our pre-

vious assumptions, then we can effectively develop a model for recognizing decoders of

polymorphic engines in terms of byte composition.

115

6.7 Results

The byte spectrum analysis gives us the following results. For Shikata Ga Nai, Table 6.4

illustrates the composition results for each of the previously described elements:

Table 6.4: Composition Results for Shikata Ga Nai

Sets Metrics Nops Area Byte Spectrum Other Bytes

1000 1 composition 0.59 0.183 0.22
standard dev 0.065 0.04 0.056

1000 2 composition 0.586 0.185 0.227
standard dev 0.068 0.04 0.06

1000 3 composition 0.588 0.184 0.227
standard dev 0.066 0.04 0.06

5000 1 composition 0.59 0.184 0.225
standard dev 0.065 0.04 0.057

5000 2 composition 0.59 0.184 0.2247
standard dev 0.06 0.04 0.057

5000 3 composition 0.59 0.184 0.224
standard dev 0.065 0.04 0.056

10000 1 composition 0.59 0.184 0.224
standard dev 0.065 0.04 0.056

10000 2 composition 0.5916 0.184 0.224
standard dev 0.066 0.04 0.057

10000 3 composition 0.59 0.184 0.224
standard dev 0.066 0.04 0.057

For ADMmutate, Table 6.5 illustrates the composition results for each of the previously

described elements:

116

Table 6.5: Composition Results for ADMmutate

Sets Metrics Nops Area Byte Spectrum Other Bytes

1000 1 composition 0.545 0.313 0.1407
standard dev 0.06 0.051 0.044

1000 2 composition 0.553 0.308 0.14
standard dev 0.06 0.053 0.045

1000 3 composition 0.5505 0.309 0.14
standard dev 0.061 0.052 0.043

5000 1 composition 0.548 0.309 0.142
standard dev 0.061 0.053 0.045

5000 2 composition 0.548 0.31 0.141
standard dev 0.061 0.05 0.045

5000 3 composition 0.549 0.308 0.1415
standard dev 0.061 0.0532 0.045

10000 1 composition 0.555 0.309 0.141
standard dev 0.061 0.0529 0.045

10000 2 composition 0.55 0.303 0.1408
standard dev 0.061 0.052 0.045

10000 3 composition 0.55 0.309 0.1402
standard dev 0.061 0.052 0.047

For Tapion, Table 6.6 illustrates the composition results for each of the previously

described elements:

117

Table 6.6: Composition Results for Tapion

Sets Metrics Nops Area Byte Spectrum Other Bytes

1000 1 composition 0.372 0.4086 0.22
standard dev 0.029 0.0258 0.023

1000 2 composition 0.37 0.4098 0.22
standard dev 0.029 0.025 0.0226

1000 3 composition 0.369 0.4095 0.22
standard dev 0.029 0.0276 0.0234

5000 1 composition 0.37 0.409 0.22
standard dev 0.029 0.026 0.023

5000 2 composition 0.369 0.41 0.22
standard dev 0.028 0.0257 0.0232

5000 3 composition 0.3711 0.409 0.219
standard dev 0.029 0.0262 0.0232

10000 1 composition 0.3703 0.409 0.22
standard dev 0.029 0.026 0.023

10000 2 composition 0.3709 0.409 0.219
standard dev 0.029 0.026 0.02276

10000 3 composition 0.3704 0.409 0.219
standard dev 0.029 0.0259 0.023

The average composition results for each engine are summarized in the following Table

6.7:

Table 6.7: Average Composition Results for the Engines

Engine Metrics Nops Area Byte Spectrum Other Bytes

Shikata Ga Nai composition 0.589 0.184 0.224
standard dev 0.065 0.026 0.057

ADMmutate composition 0.549 0.309 0.1407
standard dev 0.061 0.052 0.0448

Tapion composition 0.37 0.409 0.219
standard dev 0.028 0.026 0.023

118

6.8 Interpretation

The first observation that we can make is that the standard-deviations are very low for

all engines across all sets of population generated. Thus, somehow we can assess the re-

liability of the results. Our first assumption, which states that either the Nops Area or

Byte Spectrum should be the elements in excess (in terms of composition) is verified. We

can see that even when the Nops Area elements are in excess, we can differentiate it from

a regular NOP section. A NOP section is exclusively composed of NOPS and thus have

a composition of 100%. We can also observe that the amount of Byte Spectrum is never

null and that its amount is never below 15%. In other words, this amount is never low

(by low we mean being less than 5%). However, we still need to determine what we con-

sider as an acceptable amount of Byte Spectrum. Accordingly, the minimum threshold for

Byte Spectrum has to be defined in order to be able to differentiate it from any random se-

quence of bytes. The best way to do this is to repeat the experiment, for each polymorphic

engines’ Byte Spectrum elements, against regular network traffic, which provides us with

enough randomness for byte sequences. We analyze the composition of the network dumps

against the three Byte Spectrum retrieved from each polymorphic engine. It is important to

mention the fact that we analyze the composition of the data part of network packets, thus

stripping off the headers.

6.9 Network Traffic Results

The set up for network traffic analysis is the following: we record the traffic and generate

three sets of data. During the traffic generation, we diversify our activity. We mean by that

119

consulting various web sites, cheking emails, connecting to SSH, FTP accounts, etc. The

aim is to generate network traffic with enough randomness. The traffic is recorded using a

regular sniffer and saved into a file. Then, we strip off the network headers keeping only

the data part. The composition results, for each network traffic, against the Byte Spectrum

elements retrieved from each polymorphic engine are summed up in the following tables.

Table 6.8, Table 6.9 and Table 6.10 illustrate the composition results of network traffics

against Byte Spectrum elements of respectively Shikata Ga Nai, ADMmutate and Tapion.

Table 6.8: Composition for Network Dumps Against Shikata Ga Nai Byte Spectrum

Network dumps Metrics Nops Area Byte Spectrum Other Bytes

network dump 1 composition 0.474 0.026 0.499
standard dev 0.092 0.014 0.09

network dump 2 composition 0.5 0.02 0.473
standard dev 0.1 0.013 0.1

network dump 3 composition 0.57 0.016 0.41
standard dev 0.091 0.014 0.093

Table 6.9: Composition for Network Dumps Against ADMmutate Byte Spectrum

Network dumps Metrics Nops Area Byte Spectrum Other Bytes

network dump 1 composition 0.47 0.0835 0.44
standard dev 0.091 0.036 0.073

network dump 2 composition 0.5 0.083 0.415
standard dev 0.1 0.045 0.07

network dump 3 composition 0.57 0.038 0.387
standard dev 0.09 0.023 0.088

120

Table 6.10: Composition for Network Dumps Against Tapion Byte Spectrum

Network dumps Metrics Nops Area Byte Spectrum Other Bytes

network dump 1 composition 0.474 0.0612 0.46
standard dev 0.09 0.029 0.079

network dump 2 composition 0.5 0.05 0.447
standard dev 0.1 0.034 0.083

network dump 3 composition 0.57 0.037 0.38
standard dev 0.09 0.022 0.09

The average composition results, for each network traffic, against the Byte Spectrum

elements retrieved from each polymorphic engine are summarized in the following Table

6.11:

Table 6.11: Average Composition Results Against Engines’ Spectrums

Engine Metrics Nops Area Byte Spectrum Other Bytes

Shikata Ga Nai composition 0.51 0.062 0.462
standard dev 0.094 0.013 0.094

ADMmutate composition 0.51 0.068 0.414
standard dev 0.093 0.034 0.077

Tapion composition 0.51 0.0494 0.429
standard dev 0.093 0.085 0.084

6.10 Interpretation

We observe that the standard-deviations are very low (being less than 0.1), thus we can

assess the reliability of the results. An important observation that we can make is that the

Byte Spectrum elements are very low, which is a good sign since it can help us differentiate

polymorphic decoders’ compositions from any random sequence of bytes. We can also ob-

serve that the Byte Spectrum elements that we have extracted are really characterizing each

121

of their respective polymorphic engine. Now we need to define the minimum threshold for

the Byte Spectrum element. Let R be
Byte Spectrum

Nops Area
ratio. The latter is computed for all

the engine Byte Spectrum against the network traffics. The same is done for the average

composition for each polymorphic engine. The corresponding results are summarized in

Table 6.12 and Table 6.13 .

Table 6.12: Ratios for Network Dumps Against Polymorphic Engines Byte Spectrums

Engine Ratio

Shikata Ga Nai 0.12

ADMmutate 0.133

Tapion 0.097

Table 6.13: Ratios for Polymorphic Engines Decoders’ Composition

Engine Ratio

Shikata Ga Nai 0.31

ADMmutate 0.56

Tapion 1.1

Regardless of the polymorphic engine analyzed, we always have a reasonable amount

of Byte Spectrum elements present in the composition. This can be observed in the ratios.

Thus, we can state that a polymorphic decoder should have its ration R such that: R > 0.15

which is equivalent to
Byte Spectrum

Nops Area
> 0.15.

122

6.11 Rules of Composition

Once the minimum threshold for the Byte Spectrum elements is computed, we can derive

characteristics, in terms of byte composition, that allow us to differentiate polymorphic

decoders from any other sequence of bytes:

1. Nops Area or Byte Spectrum should be the most present elements (in terms of com-

position)

2. Other Bytes could never be the most frequent elements

3. Nops Area < 0.9

4. Byte Spectrum 6= 0

5.
Byte Spectrum

Nops Area
> 0.15

In the following section, we verify the rules by testing them against all the sets of population

of the polymorphic engines.

6.12 Verification

In this section, we check for each polymorphic engine whether the rules hold. This is done

for the purpose of validating our previous conclusions. Table 6.14 to Table 6.16 show the

correlation rate for respectively Shikata Ga Nai, ADMmutate and Tapion .

123

Table 6.14: Shikata Ga Nai Correlation for Composition

Sets Rate of correlation

1000 1 97.2%

1000 2 97.8%

1000 3 97%

5000 1 97.82%

5000 2 97.6%

5000 3 97.66%

10000 1 97.51%

10000 2 97.78%

10000 3 97.3%

Table 6.15: ADMmutate Correlation for Composition

Sets Rate of correlation

1000 1 99.89%

1000 2 99.89%

1000 3 100%

5000 1 99.7%

5000 2 99.79%

5000 3 99.75%

10000 1 99.79%

10000 2 99.71%

10000 3 99.79%

124

Table 6.16: Tapion Correlation for Composition

Sets Rate of correlation

1000 1 100%

1000 2 100%

1000 3 100%

5000 1 100%

5000 2 100%

5000 3 100%

10000 1 100%

10000 2 100%

10000 3 100%

The average composition correlation rates are presented in Table 6.17 .

Table 6.17: Average Correlation for Composition

Engine Rate of correlation

Shikata Ga Nai 97.52%

ADMmutate 99.81%

Tapion 100%

One can notice that there are high percentages of correlation. This confirms that the

composition rules hold and that they can be used to characterize a decoder’s polymorphic

engine. However, in order to assess the validity of the results, we need to test these rules

against the network dumps for the three Byte Spectrum. If we get low percentages of corre-

lation, then we can confirm the fact that we can differentiate polymorphic engines’ decoders

from any random sequence of bytes. The obtained results are shown in Table 6.18 .

125

Table 6.18: Composition Correlation for Network Dumps against Byte Spectrums

Network dumps Shikata Ga Nai ADM Tapion

network dump 1 0.003% 19% 4.1%

network dump 2 0.002% 22% 1.8%

network dump 3 0.007% 2.6% 2%

We can observe that the rates of correlation are very low. In other words, it is possible

to distinguish a polymorphic engine, in terms of byte composition since the network dumps

do not highly correlate with our rules of composition. This confirms the validity of the rules

for composition.

6.13 Conclusion

Our experiments have shown that indeed polymorphic engine decoders could be effec-

tively characterized in terms of byte composition. In addition, we showed that those de-

coders can be mapped by effectively predicting the areas that are subject to high mutations

as well as areas that correspond to the shape signatures. Thus, we are in a position to states

that our attempt of modeling polymorphic engines is very promising.

126

Chapter 7

Conclusion

The main issue, when dealing with polymorphic shellcode, is to come up with a model that

is able to express a polymorphic behavior. We know, from [10,11,12,13] that those engines

leave artefacts even in their mutation processes due, mainly, to consistency constraints. We

also know that they are able to exhibit high degree of polymorphism. Having such informa-

tion in mind, we were able to develop a new concept of signature called Shape Signatures.

Our model detect the invariant parts, due to consistency constraints, as well as mutated part

due to polymorphism. In other words, instead of trying to extract traditional signatures for

which we know the number of signatures will be huge, we look for a “mould” or higher

model that can express all those possible instances that could be generated. This combina-

tion expresses the characteristics or abilities of polymorphic engines in a much better way

compared to traditional signature-based models who fail against them. We implemented a

genetic algorithm that takes in its fitness function the new approach to extract those shape

signatures. The testing was done against the most powerful polymorphic engines. At the

end, we are able to extract very reliable signatures.

127

In an attempt of modeling polymorphic engines, we studied the bit positions of the newly

extracted signatures. The results were that we are able to effectively map the decoder by

predicting and locating precisely the areas subject to high mutation and areas that corre-

spond to shape signatures. The conclusions are that polymorphic engines’ shape signatures

do not explore the whole decoder’s dimensions (in terms of bit positions) but rather shift

in a defined area of the decoder. We also looked at the composition of the studied poly-

morphic engines in terms of bytes and showed that each one of them exhibit a specific byte

composition that uniquely characterizes it. In the experiments, we were able to extract con-

stant patterns, in terms of composition, against very large sets of decoders. Our modeling

demonstrate that polymorphic decoders do not look as random as they are.

We believe that the methods and mechanisms that were developed could truly help mod-

eling and better understanding how polymorphic decoders behave. We still believe that the

modeling could be enhanced by trying to look for shape signatures that represent the whole

decoder. By this, we mean, instead of extracting shape signatures for small portions of

the decoders, we could look for one shape signature that characterize the whole decoder.

Further work could be done on the Byte Spectrum or most repeated bytes extracted. This

is especially the case when it comes to analyzing their byte position (for the most repeated

bytes). For instance, one can observe that the byte EB for ADMmutate decoders is always

starting the decoder. For Shikata Ga Nai, we found that at position 17,20 and 23 of the

decoder, bytes 31, 03, 83 are always alternating at those specific positions. Consequently, a

mechanism for analyzing the bit positions of the most repeated bytes could be developed.

Furthermore improvement could be made by integrating all the concepts developed in this

128

thesis into a framework of detection taking into consideration the shape signatures, the bits

position analysis, and the composition analysis. In addition to that, the work could be en-

hanced drastically by taking into account the effect of each used instructions. So far, in

the analysis, we have taken a high-level approach of polymorphic engines by only look-

ing at their bytes without relating to their implications in terms of what job they do. We

believe that by doing so, we can develop a framework, using advanced artificial intelli-

gence techniques, to better enhance modeling. Our concept of shape signatures, analysis

of the bits positions and the composition analysis are an initial contribution towards better

improvement in modeling polymorphic decoders. According to the experiments we real-

ized, it is really possible to model these engines since our approach is really showing some

promising results. Since polymorphic engine mutation techniques are becoming very pow-

erful, we think the main issue when it comes to detection is finding a way to better express

their polymorphic nature. The concept of shape signature is an initial contribution towards

developing more adequate ways but we truly believe that there is still of lot of room for

improvement regarding how we can express polymorphism into a form of detection.

129

Bibliography

[1] A. Pasupulati, J. Coit, K. Levitt, F. Wu, S.H. Li, J.C. Fan, K.P. Buttercup. On network-

based detection of polymorphic buffer overflow vulnerabilities. In Network Operation

and Management Symposium. IEEE/IFIP, 2004.

[2] L-C Wuu, C-R Dow, K-H Chen, T-J Liu, H-L Huang. A Polymorphic Shellcode De-

tection Mechanism in the Network. In Proceedings of the 2nd international conference

on Scalable information systems, ACM International Conference Proceeding Series,

Vol.304 . ACM, 2007.

[3] Y. Song, M. E. Locasto, A. Stavrou, A.D. Keromytis, S.J. Stolfo. On the infeasibility of

Modeling Polymorphic shellcode for Signature Detection. In Proceedings of the 14th

ACM conference on Computer and communications security, Conference on Computer

and Communications Security. ACM, 2007.

[4] M. Polychronakis, E.P Markatos, and K.G Anagnostakis. Network-Level Polymorphic

Shellcode Detection Using Emulation. In Proceedings of the Third Conference on De-

tection of Intrusions and Malware & Vulnerability Assesment. DIMVA, July 2006.

130

[5] M. Polychronakis, K.G. Anagnostakis, E.P. Markatos. Real-World Polymorphic Attack

Detection using Network-level Emulation. In Proceedings of the 4th annual workshop

on Cyber security and information intelligence research:developing strategies to meet

the cyber security and information intelligence challenges ahead, Vol.288 . CSIIRW,

2008.

[6] U. Payer, P. Teufl, M. Lamberger. Hybrid Engine for polymorphic shellcode detection.

In Proceedings of the Conference Detection of Intrusions and Malware & Vulnera-

biltity Assessment, pages 19-31. DIMVA, July 2005.

[7] W. Lanjia, D. HaiXin & L.I. Xing. Dynamic emulation based modeling and detection of

polymorphic shellcode at the network level. In Science in China Series F: Information

Sciences. Science in China Press, co-published with Springer-Verlag GmbH, 2008.

[8] P. Bania, Evading network-level emulation. Available at

http://www.packetstormsecurity.org/papers/bypass/pbania-evading-nemu2009.pdf

(accessed on 2009/08/06).

[9] A. Koleniskov, W. Lee, P. Fogla, M. Sharif, R. Perdisci. Advanced Polymorphic

Worms: EvadingIDS by Blending with Normal Traffic. Technical report, Georgia Tech

College of Computing, 2004.

[10] H-Ah Kim, B. Karp. Autograph,Toward Automated,Distributed Worm Signature De-

tection. In Proceedings of the 13th conference on USENIX Security Symposium, Vol.13

. USENIX, 2004.

131

[11] C. Kreibich and J. Crowcroft. Honeycomb-Creating Intrusion Detection Signatures

Using Honeypots. In ACM SIGCOMM Computer Communication Review, 2004.

[12] J. Newsome, B. Karp and D. Song. Polygraph:Automatically Generating Signatures

for Polymorphic Worms. In Proceedings of the IEEE Symposium on Security and Pri-

vacy. ACM, 2005.

[13] Z. Li, M. Sanghi, Y. Chen, M. Yang, K. and B. Chavez. Fast signature generation for

zero-day polymorphic worms with provable attack-resilience. In Proceedings of the

IEEE Symposium on Security and Privacy. IEEE, 2006.

[14] ADMmutate polymorphic engine. Available at http://www.ktwo.ca/security.html (ac-

cessed on 2009/06/11).

[15] The Metasploit framework project. Available at http://www.metasploit.com (accessed

on 2008/04/06).

[16] S.N. Sivanandam and S.N. Deepa. Introduction to Genetic Algorithms. Springer-

Verlag Berlin Heidelberg, 2008.

[17] T. Toth, C. Kruegel. Accurate Buffer Overflow Detection via Abstract Payload Exe-

cution. LNCS 2516, pp.274-291. RAID ,2002.

[18] Polymorphic Shell codes vs. Application IDSs. NGSEC White Paper available at

http://liwuw nesec.com (accessed on 2009/07/22).

[19] NIDSfindshellcode. Available at http://www.ngsec.com/downloads/misc/NIDSfindshellcode.tgz

(accessed on 2009/07/22).

132

[20] Snort, the open-source Network Intrusion Detection System. Available at

http://www.snort.org/ (accessed on 2008/03/15).

[21] Multi-argument no-operation instructions. Available at http://ecl-labs.org/papers/ecl-

poly.txt (accessed on 2009/05/23).

[22] SEH exploitation. Available at http://freeworld.thc.org/download.php ?tp̄&fP̄ractical-

SEHexploitation.pdf (accessed on 2010/01/05).

[23] Address Space Layout Randomization. Available at

http://pax.grsecurity.net/docs/aslr.txt (accessed on 2008/02/15).

[24] Address Space Layout Randomization exploitation. Available at http://www-

users.rwth-aachen.de/Tilo.Mueller/ASLRpaper.pdf (accessed on 2008/04/15).

[25] Chinchani R., Berg E. A fast static analysis approach to detect exploit code inside

network flows. In Proceedings of the 8th International Symposium on Recent Advances

in Intrusion Detection, Springer-Verlag, pages 284308. RAID, 2005.

[26] Kruegel C., Kirda E, Mutz D, et al. Polymorphic worm detection using structural in-

formation of executables. In Proceedings of the 8th International Symposium on Recent

Advances in Intrusion Detection, Springer-Verlag. RAID, 2005.

[27] Tapion polymorphic engine. Available at http://pb.specialised.info/all/tapion/ (ac-

cessed on 2009/07/05).

[28] J. Holland. Adaptation in Natural and Arti cial Systems. MIT Press, Cambridge, Mas-

sachusetts, second edition, 1992.

133

[29] D. E. Goldberg, K. Deb, H. Kargupta, H. George. Rapid Accurate Optimization

of Difficult Problems Using Fast Messy Genetic Algorithms. In Proceedings of The

Fifth International Conference On Genetic Algorithms. Morgan Kaufmann Publishers,

pages 56-64, 1993.

[30] Levenshtein, V. I. . Binary codes capable of correcting deletions, insertions and rever-

sals. Soviet Physics-Doklady 10, pages 707-710, 1996.

[31] M. Talbi, M. Mejri, A. Bouhoula. Specification and evaluation of polymorphic shell-

code properties using a new temporal logic. In Journal of Computer Virology, Springer

Paris, Vol.6, 2010.

[32] M. Polychronakis, K.G. Anagnostakis, E.P. Markatos. An Empirical

Study of Real World Polymorphic Code Injection Attacks. Available at

http://www.usenix.org/event/leet09/tech/full papers/polychronakis/polychronakis html/

(accessed on 2009/05/15).

[33] K. Borders, A. Prakash, and M. Zielinski. Spector: Automatically analyzing shell

code. In Proceedings of the Annual Computer Security Applications Conference, pages

501-514. ACSAC, 2007.

[34] N. Provos, P. Mavrommatis, M. A. Rajab, and F. Monrose. All your iFRAMEs point

to us. In Proceedings of the 17th USENIX Security Symposium, pages 1-16. USENIX,

2008.

134

[35] David J. Day, Zhengxu Zhao, Minhua Ma. Detecting Return-to-libc Buffer Overflow

Attacks Using Network Intrusion Detection Systems. In Fourth International Confer-

ence on Digital Society, pages 172-177. ICDS, 2010.

[36] I. Kim, D. Kim, B. Kim, Y. Choi, S. Yoon, J. Oh, J. Jang. An architecture of unknown

attack detection system against zero-day worm. In Proceedings of the 8th conference

on Applied computer science, Venice. ACM, 2008.

[37] K. Tatara, Y. Hori, K. Sakurai. Polymorphic Worm Detection by Analyzing Maximum

Length of Instruction Sequence in Network Packets. In International Conference on

Availability, Reliability and Security, pages 972-977. ARES, 2009.

[38] US-CERT Vulnerability Notes Database. Available at http://wwww.kb.cert.org/vulns

(accessed on 2010/07/07).

[39] H. Etoh and K. Yoda. Protecting from Stack-Smashing Attacks. Available at

http://www.trl.ibm.com/projects/security/ssp/main.html (accessed on 2010/06/06).

[40] Q. Zhang, D. S. Reeves, P. Ning, and S. P. Lyer. Analyzing network traffic to detect

self-decrypting exploit code. In Proceedings of the 2nd ACM Symposium on Informa-

tion, Computer and Communications Security, pages 4-12. ASIACCS, 2007.

[41] CLET polymorphic engine. Polymorphic Shellcode Engine Using Spectrum

Analysis available at http://www.phrack.org/issues.html?issue6̄1&id=9 (accessed on

2009/05/15).

135

[42] Michal Piotrowski. How to create polymorphic shellcode available at

http://hakin9.org/article-html/9374-how-to-create-polymorphic-shellcode (accessed

on 2009/03/05).

[43] A. Papadogiannakis, M. Polychronakis, E.P. Markatos. Improving the accuracy of net-

work intrusion detection systems under load using selective packet discarding. In Pro-

ceedings of the Third European Workshop on System Security, EUROSEC ’10. ACM,

2010.

[44] Advanced Shellcode Techniques. Available at http://projectshellcode.com/aggregator/categories/2

(accessed on 2010/01/05).

[45] Michal Piotrowski. Optimization des shellcodes sous linux. Available at www.linux-

pour-lesnuls.com/shellcode.pdf (accessed on 2009/04/15).

[46] Jonathan Salwan. How to create polymorphic shellcode. Available at

http://www.packetstormsecurity.org/papers/shellcode/how-to-create-polymorphic-

shellcode.txt (accessed on 2009/05/01).

[47] Daniele Mazzocchio. Self modifying shellcode. Available at http://www.kernel-

panic.it/security/shellcode/Linux BSD Shellcode.pdf (accessed on 2009/07/15).

[48] Phantasmal Phantasmagoria. On polymorphic evasion. Available at

http://www.securityfocus.com/archive/1/377339 (accessed 2009/07/15).

[49] M.V. Gundy, D. Balzarotti, G. Vigna. Catch Me, If You Can: Evading Network Sig-

natures with Web-based Polymorphic Worms. In Proceedings of the First USENIX

Workshop on Offensive Technologies (WOOT). USENIX, 2007.

136

[50] SANS. SANS Top 20. Available at http://www.sans.org/top-cyber-security-

risks/?ref=top20 (accessed on 2010/04/05).

[51] MPack. Mpack. Available at http://www.pandasecurity.com/homeusers/security-

info/tools/reports/ (accessed on 2010/04/15).

[52] J.R Crandall, Z. Su, S.F. Wu, F.T. Chong. On deriving unknown vulnerabilities from

zero-day polymorphic and metamorphic worm exploits. In Proceedings of the 12th

ACM Conference on Computer and Communications Security. ACM, 2005.

[53] P. Akritidis, E.P. Markatos, M. Polychronakis, K. Anagnostakis. Stride: Polymorphic

sled detection through instruction sequence analysis. In 20th IFIP International Infor-

mation Security Conference. IFIP, 2005.

[54] Longest Common Sequence. LCS. Available at

http://en.wikipedia.org/wiki/Longest common subsequence problem (accessed

on 2009/07/07).

[55] Smith-Waterman Algorithm. Smith-Waterman Algorithm. Available at

http://en.wikipedia.org/wiki/Smith-Waterman algorithm (accessed on 2009/07/15).

137

